KVM: Introduce hva_to_gfn_memslot() for kvm_handle_hva()
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196 shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
204 trace_mark_mmio_spte(sptep, gfn, access);
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206 }
207
208 static bool is_mmio_spte(u64 spte)
209 {
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211 }
212
213 static gfn_t get_mmio_spte_gfn(u64 spte)
214 {
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216 }
217
218 static unsigned get_mmio_spte_access(u64 spte)
219 {
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221 }
222
223 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224 {
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231 }
232
233 static inline u64 rsvd_bits(int s, int e)
234 {
235 return ((1ULL << (e - s + 1)) - 1) << s;
236 }
237
238 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
240 {
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246 }
247 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
249 static int is_cpuid_PSE36(void)
250 {
251 return 1;
252 }
253
254 static int is_nx(struct kvm_vcpu *vcpu)
255 {
256 return vcpu->arch.efer & EFER_NX;
257 }
258
259 static int is_shadow_present_pte(u64 pte)
260 {
261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262 }
263
264 static int is_large_pte(u64 pte)
265 {
266 return pte & PT_PAGE_SIZE_MASK;
267 }
268
269 static int is_dirty_gpte(unsigned long pte)
270 {
271 return pte & PT_DIRTY_MASK;
272 }
273
274 static int is_rmap_spte(u64 pte)
275 {
276 return is_shadow_present_pte(pte);
277 }
278
279 static int is_last_spte(u64 pte, int level)
280 {
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
283 if (is_large_pte(pte))
284 return 1;
285 return 0;
286 }
287
288 static pfn_t spte_to_pfn(u64 pte)
289 {
290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291 }
292
293 static gfn_t pse36_gfn_delta(u32 gpte)
294 {
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298 }
299
300 #ifdef CONFIG_X86_64
301 static void __set_spte(u64 *sptep, u64 spte)
302 {
303 *sptep = spte;
304 }
305
306 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
307 {
308 *sptep = spte;
309 }
310
311 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312 {
313 return xchg(sptep, spte);
314 }
315
316 static u64 __get_spte_lockless(u64 *sptep)
317 {
318 return ACCESS_ONCE(*sptep);
319 }
320
321 static bool __check_direct_spte_mmio_pf(u64 spte)
322 {
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325 }
326 #else
327 union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333 };
334
335 static void count_spte_clear(u64 *sptep, u64 spte)
336 {
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345 }
346
347 static void __set_spte(u64 *sptep, u64 spte)
348 {
349 union split_spte *ssptep, sspte;
350
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
382 count_spte_clear(sptep, spte);
383 }
384
385 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386 {
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
396 count_spte_clear(sptep, spte);
397
398 return orig.spte;
399 }
400
401 /*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408 static u64 __get_spte_lockless(u64 *sptep)
409 {
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414 retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429 }
430
431 static bool __check_direct_spte_mmio_pf(u64 spte)
432 {
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446 }
447 #endif
448
449 static bool spte_is_locklessly_modifiable(u64 spte)
450 {
451 return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452 }
453
454 static bool spte_has_volatile_bits(u64 spte)
455 {
456 /*
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
462 if (spte_is_locklessly_modifiable(spte))
463 return true;
464
465 if (!shadow_accessed_mask)
466 return false;
467
468 if (!is_shadow_present_pte(spte))
469 return false;
470
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
473 return false;
474
475 return true;
476 }
477
478 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479 {
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
481 }
482
483 /* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
487 * the spte.
488 */
489 static void mmu_spte_set(u64 *sptep, u64 new_spte)
490 {
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
493 }
494
495 /* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
497 *
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
502 * case.
503 */
504 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
505 {
506 u64 old_spte = *sptep;
507 bool ret = false;
508
509 WARN_ON(!is_rmap_spte(new_spte));
510
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
513 return ret;
514 }
515
516 if (!spte_has_volatile_bits(old_spte))
517 __update_clear_spte_fast(sptep, new_spte);
518 else
519 old_spte = __update_clear_spte_slow(sptep, new_spte);
520
521 /*
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
525 */
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527 ret = true;
528
529 if (!shadow_accessed_mask)
530 return ret;
531
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
536
537 return ret;
538 }
539
540 /*
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
544 */
545 static int mmu_spte_clear_track_bits(u64 *sptep)
546 {
547 pfn_t pfn;
548 u64 old_spte = *sptep;
549
550 if (!spte_has_volatile_bits(old_spte))
551 __update_clear_spte_fast(sptep, 0ull);
552 else
553 old_spte = __update_clear_spte_slow(sptep, 0ull);
554
555 if (!is_rmap_spte(old_spte))
556 return 0;
557
558 pfn = spte_to_pfn(old_spte);
559 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
560 kvm_set_pfn_accessed(pfn);
561 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
562 kvm_set_pfn_dirty(pfn);
563 return 1;
564 }
565
566 /*
567 * Rules for using mmu_spte_clear_no_track:
568 * Directly clear spte without caring the state bits of sptep,
569 * it is used to set the upper level spte.
570 */
571 static void mmu_spte_clear_no_track(u64 *sptep)
572 {
573 __update_clear_spte_fast(sptep, 0ull);
574 }
575
576 static u64 mmu_spte_get_lockless(u64 *sptep)
577 {
578 return __get_spte_lockless(sptep);
579 }
580
581 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
582 {
583 /*
584 * Prevent page table teardown by making any free-er wait during
585 * kvm_flush_remote_tlbs() IPI to all active vcpus.
586 */
587 local_irq_disable();
588 vcpu->mode = READING_SHADOW_PAGE_TABLES;
589 /*
590 * Make sure a following spte read is not reordered ahead of the write
591 * to vcpu->mode.
592 */
593 smp_mb();
594 }
595
596 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
597 {
598 /*
599 * Make sure the write to vcpu->mode is not reordered in front of
600 * reads to sptes. If it does, kvm_commit_zap_page() can see us
601 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
602 */
603 smp_mb();
604 vcpu->mode = OUTSIDE_GUEST_MODE;
605 local_irq_enable();
606 }
607
608 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
609 struct kmem_cache *base_cache, int min)
610 {
611 void *obj;
612
613 if (cache->nobjs >= min)
614 return 0;
615 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
616 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
617 if (!obj)
618 return -ENOMEM;
619 cache->objects[cache->nobjs++] = obj;
620 }
621 return 0;
622 }
623
624 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
625 {
626 return cache->nobjs;
627 }
628
629 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
630 struct kmem_cache *cache)
631 {
632 while (mc->nobjs)
633 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
634 }
635
636 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
637 int min)
638 {
639 void *page;
640
641 if (cache->nobjs >= min)
642 return 0;
643 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
644 page = (void *)__get_free_page(GFP_KERNEL);
645 if (!page)
646 return -ENOMEM;
647 cache->objects[cache->nobjs++] = page;
648 }
649 return 0;
650 }
651
652 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
653 {
654 while (mc->nobjs)
655 free_page((unsigned long)mc->objects[--mc->nobjs]);
656 }
657
658 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
659 {
660 int r;
661
662 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
663 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
664 if (r)
665 goto out;
666 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
667 if (r)
668 goto out;
669 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
670 mmu_page_header_cache, 4);
671 out:
672 return r;
673 }
674
675 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
676 {
677 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
678 pte_list_desc_cache);
679 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
680 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
681 mmu_page_header_cache);
682 }
683
684 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
685 {
686 void *p;
687
688 BUG_ON(!mc->nobjs);
689 p = mc->objects[--mc->nobjs];
690 return p;
691 }
692
693 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
694 {
695 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
696 }
697
698 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
699 {
700 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
701 }
702
703 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
704 {
705 if (!sp->role.direct)
706 return sp->gfns[index];
707
708 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
709 }
710
711 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
712 {
713 if (sp->role.direct)
714 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
715 else
716 sp->gfns[index] = gfn;
717 }
718
719 /*
720 * Return the pointer to the large page information for a given gfn,
721 * handling slots that are not large page aligned.
722 */
723 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
724 struct kvm_memory_slot *slot,
725 int level)
726 {
727 unsigned long idx;
728
729 idx = gfn_to_index(gfn, slot->base_gfn, level);
730 return &slot->arch.lpage_info[level - 2][idx];
731 }
732
733 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
734 {
735 struct kvm_memory_slot *slot;
736 struct kvm_lpage_info *linfo;
737 int i;
738
739 slot = gfn_to_memslot(kvm, gfn);
740 for (i = PT_DIRECTORY_LEVEL;
741 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
742 linfo = lpage_info_slot(gfn, slot, i);
743 linfo->write_count += 1;
744 }
745 kvm->arch.indirect_shadow_pages++;
746 }
747
748 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
749 {
750 struct kvm_memory_slot *slot;
751 struct kvm_lpage_info *linfo;
752 int i;
753
754 slot = gfn_to_memslot(kvm, gfn);
755 for (i = PT_DIRECTORY_LEVEL;
756 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
757 linfo = lpage_info_slot(gfn, slot, i);
758 linfo->write_count -= 1;
759 WARN_ON(linfo->write_count < 0);
760 }
761 kvm->arch.indirect_shadow_pages--;
762 }
763
764 static int has_wrprotected_page(struct kvm *kvm,
765 gfn_t gfn,
766 int level)
767 {
768 struct kvm_memory_slot *slot;
769 struct kvm_lpage_info *linfo;
770
771 slot = gfn_to_memslot(kvm, gfn);
772 if (slot) {
773 linfo = lpage_info_slot(gfn, slot, level);
774 return linfo->write_count;
775 }
776
777 return 1;
778 }
779
780 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
781 {
782 unsigned long page_size;
783 int i, ret = 0;
784
785 page_size = kvm_host_page_size(kvm, gfn);
786
787 for (i = PT_PAGE_TABLE_LEVEL;
788 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
789 if (page_size >= KVM_HPAGE_SIZE(i))
790 ret = i;
791 else
792 break;
793 }
794
795 return ret;
796 }
797
798 static struct kvm_memory_slot *
799 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
800 bool no_dirty_log)
801 {
802 struct kvm_memory_slot *slot;
803
804 slot = gfn_to_memslot(vcpu->kvm, gfn);
805 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
806 (no_dirty_log && slot->dirty_bitmap))
807 slot = NULL;
808
809 return slot;
810 }
811
812 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
813 {
814 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
815 }
816
817 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
818 {
819 int host_level, level, max_level;
820
821 host_level = host_mapping_level(vcpu->kvm, large_gfn);
822
823 if (host_level == PT_PAGE_TABLE_LEVEL)
824 return host_level;
825
826 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
827 kvm_x86_ops->get_lpage_level() : host_level;
828
829 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
830 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
831 break;
832
833 return level - 1;
834 }
835
836 /*
837 * Pte mapping structures:
838 *
839 * If pte_list bit zero is zero, then pte_list point to the spte.
840 *
841 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
842 * pte_list_desc containing more mappings.
843 *
844 * Returns the number of pte entries before the spte was added or zero if
845 * the spte was not added.
846 *
847 */
848 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
849 unsigned long *pte_list)
850 {
851 struct pte_list_desc *desc;
852 int i, count = 0;
853
854 if (!*pte_list) {
855 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
856 *pte_list = (unsigned long)spte;
857 } else if (!(*pte_list & 1)) {
858 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
859 desc = mmu_alloc_pte_list_desc(vcpu);
860 desc->sptes[0] = (u64 *)*pte_list;
861 desc->sptes[1] = spte;
862 *pte_list = (unsigned long)desc | 1;
863 ++count;
864 } else {
865 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
866 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
867 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
868 desc = desc->more;
869 count += PTE_LIST_EXT;
870 }
871 if (desc->sptes[PTE_LIST_EXT-1]) {
872 desc->more = mmu_alloc_pte_list_desc(vcpu);
873 desc = desc->more;
874 }
875 for (i = 0; desc->sptes[i]; ++i)
876 ++count;
877 desc->sptes[i] = spte;
878 }
879 return count;
880 }
881
882 static void
883 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
884 int i, struct pte_list_desc *prev_desc)
885 {
886 int j;
887
888 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
889 ;
890 desc->sptes[i] = desc->sptes[j];
891 desc->sptes[j] = NULL;
892 if (j != 0)
893 return;
894 if (!prev_desc && !desc->more)
895 *pte_list = (unsigned long)desc->sptes[0];
896 else
897 if (prev_desc)
898 prev_desc->more = desc->more;
899 else
900 *pte_list = (unsigned long)desc->more | 1;
901 mmu_free_pte_list_desc(desc);
902 }
903
904 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
905 {
906 struct pte_list_desc *desc;
907 struct pte_list_desc *prev_desc;
908 int i;
909
910 if (!*pte_list) {
911 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
912 BUG();
913 } else if (!(*pte_list & 1)) {
914 rmap_printk("pte_list_remove: %p 1->0\n", spte);
915 if ((u64 *)*pte_list != spte) {
916 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
917 BUG();
918 }
919 *pte_list = 0;
920 } else {
921 rmap_printk("pte_list_remove: %p many->many\n", spte);
922 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
923 prev_desc = NULL;
924 while (desc) {
925 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
926 if (desc->sptes[i] == spte) {
927 pte_list_desc_remove_entry(pte_list,
928 desc, i,
929 prev_desc);
930 return;
931 }
932 prev_desc = desc;
933 desc = desc->more;
934 }
935 pr_err("pte_list_remove: %p many->many\n", spte);
936 BUG();
937 }
938 }
939
940 typedef void (*pte_list_walk_fn) (u64 *spte);
941 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
942 {
943 struct pte_list_desc *desc;
944 int i;
945
946 if (!*pte_list)
947 return;
948
949 if (!(*pte_list & 1))
950 return fn((u64 *)*pte_list);
951
952 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
953 while (desc) {
954 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
955 fn(desc->sptes[i]);
956 desc = desc->more;
957 }
958 }
959
960 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
961 struct kvm_memory_slot *slot)
962 {
963 struct kvm_lpage_info *linfo;
964
965 if (likely(level == PT_PAGE_TABLE_LEVEL))
966 return &slot->rmap[gfn - slot->base_gfn];
967
968 linfo = lpage_info_slot(gfn, slot, level);
969 return &linfo->rmap_pde;
970 }
971
972 /*
973 * Take gfn and return the reverse mapping to it.
