KVM: MMU: fix walking shadow page table
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52 bool tdp_enabled = false;
53
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61 };
62
63 char *audit_point_name[] = {
64 "pre page fault",
65 "post page fault",
66 "pre pte write",
67 "post pte write",
68 "pre sync",
69 "post sync"
70 };
71
72 #undef MMU_DEBUG
73
74 #ifdef MMU_DEBUG
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
79 #else
80
81 #define pgprintk(x...) do { } while (0)
82 #define rmap_printk(x...) do { } while (0)
83
84 #endif
85
86 #ifdef MMU_DEBUG
87 static int dbg = 0;
88 module_param(dbg, bool, 0644);
89 #endif
90
91 static int oos_shadow = 1;
92 module_param(oos_shadow, bool, 0644);
93
94 #ifndef MMU_DEBUG
95 #define ASSERT(x) do { } while (0)
96 #else
97 #define ASSERT(x) \
98 if (!(x)) { \
99 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
100 __FILE__, __LINE__, #x); \
101 }
102 #endif
103
104 #define PTE_PREFETCH_NUM 8
105
106 #define PT_FIRST_AVAIL_BITS_SHIFT 9
107 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
108
109 #define PT64_LEVEL_BITS 9
110
111 #define PT64_LEVEL_SHIFT(level) \
112 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113
114 #define PT64_INDEX(address, level)\
115 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
116
117
118 #define PT32_LEVEL_BITS 10
119
120 #define PT32_LEVEL_SHIFT(level) \
121 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
122
123 #define PT32_LVL_OFFSET_MASK(level) \
124 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
125 * PT32_LEVEL_BITS))) - 1))
126
127 #define PT32_INDEX(address, level)\
128 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
129
130
131 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
132 #define PT64_DIR_BASE_ADDR_MASK \
133 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
134 #define PT64_LVL_ADDR_MASK(level) \
135 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
136 * PT64_LEVEL_BITS))) - 1))
137 #define PT64_LVL_OFFSET_MASK(level) \
138 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
139 * PT64_LEVEL_BITS))) - 1))
140
141 #define PT32_BASE_ADDR_MASK PAGE_MASK
142 #define PT32_DIR_BASE_ADDR_MASK \
143 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
144 #define PT32_LVL_ADDR_MASK(level) \
145 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
146 * PT32_LEVEL_BITS))) - 1))
147
148 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
149 | PT64_NX_MASK)
150
151 #define PTE_LIST_EXT 4
152
153 #define ACC_EXEC_MASK 1
154 #define ACC_WRITE_MASK PT_WRITABLE_MASK
155 #define ACC_USER_MASK PT_USER_MASK
156 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
157
158 #include <trace/events/kvm.h>
159
160 #define CREATE_TRACE_POINTS
161 #include "mmutrace.h"
162
163 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
164
165 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
166
167 struct pte_list_desc {
168 u64 *sptes[PTE_LIST_EXT];
169 struct pte_list_desc *more;
170 };
171
172 struct kvm_shadow_walk_iterator {
173 u64 addr;
174 hpa_t shadow_addr;
175 int level;
176 u64 *sptep;
177 unsigned index;
178 };
179
180 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
181 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
182 shadow_walk_okay(&(_walker)); \
183 shadow_walk_next(&(_walker)))
184
185 static struct kmem_cache *pte_list_desc_cache;
186 static struct kmem_cache *mmu_page_header_cache;
187 static struct percpu_counter kvm_total_used_mmu_pages;
188
189 static u64 __read_mostly shadow_trap_nonpresent_pte;
190 static u64 __read_mostly shadow_notrap_nonpresent_pte;
191 static u64 __read_mostly shadow_nx_mask;
192 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
193 static u64 __read_mostly shadow_user_mask;
194 static u64 __read_mostly shadow_accessed_mask;
195 static u64 __read_mostly shadow_dirty_mask;
196
197 static inline u64 rsvd_bits(int s, int e)
198 {
199 return ((1ULL << (e - s + 1)) - 1) << s;
200 }
201
202 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
203 {
204 shadow_trap_nonpresent_pte = trap_pte;
205 shadow_notrap_nonpresent_pte = notrap_pte;
206 }
207 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
208
209 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
210 u64 dirty_mask, u64 nx_mask, u64 x_mask)
211 {
212 shadow_user_mask = user_mask;
213 shadow_accessed_mask = accessed_mask;
214 shadow_dirty_mask = dirty_mask;
215 shadow_nx_mask = nx_mask;
216 shadow_x_mask = x_mask;
217 }
218 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
219
220 static bool is_write_protection(struct kvm_vcpu *vcpu)
221 {
222 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
223 }
224
225 static int is_cpuid_PSE36(void)
226 {
227 return 1;
228 }
229
230 static int is_nx(struct kvm_vcpu *vcpu)
231 {
232 return vcpu->arch.efer & EFER_NX;
233 }
234
235 static int is_shadow_present_pte(u64 pte)
236 {
237 return pte != shadow_trap_nonpresent_pte
238 && pte != shadow_notrap_nonpresent_pte;
239 }
240
241 static int is_large_pte(u64 pte)
242 {
243 return pte & PT_PAGE_SIZE_MASK;
244 }
245
246 static int is_writable_pte(unsigned long pte)
247 {
248 return pte & PT_WRITABLE_MASK;
249 }
250
251 static int is_dirty_gpte(unsigned long pte)
252 {
253 return pte & PT_DIRTY_MASK;
254 }
255
256 static int is_rmap_spte(u64 pte)
257 {
258 return is_shadow_present_pte(pte);
259 }
260
261 static int is_last_spte(u64 pte, int level)
262 {
263 if (level == PT_PAGE_TABLE_LEVEL)
264 return 1;
265 if (is_large_pte(pte))
266 return 1;
267 return 0;
268 }
269
270 static pfn_t spte_to_pfn(u64 pte)
271 {
272 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
273 }
274
275 static gfn_t pse36_gfn_delta(u32 gpte)
276 {
277 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
278
279 return (gpte & PT32_DIR_PSE36_MASK) << shift;
280 }
281
282 static void __set_spte(u64 *sptep, u64 spte)
283 {
284 set_64bit(sptep, spte);
285 }
286
287 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
288 {
289 #ifdef CONFIG_X86_64
290 return xchg(sptep, new_spte);
291 #else
292 u64 old_spte;
293
294 do {
295 old_spte = *sptep;
296 } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
297
298 return old_spte;
299 #endif
300 }
301
302 static bool spte_has_volatile_bits(u64 spte)
303 {
304 if (!shadow_accessed_mask)
305 return false;
306
307 if (!is_shadow_present_pte(spte))
308 return false;
309
310 if ((spte & shadow_accessed_mask) &&
311 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
312 return false;
313
314 return true;
315 }
316
317 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
318 {
319 return (old_spte & bit_mask) && !(new_spte & bit_mask);
320 }
321
322 static void update_spte(u64 *sptep, u64 new_spte)
323 {
324 u64 mask, old_spte = *sptep;
325
326 WARN_ON(!is_rmap_spte(new_spte));
327
328 new_spte |= old_spte & shadow_dirty_mask;
329
330 mask = shadow_accessed_mask;
331 if (is_writable_pte(old_spte))
332 mask |= shadow_dirty_mask;
333
334 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
335 __set_spte(sptep, new_spte);
336 else
337 old_spte = __xchg_spte(sptep, new_spte);
338
339 if (!shadow_accessed_mask)
340 return;
341
342 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
343 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
344 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
345 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
346 }
347
348 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
349 struct kmem_cache *base_cache, int min)
350 {
351 void *obj;
352
353 if (cache->nobjs >= min)
354 return 0;
355 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
356 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
357 if (!obj)
358 return -ENOMEM;
359 cache->objects[cache->nobjs++] = obj;
360 }
361 return 0;
362 }
363
364 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
365 struct kmem_cache *cache)
366 {
367 while (mc->nobjs)
368 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
369 }
370
371 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
372 int min)
373 {
374 void *page;
375
376 if (cache->nobjs >= min)
377 return 0;
378 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
379 page = (void *)__get_free_page(GFP_KERNEL);
380 if (!page)
381 return -ENOMEM;
382 cache->objects[cache->nobjs++] = page;
383 }
384 return 0;
385 }
386
387 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
388 {
389 while (mc->nobjs)
390 free_page((unsigned long)mc->objects[--mc->nobjs]);
391 }
392
393 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
394 {
395 int r;
396
397 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
398 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
399 if (r)
400 goto out;
401 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
402 if (r)
403 goto out;
404 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
405 mmu_page_header_cache, 4);
406 out:
407 return r;
408 }
409
410 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
411 {
412 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
413 pte_list_desc_cache);
414 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
415 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
416 mmu_page_header_cache);
417 }
418
419 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
420 size_t size)
421 {
422 void *p;
423
424 BUG_ON(!mc->nobjs);
425 p = mc->objects[--mc->nobjs];
426 return p;
427 }
428
429 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
430 {
431 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
432 sizeof(struct pte_list_desc));
433 }
434
435 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
436 {
437 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
438 }
439
440 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
441 {
442 if (!sp->role.direct)
443 return sp->gfns[index];
444
445 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
446 }
447
448 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
449 {
450 if (sp->role.direct)
451 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
452 else
453 sp->gfns[index] = gfn;
454 }
455
456 /*
457 * Return the pointer to the large page information for a given gfn,
458 * handling slots that are not large page aligned.
459 */
460 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
461 struct kvm_memory_slot *slot,
462 int level)
463 {
464 unsigned long idx;
465
466 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
467 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
468 return &slot->lpage_info[level - 2][idx];
469 }
470
471 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
472 {
473 struct kvm_memory_slot *slot;
474 struct kvm_lpage_info *linfo;
475 int i;
476
477 slot = gfn_to_memslot(kvm, gfn);
478 for (i = PT_DIRECTORY_LEVEL;
479 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
480 linfo = lpage_info_slot(gfn, slot, i);
481 linfo->write_count += 1;
482 }
483 kvm->arch.indirect_shadow_pages++;
484 }
485
486 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
487 {
488 struct kvm_memory_slot *slot;
489 struct kvm_lpage_info *linfo;
490 int i;
491
492 slot = gfn_to_memslot(kvm, gfn);
493 for (i = PT_DIRECTORY_LEVEL;
494 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
495 linfo = lpage_info_slot(gfn, slot, i);
496 linfo->write_count -= 1;
497 WARN_ON(linfo->write_count < 0);
498 }
499 kvm->arch.indirect_shadow_pages--;
500 }
501
502 static int has_wrprotected_page(struct kvm *kvm,
503 gfn_t gfn,
504 int level)
505 {
506 struct kvm_memory_slot *slot;
507 struct kvm_lpage_info *linfo;
508
509 slot = gfn_to_memslot(kvm, gfn);
510 if (slot) {
511 linfo = lpage_info_slot(gfn, slot, level);
512 return linfo->write_count;
513 }
514
515 return 1;
516 }
517
518 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
519 {
520 unsigned long page_size;
521 int i, ret = 0;
522
523 page_size = kvm_host_page_size(kvm, gfn);
524
525 for (i = PT_PAGE_TABLE_LEVEL;
526 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
527 if (page_size >= KVM_HPAGE_SIZE(i))
528 ret = i;
529 else
530 break;
531 }
532
533 return ret;
534 }
535
536 static struct kvm_memory_slot *
537 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
538 bool no_dirty_log)
539 {
540 struct kvm_memory_slot *slot;
541
542 slot = gfn_to_memslot(vcpu->kvm, gfn);
543 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
544 (no_dirty_log && slot->dirty_bitmap))
545 slot = NULL;
546
547 return slot;
548 }
549
550 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
551 {
552 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
553 }
554
555 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
556 {
557 int host_level, level, max_level;
558
559 host_level = host_mapping_level(vcpu->kvm, large_gfn);
560
561 if (host_level == PT_PAGE_TABLE_LEVEL)
562 return host_level;
563
564 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
565 kvm_x86_ops->get_lpage_level() : host_level;
566
567 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
568 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
569 break;
570
571 return level - 1;
572 }
573
574 /*
575 * Pte mapping structures:
576 *
577 * If pte_list bit zero is zero, then pte_list point to the spte.
578 *
579 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
580 * pte_list_desc containing more mappings.
581 *
582 * Returns the number of pte entries before the spte was added or zero if
583 * the spte was not added.
