KVM: do not register i8254 PIO regions until we are initialized
[deliverable/linux.git] / arch / x86 / kvm / i8254.c
1 /*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
26 *
27 * Authors:
28 * Sheng Yang <sheng.yang@intel.com>
29 * Based on QEMU and Xen.
30 */
31
32 #include <linux/kvm_host.h>
33
34 #include "irq.h"
35 #include "i8254.h"
36
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51 union {
52 u64 ll;
53 struct {
54 u32 low, high;
55 } l;
56 } u, res;
57 u64 rl, rh;
58
59 u.ll = a;
60 rl = (u64)u.l.low * (u64)b;
61 rh = (u64)u.l.high * (u64)b;
62 rh += (rl >> 32);
63 res.l.high = div64_u64(rh, c);
64 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65 return res.ll;
66 }
67
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70 struct kvm_kpit_channel_state *c =
71 &kvm->arch.vpit->pit_state.channels[channel];
72
73 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74
75 switch (c->mode) {
76 default:
77 case 0:
78 case 4:
79 /* XXX: just disable/enable counting */
80 break;
81 case 1:
82 case 2:
83 case 3:
84 case 5:
85 /* Restart counting on rising edge. */
86 if (c->gate < val)
87 c->count_load_time = ktime_get();
88 break;
89 }
90
91 c->gate = val;
92 }
93
94 static int pit_get_gate(struct kvm *kvm, int channel)
95 {
96 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97
98 return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100
101 static s64 __kpit_elapsed(struct kvm *kvm)
102 {
103 s64 elapsed;
104 ktime_t remaining;
105 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
106
107 if (!ps->pit_timer.period)
108 return 0;
109
110 /*
111 * The Counter does not stop when it reaches zero. In
112 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
113 * the highest count, either FFFF hex for binary counting
114 * or 9999 for BCD counting, and continues counting.
115 * Modes 2 and 3 are periodic; the Counter reloads
116 * itself with the initial count and continues counting
117 * from there.
118 */
119 remaining = hrtimer_expires_remaining(&ps->pit_timer.timer);
120 elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
121 elapsed = mod_64(elapsed, ps->pit_timer.period);
122
123 return elapsed;
124 }
125
126 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
127 int channel)
128 {
129 if (channel == 0)
130 return __kpit_elapsed(kvm);
131
132 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
133 }
134
135 static int pit_get_count(struct kvm *kvm, int channel)
136 {
137 struct kvm_kpit_channel_state *c =
138 &kvm->arch.vpit->pit_state.channels[channel];
139 s64 d, t;
140 int counter;
141
142 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
143
144 t = kpit_elapsed(kvm, c, channel);
145 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
146
147 switch (c->mode) {
148 case 0:
149 case 1:
150 case 4:
151 case 5:
152 counter = (c->count - d) & 0xffff;
153 break;
154 case 3:
155 /* XXX: may be incorrect for odd counts */
156 counter = c->count - (mod_64((2 * d), c->count));
157 break;
158 default:
159 counter = c->count - mod_64(d, c->count);
160 break;
161 }
162 return counter;
163 }
164
165 static int pit_get_out(struct kvm *kvm, int channel)
166 {
167 struct kvm_kpit_channel_state *c =
168 &kvm->arch.vpit->pit_state.channels[channel];
169 s64 d, t;
170 int out;
171
172 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
173
174 t = kpit_elapsed(kvm, c, channel);
175 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
176
177 switch (c->mode) {
178 default:
179 case 0:
180 out = (d >= c->count);
181 break;
182 case 1:
183 out = (d < c->count);
184 break;
185 case 2:
186 out = ((mod_64(d, c->count) == 0) && (d != 0));
187 break;
188 case 3:
189 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
190 break;
191 case 4:
192 case 5:
193 out = (d == c->count);
194 break;
195 }
196
197 return out;
198 }
199
200 static void pit_latch_count(struct kvm *kvm, int channel)
201 {
202 struct kvm_kpit_channel_state *c =
203 &kvm->arch.vpit->pit_state.channels[channel];
204
205 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
206
207 if (!c->count_latched) {
208 c->latched_count = pit_get_count(kvm, channel);
209 c->count_latched = c->rw_mode;
210 }
211 }
212
213 static void pit_latch_status(struct kvm *kvm, int channel)
214 {
215 struct kvm_kpit_channel_state *c =
216 &kvm->arch.vpit->pit_state.channels[channel];
217
