KVM: MMU: split kvm_mmu_free_page
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52 bool tdp_enabled = false;
53
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61 };
62
63 char *audit_point_name[] = {
64 "pre page fault",
65 "post page fault",
66 "pre pte write",
67 "post pte write",
68 "pre sync",
69 "post sync"
70 };
71
72 #undef MMU_DEBUG
73
74 #ifdef MMU_DEBUG
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
79 #else
80
81 #define pgprintk(x...) do { } while (0)
82 #define rmap_printk(x...) do { } while (0)
83
84 #endif
85
86 #ifdef MMU_DEBUG
87 static int dbg = 0;
88 module_param(dbg, bool, 0644);
89 #endif
90
91 static int oos_shadow = 1;
92 module_param(oos_shadow, bool, 0644);
93
94 #ifndef MMU_DEBUG
95 #define ASSERT(x) do { } while (0)
96 #else
97 #define ASSERT(x) \
98 if (!(x)) { \
99 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
100 __FILE__, __LINE__, #x); \
101 }
102 #endif
103
104 #define PTE_PREFETCH_NUM 8
105
106 #define PT_FIRST_AVAIL_BITS_SHIFT 9
107 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
108
109 #define PT64_LEVEL_BITS 9
110
111 #define PT64_LEVEL_SHIFT(level) \
112 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113
114 #define PT64_INDEX(address, level)\
115 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
116
117
118 #define PT32_LEVEL_BITS 10
119
120 #define PT32_LEVEL_SHIFT(level) \
121 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
122
123 #define PT32_LVL_OFFSET_MASK(level) \
124 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
125 * PT32_LEVEL_BITS))) - 1))
126
127 #define PT32_INDEX(address, level)\
128 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
129
130
131 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
132 #define PT64_DIR_BASE_ADDR_MASK \
133 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
134 #define PT64_LVL_ADDR_MASK(level) \
135 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
136 * PT64_LEVEL_BITS))) - 1))
137 #define PT64_LVL_OFFSET_MASK(level) \
138 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
139 * PT64_LEVEL_BITS))) - 1))
140
141 #define PT32_BASE_ADDR_MASK PAGE_MASK
142 #define PT32_DIR_BASE_ADDR_MASK \
143 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
144 #define PT32_LVL_ADDR_MASK(level) \
145 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
146 * PT32_LEVEL_BITS))) - 1))
147
148 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
149 | PT64_NX_MASK)
150
151 #define PTE_LIST_EXT 4
152
153 #define ACC_EXEC_MASK 1
154 #define ACC_WRITE_MASK PT_WRITABLE_MASK
155 #define ACC_USER_MASK PT_USER_MASK
156 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
157
158 #include <trace/events/kvm.h>
159
160 #define CREATE_TRACE_POINTS
161 #include "mmutrace.h"
162
163 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
164
165 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
166
167 struct pte_list_desc {
168 u64 *sptes[PTE_LIST_EXT];
169 struct pte_list_desc *more;
170 };
171
172 struct kvm_shadow_walk_iterator {
173 u64 addr;
174 hpa_t shadow_addr;
175 int level;
176 u64 *sptep;
177 unsigned index;
178 };
179
180 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
181 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
182 shadow_walk_okay(&(_walker)); \
183 shadow_walk_next(&(_walker)))
184
185 static struct kmem_cache *pte_list_desc_cache;
186 static struct kmem_cache *mmu_page_header_cache;
187 static struct percpu_counter kvm_total_used_mmu_pages;
188
189 static u64 __read_mostly shadow_trap_nonpresent_pte;
190 static u64 __read_mostly shadow_notrap_nonpresent_pte;
191 static u64 __read_mostly shadow_nx_mask;
192 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
193 static u64 __read_mostly shadow_user_mask;
194 static u64 __read_mostly shadow_accessed_mask;
195 static u64 __read_mostly shadow_dirty_mask;
196
197 static inline u64 rsvd_bits(int s, int e)
198 {
199 return ((1ULL << (e - s + 1)) - 1) << s;
200 }
201
202 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
203 {
204 shadow_trap_nonpresent_pte = trap_pte;
205 shadow_notrap_nonpresent_pte = notrap_pte;
206 }
207 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
208
209 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
210 u64 dirty_mask, u64 nx_mask, u64 x_mask)
211 {
212 shadow_user_mask = user_mask;
213 shadow_accessed_mask = accessed_mask;
214 shadow_dirty_mask = dirty_mask;
215 shadow_nx_mask = nx_mask;
216 shadow_x_mask = x_mask;
217 }
218 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
219
220 static int is_cpuid_PSE36(void)
221 {
222 return 1;
223 }
224
225 static int is_nx(struct kvm_vcpu *vcpu)
226 {
227 return vcpu->arch.efer & EFER_NX;
228 }
229
230 static int is_shadow_present_pte(u64 pte)
231 {
232 return pte != shadow_trap_nonpresent_pte
233 && pte != shadow_notrap_nonpresent_pte;
234 }
235
236 static int is_large_pte(u64 pte)
237 {
238 return pte & PT_PAGE_SIZE_MASK;
239 }
240
241 static int is_dirty_gpte(unsigned long pte)
242 {
243 return pte & PT_DIRTY_MASK;
244 }
245
246 static int is_rmap_spte(u64 pte)
247 {
248 return is_shadow_present_pte(pte);
249 }
250
251 static int is_last_spte(u64 pte, int level)
252 {
253 if (level == PT_PAGE_TABLE_LEVEL)
254 return 1;
255 if (is_large_pte(pte))
256 return 1;
257 return 0;
258 }
259
260 static pfn_t spte_to_pfn(u64 pte)
261 {
262 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
263 }
264
265 static gfn_t pse36_gfn_delta(u32 gpte)
266 {
267 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
268
269 return (gpte & PT32_DIR_PSE36_MASK) << shift;
270 }
271
272 static void __set_spte(u64 *sptep, u64 spte)
273 {
274 set_64bit(sptep, spte);
275 }
276
277 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
278 {
279 #ifdef CONFIG_X86_64
280 return xchg(sptep, new_spte);
281 #else
282 u64 old_spte;
283
284 do {
285 old_spte = *sptep;
286 } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
287
288 return old_spte;
289 #endif
290 }
291
292 static bool spte_has_volatile_bits(u64 spte)
293 {
294 if (!shadow_accessed_mask)
295 return false;
296
297 if (!is_shadow_present_pte(spte))
298 return false;
299
300 if ((spte & shadow_accessed_mask) &&
301 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
302 return false;
303
304 return true;
305 }
306
307 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
308 {
309 return (old_spte & bit_mask) && !(new_spte & bit_mask);
310 }
311
312 static void update_spte(u64 *sptep, u64 new_spte)
313 {
314 u64 mask, old_spte = *sptep;
315
316 WARN_ON(!is_rmap_spte(new_spte));
317
318 new_spte |= old_spte & shadow_dirty_mask;
319
320 mask = shadow_accessed_mask;
321 if (is_writable_pte(old_spte))
322 mask |= shadow_dirty_mask;
323
324 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
325 __set_spte(sptep, new_spte);
326 else
327 old_spte = __xchg_spte(sptep, new_spte);
328
329 if (!shadow_accessed_mask)
330 return;
331
332 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
333 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
334 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
335 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
336 }
337
338 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
339 struct kmem_cache *base_cache, int min)
340 {
341 void *obj;
342
343 if (cache->nobjs >= min)
344 return 0;
345 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
346 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
347 if (!obj)
348 return -ENOMEM;
349 cache->objects[cache->nobjs++] = obj;
350 }
351 return 0;
352 }
353
354 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
355 struct kmem_cache *cache)
356 {
357 while (mc->nobjs)
358 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
359 }
360
361 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
362 int min)
363 {
364 void *page;
365
366 if (cache->nobjs >= min)
367 return 0;
368 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
369 page = (void *)__get_free_page(GFP_KERNEL);
370 if (!page)
371 return -ENOMEM;
372 cache->objects[cache->nobjs++] = page;
373 }
374 return 0;
375 }
376
377 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
378 {
379 while (mc->nobjs)
380 free_page((unsigned long)mc->objects[--mc->nobjs]);
381 }
382
383 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
384 {
385 int r;
386
387 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
388 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
389 if (r)
390 goto out;
391 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
392 if (r)
393 goto out;
394 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
395 mmu_page_header_cache, 4);
396 out:
397 return r;
398 }
399
400 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
401 {
402 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
403 pte_list_desc_cache);
404 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
405 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
406 mmu_page_header_cache);
407 }
408
409 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
410 size_t size)
411 {
412 void *p;
413
414 BUG_ON(!mc->nobjs);
415 p = mc->objects[--mc->nobjs];
416 return p;
417 }
418
419 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
420 {
421 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
422 sizeof(struct pte_list_desc));
423 }
424
425 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
426 {
427 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
428 }
429
430 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
431 {
432 if (!sp->role.direct)
433 return sp->gfns[index];
434
435 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
436 }
437
438 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
439 {
440 if (sp->role.direct)
441 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
442 else
443 sp->gfns[index] = gfn;
444 }
445
446 /*
447 * Return the pointer to the large page information for a given gfn,
448 * handling slots that are not large page aligned.