974 */
975 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
976 {
977 struct kvm_memory_slot *slot;
978
979 slot = gfn_to_memslot(kvm, gfn);
980 return __gfn_to_rmap(gfn, level, slot);
981 }
982
983 static bool rmap_can_add(struct kvm_vcpu *vcpu)
984 {
985 struct kvm_mmu_memory_cache *cache;
986
987 cache = &vcpu->arch.mmu_pte_list_desc_cache;
988 return mmu_memory_cache_free_objects(cache);
989 }
990
991 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
992 {
993 struct kvm_mmu_page *sp;
994 unsigned long *rmapp;
995
996 sp = page_header(__pa(spte));
997 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
998 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
999 return pte_list_add(vcpu, spte, rmapp);
1000 }
1001
1002 static void rmap_remove(struct kvm *kvm, u64 *spte)
1003 {
1004 struct kvm_mmu_page *sp;
1005 gfn_t gfn;
1006 unsigned long *rmapp;
1007
1008 sp = page_header(__pa(spte));
1009 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1010 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1011 pte_list_remove(spte, rmapp);
1012 }
1013
1014 /*
1015 * Used by the following functions to iterate through the sptes linked by a
1016 * rmap. All fields are private and not assumed to be used outside.
1017 */
1018 struct rmap_iterator {
1019 /* private fields */
1020 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1021 int pos; /* index of the sptep */
1022 };
1023
1024 /*
1025 * Iteration must be started by this function. This should also be used after
1026 * removing/dropping sptes from the rmap link because in such cases the
1027 * information in the itererator may not be valid.
1028 *
1029 * Returns sptep if found, NULL otherwise.
1030 */
1031 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1032 {
1033 if (!rmap)
1034 return NULL;
1035
1036 if (!(rmap & 1)) {
1037 iter->desc = NULL;
1038 return (u64 *)rmap;
1039 }
1040
1041 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1042 iter->pos = 0;
1043 return iter->desc->sptes[iter->pos];
1044 }
1045
1046 /*
1047 * Must be used with a valid iterator: e.g. after rmap_get_first().
1048 *
1049 * Returns sptep if found, NULL otherwise.
1050 */
1051 static u64 *rmap_get_next(struct rmap_iterator *iter)
1052 {
1053 if (iter->desc) {
1054 if (iter->pos < PTE_LIST_EXT - 1) {
1055 u64 *sptep;
1056
1057 ++iter->pos;
1058 sptep = iter->desc->sptes[iter->pos];
1059 if (sptep)
1060 return sptep;
1061 }
1062
1063 iter->desc = iter->desc->more;
1064
1065 if (iter->desc) {
1066 iter->pos = 0;
1067 /* desc->sptes[0] cannot be NULL */
1068 return iter->desc->sptes[iter->pos];
1069 }
1070 }
1071
1072 return NULL;
1073 }
1074
1075 static void drop_spte(struct kvm *kvm, u64 *sptep)
1076 {
1077 if (mmu_spte_clear_track_bits(sptep))
1078 rmap_remove(kvm, sptep);
1079 }
1080
1081
1082 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1083 {
1084 if (is_large_pte(*sptep)) {
1085 WARN_ON(page_header(__pa(sptep))->role.level ==
1086 PT_PAGE_TABLE_LEVEL);
1087 drop_spte(kvm, sptep);
1088 --kvm->stat.lpages;
1089 return true;
1090 }
1091
1092 return false;
1093 }
1094
1095 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1096 {
1097 if (__drop_large_spte(vcpu->kvm, sptep))
1098 kvm_flush_remote_tlbs(vcpu->kvm);
1099 }
1100
1101 /*
1102 * Write-protect on the specified @sptep, @pt_protect indicates whether
1103 * spte writ-protection is caused by protecting shadow page table.
1104 * @flush indicates whether tlb need be flushed.
1105 *
1106 * Note: write protection is difference between drity logging and spte
1107 * protection:
1108 * - for dirty logging, the spte can be set to writable at anytime if
1109 * its dirty bitmap is properly set.
1110 * - for spte protection, the spte can be writable only after unsync-ing
1111 * shadow page.
1112 *
1113 * Return true if the spte is dropped.
1114 */
1115 static bool
1116 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1117 {
1118 u64 spte = *sptep;
1119
1120 if (!is_writable_pte(spte) &&
1121 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1122 return false;
1123
1124 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1125
1126 if (__drop_large_spte(kvm, sptep)) {
1127 *flush |= true;
1128 return true;
1129 }
1130
1131 if (pt_protect)
1132 spte &= ~SPTE_MMU_WRITEABLE;
1133 spte = spte & ~PT_WRITABLE_MASK;
1134
1135 *flush |= mmu_spte_update(sptep, spte);
1136 return false;
1137 }
1138
1139 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1140 int level, bool pt_protect)
1141 {
1142 u64 *sptep;
1143 struct rmap_iterator iter;
1144 bool flush = false;
1145
1146 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1147 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1148 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1149 sptep = rmap_get_first(*rmapp, &iter);
1150 continue;
1151 }
1152
1153 sptep = rmap_get_next(&iter);
1154 }
1155
1156 return flush;
1157 }
1158
1159 /**
1160 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1161 * @kvm: kvm instance
1162 * @slot: slot to protect
1163 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1164 * @mask: indicates which pages we should protect
1165 *
1166 * Used when we do not need to care about huge page mappings: e.g. during dirty
1167 * logging we do not have any such mappings.
1168 */
1169 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1170 struct kvm_memory_slot *slot,
1171 gfn_t gfn_offset, unsigned long mask)
1172 {
1173 unsigned long *rmapp;
1174
1175 while (mask) {
1176 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1177 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
1178
1179 /* clear the first set bit */
1180 mask &= mask - 1;
1181 }
1182 }
1183
1184 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1185 {
1186 struct kvm_memory_slot *slot;
1187 unsigned long *rmapp;
1188 int i;
1189 bool write_protected = false;
1190
1191 slot = gfn_to_memslot(kvm, gfn);
1192
1193 for (i = PT_PAGE_TABLE_LEVEL;
1194 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1195 rmapp = __gfn_to_rmap(gfn, i, slot);
1196 write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
1197 }
1198
1199 return write_protected;
1200 }
1201
1202 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1203 unsigned long data)
1204 {
1205 u64 *sptep;
1206 struct rmap_iterator iter;
1207 int need_tlb_flush = 0;
1208
1209 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1210 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1211 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1212
1213 drop_spte(kvm, sptep);
1214 need_tlb_flush = 1;
1215 }
1216
1217 return need_tlb_flush;
1218 }
1219
1220 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1221 unsigned long data)
1222 {
1223 u64 *sptep;
1224 struct rmap_iterator iter;
1225 int need_flush = 0;
1226 u64 new_spte;
1227 pte_t *ptep = (pte_t *)data;
1228 pfn_t new_pfn;
1229
1230 WARN_ON(pte_huge(*ptep));
1231 new_pfn = pte_pfn(*ptep);
1232
1233 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1234 BUG_ON(!is_shadow_present_pte(*sptep));
1235 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1236
1237 need_flush = 1;
1238
1239 if (pte_write(*ptep)) {
1240 drop_spte(kvm, sptep);
1241 sptep = rmap_get_first(*rmapp, &iter);
1242 } else {
1243 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1244 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1245
1246 new_spte &= ~PT_WRITABLE_MASK;
1247 new_spte &= ~SPTE_HOST_WRITEABLE;
1248 new_spte &= ~shadow_accessed_mask;
1249
1250 mmu_spte_clear_track_bits(sptep);
1251 mmu_spte_set(sptep, new_spte);
1252 sptep = rmap_get_next(&iter);
1253 }
1254 }
1255
1256 if (need_flush)
1257 kvm_flush_remote_tlbs(kvm);
1258
1259 return 0;
1260 }
1261
1262 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1263 unsigned long data,
1264 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1265 unsigned long data))
1266 {
1267 int j;
1268 int ret;
1269 int retval = 0;
1270 struct kvm_memslots *slots;
1271 struct kvm_memory_slot *memslot;
1272
1273 slots = kvm_memslots(kvm);
1274
1275 kvm_for_each_memslot(memslot, slots) {
1276 unsigned long start = memslot->userspace_addr;
1277 unsigned long end;
1278
1279 end = start + (memslot->npages << PAGE_SHIFT);
1280 if (hva >= start && hva < end) {
1281 gfn_t gfn = hva_to_gfn_memslot(hva, memslot);
1282
1283 ret = 0;
1284
1285 for (j = PT_PAGE_TABLE_LEVEL;
1286 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1287 unsigned long *rmapp;
1288
1289 rmapp = __gfn_to_rmap(gfn, j, memslot);
1290 ret |= handler(kvm, rmapp, data);
1291 }
1292 trace_kvm_age_page(hva, memslot, ret);
1293 retval |= ret;
1294 }
1295 }
1296
1297 return retval;
1298 }
1299
1300 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1301 {
1302 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1303 }
1304
1305 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1306 {
1307 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1308 }
1309
1310 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1311 unsigned long data)
1312 {
1313 u64 *sptep;
1314 struct rmap_iterator uninitialized_var(iter);
1315 int young = 0;
1316
1317 /*
1318 * In case of absence of EPT Access and Dirty Bits supports,
1319 * emulate the accessed bit for EPT, by checking if this page has
1320 * an EPT mapping, and clearing it if it does. On the next access,
1321 * a new EPT mapping will be established.
1322 * This has some overhead, but not as much as the cost of swapping
1323 * out actively used pages or breaking up actively used hugepages.
1324 */
1325 if (!shadow_accessed_mask)
1326 return kvm_unmap_rmapp(kvm, rmapp, data);
1327
1328 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1329 sptep = rmap_get_next(&iter)) {
1330 BUG_ON(!is_shadow_present_pte(*sptep));
1331
1332 if (*sptep & shadow_accessed_mask) {
1333 young = 1;
1334 clear_bit((ffs(shadow_accessed_mask) - 1),
1335 (unsigned long *)sptep);
1336 }
1337 }
1338
1339 return young;
1340 }
1341
1342 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1343 unsigned long data)
1344 {
1345 u64 *sptep;
1346 struct rmap_iterator iter;
1347 int young = 0;
1348
1349 /*
1350 * If there's no access bit in the secondary pte set by the
1351 * hardware it's up to gup-fast/gup to set the access bit in
1352 * the primary pte or in the page structure.
1353 */
1354 if (!shadow_accessed_mask)
1355 goto out;
1356
1357 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1358 sptep = rmap_get_next(&iter)) {
1359 BUG_ON(!is_shadow_present_pte(*sptep));
1360
1361 if (*sptep & shadow_accessed_mask) {
1362 young = 1;
1363 break;
1364 }
1365 }
1366 out:
1367 return young;
1368 }
1369
1370 #define RMAP_RECYCLE_THRESHOLD 1000
1371
1372 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1373 {
1374 unsigned long *rmapp;
1375 struct kvm_mmu_page *sp;
1376
1377 sp = page_header(__pa(spte));
1378
1379 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1380
1381 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1382 kvm_flush_remote_tlbs(vcpu->kvm);
1383 }
1384
1385 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1386 {
1387 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1388 }
1389
1390 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1391 {
1392 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1393 }
1394
1395 #ifdef MMU_DEBUG
1396 static int is_empty_shadow_page(u64 *spt)
1397 {
1398 u64 *pos;
1399 u64 *end;
1400
1401 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1402 if (is_shadow_present_pte(*pos)) {
1403 printk(KERN_ERR "%s: %p %llx\n", __func__,
1404 pos, *pos);
1405 return 0;
1406 }
1407 return 1;
1408 }
1409 #endif
1410
1411 /*
1412 * This value is the sum of all of the kvm instances's
1413 * kvm->arch.n_used_mmu_pages values. We need a global,
1414 * aggregate version in order to make the slab shrinker
1415 * faster
1416 */
1417 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1418 {
1419 kvm->arch.n_used_mmu_pages += nr;
1420 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1421 }
1422
1423 /*
1424 * Remove the sp from shadow page cache, after call it,
1425 * we can not find this sp from the cache, and the shadow
1426 * page table is still valid.
