ALSA: hda_intel: add position_fix quirk for Asus K53E
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196 shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
204 trace_mark_mmio_spte(sptep, gfn, access);
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206 }
207
208 static bool is_mmio_spte(u64 spte)
209 {
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211 }
212
213 static gfn_t get_mmio_spte_gfn(u64 spte)
214 {
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216 }
217
218 static unsigned get_mmio_spte_access(u64 spte)
219 {
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221 }
222
223 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224 {
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231 }
232
233 static inline u64 rsvd_bits(int s, int e)
234 {
235 return ((1ULL << (e - s + 1)) - 1) << s;
236 }
237
238 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
240 {
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246 }
247 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
249 static int is_cpuid_PSE36(void)
250 {
251 return 1;
252 }
253
254 static int is_nx(struct kvm_vcpu *vcpu)
255 {
256 return vcpu->arch.efer & EFER_NX;
257 }
258
259 static int is_shadow_present_pte(u64 pte)
260 {
261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262 }
263
264 static int is_large_pte(u64 pte)
265 {
266 return pte & PT_PAGE_SIZE_MASK;
267 }
268
269 static int is_dirty_gpte(unsigned long pte)
270 {
271 return pte & PT_DIRTY_MASK;
272 }
273
274 static int is_rmap_spte(u64 pte)
275 {
276 return is_shadow_present_pte(pte);
277 }
278
279 static int is_last_spte(u64 pte, int level)
280 {
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
283 if (is_large_pte(pte))
284 return 1;
285 return 0;
286 }
287
288 static pfn_t spte_to_pfn(u64 pte)
289 {
290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291 }
292
293 static gfn_t pse36_gfn_delta(u32 gpte)
294 {
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298 }
299
300 #ifdef CONFIG_X86_64
301 static void __set_spte(u64 *sptep, u64 spte)
302 {
303 *sptep = spte;
304 }
305
306 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
307 {
308 *sptep = spte;
309 }
310
311 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312 {
313 return xchg(sptep, spte);
314 }
315
316 static u64 __get_spte_lockless(u64 *sptep)
317 {
318 return ACCESS_ONCE(*sptep);
319 }
320
321 static bool __check_direct_spte_mmio_pf(u64 spte)
322 {
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325 }
326 #else
327 union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333 };
334
335 static void count_spte_clear(u64 *sptep, u64 spte)
336 {
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345 }
346
347 static void __set_spte(u64 *sptep, u64 spte)
348 {
349 union split_spte *ssptep, sspte;
350
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
382 count_spte_clear(sptep, spte);
383 }
384
385 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386 {
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
396 count_spte_clear(sptep, spte);
397
398 return orig.spte;
399 }
400
401 /*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408 static u64 __get_spte_lockless(u64 *sptep)
409 {
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414 retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429 }
430
431 static bool __check_direct_spte_mmio_pf(u64 spte)
432 {
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446 }
447 #endif
448
449 static bool spte_is_locklessly_modifiable(u64 spte)
450 {
451 return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452 }
453
454 static bool spte_has_volatile_bits(u64 spte)
455 {
456 /*
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
462 if (spte_is_locklessly_modifiable(spte))
463 return true;
464
465 if (!shadow_accessed_mask)
466 return false;
467
468 if (!is_shadow_present_pte(spte))
469 return false;
470
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
473 return false;
474
475 return true;
476 }
477
478 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479 {
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
481 }
482
483 /* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
487 * the spte.
488 */
489 static void mmu_spte_set(u64 *sptep, u64 new_spte)
490 {
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
493 }
494
495 /* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
497 *
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
502 * case.
503 */
504 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
505 {
506 u64 old_spte = *sptep;
507 bool ret = false;
508
509 WARN_ON(!is_rmap_spte(new_spte));
510
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
513 return ret;
514 }
515
516 if (!spte_has_volatile_bits(old_spte))
517 __update_clear_spte_fast(sptep, new_spte);
518 else
519 old_spte = __update_clear_spte_slow(sptep, new_spte);
520
521 /*
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
525 */
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527 ret = true;
528
529 if (!shadow_accessed_mask)
530 return ret;
531
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
536
537 return ret;
538 }
539
540 /*
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
544 */
545 static int mmu_spte_clear_track_bits(u64 *sptep)
546 {
547 pfn_t pfn;
548 u64 old_spte = *sptep;
549
550 if (!spte_has_volatile_bits(old_spte))
551 __update_clear_spte_fast(sptep, 0ull);
552 else
553 old_spte = __update_clear_spte_slow(sptep, 0ull);
554
555 if (!is_rmap_spte(old_spte))
556 return 0;
557
558 pfn = spte_to_pfn(old_spte);
559 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
560 kvm_set_pfn_accessed(pfn);
561 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
562 kvm_set_pfn_dirty(pfn);
563 return 1;
564 }
565
566 /*
567 * Rules for using mmu_spte_clear_no_track:
568 * Directly clear spte without caring the state bits of sptep,
569 * it is used to set the upper level spte.
570 */
571 static void mmu_spte_clear_no_track(u64 *sptep)
572 {
573 __update_clear_spte_fast(sptep, 0ull);
574 }
575
576 static u64 mmu_spte_get_lockless(u64 *sptep)
577 {
578 return __get_spte_lockless(sptep);
579 }
580
581 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
582 {
583 /*
584 * Prevent page table teardown by making any free-er wait during
585 * kvm_flush_remote_tlbs() IPI to all active vcpus.
586 */
587 local_irq_disable();
588 vcpu->mode = READING_SHADOW_PAGE_TABLES;
589 /*
590 * Make sure a following spte read is not reordered ahead of the write
591 * to vcpu->mode.
592 */
593 smp_mb();
594 }
595
596 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
597 {
598 /*
599 * Make sure the write to vcpu->mode is not reordered in front of
600 * reads to sptes. If it does, kvm_commit_zap_page() can see us
601 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
602 */
603 smp_mb();
604 vcpu->mode = OUTSIDE_GUEST_MODE;
605 local_irq_enable();
606 }
607
608 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
609 struct kmem_cache *base_cache, int min)
610 {
611 void *obj;
612
613 if (cache->nobjs >= min)
614 return 0;
615 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
616 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
617 if (!obj)
618 return -ENOMEM;
619 cache->objects[cache->nobjs++] = obj;
620 }
621 return 0;
622 }
623
624 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
625 {
626 return cache->nobjs;
627 }
628
629 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
630 struct kmem_cache *cache)
631 {
632 while (mc->nobjs)
633 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
634 }
635
636 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
637 int min)
638 {
639 void *page;
640
641 if (cache->nobjs >= min)
642 return 0;
643 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
644 page = (void *)__get_free_page(GFP_KERNEL);
645 if (!page)
646 return -ENOMEM;
647 cache->objects[cache->nobjs++] = page;
648 }
649 return 0;
650 }
651
652 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
653 {
654 while (mc->nobjs)
655 free_page((unsigned long)mc->objects[--mc->nobjs]);
656 }
657
658 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
659 {
660 int r;
661
662 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
663 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
664 if (r)
665 goto out;
666 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
667 if (r)
668 goto out;
669 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
670 mmu_page_header_cache, 4);
671 out:
672 return r;
673 }
674
675 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
676 {
677 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
678 pte_list_desc_cache);
679 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
680 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
681 mmu_page_header_cache);
682 }
683
684 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
685 {
686 void *p;
687
688 BUG_ON(!mc->nobjs);
689 p = mc->objects[--mc->nobjs];
690 return p;
691 }
692
693 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
694 {
695 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
696 }
697
698 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
699 {
700 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
701 }
702
703 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
704 {
705 if (!sp->role.direct)
706 return sp->gfns[index];
707
708 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
709 }
710
711 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
712 {
713 if (sp->role.direct)
714 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
715 else
716 sp->gfns[index] = gfn;
717 }
718
719 /*
720 * Return the pointer to the large page information for a given gfn,
721 * handling slots that are not large page aligned.
722 */
723 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
724 struct kvm_memory_slot *slot,
725 int level)
726 {
727 unsigned long idx;
728
729 idx = gfn_to_index(gfn, slot->base_gfn, level);
730 return &slot->arch.lpage_info[level - 2][idx];
731 }
732
733 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
734 {
735 struct kvm_memory_slot *slot;
736 struct kvm_lpage_info *linfo;
737 int i;
738
739 slot = gfn_to_memslot(kvm, gfn);
740 for (i = PT_DIRECTORY_LEVEL;
741 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
742 linfo = lpage_info_slot(gfn, slot, i);
743 linfo->write_count += 1;
744 }
745 kvm->arch.indirect_shadow_pages++;
746 }
747
748 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
749 {
750 struct kvm_memory_slot *slot;
751 struct kvm_lpage_info *linfo;
752 int i;
753
754 slot = gfn_to_memslot(kvm, gfn);
755 for (i = PT_DIRECTORY_LEVEL;
756 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
757 linfo = lpage_info_slot(gfn, slot, i);
758 linfo->write_count -= 1;
759 WARN_ON(linfo->write_count < 0);
760 }
761 kvm->arch.indirect_shadow_pages--;
762 }
763
764 static int has_wrprotected_page(struct kvm *kvm,
765 gfn_t gfn,
766 int level)
767 {
768 struct kvm_memory_slot *slot;
769 struct kvm_lpage_info *linfo;
770
771 slot = gfn_to_memslot(kvm, gfn);
772 if (slot) {
773 linfo = lpage_info_slot(gfn, slot, level);
774 return linfo->write_count;
775 }
776
777 return 1;
778 }
779
780 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
781 {
782 unsigned long page_size;
783 int i, ret = 0;
784
785 page_size = kvm_host_page_size(kvm, gfn);
786
787 for (i = PT_PAGE_TABLE_LEVEL;
788 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
789 if (page_size >= KVM_HPAGE_SIZE(i))
790 ret = i;
791 else
792 break;
793 }
794
795 return ret;
796 }
797
798 static struct kvm_memory_slot *
799 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
800 bool no_dirty_log)
801 {
802 struct kvm_memory_slot *slot;
803
804 slot = gfn_to_memslot(vcpu->kvm, gfn);
805 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
806 (no_dirty_log && slot->dirty_bitmap))
807 slot = NULL;
808
809 return slot;
810 }
811
812 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
813 {
814 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
815 }
816
817 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
818 {
819 int host_level, level, max_level;
820
821 host_level = host_mapping_level(vcpu->kvm, large_gfn);
822
823 if (host_level == PT_PAGE_TABLE_LEVEL)
824 return host_level;
825
826 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
827 kvm_x86_ops->get_lpage_level() : host_level;
828
829 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
830 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
831 break;
832
833 return level - 1;
834 }
835
836 /*
837 * Pte mapping structures:
838 *
839 * If pte_list bit zero is zero, then pte_list point to the spte.
840 *
841 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
842 * pte_list_desc containing more mappings.
843 *
844 * Returns the number of pte entries before the spte was added or zero if
845 * the spte was not added.
846 *
847 */
848 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
849 unsigned long *pte_list)
850 {
851 struct pte_list_desc *desc;
852 int i, count = 0;
853
854 if (!*pte_list) {
855 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
856 *pte_list = (unsigned long)spte;
857 } else if (!(*pte_list & 1)) {
858 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
859 desc = mmu_alloc_pte_list_desc(vcpu);
860 desc->sptes[0] = (u64 *)*pte_list;
861 desc->sptes[1] = spte;
862 *pte_list = (unsigned long)desc | 1;
863 ++count;
864 } else {
865 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
866 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
867 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
868 desc = desc->more;
869 count += PTE_LIST_EXT;
870 }
871 if (desc->sptes[PTE_LIST_EXT-1]) {
872 desc->more = mmu_alloc_pte_list_desc(vcpu);
873 desc = desc->more;
874 }
875 for (i = 0; desc->sptes[i]; ++i)
876 ++count;
877 desc->sptes[i] = spte;
878 }
879 return count;
880 }
881
882 static void
883 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
884 int i, struct pte_list_desc *prev_desc)
885 {
886 int j;
887
888 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
889 ;
890 desc->sptes[i] = desc->sptes[j];
891 desc->sptes[j] = NULL;
892 if (j != 0)
893 return;
894 if (!prev_desc && !desc->more)
895 *pte_list = (unsigned long)desc->sptes[0];
896 else
897 if (prev_desc)
898 prev_desc->more = desc->more;
899 else
900 *pte_list = (unsigned long)desc->more | 1;
901 mmu_free_pte_list_desc(desc);
902 }
903
904 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
905 {
906 struct pte_list_desc *desc;
907 struct pte_list_desc *prev_desc;
908 int i;
909
910 if (!*pte_list) {
911 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
912 BUG();
913 } else if (!(*pte_list & 1)) {
914 rmap_printk("pte_list_remove: %p 1->0\n", spte);
915 if ((u64 *)*pte_list != spte) {
916 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
917 BUG();
918 }
919 *pte_list = 0;
920 } else {
921 rmap_printk("pte_list_remove: %p many->many\n", spte);
922 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
923 prev_desc = NULL;
924 while (desc) {
925 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
926 if (desc->sptes[i] == spte) {
927 pte_list_desc_remove_entry(pte_list,
928 desc, i,
929 prev_desc);
930 return;
931 }
932 prev_desc = desc;
933 desc = desc->more;
934 }
935 pr_err("pte_list_remove: %p many->many\n", spte);
936 BUG();
937 }
938 }
939
940 typedef void (*pte_list_walk_fn) (u64 *spte);
941 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
942 {
943 struct pte_list_desc *desc;
944 int i;
945
946 if (!*pte_list)
947 return;
948
949 if (!(*pte_list & 1))
950 return fn((u64 *)*pte_list);
951
952 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
953 while (desc) {
954 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
955 fn(desc->sptes[i]);
956 desc = desc->more;
957 }
958 }
959
960 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
961 struct kvm_memory_slot *slot)
962 {
963 struct kvm_lpage_info *linfo;
964
965 if (likely(level == PT_PAGE_TABLE_LEVEL))
966 return &slot->rmap[gfn - slot->base_gfn];
967
968 linfo = lpage_info_slot(gfn, slot, level);
969 return &linfo->rmap_pde;
970 }
971
972 /*
973 * Take gfn and return the reverse mapping to it.