218 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
219
220 if (!c->status_latched) {
221 /* TODO: Return NULL COUNT (bit 6). */
222 c->status = ((pit_get_out(kvm, channel) << 7) |
223 (c->rw_mode << 4) |
224 (c->mode << 1) |
225 c->bcd);
226 c->status_latched = 1;
227 }
228 }
229
230 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
231 {
232 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
233
234 if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
235 return atomic_read(&pit->pit_state.pit_timer.pending);
236 return 0;
237 }
238
239 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
240 {
241 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
242 irq_ack_notifier);
243 spin_lock(&ps->inject_lock);
244 if (atomic_dec_return(&ps->pit_timer.pending) < 0)
245 atomic_inc(&ps->pit_timer.pending);
246 ps->irq_ack = 1;
247 spin_unlock(&ps->inject_lock);
248 }
249
250 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
251 {
252 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
253 struct hrtimer *timer;
254
255 if (vcpu->vcpu_id != 0 || !pit)
256 return;
257
258 timer = &pit->pit_state.pit_timer.timer;
259 if (hrtimer_cancel(timer))
260 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
261 }
262
263 static void destroy_pit_timer(struct kvm_timer *pt)
264 {
265 pr_debug("pit: execute del timer!\n");
266 hrtimer_cancel(&pt->timer);
267 }
268
269 static bool kpit_is_periodic(struct kvm_timer *ktimer)
270 {
271 struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
272 pit_timer);
273 return ps->is_periodic;
274 }
275
276 static struct kvm_timer_ops kpit_ops = {
277 .is_periodic = kpit_is_periodic,
278 };
279
280 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
281 {
282 struct kvm_timer *pt = &ps->pit_timer;
283 s64 interval;
284
285 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
286
287 pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
288
289 /* TODO The new value only affected after the retriggered */
290 hrtimer_cancel(&pt->timer);
291 pt->period = interval;
292 ps->is_periodic = is_period;
293
294 pt->timer.function = kvm_timer_fn;
295 pt->t_ops = &kpit_ops;
296 pt->kvm = ps->pit->kvm;
297 pt->vcpu_id = 0;
298
299 atomic_set(&pt->pending, 0);
300 ps->irq_ack = 1;
301
302 hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
303 HRTIMER_MODE_ABS);
304 }
305
306 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
307 {
308 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
309
310 WARN_ON(!mutex_is_locked(&ps->lock));
311
312 pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
313
314 /*
315 * The largest possible initial count is 0; this is equivalent
316 * to 216 for binary counting and 104 for BCD counting.
317 */
318 if (val == 0)
319 val = 0x10000;
320
321 ps->channels[channel].count = val;
322
323 if (channel != 0) {
324 ps->channels[channel].count_load_time = ktime_get();
325 return;
326 }
327
328 /* Two types of timer
329 * mode 1 is one shot, mode 2 is period, otherwise del timer */
330 switch (ps->channels[0].mode) {
331 case 0:
332 case 1:
333 /* FIXME: enhance mode 4 precision */
334 case 4:
335 create_pit_timer(ps, val, 0);
336 break;
337 case 2:
338 case 3:
339 create_pit_timer(ps, val, 1);
340 break;
341 default:
342 destroy_pit_timer(&ps->pit_timer);
343 }
344 }
345
346 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
347 {
348 mutex_lock(&kvm->arch.vpit->pit_state.lock);
349 pit_load_count(kvm, channel, val);
350 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
351 }
352
353 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
354 {
355 return container_of(dev, struct kvm_pit, dev);
356 }
357
358 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
359 {
360 return container_of(dev, struct kvm_pit, speaker_dev);
361 }
362
363 static void pit_ioport_write(struct kvm_io_device *this,
364 gpa_t addr, int len, const void *data)
365 {
366 struct kvm_pit *pit = dev_to_pit(this);
367 struct kvm_kpit_state *pit_state = &pit->pit_state;
368 struct kvm *kvm = pit->kvm;
369 int channel, access;
370 struct kvm_kpit_channel_state *s;
371 u32 val = *(u32 *) data;
372
373 val &= 0xff;
374 addr &= KVM_PIT_CHANNEL_MASK;
375
376 mutex_lock(&pit_state->lock);
377
378 if (val != 0)
379 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
380 (unsigned int)addr, len, val);
381
382 if (addr == 3) {