1427 * It should be under the protection of mmu lock.
1428 */
1429 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1430 {
1431 ASSERT(is_empty_shadow_page(sp->spt));
1432 hlist_del(&sp->hash_link);
1433 if (!sp->role.direct)
1434 free_page((unsigned long)sp->gfns);
1435 }
1436
1437 /*
1438 * Free the shadow page table and the sp, we can do it
1439 * out of the protection of mmu lock.
1440 */
1441 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1442 {
1443 list_del(&sp->link);
1444 free_page((unsigned long)sp->spt);
1445 kmem_cache_free(mmu_page_header_cache, sp);
1446 }
1447
1448 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1449 {
1450 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1451 }
1452
1453 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1454 struct kvm_mmu_page *sp, u64 *parent_pte)
1455 {
1456 if (!parent_pte)
1457 return;
1458
1459 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1460 }
1461
1462 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1463 u64 *parent_pte)
1464 {
1465 pte_list_remove(parent_pte, &sp->parent_ptes);
1466 }
1467
1468 static void drop_parent_pte(struct kvm_mmu_page *sp,
1469 u64 *parent_pte)
1470 {
1471 mmu_page_remove_parent_pte(sp, parent_pte);
1472 mmu_spte_clear_no_track(parent_pte);
1473 }
1474
1475 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1476 u64 *parent_pte, int direct)
1477 {
1478 struct kvm_mmu_page *sp;
1479 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1480 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1481 if (!direct)
1482 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1483 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1484 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1485 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1486 sp->parent_ptes = 0;
1487 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1488 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1489 return sp;
1490 }
1491
1492 static void mark_unsync(u64 *spte);
1493 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1494 {
1495 pte_list_walk(&sp->parent_ptes, mark_unsync);
1496 }
1497
1498 static void mark_unsync(u64 *spte)
1499 {
1500 struct kvm_mmu_page *sp;
1501 unsigned int index;
1502
1503 sp = page_header(__pa(spte));
1504 index = spte - sp->spt;
1505 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1506 return;
1507 if (sp->unsync_children++)
1508 return;
1509 kvm_mmu_mark_parents_unsync(sp);
1510 }
1511
1512 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1513 struct kvm_mmu_page *sp)
1514 {
1515 return 1;
1516 }
1517
1518 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1519 {
1520 }
1521
1522 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1523 struct kvm_mmu_page *sp, u64 *spte,
1524 const void *pte)
1525 {
1526 WARN_ON(1);
1527 }
1528
1529 #define KVM_PAGE_ARRAY_NR 16
1530
1531 struct kvm_mmu_pages {
1532 struct mmu_page_and_offset {
1533 struct kvm_mmu_page *sp;
1534 unsigned int idx;
1535 } page[KVM_PAGE_ARRAY_NR];
1536 unsigned int nr;
1537 };
1538
1539 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1540 int idx)
1541 {
1542 int i;
1543
1544 if (sp->unsync)
1545 for (i=0; i < pvec->nr; i++)
1546 if (pvec->page[i].sp == sp)
1547 return 0;
1548
1549 pvec->page[pvec->nr].sp = sp;
1550 pvec->page[pvec->nr].idx = idx;
1551 pvec->nr++;
1552 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1553 }
1554
1555 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1556 struct kvm_mmu_pages *pvec)
1557 {
1558 int i, ret, nr_unsync_leaf = 0;
1559
1560 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1561 struct kvm_mmu_page *child;
1562 u64 ent = sp->spt[i];
1563
1564 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1565 goto clear_child_bitmap;
1566
1567 child = page_header(ent & PT64_BASE_ADDR_MASK);
1568
1569 if (child->unsync_children) {
1570 if (mmu_pages_add(pvec, child, i))
1571 return -ENOSPC;
1572
1573 ret = __mmu_unsync_walk(child, pvec);
1574 if (!ret)
1575 goto clear_child_bitmap;
1576 else if (ret > 0)
1577 nr_unsync_leaf += ret;
1578 else
1579 return ret;
1580 } else if (child->unsync) {
1581 nr_unsync_leaf++;
1582 if (mmu_pages_add(pvec, child, i))
1583 return -ENOSPC;
1584 } else
1585 goto clear_child_bitmap;
1586
1587 continue;
1588
1589 clear_child_bitmap:
1590 __clear_bit(i, sp->unsync_child_bitmap);
1591 sp->unsync_children--;
1592 WARN_ON((int)sp->unsync_children < 0);
1593 }
1594
1595
1596 return nr_unsync_leaf;
1597 }
1598
1599 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1600 struct kvm_mmu_pages *pvec)
1601 {
1602 if (!sp->unsync_children)
1603 return 0;
1604
1605 mmu_pages_add(pvec, sp, 0);
1606 return __mmu_unsync_walk(sp, pvec);
1607 }
1608
1609 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1610 {
1611 WARN_ON(!sp->unsync);
1612 trace_kvm_mmu_sync_page(sp);
1613 sp->unsync = 0;
1614 --kvm->stat.mmu_unsync;
1615 }
1616
1617 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1618 struct list_head *invalid_list);
1619 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1620 struct list_head *invalid_list);
1621
1622 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1623 hlist_for_each_entry(sp, pos, \
1624 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1625 if ((sp)->gfn != (gfn)) {} else
1626
1627 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1628 hlist_for_each_entry(sp, pos, \
1629 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1630 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1631 (sp)->role.invalid) {} else
1632
1633 /* @sp->gfn should be write-protected at the call site */
1634 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1635 struct list_head *invalid_list, bool clear_unsync)
1636 {
1637 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1638 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1639 return 1;
1640 }
1641
1642 if (clear_unsync)
1643 kvm_unlink_unsync_page(vcpu->kvm, sp);
1644
1645 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1646 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1647 return 1;
1648 }
1649
1650 kvm_mmu_flush_tlb(vcpu);
1651 return 0;
1652 }
1653
1654 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1655 struct kvm_mmu_page *sp)
1656 {
1657 LIST_HEAD(invalid_list);
1658 int ret;
1659
1660 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1661 if (ret)
1662 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1663
1664 return ret;
1665 }
1666
1667 #ifdef CONFIG_KVM_MMU_AUDIT
1668 #include "mmu_audit.c"
1669 #else
1670 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1671 static void mmu_audit_disable(void) { }
1672 #endif
1673
1674 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1675 struct list_head *invalid_list)
1676 {
1677 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1678 }
1679
1680 /* @gfn should be write-protected at the call site */
1681 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1682 {
1683 struct kvm_mmu_page *s;
1684 struct hlist_node *node;
1685 LIST_HEAD(invalid_list);
1686 bool flush = false;
1687
1688 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1689 if (!s->unsync)
1690 continue;
1691
1692 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1693 kvm_unlink_unsync_page(vcpu->kvm, s);
1694 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1695 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1696 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1697 continue;
1698 }
1699 flush = true;
1700 }
1701
1702 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1703 if (flush)
1704 kvm_mmu_flush_tlb(vcpu);
1705 }
1706
1707 struct mmu_page_path {
1708 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1709 unsigned int idx[PT64_ROOT_LEVEL-1];
1710 };
1711
1712 #define for_each_sp(pvec, sp, parents, i) \
1713 for (i = mmu_pages_next(&pvec, &parents, -1), \
1714 sp = pvec.page[i].sp; \
1715 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1716 i = mmu_pages_next(&pvec, &parents, i))
1717
1718 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1719 struct mmu_page_path *parents,
1720 int i)
1721 {
1722 int n;
1723
1724 for (n = i+1; n < pvec->nr; n++) {
1725 struct kvm_mmu_page *sp = pvec->page[n].sp;
1726
1727 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1728 parents->idx[0] = pvec->page[n].idx;
1729 return n;
1730 }
1731
1732 parents->parent[sp->role.level-2] = sp;
1733 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1734 }
1735
1736 return n;
1737 }
1738
1739 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1740 {
1741 struct kvm_mmu_page *sp;
1742 unsigned int level = 0;
1743
1744 do {
1745 unsigned int idx = parents->idx[level];
1746
1747 sp = parents->parent[level];
1748 if (!sp)
1749 return;
1750
1751 --sp->unsync_children;
1752 WARN_ON((int)sp->unsync_children < 0);
1753 __clear_bit(idx, sp->unsync_child_bitmap);
1754 level++;
1755 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1756 }
1757
1758 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1759 struct mmu_page_path *parents,
1760 struct kvm_mmu_pages *pvec)
1761 {
1762 parents->parent[parent->role.level-1] = NULL;
1763 pvec->nr = 0;
1764 }
1765
1766 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1767 struct kvm_mmu_page *parent)
1768 {
1769 int i;
1770 struct kvm_mmu_page *sp;
1771 struct mmu_page_path parents;
1772 struct kvm_mmu_pages pages;
1773 LIST_HEAD(invalid_list);
1774
1775 kvm_mmu_pages_init(parent, &parents, &pages);
1776 while (mmu_unsync_walk(parent, &pages)) {
1777 bool protected = false;
1778
1779 for_each_sp(pages, sp, parents, i)
1780 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1781
1782 if (protected)
1783 kvm_flush_remote_tlbs(vcpu->kvm);
1784
1785 for_each_sp(pages, sp, parents, i) {
1786 kvm_sync_page(vcpu, sp, &invalid_list);
1787 mmu_pages_clear_parents(&parents);
1788 }
1789 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1790 cond_resched_lock(&vcpu->kvm->mmu_lock);
1791 kvm_mmu_pages_init(parent, &parents, &pages);
1792 }
1793 }
1794
1795 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1796 {
1797 int i;
1798
1799 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1800 sp->spt[i] = 0ull;
1801 }
1802
1803 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1804 {
1805 sp->write_flooding_count = 0;
1806 }
1807
1808 static void clear_sp_write_flooding_count(u64 *spte)
1809 {
1810 struct kvm_mmu_page *sp = page_header(__pa(spte));
1811
1812 __clear_sp_write_flooding_count(sp);
1813 }
1814
1815 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1816 gfn_t gfn,
1817 gva_t gaddr,
1818 unsigned level,
1819 int direct,
1820 unsigned access,
1821 u64 *parent_pte)
1822 {
1823 union kvm_mmu_page_role role;
1824 unsigned quadrant;
1825 struct kvm_mmu_page *sp;
1826 struct hlist_node *node;
1827 bool need_sync = false;
1828
1829 role = vcpu->arch.mmu.base_role;
1830 role.level = level;
1831 role.direct = direct;
1832 if (role.direct)
1833 role.cr4_pae = 0;
1834 role.access = access;
1835 if (!vcpu->arch.mmu.direct_map
1836 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1837 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1838 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1839 role.quadrant = quadrant;
1840 }
1841 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1842 if (!need_sync && sp->unsync)
1843 need_sync = true;
1844
1845 if (sp->role.word != role.word)
1846 continue;
1847
1848 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1849 break;
1850
1851 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1852 if (sp->unsync_children) {
1853 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1854 kvm_mmu_mark_parents_unsync(sp);
1855 } else if (sp->unsync)
1856 kvm_mmu_mark_parents_unsync(sp);
1857
1858 __clear_sp_write_flooding_count(sp);
1859 trace_kvm_mmu_get_page(sp, false);
1860 return sp;
1861 }
1862 ++vcpu->kvm->stat.mmu_cache_miss;
1863 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1864 if (!sp)
1865 return sp;
1866 sp->gfn = gfn;
1867 sp->role = role;
1868 hlist_add_head(&sp->hash_link,
1869 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1870 if (!direct) {
1871 if (rmap_write_protect(vcpu->kvm, gfn))
1872 kvm_flush_remote_tlbs(vcpu->kvm);
1873 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1874 kvm_sync_pages(vcpu, gfn);
1875
1876 account_shadowed(vcpu->kvm, gfn);
1877 }
1878 init_shadow_page_table(sp);
1879 trace_kvm_mmu_get_page(sp, true);
1880 return sp;
1881 }
1882
1883 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1884 struct kvm_vcpu *vcpu, u64 addr)
1885 {
1886 iterator->addr = addr;
1887 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1888 iterator->level = vcpu->arch.mmu.shadow_root_level;
1889
1890 if (iterator->level == PT64_ROOT_LEVEL &&
1891 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1892 !vcpu->arch.mmu.direct_map)
1893 --iterator->level;
1894
1895 if (iterator->level == PT32E_ROOT_LEVEL) {
1896 iterator->shadow_addr
1897 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1898 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1899 --iterator->level;
1900 if (!iterator->shadow_addr)
1901 iterator->level = 0;
1902 }
1903 }
1904
1905 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1906 {
1907 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1908 return false;
1909
1910 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1911 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1912 return true;
1913 }
1914
1915 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1916 u64 spte)
1917 {
1918 if (is_last_spte(spte, iterator->level)) {
1919 iterator->level = 0;
1920 return;
1921 }
1922
1923 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1924 --iterator->level;
1925 }
1926
1927 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1928 {
1929 return __shadow_walk_next(iterator, *iterator->sptep);
1930 }
1931
1932 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1933 {
1934 u64 spte;
1935
1936 spte = __pa(sp->spt)
1937 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1938 | PT_WRITABLE_MASK | PT_USER_MASK;
1939 mmu_spte_set(sptep, spte);
1940 }
1941
1942 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1943 unsigned direct_access)
1944 {
1945 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1946 struct kvm_mmu_page *child;
1947
1948 /*
1949 * For the direct sp, if the guest pte's dirty bit
1950 * changed form clean to dirty, it will corrupt the
1951 * sp's access: allow writable in the read-only sp,
1952 * so we should update the spte at this point to get
1953 * a new sp with the correct access.