974 */
975 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
976 {
977 struct kvm_memory_slot *slot;
978
979 slot = gfn_to_memslot(kvm, gfn);
980 return __gfn_to_rmap(gfn, level, slot);
981 }
982
983 static bool rmap_can_add(struct kvm_vcpu *vcpu)
984 {
985 struct kvm_mmu_memory_cache *cache;
986
987 cache = &vcpu->arch.mmu_pte_list_desc_cache;
988 return mmu_memory_cache_free_objects(cache);
989 }
990
991 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
992 {
993 struct kvm_mmu_page *sp;
994 unsigned long *rmapp;
995
996 sp = page_header(__pa(spte));
997 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
998 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
999 return pte_list_add(vcpu, spte, rmapp);
1000 }
1001
1002 static void rmap_remove(struct kvm *kvm, u64 *spte)
1003 {
1004 struct kvm_mmu_page *sp;
1005 gfn_t gfn;
1006 unsigned long *rmapp;
1007
1008 sp = page_header(__pa(spte));
1009 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1010 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1011 pte_list_remove(spte, rmapp);
1012 }
1013
1014 /*
1015 * Used by the following functions to iterate through the sptes linked by a
1016 * rmap. All fields are private and not assumed to be used outside.
1017 */
1018 struct rmap_iterator {
1019 /* private fields */
1020 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1021 int pos; /* index of the sptep */
1022 };
1023
1024 /*
1025 * Iteration must be started by this function. This should also be used after
1026 * removing/dropping sptes from the rmap link because in such cases the
1027 * information in the itererator may not be valid.
1028 *
1029 * Returns sptep if found, NULL otherwise.
1030 */
1031 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1032 {
1033 if (!rmap)
1034 return NULL;
1035
1036 if (!(rmap & 1)) {
1037 iter->desc = NULL;
1038 return (u64 *)rmap;
1039 }
1040
1041 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1042 iter->pos = 0;
1043 return iter->desc->sptes[iter->pos];
1044 }
1045
1046 /*
1047 * Must be used with a valid iterator: e.g. after rmap_get_first().
1048 *
1049 * Returns sptep if found, NULL otherwise.
1050 */
1051 static u64 *rmap_get_next(struct rmap_iterator *iter)
1052 {
1053 if (iter->desc) {
1054 if (iter->pos < PTE_LIST_EXT - 1) {
1055 u64 *sptep;
1056
1057 ++iter->pos;
1058 sptep = iter->desc->sptes[iter->pos];
1059 if (sptep)
1060 return sptep;
1061 }
1062
1063 iter->desc = iter->desc->more;
1064
1065 if (iter->desc) {
1066 iter->pos = 0;
1067 /* desc->sptes[0] cannot be NULL */
1068 return iter->desc->sptes[iter->pos];
1069 }
1070 }
1071
1072 return NULL;
1073 }
1074
1075 static void drop_spte(struct kvm *kvm, u64 *sptep)
1076 {
1077 if (mmu_spte_clear_track_bits(sptep))
1078 rmap_remove(kvm, sptep);
1079 }
1080
1081
1082 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1083 {
1084 if (is_large_pte(*sptep)) {
1085 WARN_ON(page_header(__pa(sptep))->role.level ==
1086 PT_PAGE_TABLE_LEVEL);
1087 drop_spte(kvm, sptep);
1088 --kvm->stat.lpages;
1089 return true;
1090 }
1091
1092 return false;
1093 }
1094
1095 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1096 {
1097 if (__drop_large_spte(vcpu->kvm, sptep))
1098 kvm_flush_remote_tlbs(vcpu->kvm);
1099 }
1100
1101 /*
1102 * Write-protect on the specified @sptep, @pt_protect indicates whether
1103 * spte writ-protection is caused by protecting shadow page table.
1104 * @flush indicates whether tlb need be flushed.
1105 *
1106 * Note: write protection is difference between drity logging and spte
1107 * protection:
1108 * - for dirty logging, the spte can be set to writable at anytime if
1109 * its dirty bitmap is properly set.
1110 * - for spte protection, the spte can be writable only after unsync-ing
1111 * shadow page.
1112 *
1113 * Return true if the spte is dropped.
1114 */
1115 static bool
1116 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1117 {
1118 u64 spte = *sptep;
1119
1120 if (!is_writable_pte(spte) &&
1121 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1122 return false;
1123
1124 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1125
1126 if (__drop_large_spte(kvm, sptep)) {
1127 *flush |= true;
1128 return true;
1129 }
1130
1131 if (pt_protect)
1132 spte &= ~SPTE_MMU_WRITEABLE;
1133 spte = spte & ~PT_WRITABLE_MASK;
1134
1135 *flush |= mmu_spte_update(sptep, spte);
1136 return false;
1137 }
1138
1139 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1140 int level, bool pt_protect)
1141 {
1142 u64 *sptep;
1143 struct rmap_iterator iter;
1144 bool flush = false;
1145
1146 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1147 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1148 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1149 sptep = rmap_get_first(*rmapp, &iter);
1150 continue;
1151 }
1152
1153 sptep = rmap_get_next(&iter);
1154 }
1155
1156 return flush;
1157 }
1158
1159 /**
1160 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1161 * @kvm: kvm instance
1162 * @slot: slot to protect
1163 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1164 * @mask: indicates which pages we should protect
1165 *
1166 * Used when we do not need to care about huge page mappings: e.g. during dirty
1167 * logging we do not have any such mappings.
1168 */
1169 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1170 struct kvm_memory_slot *slot,
1171 gfn_t gfn_offset, unsigned long mask)
1172 {
1173 unsigned long *rmapp;
1174
1175 while (mask) {
1176 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1177 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
1178
1179 /* clear the first set bit */
1180 mask &= mask - 1;
1181 }
1182 }
1183
1184 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1185 {
1186 struct kvm_memory_slot *slot;
1187 unsigned long *rmapp;
1188 int i;
1189 bool write_protected = false;
1190
1191 slot = gfn_to_memslot(kvm, gfn);
1192
1193 for (i = PT_PAGE_TABLE_LEVEL;
1194 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1195 rmapp = __gfn_to_rmap(gfn, i, slot);
1196 write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
1197 }
1198
1199 return write_protected;
1200 }
1201
1202 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1203 unsigned long data)
1204 {
1205 u64 *sptep;
1206 struct rmap_iterator iter;
1207 int need_tlb_flush = 0;
1208
1209 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1210 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1211 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1212
1213 drop_spte(kvm, sptep);
1214 need_tlb_flush = 1;
1215 }
1216
1217 return need_tlb_flush;
1218 }
1219
1220 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1221 unsigned long data)
1222 {
1223 u64 *sptep;
1224 struct rmap_iterator iter;
1225 int need_flush = 0;
1226 u64 new_spte;
1227 pte_t *ptep = (pte_t *)data;
1228 pfn_t new_pfn;
1229
1230 WARN_ON(pte_huge(*ptep));
1231 new_pfn = pte_pfn(*ptep);
1232
1233 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1234 BUG_ON(!is_shadow_present_pte(*sptep));
1235 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1236
1237 need_flush = 1;
1238
1239 if (pte_write(*ptep)) {
1240 drop_spte(kvm, sptep);
1241 sptep = rmap_get_first(*rmapp, &iter);
1242 } else {
1243 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1244 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1245
1246 new_spte &= ~PT_WRITABLE_MASK;
1247 new_spte &= ~SPTE_HOST_WRITEABLE;
1248 new_spte &= ~shadow_accessed_mask;
1249
1250 mmu_spte_clear_track_bits(sptep);
1251 mmu_spte_set(sptep, new_spte);
1252 sptep = rmap_get_next(&iter);
1253 }
1254 }
1255
1256 if (need_flush)
1257 kvm_flush_remote_tlbs(kvm);
1258
1259 return 0;
1260 }
1261
1262 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1263 unsigned long data,
1264 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1265 unsigned long data))
1266 {
1267 int j;
1268 int ret;
1269 int retval = 0;
1270 struct kvm_memslots *slots;
1271 struct kvm_memory_slot *memslot;
1272
1273 slots = kvm_memslots(kvm);
1274
1275 kvm_for_each_memslot(memslot, slots) {
1276 unsigned long start = memslot->userspace_addr;
1277 unsigned long end;
1278
1279 end = start + (memslot->npages << PAGE_SHIFT);
1280 if (hva >= start && hva < end) {
1281 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1282 gfn_t gfn = memslot->base_gfn + gfn_offset;
1283
1284 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1285
1286 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1287 struct kvm_lpage_info *linfo;
1288
1289 linfo = lpage_info_slot(gfn, memslot,
1290 PT_DIRECTORY_LEVEL + j);
1291 ret |= handler(kvm, &linfo->rmap_pde, data);
1292 }
1293 trace_kvm_age_page(hva, memslot, ret);
1294 retval |= ret;
1295 }
1296 }
1297
1298 return retval;
1299 }
1300
1301 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1302 {
1303 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1304 }
1305
1306 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1307 {
1308 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1309 }
1310
1311 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1312 unsigned long data)
1313 {
1314 u64 *sptep;
1315 struct rmap_iterator uninitialized_var(iter);
1316 int young = 0;
1317
1318 /*
1319 * In case of absence of EPT Access and Dirty Bits supports,
1320 * emulate the accessed bit for EPT, by checking if this page has
1321 * an EPT mapping, and clearing it if it does. On the next access,
1322 * a new EPT mapping will be established.
1323 * This has some overhead, but not as much as the cost of swapping
1324 * out actively used pages or breaking up actively used hugepages.
1325 */
1326 if (!shadow_accessed_mask)
1327 return kvm_unmap_rmapp(kvm, rmapp, data);
1328
1329 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1330 sptep = rmap_get_next(&iter)) {
1331 BUG_ON(!is_shadow_present_pte(*sptep));
1332
1333 if (*sptep & shadow_accessed_mask) {
1334 young = 1;
1335 clear_bit((ffs(shadow_accessed_mask) - 1),
1336 (unsigned long *)sptep);
1337 }
1338 }
1339
1340 return young;
1341 }
1342
1343 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1344 unsigned long data)
1345 {
1346 u64 *sptep;
1347 struct rmap_iterator iter;
1348 int young = 0;
1349
1350 /*
1351 * If there's no access bit in the secondary pte set by the
1352 * hardware it's up to gup-fast/gup to set the access bit in
1353 * the primary pte or in the page structure.
1354 */
1355 if (!shadow_accessed_mask)
1356 goto out;
1357
1358 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1359 sptep = rmap_get_next(&iter)) {
1360 BUG_ON(!is_shadow_present_pte(*sptep));
1361
1362 if (*sptep & shadow_accessed_mask) {
1363 young = 1;
1364 break;
1365 }
1366 }
1367 out:
1368 return young;
1369 }
1370
1371 #define RMAP_RECYCLE_THRESHOLD 1000
1372
1373 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1374 {
1375 unsigned long *rmapp;
1376 struct kvm_mmu_page *sp;
1377
1378 sp = page_header(__pa(spte));
1379
1380 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1381
1382 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1383 kvm_flush_remote_tlbs(vcpu->kvm);
1384 }
1385
1386 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1387 {
1388 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1389 }
1390
1391 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1392 {
1393 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1394 }
1395
1396 #ifdef MMU_DEBUG
1397 static int is_empty_shadow_page(u64 *spt)
1398 {
1399 u64 *pos;
1400 u64 *end;
1401
1402 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1403 if (is_shadow_present_pte(*pos)) {
1404 printk(KERN_ERR "%s: %p %llx\n", __func__,
1405 pos, *pos);
1406 return 0;
1407 }
1408 return 1;
1409 }
1410 #endif
1411
1412 /*
1413 * This value is the sum of all of the kvm instances's
1414 * kvm->arch.n_used_mmu_pages values. We need a global,
1415 * aggregate version in order to make the slab shrinker
1416 * faster
1417 */
1418 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1419 {
1420 kvm->arch.n_used_mmu_pages += nr;
1421 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1422 }
1423
1424 /*
1425 * Remove the sp from shadow page cache, after call it,
1426 * we can not find this sp from the cache, and the shadow
1427 * page table is still valid.