584 *
585 */
586 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
587 unsigned long *pte_list)
588 {
589 struct pte_list_desc *desc;
590 int i, count = 0;
591
592 if (!*pte_list) {
593 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
594 *pte_list = (unsigned long)spte;
595 } else if (!(*pte_list & 1)) {
596 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
597 desc = mmu_alloc_pte_list_desc(vcpu);
598 desc->sptes[0] = (u64 *)*pte_list;
599 desc->sptes[1] = spte;
600 *pte_list = (unsigned long)desc | 1;
601 ++count;
602 } else {
603 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
604 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
605 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
606 desc = desc->more;
607 count += PTE_LIST_EXT;
608 }
609 if (desc->sptes[PTE_LIST_EXT-1]) {
610 desc->more = mmu_alloc_pte_list_desc(vcpu);
611 desc = desc->more;
612 }
613 for (i = 0; desc->sptes[i]; ++i)
614 ++count;
615 desc->sptes[i] = spte;
616 }
617 return count;
618 }
619
620 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
621 {
622 struct pte_list_desc *desc;
623 u64 *prev_spte;
624 int i;
625
626 if (!*pte_list)
627 return NULL;
628 else if (!(*pte_list & 1)) {
629 if (!spte)
630 return (u64 *)*pte_list;
631 return NULL;
632 }
633 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
634 prev_spte = NULL;
635 while (desc) {
636 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
637 if (prev_spte == spte)
638 return desc->sptes[i];
639 prev_spte = desc->sptes[i];
640 }
641 desc = desc->more;
642 }
643 return NULL;
644 }
645
646 static void
647 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
648 int i, struct pte_list_desc *prev_desc)
649 {
650 int j;
651
652 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
653 ;
654 desc->sptes[i] = desc->sptes[j];
655 desc->sptes[j] = NULL;
656 if (j != 0)
657 return;
658 if (!prev_desc && !desc->more)
659 *pte_list = (unsigned long)desc->sptes[0];
660 else
661 if (prev_desc)
662 prev_desc->more = desc->more;
663 else
664 *pte_list = (unsigned long)desc->more | 1;
665 mmu_free_pte_list_desc(desc);
666 }
667
668 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
669 {
670 struct pte_list_desc *desc;
671 struct pte_list_desc *prev_desc;
672 int i;
673
674 if (!*pte_list) {
675 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
676 BUG();
677 } else if (!(*pte_list & 1)) {
678 rmap_printk("pte_list_remove: %p 1->0\n", spte);
679 if ((u64 *)*pte_list != spte) {
680 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
681 BUG();
682 }
683 *pte_list = 0;
684 } else {
685 rmap_printk("pte_list_remove: %p many->many\n", spte);
686 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
687 prev_desc = NULL;
688 while (desc) {
689 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
690 if (desc->sptes[i] == spte) {
691 pte_list_desc_remove_entry(pte_list,
692 desc, i,
693 prev_desc);
694 return;
695 }
696 prev_desc = desc;
697 desc = desc->more;
698 }
699 pr_err("pte_list_remove: %p many->many\n", spte);
700 BUG();
701 }
702 }
703
704 typedef void (*pte_list_walk_fn) (u64 *spte);
705 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
706 {
707 struct pte_list_desc *desc;
708 int i;
709
710 if (!*pte_list)
711 return;
712
713 if (!(*pte_list & 1))
714 return fn((u64 *)*pte_list);
715
716 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
717 while (desc) {
718 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
719 fn(desc->sptes[i]);
720 desc = desc->more;
721 }
722 }
723
724 /*
725 * Take gfn and return the reverse mapping to it.
726 */
727 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
728 {
729 struct kvm_memory_slot *slot;
730 struct kvm_lpage_info *linfo;
731
732 slot = gfn_to_memslot(kvm, gfn);
733 if (likely(level == PT_PAGE_TABLE_LEVEL))
734 return &slot->rmap[gfn - slot->base_gfn];
735
736 linfo = lpage_info_slot(gfn, slot, level);
737
738 return &linfo->rmap_pde;
739 }
740
741 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
742 {
743 struct kvm_mmu_page *sp;
744 unsigned long *rmapp;
745
746 if (!is_rmap_spte(*spte))
747 return 0;
748
749 sp = page_header(__pa(spte));
750 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
751 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
752 return pte_list_add(vcpu, spte, rmapp);
753 }
754
755 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
756 {
757 return pte_list_next(rmapp, spte);
758 }
759
760 static void rmap_remove(struct kvm *kvm, u64 *spte)
761 {
762 struct kvm_mmu_page *sp;
763 gfn_t gfn;
764 unsigned long *rmapp;
765
766 sp = page_header(__pa(spte));
767 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
768 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
769 pte_list_remove(spte, rmapp);
770 }
771
772 static int set_spte_track_bits(u64 *sptep, u64 new_spte)
773 {
774 pfn_t pfn;
775 u64 old_spte = *sptep;
776
777 if (!spte_has_volatile_bits(old_spte))
778 __set_spte(sptep, new_spte);
779 else
780 old_spte = __xchg_spte(sptep, new_spte);
781
782 if (!is_rmap_spte(old_spte))
783 return 0;
784
785 pfn = spte_to_pfn(old_spte);
786 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
787 kvm_set_pfn_accessed(pfn);
788 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
789 kvm_set_pfn_dirty(pfn);
790 return 1;
791 }
792
793 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
794 {
795 if (set_spte_track_bits(sptep, new_spte))
796 rmap_remove(kvm, sptep);
797 }
798
799 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
800 {
801 unsigned long *rmapp;
802 u64 *spte;
803 int i, write_protected = 0;
804
805 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
806
807 spte = rmap_next(kvm, rmapp, NULL);
808 while (spte) {
809 BUG_ON(!spte);
810 BUG_ON(!(*spte & PT_PRESENT_MASK));
811 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
812 if (is_writable_pte(*spte)) {
813 update_spte(spte, *spte & ~PT_WRITABLE_MASK);
814 write_protected = 1;
815 }
816 spte = rmap_next(kvm, rmapp, spte);
817 }
818
819 /* check for huge page mappings */
820 for (i = PT_DIRECTORY_LEVEL;
821 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
822 rmapp = gfn_to_rmap(kvm, gfn, i);
823 spte = rmap_next(kvm, rmapp, NULL);
824 while (spte) {
825 BUG_ON(!spte);
826 BUG_ON(!(*spte & PT_PRESENT_MASK));
827 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
828 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
829 if (is_writable_pte(*spte)) {
830 drop_spte(kvm, spte,
831 shadow_trap_nonpresent_pte);
832 --kvm->stat.lpages;
833 spte = NULL;
834 write_protected = 1;
835 }
836 spte = rmap_next(kvm, rmapp, spte);
837 }
838 }
839
840 return write_protected;
841 }
842
843 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
844 unsigned long data)
845 {
846 u64 *spte;
847 int need_tlb_flush = 0;
848
849 while ((spte = rmap_next(kvm, rmapp, NULL))) {
850 BUG_ON(!(*spte & PT_PRESENT_MASK));
851 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
852 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
853 need_tlb_flush = 1;
854 }
855 return need_tlb_flush;
856 }
857
858 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
859 unsigned long data)
860 {
861 int need_flush = 0;
862 u64 *spte, new_spte;
863 pte_t *ptep = (pte_t *)data;
864 pfn_t new_pfn;
865
866 WARN_ON(pte_huge(*ptep));
867 new_pfn = pte_pfn(*ptep);
868 spte = rmap_next(kvm, rmapp, NULL);
869 while (spte) {
870 BUG_ON(!is_shadow_present_pte(*spte));
871 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
872 need_flush = 1;
873 if (pte_write(*ptep)) {
874 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
875 spte = rmap_next(kvm, rmapp, NULL);
876 } else {
877 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
878 new_spte |= (u64)new_pfn << PAGE_SHIFT;
879
880 new_spte &= ~PT_WRITABLE_MASK;
881 new_spte &= ~SPTE_HOST_WRITEABLE;
882 new_spte &= ~shadow_accessed_mask;
883 set_spte_track_bits(spte, new_spte);
884 spte = rmap_next(kvm, rmapp, spte);
885 }
886 }
887 if (need_flush)
888 kvm_flush_remote_tlbs(kvm);
889
890 return 0;
891 }
892
893 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
894 unsigned long data,
895 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
896 unsigned long data))
897 {
898 int i, j;
899 int ret;
900 int retval = 0;
901 struct kvm_memslots *slots;
902
903 slots = kvm_memslots(kvm);
904
905 for (i = 0; i < slots->nmemslots; i++) {
906 struct kvm_memory_slot *memslot = &slots->memslots[i];
907 unsigned long start = memslot->userspace_addr;
908 unsigned long end;
909
910 end = start + (memslot->npages << PAGE_SHIFT);
911 if (hva >= start && hva < end) {
912 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
913 gfn_t gfn = memslot->base_gfn + gfn_offset;
914
915 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
916
917 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
918 struct kvm_lpage_info *linfo;
919
920 linfo = lpage_info_slot(gfn, memslot,
921 PT_DIRECTORY_LEVEL + j);
922 ret |= handler(kvm, &linfo->rmap_pde, data);
923 }
924 trace_kvm_age_page(hva, memslot, ret);
925 retval |= ret;
926 }
927 }
928
929 return retval;
930 }
931
932 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
933 {
934 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
935 }
936
937 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
938 {
939 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
940 }
941
942 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
943 unsigned long data)
944 {
945 u64 *spte;
946 int young = 0;
947
948 /*
949 * Emulate the accessed bit for EPT, by checking if this page has
950 * an EPT mapping, and clearing it if it does. On the next access,
951 * a new EPT mapping will be established.
952 * This has some overhead, but not as much as the cost of swapping
953 * out actively used pages or breaking up actively used hugepages.
954 */
955 if (!shadow_accessed_mask)
956 return kvm_unmap_rmapp(kvm, rmapp, data);
957
958 spte = rmap_next(kvm, rmapp, NULL);
959 while (spte) {
960 int _young;
961 u64 _spte = *spte;
962 BUG_ON(!(_spte & PT_PRESENT_MASK));
963 _young = _spte & PT_ACCESSED_MASK;
964 if (_young) {
965 young = 1;
966 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
967 }
968 spte = rmap_next(kvm, rmapp, spte);
969 }
970 return young;
971 }
972
973 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
974 unsigned long data)
975 {
976 u64 *spte;
977 int young = 0;
978
979 /*
980 * If there's no access bit in the secondary pte set by the
981 * hardware it's up to gup-fast/gup to set the access bit in
982 * the primary pte or in the page structure.