1954 */
1955 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1956 if (child->role.access == direct_access)
1957 return;
1958
1959 drop_parent_pte(child, sptep);
1960 kvm_flush_remote_tlbs(vcpu->kvm);
1961 }
1962 }
1963
1964 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1965 u64 *spte)
1966 {
1967 u64 pte;
1968 struct kvm_mmu_page *child;
1969
1970 pte = *spte;
1971 if (is_shadow_present_pte(pte)) {
1972 if (is_last_spte(pte, sp->role.level)) {
1973 drop_spte(kvm, spte);
1974 if (is_large_pte(pte))
1975 --kvm->stat.lpages;
1976 } else {
1977 child = page_header(pte & PT64_BASE_ADDR_MASK);
1978 drop_parent_pte(child, spte);
1979 }
1980 return true;
1981 }
1982
1983 if (is_mmio_spte(pte))
1984 mmu_spte_clear_no_track(spte);
1985
1986 return false;
1987 }
1988
1989 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1990 struct kvm_mmu_page *sp)
1991 {
1992 unsigned i;
1993
1994 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1995 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1996 }
1997
1998 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1999 {
2000 mmu_page_remove_parent_pte(sp, parent_pte);
2001 }
2002
2003 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2004 {
2005 u64 *sptep;
2006 struct rmap_iterator iter;
2007
2008 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2009 drop_parent_pte(sp, sptep);
2010 }
2011
2012 static int mmu_zap_unsync_children(struct kvm *kvm,
2013 struct kvm_mmu_page *parent,
2014 struct list_head *invalid_list)
2015 {
2016 int i, zapped = 0;
2017 struct mmu_page_path parents;
2018 struct kvm_mmu_pages pages;
2019
2020 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2021 return 0;
2022
2023 kvm_mmu_pages_init(parent, &parents, &pages);
2024 while (mmu_unsync_walk(parent, &pages)) {
2025 struct kvm_mmu_page *sp;
2026
2027 for_each_sp(pages, sp, parents, i) {
2028 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2029 mmu_pages_clear_parents(&parents);
2030 zapped++;
2031 }
2032 kvm_mmu_pages_init(parent, &parents, &pages);
2033 }
2034
2035 return zapped;
2036 }
2037
2038 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2039 struct list_head *invalid_list)
2040 {
2041 int ret;
2042
2043 trace_kvm_mmu_prepare_zap_page(sp);
2044 ++kvm->stat.mmu_shadow_zapped;
2045 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2046 kvm_mmu_page_unlink_children(kvm, sp);
2047 kvm_mmu_unlink_parents(kvm, sp);
2048 if (!sp->role.invalid && !sp->role.direct)
2049 unaccount_shadowed(kvm, sp->gfn);
2050 if (sp->unsync)
2051 kvm_unlink_unsync_page(kvm, sp);
2052 if (!sp->root_count) {
2053 /* Count self */
2054 ret++;
2055 list_move(&sp->link, invalid_list);
2056 kvm_mod_used_mmu_pages(kvm, -1);
2057 } else {
2058 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2059 kvm_reload_remote_mmus(kvm);
2060 }
2061
2062 sp->role.invalid = 1;
2063 return ret;
2064 }
2065
2066 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2067 struct list_head *invalid_list)
2068 {
2069 struct kvm_mmu_page *sp;
2070
2071 if (list_empty(invalid_list))
2072 return;
2073
2074 /*
2075 * wmb: make sure everyone sees our modifications to the page tables
2076 * rmb: make sure we see changes to vcpu->mode
2077 */
2078 smp_mb();
2079
2080 /*
2081 * Wait for all vcpus to exit guest mode and/or lockless shadow
2082 * page table walks.
2083 */
2084 kvm_flush_remote_tlbs(kvm);
2085
2086 do {
2087 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2088 WARN_ON(!sp->role.invalid || sp->root_count);
2089 kvm_mmu_isolate_page(sp);
2090 kvm_mmu_free_page(sp);
2091 } while (!list_empty(invalid_list));
2092 }
2093
2094 /*
2095 * Changing the number of mmu pages allocated to the vm
2096 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2097 */
2098 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2099 {
2100 LIST_HEAD(invalid_list);
2101 /*
2102 * If we set the number of mmu pages to be smaller be than the
2103 * number of actived pages , we must to free some mmu pages before we
2104 * change the value
2105 */
2106
2107 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2108 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2109 !list_empty(&kvm->arch.active_mmu_pages)) {
2110 struct kvm_mmu_page *page;
2111
2112 page = container_of(kvm->arch.active_mmu_pages.prev,
2113 struct kvm_mmu_page, link);
2114 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2115 }
2116 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2117 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2118 }
2119
2120 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2121 }
2122
2123 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2124 {
2125 struct kvm_mmu_page *sp;
2126 struct hlist_node *node;
2127 LIST_HEAD(invalid_list);
2128 int r;
2129
2130 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2131 r = 0;
2132 spin_lock(&kvm->mmu_lock);
2133 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2134 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2135 sp->role.word);
2136 r = 1;
2137 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2138 }
2139 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2140 spin_unlock(&kvm->mmu_lock);
2141
2142 return r;
2143 }
2144 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2145
2146 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2147 {
2148 int slot = memslot_id(kvm, gfn);
2149 struct kvm_mmu_page *sp = page_header(__pa(pte));
2150
2151 __set_bit(slot, sp->slot_bitmap);
2152 }
2153
2154 /*
2155 * The function is based on mtrr_type_lookup() in
2156 * arch/x86/kernel/cpu/mtrr/generic.c
2157 */
2158 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2159 u64 start, u64 end)
2160 {
2161 int i;
2162 u64 base, mask;
2163 u8 prev_match, curr_match;
2164 int num_var_ranges = KVM_NR_VAR_MTRR;
2165
2166 if (!mtrr_state->enabled)
2167 return 0xFF;
2168
2169 /* Make end inclusive end, instead of exclusive */
2170 end--;
2171
2172 /* Look in fixed ranges. Just return the type as per start */
2173 if (mtrr_state->have_fixed && (start < 0x100000)) {
2174 int idx;
2175
2176 if (start < 0x80000) {
2177 idx = 0;
2178 idx += (start >> 16);
2179 return mtrr_state->fixed_ranges[idx];
2180 } else if (start < 0xC0000) {
2181 idx = 1 * 8;
2182 idx += ((start - 0x80000) >> 14);
2183 return mtrr_state->fixed_ranges[idx];
2184 } else if (start < 0x1000000) {
2185 idx = 3 * 8;
2186 idx += ((start - 0xC0000) >> 12);
2187 return mtrr_state->fixed_ranges[idx];
2188 }
2189 }
2190
2191 /*
2192 * Look in variable ranges
2193 * Look of multiple ranges matching this address and pick type
2194 * as per MTRR precedence
2195 */
2196 if (!(mtrr_state->enabled & 2))
2197 return mtrr_state->def_type;
2198
2199 prev_match = 0xFF;
2200 for (i = 0; i < num_var_ranges; ++i) {
2201 unsigned short start_state, end_state;
2202
2203 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2204 continue;
2205
2206 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2207 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2208 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2209 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2210
2211 start_state = ((start & mask) == (base & mask));
2212 end_state = ((end & mask) == (base & mask));
2213 if (start_state != end_state)
2214 return 0xFE;
2215
2216 if ((start & mask) != (base & mask))
2217 continue;
2218
2219 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2220 if (prev_match == 0xFF) {
2221 prev_match = curr_match;
2222 continue;
2223 }
2224
2225 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2226 curr_match == MTRR_TYPE_UNCACHABLE)
2227 return MTRR_TYPE_UNCACHABLE;
2228
2229 if ((prev_match == MTRR_TYPE_WRBACK &&
2230 curr_match == MTRR_TYPE_WRTHROUGH) ||
2231 (prev_match == MTRR_TYPE_WRTHROUGH &&
2232 curr_match == MTRR_TYPE_WRBACK)) {
2233 prev_match = MTRR_TYPE_WRTHROUGH;
2234 curr_match = MTRR_TYPE_WRTHROUGH;
2235 }
2236
2237 if (prev_match != curr_match)
2238 return MTRR_TYPE_UNCACHABLE;
2239 }
2240
2241 if (prev_match != 0xFF)
2242 return prev_match;
2243
2244 return mtrr_state->def_type;
2245 }
2246
2247 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2248 {
2249 u8 mtrr;
2250
2251 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2252 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2253 if (mtrr == 0xfe || mtrr == 0xff)
2254 mtrr = MTRR_TYPE_WRBACK;
2255 return mtrr;
2256 }
2257 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2258
2259 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2260 {
2261 trace_kvm_mmu_unsync_page(sp);
2262 ++vcpu->kvm->stat.mmu_unsync;
2263 sp->unsync = 1;
2264
2265 kvm_mmu_mark_parents_unsync(sp);
2266 }
2267
2268 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2269 {
2270 struct kvm_mmu_page *s;
2271 struct hlist_node *node;
2272
2273 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2274 if (s->unsync)
2275 continue;
2276 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2277 __kvm_unsync_page(vcpu, s);
2278 }
2279 }
2280
2281 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2282 bool can_unsync)
2283 {
2284 struct kvm_mmu_page *s;
2285 struct hlist_node *node;
2286 bool need_unsync = false;
2287
2288 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2289 if (!can_unsync)
2290 return 1;
2291
2292 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2293 return 1;
2294
2295 if (!need_unsync && !s->unsync) {
2296 need_unsync = true;
2297 }
2298 }
2299 if (need_unsync)
2300 kvm_unsync_pages(vcpu, gfn);
2301 return 0;
2302 }
2303
2304 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2305 unsigned pte_access, int user_fault,
2306 int write_fault, int level,
2307 gfn_t gfn, pfn_t pfn, bool speculative,
2308 bool can_unsync, bool host_writable)
2309 {
2310 u64 spte;
2311 int ret = 0;
2312
2313 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2314 return 0;
2315
2316 spte = PT_PRESENT_MASK;
2317 if (!speculative)
2318 spte |= shadow_accessed_mask;
2319
2320 if (pte_access & ACC_EXEC_MASK)
2321 spte |= shadow_x_mask;
2322 else
2323 spte |= shadow_nx_mask;
2324
2325 if (pte_access & ACC_USER_MASK)
2326 spte |= shadow_user_mask;
2327
2328 if (level > PT_PAGE_TABLE_LEVEL)
2329 spte |= PT_PAGE_SIZE_MASK;
2330 if (tdp_enabled)
2331 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2332 kvm_is_mmio_pfn(pfn));
2333
2334 if (host_writable)
2335 spte |= SPTE_HOST_WRITEABLE;
2336 else
2337 pte_access &= ~ACC_WRITE_MASK;
2338
2339 spte |= (u64)pfn << PAGE_SHIFT;
2340
2341 if ((pte_access & ACC_WRITE_MASK)
2342 || (!vcpu->arch.mmu.direct_map && write_fault
2343 && !is_write_protection(vcpu) && !user_fault)) {
2344
2345 if (level > PT_PAGE_TABLE_LEVEL &&
2346 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2347 ret = 1;
2348 drop_spte(vcpu->kvm, sptep);
2349 goto done;
2350 }
2351
2352 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2353
2354 if (!vcpu->arch.mmu.direct_map
2355 && !(pte_access & ACC_WRITE_MASK)) {
2356 spte &= ~PT_USER_MASK;
2357 /*
2358 * If we converted a user page to a kernel page,
2359 * so that the kernel can write to it when cr0.wp=0,
2360 * then we should prevent the kernel from executing it
2361 * if SMEP is enabled.