449 */
450 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
451 struct kvm_memory_slot *slot,
452 int level)
453 {
454 unsigned long idx;
455
456 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
457 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
458 return &slot->lpage_info[level - 2][idx];
459 }
460
461 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
462 {
463 struct kvm_memory_slot *slot;
464 struct kvm_lpage_info *linfo;
465 int i;
466
467 slot = gfn_to_memslot(kvm, gfn);
468 for (i = PT_DIRECTORY_LEVEL;
469 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
470 linfo = lpage_info_slot(gfn, slot, i);
471 linfo->write_count += 1;
472 }
473 kvm->arch.indirect_shadow_pages++;
474 }
475
476 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
477 {
478 struct kvm_memory_slot *slot;
479 struct kvm_lpage_info *linfo;
480 int i;
481
482 slot = gfn_to_memslot(kvm, gfn);
483 for (i = PT_DIRECTORY_LEVEL;
484 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
485 linfo = lpage_info_slot(gfn, slot, i);
486 linfo->write_count -= 1;
487 WARN_ON(linfo->write_count < 0);
488 }
489 kvm->arch.indirect_shadow_pages--;
490 }
491
492 static int has_wrprotected_page(struct kvm *kvm,
493 gfn_t gfn,
494 int level)
495 {
496 struct kvm_memory_slot *slot;
497 struct kvm_lpage_info *linfo;
498
499 slot = gfn_to_memslot(kvm, gfn);
500 if (slot) {
501 linfo = lpage_info_slot(gfn, slot, level);
502 return linfo->write_count;
503 }
504
505 return 1;
506 }
507
508 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
509 {
510 unsigned long page_size;
511 int i, ret = 0;
512
513 page_size = kvm_host_page_size(kvm, gfn);
514
515 for (i = PT_PAGE_TABLE_LEVEL;
516 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
517 if (page_size >= KVM_HPAGE_SIZE(i))
518 ret = i;
519 else
520 break;
521 }
522
523 return ret;
524 }
525
526 static struct kvm_memory_slot *
527 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
528 bool no_dirty_log)
529 {
530 struct kvm_memory_slot *slot;
531
532 slot = gfn_to_memslot(vcpu->kvm, gfn);
533 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
534 (no_dirty_log && slot->dirty_bitmap))
535 slot = NULL;
536
537 return slot;
538 }
539
540 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
541 {
542 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
543 }
544
545 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
546 {
547 int host_level, level, max_level;
548
549 host_level = host_mapping_level(vcpu->kvm, large_gfn);
550
551 if (host_level == PT_PAGE_TABLE_LEVEL)
552 return host_level;
553
554 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
555 kvm_x86_ops->get_lpage_level() : host_level;
556
557 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
558 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
559 break;
560
561 return level - 1;
562 }
563
564 /*
565 * Pte mapping structures:
566 *
567 * If pte_list bit zero is zero, then pte_list point to the spte.
568 *
569 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
570 * pte_list_desc containing more mappings.
571 *
572 * Returns the number of pte entries before the spte was added or zero if
573 * the spte was not added.
574 *
575 */
576 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
577 unsigned long *pte_list)
578 {
579 struct pte_list_desc *desc;
580 int i, count = 0;
581
582 if (!*pte_list) {
583 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
584 *pte_list = (unsigned long)spte;
585 } else if (!(*pte_list & 1)) {
586 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
587 desc = mmu_alloc_pte_list_desc(vcpu);
588 desc->sptes[0] = (u64 *)*pte_list;
589 desc->sptes[1] = spte;
590 *pte_list = (unsigned long)desc | 1;
591 ++count;
592 } else {
593 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
594 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
595 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
596 desc = desc->more;
597 count += PTE_LIST_EXT;
598 }
599 if (desc->sptes[PTE_LIST_EXT-1]) {
600 desc->more = mmu_alloc_pte_list_desc(vcpu);
601 desc = desc->more;
602 }
603 for (i = 0; desc->sptes[i]; ++i)
604 ++count;
605 desc->sptes[i] = spte;
606 }
607 return count;
608 }
609
610 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
611 {
612 struct pte_list_desc *desc;
613 u64 *prev_spte;
614 int i;
615
616 if (!*pte_list)
617 return NULL;
618 else if (!(*pte_list & 1)) {
619 if (!spte)
620 return (u64 *)*pte_list;
621 return NULL;
622 }
623 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
624 prev_spte = NULL;
625 while (desc) {
626 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
627 if (prev_spte == spte)
628 return desc->sptes[i];
629 prev_spte = desc->sptes[i];
630 }
631 desc = desc->more;
632 }
633 return NULL;
634 }
635
636 static void
637 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
638 int i, struct pte_list_desc *prev_desc)
639 {
640 int j;
641
642 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
643 ;
644 desc->sptes[i] = desc->sptes[j];
645 desc->sptes[j] = NULL;
646 if (j != 0)
647 return;
648 if (!prev_desc && !desc->more)
649 *pte_list = (unsigned long)desc->sptes[0];
650 else
651 if (prev_desc)
652 prev_desc->more = desc->more;
653 else
654 *pte_list = (unsigned long)desc->more | 1;
655 mmu_free_pte_list_desc(desc);
656 }
657
658 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
659 {
660 struct pte_list_desc *desc;
661 struct pte_list_desc *prev_desc;
662 int i;
663
664 if (!*pte_list) {
665 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
666 BUG();
667 } else if (!(*pte_list & 1)) {
668 rmap_printk("pte_list_remove: %p 1->0\n", spte);
669 if ((u64 *)*pte_list != spte) {
670 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
671 BUG();
672 }
673 *pte_list = 0;
674 } else {
675 rmap_printk("pte_list_remove: %p many->many\n", spte);
676 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
677 prev_desc = NULL;
678 while (desc) {
679 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
680 if (desc->sptes[i] == spte) {
681 pte_list_desc_remove_entry(pte_list,
682 desc, i,
683 prev_desc);
684 return;
685 }
686 prev_desc = desc;
687 desc = desc->more;
688 }
689 pr_err("pte_list_remove: %p many->many\n", spte);
690 BUG();
691 }
692 }
693
694 typedef void (*pte_list_walk_fn) (u64 *spte);
695 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
696 {
697 struct pte_list_desc *desc;
698 int i;
699
700 if (!*pte_list)
701 return;
702
703 if (!(*pte_list & 1))
704 return fn((u64 *)*pte_list);
705
706 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
707 while (desc) {
708 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
709 fn(desc->sptes[i]);
710 desc = desc->more;
711 }
712 }
713
714 /*
715 * Take gfn and return the reverse mapping to it.
716 */
717 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
718 {
719 struct kvm_memory_slot *slot;
720 struct kvm_lpage_info *linfo;
721
722 slot = gfn_to_memslot(kvm, gfn);
723 if (likely(level == PT_PAGE_TABLE_LEVEL))
724 return &slot->rmap[gfn - slot->base_gfn];
725
726 linfo = lpage_info_slot(gfn, slot, level);
727
728 return &linfo->rmap_pde;
729 }
730
731 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
732 {
733 struct kvm_mmu_page *sp;
734 unsigned long *rmapp;
735
736 sp = page_header(__pa(spte));
737 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
738 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
739 return pte_list_add(vcpu, spte, rmapp);
740 }
741
742 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
743 {
744 return pte_list_next(rmapp, spte);
745 }
746
747 static void rmap_remove(struct kvm *kvm, u64 *spte)
748 {
749 struct kvm_mmu_page *sp;
750 gfn_t gfn;
751 unsigned long *rmapp;
752
753 sp = page_header(__pa(spte));
754 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
755 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
756 pte_list_remove(spte, rmapp);
757 }
758
759 static int set_spte_track_bits(u64 *sptep, u64 new_spte)
760 {
761 pfn_t pfn;
762 u64 old_spte = *sptep;
763
764 if (!spte_has_volatile_bits(old_spte))
765 __set_spte(sptep, new_spte);
766 else
767 old_spte = __xchg_spte(sptep, new_spte);
768
769 if (!is_rmap_spte(old_spte))
770 return 0;
771
772 pfn = spte_to_pfn(old_spte);
773 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
774 kvm_set_pfn_accessed(pfn);
775 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
776 kvm_set_pfn_dirty(pfn);
777 return 1;
778 }
779
780 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
781 {
782 if (set_spte_track_bits(sptep, new_spte))
783 rmap_remove(kvm, sptep);
784 }
785
786 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
787 {
788 unsigned long *rmapp;
789 u64 *spte;
790 int i, write_protected = 0;
791
792 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
793
794 spte = rmap_next(kvm, rmapp, NULL);
795 while (spte) {
796 BUG_ON(!spte);
797 BUG_ON(!(*spte & PT_PRESENT_MASK));
798 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
799 if (is_writable_pte(*spte)) {
800 update_spte(spte, *spte & ~PT_WRITABLE_MASK);
801 write_protected = 1;
802 }
803 spte = rmap_next(kvm, rmapp, spte);
804 }
805
806 /* check for huge page mappings */
807 for (i = PT_DIRECTORY_LEVEL;
808 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
809 rmapp = gfn_to_rmap(kvm, gfn, i);
810 spte = rmap_next(kvm, rmapp, NULL);
811 while (spte) {
812 BUG_ON(!spte);
813 BUG_ON(!(*spte & PT_PRESENT_MASK));
814 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
815 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
816 if (is_writable_pte(*spte)) {
817 drop_spte(kvm, spte,
818 shadow_trap_nonpresent_pte);
819 --kvm->stat.lpages;
820 spte = NULL;
821 write_protected = 1;
822 }
823 spte = rmap_next(kvm, rmapp, spte);
824 }
825 }
826
827 return write_protected;
828 }
829
830 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
831 unsigned long data)
832 {
833 u64 *spte;
834 int need_tlb_flush = 0;
835
836 while ((spte = rmap_next(kvm, rmapp, NULL))) {
837 BUG_ON(!(*spte & PT_PRESENT_MASK));
838 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
839 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
840 need_tlb_flush = 1;
841 }
842 return need_tlb_flush;
843 }
844
845 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
846 unsigned long data)
847 {
848 int need_flush = 0;
849 u64 *spte, new_spte;
850 pte_t *ptep = (pte_t *)data;
851 pfn_t new_pfn;
852
853 WARN_ON(pte_huge(*ptep));
854 new_pfn = pte_pfn(*ptep);
855 spte = rmap_next(kvm, rmapp, NULL);
856 while (spte) {
857 BUG_ON(!is_shadow_present_pte(*spte));
858 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
859 need_flush = 1;
860 if (pte_write(*ptep)) {
861 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
862 spte = rmap_next(kvm, rmapp, NULL);
863 } else {
864 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
865 new_spte |= (u64)new_pfn << PAGE_SHIFT;
866
867 new_spte &= ~PT_WRITABLE_MASK;
868 new_spte &= ~SPTE_HOST_WRITEABLE;
869 new_spte &= ~shadow_accessed_mask;
870 set_spte_track_bits(spte, new_spte);
871 spte = rmap_next(kvm, rmapp, spte);
872 }
873 }
874 if (need_flush)
875 kvm_flush_remote_tlbs(kvm);
876
877 return 0;
878 }
879
880 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
881 unsigned long data,
882 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
883 unsigned long data))
884 {
885 int i, j;
886 int ret;
887 int retval = 0;
888 struct kvm_memslots *slots;
889
890 slots = kvm_memslots(kvm);
891
892 for (i = 0; i < slots->nmemslots; i++) {
893 struct kvm_memory_slot *memslot = &slots->memslots[i];
894 unsigned long start = memslot->userspace_addr;
895 unsigned long end;
896
897 end = start + (memslot->npages << PAGE_SHIFT);
898 if (hva >= start && hva < end) {
899 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
900 gfn_t gfn = memslot->base_gfn + gfn_offset;
901
902 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
903
904 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
905 struct kvm_lpage_info *linfo;
906
907 linfo = lpage_info_slot(gfn, memslot,
908 PT_DIRECTORY_LEVEL + j);
909 ret |= handler(kvm, &linfo->rmap_pde, data);
910 }
911 trace_kvm_age_page(hva, memslot, ret);
912 retval |= ret;
913 }
914 }
915
916 return retval;
917 }
918
919 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
920 {
921 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
922 }
923
924 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
925 {
926 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
927 }
928
929 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
930 unsigned long data)
931 {
932 u64 *spte;
933 int young = 0;
934
935 /*
936 * Emulate the accessed bit for EPT, by checking if this page has
937 * an EPT mapping, and clearing it if it does. On the next access,
938 * a new EPT mapping will be established.