983 */
984 if (!shadow_accessed_mask)
985 goto out;
986
987 spte = rmap_next(kvm, rmapp, NULL);
988 while (spte) {
989 u64 _spte = *spte;
990 BUG_ON(!(_spte & PT_PRESENT_MASK));
991 young = _spte & PT_ACCESSED_MASK;
992 if (young) {
993 young = 1;
994 break;
995 }
996 spte = rmap_next(kvm, rmapp, spte);
997 }
998 out:
999 return young;
1000 }
1001
1002 #define RMAP_RECYCLE_THRESHOLD 1000
1003
1004 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1005 {
1006 unsigned long *rmapp;
1007 struct kvm_mmu_page *sp;
1008
1009 sp = page_header(__pa(spte));
1010
1011 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1012
1013 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1014 kvm_flush_remote_tlbs(vcpu->kvm);
1015 }
1016
1017 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1018 {
1019 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1020 }
1021
1022 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1023 {
1024 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1025 }
1026
1027 #ifdef MMU_DEBUG
1028 static int is_empty_shadow_page(u64 *spt)
1029 {
1030 u64 *pos;
1031 u64 *end;
1032
1033 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1034 if (is_shadow_present_pte(*pos)) {
1035 printk(KERN_ERR "%s: %p %llx\n", __func__,
1036 pos, *pos);
1037 return 0;
1038 }
1039 return 1;
1040 }
1041 #endif
1042
1043 /*
1044 * This value is the sum of all of the kvm instances's
1045 * kvm->arch.n_used_mmu_pages values. We need a global,
1046 * aggregate version in order to make the slab shrinker
1047 * faster
1048 */
1049 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1050 {
1051 kvm->arch.n_used_mmu_pages += nr;
1052 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1053 }
1054
1055 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1056 {
1057 ASSERT(is_empty_shadow_page(sp->spt));
1058 hlist_del(&sp->hash_link);
1059 list_del(&sp->link);
1060 free_page((unsigned long)sp->spt);
1061 if (!sp->role.direct)
1062 free_page((unsigned long)sp->gfns);
1063 kmem_cache_free(mmu_page_header_cache, sp);
1064 kvm_mod_used_mmu_pages(kvm, -1);
1065 }
1066
1067 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1068 {
1069 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1070 }
1071
1072 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1073 struct kvm_mmu_page *sp, u64 *parent_pte)
1074 {
1075 if (!parent_pte)
1076 return;
1077
1078 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1079 }
1080
1081 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1082 u64 *parent_pte)
1083 {
1084 pte_list_remove(parent_pte, &sp->parent_ptes);
1085 }
1086
1087 static void drop_parent_pte(struct kvm_mmu_page *sp,
1088 u64 *parent_pte)
1089 {
1090 mmu_page_remove_parent_pte(sp, parent_pte);
1091 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1092 }
1093
1094 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1095 u64 *parent_pte, int direct)
1096 {
1097 struct kvm_mmu_page *sp;
1098 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1099 sizeof *sp);
1100 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1101 if (!direct)
1102 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1103 PAGE_SIZE);
1104 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1105 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1106 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1107 sp->parent_ptes = 0;
1108 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1109 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1110 return sp;
1111 }
1112
1113 static void mark_unsync(u64 *spte);
1114 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1115 {
1116 pte_list_walk(&sp->parent_ptes, mark_unsync);
1117 }
1118
1119 static void mark_unsync(u64 *spte)
1120 {
1121 struct kvm_mmu_page *sp;
1122 unsigned int index;
1123
1124 sp = page_header(__pa(spte));
1125 index = spte - sp->spt;
1126 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1127 return;
1128 if (sp->unsync_children++)
1129 return;
1130 kvm_mmu_mark_parents_unsync(sp);
1131 }
1132
1133 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1134 struct kvm_mmu_page *sp)
1135 {
1136 int i;
1137
1138 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1139 sp->spt[i] = shadow_trap_nonpresent_pte;
1140 }
1141
1142 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1143 struct kvm_mmu_page *sp)
1144 {
1145 return 1;
1146 }
1147
1148 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1149 {
1150 }
1151
1152 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1153 struct kvm_mmu_page *sp, u64 *spte,
1154 const void *pte)
1155 {
1156 WARN_ON(1);
1157 }
1158
1159 #define KVM_PAGE_ARRAY_NR 16
1160
1161 struct kvm_mmu_pages {
1162 struct mmu_page_and_offset {
1163 struct kvm_mmu_page *sp;
1164 unsigned int idx;
1165 } page[KVM_PAGE_ARRAY_NR];
1166 unsigned int nr;
1167 };
1168
1169 #define for_each_unsync_children(bitmap, idx) \
1170 for (idx = find_first_bit(bitmap, 512); \
1171 idx < 512; \
1172 idx = find_next_bit(bitmap, 512, idx+1))
1173
1174 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1175 int idx)
1176 {
1177 int i;
1178
1179 if (sp->unsync)
1180 for (i=0; i < pvec->nr; i++)
1181 if (pvec->page[i].sp == sp)
1182 return 0;
1183
1184 pvec->page[pvec->nr].sp = sp;
1185 pvec->page[pvec->nr].idx = idx;
1186 pvec->nr++;
1187 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1188 }
1189
1190 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1191 struct kvm_mmu_pages *pvec)
1192 {
1193 int i, ret, nr_unsync_leaf = 0;
1194
1195 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1196 struct kvm_mmu_page *child;
1197 u64 ent = sp->spt[i];
1198
1199 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1200 goto clear_child_bitmap;
1201
1202 child = page_header(ent & PT64_BASE_ADDR_MASK);
1203
1204 if (child->unsync_children) {
1205 if (mmu_pages_add(pvec, child, i))
1206 return -ENOSPC;
1207
1208 ret = __mmu_unsync_walk(child, pvec);
1209 if (!ret)
1210 goto clear_child_bitmap;
1211 else if (ret > 0)
1212 nr_unsync_leaf += ret;
1213 else
1214 return ret;
1215 } else if (child->unsync) {
1216 nr_unsync_leaf++;
1217 if (mmu_pages_add(pvec, child, i))
1218 return -ENOSPC;
1219 } else
1220 goto clear_child_bitmap;
1221
1222 continue;
1223
1224 clear_child_bitmap:
1225 __clear_bit(i, sp->unsync_child_bitmap);
1226 sp->unsync_children--;
1227 WARN_ON((int)sp->unsync_children < 0);
1228 }
1229
1230
1231 return nr_unsync_leaf;
1232 }
1233
1234 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1235 struct kvm_mmu_pages *pvec)
1236 {
1237 if (!sp->unsync_children)
1238 return 0;
1239
1240 mmu_pages_add(pvec, sp, 0);
1241 return __mmu_unsync_walk(sp, pvec);
1242 }
1243
1244 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1245 {
1246 WARN_ON(!sp->unsync);
1247 trace_kvm_mmu_sync_page(sp);
1248 sp->unsync = 0;
1249 --kvm->stat.mmu_unsync;
1250 }
1251
1252 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1253 struct list_head *invalid_list);
1254 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1255 struct list_head *invalid_list);
1256
1257 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1258 hlist_for_each_entry(sp, pos, \
1259 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1260 if ((sp)->gfn != (gfn)) {} else
1261
1262 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1263 hlist_for_each_entry(sp, pos, \
1264 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1265 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1266 (sp)->role.invalid) {} else
1267
1268 /* @sp->gfn should be write-protected at the call site */
1269 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1270 struct list_head *invalid_list, bool clear_unsync)
1271 {
1272 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1273 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1274 return 1;
1275 }
1276
1277 if (clear_unsync)
1278 kvm_unlink_unsync_page(vcpu->kvm, sp);
1279
1280 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1281 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1282 return 1;
1283 }
1284
1285 kvm_mmu_flush_tlb(vcpu);
1286 return 0;
1287 }
1288
1289 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1290 struct kvm_mmu_page *sp)
1291 {
1292 LIST_HEAD(invalid_list);
1293 int ret;
1294
1295 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1296 if (ret)
1297 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1298
1299 return ret;
1300 }
1301
1302 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1303 struct list_head *invalid_list)
1304 {
1305 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1306 }
1307
1308 /* @gfn should be write-protected at the call site */
1309 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1310 {
1311 struct kvm_mmu_page *s;
1312 struct hlist_node *node;
1313 LIST_HEAD(invalid_list);
1314 bool flush = false;
1315
1316 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1317 if (!s->unsync)
1318 continue;
1319
1320 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1321 kvm_unlink_unsync_page(vcpu->kvm, s);
1322 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1323 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1324 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1325 continue;
1326 }
1327 flush = true;
1328 }
1329
1330 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1331 if (flush)
1332 kvm_mmu_flush_tlb(vcpu);
1333 }
1334
1335 struct mmu_page_path {
1336 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1337 unsigned int idx[PT64_ROOT_LEVEL-1];
1338 };
1339
1340 #define for_each_sp(pvec, sp, parents, i) \
1341 for (i = mmu_pages_next(&pvec, &parents, -1), \
1342 sp = pvec.page[i].sp; \
1343 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1344 i = mmu_pages_next(&pvec, &parents, i))
1345
1346 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1347 struct mmu_page_path *parents,
1348 int i)
1349 {
1350 int n;
1351
1352 for (n = i+1; n < pvec->nr; n++) {
1353 struct kvm_mmu_page *sp = pvec->page[n].sp;
1354
1355 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1356 parents->idx[0] = pvec->page[n].idx;
1357 return n;
1358 }
1359
1360 parents->parent[sp->role.level-2] = sp;
1361 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1362 }
1363
1364 return n;
1365 }
1366
1367 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1368 {
1369 struct kvm_mmu_page *sp;
1370 unsigned int level = 0;
1371
1372 do {
1373 unsigned int idx = parents->idx[level];
1374
1375 sp = parents->parent[level];
1376 if (!sp)
1377 return;
1378
1379 --sp->unsync_children;
1380 WARN_ON((int)sp->unsync_children < 0);
1381 __clear_bit(idx, sp->unsync_child_bitmap);
1382 level++;
1383 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1384 }
1385
1386 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1387 struct mmu_page_path *parents,
1388 struct kvm_mmu_pages *pvec)
1389 {
1390 parents->parent[parent->role.level-1] = NULL;
1391 pvec->nr = 0;
1392 }
1393
1394 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1395 struct kvm_mmu_page *parent)
1396 {
1397 int i;
1398 struct kvm_mmu_page *sp;
1399 struct mmu_page_path parents;
1400 struct kvm_mmu_pages pages;
1401 LIST_HEAD(invalid_list);
1402
1403 kvm_mmu_pages_init(parent, &parents, &pages);
1404 while (mmu_unsync_walk(parent, &pages)) {
1405 int protected = 0;
1406
1407 for_each_sp(pages, sp, parents, i)
1408 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1409
1410 if (protected)
1411 kvm_flush_remote_tlbs(vcpu->kvm);
1412
1413 for_each_sp(pages, sp, parents, i) {
1414 kvm_sync_page(vcpu, sp, &invalid_list);
1415 mmu_pages_clear_parents(&parents);
1416 }
1417 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1418 cond_resched_lock(&vcpu->kvm->mmu_lock);
1419 kvm_mmu_pages_init(parent, &parents, &pages);
1420 }
1421 }
1422
1423 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1424 gfn_t gfn,
1425 gva_t gaddr,
1426 unsigned level,
1427 int direct,
1428 unsigned access,
1429 u64 *parent_pte)
1430 {
1431 union kvm_mmu_page_role role;
1432 unsigned quadrant;
1433 struct kvm_mmu_page *sp;
1434 struct hlist_node *node;
1435 bool need_sync = false;
1436
1437 role = vcpu->arch.mmu.base_role;
1438 role.level = level;
1439 role.direct = direct;
1440 if (role.direct)
1441 role.cr4_pae = 0;
1442 role.access = access;
1443 if (!vcpu->arch.mmu.direct_map
1444 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1445 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1446 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1447 role.quadrant = quadrant;
1448 }
1449 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1450 if (!need_sync && sp->unsync)
1451 need_sync = true;
1452
1453 if (sp->role.word != role.word)
1454 continue;
1455
1456 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1457 break;
1458
1459 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1460 if (sp->unsync_children) {
1461 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1462 kvm_mmu_mark_parents_unsync(sp);
1463 } else if (sp->unsync)
1464 kvm_mmu_mark_parents_unsync(sp);
1465
1466 trace_kvm_mmu_get_page(sp, false);
1467 return sp;
1468 }
1469 ++vcpu->kvm->stat.mmu_cache_miss;
1470 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1471 if (!sp)
1472 return sp;
1473 sp->gfn = gfn;
1474 sp->role = role;
1475 hlist_add_head(&sp->hash_link,
1476 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1477 if (!direct) {
1478 if (rmap_write_protect(vcpu->kvm, gfn))
1479 kvm_flush_remote_tlbs(vcpu->kvm);
1480 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1481 kvm_sync_pages(vcpu, gfn);
1482
1483 account_shadowed(vcpu->kvm, gfn);
1484 }
1485 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1486 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1487 else
1488 nonpaging_prefetch_page(vcpu, sp);
1489 trace_kvm_mmu_get_page(sp, true);
1490 return sp;
1491 }
1492
1493 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1494 struct kvm_vcpu *vcpu, u64 addr)
1495 {
1496 iterator->addr = addr;
1497 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1498 iterator->level = vcpu->arch.mmu.shadow_root_level;
1499
1500 if (iterator->level == PT64_ROOT_LEVEL &&
1501 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1502 !vcpu->arch.mmu.direct_map)
1503 --iterator->level;
1504
1505 if (iterator->level == PT32E_ROOT_LEVEL) {
1506 iterator->shadow_addr
1507 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1508 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1509 --iterator->level;
1510 if (!iterator->shadow_addr)
1511 iterator->level = 0;
1512 }
1513 }
1514
1515 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1516 {
1517 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1518 return false;
1519
1520 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1521 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1522 return true;
1523 }
1524
1525 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1526 {
1527 if (is_last_spte(*iterator->sptep, iterator->level)) {
1528 iterator->level = 0;
1529 return;
1530 }
1531
1532 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1533 --iterator->level;
1534 }
1535
1536 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1537 {
1538 u64 spte;
1539
1540 spte = __pa(sp->spt)
1541 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1542 | PT_WRITABLE_MASK | PT_USER_MASK;
1543 __set_spte(sptep, spte);
1544 }
1545
1546 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1547 {
1548 if (is_large_pte(*sptep)) {
1549 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1550 kvm_flush_remote_tlbs(vcpu->kvm);
1551 }
1552 }
1553
1554 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1555 unsigned direct_access)
1556 {
1557 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1558 struct kvm_mmu_page *child;
1559
1560 /*
1561 * For the direct sp, if the guest pte's dirty bit
1562 * changed form clean to dirty, it will corrupt the
1563 * sp's access: allow writable in the read-only sp,
1564 * so we should update the spte at this point to get
1565 * a new sp with the correct access.