1428 * It should be under the protection of mmu lock.
1429 */
1430 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1431 {
1432 ASSERT(is_empty_shadow_page(sp->spt));
1433 hlist_del(&sp->hash_link);
1434 if (!sp->role.direct)
1435 free_page((unsigned long)sp->gfns);
1436 }
1437
1438 /*
1439 * Free the shadow page table and the sp, we can do it
1440 * out of the protection of mmu lock.
1441 */
1442 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1443 {
1444 list_del(&sp->link);
1445 free_page((unsigned long)sp->spt);
1446 kmem_cache_free(mmu_page_header_cache, sp);
1447 }
1448
1449 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1450 {
1451 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1452 }
1453
1454 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1455 struct kvm_mmu_page *sp, u64 *parent_pte)
1456 {
1457 if (!parent_pte)
1458 return;
1459
1460 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1461 }
1462
1463 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1464 u64 *parent_pte)
1465 {
1466 pte_list_remove(parent_pte, &sp->parent_ptes);
1467 }
1468
1469 static void drop_parent_pte(struct kvm_mmu_page *sp,
1470 u64 *parent_pte)
1471 {
1472 mmu_page_remove_parent_pte(sp, parent_pte);
1473 mmu_spte_clear_no_track(parent_pte);
1474 }
1475
1476 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1477 u64 *parent_pte, int direct)
1478 {
1479 struct kvm_mmu_page *sp;
1480 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1481 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1482 if (!direct)
1483 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1484 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1485 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1486 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1487 sp->parent_ptes = 0;
1488 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1489 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1490 return sp;
1491 }
1492
1493 static void mark_unsync(u64 *spte);
1494 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1495 {
1496 pte_list_walk(&sp->parent_ptes, mark_unsync);
1497 }
1498
1499 static void mark_unsync(u64 *spte)
1500 {
1501 struct kvm_mmu_page *sp;
1502 unsigned int index;
1503
1504 sp = page_header(__pa(spte));
1505 index = spte - sp->spt;
1506 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1507 return;
1508 if (sp->unsync_children++)
1509 return;
1510 kvm_mmu_mark_parents_unsync(sp);
1511 }
1512
1513 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1514 struct kvm_mmu_page *sp)
1515 {
1516 return 1;
1517 }
1518
1519 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1520 {
1521 }
1522
1523 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1524 struct kvm_mmu_page *sp, u64 *spte,
1525 const void *pte)
1526 {
1527 WARN_ON(1);
1528 }
1529
1530 #define KVM_PAGE_ARRAY_NR 16
1531
1532 struct kvm_mmu_pages {
1533 struct mmu_page_and_offset {
1534 struct kvm_mmu_page *sp;
1535 unsigned int idx;
1536 } page[KVM_PAGE_ARRAY_NR];
1537 unsigned int nr;
1538 };
1539
1540 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1541 int idx)
1542 {
1543 int i;
1544
1545 if (sp->unsync)
1546 for (i=0; i < pvec->nr; i++)
1547 if (pvec->page[i].sp == sp)
1548 return 0;
1549
1550 pvec->page[pvec->nr].sp = sp;
1551 pvec->page[pvec->nr].idx = idx;
1552 pvec->nr++;
1553 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1554 }
1555
1556 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1557 struct kvm_mmu_pages *pvec)
1558 {
1559 int i, ret, nr_unsync_leaf = 0;
1560
1561 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1562 struct kvm_mmu_page *child;
1563 u64 ent = sp->spt[i];
1564
1565 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1566 goto clear_child_bitmap;
1567
1568 child = page_header(ent & PT64_BASE_ADDR_MASK);
1569
1570 if (child->unsync_children) {
1571 if (mmu_pages_add(pvec, child, i))
1572 return -ENOSPC;
1573
1574 ret = __mmu_unsync_walk(child, pvec);
1575 if (!ret)
1576 goto clear_child_bitmap;
1577 else if (ret > 0)
1578 nr_unsync_leaf += ret;
1579 else
1580 return ret;
1581 } else if (child->unsync) {
1582 nr_unsync_leaf++;
1583 if (mmu_pages_add(pvec, child, i))
1584 return -ENOSPC;
1585 } else
1586 goto clear_child_bitmap;
1587
1588 continue;
1589
1590 clear_child_bitmap:
1591 __clear_bit(i, sp->unsync_child_bitmap);
1592 sp->unsync_children--;
1593 WARN_ON((int)sp->unsync_children < 0);
1594 }
1595
1596
1597 return nr_unsync_leaf;
1598 }
1599
1600 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1601 struct kvm_mmu_pages *pvec)
1602 {
1603 if (!sp->unsync_children)
1604 return 0;
1605
1606 mmu_pages_add(pvec, sp, 0);
1607 return __mmu_unsync_walk(sp, pvec);
1608 }
1609
1610 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1611 {
1612 WARN_ON(!sp->unsync);
1613 trace_kvm_mmu_sync_page(sp);
1614 sp->unsync = 0;
1615 --kvm->stat.mmu_unsync;
1616 }
1617
1618 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1619 struct list_head *invalid_list);
1620 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1621 struct list_head *invalid_list);
1622
1623 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1624 hlist_for_each_entry(sp, pos, \
1625 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1626 if ((sp)->gfn != (gfn)) {} else
1627
1628 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1629 hlist_for_each_entry(sp, pos, \
1630 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1631 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1632 (sp)->role.invalid) {} else
1633
1634 /* @sp->gfn should be write-protected at the call site */
1635 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1636 struct list_head *invalid_list, bool clear_unsync)
1637 {
1638 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1639 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1640 return 1;
1641 }
1642
1643 if (clear_unsync)
1644 kvm_unlink_unsync_page(vcpu->kvm, sp);
1645
1646 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1647 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1648 return 1;
1649 }
1650
1651 kvm_mmu_flush_tlb(vcpu);
1652 return 0;
1653 }
1654
1655 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1656 struct kvm_mmu_page *sp)
1657 {
1658 LIST_HEAD(invalid_list);
1659 int ret;
1660
1661 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1662 if (ret)
1663 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1664
1665 return ret;
1666 }
1667
1668 #ifdef CONFIG_KVM_MMU_AUDIT
1669 #include "mmu_audit.c"
1670 #else
1671 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1672 static void mmu_audit_disable(void) { }
1673 #endif
1674
1675 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1676 struct list_head *invalid_list)
1677 {
1678 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1679 }
1680
1681 /* @gfn should be write-protected at the call site */
1682 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1683 {
1684 struct kvm_mmu_page *s;
1685 struct hlist_node *node;
1686 LIST_HEAD(invalid_list);
1687 bool flush = false;
1688
1689 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1690 if (!s->unsync)
1691 continue;
1692
1693 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1694 kvm_unlink_unsync_page(vcpu->kvm, s);
1695 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1696 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1697 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1698 continue;
1699 }
1700 flush = true;
1701 }
1702
1703 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1704 if (flush)
1705 kvm_mmu_flush_tlb(vcpu);
1706 }
1707
1708 struct mmu_page_path {
1709 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1710 unsigned int idx[PT64_ROOT_LEVEL-1];
1711 };
1712
1713 #define for_each_sp(pvec, sp, parents, i) \
1714 for (i = mmu_pages_next(&pvec, &parents, -1), \
1715 sp = pvec.page[i].sp; \
1716 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1717 i = mmu_pages_next(&pvec, &parents, i))
1718
1719 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1720 struct mmu_page_path *parents,
1721 int i)
1722 {
1723 int n;
1724
1725 for (n = i+1; n < pvec->nr; n++) {
1726 struct kvm_mmu_page *sp = pvec->page[n].sp;
1727
1728 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1729 parents->idx[0] = pvec->page[n].idx;
1730 return n;
1731 }
1732
1733 parents->parent[sp->role.level-2] = sp;
1734 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1735 }
1736
1737 return n;
1738 }
1739
1740 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1741 {
1742 struct kvm_mmu_page *sp;
1743 unsigned int level = 0;
1744
1745 do {
1746 unsigned int idx = parents->idx[level];
1747
1748 sp = parents->parent[level];
1749 if (!sp)
1750 return;
1751
1752 --sp->unsync_children;
1753 WARN_ON((int)sp->unsync_children < 0);
1754 __clear_bit(idx, sp->unsync_child_bitmap);
1755 level++;
1756 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1757 }
1758
1759 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1760 struct mmu_page_path *parents,
1761 struct kvm_mmu_pages *pvec)
1762 {
1763 parents->parent[parent->role.level-1] = NULL;
1764 pvec->nr = 0;
1765 }
1766
1767 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1768 struct kvm_mmu_page *parent)
1769 {
1770 int i;
1771 struct kvm_mmu_page *sp;
1772 struct mmu_page_path parents;
1773 struct kvm_mmu_pages pages;
1774 LIST_HEAD(invalid_list);
1775
1776 kvm_mmu_pages_init(parent, &parents, &pages);
1777 while (mmu_unsync_walk(parent, &pages)) {
1778 bool protected = false;
1779
1780 for_each_sp(pages, sp, parents, i)
1781 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1782
1783 if (protected)
1784 kvm_flush_remote_tlbs(vcpu->kvm);
1785
1786 for_each_sp(pages, sp, parents, i) {
1787 kvm_sync_page(vcpu, sp, &invalid_list);
1788 mmu_pages_clear_parents(&parents);
1789 }
1790 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1791 cond_resched_lock(&vcpu->kvm->mmu_lock);
1792 kvm_mmu_pages_init(parent, &parents, &pages);
1793 }
1794 }
1795
1796 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1797 {
1798 int i;
1799
1800 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1801 sp->spt[i] = 0ull;
1802 }
1803
1804 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1805 {
1806 sp->write_flooding_count = 0;
1807 }
1808
1809 static void clear_sp_write_flooding_count(u64 *spte)
1810 {
1811 struct kvm_mmu_page *sp = page_header(__pa(spte));
1812
1813 __clear_sp_write_flooding_count(sp);
1814 }
1815
1816 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1817 gfn_t gfn,
1818 gva_t gaddr,
1819 unsigned level,
1820 int direct,
1821 unsigned access,
1822 u64 *parent_pte)
1823 {
1824 union kvm_mmu_page_role role;
1825 unsigned quadrant;
1826 struct kvm_mmu_page *sp;
1827 struct hlist_node *node;
1828 bool need_sync = false;
1829
1830 role = vcpu->arch.mmu.base_role;
1831 role.level = level;
1832 role.direct = direct;
1833 if (role.direct)
1834 role.cr4_pae = 0;
1835 role.access = access;
1836 if (!vcpu->arch.mmu.direct_map
1837 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1838 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1839 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1840 role.quadrant = quadrant;
1841 }
1842 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1843 if (!need_sync && sp->unsync)
1844 need_sync = true;
1845
1846 if (sp->role.word != role.word)
1847 continue;
1848
1849 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1850 break;
1851
1852 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1853 if (sp->unsync_children) {
1854 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1855 kvm_mmu_mark_parents_unsync(sp);
1856 } else if (sp->unsync)
1857 kvm_mmu_mark_parents_unsync(sp);
1858
1859 __clear_sp_write_flooding_count(sp);
1860 trace_kvm_mmu_get_page(sp, false);
1861 return sp;
1862 }
1863 ++vcpu->kvm->stat.mmu_cache_miss;
1864 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1865 if (!sp)
1866 return sp;
1867 sp->gfn = gfn;
1868 sp->role = role;
1869 hlist_add_head(&sp->hash_link,
1870 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1871 if (!direct) {
1872 if (rmap_write_protect(vcpu->kvm, gfn))
1873 kvm_flush_remote_tlbs(vcpu->kvm);
1874 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1875 kvm_sync_pages(vcpu, gfn);
1876
1877 account_shadowed(vcpu->kvm, gfn);
1878 }
1879 init_shadow_page_table(sp);
1880 trace_kvm_mmu_get_page(sp, true);
1881 return sp;
1882 }
1883
1884 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1885 struct kvm_vcpu *vcpu, u64 addr)
1886 {
1887 iterator->addr = addr;
1888 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1889 iterator->level = vcpu->arch.mmu.shadow_root_level;
1890
1891 if (iterator->level == PT64_ROOT_LEVEL &&
1892 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1893 !vcpu->arch.mmu.direct_map)
1894 --iterator->level;
1895
1896 if (iterator->level == PT32E_ROOT_LEVEL) {
1897 iterator->shadow_addr
1898 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1899 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1900 --iterator->level;
1901 if (!iterator->shadow_addr)
1902 iterator->level = 0;
1903 }
1904 }
1905
1906 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1907 {
1908 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1909 return false;
1910
1911 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1912 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1913 return true;
1914 }
1915
1916 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1917 u64 spte)
1918 {
1919 if (is_last_spte(spte, iterator->level)) {
1920 iterator->level = 0;
1921 return;
1922 }
1923
1924 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1925 --iterator->level;
1926 }
1927
1928 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1929 {
1930 return __shadow_walk_next(iterator, *iterator->sptep);
1931 }
1932
1933 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1934 {
1935 u64 spte;
1936
1937 spte = __pa(sp->spt)
1938 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1939 | PT_WRITABLE_MASK | PT_USER_MASK;
1940 mmu_spte_set(sptep, spte);
1941 }
1942
1943 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1944 unsigned direct_access)
1945 {
1946 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1947 struct kvm_mmu_page *child;
1948
1949 /*
1950 * For the direct sp, if the guest pte's dirty bit
1951 * changed form clean to dirty, it will corrupt the
1952 * sp's access: allow writable in the read-only sp,
1953 * so we should update the spte at this point to get
1954 * a new sp with the correct access.