939 * This has some overhead, but not as much as the cost of swapping
940 * out actively used pages or breaking up actively used hugepages.
941 */
942 if (!shadow_accessed_mask)
943 return kvm_unmap_rmapp(kvm, rmapp, data);
944
945 spte = rmap_next(kvm, rmapp, NULL);
946 while (spte) {
947 int _young;
948 u64 _spte = *spte;
949 BUG_ON(!(_spte & PT_PRESENT_MASK));
950 _young = _spte & PT_ACCESSED_MASK;
951 if (_young) {
952 young = 1;
953 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
954 }
955 spte = rmap_next(kvm, rmapp, spte);
956 }
957 return young;
958 }
959
960 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
961 unsigned long data)
962 {
963 u64 *spte;
964 int young = 0;
965
966 /*
967 * If there's no access bit in the secondary pte set by the
968 * hardware it's up to gup-fast/gup to set the access bit in
969 * the primary pte or in the page structure.
970 */
971 if (!shadow_accessed_mask)
972 goto out;
973
974 spte = rmap_next(kvm, rmapp, NULL);
975 while (spte) {
976 u64 _spte = *spte;
977 BUG_ON(!(_spte & PT_PRESENT_MASK));
978 young = _spte & PT_ACCESSED_MASK;
979 if (young) {
980 young = 1;
981 break;
982 }
983 spte = rmap_next(kvm, rmapp, spte);
984 }
985 out:
986 return young;
987 }
988
989 #define RMAP_RECYCLE_THRESHOLD 1000
990
991 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
992 {
993 unsigned long *rmapp;
994 struct kvm_mmu_page *sp;
995
996 sp = page_header(__pa(spte));
997
998 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
999
1000 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1001 kvm_flush_remote_tlbs(vcpu->kvm);
1002 }
1003
1004 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1005 {
1006 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1007 }
1008
1009 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1010 {
1011 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1012 }
1013
1014 #ifdef MMU_DEBUG
1015 static int is_empty_shadow_page(u64 *spt)
1016 {
1017 u64 *pos;
1018 u64 *end;
1019
1020 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1021 if (is_shadow_present_pte(*pos)) {
1022 printk(KERN_ERR "%s: %p %llx\n", __func__,
1023 pos, *pos);
1024 return 0;
1025 }
1026 return 1;
1027 }
1028 #endif
1029
1030 /*
1031 * This value is the sum of all of the kvm instances's
1032 * kvm->arch.n_used_mmu_pages values. We need a global,
1033 * aggregate version in order to make the slab shrinker
1034 * faster
1035 */
1036 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1037 {
1038 kvm->arch.n_used_mmu_pages += nr;
1039 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1040 }
1041
1042 /*
1043 * Remove the sp from shadow page cache, after call it,
1044 * we can not find this sp from the cache, and the shadow
1045 * page table is still valid.
1046 * It should be under the protection of mmu lock.
1047 */
1048 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1049 {
1050 ASSERT(is_empty_shadow_page(sp->spt));
1051 hlist_del(&sp->hash_link);
1052 if (!sp->role.direct)
1053 free_page((unsigned long)sp->gfns);
1054 }
1055
1056 /*
1057 * Free the shadow page table and the sp, we can do it
1058 * out of the protection of mmu lock.
1059 */
1060 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1061 {
1062 list_del(&sp->link);
1063 free_page((unsigned long)sp->spt);
1064 kmem_cache_free(mmu_page_header_cache, sp);
1065 }
1066
1067 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1068 {
1069 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1070 }
1071
1072 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1073 struct kvm_mmu_page *sp, u64 *parent_pte)
1074 {
1075 if (!parent_pte)
1076 return;
1077
1078 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1079 }
1080
1081 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1082 u64 *parent_pte)
1083 {
1084 pte_list_remove(parent_pte, &sp->parent_ptes);
1085 }
1086
1087 static void drop_parent_pte(struct kvm_mmu_page *sp,
1088 u64 *parent_pte)
1089 {
1090 mmu_page_remove_parent_pte(sp, parent_pte);
1091 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1092 }
1093
1094 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1095 u64 *parent_pte, int direct)
1096 {
1097 struct kvm_mmu_page *sp;
1098 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1099 sizeof *sp);
1100 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1101 if (!direct)
1102 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1103 PAGE_SIZE);
1104 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1105 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1106 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1107 sp->parent_ptes = 0;
1108 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1109 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1110 return sp;
1111 }
1112
1113 static void mark_unsync(u64 *spte);
1114 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1115 {
1116 pte_list_walk(&sp->parent_ptes, mark_unsync);
1117 }
1118
1119 static void mark_unsync(u64 *spte)
1120 {
1121 struct kvm_mmu_page *sp;
1122 unsigned int index;
1123
1124 sp = page_header(__pa(spte));
1125 index = spte - sp->spt;
1126 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1127 return;
1128 if (sp->unsync_children++)
1129 return;
1130 kvm_mmu_mark_parents_unsync(sp);
1131 }
1132
1133 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1134 struct kvm_mmu_page *sp)
1135 {
1136 int i;
1137
1138 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1139 sp->spt[i] = shadow_trap_nonpresent_pte;
1140 }
1141
1142 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1143 struct kvm_mmu_page *sp)
1144 {
1145 return 1;
1146 }
1147
1148 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1149 {
1150 }
1151
1152 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1153 struct kvm_mmu_page *sp, u64 *spte,
1154 const void *pte)
1155 {
1156 WARN_ON(1);
1157 }
1158
1159 #define KVM_PAGE_ARRAY_NR 16
1160
1161 struct kvm_mmu_pages {
1162 struct mmu_page_and_offset {
1163 struct kvm_mmu_page *sp;
1164 unsigned int idx;
1165 } page[KVM_PAGE_ARRAY_NR];
1166 unsigned int nr;
1167 };
1168
1169 #define for_each_unsync_children(bitmap, idx) \
1170 for (idx = find_first_bit(bitmap, 512); \
1171 idx < 512; \
1172 idx = find_next_bit(bitmap, 512, idx+1))
1173
1174 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1175 int idx)
1176 {
1177 int i;
1178
1179 if (sp->unsync)
1180 for (i=0; i < pvec->nr; i++)
1181 if (pvec->page[i].sp == sp)
1182 return 0;
1183
1184 pvec->page[pvec->nr].sp = sp;
1185 pvec->page[pvec->nr].idx = idx;
1186 pvec->nr++;
1187 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1188 }
1189
1190 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1191 struct kvm_mmu_pages *pvec)
1192 {
1193 int i, ret, nr_unsync_leaf = 0;
1194
1195 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1196 struct kvm_mmu_page *child;
1197 u64 ent = sp->spt[i];
1198
1199 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1200 goto clear_child_bitmap;
1201
1202 child = page_header(ent & PT64_BASE_ADDR_MASK);
1203
1204 if (child->unsync_children) {
1205 if (mmu_pages_add(pvec, child, i))
1206 return -ENOSPC;
1207
1208 ret = __mmu_unsync_walk(child, pvec);
1209 if (!ret)
1210 goto clear_child_bitmap;
1211 else if (ret > 0)
1212 nr_unsync_leaf += ret;
1213 else
1214 return ret;
1215 } else if (child->unsync) {
1216 nr_unsync_leaf++;
1217 if (mmu_pages_add(pvec, child, i))
1218 return -ENOSPC;
1219 } else
1220 goto clear_child_bitmap;
1221
1222 continue;
1223
1224 clear_child_bitmap:
1225 __clear_bit(i, sp->unsync_child_bitmap);
1226 sp->unsync_children--;
1227 WARN_ON((int)sp->unsync_children < 0);
1228 }
1229
1230
1231 return nr_unsync_leaf;
1232 }
1233
1234 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1235 struct kvm_mmu_pages *pvec)
1236 {
1237 if (!sp->unsync_children)
1238 return 0;
1239
1240 mmu_pages_add(pvec, sp, 0);
1241 return __mmu_unsync_walk(sp, pvec);
1242 }
1243
1244 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1245 {
1246 WARN_ON(!sp->unsync);
1247 trace_kvm_mmu_sync_page(sp);
1248 sp->unsync = 0;
1249 --kvm->stat.mmu_unsync;
1250 }
1251
1252 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1253 struct list_head *invalid_list);
1254 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1255 struct list_head *invalid_list);
1256
1257 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1258 hlist_for_each_entry(sp, pos, \
1259 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1260 if ((sp)->gfn != (gfn)) {} else
1261
1262 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1263 hlist_for_each_entry(sp, pos, \
1264 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1265 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1266 (sp)->role.invalid) {} else
1267
1268 /* @sp->gfn should be write-protected at the call site */
1269 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1270 struct list_head *invalid_list, bool clear_unsync)
1271 {
1272 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1273 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1274 return 1;
1275 }
1276
1277 if (clear_unsync)
1278 kvm_unlink_unsync_page(vcpu->kvm, sp);
1279
1280 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1281 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1282 return 1;
1283 }
1284
1285 kvm_mmu_flush_tlb(vcpu);
1286 return 0;
1287 }
1288
1289 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1290 struct kvm_mmu_page *sp)
1291 {
1292 LIST_HEAD(invalid_list);
1293 int ret;
1294
1295 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1296 if (ret)
1297 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1298
1299 return ret;
1300 }
1301
1302 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1303 struct list_head *invalid_list)
1304 {
1305 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1306 }
1307
1308 /* @gfn should be write-protected at the call site */
1309 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1310 {
1311 struct kvm_mmu_page *s;
1312 struct hlist_node *node;
1313 LIST_HEAD(invalid_list);
1314 bool flush = false;
1315
1316 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1317 if (!s->unsync)
1318 continue;
1319
1320 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1321 kvm_unlink_unsync_page(vcpu->kvm, s);