1566 */
1567 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1568 if (child->role.access == direct_access)
1569 return;
1570
1571 drop_parent_pte(child, sptep);
1572 kvm_flush_remote_tlbs(vcpu->kvm);
1573 }
1574 }
1575
1576 static void mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1577 u64 *spte)
1578 {
1579 u64 pte;
1580 struct kvm_mmu_page *child;
1581
1582 pte = *spte;
1583 if (is_shadow_present_pte(pte)) {
1584 if (is_last_spte(pte, sp->role.level))
1585 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
1586 else {
1587 child = page_header(pte & PT64_BASE_ADDR_MASK);
1588 drop_parent_pte(child, spte);
1589 }
1590 }
1591 __set_spte(spte, shadow_trap_nonpresent_pte);
1592 if (is_large_pte(pte))
1593 --kvm->stat.lpages;
1594 }
1595
1596 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1597 struct kvm_mmu_page *sp)
1598 {
1599 unsigned i;
1600
1601 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1602 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1603 }
1604
1605 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1606 {
1607 mmu_page_remove_parent_pte(sp, parent_pte);
1608 }
1609
1610 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1611 {
1612 int i;
1613 struct kvm_vcpu *vcpu;
1614
1615 kvm_for_each_vcpu(i, vcpu, kvm)
1616 vcpu->arch.last_pte_updated = NULL;
1617 }
1618
1619 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1620 {
1621 u64 *parent_pte;
1622
1623 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1624 drop_parent_pte(sp, parent_pte);
1625 }
1626
1627 static int mmu_zap_unsync_children(struct kvm *kvm,
1628 struct kvm_mmu_page *parent,
1629 struct list_head *invalid_list)
1630 {
1631 int i, zapped = 0;
1632 struct mmu_page_path parents;
1633 struct kvm_mmu_pages pages;
1634
1635 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1636 return 0;
1637
1638 kvm_mmu_pages_init(parent, &parents, &pages);
1639 while (mmu_unsync_walk(parent, &pages)) {
1640 struct kvm_mmu_page *sp;
1641
1642 for_each_sp(pages, sp, parents, i) {
1643 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1644 mmu_pages_clear_parents(&parents);
1645 zapped++;
1646 }
1647 kvm_mmu_pages_init(parent, &parents, &pages);
1648 }
1649
1650 return zapped;
1651 }
1652
1653 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1654 struct list_head *invalid_list)
1655 {
1656 int ret;
1657
1658 trace_kvm_mmu_prepare_zap_page(sp);
1659 ++kvm->stat.mmu_shadow_zapped;
1660 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1661 kvm_mmu_page_unlink_children(kvm, sp);
1662 kvm_mmu_unlink_parents(kvm, sp);
1663 if (!sp->role.invalid && !sp->role.direct)
1664 unaccount_shadowed(kvm, sp->gfn);
1665 if (sp->unsync)
1666 kvm_unlink_unsync_page(kvm, sp);
1667 if (!sp->root_count) {
1668 /* Count self */
1669 ret++;
1670 list_move(&sp->link, invalid_list);
1671 } else {
1672 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1673 kvm_reload_remote_mmus(kvm);
1674 }
1675
1676 sp->role.invalid = 1;
1677 kvm_mmu_reset_last_pte_updated(kvm);
1678 return ret;
1679 }
1680
1681 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1682 struct list_head *invalid_list)
1683 {
1684 struct kvm_mmu_page *sp;
1685
1686 if (list_empty(invalid_list))
1687 return;
1688
1689 kvm_flush_remote_tlbs(kvm);
1690
1691 do {
1692 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1693 WARN_ON(!sp->role.invalid || sp->root_count);
1694 kvm_mmu_free_page(kvm, sp);
1695 } while (!list_empty(invalid_list));
1696
1697 }
1698
1699 /*
1700 * Changing the number of mmu pages allocated to the vm
1701 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1702 */
1703 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1704 {
1705 LIST_HEAD(invalid_list);
1706 /*
1707 * If we set the number of mmu pages to be smaller be than the
1708 * number of actived pages , we must to free some mmu pages before we
1709 * change the value
1710 */
1711
1712 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1713 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1714 !list_empty(&kvm->arch.active_mmu_pages)) {
1715 struct kvm_mmu_page *page;
1716
1717 page = container_of(kvm->arch.active_mmu_pages.prev,
1718 struct kvm_mmu_page, link);
1719 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1720 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1721 }
1722 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1723 }
1724
1725 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1726 }
1727
1728 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1729 {
1730 struct kvm_mmu_page *sp;
1731 struct hlist_node *node;
1732 LIST_HEAD(invalid_list);
1733 int r;
1734
1735 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1736 r = 0;
1737
1738 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1739 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1740 sp->role.word);
1741 r = 1;
1742 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1743 }
1744 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1745 return r;
1746 }
1747
1748 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1749 {
1750 struct kvm_mmu_page *sp;
1751 struct hlist_node *node;
1752 LIST_HEAD(invalid_list);
1753
1754 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1755 pgprintk("%s: zap %llx %x\n",
1756 __func__, gfn, sp->role.word);
1757 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1758 }
1759 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1760 }
1761
1762 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1763 {
1764 int slot = memslot_id(kvm, gfn);
1765 struct kvm_mmu_page *sp = page_header(__pa(pte));
1766
1767 __set_bit(slot, sp->slot_bitmap);
1768 }
1769
1770 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1771 {
1772 int i;
1773 u64 *pt = sp->spt;
1774
1775 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1776 return;
1777
1778 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1779 if (pt[i] == shadow_notrap_nonpresent_pte)
1780 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1781 }
1782 }
1783
1784 /*
1785 * The function is based on mtrr_type_lookup() in
1786 * arch/x86/kernel/cpu/mtrr/generic.c
1787 */
1788 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1789 u64 start, u64 end)
1790 {
1791 int i;
1792 u64 base, mask;
1793 u8 prev_match, curr_match;
1794 int num_var_ranges = KVM_NR_VAR_MTRR;
1795
1796 if (!mtrr_state->enabled)
1797 return 0xFF;
1798
1799 /* Make end inclusive end, instead of exclusive */
1800 end--;
1801
1802 /* Look in fixed ranges. Just return the type as per start */
1803 if (mtrr_state->have_fixed && (start < 0x100000)) {
1804 int idx;
1805
1806 if (start < 0x80000) {
1807 idx = 0;
1808 idx += (start >> 16);
1809 return mtrr_state->fixed_ranges[idx];
1810 } else if (start < 0xC0000) {
1811 idx = 1 * 8;
1812 idx += ((start - 0x80000) >> 14);
1813 return mtrr_state->fixed_ranges[idx];
1814 } else if (start < 0x1000000) {
1815 idx = 3 * 8;
1816 idx += ((start - 0xC0000) >> 12);
1817 return mtrr_state->fixed_ranges[idx];
1818 }
1819 }
1820
1821 /*
1822 * Look in variable ranges
1823 * Look of multiple ranges matching this address and pick type
1824 * as per MTRR precedence
1825 */
1826 if (!(mtrr_state->enabled & 2))
1827 return mtrr_state->def_type;
1828
1829 prev_match = 0xFF;
1830 for (i = 0; i < num_var_ranges; ++i) {
1831 unsigned short start_state, end_state;
1832
1833 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1834 continue;
1835
1836 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1837 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1838 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1839 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1840
1841 start_state = ((start & mask) == (base & mask));
1842 end_state = ((end & mask) == (base & mask));
1843 if (start_state != end_state)
1844 return 0xFE;
1845
1846 if ((start & mask) != (base & mask))
1847 continue;
1848
1849 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1850 if (prev_match == 0xFF) {
1851 prev_match = curr_match;
1852 continue;
1853 }
1854
1855 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1856 curr_match == MTRR_TYPE_UNCACHABLE)
1857 return MTRR_TYPE_UNCACHABLE;
1858
1859 if ((prev_match == MTRR_TYPE_WRBACK &&
1860 curr_match == MTRR_TYPE_WRTHROUGH) ||
1861 (prev_match == MTRR_TYPE_WRTHROUGH &&
1862 curr_match == MTRR_TYPE_WRBACK)) {
1863 prev_match = MTRR_TYPE_WRTHROUGH;
1864 curr_match = MTRR_TYPE_WRTHROUGH;
1865 }
1866
1867 if (prev_match != curr_match)
1868 return MTRR_TYPE_UNCACHABLE;
1869 }
1870
1871 if (prev_match != 0xFF)
1872 return prev_match;
1873
1874 return mtrr_state->def_type;
1875 }
1876
1877 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1878 {
1879 u8 mtrr;
1880
1881 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1882 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1883 if (mtrr == 0xfe || mtrr == 0xff)
1884 mtrr = MTRR_TYPE_WRBACK;
1885 return mtrr;
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1888
1889 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1890 {
1891 trace_kvm_mmu_unsync_page(sp);
1892 ++vcpu->kvm->stat.mmu_unsync;
1893 sp->unsync = 1;
1894
1895 kvm_mmu_mark_parents_unsync(sp);
1896 mmu_convert_notrap(sp);
1897 }
1898
1899 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1900 {
1901 struct kvm_mmu_page *s;
1902 struct hlist_node *node;
1903
1904 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1905 if (s->unsync)
1906 continue;
1907 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1908 __kvm_unsync_page(vcpu, s);
1909 }
1910 }
1911
1912 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1913 bool can_unsync)
1914 {
1915 struct kvm_mmu_page *s;
1916 struct hlist_node *node;
1917 bool need_unsync = false;
1918
1919 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1920 if (!can_unsync)
1921 return 1;
1922
1923 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1924 return 1;
1925
1926 if (!need_unsync && !s->unsync) {
1927 if (!oos_shadow)
1928 return 1;
1929 need_unsync = true;
1930 }
1931 }
1932 if (need_unsync)
1933 kvm_unsync_pages(vcpu, gfn);
1934 return 0;
1935 }
1936
1937 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1938 unsigned pte_access, int user_fault,
1939 int write_fault, int dirty, int level,
1940 gfn_t gfn, pfn_t pfn, bool speculative,
1941 bool can_unsync, bool host_writable)
1942 {
1943 u64 spte, entry = *sptep;
1944 int ret = 0;
1945
1946 /*
1947 * We don't set the accessed bit, since we sometimes want to see
1948 * whether the guest actually used the pte (in order to detect
1949 * demand paging).
1950 */
1951 spte = PT_PRESENT_MASK;
1952 if (!speculative)
1953 spte |= shadow_accessed_mask;
1954 if (!dirty)
1955 pte_access &= ~ACC_WRITE_MASK;
1956 if (pte_access & ACC_EXEC_MASK)
1957 spte |= shadow_x_mask;
1958 else
1959 spte |= shadow_nx_mask;
1960 if (pte_access & ACC_USER_MASK)
1961 spte |= shadow_user_mask;
1962 if (level > PT_PAGE_TABLE_LEVEL)
1963 spte |= PT_PAGE_SIZE_MASK;
1964 if (tdp_enabled)
1965 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1966 kvm_is_mmio_pfn(pfn));
1967
1968 if (host_writable)
1969 spte |= SPTE_HOST_WRITEABLE;
1970 else
1971 pte_access &= ~ACC_WRITE_MASK;
1972
1973 spte |= (u64)pfn << PAGE_SHIFT;
1974
1975 if ((pte_access & ACC_WRITE_MASK)
1976 || (!vcpu->arch.mmu.direct_map && write_fault
1977 && !is_write_protection(vcpu) && !user_fault)) {
1978
1979 if (level > PT_PAGE_TABLE_LEVEL &&
1980 has_wrprotected_page(vcpu->kvm, gfn, level)) {
1981 ret = 1;
1982 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1983 goto done;
1984 }
1985
1986 spte |= PT_WRITABLE_MASK;
1987
1988 if (!vcpu->arch.mmu.direct_map
1989 && !(pte_access & ACC_WRITE_MASK)) {
1990 spte &= ~PT_USER_MASK;
1991 /*
1992 * If we converted a user page to a kernel page,
1993 * so that the kernel can write to it when cr0.wp=0,
1994 * then we should prevent the kernel from executing it
1995 * if SMEP is enabled.