1955 */
1956 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1957 if (child->role.access == direct_access)
1958 return;
1959
1960 drop_parent_pte(child, sptep);
1961 kvm_flush_remote_tlbs(vcpu->kvm);
1962 }
1963 }
1964
1965 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1966 u64 *spte)
1967 {
1968 u64 pte;
1969 struct kvm_mmu_page *child;
1970
1971 pte = *spte;
1972 if (is_shadow_present_pte(pte)) {
1973 if (is_last_spte(pte, sp->role.level)) {
1974 drop_spte(kvm, spte);
1975 if (is_large_pte(pte))
1976 --kvm->stat.lpages;
1977 } else {
1978 child = page_header(pte & PT64_BASE_ADDR_MASK);
1979 drop_parent_pte(child, spte);
1980 }
1981 return true;
1982 }
1983
1984 if (is_mmio_spte(pte))
1985 mmu_spte_clear_no_track(spte);
1986
1987 return false;
1988 }
1989
1990 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1991 struct kvm_mmu_page *sp)
1992 {
1993 unsigned i;
1994
1995 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1996 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1997 }
1998
1999 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2000 {
2001 mmu_page_remove_parent_pte(sp, parent_pte);
2002 }
2003
2004 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2005 {
2006 u64 *sptep;
2007 struct rmap_iterator iter;
2008
2009 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2010 drop_parent_pte(sp, sptep);
2011 }
2012
2013 static int mmu_zap_unsync_children(struct kvm *kvm,
2014 struct kvm_mmu_page *parent,
2015 struct list_head *invalid_list)
2016 {
2017 int i, zapped = 0;
2018 struct mmu_page_path parents;
2019 struct kvm_mmu_pages pages;
2020
2021 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2022 return 0;
2023
2024 kvm_mmu_pages_init(parent, &parents, &pages);
2025 while (mmu_unsync_walk(parent, &pages)) {
2026 struct kvm_mmu_page *sp;
2027
2028 for_each_sp(pages, sp, parents, i) {
2029 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2030 mmu_pages_clear_parents(&parents);
2031 zapped++;
2032 }
2033 kvm_mmu_pages_init(parent, &parents, &pages);
2034 }
2035
2036 return zapped;
2037 }
2038
2039 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2040 struct list_head *invalid_list)
2041 {
2042 int ret;
2043
2044 trace_kvm_mmu_prepare_zap_page(sp);
2045 ++kvm->stat.mmu_shadow_zapped;
2046 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2047 kvm_mmu_page_unlink_children(kvm, sp);
2048 kvm_mmu_unlink_parents(kvm, sp);
2049 if (!sp->role.invalid && !sp->role.direct)
2050 unaccount_shadowed(kvm, sp->gfn);
2051 if (sp->unsync)
2052 kvm_unlink_unsync_page(kvm, sp);
2053 if (!sp->root_count) {
2054 /* Count self */
2055 ret++;
2056 list_move(&sp->link, invalid_list);
2057 kvm_mod_used_mmu_pages(kvm, -1);
2058 } else {
2059 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2060 kvm_reload_remote_mmus(kvm);
2061 }
2062
2063 sp->role.invalid = 1;
2064 return ret;
2065 }
2066
2067 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2068 struct list_head *invalid_list)
2069 {
2070 struct kvm_mmu_page *sp;
2071
2072 if (list_empty(invalid_list))
2073 return;
2074
2075 /*
2076 * wmb: make sure everyone sees our modifications to the page tables
2077 * rmb: make sure we see changes to vcpu->mode
2078 */
2079 smp_mb();
2080
2081 /*
2082 * Wait for all vcpus to exit guest mode and/or lockless shadow
2083 * page table walks.
2084 */
2085 kvm_flush_remote_tlbs(kvm);
2086
2087 do {
2088 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2089 WARN_ON(!sp->role.invalid || sp->root_count);
2090 kvm_mmu_isolate_page(sp);
2091 kvm_mmu_free_page(sp);
2092 } while (!list_empty(invalid_list));
2093 }
2094
2095 /*
2096 * Changing the number of mmu pages allocated to the vm
2097 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2098 */
2099 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2100 {
2101 LIST_HEAD(invalid_list);
2102 /*
2103 * If we set the number of mmu pages to be smaller be than the
2104 * number of actived pages , we must to free some mmu pages before we
2105 * change the value
2106 */
2107
2108 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2109 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2110 !list_empty(&kvm->arch.active_mmu_pages)) {
2111 struct kvm_mmu_page *page;
2112
2113 page = container_of(kvm->arch.active_mmu_pages.prev,
2114 struct kvm_mmu_page, link);
2115 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2116 }
2117 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2118 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2119 }
2120
2121 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2122 }
2123
2124 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2125 {
2126 struct kvm_mmu_page *sp;
2127 struct hlist_node *node;
2128 LIST_HEAD(invalid_list);
2129 int r;
2130
2131 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2132 r = 0;
2133 spin_lock(&kvm->mmu_lock);
2134 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2135 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2136 sp->role.word);
2137 r = 1;
2138 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2139 }
2140 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2141 spin_unlock(&kvm->mmu_lock);
2142
2143 return r;
2144 }
2145 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2146
2147 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2148 {
2149 int slot = memslot_id(kvm, gfn);
2150 struct kvm_mmu_page *sp = page_header(__pa(pte));
2151
2152 __set_bit(slot, sp->slot_bitmap);
2153 }
2154
2155 /*
2156 * The function is based on mtrr_type_lookup() in
2157 * arch/x86/kernel/cpu/mtrr/generic.c
2158 */
2159 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2160 u64 start, u64 end)
2161 {
2162 int i;
2163 u64 base, mask;
2164 u8 prev_match, curr_match;
2165 int num_var_ranges = KVM_NR_VAR_MTRR;
2166
2167 if (!mtrr_state->enabled)
2168 return 0xFF;
2169
2170 /* Make end inclusive end, instead of exclusive */
2171 end--;
2172
2173 /* Look in fixed ranges. Just return the type as per start */
2174 if (mtrr_state->have_fixed && (start < 0x100000)) {
2175 int idx;
2176
2177 if (start < 0x80000) {
2178 idx = 0;
2179 idx += (start >> 16);
2180 return mtrr_state->fixed_ranges[idx];
2181 } else if (start < 0xC0000) {
2182 idx = 1 * 8;
2183 idx += ((start - 0x80000) >> 14);
2184 return mtrr_state->fixed_ranges[idx];
2185 } else if (start < 0x1000000) {
2186 idx = 3 * 8;
2187 idx += ((start - 0xC0000) >> 12);
2188 return mtrr_state->fixed_ranges[idx];
2189 }
2190 }
2191
2192 /*
2193 * Look in variable ranges
2194 * Look of multiple ranges matching this address and pick type
2195 * as per MTRR precedence
2196 */
2197 if (!(mtrr_state->enabled & 2))
2198 return mtrr_state->def_type;
2199
2200 prev_match = 0xFF;
2201 for (i = 0; i < num_var_ranges; ++i) {
2202 unsigned short start_state, end_state;
2203
2204 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2205 continue;
2206
2207 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2208 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2209 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2210 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2211
2212 start_state = ((start & mask) == (base & mask));
2213 end_state = ((end & mask) == (base & mask));
2214 if (start_state != end_state)
2215 return 0xFE;
2216
2217 if ((start & mask) != (base & mask))
2218 continue;
2219
2220 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2221 if (prev_match == 0xFF) {
2222 prev_match = curr_match;
2223 continue;
2224 }
2225
2226 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2227 curr_match == MTRR_TYPE_UNCACHABLE)
2228 return MTRR_TYPE_UNCACHABLE;
2229
2230 if ((prev_match == MTRR_TYPE_WRBACK &&
2231 curr_match == MTRR_TYPE_WRTHROUGH) ||
2232 (prev_match == MTRR_TYPE_WRTHROUGH &&
2233 curr_match == MTRR_TYPE_WRBACK)) {
2234 prev_match = MTRR_TYPE_WRTHROUGH;
2235 curr_match = MTRR_TYPE_WRTHROUGH;
2236 }
2237
2238 if (prev_match != curr_match)
2239 return MTRR_TYPE_UNCACHABLE;
2240 }
2241
2242 if (prev_match != 0xFF)
2243 return prev_match;
2244
2245 return mtrr_state->def_type;
2246 }
2247
2248 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2249 {
2250 u8 mtrr;
2251
2252 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2253 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2254 if (mtrr == 0xfe || mtrr == 0xff)
2255 mtrr = MTRR_TYPE_WRBACK;
2256 return mtrr;
2257 }
2258 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2259
2260 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2261 {
2262 trace_kvm_mmu_unsync_page(sp);
2263 ++vcpu->kvm->stat.mmu_unsync;
2264 sp->unsync = 1;
2265
2266 kvm_mmu_mark_parents_unsync(sp);
2267 }
2268
2269 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2270 {
2271 struct kvm_mmu_page *s;
2272 struct hlist_node *node;
2273
2274 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2275 if (s->unsync)
2276 continue;
2277 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2278 __kvm_unsync_page(vcpu, s);
2279 }
2280 }
2281
2282 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2283 bool can_unsync)
2284 {
2285 struct kvm_mmu_page *s;
2286 struct hlist_node *node;
2287 bool need_unsync = false;
2288
2289 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2290 if (!can_unsync)
2291 return 1;
2292
2293 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2294 return 1;
2295
2296 if (!need_unsync && !s->unsync) {
2297 need_unsync = true;
2298 }
2299 }
2300 if (need_unsync)
2301 kvm_unsync_pages(vcpu, gfn);
2302 return 0;
2303 }
2304
2305 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2306 unsigned pte_access, int user_fault,
2307 int write_fault, int level,
2308 gfn_t gfn, pfn_t pfn, bool speculative,
2309 bool can_unsync, bool host_writable)
2310 {
2311 u64 spte;
2312 int ret = 0;
2313
2314 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2315 return 0;
2316
2317 spte = PT_PRESENT_MASK;
2318 if (!speculative)
2319 spte |= shadow_accessed_mask;
2320
2321 if (pte_access & ACC_EXEC_MASK)
2322 spte |= shadow_x_mask;
2323 else
2324 spte |= shadow_nx_mask;
2325
2326 if (pte_access & ACC_USER_MASK)
2327 spte |= shadow_user_mask;
2328
2329 if (level > PT_PAGE_TABLE_LEVEL)
2330 spte |= PT_PAGE_SIZE_MASK;
2331 if (tdp_enabled)
2332 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2333 kvm_is_mmio_pfn(pfn));
2334
2335 if (host_writable)
2336 spte |= SPTE_HOST_WRITEABLE;
2337 else
2338 pte_access &= ~ACC_WRITE_MASK;
2339
2340 spte |= (u64)pfn << PAGE_SHIFT;
2341
2342 if ((pte_access & ACC_WRITE_MASK)
2343 || (!vcpu->arch.mmu.direct_map && write_fault
2344 && !is_write_protection(vcpu) && !user_fault)) {
2345
2346 if (level > PT_PAGE_TABLE_LEVEL &&
2347 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2348 ret = 1;
2349 drop_spte(vcpu->kvm, sptep);
2350 goto done;
2351 }
2352
2353 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2354
2355 if (!vcpu->arch.mmu.direct_map
2356 && !(pte_access & ACC_WRITE_MASK)) {
2357 spte &= ~PT_USER_MASK;
2358 /*
2359 * If we converted a user page to a kernel page,
2360 * so that the kernel can write to it when cr0.wp=0,
2361 * then we should prevent the kernel from executing it
2362 * if SMEP is enabled.
2363 */
2364 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2365 spte |= PT64_NX_MASK;
2366 }
2367
2368 /*
2369 * Optimization: for pte sync, if spte was writable the hash
2370 * lookup is unnecessary (and expensive). Write protection
2371 * is responsibility of mmu_get_page / kvm_sync_page.