1322 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1323 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1324 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1325 continue;
1326 }
1327 flush = true;
1328 }
1329
1330 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1331 if (flush)
1332 kvm_mmu_flush_tlb(vcpu);
1333 }
1334
1335 struct mmu_page_path {
1336 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1337 unsigned int idx[PT64_ROOT_LEVEL-1];
1338 };
1339
1340 #define for_each_sp(pvec, sp, parents, i) \
1341 for (i = mmu_pages_next(&pvec, &parents, -1), \
1342 sp = pvec.page[i].sp; \
1343 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1344 i = mmu_pages_next(&pvec, &parents, i))
1345
1346 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1347 struct mmu_page_path *parents,
1348 int i)
1349 {
1350 int n;
1351
1352 for (n = i+1; n < pvec->nr; n++) {
1353 struct kvm_mmu_page *sp = pvec->page[n].sp;
1354
1355 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1356 parents->idx[0] = pvec->page[n].idx;
1357 return n;
1358 }
1359
1360 parents->parent[sp->role.level-2] = sp;
1361 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1362 }
1363
1364 return n;
1365 }
1366
1367 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1368 {
1369 struct kvm_mmu_page *sp;
1370 unsigned int level = 0;
1371
1372 do {
1373 unsigned int idx = parents->idx[level];
1374
1375 sp = parents->parent[level];
1376 if (!sp)
1377 return;
1378
1379 --sp->unsync_children;
1380 WARN_ON((int)sp->unsync_children < 0);
1381 __clear_bit(idx, sp->unsync_child_bitmap);
1382 level++;
1383 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1384 }
1385
1386 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1387 struct mmu_page_path *parents,
1388 struct kvm_mmu_pages *pvec)
1389 {
1390 parents->parent[parent->role.level-1] = NULL;
1391 pvec->nr = 0;
1392 }
1393
1394 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1395 struct kvm_mmu_page *parent)
1396 {
1397 int i;
1398 struct kvm_mmu_page *sp;
1399 struct mmu_page_path parents;
1400 struct kvm_mmu_pages pages;
1401 LIST_HEAD(invalid_list);
1402
1403 kvm_mmu_pages_init(parent, &parents, &pages);
1404 while (mmu_unsync_walk(parent, &pages)) {
1405 int protected = 0;
1406
1407 for_each_sp(pages, sp, parents, i)
1408 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1409
1410 if (protected)
1411 kvm_flush_remote_tlbs(vcpu->kvm);
1412
1413 for_each_sp(pages, sp, parents, i) {
1414 kvm_sync_page(vcpu, sp, &invalid_list);
1415 mmu_pages_clear_parents(&parents);
1416 }
1417 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1418 cond_resched_lock(&vcpu->kvm->mmu_lock);
1419 kvm_mmu_pages_init(parent, &parents, &pages);
1420 }
1421 }
1422
1423 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1424 gfn_t gfn,
1425 gva_t gaddr,
1426 unsigned level,
1427 int direct,
1428 unsigned access,
1429 u64 *parent_pte)
1430 {
1431 union kvm_mmu_page_role role;
1432 unsigned quadrant;
1433 struct kvm_mmu_page *sp;
1434 struct hlist_node *node;
1435 bool need_sync = false;
1436
1437 role = vcpu->arch.mmu.base_role;
1438 role.level = level;
1439 role.direct = direct;
1440 if (role.direct)
1441 role.cr4_pae = 0;
1442 role.access = access;
1443 if (!vcpu->arch.mmu.direct_map
1444 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1445 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1446 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1447 role.quadrant = quadrant;
1448 }
1449 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1450 if (!need_sync && sp->unsync)
1451 need_sync = true;
1452
1453 if (sp->role.word != role.word)
1454 continue;
1455
1456 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1457 break;
1458
1459 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1460 if (sp->unsync_children) {
1461 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1462 kvm_mmu_mark_parents_unsync(sp);
1463 } else if (sp->unsync)
1464 kvm_mmu_mark_parents_unsync(sp);
1465
1466 trace_kvm_mmu_get_page(sp, false);
1467 return sp;
1468 }
1469 ++vcpu->kvm->stat.mmu_cache_miss;
1470 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1471 if (!sp)
1472 return sp;
1473 sp->gfn = gfn;
1474 sp->role = role;
1475 hlist_add_head(&sp->hash_link,
1476 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1477 if (!direct) {
1478 if (rmap_write_protect(vcpu->kvm, gfn))
1479 kvm_flush_remote_tlbs(vcpu->kvm);
1480 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1481 kvm_sync_pages(vcpu, gfn);
1482
1483 account_shadowed(vcpu->kvm, gfn);
1484 }
1485 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1486 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1487 else
1488 nonpaging_prefetch_page(vcpu, sp);
1489 trace_kvm_mmu_get_page(sp, true);
1490 return sp;
1491 }
1492
1493 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1494 struct kvm_vcpu *vcpu, u64 addr)
1495 {
1496 iterator->addr = addr;
1497 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1498 iterator->level = vcpu->arch.mmu.shadow_root_level;
1499
1500 if (iterator->level == PT64_ROOT_LEVEL &&
1501 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1502 !vcpu->arch.mmu.direct_map)
1503 --iterator->level;
1504
1505 if (iterator->level == PT32E_ROOT_LEVEL) {
1506 iterator->shadow_addr
1507 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1508 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1509 --iterator->level;
1510 if (!iterator->shadow_addr)
1511 iterator->level = 0;
1512 }
1513 }
1514
1515 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1516 {
1517 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1518 return false;
1519
1520 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1521 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1522 return true;
1523 }
1524
1525 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1526 {
1527 if (is_last_spte(*iterator->sptep, iterator->level)) {
1528 iterator->level = 0;
1529 return;
1530 }
1531
1532 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1533 --iterator->level;
1534 }
1535
1536 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1537 {
1538 u64 spte;
1539
1540 spte = __pa(sp->spt)
1541 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1542 | PT_WRITABLE_MASK | PT_USER_MASK;
1543 __set_spte(sptep, spte);
1544 }
1545
1546 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1547 {
1548 if (is_large_pte(*sptep)) {
1549 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1550 kvm_flush_remote_tlbs(vcpu->kvm);
1551 }
1552 }
1553
1554 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1555 unsigned direct_access)
1556 {
1557 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1558 struct kvm_mmu_page *child;
1559
1560 /*
1561 * For the direct sp, if the guest pte's dirty bit
1562 * changed form clean to dirty, it will corrupt the
1563 * sp's access: allow writable in the read-only sp,
1564 * so we should update the spte at this point to get
1565 * a new sp with the correct access.
1566 */
1567 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1568 if (child->role.access == direct_access)
1569 return;
1570
1571 drop_parent_pte(child, sptep);
1572 kvm_flush_remote_tlbs(vcpu->kvm);
1573 }
1574 }
1575
1576 static void mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1577 u64 *spte)
1578 {
1579 u64 pte;
1580 struct kvm_mmu_page *child;
1581
1582 pte = *spte;
1583 if (is_shadow_present_pte(pte)) {
1584 if (is_last_spte(pte, sp->role.level))
1585 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
1586 else {
1587 child = page_header(pte & PT64_BASE_ADDR_MASK);
1588 drop_parent_pte(child, spte);
1589 }
1590 }
1591 __set_spte(spte, shadow_trap_nonpresent_pte);
1592 if (is_large_pte(pte))
1593 --kvm->stat.lpages;
1594 }
1595
1596 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1597 struct kvm_mmu_page *sp)
1598 {
1599 unsigned i;
1600
1601 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1602 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1603 }
1604
1605 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1606 {
1607 mmu_page_remove_parent_pte(sp, parent_pte);
1608 }
1609
1610 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1611 {
1612 int i;
1613 struct kvm_vcpu *vcpu;
1614
1615 kvm_for_each_vcpu(i, vcpu, kvm)
1616 vcpu->arch.last_pte_updated = NULL;
1617 }
1618
1619 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1620 {
1621 u64 *parent_pte;
1622
1623 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1624 drop_parent_pte(sp, parent_pte);
1625 }
1626
1627 static int mmu_zap_unsync_children(struct kvm *kvm,
1628 struct kvm_mmu_page *parent,
1629 struct list_head *invalid_list)
1630 {
1631 int i, zapped = 0;
1632 struct mmu_page_path parents;
1633 struct kvm_mmu_pages pages;
1634
1635 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1636 return 0;
1637
1638 kvm_mmu_pages_init(parent, &parents, &pages);
1639 while (mmu_unsync_walk(parent, &pages)) {
1640 struct kvm_mmu_page *sp;
1641
1642 for_each_sp(pages, sp, parents, i) {
1643 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1644 mmu_pages_clear_parents(&parents);
1645 zapped++;
1646 }
1647 kvm_mmu_pages_init(parent, &parents, &pages);
1648 }
1649
1650 return zapped;
1651 }
1652
1653 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1654 struct list_head *invalid_list)
1655 {
1656 int ret;
1657
1658 trace_kvm_mmu_prepare_zap_page(sp);
1659 ++kvm->stat.mmu_shadow_zapped;
1660 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1661 kvm_mmu_page_unlink_children(kvm, sp);
1662 kvm_mmu_unlink_parents(kvm, sp);
1663 if (!sp->role.invalid && !sp->role.direct)
1664 unaccount_shadowed(kvm, sp->gfn);
1665 if (sp->unsync)
1666 kvm_unlink_unsync_page(kvm, sp);
1667 if (!sp->root_count) {
1668 /* Count self */
1669 ret++;
1670 list_move(&sp->link, invalid_list);
1671 kvm_mod_used_mmu_pages(kvm, -1);
1672 } else {
1673 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1674 kvm_reload_remote_mmus(kvm);
1675 }
1676
1677 sp->role.invalid = 1;
1678 kvm_mmu_reset_last_pte_updated(kvm);
1679 return ret;
1680 }
1681
1682 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1683 struct list_head *invalid_list)
1684 {
1685 struct kvm_mmu_page *sp;
1686
1687 if (list_empty(invalid_list))
1688 return;
1689
1690 kvm_flush_remote_tlbs(kvm);
1691
1692 do {
1693 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1694 WARN_ON(!sp->role.invalid || sp->root_count);