2362 */
2363 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2364 spte |= PT64_NX_MASK;
2365 }
2366
2367 /*
2368 * Optimization: for pte sync, if spte was writable the hash
2369 * lookup is unnecessary (and expensive). Write protection
2370 * is responsibility of mmu_get_page / kvm_sync_page.
2371 * Same reasoning can be applied to dirty page accounting.
2372 */
2373 if (!can_unsync && is_writable_pte(*sptep))
2374 goto set_pte;
2375
2376 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2377 pgprintk("%s: found shadow page for %llx, marking ro\n",
2378 __func__, gfn);
2379 ret = 1;
2380 pte_access &= ~ACC_WRITE_MASK;
2381 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2382 }
2383 }
2384
2385 if (pte_access & ACC_WRITE_MASK)
2386 mark_page_dirty(vcpu->kvm, gfn);
2387
2388 set_pte:
2389 if (mmu_spte_update(sptep, spte))
2390 kvm_flush_remote_tlbs(vcpu->kvm);
2391 done:
2392 return ret;
2393 }
2394
2395 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2396 unsigned pt_access, unsigned pte_access,
2397 int user_fault, int write_fault,
2398 int *emulate, int level, gfn_t gfn,
2399 pfn_t pfn, bool speculative,
2400 bool host_writable)
2401 {
2402 int was_rmapped = 0;
2403 int rmap_count;
2404
2405 pgprintk("%s: spte %llx access %x write_fault %d"
2406 " user_fault %d gfn %llx\n",
2407 __func__, *sptep, pt_access,
2408 write_fault, user_fault, gfn);
2409
2410 if (is_rmap_spte(*sptep)) {
2411 /*
2412 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2413 * the parent of the now unreachable PTE.
2414 */
2415 if (level > PT_PAGE_TABLE_LEVEL &&
2416 !is_large_pte(*sptep)) {
2417 struct kvm_mmu_page *child;
2418 u64 pte = *sptep;
2419
2420 child = page_header(pte & PT64_BASE_ADDR_MASK);
2421 drop_parent_pte(child, sptep);
2422 kvm_flush_remote_tlbs(vcpu->kvm);
2423 } else if (pfn != spte_to_pfn(*sptep)) {
2424 pgprintk("hfn old %llx new %llx\n",
2425 spte_to_pfn(*sptep), pfn);
2426 drop_spte(vcpu->kvm, sptep);
2427 kvm_flush_remote_tlbs(vcpu->kvm);
2428 } else
2429 was_rmapped = 1;
2430 }
2431
2432 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2433 level, gfn, pfn, speculative, true,
2434 host_writable)) {
2435 if (write_fault)
2436 *emulate = 1;
2437 kvm_mmu_flush_tlb(vcpu);
2438 }
2439
2440 if (unlikely(is_mmio_spte(*sptep) && emulate))
2441 *emulate = 1;
2442
2443 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2444 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2445 is_large_pte(*sptep)? "2MB" : "4kB",
2446 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2447 *sptep, sptep);
2448 if (!was_rmapped && is_large_pte(*sptep))
2449 ++vcpu->kvm->stat.lpages;
2450
2451 if (is_shadow_present_pte(*sptep)) {
2452 page_header_update_slot(vcpu->kvm, sptep, gfn);
2453 if (!was_rmapped) {
2454 rmap_count = rmap_add(vcpu, sptep, gfn);
2455 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2456 rmap_recycle(vcpu, sptep, gfn);
2457 }
2458 }
2459 kvm_release_pfn_clean(pfn);
2460 }
2461
2462 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2463 {
2464 mmu_free_roots(vcpu);
2465 }
2466
2467 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2468 bool no_dirty_log)
2469 {
2470 struct kvm_memory_slot *slot;
2471 unsigned long hva;
2472
2473 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2474 if (!slot) {
2475 get_page(fault_page);
2476 return page_to_pfn(fault_page);
2477 }
2478
2479 hva = gfn_to_hva_memslot(slot, gfn);
2480
2481 return hva_to_pfn_atomic(vcpu->kvm, hva);
2482 }
2483
2484 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2485 struct kvm_mmu_page *sp,
2486 u64 *start, u64 *end)
2487 {
2488 struct page *pages[PTE_PREFETCH_NUM];
2489 unsigned access = sp->role.access;
2490 int i, ret;
2491 gfn_t gfn;
2492
2493 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2494 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2495 return -1;
2496
2497 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2498 if (ret <= 0)
2499 return -1;
2500
2501 for (i = 0; i < ret; i++, gfn++, start++)
2502 mmu_set_spte(vcpu, start, ACC_ALL,
2503 access, 0, 0, NULL,
2504 sp->role.level, gfn,
2505 page_to_pfn(pages[i]), true, true);
2506
2507 return 0;
2508 }
2509
2510 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2511 struct kvm_mmu_page *sp, u64 *sptep)
2512 {
2513 u64 *spte, *start = NULL;
2514 int i;
2515
2516 WARN_ON(!sp->role.direct);
2517
2518 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2519 spte = sp->spt + i;
2520
2521 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2522 if (is_shadow_present_pte(*spte) || spte == sptep) {
2523 if (!start)
2524 continue;
2525 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2526 break;
2527 start = NULL;
2528 } else if (!start)
2529 start = spte;
2530 }
2531 }
2532
2533 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2534 {
2535 struct kvm_mmu_page *sp;
2536
2537 /*
2538 * Since it's no accessed bit on EPT, it's no way to
2539 * distinguish between actually accessed translations
2540 * and prefetched, so disable pte prefetch if EPT is
2541 * enabled.
2542 */
2543 if (!shadow_accessed_mask)
2544 return;
2545
2546 sp = page_header(__pa(sptep));
2547 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2548 return;
2549
2550 __direct_pte_prefetch(vcpu, sp, sptep);
2551 }
2552
2553 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2554 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2555 bool prefault)
2556 {
2557 struct kvm_shadow_walk_iterator iterator;
2558 struct kvm_mmu_page *sp;
2559 int emulate = 0;
2560 gfn_t pseudo_gfn;
2561
2562 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2563 if (iterator.level == level) {
2564 unsigned pte_access = ACC_ALL;
2565
2566 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2567 0, write, &emulate,
2568 level, gfn, pfn, prefault, map_writable);
2569 direct_pte_prefetch(vcpu, iterator.sptep);
2570 ++vcpu->stat.pf_fixed;
2571 break;
2572 }
2573
2574 if (!is_shadow_present_pte(*iterator.sptep)) {
2575 u64 base_addr = iterator.addr;
2576
2577 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2578 pseudo_gfn = base_addr >> PAGE_SHIFT;
2579 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2580 iterator.level - 1,
2581 1, ACC_ALL, iterator.sptep);
2582 if (!sp) {
2583 pgprintk("nonpaging_map: ENOMEM\n");
2584 kvm_release_pfn_clean(pfn);
2585 return -ENOMEM;
2586 }
2587
2588 mmu_spte_set(iterator.sptep,
2589 __pa(sp->spt)
2590 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2591 | shadow_user_mask | shadow_x_mask
2592 | shadow_accessed_mask);
2593 }
2594 }
2595 return emulate;
2596 }
2597
2598 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2599 {
2600 siginfo_t info;
2601
2602 info.si_signo = SIGBUS;
2603 info.si_errno = 0;
2604 info.si_code = BUS_MCEERR_AR;
2605 info.si_addr = (void __user *)address;
2606 info.si_addr_lsb = PAGE_SHIFT;
2607
2608 send_sig_info(SIGBUS, &info, tsk);
2609 }
2610
2611 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2612 {
2613 kvm_release_pfn_clean(pfn);
2614 if (is_hwpoison_pfn(pfn)) {
2615 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2616 return 0;
2617 }
2618
2619 return -EFAULT;
2620 }
2621
2622 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2623 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2624 {
2625 pfn_t pfn = *pfnp;
2626 gfn_t gfn = *gfnp;
2627 int level = *levelp;
2628
2629 /*
2630 * Check if it's a transparent hugepage. If this would be an
2631 * hugetlbfs page, level wouldn't be set to
2632 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2633 * here.
2634 */
2635 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2636 level == PT_PAGE_TABLE_LEVEL &&
2637 PageTransCompound(pfn_to_page(pfn)) &&
2638 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2639 unsigned long mask;
2640 /*
2641 * mmu_notifier_retry was successful and we hold the
2642 * mmu_lock here, so the pmd can't become splitting
2643 * from under us, and in turn
2644 * __split_huge_page_refcount() can't run from under
2645 * us and we can safely transfer the refcount from
2646 * PG_tail to PG_head as we switch the pfn to tail to
2647 * head.
2648 */
2649 *levelp = level = PT_DIRECTORY_LEVEL;
2650 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2651 VM_BUG_ON((gfn & mask) != (pfn & mask));
2652 if (pfn & mask) {
2653 gfn &= ~mask;
2654 *gfnp = gfn;
2655 kvm_release_pfn_clean(pfn);
2656 pfn &= ~mask;
2657 kvm_get_pfn(pfn);
2658 *pfnp = pfn;
2659 }
2660 }
2661 }
2662
2663 static bool mmu_invalid_pfn(pfn_t pfn)
2664 {
2665 return unlikely(is_invalid_pfn(pfn));
2666 }
2667
2668 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2669 pfn_t pfn, unsigned access, int *ret_val)
2670 {
2671 bool ret = true;
2672
2673 /* The pfn is invalid, report the error! */
2674 if (unlikely(is_invalid_pfn(pfn))) {
2675 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2676 goto exit;
2677 }
2678
2679 if (unlikely(is_noslot_pfn(pfn)))
2680 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2681
2682 ret = false;
2683 exit:
2684 return ret;
2685 }
2686
2687 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2688 {
2689 /*
2690 * #PF can be fast only if the shadow page table is present and it
2691 * is caused by write-protect, that means we just need change the
2692 * W bit of the spte which can be done out of mmu-lock.
2693 */
2694 if (!(error_code & PFERR_PRESENT_MASK) ||
2695 !(error_code & PFERR_WRITE_MASK))
2696 return false;
2697
2698 return true;
2699 }
2700
2701 static bool
2702 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2703 {
2704 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2705 gfn_t gfn;
2706
2707 WARN_ON(!sp->role.direct);
2708
2709 /*
2710 * The gfn of direct spte is stable since it is calculated
2711 * by sp->gfn.
2712 */
2713 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2714
2715 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2716 mark_page_dirty(vcpu->kvm, gfn);
2717
2718 return true;
2719 }
2720
2721 /*
2722 * Return value:
2723 * - true: let the vcpu to access on the same address again.
2724 * - false: let the real page fault path to fix it.
2725 */
2726 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2727 u32 error_code)
2728 {
2729 struct kvm_shadow_walk_iterator iterator;
2730 bool ret = false;
2731 u64 spte = 0ull;
2732
2733 if (!page_fault_can_be_fast(vcpu, error_code))
2734 return false;
2735
2736 walk_shadow_page_lockless_begin(vcpu);
2737 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2738 if (!is_shadow_present_pte(spte) || iterator.level < level)
2739 break;
2740
2741 /*
2742 * If the mapping has been changed, let the vcpu fault on the
2743 * same address again.
2744 */
2745 if (!is_rmap_spte(spte)) {
2746 ret = true;
2747 goto exit;
2748 }
2749
2750 if (!is_last_spte(spte, level))
2751 goto exit;
2752
2753 /*
2754 * Check if it is a spurious fault caused by TLB lazily flushed.
2755 *
2756 * Need not check the access of upper level table entries since
2757 * they are always ACC_ALL.
2758 */
2759 if (is_writable_pte(spte)) {
2760 ret = true;
2761 goto exit;
2762 }
2763
2764 /*
2765 * Currently, to simplify the code, only the spte write-protected
2766 * by dirty-log can be fast fixed.
2767 */
2768 if (!spte_is_locklessly_modifiable(spte))
2769 goto exit;
2770
2771 /*
2772 * Currently, fast page fault only works for direct mapping since
2773 * the gfn is not stable for indirect shadow page.
2774 * See Documentation/virtual/kvm/locking.txt to get more detail.
2775 */
2776 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2777 exit:
2778 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2779 spte, ret);
2780 walk_shadow_page_lockless_end(vcpu);
2781
2782 return ret;
2783 }
2784
2785 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2786 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2787
2788 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2789 gfn_t gfn, bool prefault)
2790 {
2791 int r;
2792 int level;
2793 int force_pt_level;
2794 pfn_t pfn;
2795 unsigned long mmu_seq;
2796 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2797
2798 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2799 if (likely(!force_pt_level)) {
2800 level = mapping_level(vcpu, gfn);
2801 /*
2802 * This path builds a PAE pagetable - so we can map
2803 * 2mb pages at maximum. Therefore check if the level
2804 * is larger than that.