1996 */
1997 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
1998 spte |= PT64_NX_MASK;
1999 }
2000
2001 /*
2002 * Optimization: for pte sync, if spte was writable the hash
2003 * lookup is unnecessary (and expensive). Write protection
2004 * is responsibility of mmu_get_page / kvm_sync_page.
2005 * Same reasoning can be applied to dirty page accounting.
2006 */
2007 if (!can_unsync && is_writable_pte(*sptep))
2008 goto set_pte;
2009
2010 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2011 pgprintk("%s: found shadow page for %llx, marking ro\n",
2012 __func__, gfn);
2013 ret = 1;
2014 pte_access &= ~ACC_WRITE_MASK;
2015 if (is_writable_pte(spte))
2016 spte &= ~PT_WRITABLE_MASK;
2017 }
2018 }
2019
2020 if (pte_access & ACC_WRITE_MASK)
2021 mark_page_dirty(vcpu->kvm, gfn);
2022
2023 set_pte:
2024 update_spte(sptep, spte);
2025 /*
2026 * If we overwrite a writable spte with a read-only one we
2027 * should flush remote TLBs. Otherwise rmap_write_protect
2028 * will find a read-only spte, even though the writable spte
2029 * might be cached on a CPU's TLB.
2030 */
2031 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2032 kvm_flush_remote_tlbs(vcpu->kvm);
2033 done:
2034 return ret;
2035 }
2036
2037 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2038 unsigned pt_access, unsigned pte_access,
2039 int user_fault, int write_fault, int dirty,
2040 int *ptwrite, int level, gfn_t gfn,
2041 pfn_t pfn, bool speculative,
2042 bool host_writable)
2043 {
2044 int was_rmapped = 0;
2045 int rmap_count;
2046
2047 pgprintk("%s: spte %llx access %x write_fault %d"
2048 " user_fault %d gfn %llx\n",
2049 __func__, *sptep, pt_access,
2050 write_fault, user_fault, gfn);
2051
2052 if (is_rmap_spte(*sptep)) {
2053 /*
2054 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2055 * the parent of the now unreachable PTE.
2056 */
2057 if (level > PT_PAGE_TABLE_LEVEL &&
2058 !is_large_pte(*sptep)) {
2059 struct kvm_mmu_page *child;
2060 u64 pte = *sptep;
2061
2062 child = page_header(pte & PT64_BASE_ADDR_MASK);
2063 drop_parent_pte(child, sptep);
2064 kvm_flush_remote_tlbs(vcpu->kvm);
2065 } else if (pfn != spte_to_pfn(*sptep)) {
2066 pgprintk("hfn old %llx new %llx\n",
2067 spte_to_pfn(*sptep), pfn);
2068 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2069 kvm_flush_remote_tlbs(vcpu->kvm);
2070 } else
2071 was_rmapped = 1;
2072 }
2073
2074 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2075 dirty, level, gfn, pfn, speculative, true,
2076 host_writable)) {
2077 if (write_fault)
2078 *ptwrite = 1;
2079 kvm_mmu_flush_tlb(vcpu);
2080 }
2081
2082 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2083 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2084 is_large_pte(*sptep)? "2MB" : "4kB",
2085 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2086 *sptep, sptep);
2087 if (!was_rmapped && is_large_pte(*sptep))
2088 ++vcpu->kvm->stat.lpages;
2089
2090 page_header_update_slot(vcpu->kvm, sptep, gfn);
2091 if (!was_rmapped) {
2092 rmap_count = rmap_add(vcpu, sptep, gfn);
2093 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2094 rmap_recycle(vcpu, sptep, gfn);
2095 }
2096 kvm_release_pfn_clean(pfn);
2097 if (speculative) {
2098 vcpu->arch.last_pte_updated = sptep;
2099 vcpu->arch.last_pte_gfn = gfn;
2100 }
2101 }
2102
2103 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2104 {
2105 }
2106
2107 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2108 bool no_dirty_log)
2109 {
2110 struct kvm_memory_slot *slot;
2111 unsigned long hva;
2112
2113 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2114 if (!slot) {
2115 get_page(bad_page);
2116 return page_to_pfn(bad_page);
2117 }
2118
2119 hva = gfn_to_hva_memslot(slot, gfn);
2120
2121 return hva_to_pfn_atomic(vcpu->kvm, hva);
2122 }
2123
2124 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2125 struct kvm_mmu_page *sp,
2126 u64 *start, u64 *end)
2127 {
2128 struct page *pages[PTE_PREFETCH_NUM];
2129 unsigned access = sp->role.access;
2130 int i, ret;
2131 gfn_t gfn;
2132
2133 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2134 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2135 return -1;
2136
2137 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2138 if (ret <= 0)
2139 return -1;
2140
2141 for (i = 0; i < ret; i++, gfn++, start++)
2142 mmu_set_spte(vcpu, start, ACC_ALL,
2143 access, 0, 0, 1, NULL,
2144 sp->role.level, gfn,
2145 page_to_pfn(pages[i]), true, true);
2146
2147 return 0;
2148 }
2149
2150 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2151 struct kvm_mmu_page *sp, u64 *sptep)
2152 {
2153 u64 *spte, *start = NULL;
2154 int i;
2155
2156 WARN_ON(!sp->role.direct);
2157
2158 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2159 spte = sp->spt + i;
2160
2161 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2162 if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2163 if (!start)
2164 continue;
2165 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2166 break;
2167 start = NULL;
2168 } else if (!start)
2169 start = spte;
2170 }
2171 }
2172
2173 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2174 {
2175 struct kvm_mmu_page *sp;
2176
2177 /*
2178 * Since it's no accessed bit on EPT, it's no way to
2179 * distinguish between actually accessed translations
2180 * and prefetched, so disable pte prefetch if EPT is
2181 * enabled.
2182 */
2183 if (!shadow_accessed_mask)
2184 return;
2185
2186 sp = page_header(__pa(sptep));
2187 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2188 return;
2189
2190 __direct_pte_prefetch(vcpu, sp, sptep);
2191 }
2192
2193 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2194 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2195 bool prefault)
2196 {
2197 struct kvm_shadow_walk_iterator iterator;
2198 struct kvm_mmu_page *sp;
2199 int pt_write = 0;
2200 gfn_t pseudo_gfn;
2201
2202 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2203 if (iterator.level == level) {
2204 unsigned pte_access = ACC_ALL;
2205
2206 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2207 0, write, 1, &pt_write,
2208 level, gfn, pfn, prefault, map_writable);
2209 direct_pte_prefetch(vcpu, iterator.sptep);
2210 ++vcpu->stat.pf_fixed;
2211 break;
2212 }
2213
2214 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2215 u64 base_addr = iterator.addr;
2216
2217 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2218 pseudo_gfn = base_addr >> PAGE_SHIFT;
2219 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2220 iterator.level - 1,
2221 1, ACC_ALL, iterator.sptep);
2222 if (!sp) {
2223 pgprintk("nonpaging_map: ENOMEM\n");
2224 kvm_release_pfn_clean(pfn);
2225 return -ENOMEM;
2226 }
2227
2228 __set_spte(iterator.sptep,
2229 __pa(sp->spt)
2230 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2231 | shadow_user_mask | shadow_x_mask
2232 | shadow_accessed_mask);
2233 }
2234 }
2235 return pt_write;
2236 }
2237
2238 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2239 {
2240 siginfo_t info;
2241
2242 info.si_signo = SIGBUS;
2243 info.si_errno = 0;
2244 info.si_code = BUS_MCEERR_AR;
2245 info.si_addr = (void __user *)address;
2246 info.si_addr_lsb = PAGE_SHIFT;
2247
2248 send_sig_info(SIGBUS, &info, tsk);
2249 }
2250
2251 static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2252 {
2253 kvm_release_pfn_clean(pfn);
2254 if (is_hwpoison_pfn(pfn)) {
2255 kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
2256 return 0;
2257 } else if (is_fault_pfn(pfn))
2258 return -EFAULT;
2259
2260 return 1;
2261 }
2262
2263 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2264 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2265 {
2266 pfn_t pfn = *pfnp;
2267 gfn_t gfn = *gfnp;
2268 int level = *levelp;
2269
2270 /*
2271 * Check if it's a transparent hugepage. If this would be an
2272 * hugetlbfs page, level wouldn't be set to
2273 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2274 * here.
2275 */
2276 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2277 level == PT_PAGE_TABLE_LEVEL &&
2278 PageTransCompound(pfn_to_page(pfn)) &&
2279 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2280 unsigned long mask;
2281 /*
2282 * mmu_notifier_retry was successful and we hold the
2283 * mmu_lock here, so the pmd can't become splitting
2284 * from under us, and in turn
2285 * __split_huge_page_refcount() can't run from under
2286 * us and we can safely transfer the refcount from
2287 * PG_tail to PG_head as we switch the pfn to tail to
2288 * head.
2289 */
2290 *levelp = level = PT_DIRECTORY_LEVEL;
2291 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2292 VM_BUG_ON((gfn & mask) != (pfn & mask));
2293 if (pfn & mask) {
2294 gfn &= ~mask;
2295 *gfnp = gfn;
2296 kvm_release_pfn_clean(pfn);
2297 pfn &= ~mask;
2298 if (!get_page_unless_zero(pfn_to_page(pfn)))
2299 BUG();
2300 *pfnp = pfn;
2301 }
2302 }
2303 }
2304
2305 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2306 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2307
2308 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2309 bool prefault)
2310 {
2311 int r;
2312 int level;
2313 int force_pt_level;
2314 pfn_t pfn;
2315 unsigned long mmu_seq;
2316 bool map_writable;
2317
2318 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2319 if (likely(!force_pt_level)) {
2320 level = mapping_level(vcpu, gfn);
2321 /*
2322 * This path builds a PAE pagetable - so we can map
2323 * 2mb pages at maximum. Therefore check if the level
2324 * is larger than that.