383 channel = val >> 6;
384 if (channel == 3) {
385 /* Read-Back Command. */
386 for (channel = 0; channel < 3; channel++) {
387 s = &pit_state->channels[channel];
388 if (val & (2 << channel)) {
389 if (!(val & 0x20))
390 pit_latch_count(kvm, channel);
391 if (!(val & 0x10))
392 pit_latch_status(kvm, channel);
393 }
394 }
395 } else {
396 /* Select Counter <channel>. */
397 s = &pit_state->channels[channel];
398 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
399 if (access == 0) {
400 pit_latch_count(kvm, channel);
401 } else {
402 s->rw_mode = access;
403 s->read_state = access;
404 s->write_state = access;
405 s->mode = (val >> 1) & 7;
406 if (s->mode > 5)
407 s->mode -= 4;
408 s->bcd = val & 1;
409 }
410 }
411 } else {
412 /* Write Count. */
413 s = &pit_state->channels[addr];
414 switch (s->write_state) {
415 default:
416 case RW_STATE_LSB:
417 pit_load_count(kvm, addr, val);
418 break;
419 case RW_STATE_MSB:
420 pit_load_count(kvm, addr, val << 8);
421 break;
422 case RW_STATE_WORD0:
423 s->write_latch = val;
424 s->write_state = RW_STATE_WORD1;
425 break;
426 case RW_STATE_WORD1:
427 pit_load_count(kvm, addr, s->write_latch | (val << 8));
428 s->write_state = RW_STATE_WORD0;
429 break;
430 }
431 }
432
433 mutex_unlock(&pit_state->lock);
434 }
435
436 static void pit_ioport_read(struct kvm_io_device *this,
437 gpa_t addr, int len, void *data)
438 {
439 struct kvm_pit *pit = dev_to_pit(this);
440 struct kvm_kpit_state *pit_state = &pit->pit_state;
441 struct kvm *kvm = pit->kvm;
442 int ret, count;
443 struct kvm_kpit_channel_state *s;
444
445 addr &= KVM_PIT_CHANNEL_MASK;
446 s = &pit_state->channels[addr];
447
448 mutex_lock(&pit_state->lock);
449
450 if (s->status_latched) {
451 s->status_latched = 0;
452 ret = s->status;
453 } else if (s->count_latched) {
454 switch (s->count_latched) {
455 default:
456 case RW_STATE_LSB:
457 ret = s->latched_count & 0xff;
458 s->count_latched = 0;
459 break;
460 case RW_STATE_MSB:
461 ret = s->latched_count >> 8;
462 s->count_latched = 0;
463 break;
464 case RW_STATE_WORD0:
465 ret = s->latched_count & 0xff;
466 s->count_latched = RW_STATE_MSB;
467 break;
468 }
469 } else {
470 switch (s->read_state) {
471 default:
472 case RW_STATE_LSB:
473 count = pit_get_count(kvm, addr);
474 ret = count & 0xff;
475 break;
476 case RW_STATE_MSB:
477 count = pit_get_count(kvm, addr);
478 ret = (count >> 8) & 0xff;
479 break;
480 case RW_STATE_WORD0:
481 count = pit_get_count(kvm, addr);
482 ret = count & 0xff;
483 s->read_state = RW_STATE_WORD1;
484 break;
485 case RW_STATE_WORD1:
486 count = pit_get_count(kvm, addr);
487 ret = (count >> 8) & 0xff;
488 s->read_state = RW_STATE_WORD0;
489 break;
490 }
491 }
492
493 if (len > sizeof(ret))
494 len = sizeof(ret);
495 memcpy(data, (char *)&ret, len);
496
497 mutex_unlock(&pit_state->lock);
498 }
499
500 static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
501 int len, int is_write)
502 {
503 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
504 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
505 }
506
507 static void speaker_ioport_write(struct kvm_io_device *this,
508 gpa_t addr, int len, const void *data)
509 {
510 struct kvm_pit *pit = speaker_to_pit(this);
511 struct kvm_kpit_state *pit_state = &pit->pit_state;
512 struct kvm *kvm = pit->kvm;
513 u32 val = *(u32 *) data;
514
515 mutex_lock(&pit_state->lock);
516 pit_state->speaker_data_on = (val >> 1) & 1;
517 pit_set_gate(kvm, 2, val & 1);
518 mutex_unlock(&pit_state->lock);
519 }
520
521 static void speaker_ioport_read(struct kvm_io_device *this,
522 gpa_t addr, int len, void *data)
523 {
524 struct kvm_pit *pit = speaker_to_pit(this);
525 struct kvm_kpit_state *pit_state = &pit->pit_state;
526 struct kvm *kvm = pit->kvm;
527 unsigned int refresh_clock;
528 int ret;
529
530 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
531 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
532
533 mutex_lock(&pit_state->lock);
534 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
535 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
536 if (len > sizeof(ret))
537 len = sizeof(ret);
538 memcpy(data, (char *)&ret, len);
539 mutex_unlock(&pit_state->lock);
540 }
541
542 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
543 int len, int is_write)
544 {
545 return (addr == KVM_SPEAKER_BASE_ADDRESS);
546 }
547