2805 */
2806 if (level > PT_DIRECTORY_LEVEL)
2807 level = PT_DIRECTORY_LEVEL;
2808
2809 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2810 } else
2811 level = PT_PAGE_TABLE_LEVEL;
2812
2813 if (fast_page_fault(vcpu, v, level, error_code))
2814 return 0;
2815
2816 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2817 smp_rmb();
2818
2819 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2820 return 0;
2821
2822 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2823 return r;
2824
2825 spin_lock(&vcpu->kvm->mmu_lock);
2826 if (mmu_notifier_retry(vcpu, mmu_seq))
2827 goto out_unlock;
2828 kvm_mmu_free_some_pages(vcpu);
2829 if (likely(!force_pt_level))
2830 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2831 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2832 prefault);
2833 spin_unlock(&vcpu->kvm->mmu_lock);
2834
2835
2836 return r;
2837
2838 out_unlock:
2839 spin_unlock(&vcpu->kvm->mmu_lock);
2840 kvm_release_pfn_clean(pfn);
2841 return 0;
2842 }
2843
2844
2845 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2846 {
2847 int i;
2848 struct kvm_mmu_page *sp;
2849 LIST_HEAD(invalid_list);
2850
2851 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2852 return;
2853 spin_lock(&vcpu->kvm->mmu_lock);
2854 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2855 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2856 vcpu->arch.mmu.direct_map)) {
2857 hpa_t root = vcpu->arch.mmu.root_hpa;
2858
2859 sp = page_header(root);
2860 --sp->root_count;
2861 if (!sp->root_count && sp->role.invalid) {
2862 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2863 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2864 }
2865 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2866 spin_unlock(&vcpu->kvm->mmu_lock);
2867 return;
2868 }
2869 for (i = 0; i < 4; ++i) {
2870 hpa_t root = vcpu->arch.mmu.pae_root[i];
2871
2872 if (root) {
2873 root &= PT64_BASE_ADDR_MASK;
2874 sp = page_header(root);
2875 --sp->root_count;
2876 if (!sp->root_count && sp->role.invalid)
2877 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2878 &invalid_list);
2879 }
2880 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2881 }
2882 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2883 spin_unlock(&vcpu->kvm->mmu_lock);
2884 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2885 }
2886
2887 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2888 {
2889 int ret = 0;
2890
2891 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2892 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2893 ret = 1;
2894 }
2895
2896 return ret;
2897 }
2898
2899 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2900 {
2901 struct kvm_mmu_page *sp;
2902 unsigned i;
2903
2904 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2905 spin_lock(&vcpu->kvm->mmu_lock);
2906 kvm_mmu_free_some_pages(vcpu);
2907 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2908 1, ACC_ALL, NULL);
2909 ++sp->root_count;
2910 spin_unlock(&vcpu->kvm->mmu_lock);
2911 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2912 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2913 for (i = 0; i < 4; ++i) {
2914 hpa_t root = vcpu->arch.mmu.pae_root[i];
2915
2916 ASSERT(!VALID_PAGE(root));
2917 spin_lock(&vcpu->kvm->mmu_lock);
2918 kvm_mmu_free_some_pages(vcpu);
2919 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2920 i << 30,
2921 PT32_ROOT_LEVEL, 1, ACC_ALL,
2922 NULL);
2923 root = __pa(sp->spt);
2924 ++sp->root_count;
2925 spin_unlock(&vcpu->kvm->mmu_lock);
2926 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2927 }
2928 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2929 } else
2930 BUG();
2931
2932 return 0;
2933 }
2934
2935 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2936 {
2937 struct kvm_mmu_page *sp;
2938 u64 pdptr, pm_mask;
2939 gfn_t root_gfn;
2940 int i;
2941
2942 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2943
2944 if (mmu_check_root(vcpu, root_gfn))
2945 return 1;
2946
2947 /*
2948 * Do we shadow a long mode page table? If so we need to
2949 * write-protect the guests page table root.
2950 */
2951 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2952 hpa_t root = vcpu->arch.mmu.root_hpa;
2953
2954 ASSERT(!VALID_PAGE(root));
2955
2956 spin_lock(&vcpu->kvm->mmu_lock);
2957 kvm_mmu_free_some_pages(vcpu);
2958 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2959 0, ACC_ALL, NULL);
2960 root = __pa(sp->spt);
2961 ++sp->root_count;
2962 spin_unlock(&vcpu->kvm->mmu_lock);
2963 vcpu->arch.mmu.root_hpa = root;
2964 return 0;
2965 }
2966
2967 /*
2968 * We shadow a 32 bit page table. This may be a legacy 2-level
2969 * or a PAE 3-level page table. In either case we need to be aware that
2970 * the shadow page table may be a PAE or a long mode page table.
2971 */
2972 pm_mask = PT_PRESENT_MASK;
2973 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2974 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2975
2976 for (i = 0; i < 4; ++i) {
2977 hpa_t root = vcpu->arch.mmu.pae_root[i];
2978
2979 ASSERT(!VALID_PAGE(root));
2980 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2981 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2982 if (!is_present_gpte(pdptr)) {
2983 vcpu->arch.mmu.pae_root[i] = 0;
2984 continue;
2985 }
2986 root_gfn = pdptr >> PAGE_SHIFT;
2987 if (mmu_check_root(vcpu, root_gfn))
2988 return 1;
2989 }
2990 spin_lock(&vcpu->kvm->mmu_lock);
2991 kvm_mmu_free_some_pages(vcpu);
2992 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2993 PT32_ROOT_LEVEL, 0,
2994 ACC_ALL, NULL);
2995 root = __pa(sp->spt);
2996 ++sp->root_count;
2997 spin_unlock(&vcpu->kvm->mmu_lock);
2998
2999 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3000 }
3001 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3002
3003 /*
3004 * If we shadow a 32 bit page table with a long mode page
3005 * table we enter this path.
3006 */
3007 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3008 if (vcpu->arch.mmu.lm_root == NULL) {
3009 /*
3010 * The additional page necessary for this is only
3011 * allocated on demand.
3012 */
3013
3014 u64 *lm_root;
3015
3016 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3017 if (lm_root == NULL)
3018 return 1;
3019
3020 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3021
3022 vcpu->arch.mmu.lm_root = lm_root;
3023 }
3024
3025 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3026 }
3027
3028 return 0;
3029 }
3030
3031 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3032 {
3033 if (vcpu->arch.mmu.direct_map)
3034 return mmu_alloc_direct_roots(vcpu);
3035 else
3036 return mmu_alloc_shadow_roots(vcpu);
3037 }
3038
3039 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3040 {
3041 int i;
3042 struct kvm_mmu_page *sp;
3043
3044 if (vcpu->arch.mmu.direct_map)
3045 return;
3046
3047 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3048 return;
3049
3050 vcpu_clear_mmio_info(vcpu, ~0ul);
3051 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3052 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3053 hpa_t root = vcpu->arch.mmu.root_hpa;
3054 sp = page_header(root);
3055 mmu_sync_children(vcpu, sp);
3056 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3057 return;
3058 }
3059 for (i = 0; i < 4; ++i) {
3060 hpa_t root = vcpu->arch.mmu.pae_root[i];
3061
3062 if (root && VALID_PAGE(root)) {
3063 root &= PT64_BASE_ADDR_MASK;
3064 sp = page_header(root);
3065 mmu_sync_children(vcpu, sp);
3066 }
3067 }
3068 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3069 }
3070
3071 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3072 {
3073 spin_lock(&vcpu->kvm->mmu_lock);
3074 mmu_sync_roots(vcpu);
3075 spin_unlock(&vcpu->kvm->mmu_lock);
3076 }
3077
3078 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3079 u32 access, struct x86_exception *exception)
3080 {
3081 if (exception)
3082 exception->error_code = 0;
3083 return vaddr;
3084 }
3085
3086 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3087 u32 access,
3088 struct x86_exception *exception)
3089 {
3090 if (exception)
3091 exception->error_code = 0;
3092 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3093 }
3094
3095 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3096 {
3097 if (direct)
3098 return vcpu_match_mmio_gpa(vcpu, addr);
3099
3100 return vcpu_match_mmio_gva(vcpu, addr);
3101 }
3102
3103
3104 /*
3105 * On direct hosts, the last spte is only allows two states
3106 * for mmio page fault:
3107 * - It is the mmio spte
3108 * - It is zapped or it is being zapped.
3109 *
3110 * This function completely checks the spte when the last spte
3111 * is not the mmio spte.
3112 */
3113 static bool check_direct_spte_mmio_pf(u64 spte)
3114 {
3115 return __check_direct_spte_mmio_pf(spte);
3116 }
3117
3118 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3119 {
3120 struct kvm_shadow_walk_iterator iterator;
3121 u64 spte = 0ull;
3122
3123 walk_shadow_page_lockless_begin(vcpu);
3124 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3125 if (!is_shadow_present_pte(spte))
3126 break;
3127 walk_shadow_page_lockless_end(vcpu);
3128
3129 return spte;
3130 }
3131
3132 /*
3133 * If it is a real mmio page fault, return 1 and emulat the instruction
3134 * directly, return 0 to let CPU fault again on the address, -1 is
3135 * returned if bug is detected.
3136 */
3137 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3138 {
3139 u64 spte;
3140
3141 if (quickly_check_mmio_pf(vcpu, addr, direct))
3142 return 1;
3143
3144 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3145
3146 if (is_mmio_spte(spte)) {
3147 gfn_t gfn = get_mmio_spte_gfn(spte);
3148 unsigned access = get_mmio_spte_access(spte);
3149
3150 if (direct)
3151 addr = 0;
3152
3153 trace_handle_mmio_page_fault(addr, gfn, access);
3154 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3155 return 1;
3156 }
3157
3158 /*
3159 * It's ok if the gva is remapped by other cpus on shadow guest,
3160 * it's a BUG if the gfn is not a mmio page.
3161 */
3162 if (direct && !check_direct_spte_mmio_pf(spte))
3163 return -1;
3164
3165 /*
3166 * If the page table is zapped by other cpus, let CPU fault again on
3167 * the address.