2372 * Same reasoning can be applied to dirty page accounting.
2373 */
2374 if (!can_unsync && is_writable_pte(*sptep))
2375 goto set_pte;
2376
2377 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2378 pgprintk("%s: found shadow page for %llx, marking ro\n",
2379 __func__, gfn);
2380 ret = 1;
2381 pte_access &= ~ACC_WRITE_MASK;
2382 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2383 }
2384 }
2385
2386 if (pte_access & ACC_WRITE_MASK)
2387 mark_page_dirty(vcpu->kvm, gfn);
2388
2389 set_pte:
2390 if (mmu_spte_update(sptep, spte))
2391 kvm_flush_remote_tlbs(vcpu->kvm);
2392 done:
2393 return ret;
2394 }
2395
2396 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2397 unsigned pt_access, unsigned pte_access,
2398 int user_fault, int write_fault,
2399 int *emulate, int level, gfn_t gfn,
2400 pfn_t pfn, bool speculative,
2401 bool host_writable)
2402 {
2403 int was_rmapped = 0;
2404 int rmap_count;
2405
2406 pgprintk("%s: spte %llx access %x write_fault %d"
2407 " user_fault %d gfn %llx\n",
2408 __func__, *sptep, pt_access,
2409 write_fault, user_fault, gfn);
2410
2411 if (is_rmap_spte(*sptep)) {
2412 /*
2413 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2414 * the parent of the now unreachable PTE.
2415 */
2416 if (level > PT_PAGE_TABLE_LEVEL &&
2417 !is_large_pte(*sptep)) {
2418 struct kvm_mmu_page *child;
2419 u64 pte = *sptep;
2420
2421 child = page_header(pte & PT64_BASE_ADDR_MASK);
2422 drop_parent_pte(child, sptep);
2423 kvm_flush_remote_tlbs(vcpu->kvm);
2424 } else if (pfn != spte_to_pfn(*sptep)) {
2425 pgprintk("hfn old %llx new %llx\n",
2426 spte_to_pfn(*sptep), pfn);
2427 drop_spte(vcpu->kvm, sptep);
2428 kvm_flush_remote_tlbs(vcpu->kvm);
2429 } else
2430 was_rmapped = 1;
2431 }
2432
2433 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2434 level, gfn, pfn, speculative, true,
2435 host_writable)) {
2436 if (write_fault)
2437 *emulate = 1;
2438 kvm_mmu_flush_tlb(vcpu);
2439 }
2440
2441 if (unlikely(is_mmio_spte(*sptep) && emulate))
2442 *emulate = 1;
2443
2444 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2445 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2446 is_large_pte(*sptep)? "2MB" : "4kB",
2447 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2448 *sptep, sptep);
2449 if (!was_rmapped && is_large_pte(*sptep))
2450 ++vcpu->kvm->stat.lpages;
2451
2452 if (is_shadow_present_pte(*sptep)) {
2453 page_header_update_slot(vcpu->kvm, sptep, gfn);
2454 if (!was_rmapped) {
2455 rmap_count = rmap_add(vcpu, sptep, gfn);
2456 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2457 rmap_recycle(vcpu, sptep, gfn);
2458 }
2459 }
2460 kvm_release_pfn_clean(pfn);
2461 }
2462
2463 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2464 {
2465 mmu_free_roots(vcpu);
2466 }
2467
2468 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2469 bool no_dirty_log)
2470 {
2471 struct kvm_memory_slot *slot;
2472 unsigned long hva;
2473
2474 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2475 if (!slot) {
2476 get_page(fault_page);
2477 return page_to_pfn(fault_page);
2478 }
2479
2480 hva = gfn_to_hva_memslot(slot, gfn);
2481
2482 return hva_to_pfn_atomic(vcpu->kvm, hva);
2483 }
2484
2485 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2486 struct kvm_mmu_page *sp,
2487 u64 *start, u64 *end)
2488 {
2489 struct page *pages[PTE_PREFETCH_NUM];
2490 unsigned access = sp->role.access;
2491 int i, ret;
2492 gfn_t gfn;
2493
2494 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2495 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2496 return -1;
2497
2498 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2499 if (ret <= 0)
2500 return -1;
2501
2502 for (i = 0; i < ret; i++, gfn++, start++)
2503 mmu_set_spte(vcpu, start, ACC_ALL,
2504 access, 0, 0, NULL,
2505 sp->role.level, gfn,
2506 page_to_pfn(pages[i]), true, true);
2507
2508 return 0;
2509 }
2510
2511 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2512 struct kvm_mmu_page *sp, u64 *sptep)
2513 {
2514 u64 *spte, *start = NULL;
2515 int i;
2516
2517 WARN_ON(!sp->role.direct);
2518
2519 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2520 spte = sp->spt + i;
2521
2522 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2523 if (is_shadow_present_pte(*spte) || spte == sptep) {
2524 if (!start)
2525 continue;
2526 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2527 break;
2528 start = NULL;
2529 } else if (!start)
2530 start = spte;
2531 }
2532 }
2533
2534 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2535 {
2536 struct kvm_mmu_page *sp;
2537
2538 /*
2539 * Since it's no accessed bit on EPT, it's no way to
2540 * distinguish between actually accessed translations
2541 * and prefetched, so disable pte prefetch if EPT is
2542 * enabled.
2543 */
2544 if (!shadow_accessed_mask)
2545 return;
2546
2547 sp = page_header(__pa(sptep));
2548 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2549 return;
2550
2551 __direct_pte_prefetch(vcpu, sp, sptep);
2552 }
2553
2554 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2555 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2556 bool prefault)
2557 {
2558 struct kvm_shadow_walk_iterator iterator;
2559 struct kvm_mmu_page *sp;
2560 int emulate = 0;
2561 gfn_t pseudo_gfn;
2562
2563 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2564 if (iterator.level == level) {
2565 unsigned pte_access = ACC_ALL;
2566
2567 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2568 0, write, &emulate,
2569 level, gfn, pfn, prefault, map_writable);
2570 direct_pte_prefetch(vcpu, iterator.sptep);
2571 ++vcpu->stat.pf_fixed;
2572 break;
2573 }
2574
2575 if (!is_shadow_present_pte(*iterator.sptep)) {
2576 u64 base_addr = iterator.addr;
2577
2578 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2579 pseudo_gfn = base_addr >> PAGE_SHIFT;
2580 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2581 iterator.level - 1,
2582 1, ACC_ALL, iterator.sptep);
2583 if (!sp) {
2584 pgprintk("nonpaging_map: ENOMEM\n");
2585 kvm_release_pfn_clean(pfn);
2586 return -ENOMEM;
2587 }
2588
2589 mmu_spte_set(iterator.sptep,
2590 __pa(sp->spt)
2591 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2592 | shadow_user_mask | shadow_x_mask
2593 | shadow_accessed_mask);
2594 }
2595 }
2596 return emulate;
2597 }
2598
2599 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2600 {
2601 siginfo_t info;
2602
2603 info.si_signo = SIGBUS;
2604 info.si_errno = 0;
2605 info.si_code = BUS_MCEERR_AR;
2606 info.si_addr = (void __user *)address;
2607 info.si_addr_lsb = PAGE_SHIFT;
2608
2609 send_sig_info(SIGBUS, &info, tsk);
2610 }
2611
2612 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2613 {
2614 kvm_release_pfn_clean(pfn);
2615 if (is_hwpoison_pfn(pfn)) {
2616 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2617 return 0;
2618 }
2619
2620 return -EFAULT;
2621 }
2622
2623 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2624 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2625 {
2626 pfn_t pfn = *pfnp;
2627 gfn_t gfn = *gfnp;
2628 int level = *levelp;
2629
2630 /*
2631 * Check if it's a transparent hugepage. If this would be an
2632 * hugetlbfs page, level wouldn't be set to
2633 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2634 * here.
2635 */
2636 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2637 level == PT_PAGE_TABLE_LEVEL &&
2638 PageTransCompound(pfn_to_page(pfn)) &&
2639 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2640 unsigned long mask;
2641 /*
2642 * mmu_notifier_retry was successful and we hold the
2643 * mmu_lock here, so the pmd can't become splitting
2644 * from under us, and in turn
2645 * __split_huge_page_refcount() can't run from under
2646 * us and we can safely transfer the refcount from
2647 * PG_tail to PG_head as we switch the pfn to tail to
2648 * head.
2649 */
2650 *levelp = level = PT_DIRECTORY_LEVEL;
2651 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2652 VM_BUG_ON((gfn & mask) != (pfn & mask));
2653 if (pfn & mask) {
2654 gfn &= ~mask;
2655 *gfnp = gfn;
2656 kvm_release_pfn_clean(pfn);
2657 pfn &= ~mask;
2658 kvm_get_pfn(pfn);
2659 *pfnp = pfn;
2660 }
2661 }
2662 }
2663
2664 static bool mmu_invalid_pfn(pfn_t pfn)
2665 {
2666 return unlikely(is_invalid_pfn(pfn));
2667 }
2668
2669 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2670 pfn_t pfn, unsigned access, int *ret_val)
2671 {
2672 bool ret = true;
2673
2674 /* The pfn is invalid, report the error! */
2675 if (unlikely(is_invalid_pfn(pfn))) {
2676 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2677 goto exit;
2678 }
2679
2680 if (unlikely(is_noslot_pfn(pfn)))
2681 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2682
2683 ret = false;
2684 exit:
2685 return ret;
2686 }
2687
2688 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2689 {
2690 /*
2691 * #PF can be fast only if the shadow page table is present and it
2692 * is caused by write-protect, that means we just need change the
2693 * W bit of the spte which can be done out of mmu-lock.
2694 */
2695 if (!(error_code & PFERR_PRESENT_MASK) ||
2696 !(error_code & PFERR_WRITE_MASK))
2697 return false;
2698
2699 return true;
2700 }
2701
2702 static bool
2703 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2704 {
2705 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2706 gfn_t gfn;
2707
2708 WARN_ON(!sp->role.direct);
2709
2710 /*
2711 * The gfn of direct spte is stable since it is calculated
2712 * by sp->gfn.
2713 */
2714 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2715
2716 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2717 mark_page_dirty(vcpu->kvm, gfn);
2718
2719 return true;
2720 }
2721
2722 /*
2723 * Return value:
2724 * - true: let the vcpu to access on the same address again.
2725 * - false: let the real page fault path to fix it.
2726 */
2727 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2728 u32 error_code)
2729 {
2730 struct kvm_shadow_walk_iterator iterator;
2731 bool ret = false;
2732 u64 spte = 0ull;
2733
2734 if (!page_fault_can_be_fast(vcpu, error_code))
2735 return false;
2736
2737 walk_shadow_page_lockless_begin(vcpu);
2738 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2739 if (!is_shadow_present_pte(spte) || iterator.level < level)
2740 break;
2741
2742 /*
2743 * If the mapping has been changed, let the vcpu fault on the
2744 * same address again.
2745 */
2746 if (!is_rmap_spte(spte)) {
2747 ret = true;
2748 goto exit;
2749 }
2750
2751 if (!is_last_spte(spte, level))
2752 goto exit;
2753
2754 /*
2755 * Check if it is a spurious fault caused by TLB lazily flushed.
2756 *
2757 * Need not check the access of upper level table entries since
2758 * they are always ACC_ALL.
2759 */
2760 if (is_writable_pte(spte)) {
2761 ret = true;
2762 goto exit;
2763 }
2764
2765 /*
2766 * Currently, to simplify the code, only the spte write-protected
2767 * by dirty-log can be fast fixed.
2768 */
2769 if (!spte_is_locklessly_modifiable(spte))
2770 goto exit;
2771
2772 /*
2773 * Currently, fast page fault only works for direct mapping since
2774 * the gfn is not stable for indirect shadow page.
2775 * See Documentation/virtual/kvm/locking.txt to get more detail.
2776 */
2777 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2778 exit:
2779 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2780 spte, ret);
2781 walk_shadow_page_lockless_end(vcpu);
2782
2783 return ret;
2784 }
2785
2786 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2787 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2788
2789 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2790 gfn_t gfn, bool prefault)
2791 {
2792 int r;
2793 int level;
2794 int force_pt_level;
2795 pfn_t pfn;
2796 unsigned long mmu_seq;
2797 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2798
2799 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2800 if (likely(!force_pt_level)) {
2801 level = mapping_level(vcpu, gfn);
2802 /*
2803 * This path builds a PAE pagetable - so we can map
2804 * 2mb pages at maximum. Therefore check if the level
2805 * is larger than that.