2325 */
2326 if (level > PT_DIRECTORY_LEVEL)
2327 level = PT_DIRECTORY_LEVEL;
2328
2329 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2330 } else
2331 level = PT_PAGE_TABLE_LEVEL;
2332
2333 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2334 smp_rmb();
2335
2336 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2337 return 0;
2338
2339 /* mmio */
2340 if (is_error_pfn(pfn))
2341 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2342
2343 spin_lock(&vcpu->kvm->mmu_lock);
2344 if (mmu_notifier_retry(vcpu, mmu_seq))
2345 goto out_unlock;
2346 kvm_mmu_free_some_pages(vcpu);
2347 if (likely(!force_pt_level))
2348 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2349 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2350 prefault);
2351 spin_unlock(&vcpu->kvm->mmu_lock);
2352
2353
2354 return r;
2355
2356 out_unlock:
2357 spin_unlock(&vcpu->kvm->mmu_lock);
2358 kvm_release_pfn_clean(pfn);
2359 return 0;
2360 }
2361
2362
2363 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2364 {
2365 int i;
2366 struct kvm_mmu_page *sp;
2367 LIST_HEAD(invalid_list);
2368
2369 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2370 return;
2371 spin_lock(&vcpu->kvm->mmu_lock);
2372 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2373 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2374 vcpu->arch.mmu.direct_map)) {
2375 hpa_t root = vcpu->arch.mmu.root_hpa;
2376
2377 sp = page_header(root);
2378 --sp->root_count;
2379 if (!sp->root_count && sp->role.invalid) {
2380 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2381 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2382 }
2383 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2384 spin_unlock(&vcpu->kvm->mmu_lock);
2385 return;
2386 }
2387 for (i = 0; i < 4; ++i) {
2388 hpa_t root = vcpu->arch.mmu.pae_root[i];
2389
2390 if (root) {
2391 root &= PT64_BASE_ADDR_MASK;
2392 sp = page_header(root);
2393 --sp->root_count;
2394 if (!sp->root_count && sp->role.invalid)
2395 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2396 &invalid_list);
2397 }
2398 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2399 }
2400 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2401 spin_unlock(&vcpu->kvm->mmu_lock);
2402 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2403 }
2404
2405 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2406 {
2407 int ret = 0;
2408
2409 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2410 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2411 ret = 1;
2412 }
2413
2414 return ret;
2415 }
2416
2417 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2418 {
2419 struct kvm_mmu_page *sp;
2420 unsigned i;
2421
2422 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2423 spin_lock(&vcpu->kvm->mmu_lock);
2424 kvm_mmu_free_some_pages(vcpu);
2425 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2426 1, ACC_ALL, NULL);
2427 ++sp->root_count;
2428 spin_unlock(&vcpu->kvm->mmu_lock);
2429 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2430 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2431 for (i = 0; i < 4; ++i) {
2432 hpa_t root = vcpu->arch.mmu.pae_root[i];
2433
2434 ASSERT(!VALID_PAGE(root));
2435 spin_lock(&vcpu->kvm->mmu_lock);
2436 kvm_mmu_free_some_pages(vcpu);
2437 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2438 i << 30,
2439 PT32_ROOT_LEVEL, 1, ACC_ALL,
2440 NULL);
2441 root = __pa(sp->spt);
2442 ++sp->root_count;
2443 spin_unlock(&vcpu->kvm->mmu_lock);
2444 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2445 }
2446 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2447 } else
2448 BUG();
2449
2450 return 0;
2451 }
2452
2453 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2454 {
2455 struct kvm_mmu_page *sp;
2456 u64 pdptr, pm_mask;
2457 gfn_t root_gfn;
2458 int i;
2459
2460 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2461
2462 if (mmu_check_root(vcpu, root_gfn))
2463 return 1;
2464
2465 /*
2466 * Do we shadow a long mode page table? If so we need to
2467 * write-protect the guests page table root.
2468 */
2469 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2470 hpa_t root = vcpu->arch.mmu.root_hpa;
2471
2472 ASSERT(!VALID_PAGE(root));
2473
2474 spin_lock(&vcpu->kvm->mmu_lock);
2475 kvm_mmu_free_some_pages(vcpu);
2476 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2477 0, ACC_ALL, NULL);
2478 root = __pa(sp->spt);
2479 ++sp->root_count;
2480 spin_unlock(&vcpu->kvm->mmu_lock);
2481 vcpu->arch.mmu.root_hpa = root;
2482 return 0;
2483 }
2484
2485 /*
2486 * We shadow a 32 bit page table. This may be a legacy 2-level
2487 * or a PAE 3-level page table. In either case we need to be aware that
2488 * the shadow page table may be a PAE or a long mode page table.
2489 */
2490 pm_mask = PT_PRESENT_MASK;
2491 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2492 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2493
2494 for (i = 0; i < 4; ++i) {
2495 hpa_t root = vcpu->arch.mmu.pae_root[i];
2496
2497 ASSERT(!VALID_PAGE(root));
2498 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2499 pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2500 if (!is_present_gpte(pdptr)) {
2501 vcpu->arch.mmu.pae_root[i] = 0;
2502 continue;
2503 }
2504 root_gfn = pdptr >> PAGE_SHIFT;
2505 if (mmu_check_root(vcpu, root_gfn))
2506 return 1;
2507 }
2508 spin_lock(&vcpu->kvm->mmu_lock);
2509 kvm_mmu_free_some_pages(vcpu);
2510 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2511 PT32_ROOT_LEVEL, 0,
2512 ACC_ALL, NULL);
2513 root = __pa(sp->spt);
2514 ++sp->root_count;
2515 spin_unlock(&vcpu->kvm->mmu_lock);
2516
2517 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2518 }
2519 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2520
2521 /*
2522 * If we shadow a 32 bit page table with a long mode page
2523 * table we enter this path.
2524 */
2525 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2526 if (vcpu->arch.mmu.lm_root == NULL) {
2527 /*
2528 * The additional page necessary for this is only
2529 * allocated on demand.
2530 */
2531
2532 u64 *lm_root;
2533
2534 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2535 if (lm_root == NULL)
2536 return 1;
2537
2538 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2539
2540 vcpu->arch.mmu.lm_root = lm_root;
2541 }
2542
2543 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2544 }
2545
2546 return 0;
2547 }
2548
2549 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2550 {
2551 if (vcpu->arch.mmu.direct_map)
2552 return mmu_alloc_direct_roots(vcpu);
2553 else
2554 return mmu_alloc_shadow_roots(vcpu);
2555 }
2556
2557 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2558 {
2559 int i;
2560 struct kvm_mmu_page *sp;
2561
2562 if (vcpu->arch.mmu.direct_map)
2563 return;
2564
2565 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2566 return;
2567
2568 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2569 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2570 hpa_t root = vcpu->arch.mmu.root_hpa;
2571 sp = page_header(root);
2572 mmu_sync_children(vcpu, sp);
2573 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2574 return;
2575 }
2576 for (i = 0; i < 4; ++i) {
2577 hpa_t root = vcpu->arch.mmu.pae_root[i];
2578
2579 if (root && VALID_PAGE(root)) {
2580 root &= PT64_BASE_ADDR_MASK;
2581 sp = page_header(root);
2582 mmu_sync_children(vcpu, sp);
2583 }
2584 }
2585 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2586 }
2587
2588 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2589 {
2590 spin_lock(&vcpu->kvm->mmu_lock);
2591 mmu_sync_roots(vcpu);
2592 spin_unlock(&vcpu->kvm->mmu_lock);
2593 }
2594
2595 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2596 u32 access, struct x86_exception *exception)
2597 {
2598 if (exception)
2599 exception->error_code = 0;
2600 return vaddr;
2601 }
2602
2603 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2604 u32 access,
2605 struct x86_exception *exception)
2606 {
2607 if (exception)
2608 exception->error_code = 0;
2609 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2610 }
2611
2612 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2613 u32 error_code, bool prefault)
2614 {
2615 gfn_t gfn;
2616 int r;
2617
2618 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2619 r = mmu_topup_memory_caches(vcpu);
2620 if (r)
2621 return r;
2622
2623 ASSERT(vcpu);
2624 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2625
2626 gfn = gva >> PAGE_SHIFT;
2627
2628 return nonpaging_map(vcpu, gva & PAGE_MASK,
2629 error_code & PFERR_WRITE_MASK, gfn, prefault);
2630 }
2631
2632 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
2633 {
2634 struct kvm_arch_async_pf arch;
2635
2636 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
2637 arch.gfn = gfn;
2638 arch.direct_map = vcpu->arch.mmu.direct_map;
2639 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
2640
2641 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
2642 }
2643
2644 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
2645 {
2646 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
2647 kvm_event_needs_reinjection(vcpu)))
2648 return false;
2649
2650 return kvm_x86_ops->interrupt_allowed(vcpu);
2651 }
2652
2653 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2654 gva_t gva, pfn_t *pfn, bool write, bool *writable)
2655 {
2656 bool async;
2657
2658 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
2659
2660 if (!async)
2661 return false; /* *pfn has correct page already */
2662
2663 put_page(pfn_to_page(*pfn));
2664
2665 if (!prefault && can_do_async_pf(vcpu)) {
2666 trace_kvm_try_async_get_page(gva, gfn);
2667 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
2668 trace_kvm_async_pf_doublefault(gva, gfn);
2669 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2670 return true;
2671 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
2672 return true;
2673 }
2674
2675 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
2676
2677 return false;
2678 }
2679
2680 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
2681 bool prefault)
2682 {
2683 pfn_t pfn;
2684 int r;
2685 int level;
2686 int force_pt_level;
2687 gfn_t gfn = gpa >> PAGE_SHIFT;
2688 unsigned long mmu_seq;
2689 int write = error_code & PFERR_WRITE_MASK;
2690 bool map_writable;
2691
2692 ASSERT(vcpu);
2693 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2694
2695 r = mmu_topup_memory_caches(vcpu);
2696 if (r)
2697 return r;
2698
2699 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2700 if (likely(!force_pt_level)) {
2701 level = mapping_level(vcpu, gfn);
2702 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2703 } else
2704 level = PT_PAGE_TABLE_LEVEL;
2705
2706 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2707 smp_rmb();
2708
2709 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
2710 return 0;
2711
2712 /* mmio */
2713 if (is_error_pfn(pfn))
2714 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2715 spin_lock(&vcpu->kvm->mmu_lock);
2716 if (mmu_notifier_retry(vcpu, mmu_seq))
2717 goto out_unlock;
2718 kvm_mmu_free_some_pages(vcpu);
2719 if (likely(!force_pt_level))
2720 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2721 r = __direct_map(vcpu, gpa, write, map_writable,
2722 level, gfn, pfn, prefault);
2723 spin_unlock(&vcpu->kvm->mmu_lock);
2724
2725 return r;
2726
2727 out_unlock:
2728 spin_unlock(&vcpu->kvm->mmu_lock);
2729 kvm_release_pfn_clean(pfn);
2730 return 0;
2731 }
2732
2733 static void nonpaging_free(struct kvm_vcpu *vcpu)
2734 {
2735 mmu_free_roots(vcpu);
2736 }
2737
2738 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2739 struct kvm_mmu *context)
2740 {
2741 context->new_cr3 = nonpaging_new_cr3;
2742 context->page_fault = nonpaging_page_fault;
2743 context->gva_to_gpa = nonpaging_gva_to_gpa;
2744 context->free = nonpaging_free;
2745 context->prefetch_page = nonpaging_prefetch_page;
2746 context->sync_page = nonpaging_sync_page;
2747 context->invlpg = nonpaging_invlpg;
2748 context->update_pte = nonpaging_update_pte;
2749 context->root_level = 0;
2750 context->shadow_root_level = PT32E_ROOT_LEVEL;
2751 context->root_hpa = INVALID_PAGE;
2752 context->direct_map = true;
2753 context->nx = false;
2754 return 0;
2755 }
2756
2757 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2758 {
2759 ++vcpu->stat.tlb_flush;
2760 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2761 }
2762
2763 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2764 {
2765 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
2766 mmu_free_roots(vcpu);
2767 }
2768
2769 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2770 {
2771 return kvm_read_cr3(vcpu);
2772 }
2773
2774 static void inject_page_fault(struct kvm_vcpu *vcpu,
2775 struct x86_exception *fault)
2776 {
2777 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
2778 }
2779
2780 static void paging_free(struct kvm_vcpu *vcpu)
2781 {
2782 nonpaging_free(vcpu);
2783 }
2784
2785 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2786 {
2787 int bit7;
2788
2789 bit7 = (gpte >> 7) & 1;
2790 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2791 }
2792
2793 #define PTTYPE 64
2794 #include "paging_tmpl.h"
2795 #undef PTTYPE
2796
2797 #define PTTYPE 32
2798 #include "paging_tmpl.h"
2799 #undef PTTYPE
2800
2801 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2802 struct kvm_mmu *context,
2803 int level)
2804 {
2805 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2806 u64 exb_bit_rsvd = 0;
2807
2808 if (!context->nx)
2809 exb_bit_rsvd = rsvd_bits(63, 63);
2810 switch (level) {
2811 case PT32_ROOT_LEVEL:
2812 /* no rsvd bits for 2 level 4K page table entries */
2813 context->rsvd_bits_mask[0][1] = 0;
2814 context->rsvd_bits_mask[0][0] = 0;
2815 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2816
2817 if (!is_pse(vcpu)) {
2818 context->rsvd_bits_mask[1][1] = 0;
2819 break;
2820 }
2821
2822 if (is_cpuid_PSE36())