3168 */
3169 return 0;
3170 }
3171 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3172
3173 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3174 u32 error_code, bool direct)
3175 {
3176 int ret;
3177
3178 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3179 WARN_ON(ret < 0);
3180 return ret;
3181 }
3182
3183 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3184 u32 error_code, bool prefault)
3185 {
3186 gfn_t gfn;
3187 int r;
3188
3189 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3190
3191 if (unlikely(error_code & PFERR_RSVD_MASK))
3192 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3193
3194 r = mmu_topup_memory_caches(vcpu);
3195 if (r)
3196 return r;
3197
3198 ASSERT(vcpu);
3199 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3200
3201 gfn = gva >> PAGE_SHIFT;
3202
3203 return nonpaging_map(vcpu, gva & PAGE_MASK,
3204 error_code, gfn, prefault);
3205 }
3206
3207 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3208 {
3209 struct kvm_arch_async_pf arch;
3210
3211 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3212 arch.gfn = gfn;
3213 arch.direct_map = vcpu->arch.mmu.direct_map;
3214 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3215
3216 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3217 }
3218
3219 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3220 {
3221 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3222 kvm_event_needs_reinjection(vcpu)))
3223 return false;
3224
3225 return kvm_x86_ops->interrupt_allowed(vcpu);
3226 }
3227
3228 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3229 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3230 {
3231 bool async;
3232
3233 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3234
3235 if (!async)
3236 return false; /* *pfn has correct page already */
3237
3238 put_page(pfn_to_page(*pfn));
3239
3240 if (!prefault && can_do_async_pf(vcpu)) {
3241 trace_kvm_try_async_get_page(gva, gfn);
3242 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3243 trace_kvm_async_pf_doublefault(gva, gfn);
3244 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3245 return true;
3246 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3247 return true;
3248 }
3249
3250 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3251
3252 return false;
3253 }
3254
3255 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3256 bool prefault)
3257 {
3258 pfn_t pfn;
3259 int r;
3260 int level;
3261 int force_pt_level;
3262 gfn_t gfn = gpa >> PAGE_SHIFT;
3263 unsigned long mmu_seq;
3264 int write = error_code & PFERR_WRITE_MASK;
3265 bool map_writable;
3266
3267 ASSERT(vcpu);
3268 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3269
3270 if (unlikely(error_code & PFERR_RSVD_MASK))
3271 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3272
3273 r = mmu_topup_memory_caches(vcpu);
3274 if (r)
3275 return r;
3276
3277 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3278 if (likely(!force_pt_level)) {
3279 level = mapping_level(vcpu, gfn);
3280 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3281 } else
3282 level = PT_PAGE_TABLE_LEVEL;
3283
3284 if (fast_page_fault(vcpu, gpa, level, error_code))
3285 return 0;
3286
3287 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3288 smp_rmb();
3289
3290 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3291 return 0;
3292
3293 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3294 return r;
3295
3296 spin_lock(&vcpu->kvm->mmu_lock);
3297 if (mmu_notifier_retry(vcpu, mmu_seq))
3298 goto out_unlock;
3299 kvm_mmu_free_some_pages(vcpu);
3300 if (likely(!force_pt_level))
3301 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3302 r = __direct_map(vcpu, gpa, write, map_writable,
3303 level, gfn, pfn, prefault);
3304 spin_unlock(&vcpu->kvm->mmu_lock);
3305
3306 return r;
3307
3308 out_unlock:
3309 spin_unlock(&vcpu->kvm->mmu_lock);
3310 kvm_release_pfn_clean(pfn);
3311 return 0;
3312 }
3313
3314 static void nonpaging_free(struct kvm_vcpu *vcpu)
3315 {
3316 mmu_free_roots(vcpu);
3317 }
3318
3319 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3320 struct kvm_mmu *context)
3321 {
3322 context->new_cr3 = nonpaging_new_cr3;
3323 context->page_fault = nonpaging_page_fault;
3324 context->gva_to_gpa = nonpaging_gva_to_gpa;
3325 context->free = nonpaging_free;
3326 context->sync_page = nonpaging_sync_page;
3327 context->invlpg = nonpaging_invlpg;
3328 context->update_pte = nonpaging_update_pte;
3329 context->root_level = 0;
3330 context->shadow_root_level = PT32E_ROOT_LEVEL;
3331 context->root_hpa = INVALID_PAGE;
3332 context->direct_map = true;
3333 context->nx = false;
3334 return 0;
3335 }
3336
3337 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3338 {
3339 ++vcpu->stat.tlb_flush;
3340 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3341 }
3342
3343 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3344 {
3345 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3346 mmu_free_roots(vcpu);
3347 }
3348
3349 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3350 {
3351 return kvm_read_cr3(vcpu);
3352 }
3353
3354 static void inject_page_fault(struct kvm_vcpu *vcpu,
3355 struct x86_exception *fault)
3356 {
3357 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3358 }
3359
3360 static void paging_free(struct kvm_vcpu *vcpu)
3361 {
3362 nonpaging_free(vcpu);
3363 }
3364
3365 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3366 {
3367 int bit7;
3368
3369 bit7 = (gpte >> 7) & 1;
3370 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3371 }
3372
3373 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3374 int *nr_present)
3375 {
3376 if (unlikely(is_mmio_spte(*sptep))) {
3377 if (gfn != get_mmio_spte_gfn(*sptep)) {
3378 mmu_spte_clear_no_track(sptep);
3379 return true;
3380 }
3381
3382 (*nr_present)++;
3383 mark_mmio_spte(sptep, gfn, access);
3384 return true;
3385 }
3386
3387 return false;
3388 }
3389
3390 #define PTTYPE 64
3391 #include "paging_tmpl.h"
3392 #undef PTTYPE
3393
3394 #define PTTYPE 32
3395 #include "paging_tmpl.h"
3396 #undef PTTYPE
3397
3398 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3399 struct kvm_mmu *context)
3400 {
3401 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3402 u64 exb_bit_rsvd = 0;
3403
3404 if (!context->nx)
3405 exb_bit_rsvd = rsvd_bits(63, 63);
3406 switch (context->root_level) {
3407 case PT32_ROOT_LEVEL:
3408 /* no rsvd bits for 2 level 4K page table entries */
3409 context->rsvd_bits_mask[0][1] = 0;
3410 context->rsvd_bits_mask[0][0] = 0;
3411 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3412
3413 if (!is_pse(vcpu)) {
3414 context->rsvd_bits_mask[1][1] = 0;
3415 break;
3416 }
3417
3418 if (is_cpuid_PSE36())
3419 /* 36bits PSE 4MB page */
3420 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3421 else
3422 /* 32 bits PSE 4MB page */
3423 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3424 break;
3425 case PT32E_ROOT_LEVEL:
3426 context->rsvd_bits_mask[0][2] =
3427 rsvd_bits(maxphyaddr, 63) |
3428 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3429 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3430 rsvd_bits(maxphyaddr, 62); /* PDE */
3431 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3432 rsvd_bits(maxphyaddr, 62); /* PTE */
3433 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3434 rsvd_bits(maxphyaddr, 62) |
3435 rsvd_bits(13, 20); /* large page */
3436 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3437 break;
3438 case PT64_ROOT_LEVEL:
3439 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3440 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3441 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3442 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3443 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3444 rsvd_bits(maxphyaddr, 51);
3445 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3446 rsvd_bits(maxphyaddr, 51);
3447 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3448 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3449 rsvd_bits(maxphyaddr, 51) |
3450 rsvd_bits(13, 29);
3451 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3452 rsvd_bits(maxphyaddr, 51) |
3453 rsvd_bits(13, 20); /* large page */
3454 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3455 break;
3456 }
3457 }
3458
3459 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3460 struct kvm_mmu *context,
3461 int level)
3462 {
3463 context->nx = is_nx(vcpu);
3464 context->root_level = level;
3465
3466 reset_rsvds_bits_mask(vcpu, context);
3467
3468 ASSERT(is_pae(vcpu));
3469 context->new_cr3 = paging_new_cr3;
3470 context->page_fault = paging64_page_fault;
3471 context->gva_to_gpa = paging64_gva_to_gpa;
3472 context->sync_page = paging64_sync_page;
3473 context->invlpg = paging64_invlpg;
3474 context->update_pte = paging64_update_pte;
3475 context->free = paging_free;
3476 context->shadow_root_level = level;
3477 context->root_hpa = INVALID_PAGE;
3478 context->direct_map = false;
3479 return 0;
3480 }
3481
3482 static int paging64_init_context(struct kvm_vcpu *vcpu,
3483 struct kvm_mmu *context)
3484 {
3485 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3486 }
3487
3488 static int paging32_init_context(struct kvm_vcpu *vcpu,
3489 struct kvm_mmu *context)
3490 {
3491 context->nx = false;
3492 context->root_level = PT32_ROOT_LEVEL;
3493
3494 reset_rsvds_bits_mask(vcpu, context);
3495
3496 context->new_cr3 = paging_new_cr3;
3497 context->page_fault = paging32_page_fault;
3498 context->gva_to_gpa = paging32_gva_to_gpa;
3499 context->free = paging_free;
3500 context->sync_page = paging32_sync_page;
3501 context->invlpg = paging32_invlpg;
3502 context->update_pte = paging32_update_pte;
3503 context->shadow_root_level = PT32E_ROOT_LEVEL;
3504 context->root_hpa = INVALID_PAGE;
3505 context->direct_map = false;
3506 return 0;
3507 }
3508
3509 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3510 struct kvm_mmu *context)
3511 {
3512 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3513 }
3514
3515 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3516 {
3517 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3518
3519 context->base_role.word = 0;
3520 context->new_cr3 = nonpaging_new_cr3;
3521 context->page_fault = tdp_page_fault;
3522 context->free = nonpaging_free;
3523 context->sync_page = nonpaging_sync_page;
3524 context->invlpg = nonpaging_invlpg;
3525 context->update_pte = nonpaging_update_pte;
3526 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3527 context->root_hpa = INVALID_PAGE;
3528 context->direct_map = true;
3529 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3530 context->get_cr3 = get_cr3;
3531 context->get_pdptr = kvm_pdptr_read;
3532 context->inject_page_fault = kvm_inject_page_fault;
3533
3534 if (!is_paging(vcpu)) {
3535 context->nx = false;
3536 context->gva_to_gpa = nonpaging_gva_to_gpa;
3537 context->root_level = 0;
3538 } else if (is_long_mode(vcpu)) {
3539 context->nx = is_nx(vcpu);
3540 context->root_level = PT64_ROOT_LEVEL;
3541 reset_rsvds_bits_mask(vcpu, context);
3542 context->gva_to_gpa = paging64_gva_to_gpa;
3543 } else if (is_pae(vcpu)) {
3544 context->nx = is_nx(vcpu);
3545 context->root_level = PT32E_ROOT_LEVEL;
3546 reset_rsvds_bits_mask(vcpu, context);
3547 context->gva_to_gpa = paging64_gva_to_gpa;
3548 } else {
3549 context->nx = false;
3550 context->root_level = PT32_ROOT_LEVEL;
3551 reset_rsvds_bits_mask(vcpu, context);
3552 context->gva_to_gpa = paging32_gva_to_gpa;
3553 }
3554
3555 return 0;
3556 }
3557
3558 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3559 {
3560 int r;
3561 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3562 ASSERT(vcpu);
3563 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3564
3565 if (!is_paging(vcpu))
3566 r = nonpaging_init_context(vcpu, context);
3567 else if (is_long_mode(vcpu))
3568 r = paging64_init_context(vcpu, context);
3569 else if (is_pae(vcpu))
3570 r = paging32E_init_context(vcpu, context);
3571 else
3572 r = paging32_init_context(vcpu, context);
3573
3574 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3575 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3576 vcpu->arch.mmu.base_role.smep_andnot_wp
3577 = smep && !is_write_protection(vcpu);
3578
3579 return r;
3580 }
3581 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3582
3583 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3584 {
3585 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3586
3587 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3588 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3589 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3590 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3591
3592 return r;
3593 }
3594
3595 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3596 {
3597 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3598
3599 g_context->get_cr3 = get_cr3;
3600 g_context->get_pdptr = kvm_pdptr_read;
3601 g_context->inject_page_fault = kvm_inject_page_fault;
3602
3603 /*
3604 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3605 * translation of l2_gpa to l1_gpa addresses is done using the
3606 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3607 * functions between mmu and nested_mmu are swapped.
3608 */
3609 if (!is_paging(vcpu)) {
3610 g_context->nx = false;
3611 g_context->root_level = 0;
3612 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3613 } else if (is_long_mode(vcpu)) {
3614 g_context->nx = is_nx(vcpu);
3615 g_context->root_level = PT64_ROOT_LEVEL;
3616 reset_rsvds_bits_mask(vcpu, g_context);
3617 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3618 } else if (is_pae(vcpu)) {
3619 g_context->nx = is_nx(vcpu);
3620 g_context->root_level = PT32E_ROOT_LEVEL;
3621 reset_rsvds_bits_mask(vcpu, g_context);
3622 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3623 } else {
3624 g_context->nx = false;
3625 g_context->root_level = PT32_ROOT_LEVEL;
3626 reset_rsvds_bits_mask(vcpu, g_context);
3627 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3628 }
3629
3630 return 0;
3631 }
3632
3633 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3634 {
3635 if (mmu_is_nested(vcpu))
3636 return init_kvm_nested_mmu(vcpu);
3637 else if (tdp_enabled)
3638 return init_kvm_tdp_mmu(vcpu);
3639 else
3640 return init_kvm_softmmu(vcpu);
3641 }
3642
3643 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3644 {
3645 ASSERT(vcpu);
3646 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3647 /* mmu.free() should set root_hpa = INVALID_PAGE */
3648 vcpu->arch.mmu.free(vcpu);
3649 }
3650
3651 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3652 {
3653 destroy_kvm_mmu(vcpu);
3654 return init_kvm_mmu(vcpu);
3655 }
3656 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3657
3658 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3659 {
3660 int r;
3661
3662 r = mmu_topup_memory_caches(vcpu);
3663 if (r)
3664 goto out;
3665 r = mmu_alloc_roots(vcpu);
3666 spin_lock(&vcpu->kvm->mmu_lock);
3667 mmu_sync_roots(vcpu);
3668 spin_unlock(&vcpu->kvm->mmu_lock);
3669 if (r)
3670 goto out;
3671 /* set_cr3() should ensure TLB has been flushed */
3672 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3673 out:
3674 return r;
3675 }
3676 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3677
3678 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3679 {
3680 mmu_free_roots(vcpu);
3681 }
3682 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3683
3684 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3685 struct kvm_mmu_page *sp, u64 *spte,
3686 const void *new)
3687 {
3688 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3689 ++vcpu->kvm->stat.mmu_pde_zapped;
3690 return;
3691 }
3692
3693 ++vcpu->kvm->stat.mmu_pte_updated;
3694 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3695 }
3696
3697 static bool need_remote_flush(u64 old, u64 new)
3698 {
3699 if (!is_shadow_present_pte(old))
3700 return false;
3701 if (!is_shadow_present_pte(new))
3702 return true;
3703 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3704 return true;
3705 old ^= PT64_NX_MASK;
3706 new ^= PT64_NX_MASK;
3707 return (old & ~new & PT64_PERM_MASK) != 0;
3708 }
3709
3710 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3711 bool remote_flush, bool local_flush)
3712 {
3713 if (zap_page)
3714 return;
3715
3716 if (remote_flush)
3717 kvm_flush_remote_tlbs(vcpu->kvm);
3718 else if (local_flush)
3719 kvm_mmu_flush_tlb(vcpu);
3720 }
3721
3722 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3723 const u8 *new, int *bytes)
3724 {
3725 u64 gentry;
3726 int r;
3727
3728 /*
3729 * Assume that the pte write on a page table of the same type
3730 * as the current vcpu paging mode since we update the sptes only
3731 * when they have the same mode.