2806 */
2807 if (level > PT_DIRECTORY_LEVEL)
2808 level = PT_DIRECTORY_LEVEL;
2809
2810 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2811 } else
2812 level = PT_PAGE_TABLE_LEVEL;
2813
2814 if (fast_page_fault(vcpu, v, level, error_code))
2815 return 0;
2816
2817 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2818 smp_rmb();
2819
2820 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2821 return 0;
2822
2823 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2824 return r;
2825
2826 spin_lock(&vcpu->kvm->mmu_lock);
2827 if (mmu_notifier_retry(vcpu, mmu_seq))
2828 goto out_unlock;
2829 kvm_mmu_free_some_pages(vcpu);
2830 if (likely(!force_pt_level))
2831 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2832 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2833 prefault);
2834 spin_unlock(&vcpu->kvm->mmu_lock);
2835
2836
2837 return r;
2838
2839 out_unlock:
2840 spin_unlock(&vcpu->kvm->mmu_lock);
2841 kvm_release_pfn_clean(pfn);
2842 return 0;
2843 }
2844
2845
2846 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2847 {
2848 int i;
2849 struct kvm_mmu_page *sp;
2850 LIST_HEAD(invalid_list);
2851
2852 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2853 return;
2854 spin_lock(&vcpu->kvm->mmu_lock);
2855 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2856 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2857 vcpu->arch.mmu.direct_map)) {
2858 hpa_t root = vcpu->arch.mmu.root_hpa;
2859
2860 sp = page_header(root);
2861 --sp->root_count;
2862 if (!sp->root_count && sp->role.invalid) {
2863 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2864 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2865 }
2866 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2867 spin_unlock(&vcpu->kvm->mmu_lock);
2868 return;
2869 }
2870 for (i = 0; i < 4; ++i) {
2871 hpa_t root = vcpu->arch.mmu.pae_root[i];
2872
2873 if (root) {
2874 root &= PT64_BASE_ADDR_MASK;
2875 sp = page_header(root);
2876 --sp->root_count;
2877 if (!sp->root_count && sp->role.invalid)
2878 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2879 &invalid_list);
2880 }
2881 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2882 }
2883 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2884 spin_unlock(&vcpu->kvm->mmu_lock);
2885 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2886 }
2887
2888 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2889 {
2890 int ret = 0;
2891
2892 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2893 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2894 ret = 1;
2895 }
2896
2897 return ret;
2898 }
2899
2900 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2901 {
2902 struct kvm_mmu_page *sp;
2903 unsigned i;
2904
2905 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2906 spin_lock(&vcpu->kvm->mmu_lock);
2907 kvm_mmu_free_some_pages(vcpu);
2908 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2909 1, ACC_ALL, NULL);
2910 ++sp->root_count;
2911 spin_unlock(&vcpu->kvm->mmu_lock);
2912 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2913 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2914 for (i = 0; i < 4; ++i) {
2915 hpa_t root = vcpu->arch.mmu.pae_root[i];
2916
2917 ASSERT(!VALID_PAGE(root));
2918 spin_lock(&vcpu->kvm->mmu_lock);
2919 kvm_mmu_free_some_pages(vcpu);
2920 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2921 i << 30,
2922 PT32_ROOT_LEVEL, 1, ACC_ALL,
2923 NULL);
2924 root = __pa(sp->spt);
2925 ++sp->root_count;
2926 spin_unlock(&vcpu->kvm->mmu_lock);
2927 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2928 }
2929 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2930 } else
2931 BUG();
2932
2933 return 0;
2934 }
2935
2936 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2937 {
2938 struct kvm_mmu_page *sp;
2939 u64 pdptr, pm_mask;
2940 gfn_t root_gfn;
2941 int i;
2942
2943 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2944
2945 if (mmu_check_root(vcpu, root_gfn))
2946 return 1;
2947
2948 /*
2949 * Do we shadow a long mode page table? If so we need to
2950 * write-protect the guests page table root.
2951 */
2952 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2953 hpa_t root = vcpu->arch.mmu.root_hpa;
2954
2955 ASSERT(!VALID_PAGE(root));
2956
2957 spin_lock(&vcpu->kvm->mmu_lock);
2958 kvm_mmu_free_some_pages(vcpu);
2959 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2960 0, ACC_ALL, NULL);
2961 root = __pa(sp->spt);
2962 ++sp->root_count;
2963 spin_unlock(&vcpu->kvm->mmu_lock);
2964 vcpu->arch.mmu.root_hpa = root;
2965 return 0;
2966 }
2967
2968 /*
2969 * We shadow a 32 bit page table. This may be a legacy 2-level
2970 * or a PAE 3-level page table. In either case we need to be aware that
2971 * the shadow page table may be a PAE or a long mode page table.
2972 */
2973 pm_mask = PT_PRESENT_MASK;
2974 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2975 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2976
2977 for (i = 0; i < 4; ++i) {
2978 hpa_t root = vcpu->arch.mmu.pae_root[i];
2979
2980 ASSERT(!VALID_PAGE(root));
2981 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2982 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2983 if (!is_present_gpte(pdptr)) {
2984 vcpu->arch.mmu.pae_root[i] = 0;
2985 continue;
2986 }
2987 root_gfn = pdptr >> PAGE_SHIFT;
2988 if (mmu_check_root(vcpu, root_gfn))
2989 return 1;
2990 }
2991 spin_lock(&vcpu->kvm->mmu_lock);
2992 kvm_mmu_free_some_pages(vcpu);
2993 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2994 PT32_ROOT_LEVEL, 0,
2995 ACC_ALL, NULL);
2996 root = __pa(sp->spt);
2997 ++sp->root_count;
2998 spin_unlock(&vcpu->kvm->mmu_lock);
2999
3000 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3001 }
3002 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3003
3004 /*
3005 * If we shadow a 32 bit page table with a long mode page
3006 * table we enter this path.
3007 */
3008 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3009 if (vcpu->arch.mmu.lm_root == NULL) {
3010 /*
3011 * The additional page necessary for this is only
3012 * allocated on demand.
3013 */
3014
3015 u64 *lm_root;
3016
3017 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3018 if (lm_root == NULL)
3019 return 1;
3020
3021 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3022
3023 vcpu->arch.mmu.lm_root = lm_root;
3024 }
3025
3026 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3027 }
3028
3029 return 0;
3030 }
3031
3032 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3033 {
3034 if (vcpu->arch.mmu.direct_map)
3035 return mmu_alloc_direct_roots(vcpu);
3036 else
3037 return mmu_alloc_shadow_roots(vcpu);
3038 }
3039
3040 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3041 {
3042 int i;
3043 struct kvm_mmu_page *sp;
3044
3045 if (vcpu->arch.mmu.direct_map)
3046 return;
3047
3048 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3049 return;
3050
3051 vcpu_clear_mmio_info(vcpu, ~0ul);
3052 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3053 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3054 hpa_t root = vcpu->arch.mmu.root_hpa;
3055 sp = page_header(root);
3056 mmu_sync_children(vcpu, sp);
3057 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3058 return;
3059 }
3060 for (i = 0; i < 4; ++i) {
3061 hpa_t root = vcpu->arch.mmu.pae_root[i];
3062
3063 if (root && VALID_PAGE(root)) {
3064 root &= PT64_BASE_ADDR_MASK;
3065 sp = page_header(root);
3066 mmu_sync_children(vcpu, sp);
3067 }
3068 }
3069 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3070 }
3071
3072 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3073 {
3074 spin_lock(&vcpu->kvm->mmu_lock);
3075 mmu_sync_roots(vcpu);
3076 spin_unlock(&vcpu->kvm->mmu_lock);
3077 }
3078
3079 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3080 u32 access, struct x86_exception *exception)
3081 {
3082 if (exception)
3083 exception->error_code = 0;
3084 return vaddr;
3085 }
3086
3087 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3088 u32 access,
3089 struct x86_exception *exception)
3090 {
3091 if (exception)
3092 exception->error_code = 0;
3093 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3094 }
3095
3096 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3097 {
3098 if (direct)
3099 return vcpu_match_mmio_gpa(vcpu, addr);
3100
3101 return vcpu_match_mmio_gva(vcpu, addr);
3102 }
3103
3104
3105 /*
3106 * On direct hosts, the last spte is only allows two states
3107 * for mmio page fault:
3108 * - It is the mmio spte
3109 * - It is zapped or it is being zapped.
3110 *
3111 * This function completely checks the spte when the last spte
3112 * is not the mmio spte.
3113 */
3114 static bool check_direct_spte_mmio_pf(u64 spte)
3115 {
3116 return __check_direct_spte_mmio_pf(spte);
3117 }
3118
3119 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3120 {
3121 struct kvm_shadow_walk_iterator iterator;
3122 u64 spte = 0ull;
3123
3124 walk_shadow_page_lockless_begin(vcpu);
3125 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3126 if (!is_shadow_present_pte(spte))
3127 break;
3128 walk_shadow_page_lockless_end(vcpu);
3129
3130 return spte;
3131 }
3132
3133 /*
3134 * If it is a real mmio page fault, return 1 and emulat the instruction
3135 * directly, return 0 to let CPU fault again on the address, -1 is
3136 * returned if bug is detected.
3137 */
3138 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3139 {
3140 u64 spte;
3141
3142 if (quickly_check_mmio_pf(vcpu, addr, direct))
3143 return 1;
3144
3145 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3146
3147 if (is_mmio_spte(spte)) {
3148 gfn_t gfn = get_mmio_spte_gfn(spte);
3149 unsigned access = get_mmio_spte_access(spte);
3150
3151 if (direct)
3152 addr = 0;
3153
3154 trace_handle_mmio_page_fault(addr, gfn, access);
3155 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3156 return 1;
3157 }
3158
3159 /*
3160 * It's ok if the gva is remapped by other cpus on shadow guest,
3161 * it's a BUG if the gfn is not a mmio page.
3162 */
3163 if (direct && !check_direct_spte_mmio_pf(spte))
3164 return -1;
3165
3166 /*
3167 * If the page table is zapped by other cpus, let CPU fault again on
3168 * the address.