1695 kvm_mmu_isolate_page(sp);
1696 kvm_mmu_free_page(sp);
1697 } while (!list_empty(invalid_list));
1698
1699 }
1700
1701 /*
1702 * Changing the number of mmu pages allocated to the vm
1703 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1704 */
1705 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1706 {
1707 LIST_HEAD(invalid_list);
1708 /*
1709 * If we set the number of mmu pages to be smaller be than the
1710 * number of actived pages , we must to free some mmu pages before we
1711 * change the value
1712 */
1713
1714 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1715 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1716 !list_empty(&kvm->arch.active_mmu_pages)) {
1717 struct kvm_mmu_page *page;
1718
1719 page = container_of(kvm->arch.active_mmu_pages.prev,
1720 struct kvm_mmu_page, link);
1721 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1722 }
1723 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1724 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1725 }
1726
1727 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1728 }
1729
1730 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1731 {
1732 struct kvm_mmu_page *sp;
1733 struct hlist_node *node;
1734 LIST_HEAD(invalid_list);
1735 int r;
1736
1737 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1738 r = 0;
1739
1740 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1741 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1742 sp->role.word);
1743 r = 1;
1744 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1745 }
1746 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1747 return r;
1748 }
1749
1750 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1751 {
1752 struct kvm_mmu_page *sp;
1753 struct hlist_node *node;
1754 LIST_HEAD(invalid_list);
1755
1756 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1757 pgprintk("%s: zap %llx %x\n",
1758 __func__, gfn, sp->role.word);
1759 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1760 }
1761 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1762 }
1763
1764 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1765 {
1766 int slot = memslot_id(kvm, gfn);
1767 struct kvm_mmu_page *sp = page_header(__pa(pte));
1768
1769 __set_bit(slot, sp->slot_bitmap);
1770 }
1771
1772 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1773 {
1774 int i;
1775 u64 *pt = sp->spt;
1776
1777 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1778 return;
1779
1780 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1781 if (pt[i] == shadow_notrap_nonpresent_pte)
1782 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1783 }
1784 }
1785
1786 /*
1787 * The function is based on mtrr_type_lookup() in
1788 * arch/x86/kernel/cpu/mtrr/generic.c
1789 */
1790 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1791 u64 start, u64 end)
1792 {
1793 int i;
1794 u64 base, mask;
1795 u8 prev_match, curr_match;
1796 int num_var_ranges = KVM_NR_VAR_MTRR;
1797
1798 if (!mtrr_state->enabled)
1799 return 0xFF;
1800
1801 /* Make end inclusive end, instead of exclusive */
1802 end--;
1803
1804 /* Look in fixed ranges. Just return the type as per start */
1805 if (mtrr_state->have_fixed && (start < 0x100000)) {
1806 int idx;
1807
1808 if (start < 0x80000) {
1809 idx = 0;
1810 idx += (start >> 16);
1811 return mtrr_state->fixed_ranges[idx];
1812 } else if (start < 0xC0000) {
1813 idx = 1 * 8;
1814 idx += ((start - 0x80000) >> 14);
1815 return mtrr_state->fixed_ranges[idx];
1816 } else if (start < 0x1000000) {
1817 idx = 3 * 8;
1818 idx += ((start - 0xC0000) >> 12);
1819 return mtrr_state->fixed_ranges[idx];
1820 }
1821 }
1822
1823 /*
1824 * Look in variable ranges
1825 * Look of multiple ranges matching this address and pick type
1826 * as per MTRR precedence
1827 */
1828 if (!(mtrr_state->enabled & 2))
1829 return mtrr_state->def_type;
1830
1831 prev_match = 0xFF;
1832 for (i = 0; i < num_var_ranges; ++i) {
1833 unsigned short start_state, end_state;
1834
1835 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1836 continue;
1837
1838 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1839 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1840 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1841 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1842
1843 start_state = ((start & mask) == (base & mask));
1844 end_state = ((end & mask) == (base & mask));
1845 if (start_state != end_state)
1846 return 0xFE;
1847
1848 if ((start & mask) != (base & mask))
1849 continue;
1850
1851 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1852 if (prev_match == 0xFF) {
1853 prev_match = curr_match;
1854 continue;
1855 }
1856
1857 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1858 curr_match == MTRR_TYPE_UNCACHABLE)
1859 return MTRR_TYPE_UNCACHABLE;
1860
1861 if ((prev_match == MTRR_TYPE_WRBACK &&
1862 curr_match == MTRR_TYPE_WRTHROUGH) ||
1863 (prev_match == MTRR_TYPE_WRTHROUGH &&
1864 curr_match == MTRR_TYPE_WRBACK)) {
1865 prev_match = MTRR_TYPE_WRTHROUGH;
1866 curr_match = MTRR_TYPE_WRTHROUGH;
1867 }
1868
1869 if (prev_match != curr_match)
1870 return MTRR_TYPE_UNCACHABLE;
1871 }
1872
1873 if (prev_match != 0xFF)
1874 return prev_match;
1875
1876 return mtrr_state->def_type;
1877 }
1878
1879 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1880 {
1881 u8 mtrr;
1882
1883 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1884 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1885 if (mtrr == 0xfe || mtrr == 0xff)
1886 mtrr = MTRR_TYPE_WRBACK;
1887 return mtrr;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1890
1891 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1892 {
1893 trace_kvm_mmu_unsync_page(sp);
1894 ++vcpu->kvm->stat.mmu_unsync;
1895 sp->unsync = 1;
1896
1897 kvm_mmu_mark_parents_unsync(sp);
1898 mmu_convert_notrap(sp);
1899 }
1900
1901 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1902 {
1903 struct kvm_mmu_page *s;
1904 struct hlist_node *node;
1905
1906 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1907 if (s->unsync)
1908 continue;
1909 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1910 __kvm_unsync_page(vcpu, s);
1911 }
1912 }
1913
1914 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1915 bool can_unsync)
1916 {
1917 struct kvm_mmu_page *s;
1918 struct hlist_node *node;
1919 bool need_unsync = false;
1920
1921 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1922 if (!can_unsync)
1923 return 1;
1924
1925 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1926 return 1;
1927
1928 if (!need_unsync && !s->unsync) {
1929 if (!oos_shadow)
1930 return 1;
1931 need_unsync = true;
1932 }
1933 }
1934 if (need_unsync)
1935 kvm_unsync_pages(vcpu, gfn);
1936 return 0;
1937 }
1938
1939 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1940 unsigned pte_access, int user_fault,
1941 int write_fault, int level,
1942 gfn_t gfn, pfn_t pfn, bool speculative,
1943 bool can_unsync, bool host_writable)
1944 {
1945 u64 spte, entry = *sptep;
1946 int ret = 0;
1947
1948 /*
1949 * We don't set the accessed bit, since we sometimes want to see
1950 * whether the guest actually used the pte (in order to detect
1951 * demand paging).
1952 */
1953 spte = PT_PRESENT_MASK;
1954 if (!speculative)
1955 spte |= shadow_accessed_mask;
1956
1957 if (pte_access & ACC_EXEC_MASK)
1958 spte |= shadow_x_mask;
1959 else
1960 spte |= shadow_nx_mask;
1961 if (pte_access & ACC_USER_MASK)
1962 spte |= shadow_user_mask;
1963 if (level > PT_PAGE_TABLE_LEVEL)
1964 spte |= PT_PAGE_SIZE_MASK;
1965 if (tdp_enabled)
1966 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1967 kvm_is_mmio_pfn(pfn));
1968
1969 if (host_writable)
1970 spte |= SPTE_HOST_WRITEABLE;
1971 else
1972 pte_access &= ~ACC_WRITE_MASK;
1973
1974 spte |= (u64)pfn << PAGE_SHIFT;
1975
1976 if ((pte_access & ACC_WRITE_MASK)
1977 || (!vcpu->arch.mmu.direct_map && write_fault
1978 && !is_write_protection(vcpu) && !user_fault)) {
1979
1980 if (level > PT_PAGE_TABLE_LEVEL &&
1981 has_wrprotected_page(vcpu->kvm, gfn, level)) {
1982 ret = 1;
1983 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1984 goto done;
1985 }
1986
1987 spte |= PT_WRITABLE_MASK;
1988
1989 if (!vcpu->arch.mmu.direct_map
1990 && !(pte_access & ACC_WRITE_MASK)) {
1991 spte &= ~PT_USER_MASK;
1992 /*
1993 * If we converted a user page to a kernel page,
1994 * so that the kernel can write to it when cr0.wp=0,
1995 * then we should prevent the kernel from executing it
1996 * if SMEP is enabled.
1997 */
1998 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
1999 spte |= PT64_NX_MASK;
2000 }
2001
2002 /*
2003 * Optimization: for pte sync, if spte was writable the hash
2004 * lookup is unnecessary (and expensive). Write protection
2005 * is responsibility of mmu_get_page / kvm_sync_page.
2006 * Same reasoning can be applied to dirty page accounting.
2007 */
2008 if (!can_unsync && is_writable_pte(*sptep))
2009 goto set_pte;
2010
2011 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2012 pgprintk("%s: found shadow page for %llx, marking ro\n",
2013 __func__, gfn);
2014 ret = 1;
2015 pte_access &= ~ACC_WRITE_MASK;
2016 if (is_writable_pte(spte))
2017 spte &= ~PT_WRITABLE_MASK;
2018 }
2019 }
2020
2021 if (pte_access & ACC_WRITE_MASK)
2022 mark_page_dirty(vcpu->kvm, gfn);
2023
2024 set_pte:
2025 update_spte(sptep, spte);
2026 /*
2027 * If we overwrite a writable spte with a read-only one we
2028 * should flush remote TLBs. Otherwise rmap_write_protect
2029 * will find a read-only spte, even though the writable spte
2030 * might be cached on a CPU's TLB.
2031 */
2032 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2033 kvm_flush_remote_tlbs(vcpu->kvm);
2034 done:
2035 return ret;
2036 }
2037
2038 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2039 unsigned pt_access, unsigned pte_access,
2040 int user_fault, int write_fault,
2041 int *emulate, int level, gfn_t gfn,
2042 pfn_t pfn, bool speculative,
2043 bool host_writable)
2044 {
2045 int was_rmapped = 0;
2046 int rmap_count;
2047
2048 pgprintk("%s: spte %llx access %x write_fault %d"
2049 " user_fault %d gfn %llx\n",
2050 __func__, *sptep, pt_access,
2051 write_fault, user_fault, gfn);
2052
2053 if (is_rmap_spte(*sptep)) {
2054 /*
2055 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2056 * the parent of the now unreachable PTE.