2823 /* 36bits PSE 4MB page */
2824 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2825 else
2826 /* 32 bits PSE 4MB page */
2827 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2828 break;
2829 case PT32E_ROOT_LEVEL:
2830 context->rsvd_bits_mask[0][2] =
2831 rsvd_bits(maxphyaddr, 63) |
2832 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2833 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2834 rsvd_bits(maxphyaddr, 62); /* PDE */
2835 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2836 rsvd_bits(maxphyaddr, 62); /* PTE */
2837 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2838 rsvd_bits(maxphyaddr, 62) |
2839 rsvd_bits(13, 20); /* large page */
2840 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2841 break;
2842 case PT64_ROOT_LEVEL:
2843 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2844 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2845 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2846 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2847 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2848 rsvd_bits(maxphyaddr, 51);
2849 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2850 rsvd_bits(maxphyaddr, 51);
2851 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2852 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2853 rsvd_bits(maxphyaddr, 51) |
2854 rsvd_bits(13, 29);
2855 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2856 rsvd_bits(maxphyaddr, 51) |
2857 rsvd_bits(13, 20); /* large page */
2858 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2859 break;
2860 }
2861 }
2862
2863 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2864 struct kvm_mmu *context,
2865 int level)
2866 {
2867 context->nx = is_nx(vcpu);
2868
2869 reset_rsvds_bits_mask(vcpu, context, level);
2870
2871 ASSERT(is_pae(vcpu));
2872 context->new_cr3 = paging_new_cr3;
2873 context->page_fault = paging64_page_fault;
2874 context->gva_to_gpa = paging64_gva_to_gpa;
2875 context->prefetch_page = paging64_prefetch_page;
2876 context->sync_page = paging64_sync_page;
2877 context->invlpg = paging64_invlpg;
2878 context->update_pte = paging64_update_pte;
2879 context->free = paging_free;
2880 context->root_level = level;
2881 context->shadow_root_level = level;
2882 context->root_hpa = INVALID_PAGE;
2883 context->direct_map = false;
2884 return 0;
2885 }
2886
2887 static int paging64_init_context(struct kvm_vcpu *vcpu,
2888 struct kvm_mmu *context)
2889 {
2890 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2891 }
2892
2893 static int paging32_init_context(struct kvm_vcpu *vcpu,
2894 struct kvm_mmu *context)
2895 {
2896 context->nx = false;
2897
2898 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2899
2900 context->new_cr3 = paging_new_cr3;
2901 context->page_fault = paging32_page_fault;
2902 context->gva_to_gpa = paging32_gva_to_gpa;
2903 context->free = paging_free;
2904 context->prefetch_page = paging32_prefetch_page;
2905 context->sync_page = paging32_sync_page;
2906 context->invlpg = paging32_invlpg;
2907 context->update_pte = paging32_update_pte;
2908 context->root_level = PT32_ROOT_LEVEL;
2909 context->shadow_root_level = PT32E_ROOT_LEVEL;
2910 context->root_hpa = INVALID_PAGE;
2911 context->direct_map = false;
2912 return 0;
2913 }
2914
2915 static int paging32E_init_context(struct kvm_vcpu *vcpu,
2916 struct kvm_mmu *context)
2917 {
2918 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2919 }
2920
2921 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2922 {
2923 struct kvm_mmu *context = vcpu->arch.walk_mmu;
2924
2925 context->base_role.word = 0;
2926 context->new_cr3 = nonpaging_new_cr3;
2927 context->page_fault = tdp_page_fault;
2928 context->free = nonpaging_free;
2929 context->prefetch_page = nonpaging_prefetch_page;
2930 context->sync_page = nonpaging_sync_page;
2931 context->invlpg = nonpaging_invlpg;
2932 context->update_pte = nonpaging_update_pte;
2933 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2934 context->root_hpa = INVALID_PAGE;
2935 context->direct_map = true;
2936 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2937 context->get_cr3 = get_cr3;
2938 context->inject_page_fault = kvm_inject_page_fault;
2939 context->nx = is_nx(vcpu);
2940
2941 if (!is_paging(vcpu)) {
2942 context->nx = false;
2943 context->gva_to_gpa = nonpaging_gva_to_gpa;
2944 context->root_level = 0;
2945 } else if (is_long_mode(vcpu)) {
2946 context->nx = is_nx(vcpu);
2947 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
2948 context->gva_to_gpa = paging64_gva_to_gpa;
2949 context->root_level = PT64_ROOT_LEVEL;
2950 } else if (is_pae(vcpu)) {
2951 context->nx = is_nx(vcpu);
2952 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
2953 context->gva_to_gpa = paging64_gva_to_gpa;
2954 context->root_level = PT32E_ROOT_LEVEL;
2955 } else {
2956 context->nx = false;
2957 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2958 context->gva_to_gpa = paging32_gva_to_gpa;
2959 context->root_level = PT32_ROOT_LEVEL;
2960 }
2961
2962 return 0;
2963 }
2964
2965 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
2966 {
2967 int r;
2968 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
2969 ASSERT(vcpu);
2970 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2971
2972 if (!is_paging(vcpu))
2973 r = nonpaging_init_context(vcpu, context);
2974 else if (is_long_mode(vcpu))
2975 r = paging64_init_context(vcpu, context);
2976 else if (is_pae(vcpu))
2977 r = paging32E_init_context(vcpu, context);
2978 else
2979 r = paging32_init_context(vcpu, context);
2980
2981 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2982 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
2983 vcpu->arch.mmu.base_role.smep_andnot_wp
2984 = smep && !is_write_protection(vcpu);
2985
2986 return r;
2987 }
2988 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
2989
2990 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2991 {
2992 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
2993
2994 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
2995 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
2996 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
2997
2998 return r;
2999 }
3000
3001 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3002 {
3003 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3004
3005 g_context->get_cr3 = get_cr3;
3006 g_context->inject_page_fault = kvm_inject_page_fault;
3007
3008 /*
3009 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3010 * translation of l2_gpa to l1_gpa addresses is done using the
3011 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3012 * functions between mmu and nested_mmu are swapped.
3013 */
3014 if (!is_paging(vcpu)) {
3015 g_context->nx = false;
3016 g_context->root_level = 0;
3017 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3018 } else if (is_long_mode(vcpu)) {
3019 g_context->nx = is_nx(vcpu);
3020 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3021 g_context->root_level = PT64_ROOT_LEVEL;
3022 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3023 } else if (is_pae(vcpu)) {
3024 g_context->nx = is_nx(vcpu);
3025 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3026 g_context->root_level = PT32E_ROOT_LEVEL;
3027 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3028 } else {
3029 g_context->nx = false;
3030 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3031 g_context->root_level = PT32_ROOT_LEVEL;
3032 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3033 }
3034
3035 return 0;
3036 }
3037
3038 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3039 {
3040 if (mmu_is_nested(vcpu))
3041 return init_kvm_nested_mmu(vcpu);
3042 else if (tdp_enabled)
3043 return init_kvm_tdp_mmu(vcpu);
3044 else
3045 return init_kvm_softmmu(vcpu);
3046 }
3047
3048 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3049 {
3050 ASSERT(vcpu);
3051 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3052 /* mmu.free() should set root_hpa = INVALID_PAGE */
3053 vcpu->arch.mmu.free(vcpu);
3054 }
3055
3056 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3057 {
3058 destroy_kvm_mmu(vcpu);
3059 return init_kvm_mmu(vcpu);
3060 }
3061 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3062
3063 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3064 {
3065 int r;
3066
3067 r = mmu_topup_memory_caches(vcpu);
3068 if (r)
3069 goto out;
3070 r = mmu_alloc_roots(vcpu);
3071 spin_lock(&vcpu->kvm->mmu_lock);
3072 mmu_sync_roots(vcpu);
3073 spin_unlock(&vcpu->kvm->mmu_lock);
3074 if (r)
3075 goto out;
3076 /* set_cr3() should ensure TLB has been flushed */
3077 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3078 out:
3079 return r;
3080 }
3081 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3082
3083 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3084 {
3085 mmu_free_roots(vcpu);
3086 }
3087 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3088
3089 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3090 struct kvm_mmu_page *sp, u64 *spte,
3091 const void *new)
3092 {
3093 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3094 ++vcpu->kvm->stat.mmu_pde_zapped;
3095 return;
3096 }
3097
3098 ++vcpu->kvm->stat.mmu_pte_updated;
3099 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3100 }
3101
3102 static bool need_remote_flush(u64 old, u64 new)
3103 {
3104 if (!is_shadow_present_pte(old))
3105 return false;
3106 if (!is_shadow_present_pte(new))
3107 return true;
3108 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3109 return true;
3110 old ^= PT64_NX_MASK;
3111 new ^= PT64_NX_MASK;
3112 return (old & ~new & PT64_PERM_MASK) != 0;
3113 }
3114
3115 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3116 bool remote_flush, bool local_flush)
3117 {
3118 if (zap_page)
3119 return;
3120
3121 if (remote_flush)
3122 kvm_flush_remote_tlbs(vcpu->kvm);
3123 else if (local_flush)
3124 kvm_mmu_flush_tlb(vcpu);
3125 }
3126
3127 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3128 {
3129 u64 *spte = vcpu->arch.last_pte_updated;
3130
3131 return !!(spte && (*spte & shadow_accessed_mask));
3132 }
3133
3134 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3135 {
3136 u64 *spte = vcpu->arch.last_pte_updated;
3137
3138 if (spte
3139 && vcpu->arch.last_pte_gfn == gfn
3140 && shadow_accessed_mask
3141 && !(*spte & shadow_accessed_mask)
3142 && is_shadow_present_pte(*spte))
3143 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3144 }
3145
3146 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3147 const u8 *new, int bytes,
3148 bool guest_initiated)
3149 {
3150 gfn_t gfn = gpa >> PAGE_SHIFT;
3151 union kvm_mmu_page_role mask = { .word = 0 };
3152 struct kvm_mmu_page *sp;
3153 struct hlist_node *node;
3154 LIST_HEAD(invalid_list);
3155 u64 entry, gentry, *spte;
3156 unsigned pte_size, page_offset, misaligned, quadrant, offset;
3157 int level, npte, invlpg_counter, r, flooded = 0;
3158 bool remote_flush, local_flush, zap_page;
3159
3160 /*
3161 * If we don't have indirect shadow pages, it means no page is
3162 * write-protected, so we can exit simply.
3163 */
3164 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3165 return;
3166
3167 zap_page = remote_flush = local_flush = false;
3168 offset = offset_in_page(gpa);
3169
3170 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3171
3172 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3173
3174 /*
3175 * Assume that the pte write on a page table of the same type
3176 * as the current vcpu paging mode since we update the sptes only
3177 * when they have the same mode.
3178 */
3179 if ((is_pae(vcpu) && bytes == 4) || !new) {
3180 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3181 if (is_pae(vcpu)) {
3182 gpa &= ~(gpa_t)7;
3183 bytes = 8;
3184 }
3185 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3186 if (r)
3187 gentry = 0;
3188 new = (const u8 *)&gentry;
3189 }
3190
3191 switch (bytes) {
3192 case 4:
3193 gentry = *(const u32 *)new;
3194 break;
3195 case 8:
3196 gentry = *(const u64 *)new;
3197 break;
3198 default:
3199 gentry = 0;
3200 break;
3201 }
3202
3203 spin_lock(&vcpu->kvm->mmu_lock);
3204 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3205 gentry = 0;
3206 kvm_mmu_free_some_pages(vcpu);
3207 ++vcpu->kvm->stat.mmu_pte_write;
3208 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3209 if (guest_initiated) {
3210 kvm_mmu_access_page(vcpu, gfn);
3211 if (gfn == vcpu->arch.last_pt_write_gfn
3212 && !last_updated_pte_accessed(vcpu)) {
3213 ++vcpu->arch.last_pt_write_count;
3214 if (vcpu->arch.last_pt_write_count >= 3)
3215 flooded = 1;
3216 } else {
3217 vcpu->arch.last_pt_write_gfn = gfn;
3218 vcpu->arch.last_pt_write_count = 1;
3219 vcpu->arch.last_pte_updated = NULL;
3220 }
3221 }
3222
3223 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3224 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3225 pte_size = sp->role.cr4_pae ? 8 : 4;
3226 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3227 misaligned |= bytes < 4;
3228 if (misaligned || flooded) {
3229 /*
3230 * Misaligned accesses are too much trouble to fix
3231 * up; also, they usually indicate a page is not used
3232 * as a page table.
3233 *
3234 * If we're seeing too many writes to a page,
3235 * it may no longer be a page table, or we may be
3236 * forking, in which case it is better to unmap the
3237 * page.
3238 */
3239 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3240 gpa, bytes, sp->role.word);
3241 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3242 &invalid_list);
3243 ++vcpu->kvm->stat.mmu_flooded;
3244 continue;
3245 }
3246 page_offset = offset;
3247 level = sp->role.level;
3248 npte = 1;
3249 if (!sp->role.cr4_pae) {
3250 page_offset <<= 1; /* 32->64 */
3251 /*
3252 * A 32-bit pde maps 4MB while the shadow pdes map
3253 * only 2MB. So we need to double the offset again
3254 * and zap two pdes instead of one.