3732 */
3733 if (is_pae(vcpu) && *bytes == 4) {
3734 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3735 *gpa &= ~(gpa_t)7;
3736 *bytes = 8;
3737 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3738 if (r)
3739 gentry = 0;
3740 new = (const u8 *)&gentry;
3741 }
3742
3743 switch (*bytes) {
3744 case 4:
3745 gentry = *(const u32 *)new;
3746 break;
3747 case 8:
3748 gentry = *(const u64 *)new;
3749 break;
3750 default:
3751 gentry = 0;
3752 break;
3753 }
3754
3755 return gentry;
3756 }
3757
3758 /*
3759 * If we're seeing too many writes to a page, it may no longer be a page table,
3760 * or we may be forking, in which case it is better to unmap the page.
3761 */
3762 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3763 {
3764 /*
3765 * Skip write-flooding detected for the sp whose level is 1, because
3766 * it can become unsync, then the guest page is not write-protected.
3767 */
3768 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3769 return false;
3770
3771 return ++sp->write_flooding_count >= 3;
3772 }
3773
3774 /*
3775 * Misaligned accesses are too much trouble to fix up; also, they usually
3776 * indicate a page is not used as a page table.
3777 */
3778 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3779 int bytes)
3780 {
3781 unsigned offset, pte_size, misaligned;
3782
3783 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3784 gpa, bytes, sp->role.word);
3785
3786 offset = offset_in_page(gpa);
3787 pte_size = sp->role.cr4_pae ? 8 : 4;
3788
3789 /*
3790 * Sometimes, the OS only writes the last one bytes to update status
3791 * bits, for example, in linux, andb instruction is used in clear_bit().
3792 */
3793 if (!(offset & (pte_size - 1)) && bytes == 1)
3794 return false;
3795
3796 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3797 misaligned |= bytes < 4;
3798
3799 return misaligned;
3800 }
3801
3802 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3803 {
3804 unsigned page_offset, quadrant;
3805 u64 *spte;
3806 int level;
3807
3808 page_offset = offset_in_page(gpa);
3809 level = sp->role.level;
3810 *nspte = 1;
3811 if (!sp->role.cr4_pae) {
3812 page_offset <<= 1; /* 32->64 */
3813 /*
3814 * A 32-bit pde maps 4MB while the shadow pdes map
3815 * only 2MB. So we need to double the offset again
3816 * and zap two pdes instead of one.
3817 */
3818 if (level == PT32_ROOT_LEVEL) {
3819 page_offset &= ~7; /* kill rounding error */
3820 page_offset <<= 1;
3821 *nspte = 2;
3822 }
3823 quadrant = page_offset >> PAGE_SHIFT;
3824 page_offset &= ~PAGE_MASK;
3825 if (quadrant != sp->role.quadrant)
3826 return NULL;
3827 }
3828
3829 spte = &sp->spt[page_offset / sizeof(*spte)];
3830 return spte;
3831 }
3832
3833 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3834 const u8 *new, int bytes)
3835 {
3836 gfn_t gfn = gpa >> PAGE_SHIFT;
3837 union kvm_mmu_page_role mask = { .word = 0 };
3838 struct kvm_mmu_page *sp;
3839 struct hlist_node *node;
3840 LIST_HEAD(invalid_list);
3841 u64 entry, gentry, *spte;
3842 int npte;
3843 bool remote_flush, local_flush, zap_page;
3844
3845 /*
3846 * If we don't have indirect shadow pages, it means no page is
3847 * write-protected, so we can exit simply.
3848 */
3849 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3850 return;
3851
3852 zap_page = remote_flush = local_flush = false;
3853
3854 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3855
3856 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3857
3858 /*
3859 * No need to care whether allocation memory is successful
3860 * or not since pte prefetch is skiped if it does not have
3861 * enough objects in the cache.
3862 */
3863 mmu_topup_memory_caches(vcpu);
3864
3865 spin_lock(&vcpu->kvm->mmu_lock);
3866 ++vcpu->kvm->stat.mmu_pte_write;
3867 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3868
3869 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3870 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3871 if (detect_write_misaligned(sp, gpa, bytes) ||
3872 detect_write_flooding(sp)) {
3873 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3874 &invalid_list);
3875 ++vcpu->kvm->stat.mmu_flooded;
3876 continue;
3877 }
3878
3879 spte = get_written_sptes(sp, gpa, &npte);
3880 if (!spte)
3881 continue;
3882
3883 local_flush = true;
3884 while (npte--) {
3885 entry = *spte;
3886 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3887 if (gentry &&
3888 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3889 & mask.word) && rmap_can_add(vcpu))
3890 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3891 if (!remote_flush && need_remote_flush(entry, *spte))
3892 remote_flush = true;
3893 ++spte;
3894 }
3895 }
3896 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3897 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3898 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3899 spin_unlock(&vcpu->kvm->mmu_lock);
3900 }
3901
3902 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3903 {
3904 gpa_t gpa;
3905 int r;
3906
3907 if (vcpu->arch.mmu.direct_map)
3908 return 0;
3909
3910 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3911
3912 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3913
3914 return r;
3915 }
3916 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3917
3918 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3919 {
3920 LIST_HEAD(invalid_list);
3921
3922 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3923 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3924 struct kvm_mmu_page *sp;
3925
3926 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3927 struct kvm_mmu_page, link);
3928 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3929 ++vcpu->kvm->stat.mmu_recycled;
3930 }
3931 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3932 }
3933
3934 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3935 {
3936 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3937 return vcpu_match_mmio_gpa(vcpu, addr);
3938
3939 return vcpu_match_mmio_gva(vcpu, addr);
3940 }
3941
3942 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3943 void *insn, int insn_len)
3944 {
3945 int r, emulation_type = EMULTYPE_RETRY;
3946 enum emulation_result er;
3947
3948 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3949 if (r < 0)
3950 goto out;
3951
3952 if (!r) {
3953 r = 1;
3954 goto out;
3955 }
3956
3957 if (is_mmio_page_fault(vcpu, cr2))
3958 emulation_type = 0;
3959
3960 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3961
3962 switch (er) {
3963 case EMULATE_DONE:
3964 return 1;
3965 case EMULATE_DO_MMIO:
3966 ++vcpu->stat.mmio_exits;
3967 /* fall through */
3968 case EMULATE_FAIL:
3969 return 0;
3970 default:
3971 BUG();
3972 }
3973 out:
3974 return r;
3975 }
3976 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3977
3978 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3979 {
3980 vcpu->arch.mmu.invlpg(vcpu, gva);
3981 kvm_mmu_flush_tlb(vcpu);
3982 ++vcpu->stat.invlpg;
3983 }
3984 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3985
3986 void kvm_enable_tdp(void)
3987 {
3988 tdp_enabled = true;
3989 }
3990 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3991
3992 void kvm_disable_tdp(void)
3993 {
3994 tdp_enabled = false;
3995 }
3996 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3997
3998 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3999 {
4000 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4001 if (vcpu->arch.mmu.lm_root != NULL)
4002 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4003 }
4004
4005 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4006 {
4007 struct page *page;
4008 int i;
4009
4010 ASSERT(vcpu);
4011
4012 /*
4013 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4014 * Therefore we need to allocate shadow page tables in the first
4015 * 4GB of memory, which happens to fit the DMA32 zone.
4016 */
4017 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4018 if (!page)
4019 return -ENOMEM;
4020
4021 vcpu->arch.mmu.pae_root = page_address(page);
4022 for (i = 0; i < 4; ++i)
4023 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4024
4025 return 0;
4026 }
4027
4028 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4029 {
4030 ASSERT(vcpu);
4031
4032 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4033 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4034 vcpu->arch.mmu.translate_gpa = translate_gpa;
4035 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4036
4037 return alloc_mmu_pages(vcpu);
4038 }
4039
4040 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4041 {
4042 ASSERT(vcpu);
4043 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4044
4045 return init_kvm_mmu(vcpu);
4046 }
4047
4048 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4049 {
4050 struct kvm_mmu_page *sp;
4051 bool flush = false;
4052
4053 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
4054 int i;
4055 u64 *pt;
4056
4057 if (!test_bit(slot, sp->slot_bitmap))
4058 continue;
4059
4060 pt = sp->spt;
4061 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
4062 if (!is_shadow_present_pte(pt[i]) ||
4063 !is_last_spte(pt[i], sp->role.level))
4064 continue;
4065
4066 spte_write_protect(kvm, &pt[i], &flush, false);
4067 }
4068 }
4069 kvm_flush_remote_tlbs(kvm);
4070 }
4071
4072 void kvm_mmu_zap_all(struct kvm *kvm)
4073 {
4074 struct kvm_mmu_page *sp, *node;
4075 LIST_HEAD(invalid_list);
4076
4077 spin_lock(&kvm->mmu_lock);
4078 restart:
4079 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4080 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4081 goto restart;
4082
4083 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4084 spin_unlock(&kvm->mmu_lock);
4085 }
4086
4087 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4088 struct list_head *invalid_list)
4089 {
4090 struct kvm_mmu_page *page;
4091
4092 page = container_of(kvm->arch.active_mmu_pages.prev,
4093 struct kvm_mmu_page, link);
4094 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4095 }
4096
4097 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4098 {
4099 struct kvm *kvm;
4100 int nr_to_scan = sc->nr_to_scan;
4101
4102 if (nr_to_scan == 0)
4103 goto out;
4104
4105 raw_spin_lock(&kvm_lock);
4106
4107 list_for_each_entry(kvm, &vm_list, vm_list) {
4108 int idx;
4109 LIST_HEAD(invalid_list);
4110
4111 /*
4112 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4113 * here. We may skip a VM instance errorneosly, but we do not
4114 * want to shrink a VM that only started to populate its MMU
4115 * anyway.
4116 */
4117 if (kvm->arch.n_used_mmu_pages > 0) {
4118 if (!nr_to_scan--)
4119 break;
4120 continue;
4121 }
4122
4123 idx = srcu_read_lock(&kvm->srcu);
4124 spin_lock(&kvm->mmu_lock);
4125
4126 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4127 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4128
4129 spin_unlock(&kvm->mmu_lock);
4130 srcu_read_unlock(&kvm->srcu, idx);
4131
4132 list_move_tail(&kvm->vm_list, &vm_list);
4133 break;
4134 }
4135
4136 raw_spin_unlock(&kvm_lock);
4137
4138 out:
4139 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4140 }
4141
4142 static struct shrinker mmu_shrinker = {
4143 .shrink = mmu_shrink,
4144 .seeks = DEFAULT_SEEKS * 10,
4145 };
4146
4147 static void mmu_destroy_caches(void)
4148 {
4149 if (pte_list_desc_cache)
4150 kmem_cache_destroy(pte_list_desc_cache);
4151 if (mmu_page_header_cache)
4152 kmem_cache_destroy(mmu_page_header_cache);
4153 }
4154
4155 int kvm_mmu_module_init(void)
4156 {
4157 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4158 sizeof(struct pte_list_desc),
4159 0, 0, NULL);
4160 if (!pte_list_desc_cache)
4161 goto nomem;
4162
4163 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4164 sizeof(struct kvm_mmu_page),
4165 0, 0, NULL);
4166 if (!mmu_page_header_cache)
4167 goto nomem;
4168
4169 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4170 goto nomem;
4171
4172 register_shrinker(&mmu_shrinker);
4173
4174 return 0;
4175
4176 nomem:
4177 mmu_destroy_caches();
4178 return -ENOMEM;
4179 }
4180
4181 /*
4182 * Caculate mmu pages needed for kvm.
4183 */
4184 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4185 {
4186 unsigned int nr_mmu_pages;
4187 unsigned int nr_pages = 0;
4188 struct kvm_memslots *slots;
4189 struct kvm_memory_slot *memslot;
4190
4191 slots = kvm_memslots(kvm);
4192
4193 kvm_for_each_memslot(memslot, slots)
4194 nr_pages += memslot->npages;
4195
4196 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4197 nr_mmu_pages = max(nr_mmu_pages,
4198 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4199
4200 return nr_mmu_pages;
4201 }
4202
4203 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4204 {
4205 struct kvm_shadow_walk_iterator iterator;
4206 u64 spte;
4207 int nr_sptes = 0;
4208
4209 walk_shadow_page_lockless_begin(vcpu);
4210 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4211 sptes[iterator.level-1] = spte;
4212 nr_sptes++;
4213 if (!is_shadow_present_pte(spte))
4214 break;
4215 }
4216 walk_shadow_page_lockless_end(vcpu);
4217
4218 return nr_sptes;
4219 }
4220 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4221
4222 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4223 {
4224 ASSERT(vcpu);
4225
4226 destroy_kvm_mmu(vcpu);
4227 free_mmu_pages(vcpu);
4228 mmu_free_memory_caches(vcpu);
4229 }
4230
4231 void kvm_mmu_module_exit(void)
4232 {
4233 mmu_destroy_caches();
4234 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4235 unregister_shrinker(&mmu_shrinker);
4236 mmu_audit_disable();
4237 }
This page took 0.132891 seconds and 5 git commands to generate.