2057 */
2058 if (level > PT_PAGE_TABLE_LEVEL &&
2059 !is_large_pte(*sptep)) {
2060 struct kvm_mmu_page *child;
2061 u64 pte = *sptep;
2062
2063 child = page_header(pte & PT64_BASE_ADDR_MASK);
2064 drop_parent_pte(child, sptep);
2065 kvm_flush_remote_tlbs(vcpu->kvm);
2066 } else if (pfn != spte_to_pfn(*sptep)) {
2067 pgprintk("hfn old %llx new %llx\n",
2068 spte_to_pfn(*sptep), pfn);
2069 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2070 kvm_flush_remote_tlbs(vcpu->kvm);
2071 } else
2072 was_rmapped = 1;
2073 }
2074
2075 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2076 level, gfn, pfn, speculative, true,
2077 host_writable)) {
2078 if (write_fault)
2079 *emulate = 1;
2080 kvm_mmu_flush_tlb(vcpu);
2081 }
2082
2083 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2084 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2085 is_large_pte(*sptep)? "2MB" : "4kB",
2086 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2087 *sptep, sptep);
2088 if (!was_rmapped && is_large_pte(*sptep))
2089 ++vcpu->kvm->stat.lpages;
2090
2091 if (is_shadow_present_pte(*sptep)) {
2092 page_header_update_slot(vcpu->kvm, sptep, gfn);
2093 if (!was_rmapped) {
2094 rmap_count = rmap_add(vcpu, sptep, gfn);
2095 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2096 rmap_recycle(vcpu, sptep, gfn);
2097 }
2098 }
2099 kvm_release_pfn_clean(pfn);
2100 if (speculative) {
2101 vcpu->arch.last_pte_updated = sptep;
2102 vcpu->arch.last_pte_gfn = gfn;
2103 }
2104 }
2105
2106 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2107 {
2108 }
2109
2110 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2111 bool no_dirty_log)
2112 {
2113 struct kvm_memory_slot *slot;
2114 unsigned long hva;
2115
2116 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2117 if (!slot) {
2118 get_page(bad_page);
2119 return page_to_pfn(bad_page);
2120 }
2121
2122 hva = gfn_to_hva_memslot(slot, gfn);
2123
2124 return hva_to_pfn_atomic(vcpu->kvm, hva);
2125 }
2126
2127 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2128 struct kvm_mmu_page *sp,
2129 u64 *start, u64 *end)
2130 {
2131 struct page *pages[PTE_PREFETCH_NUM];
2132 unsigned access = sp->role.access;
2133 int i, ret;
2134 gfn_t gfn;
2135
2136 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2137 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2138 return -1;
2139
2140 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2141 if (ret <= 0)
2142 return -1;
2143
2144 for (i = 0; i < ret; i++, gfn++, start++)
2145 mmu_set_spte(vcpu, start, ACC_ALL,
2146 access, 0, 0, NULL,
2147 sp->role.level, gfn,
2148 page_to_pfn(pages[i]), true, true);
2149
2150 return 0;
2151 }
2152
2153 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2154 struct kvm_mmu_page *sp, u64 *sptep)
2155 {
2156 u64 *spte, *start = NULL;
2157 int i;
2158
2159 WARN_ON(!sp->role.direct);
2160
2161 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2162 spte = sp->spt + i;
2163
2164 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2165 if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2166 if (!start)
2167 continue;
2168 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2169 break;
2170 start = NULL;
2171 } else if (!start)
2172 start = spte;
2173 }
2174 }
2175
2176 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2177 {
2178 struct kvm_mmu_page *sp;
2179
2180 /*
2181 * Since it's no accessed bit on EPT, it's no way to
2182 * distinguish between actually accessed translations
2183 * and prefetched, so disable pte prefetch if EPT is
2184 * enabled.
2185 */
2186 if (!shadow_accessed_mask)
2187 return;
2188
2189 sp = page_header(__pa(sptep));
2190 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2191 return;
2192
2193 __direct_pte_prefetch(vcpu, sp, sptep);
2194 }
2195
2196 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2197 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2198 bool prefault)
2199 {
2200 struct kvm_shadow_walk_iterator iterator;
2201 struct kvm_mmu_page *sp;
2202 int emulate = 0;
2203 gfn_t pseudo_gfn;
2204
2205 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2206 if (iterator.level == level) {
2207 unsigned pte_access = ACC_ALL;
2208
2209 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2210 0, write, &emulate,
2211 level, gfn, pfn, prefault, map_writable);
2212 direct_pte_prefetch(vcpu, iterator.sptep);
2213 ++vcpu->stat.pf_fixed;
2214 break;
2215 }
2216
2217 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2218 u64 base_addr = iterator.addr;
2219
2220 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2221 pseudo_gfn = base_addr >> PAGE_SHIFT;
2222 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2223 iterator.level - 1,
2224 1, ACC_ALL, iterator.sptep);
2225 if (!sp) {
2226 pgprintk("nonpaging_map: ENOMEM\n");
2227 kvm_release_pfn_clean(pfn);
2228 return -ENOMEM;
2229 }
2230
2231 __set_spte(iterator.sptep,
2232 __pa(sp->spt)
2233 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2234 | shadow_user_mask | shadow_x_mask
2235 | shadow_accessed_mask);
2236 }
2237 }
2238 return emulate;
2239 }
2240
2241 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2242 {
2243 siginfo_t info;
2244
2245 info.si_signo = SIGBUS;
2246 info.si_errno = 0;
2247 info.si_code = BUS_MCEERR_AR;
2248 info.si_addr = (void __user *)address;
2249 info.si_addr_lsb = PAGE_SHIFT;
2250
2251 send_sig_info(SIGBUS, &info, tsk);
2252 }
2253
2254 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gva_t gva,
2255 unsigned access, gfn_t gfn, pfn_t pfn)
2256 {
2257 kvm_release_pfn_clean(pfn);
2258 if (is_hwpoison_pfn(pfn)) {
2259 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2260 return 0;
2261 } else if (is_fault_pfn(pfn))
2262 return -EFAULT;
2263
2264 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2265 return 1;
2266 }
2267
2268 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2269 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2270 {
2271 pfn_t pfn = *pfnp;
2272 gfn_t gfn = *gfnp;
2273 int level = *levelp;
2274
2275 /*
2276 * Check if it's a transparent hugepage. If this would be an
2277 * hugetlbfs page, level wouldn't be set to
2278 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2279 * here.
2280 */
2281 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2282 level == PT_PAGE_TABLE_LEVEL &&
2283 PageTransCompound(pfn_to_page(pfn)) &&
2284 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2285 unsigned long mask;
2286 /*
2287 * mmu_notifier_retry was successful and we hold the
2288 * mmu_lock here, so the pmd can't become splitting
2289 * from under us, and in turn
2290 * __split_huge_page_refcount() can't run from under
2291 * us and we can safely transfer the refcount from
2292 * PG_tail to PG_head as we switch the pfn to tail to
2293 * head.
2294 */
2295 *levelp = level = PT_DIRECTORY_LEVEL;
2296 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2297 VM_BUG_ON((gfn & mask) != (pfn & mask));
2298 if (pfn & mask) {
2299 gfn &= ~mask;
2300 *gfnp = gfn;
2301 kvm_release_pfn_clean(pfn);
2302 pfn &= ~mask;
2303 if (!get_page_unless_zero(pfn_to_page(pfn)))
2304 BUG();
2305 *pfnp = pfn;
2306 }
2307 }
2308 }
2309
2310 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2311 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2312
2313 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2314 bool prefault)
2315 {
2316 int r;
2317 int level;
2318 int force_pt_level;
2319 pfn_t pfn;
2320 unsigned long mmu_seq;
2321 bool map_writable;
2322
2323 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2324 if (likely(!force_pt_level)) {
2325 level = mapping_level(vcpu, gfn);
2326 /*
2327 * This path builds a PAE pagetable - so we can map
2328 * 2mb pages at maximum. Therefore check if the level
2329 * is larger than that.
2330 */
2331 if (level > PT_DIRECTORY_LEVEL)
2332 level = PT_DIRECTORY_LEVEL;
2333
2334 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2335 } else
2336 level = PT_PAGE_TABLE_LEVEL;
2337
2338 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2339 smp_rmb();
2340
2341 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2342 return 0;
2343
2344 /* mmio */
2345 if (is_error_pfn(pfn))
2346 return kvm_handle_bad_page(vcpu, v, ACC_ALL, gfn, pfn);
2347
2348 spin_lock(&vcpu->kvm->mmu_lock);
2349 if (mmu_notifier_retry(vcpu, mmu_seq))
2350 goto out_unlock;
2351 kvm_mmu_free_some_pages(vcpu);
2352 if (likely(!force_pt_level))
2353 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2354 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2355 prefault);
2356 spin_unlock(&vcpu->kvm->mmu_lock);
2357
2358
2359 return r;
2360
2361 out_unlock:
2362 spin_unlock(&vcpu->kvm->mmu_lock);
2363 kvm_release_pfn_clean(pfn);
2364 return 0;
2365 }
2366
2367
2368 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2369 {
2370 int i;
2371 struct kvm_mmu_page *sp;
2372 LIST_HEAD(invalid_list);
2373
2374 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2375 return;
2376 spin_lock(&vcpu->kvm->mmu_lock);
2377 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2378 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2379 vcpu->arch.mmu.direct_map)) {
2380 hpa_t root = vcpu->arch.mmu.root_hpa;
2381
2382 sp = page_header(root);
2383 --sp->root_count;
2384 if (!sp->root_count && sp->role.invalid) {
2385 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2386 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2387 }
2388 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2389 spin_unlock(&vcpu->kvm->mmu_lock);
2390 return;
2391 }
2392 for (i = 0; i < 4; ++i) {
2393 hpa_t root = vcpu->arch.mmu.pae_root[i];
2394
2395 if (root) {
2396 root &= PT64_BASE_ADDR_MASK;
2397 sp = page_header(root);
2398 --sp->root_count;
2399 if (!sp->root_count && sp->role.invalid)
2400 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2401 &invalid_list);
2402 }
2403 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2404 }
2405 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2406 spin_unlock(&vcpu->kvm->mmu_lock);
2407 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2408 }
2409
2410 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2411 {
2412 int ret = 0;
2413
2414 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2415 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2416 ret = 1;
2417 }
2418
2419 return ret;
2420 }
2421
2422 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2423 {
2424 struct kvm_mmu_page *sp;
2425 unsigned i;
2426
2427 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2428 spin_lock(&vcpu->kvm->mmu_lock);
2429 kvm_mmu_free_some_pages(vcpu);
2430 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2431 1, ACC_ALL, NULL);
2432 ++sp->root_count;
2433 spin_unlock(&vcpu->kvm->mmu_lock);
2434 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2435 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2436 for (i = 0; i < 4; ++i) {
2437 hpa_t root = vcpu->arch.mmu.pae_root[i];
2438
2439 ASSERT(!VALID_PAGE(root));
2440 spin_lock(&vcpu->kvm->mmu_lock);
2441 kvm_mmu_free_some_pages(vcpu);
2442 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2443 i << 30,
2444 PT32_ROOT_LEVEL, 1, ACC_ALL,
2445 NULL);
2446 root = __pa(sp->spt);
2447 ++sp->root_count;
2448 spin_unlock(&vcpu->kvm->mmu_lock);
2449 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2450 }
2451 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2452 } else
2453 BUG();
2454
2455 return 0;
2456 }
2457
2458 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2459 {
2460 struct kvm_mmu_page *sp;
2461 u64 pdptr, pm_mask;
2462 gfn_t root_gfn;
2463 int i;
2464
2465 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2466
2467 if (mmu_check_root(vcpu, root_gfn))
2468 return 1;
2469
2470 /*
2471 * Do we shadow a long mode page table? If so we need to
2472 * write-protect the guests page table root.