3169 */
3170 return 0;
3171 }
3172 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3173
3174 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3175 u32 error_code, bool direct)
3176 {
3177 int ret;
3178
3179 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3180 WARN_ON(ret < 0);
3181 return ret;
3182 }
3183
3184 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3185 u32 error_code, bool prefault)
3186 {
3187 gfn_t gfn;
3188 int r;
3189
3190 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3191
3192 if (unlikely(error_code & PFERR_RSVD_MASK))
3193 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3194
3195 r = mmu_topup_memory_caches(vcpu);
3196 if (r)
3197 return r;
3198
3199 ASSERT(vcpu);
3200 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3201
3202 gfn = gva >> PAGE_SHIFT;
3203
3204 return nonpaging_map(vcpu, gva & PAGE_MASK,
3205 error_code, gfn, prefault);
3206 }
3207
3208 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3209 {
3210 struct kvm_arch_async_pf arch;
3211
3212 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3213 arch.gfn = gfn;
3214 arch.direct_map = vcpu->arch.mmu.direct_map;
3215 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3216
3217 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3218 }
3219
3220 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3221 {
3222 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3223 kvm_event_needs_reinjection(vcpu)))
3224 return false;
3225
3226 return kvm_x86_ops->interrupt_allowed(vcpu);
3227 }
3228
3229 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3230 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3231 {
3232 bool async;
3233
3234 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3235
3236 if (!async)
3237 return false; /* *pfn has correct page already */
3238
3239 put_page(pfn_to_page(*pfn));
3240
3241 if (!prefault && can_do_async_pf(vcpu)) {
3242 trace_kvm_try_async_get_page(gva, gfn);
3243 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3244 trace_kvm_async_pf_doublefault(gva, gfn);
3245 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3246 return true;
3247 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3248 return true;
3249 }
3250
3251 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3252
3253 return false;
3254 }
3255
3256 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3257 bool prefault)
3258 {
3259 pfn_t pfn;
3260 int r;
3261 int level;
3262 int force_pt_level;
3263 gfn_t gfn = gpa >> PAGE_SHIFT;
3264 unsigned long mmu_seq;
3265 int write = error_code & PFERR_WRITE_MASK;
3266 bool map_writable;
3267
3268 ASSERT(vcpu);
3269 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3270
3271 if (unlikely(error_code & PFERR_RSVD_MASK))
3272 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3273
3274 r = mmu_topup_memory_caches(vcpu);
3275 if (r)
3276 return r;
3277
3278 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3279 if (likely(!force_pt_level)) {
3280 level = mapping_level(vcpu, gfn);
3281 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3282 } else
3283 level = PT_PAGE_TABLE_LEVEL;
3284
3285 if (fast_page_fault(vcpu, gpa, level, error_code))
3286 return 0;
3287
3288 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3289 smp_rmb();
3290
3291 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3292 return 0;
3293
3294 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3295 return r;
3296
3297 spin_lock(&vcpu->kvm->mmu_lock);
3298 if (mmu_notifier_retry(vcpu, mmu_seq))
3299 goto out_unlock;
3300 kvm_mmu_free_some_pages(vcpu);
3301 if (likely(!force_pt_level))
3302 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3303 r = __direct_map(vcpu, gpa, write, map_writable,
3304 level, gfn, pfn, prefault);
3305 spin_unlock(&vcpu->kvm->mmu_lock);
3306
3307 return r;
3308
3309 out_unlock:
3310 spin_unlock(&vcpu->kvm->mmu_lock);
3311 kvm_release_pfn_clean(pfn);
3312 return 0;
3313 }
3314
3315 static void nonpaging_free(struct kvm_vcpu *vcpu)
3316 {
3317 mmu_free_roots(vcpu);
3318 }
3319
3320 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3321 struct kvm_mmu *context)
3322 {
3323 context->new_cr3 = nonpaging_new_cr3;
3324 context->page_fault = nonpaging_page_fault;
3325 context->gva_to_gpa = nonpaging_gva_to_gpa;
3326 context->free = nonpaging_free;
3327 context->sync_page = nonpaging_sync_page;
3328 context->invlpg = nonpaging_invlpg;
3329 context->update_pte = nonpaging_update_pte;
3330 context->root_level = 0;
3331 context->shadow_root_level = PT32E_ROOT_LEVEL;
3332 context->root_hpa = INVALID_PAGE;
3333 context->direct_map = true;
3334 context->nx = false;
3335 return 0;
3336 }
3337
3338 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3339 {
3340 ++vcpu->stat.tlb_flush;
3341 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3342 }
3343
3344 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3345 {
3346 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3347 mmu_free_roots(vcpu);
3348 }
3349
3350 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3351 {
3352 return kvm_read_cr3(vcpu);
3353 }
3354
3355 static void inject_page_fault(struct kvm_vcpu *vcpu,
3356 struct x86_exception *fault)
3357 {
3358 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3359 }
3360
3361 static void paging_free(struct kvm_vcpu *vcpu)
3362 {
3363 nonpaging_free(vcpu);
3364 }
3365
3366 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3367 {
3368 int bit7;
3369
3370 bit7 = (gpte >> 7) & 1;
3371 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3372 }
3373
3374 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3375 int *nr_present)
3376 {
3377 if (unlikely(is_mmio_spte(*sptep))) {
3378 if (gfn != get_mmio_spte_gfn(*sptep)) {
3379 mmu_spte_clear_no_track(sptep);
3380 return true;
3381 }
3382
3383 (*nr_present)++;
3384 mark_mmio_spte(sptep, gfn, access);
3385 return true;
3386 }
3387
3388 return false;
3389 }
3390
3391 #define PTTYPE 64
3392 #include "paging_tmpl.h"
3393 #undef PTTYPE
3394
3395 #define PTTYPE 32
3396 #include "paging_tmpl.h"
3397 #undef PTTYPE
3398
3399 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3400 struct kvm_mmu *context)
3401 {
3402 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3403 u64 exb_bit_rsvd = 0;
3404
3405 if (!context->nx)
3406 exb_bit_rsvd = rsvd_bits(63, 63);
3407 switch (context->root_level) {
3408 case PT32_ROOT_LEVEL:
3409 /* no rsvd bits for 2 level 4K page table entries */
3410 context->rsvd_bits_mask[0][1] = 0;
3411 context->rsvd_bits_mask[0][0] = 0;
3412 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3413
3414 if (!is_pse(vcpu)) {
3415 context->rsvd_bits_mask[1][1] = 0;
3416 break;
3417 }
3418
3419 if (is_cpuid_PSE36())
3420 /* 36bits PSE 4MB page */
3421 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3422 else
3423 /* 32 bits PSE 4MB page */
3424 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3425 break;
3426 case PT32E_ROOT_LEVEL:
3427 context->rsvd_bits_mask[0][2] =
3428 rsvd_bits(maxphyaddr, 63) |
3429 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3430 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3431 rsvd_bits(maxphyaddr, 62); /* PDE */
3432 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3433 rsvd_bits(maxphyaddr, 62); /* PTE */
3434 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3435 rsvd_bits(maxphyaddr, 62) |
3436 rsvd_bits(13, 20); /* large page */
3437 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3438 break;
3439 case PT64_ROOT_LEVEL:
3440 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3441 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3442 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3443 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3444 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3445 rsvd_bits(maxphyaddr, 51);
3446 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3447 rsvd_bits(maxphyaddr, 51);
3448 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3449 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3450 rsvd_bits(maxphyaddr, 51) |
3451 rsvd_bits(13, 29);
3452 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3453 rsvd_bits(maxphyaddr, 51) |
3454 rsvd_bits(13, 20); /* large page */
3455 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3456 break;
3457 }
3458 }
3459
3460 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3461 struct kvm_mmu *context,
3462 int level)
3463 {
3464 context->nx = is_nx(vcpu);
3465 context->root_level = level;
3466
3467 reset_rsvds_bits_mask(vcpu, context);
3468
3469 ASSERT(is_pae(vcpu));
3470 context->new_cr3 = paging_new_cr3;
3471 context->page_fault = paging64_page_fault;
3472 context->gva_to_gpa = paging64_gva_to_gpa;
3473 context->sync_page = paging64_sync_page;
3474 context->invlpg = paging64_invlpg;
3475 context->update_pte = paging64_update_pte;
3476 context->free = paging_free;
3477 context->shadow_root_level = level;
3478 context->root_hpa = INVALID_PAGE;
3479 context->direct_map = false;
3480 return 0;
3481 }
3482
3483 static int paging64_init_context(struct kvm_vcpu *vcpu,
3484 struct kvm_mmu *context)
3485 {
3486 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3487 }
3488
3489 static int paging32_init_context(struct kvm_vcpu *vcpu,
3490 struct kvm_mmu *context)
3491 {
3492 context->nx = false;
3493 context->root_level = PT32_ROOT_LEVEL;
3494
3495 reset_rsvds_bits_mask(vcpu, context);
3496
3497 context->new_cr3 = paging_new_cr3;
3498 context->page_fault = paging32_page_fault;
3499 context->gva_to_gpa = paging32_gva_to_gpa;
3500 context->free = paging_free;
3501 context->sync_page = paging32_sync_page;
3502 context->invlpg = paging32_invlpg;
3503 context->update_pte = paging32_update_pte;
3504 context->shadow_root_level = PT32E_ROOT_LEVEL;
3505 context->root_hpa = INVALID_PAGE;
3506 context->direct_map = false;
3507 return 0;
3508 }
3509
3510 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3511 struct kvm_mmu *context)
3512 {
3513 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3514 }
3515
3516 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3517 {
3518 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3519
3520 context->base_role.word = 0;
3521 context->new_cr3 = nonpaging_new_cr3;
3522 context->page_fault = tdp_page_fault;
3523 context->free = nonpaging_free;
3524 context->sync_page = nonpaging_sync_page;
3525 context->invlpg = nonpaging_invlpg;
3526 context->update_pte = nonpaging_update_pte;
3527 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3528 context->root_hpa = INVALID_PAGE;
3529 context->direct_map = true;
3530 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3531 context->get_cr3 = get_cr3;
3532 context->get_pdptr = kvm_pdptr_read;
3533 context->inject_page_fault = kvm_inject_page_fault;
3534
3535 if (!is_paging(vcpu)) {
3536 context->nx = false;
3537 context->gva_to_gpa = nonpaging_gva_to_gpa;
3538 context->root_level = 0;
3539 } else if (is_long_mode(vcpu)) {
3540 context->nx = is_nx(vcpu);
3541 context->root_level = PT64_ROOT_LEVEL;
3542 reset_rsvds_bits_mask(vcpu, context);
3543 context->gva_to_gpa = paging64_gva_to_gpa;
3544 } else if (is_pae(vcpu)) {
3545 context->nx = is_nx(vcpu);
3546 context->root_level = PT32E_ROOT_LEVEL;
3547 reset_rsvds_bits_mask(vcpu, context);
3548 context->gva_to_gpa = paging64_gva_to_gpa;
3549 } else {
3550 context->nx = false;
3551 context->root_level = PT32_ROOT_LEVEL;
3552 reset_rsvds_bits_mask(vcpu, context);
3553 context->gva_to_gpa = paging32_gva_to_gpa;
3554 }
3555
3556 return 0;
3557 }
3558
3559 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3560 {
3561 int r;
3562 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3563 ASSERT(vcpu);
3564 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3565
3566 if (!is_paging(vcpu))
3567 r = nonpaging_init_context(vcpu, context);
3568 else if (is_long_mode(vcpu))
3569 r = paging64_init_context(vcpu, context);
3570 else if (is_pae(vcpu))
3571 r = paging32E_init_context(vcpu, context);
3572 else
3573 r = paging32_init_context(vcpu, context);
3574
3575 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3576 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3577 vcpu->arch.mmu.base_role.smep_andnot_wp
3578 = smep && !is_write_protection(vcpu);
3579
3580 return r;
3581 }
3582 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3583
3584 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3585 {
3586 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3587
3588 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3589 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3590 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3591 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3592
3593 return r;
3594 }
3595
3596 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3597 {
3598 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3599
3600 g_context->get_cr3 = get_cr3;
3601 g_context->get_pdptr = kvm_pdptr_read;
3602 g_context->inject_page_fault = kvm_inject_page_fault;
3603
3604 /*
3605 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3606 * translation of l2_gpa to l1_gpa addresses is done using the
3607 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3608 * functions between mmu and nested_mmu are swapped.
3609 */
3610 if (!is_paging(vcpu)) {
3611 g_context->nx = false;
3612 g_context->root_level = 0;
3613 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3614 } else if (is_long_mode(vcpu)) {
3615 g_context->nx = is_nx(vcpu);
3616 g_context->root_level = PT64_ROOT_LEVEL;
3617 reset_rsvds_bits_mask(vcpu, g_context);
3618 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3619 } else if (is_pae(vcpu)) {
3620 g_context->nx = is_nx(vcpu);
3621 g_context->root_level = PT32E_ROOT_LEVEL;
3622 reset_rsvds_bits_mask(vcpu, g_context);
3623 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3624 } else {
3625 g_context->nx = false;
3626 g_context->root_level = PT32_ROOT_LEVEL;
3627 reset_rsvds_bits_mask(vcpu, g_context);
3628 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3629 }
3630
3631 return 0;
3632 }
3633
3634 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3635 {
3636 if (mmu_is_nested(vcpu))
3637 return init_kvm_nested_mmu(vcpu);
3638 else if (tdp_enabled)
3639 return init_kvm_tdp_mmu(vcpu);
3640 else
3641 return init_kvm_softmmu(vcpu);
3642 }
3643
3644 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3645 {
3646 ASSERT(vcpu);
3647 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3648 /* mmu.free() should set root_hpa = INVALID_PAGE */
3649 vcpu->arch.mmu.free(vcpu);
3650 }
3651
3652 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3653 {
3654 destroy_kvm_mmu(vcpu);
3655 return init_kvm_mmu(vcpu);
3656 }
3657 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3658
3659 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3660 {
3661 int r;
3662
3663 r = mmu_topup_memory_caches(vcpu);
3664 if (r)
3665 goto out;
3666 r = mmu_alloc_roots(vcpu);
3667 spin_lock(&vcpu->kvm->mmu_lock);
3668 mmu_sync_roots(vcpu);
3669 spin_unlock(&vcpu->kvm->mmu_lock);
3670 if (r)
3671 goto out;
3672 /* set_cr3() should ensure TLB has been flushed */
3673 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3674 out:
3675 return r;
3676 }
3677 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3678
3679 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3680 {
3681 mmu_free_roots(vcpu);
3682 }
3683 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3684
3685 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3686 struct kvm_mmu_page *sp, u64 *spte,
3687 const void *new)
3688 {
3689 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3690 ++vcpu->kvm->stat.mmu_pde_zapped;
3691 return;
3692 }
3693
3694 ++vcpu->kvm->stat.mmu_pte_updated;
3695 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3696 }
3697
3698 static bool need_remote_flush(u64 old, u64 new)
3699 {
3700 if (!is_shadow_present_pte(old))
3701 return false;
3702 if (!is_shadow_present_pte(new))
3703 return true;
3704 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3705 return true;
3706 old ^= PT64_NX_MASK;
3707 new ^= PT64_NX_MASK;
3708 return (old & ~new & PT64_PERM_MASK) != 0;
3709 }
3710
3711 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3712 bool remote_flush, bool local_flush)
3713 {
3714 if (zap_page)
3715 return;
3716
3717 if (remote_flush)
3718 kvm_flush_remote_tlbs(vcpu->kvm);
3719 else if (local_flush)
3720 kvm_mmu_flush_tlb(vcpu);
3721 }
3722
3723 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3724 const u8 *new, int *bytes)
3725 {
3726 u64 gentry;
3727 int r;
3728
3729 /*
3730 * Assume that the pte write on a page table of the same type
3731 * as the current vcpu paging mode since we update the sptes only
3732 * when they have the same mode.