3255 */
3256 if (level == PT32_ROOT_LEVEL) {
3257 page_offset &= ~7; /* kill rounding error */
3258 page_offset <<= 1;
3259 npte = 2;
3260 }
3261 quadrant = page_offset >> PAGE_SHIFT;
3262 page_offset &= ~PAGE_MASK;
3263 if (quadrant != sp->role.quadrant)
3264 continue;
3265 }
3266 local_flush = true;
3267 spte = &sp->spt[page_offset / sizeof(*spte)];
3268 while (npte--) {
3269 entry = *spte;
3270 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3271 if (gentry &&
3272 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3273 & mask.word))
3274 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3275 if (!remote_flush && need_remote_flush(entry, *spte))
3276 remote_flush = true;
3277 ++spte;
3278 }
3279 }
3280 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3281 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3282 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3283 spin_unlock(&vcpu->kvm->mmu_lock);
3284 }
3285
3286 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3287 {
3288 gpa_t gpa;
3289 int r;
3290
3291 if (vcpu->arch.mmu.direct_map)
3292 return 0;
3293
3294 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3295
3296 spin_lock(&vcpu->kvm->mmu_lock);
3297 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3298 spin_unlock(&vcpu->kvm->mmu_lock);
3299 return r;
3300 }
3301 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3302
3303 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3304 {
3305 LIST_HEAD(invalid_list);
3306
3307 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3308 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3309 struct kvm_mmu_page *sp;
3310
3311 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3312 struct kvm_mmu_page, link);
3313 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3314 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3315 ++vcpu->kvm->stat.mmu_recycled;
3316 }
3317 }
3318
3319 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3320 void *insn, int insn_len)
3321 {
3322 int r;
3323 enum emulation_result er;
3324
3325 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3326 if (r < 0)
3327 goto out;
3328
3329 if (!r) {
3330 r = 1;
3331 goto out;
3332 }
3333
3334 r = mmu_topup_memory_caches(vcpu);
3335 if (r)
3336 goto out;
3337
3338 er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3339
3340 switch (er) {
3341 case EMULATE_DONE:
3342 return 1;
3343 case EMULATE_DO_MMIO:
3344 ++vcpu->stat.mmio_exits;
3345 /* fall through */
3346 case EMULATE_FAIL:
3347 return 0;
3348 default:
3349 BUG();
3350 }
3351 out:
3352 return r;
3353 }
3354 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3355
3356 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3357 {
3358 vcpu->arch.mmu.invlpg(vcpu, gva);
3359 kvm_mmu_flush_tlb(vcpu);
3360 ++vcpu->stat.invlpg;
3361 }
3362 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3363
3364 void kvm_enable_tdp(void)
3365 {
3366 tdp_enabled = true;
3367 }
3368 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3369
3370 void kvm_disable_tdp(void)
3371 {
3372 tdp_enabled = false;
3373 }
3374 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3375
3376 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3377 {
3378 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3379 if (vcpu->arch.mmu.lm_root != NULL)
3380 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3381 }
3382
3383 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3384 {
3385 struct page *page;
3386 int i;
3387
3388 ASSERT(vcpu);
3389
3390 /*
3391 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3392 * Therefore we need to allocate shadow page tables in the first
3393 * 4GB of memory, which happens to fit the DMA32 zone.
3394 */
3395 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3396 if (!page)
3397 return -ENOMEM;
3398
3399 vcpu->arch.mmu.pae_root = page_address(page);
3400 for (i = 0; i < 4; ++i)
3401 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3402
3403 return 0;
3404 }
3405
3406 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3407 {
3408 ASSERT(vcpu);
3409 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3410
3411 return alloc_mmu_pages(vcpu);
3412 }
3413
3414 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3415 {
3416 ASSERT(vcpu);
3417 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3418
3419 return init_kvm_mmu(vcpu);
3420 }
3421
3422 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3423 {
3424 struct kvm_mmu_page *sp;
3425
3426 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3427 int i;
3428 u64 *pt;
3429
3430 if (!test_bit(slot, sp->slot_bitmap))
3431 continue;
3432
3433 pt = sp->spt;
3434 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3435 if (!is_shadow_present_pte(pt[i]) ||
3436 !is_last_spte(pt[i], sp->role.level))
3437 continue;
3438
3439 if (is_large_pte(pt[i])) {
3440 drop_spte(kvm, &pt[i],
3441 shadow_trap_nonpresent_pte);
3442 --kvm->stat.lpages;
3443 continue;
3444 }
3445
3446 /* avoid RMW */
3447 if (is_writable_pte(pt[i]))
3448 update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
3449 }
3450 }
3451 kvm_flush_remote_tlbs(kvm);
3452 }
3453
3454 void kvm_mmu_zap_all(struct kvm *kvm)
3455 {
3456 struct kvm_mmu_page *sp, *node;
3457 LIST_HEAD(invalid_list);
3458
3459 spin_lock(&kvm->mmu_lock);
3460 restart:
3461 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3462 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3463 goto restart;
3464
3465 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3466 spin_unlock(&kvm->mmu_lock);
3467 }
3468
3469 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3470 struct list_head *invalid_list)
3471 {
3472 struct kvm_mmu_page *page;
3473
3474 page = container_of(kvm->arch.active_mmu_pages.prev,
3475 struct kvm_mmu_page, link);
3476 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3477 }
3478
3479 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3480 {
3481 struct kvm *kvm;
3482 struct kvm *kvm_freed = NULL;
3483 int nr_to_scan = sc->nr_to_scan;
3484
3485 if (nr_to_scan == 0)
3486 goto out;
3487
3488 raw_spin_lock(&kvm_lock);
3489
3490 list_for_each_entry(kvm, &vm_list, vm_list) {
3491 int idx, freed_pages;
3492 LIST_HEAD(invalid_list);
3493
3494 idx = srcu_read_lock(&kvm->srcu);
3495 spin_lock(&kvm->mmu_lock);
3496 if (!kvm_freed && nr_to_scan > 0 &&
3497 kvm->arch.n_used_mmu_pages > 0) {
3498 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3499 &invalid_list);
3500 kvm_freed = kvm;
3501 }
3502 nr_to_scan--;
3503
3504 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3505 spin_unlock(&kvm->mmu_lock);
3506 srcu_read_unlock(&kvm->srcu, idx);
3507 }
3508 if (kvm_freed)
3509 list_move_tail(&kvm_freed->vm_list, &vm_list);
3510
3511 raw_spin_unlock(&kvm_lock);
3512
3513 out:
3514 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3515 }
3516
3517 static struct shrinker mmu_shrinker = {
3518 .shrink = mmu_shrink,
3519 .seeks = DEFAULT_SEEKS * 10,
3520 };
3521
3522 static void mmu_destroy_caches(void)
3523 {
3524 if (pte_list_desc_cache)
3525 kmem_cache_destroy(pte_list_desc_cache);
3526 if (mmu_page_header_cache)
3527 kmem_cache_destroy(mmu_page_header_cache);
3528 }
3529
3530 int kvm_mmu_module_init(void)
3531 {
3532 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3533 sizeof(struct pte_list_desc),
3534 0, 0, NULL);
3535 if (!pte_list_desc_cache)
3536 goto nomem;
3537
3538 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3539 sizeof(struct kvm_mmu_page),
3540 0, 0, NULL);
3541 if (!mmu_page_header_cache)
3542 goto nomem;
3543
3544 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3545 goto nomem;
3546
3547 register_shrinker(&mmu_shrinker);
3548
3549 return 0;
3550
3551 nomem:
3552 mmu_destroy_caches();
3553 return -ENOMEM;
3554 }
3555
3556 /*
3557 * Caculate mmu pages needed for kvm.
3558 */
3559 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3560 {
3561 int i;
3562 unsigned int nr_mmu_pages;
3563 unsigned int nr_pages = 0;
3564 struct kvm_memslots *slots;
3565
3566 slots = kvm_memslots(kvm);
3567
3568 for (i = 0; i < slots->nmemslots; i++)
3569 nr_pages += slots->memslots[i].npages;
3570
3571 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3572 nr_mmu_pages = max(nr_mmu_pages,
3573 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3574
3575 return nr_mmu_pages;
3576 }
3577
3578 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3579 unsigned len)
3580 {
3581 if (len > buffer->len)
3582 return NULL;
3583 return buffer->ptr;
3584 }
3585
3586 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3587 unsigned len)
3588 {
3589 void *ret;
3590
3591 ret = pv_mmu_peek_buffer(buffer, len);
3592 if (!ret)
3593 return ret;
3594 buffer->ptr += len;
3595 buffer->len -= len;
3596 buffer->processed += len;
3597 return ret;
3598 }
3599
3600 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3601 gpa_t addr, gpa_t value)
3602 {
3603 int bytes = 8;
3604 int r;
3605
3606 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3607 bytes = 4;
3608
3609 r = mmu_topup_memory_caches(vcpu);
3610 if (r)
3611 return r;
3612
3613 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3614 return -EFAULT;
3615
3616 return 1;
3617 }
3618
3619 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3620 {
3621 (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
3622 return 1;
3623 }
3624
3625 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3626 {
3627 spin_lock(&vcpu->kvm->mmu_lock);
3628 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3629 spin_unlock(&vcpu->kvm->mmu_lock);
3630 return 1;
3631 }
3632
3633 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3634 struct kvm_pv_mmu_op_buffer *buffer)
3635 {
3636 struct kvm_mmu_op_header *header;
3637
3638 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3639 if (!header)
3640 return 0;
3641 switch (header->op) {
3642 case KVM_MMU_OP_WRITE_PTE: {
3643 struct kvm_mmu_op_write_pte *wpte;
3644
3645 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3646 if (!wpte)
3647 return 0;
3648 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3649 wpte->pte_val);
3650 }
3651 case KVM_MMU_OP_FLUSH_TLB: {
3652 struct kvm_mmu_op_flush_tlb *ftlb;
3653
3654 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3655 if (!ftlb)
3656 return 0;
3657 return kvm_pv_mmu_flush_tlb(vcpu);
3658 }
3659 case KVM_MMU_OP_RELEASE_PT: {
3660 struct kvm_mmu_op_release_pt *rpt;
3661
3662 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3663 if (!rpt)
3664 return 0;
3665 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3666 }
3667 default: return 0;
3668 }
3669 }
3670
3671 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3672 gpa_t addr, unsigned long *ret)
3673 {
3674 int r;
3675 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3676
3677 buffer->ptr = buffer->buf;
3678 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3679 buffer->processed = 0;
3680
3681 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3682 if (r)
3683 goto out;
3684
3685 while (buffer->len) {
3686 r = kvm_pv_mmu_op_one(vcpu, buffer);
3687 if (r < 0)
3688 goto out;
3689 if (r == 0)
3690 break;
3691 }
3692
3693 r = 1;
3694 out:
3695 *ret = buffer->processed;
3696 return r;
3697 }
3698
3699 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3700 {
3701 struct kvm_shadow_walk_iterator iterator;
3702 int nr_sptes = 0;
3703
3704 spin_lock(&vcpu->kvm->mmu_lock);
3705 for_each_shadow_entry(vcpu, addr, iterator) {
3706 sptes[iterator.level-1] = *iterator.sptep;
3707 nr_sptes++;
3708 if (!is_shadow_present_pte(*iterator.sptep))
3709 break;
3710 }
3711 spin_unlock(&vcpu->kvm->mmu_lock);
3712
3713 return nr_sptes;
3714 }
3715 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3716
3717 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3718 {
3719 ASSERT(vcpu);
3720
3721 destroy_kvm_mmu(vcpu);
3722 free_mmu_pages(vcpu);
3723 mmu_free_memory_caches(vcpu);
3724 }
3725
3726 #ifdef CONFIG_KVM_MMU_AUDIT
3727 #include "mmu_audit.c"
3728 #else
3729 static void mmu_audit_disable(void) { }
3730 #endif
3731
3732 void kvm_mmu_module_exit(void)
3733 {
3734 mmu_destroy_caches();
3735 percpu_counter_destroy(&kvm_total_used_mmu_pages);
3736 unregister_shrinker(&mmu_shrinker);
3737 mmu_audit_disable();
3738 }
This page took 0.108596 seconds and 5 git commands to generate.