2473 */
2474 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2475 hpa_t root = vcpu->arch.mmu.root_hpa;
2476
2477 ASSERT(!VALID_PAGE(root));
2478
2479 spin_lock(&vcpu->kvm->mmu_lock);
2480 kvm_mmu_free_some_pages(vcpu);
2481 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2482 0, ACC_ALL, NULL);
2483 root = __pa(sp->spt);
2484 ++sp->root_count;
2485 spin_unlock(&vcpu->kvm->mmu_lock);
2486 vcpu->arch.mmu.root_hpa = root;
2487 return 0;
2488 }
2489
2490 /*
2491 * We shadow a 32 bit page table. This may be a legacy 2-level
2492 * or a PAE 3-level page table. In either case we need to be aware that
2493 * the shadow page table may be a PAE or a long mode page table.
2494 */
2495 pm_mask = PT_PRESENT_MASK;
2496 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2497 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2498
2499 for (i = 0; i < 4; ++i) {
2500 hpa_t root = vcpu->arch.mmu.pae_root[i];
2501
2502 ASSERT(!VALID_PAGE(root));
2503 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2504 pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2505 if (!is_present_gpte(pdptr)) {
2506 vcpu->arch.mmu.pae_root[i] = 0;
2507 continue;
2508 }
2509 root_gfn = pdptr >> PAGE_SHIFT;
2510 if (mmu_check_root(vcpu, root_gfn))
2511 return 1;
2512 }
2513 spin_lock(&vcpu->kvm->mmu_lock);
2514 kvm_mmu_free_some_pages(vcpu);
2515 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2516 PT32_ROOT_LEVEL, 0,
2517 ACC_ALL, NULL);
2518 root = __pa(sp->spt);
2519 ++sp->root_count;
2520 spin_unlock(&vcpu->kvm->mmu_lock);
2521
2522 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2523 }
2524 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2525
2526 /*
2527 * If we shadow a 32 bit page table with a long mode page
2528 * table we enter this path.
2529 */
2530 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2531 if (vcpu->arch.mmu.lm_root == NULL) {
2532 /*
2533 * The additional page necessary for this is only
2534 * allocated on demand.
2535 */
2536
2537 u64 *lm_root;
2538
2539 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2540 if (lm_root == NULL)
2541 return 1;
2542
2543 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2544
2545 vcpu->arch.mmu.lm_root = lm_root;
2546 }
2547
2548 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2549 }
2550
2551 return 0;
2552 }
2553
2554 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2555 {
2556 if (vcpu->arch.mmu.direct_map)
2557 return mmu_alloc_direct_roots(vcpu);
2558 else
2559 return mmu_alloc_shadow_roots(vcpu);
2560 }
2561
2562 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2563 {
2564 int i;
2565 struct kvm_mmu_page *sp;
2566
2567 if (vcpu->arch.mmu.direct_map)
2568 return;
2569
2570 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2571 return;
2572
2573 vcpu_clear_mmio_info(vcpu, ~0ul);
2574 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2575 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2576 hpa_t root = vcpu->arch.mmu.root_hpa;
2577 sp = page_header(root);
2578 mmu_sync_children(vcpu, sp);
2579 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2580 return;
2581 }
2582 for (i = 0; i < 4; ++i) {
2583 hpa_t root = vcpu->arch.mmu.pae_root[i];
2584
2585 if (root && VALID_PAGE(root)) {
2586 root &= PT64_BASE_ADDR_MASK;
2587 sp = page_header(root);
2588 mmu_sync_children(vcpu, sp);
2589 }
2590 }
2591 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2592 }
2593
2594 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2595 {
2596 spin_lock(&vcpu->kvm->mmu_lock);
2597 mmu_sync_roots(vcpu);
2598 spin_unlock(&vcpu->kvm->mmu_lock);
2599 }
2600
2601 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2602 u32 access, struct x86_exception *exception)
2603 {
2604 if (exception)
2605 exception->error_code = 0;
2606 return vaddr;
2607 }
2608
2609 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2610 u32 access,
2611 struct x86_exception *exception)
2612 {
2613 if (exception)
2614 exception->error_code = 0;
2615 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2616 }
2617
2618 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2619 u32 error_code, bool prefault)
2620 {
2621 gfn_t gfn;
2622 int r;
2623
2624 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2625 r = mmu_topup_memory_caches(vcpu);
2626 if (r)
2627 return r;
2628
2629 ASSERT(vcpu);
2630 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2631
2632 gfn = gva >> PAGE_SHIFT;
2633
2634 return nonpaging_map(vcpu, gva & PAGE_MASK,
2635 error_code & PFERR_WRITE_MASK, gfn, prefault);
2636 }
2637
2638 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
2639 {
2640 struct kvm_arch_async_pf arch;
2641
2642 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
2643 arch.gfn = gfn;
2644 arch.direct_map = vcpu->arch.mmu.direct_map;
2645 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
2646
2647 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
2648 }
2649
2650 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
2651 {
2652 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
2653 kvm_event_needs_reinjection(vcpu)))
2654 return false;
2655
2656 return kvm_x86_ops->interrupt_allowed(vcpu);
2657 }
2658
2659 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2660 gva_t gva, pfn_t *pfn, bool write, bool *writable)
2661 {
2662 bool async;
2663
2664 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
2665
2666 if (!async)
2667 return false; /* *pfn has correct page already */
2668
2669 put_page(pfn_to_page(*pfn));
2670
2671 if (!prefault && can_do_async_pf(vcpu)) {
2672 trace_kvm_try_async_get_page(gva, gfn);
2673 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
2674 trace_kvm_async_pf_doublefault(gva, gfn);
2675 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2676 return true;
2677 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
2678 return true;
2679 }
2680
2681 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
2682
2683 return false;
2684 }
2685
2686 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
2687 bool prefault)
2688 {
2689 pfn_t pfn;
2690 int r;
2691 int level;
2692 int force_pt_level;
2693 gfn_t gfn = gpa >> PAGE_SHIFT;
2694 unsigned long mmu_seq;
2695 int write = error_code & PFERR_WRITE_MASK;
2696 bool map_writable;
2697
2698 ASSERT(vcpu);
2699 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2700
2701 r = mmu_topup_memory_caches(vcpu);
2702 if (r)
2703 return r;
2704
2705 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2706 if (likely(!force_pt_level)) {
2707 level = mapping_level(vcpu, gfn);
2708 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2709 } else
2710 level = PT_PAGE_TABLE_LEVEL;
2711
2712 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2713 smp_rmb();
2714
2715 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
2716 return 0;
2717
2718 /* mmio */
2719 if (is_error_pfn(pfn))
2720 return kvm_handle_bad_page(vcpu, 0, 0, gfn, pfn);
2721 spin_lock(&vcpu->kvm->mmu_lock);
2722 if (mmu_notifier_retry(vcpu, mmu_seq))
2723 goto out_unlock;
2724 kvm_mmu_free_some_pages(vcpu);
2725 if (likely(!force_pt_level))
2726 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2727 r = __direct_map(vcpu, gpa, write, map_writable,
2728 level, gfn, pfn, prefault);
2729 spin_unlock(&vcpu->kvm->mmu_lock);
2730
2731 return r;
2732
2733 out_unlock:
2734 spin_unlock(&vcpu->kvm->mmu_lock);
2735 kvm_release_pfn_clean(pfn);
2736 return 0;
2737 }
2738
2739 static void nonpaging_free(struct kvm_vcpu *vcpu)
2740 {
2741 mmu_free_roots(vcpu);
2742 }
2743
2744 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2745 struct kvm_mmu *context)
2746 {
2747 context->new_cr3 = nonpaging_new_cr3;
2748 context->page_fault = nonpaging_page_fault;
2749 context->gva_to_gpa = nonpaging_gva_to_gpa;
2750 context->free = nonpaging_free;
2751 context->prefetch_page = nonpaging_prefetch_page;
2752 context->sync_page = nonpaging_sync_page;
2753 context->invlpg = nonpaging_invlpg;
2754 context->update_pte = nonpaging_update_pte;
2755 context->root_level = 0;
2756 context->shadow_root_level = PT32E_ROOT_LEVEL;
2757 context->root_hpa = INVALID_PAGE;
2758 context->direct_map = true;
2759 context->nx = false;
2760 return 0;
2761 }
2762
2763 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2764 {
2765 ++vcpu->stat.tlb_flush;
2766 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2767 }
2768
2769 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2770 {
2771 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
2772 mmu_free_roots(vcpu);
2773 }
2774
2775 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2776 {
2777 return kvm_read_cr3(vcpu);
2778 }
2779
2780 static void inject_page_fault(struct kvm_vcpu *vcpu,
2781 struct x86_exception *fault)
2782 {
2783 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
2784 }
2785
2786 static void paging_free(struct kvm_vcpu *vcpu)
2787 {
2788 nonpaging_free(vcpu);
2789 }
2790
2791 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2792 {
2793 int bit7;
2794
2795 bit7 = (gpte >> 7) & 1;
2796 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2797 }
2798
2799 #define PTTYPE 64
2800 #include "paging_tmpl.h"
2801 #undef PTTYPE
2802
2803 #define PTTYPE 32
2804 #include "paging_tmpl.h"
2805 #undef PTTYPE
2806
2807 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2808 struct kvm_mmu *context,
2809 int level)
2810 {
2811 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2812 u64 exb_bit_rsvd = 0;
2813
2814 if (!context->nx)
2815 exb_bit_rsvd = rsvd_bits(63, 63);
2816 switch (level) {
2817 case PT32_ROOT_LEVEL:
2818 /* no rsvd bits for 2 level 4K page table entries */
2819 context->rsvd_bits_mask[0][1] = 0;
2820 context->rsvd_bits_mask[0][0] = 0;
2821 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2822
2823 if (!is_pse(vcpu)) {
2824 context->rsvd_bits_mask[1][1] = 0;
2825 break;
2826 }
2827
2828 if (is_cpuid_PSE36())
2829 /* 36bits PSE 4MB page */
2830 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2831 else
2832 /* 32 bits PSE 4MB page */
2833 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2834 break;
2835 case PT32E_ROOT_LEVEL:
2836 context->rsvd_bits_mask[0][2] =
2837 rsvd_bits(maxphyaddr, 63) |