3733 */
3734 if (is_pae(vcpu) && *bytes == 4) {
3735 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3736 *gpa &= ~(gpa_t)7;
3737 *bytes = 8;
3738 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3739 if (r)
3740 gentry = 0;
3741 new = (const u8 *)&gentry;
3742 }
3743
3744 switch (*bytes) {
3745 case 4:
3746 gentry = *(const u32 *)new;
3747 break;
3748 case 8:
3749 gentry = *(const u64 *)new;
3750 break;
3751 default:
3752 gentry = 0;
3753 break;
3754 }
3755
3756 return gentry;
3757 }
3758
3759 /*
3760 * If we're seeing too many writes to a page, it may no longer be a page table,
3761 * or we may be forking, in which case it is better to unmap the page.
3762 */
3763 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3764 {
3765 /*
3766 * Skip write-flooding detected for the sp whose level is 1, because
3767 * it can become unsync, then the guest page is not write-protected.
3768 */
3769 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3770 return false;
3771
3772 return ++sp->write_flooding_count >= 3;
3773 }
3774
3775 /*
3776 * Misaligned accesses are too much trouble to fix up; also, they usually
3777 * indicate a page is not used as a page table.
3778 */
3779 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3780 int bytes)
3781 {
3782 unsigned offset, pte_size, misaligned;
3783
3784 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3785 gpa, bytes, sp->role.word);
3786
3787 offset = offset_in_page(gpa);
3788 pte_size = sp->role.cr4_pae ? 8 : 4;
3789
3790 /*
3791 * Sometimes, the OS only writes the last one bytes to update status
3792 * bits, for example, in linux, andb instruction is used in clear_bit().
3793 */
3794 if (!(offset & (pte_size - 1)) && bytes == 1)
3795 return false;
3796
3797 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3798 misaligned |= bytes < 4;
3799
3800 return misaligned;
3801 }
3802
3803 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3804 {
3805 unsigned page_offset, quadrant;
3806 u64 *spte;
3807 int level;
3808
3809 page_offset = offset_in_page(gpa);
3810 level = sp->role.level;
3811 *nspte = 1;
3812 if (!sp->role.cr4_pae) {
3813 page_offset <<= 1; /* 32->64 */
3814 /*
3815 * A 32-bit pde maps 4MB while the shadow pdes map
3816 * only 2MB. So we need to double the offset again
3817 * and zap two pdes instead of one.
3818 */
3819 if (level == PT32_ROOT_LEVEL) {
3820 page_offset &= ~7; /* kill rounding error */
3821 page_offset <<= 1;
3822 *nspte = 2;
3823 }
3824 quadrant = page_offset >> PAGE_SHIFT;
3825 page_offset &= ~PAGE_MASK;
3826 if (quadrant != sp->role.quadrant)
3827 return NULL;
3828 }
3829
3830 spte = &sp->spt[page_offset / sizeof(*spte)];
3831 return spte;
3832 }
3833
3834 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3835 const u8 *new, int bytes)
3836 {
3837 gfn_t gfn = gpa >> PAGE_SHIFT;
3838 union kvm_mmu_page_role mask = { .word = 0 };
3839 struct kvm_mmu_page *sp;
3840 struct hlist_node *node;
3841 LIST_HEAD(invalid_list);
3842 u64 entry, gentry, *spte;
3843 int npte;
3844 bool remote_flush, local_flush, zap_page;
3845
3846 /*
3847 * If we don't have indirect shadow pages, it means no page is
3848 * write-protected, so we can exit simply.
3849 */
3850 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3851 return;
3852
3853 zap_page = remote_flush = local_flush = false;
3854
3855 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3856
3857 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3858
3859 /*
3860 * No need to care whether allocation memory is successful
3861 * or not since pte prefetch is skiped if it does not have
3862 * enough objects in the cache.
3863 */
3864 mmu_topup_memory_caches(vcpu);
3865
3866 spin_lock(&vcpu->kvm->mmu_lock);
3867 ++vcpu->kvm->stat.mmu_pte_write;
3868 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3869
3870 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3871 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3872 if (detect_write_misaligned(sp, gpa, bytes) ||
3873 detect_write_flooding(sp)) {
3874 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3875 &invalid_list);
3876 ++vcpu->kvm->stat.mmu_flooded;
3877 continue;
3878 }
3879
3880 spte = get_written_sptes(sp, gpa, &npte);
3881 if (!spte)
3882 continue;
3883
3884 local_flush = true;
3885 while (npte--) {
3886 entry = *spte;
3887 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3888 if (gentry &&
3889 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3890 & mask.word) && rmap_can_add(vcpu))
3891 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3892 if (!remote_flush && need_remote_flush(entry, *spte))
3893 remote_flush = true;
3894 ++spte;
3895 }
3896 }
3897 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3898 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3899 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3900 spin_unlock(&vcpu->kvm->mmu_lock);
3901 }
3902
3903 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3904 {
3905 gpa_t gpa;
3906 int r;
3907
3908 if (vcpu->arch.mmu.direct_map)
3909 return 0;
3910
3911 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3912
3913 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3914
3915 return r;
3916 }
3917 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3918
3919 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3920 {
3921 LIST_HEAD(invalid_list);
3922
3923 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3924 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3925 struct kvm_mmu_page *sp;
3926
3927 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3928 struct kvm_mmu_page, link);
3929 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3930 ++vcpu->kvm->stat.mmu_recycled;
3931 }
3932 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3933 }
3934
3935 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3936 {
3937 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3938 return vcpu_match_mmio_gpa(vcpu, addr);
3939
3940 return vcpu_match_mmio_gva(vcpu, addr);
3941 }
3942
3943 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3944 void *insn, int insn_len)
3945 {
3946 int r, emulation_type = EMULTYPE_RETRY;
3947 enum emulation_result er;
3948
3949 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3950 if (r < 0)
3951 goto out;
3952
3953 if (!r) {
3954 r = 1;
3955 goto out;
3956 }
3957
3958 if (is_mmio_page_fault(vcpu, cr2))
3959 emulation_type = 0;
3960
3961 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3962
3963 switch (er) {
3964 case EMULATE_DONE:
3965 return 1;
3966 case EMULATE_DO_MMIO:
3967 ++vcpu->stat.mmio_exits;
3968 /* fall through */
3969 case EMULATE_FAIL:
3970 return 0;
3971 default:
3972 BUG();
3973 }
3974 out:
3975 return r;
3976 }
3977 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3978
3979 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3980 {
3981 vcpu->arch.mmu.invlpg(vcpu, gva);
3982 kvm_mmu_flush_tlb(vcpu);
3983 ++vcpu->stat.invlpg;
3984 }
3985 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3986
3987 void kvm_enable_tdp(void)
3988 {
3989 tdp_enabled = true;
3990 }
3991 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3992
3993 void kvm_disable_tdp(void)
3994 {
3995 tdp_enabled = false;
3996 }
3997 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3998
3999 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4000 {
4001 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4002 if (vcpu->arch.mmu.lm_root != NULL)
4003 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4004 }
4005
4006 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4007 {
4008 struct page *page;
4009 int i;
4010
4011 ASSERT(vcpu);
4012
4013 /*
4014 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4015 * Therefore we need to allocate shadow page tables in the first
4016 * 4GB of memory, which happens to fit the DMA32 zone.
4017 */
4018 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4019 if (!page)
4020 return -ENOMEM;
4021
4022 vcpu->arch.mmu.pae_root = page_address(page);
4023 for (i = 0; i < 4; ++i)
4024 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4025
4026 return 0;
4027 }
4028
4029 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4030 {
4031 ASSERT(vcpu);
4032
4033 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4034 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4035 vcpu->arch.mmu.translate_gpa = translate_gpa;
4036 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4037
4038 return alloc_mmu_pages(vcpu);
4039 }
4040
4041 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4042 {
4043 ASSERT(vcpu);
4044 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4045
4046 return init_kvm_mmu(vcpu);
4047 }
4048
4049 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4050 {
4051 struct kvm_mmu_page *sp;
4052 bool flush = false;
4053
4054 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
4055 int i;
4056 u64 *pt;
4057
4058 if (!test_bit(slot, sp->slot_bitmap))
4059 continue;
4060
4061 pt = sp->spt;
4062 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
4063 if (!is_shadow_present_pte(pt[i]) ||
4064 !is_last_spte(pt[i], sp->role.level))
4065 continue;
4066
4067 spte_write_protect(kvm, &pt[i], &flush, false);
4068 }
4069 }
4070 kvm_flush_remote_tlbs(kvm);
4071 }
4072
4073 void kvm_mmu_zap_all(struct kvm *kvm)
4074 {
4075 struct kvm_mmu_page *sp, *node;
4076 LIST_HEAD(invalid_list);
4077
4078 spin_lock(&kvm->mmu_lock);
4079 restart:
4080 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4081 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4082 goto restart;
4083
4084 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4085 spin_unlock(&kvm->mmu_lock);
4086 }
4087
4088 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4089 struct list_head *invalid_list)
4090 {
4091 struct kvm_mmu_page *page;
4092
4093 if (list_empty(&kvm->arch.active_mmu_pages))
4094 return;
4095
4096 page = container_of(kvm->arch.active_mmu_pages.prev,
4097 struct kvm_mmu_page, link);
4098 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4099 }
4100
4101 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4102 {
4103 struct kvm *kvm;
4104 int nr_to_scan = sc->nr_to_scan;
4105
4106 if (nr_to_scan == 0)
4107 goto out;
4108
4109 raw_spin_lock(&kvm_lock);
4110
4111 list_for_each_entry(kvm, &vm_list, vm_list) {
4112 int idx;
4113 LIST_HEAD(invalid_list);
4114
4115 /*
4116 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4117 * here. We may skip a VM instance errorneosly, but we do not
4118 * want to shrink a VM that only started to populate its MMU
4119 * anyway.
4120 */
4121 if (kvm->arch.n_used_mmu_pages > 0) {
4122 if (!nr_to_scan--)
4123 break;
4124 continue;
4125 }
4126
4127 idx = srcu_read_lock(&kvm->srcu);
4128 spin_lock(&kvm->mmu_lock);
4129
4130 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4131 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4132
4133 spin_unlock(&kvm->mmu_lock);
4134 srcu_read_unlock(&kvm->srcu, idx);
4135
4136 list_move_tail(&kvm->vm_list, &vm_list);
4137 break;
4138 }
4139
4140 raw_spin_unlock(&kvm_lock);
4141
4142 out:
4143 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4144 }
4145
4146 static struct shrinker mmu_shrinker = {
4147 .shrink = mmu_shrink,
4148 .seeks = DEFAULT_SEEKS * 10,
4149 };
4150
4151 static void mmu_destroy_caches(void)
4152 {
4153 if (pte_list_desc_cache)
4154 kmem_cache_destroy(pte_list_desc_cache);
4155 if (mmu_page_header_cache)
4156 kmem_cache_destroy(mmu_page_header_cache);
4157 }
4158
4159 int kvm_mmu_module_init(void)
4160 {
4161 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4162 sizeof(struct pte_list_desc),
4163 0, 0, NULL);
4164 if (!pte_list_desc_cache)
4165 goto nomem;
4166
4167 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4168 sizeof(struct kvm_mmu_page),
4169 0, 0, NULL);
4170 if (!mmu_page_header_cache)
4171 goto nomem;
4172
4173 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4174 goto nomem;
4175
4176 register_shrinker(&mmu_shrinker);
4177
4178 return 0;
4179
4180 nomem:
4181 mmu_destroy_caches();
4182 return -ENOMEM;
4183 }
4184
4185 /*
4186 * Caculate mmu pages needed for kvm.
4187 */
4188 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4189 {
4190 unsigned int nr_mmu_pages;
4191 unsigned int nr_pages = 0;
4192 struct kvm_memslots *slots;
4193 struct kvm_memory_slot *memslot;
4194
4195 slots = kvm_memslots(kvm);
4196
4197 kvm_for_each_memslot(memslot, slots)
4198 nr_pages += memslot->npages;
4199
4200 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4201 nr_mmu_pages = max(nr_mmu_pages,
4202 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4203
4204 return nr_mmu_pages;
4205 }
4206
4207 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4208 {
4209 struct kvm_shadow_walk_iterator iterator;
4210 u64 spte;
4211 int nr_sptes = 0;
4212
4213 walk_shadow_page_lockless_begin(vcpu);
4214 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4215 sptes[iterator.level-1] = spte;
4216 nr_sptes++;
4217 if (!is_shadow_present_pte(spte))
4218 break;
4219 }
4220 walk_shadow_page_lockless_end(vcpu);
4221
4222 return nr_sptes;
4223 }
4224 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4225
4226 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4227 {
4228 ASSERT(vcpu);
4229
4230 destroy_kvm_mmu(vcpu);
4231 free_mmu_pages(vcpu);
4232 mmu_free_memory_caches(vcpu);
4233 }
4234
4235 void kvm_mmu_module_exit(void)
4236 {
4237 mmu_destroy_caches();
4238 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4239 unregister_shrinker(&mmu_shrinker);
4240 mmu_audit_disable();
4241 }
This page took 0.142104 seconds and 5 git commands to generate.