548 void kvm_pit_reset(struct kvm_pit *pit)
549 {
550 int i;
551 struct kvm_kpit_channel_state *c;
552
553 mutex_lock(&pit->pit_state.lock);
554 for (i = 0; i < 3; i++) {
555 c = &pit->pit_state.channels[i];
556 c->mode = 0xff;
557 c->gate = (i != 2);
558 pit_load_count(pit->kvm, i, 0);
559 }
560 mutex_unlock(&pit->pit_state.lock);
561
562 atomic_set(&pit->pit_state.pit_timer.pending, 0);
563 pit->pit_state.irq_ack = 1;
564 }
565
566 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
567 {
568 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
569
570 if (!mask) {
571 atomic_set(&pit->pit_state.pit_timer.pending, 0);
572 pit->pit_state.irq_ack = 1;
573 }
574 }
575
576 static const struct kvm_io_device_ops pit_dev_ops = {
577 .read = pit_ioport_read,
578 .write = pit_ioport_write,
579 .in_range = pit_in_range,
580 };
581
582 static const struct kvm_io_device_ops speaker_dev_ops = {
583 .read = speaker_ioport_read,
584 .write = speaker_ioport_write,
585 .in_range = speaker_in_range,
586 };
587
588 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
589 {
590 struct kvm_pit *pit;
591 struct kvm_kpit_state *pit_state;
592
593 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
594 if (!pit)
595 return NULL;
596
597 pit->irq_source_id = kvm_request_irq_source_id(kvm);
598 if (pit->irq_source_id < 0) {
599 kfree(pit);
600 return NULL;
601 }
602
603 mutex_init(&pit->pit_state.lock);
604 mutex_lock(&pit->pit_state.lock);
605 spin_lock_init(&pit->pit_state.inject_lock);
606
607 kvm->arch.vpit = pit;
608 pit->kvm = kvm;
609
610 pit_state = &pit->pit_state;
611 pit_state->pit = pit;
612 hrtimer_init(&pit_state->pit_timer.timer,
613 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
614 pit_state->irq_ack_notifier.gsi = 0;
615 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
616 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
617 pit_state->pit_timer.reinject = true;
618 mutex_unlock(&pit->pit_state.lock);
619
620 kvm_pit_reset(pit);
621
622 pit->mask_notifier.func = pit_mask_notifer;
623 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
624
625 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
626 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
627
628 if (flags & KVM_PIT_SPEAKER_DUMMY) {
629 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
630 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
631 }
632
633 return pit;
634 }
635
636 void kvm_free_pit(struct kvm *kvm)
637 {
638 struct hrtimer *timer;
639
640 if (kvm->arch.vpit) {
641 kvm_unregister_irq_mask_notifier(kvm, 0,
642 &kvm->arch.vpit->mask_notifier);
643 mutex_lock(&kvm->arch.vpit->pit_state.lock);
644 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
645 hrtimer_cancel(timer);
646 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
647 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
648 kfree(kvm->arch.vpit);
649 }
650 }
651
652 static void __inject_pit_timer_intr(struct kvm *kvm)
653 {
654 struct kvm_vcpu *vcpu;
655 int i;
656
657 mutex_lock(&kvm->lock);
658 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
659 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
660 mutex_unlock(&kvm->lock);
661
662 /*
663 * Provides NMI watchdog support via Virtual Wire mode.
664 * The route is: PIT -> PIC -> LVT0 in NMI mode.
665 *
666 * Note: Our Virtual Wire implementation is simplified, only
667 * propagating PIT interrupts to all VCPUs when they have set
668 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
669 * VCPU0, and only if its LVT0 is in EXTINT mode.
670 */
671 if (kvm->arch.vapics_in_nmi_mode > 0)
672 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
673 vcpu = kvm->vcpus[i];
674 if (vcpu)
675 kvm_apic_nmi_wd_deliver(vcpu);
676 }
677 }
678
679 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
680 {
681 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
682 struct kvm *kvm = vcpu->kvm;
683 struct kvm_kpit_state *ps;
684
685 if (vcpu && pit) {
686 int inject = 0;
687 ps = &pit->pit_state;
688
689 /* Try to inject pending interrupts when
690 * last one has been acked.
691 */
692 spin_lock(&ps->inject_lock);
693 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
694 ps->irq_ack = 0;
695 inject = 1;
696 }
697 spin_unlock(&ps->inject_lock);
698 if (inject)
699 __inject_pit_timer_intr(kvm);
700 }
701 }
This page took 0.05799 seconds and 6 git commands to generate.