2838 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2839 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2840 rsvd_bits(maxphyaddr, 62); /* PDE */
2841 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2842 rsvd_bits(maxphyaddr, 62); /* PTE */
2843 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2844 rsvd_bits(maxphyaddr, 62) |
2845 rsvd_bits(13, 20); /* large page */
2846 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2847 break;
2848 case PT64_ROOT_LEVEL:
2849 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2850 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2851 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2852 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2853 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2854 rsvd_bits(maxphyaddr, 51);
2855 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2856 rsvd_bits(maxphyaddr, 51);
2857 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2858 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2859 rsvd_bits(maxphyaddr, 51) |
2860 rsvd_bits(13, 29);
2861 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2862 rsvd_bits(maxphyaddr, 51) |
2863 rsvd_bits(13, 20); /* large page */
2864 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2865 break;
2866 }
2867 }
2868
2869 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2870 struct kvm_mmu *context,
2871 int level)
2872 {
2873 context->nx = is_nx(vcpu);
2874
2875 reset_rsvds_bits_mask(vcpu, context, level);
2876
2877 ASSERT(is_pae(vcpu));
2878 context->new_cr3 = paging_new_cr3;
2879 context->page_fault = paging64_page_fault;
2880 context->gva_to_gpa = paging64_gva_to_gpa;
2881 context->prefetch_page = paging64_prefetch_page;
2882 context->sync_page = paging64_sync_page;
2883 context->invlpg = paging64_invlpg;
2884 context->update_pte = paging64_update_pte;
2885 context->free = paging_free;
2886 context->root_level = level;
2887 context->shadow_root_level = level;
2888 context->root_hpa = INVALID_PAGE;
2889 context->direct_map = false;
2890 return 0;
2891 }
2892
2893 static int paging64_init_context(struct kvm_vcpu *vcpu,
2894 struct kvm_mmu *context)
2895 {
2896 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2897 }
2898
2899 static int paging32_init_context(struct kvm_vcpu *vcpu,
2900 struct kvm_mmu *context)
2901 {
2902 context->nx = false;
2903
2904 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2905
2906 context->new_cr3 = paging_new_cr3;
2907 context->page_fault = paging32_page_fault;
2908 context->gva_to_gpa = paging32_gva_to_gpa;
2909 context->free = paging_free;
2910 context->prefetch_page = paging32_prefetch_page;
2911 context->sync_page = paging32_sync_page;
2912 context->invlpg = paging32_invlpg;
2913 context->update_pte = paging32_update_pte;
2914 context->root_level = PT32_ROOT_LEVEL;
2915 context->shadow_root_level = PT32E_ROOT_LEVEL;
2916 context->root_hpa = INVALID_PAGE;
2917 context->direct_map = false;
2918 return 0;
2919 }
2920
2921 static int paging32E_init_context(struct kvm_vcpu *vcpu,
2922 struct kvm_mmu *context)
2923 {
2924 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2925 }
2926
2927 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2928 {
2929 struct kvm_mmu *context = vcpu->arch.walk_mmu;
2930
2931 context->base_role.word = 0;
2932 context->new_cr3 = nonpaging_new_cr3;
2933 context->page_fault = tdp_page_fault;
2934 context->free = nonpaging_free;
2935 context->prefetch_page = nonpaging_prefetch_page;
2936 context->sync_page = nonpaging_sync_page;
2937 context->invlpg = nonpaging_invlpg;
2938 context->update_pte = nonpaging_update_pte;
2939 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2940 context->root_hpa = INVALID_PAGE;
2941 context->direct_map = true;
2942 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2943 context->get_cr3 = get_cr3;
2944 context->inject_page_fault = kvm_inject_page_fault;
2945 context->nx = is_nx(vcpu);
2946
2947 if (!is_paging(vcpu)) {
2948 context->nx = false;
2949 context->gva_to_gpa = nonpaging_gva_to_gpa;
2950 context->root_level = 0;
2951 } else if (is_long_mode(vcpu)) {
2952 context->nx = is_nx(vcpu);
2953 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
2954 context->gva_to_gpa = paging64_gva_to_gpa;
2955 context->root_level = PT64_ROOT_LEVEL;
2956 } else if (is_pae(vcpu)) {
2957 context->nx = is_nx(vcpu);
2958 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
2959 context->gva_to_gpa = paging64_gva_to_gpa;
2960 context->root_level = PT32E_ROOT_LEVEL;
2961 } else {
2962 context->nx = false;
2963 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2964 context->gva_to_gpa = paging32_gva_to_gpa;
2965 context->root_level = PT32_ROOT_LEVEL;
2966 }
2967
2968 return 0;
2969 }
2970
2971 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
2972 {
2973 int r;
2974 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
2975 ASSERT(vcpu);
2976 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2977
2978 if (!is_paging(vcpu))
2979 r = nonpaging_init_context(vcpu, context);
2980 else if (is_long_mode(vcpu))
2981 r = paging64_init_context(vcpu, context);
2982 else if (is_pae(vcpu))
2983 r = paging32E_init_context(vcpu, context);
2984 else
2985 r = paging32_init_context(vcpu, context);
2986
2987 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2988 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
2989 vcpu->arch.mmu.base_role.smep_andnot_wp
2990 = smep && !is_write_protection(vcpu);
2991
2992 return r;
2993 }
2994 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
2995
2996 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2997 {
2998 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
2999
3000 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3001 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3002 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3003
3004 return r;
3005 }
3006
3007 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3008 {
3009 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3010
3011 g_context->get_cr3 = get_cr3;
3012 g_context->inject_page_fault = kvm_inject_page_fault;
3013
3014 /*
3015 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3016 * translation of l2_gpa to l1_gpa addresses is done using the
3017 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3018 * functions between mmu and nested_mmu are swapped.
3019 */
3020 if (!is_paging(vcpu)) {
3021 g_context->nx = false;
3022 g_context->root_level = 0;
3023 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3024 } else if (is_long_mode(vcpu)) {
3025 g_context->nx = is_nx(vcpu);
3026 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3027 g_context->root_level = PT64_ROOT_LEVEL;
3028 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3029 } else if (is_pae(vcpu)) {
3030 g_context->nx = is_nx(vcpu);
3031 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3032 g_context->root_level = PT32E_ROOT_LEVEL;
3033 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3034 } else {
3035 g_context->nx = false;
3036 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3037 g_context->root_level = PT32_ROOT_LEVEL;
3038 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3039 }
3040
3041 return 0;
3042 }
3043
3044 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3045 {
3046 if (mmu_is_nested(vcpu))
3047 return init_kvm_nested_mmu(vcpu);
3048 else if (tdp_enabled)
3049 return init_kvm_tdp_mmu(vcpu);
3050 else
3051 return init_kvm_softmmu(vcpu);
3052 }
3053
3054 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3055 {
3056 ASSERT(vcpu);
3057 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3058 /* mmu.free() should set root_hpa = INVALID_PAGE */
3059 vcpu->arch.mmu.free(vcpu);
3060 }
3061
3062 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3063 {
3064 destroy_kvm_mmu(vcpu);
3065 return init_kvm_mmu(vcpu);
3066 }
3067 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3068
3069 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3070 {
3071 int r;
3072
3073 r = mmu_topup_memory_caches(vcpu);
3074 if (r)
3075 goto out;
3076 r = mmu_alloc_roots(vcpu);
3077 spin_lock(&vcpu->kvm->mmu_lock);
3078 mmu_sync_roots(vcpu);
3079 spin_unlock(&vcpu->kvm->mmu_lock);
3080 if (r)
3081 goto out;
3082 /* set_cr3() should ensure TLB has been flushed */
3083 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3084 out:
3085 return r;
3086 }
3087 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3088
3089 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3090 {
3091 mmu_free_roots(vcpu);
3092 }
3093 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3094
3095 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3096 struct kvm_mmu_page *sp, u64 *spte,
3097 const void *new)
3098 {
3099 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3100 ++vcpu->kvm->stat.mmu_pde_zapped;
3101 return;
3102 }
3103
3104 ++vcpu->kvm->stat.mmu_pte_updated;
3105 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3106 }
3107
3108 static bool need_remote_flush(u64 old, u64 new)
3109 {
3110 if (!is_shadow_present_pte(old))
3111 return false;
3112 if (!is_shadow_present_pte(new))
3113 return true;
3114 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3115 return true;
3116 old ^= PT64_NX_MASK;
3117 new ^= PT64_NX_MASK;
3118 return (old & ~new & PT64_PERM_MASK) != 0;
3119 }
3120
3121 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3122 bool remote_flush, bool local_flush)
3123 {
3124 if (zap_page)
3125 return;
3126
3127 if (remote_flush)
3128 kvm_flush_remote_tlbs(vcpu->kvm);
3129 else if (local_flush)
3130 kvm_mmu_flush_tlb(vcpu);
3131 }
3132
3133 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3134 {
3135 u64 *spte = vcpu->arch.last_pte_updated;
3136
3137 return !!(spte && (*spte & shadow_accessed_mask));
3138 }
3139
3140 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3141 {
3142 u64 *spte = vcpu->arch.last_pte_updated;
3143
3144 if (spte
3145 && vcpu->arch.last_pte_gfn == gfn
3146 && shadow_accessed_mask
3147 && !(*spte & shadow_accessed_mask)
3148 && is_shadow_present_pte(*spte))
3149 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3150 }
3151
3152 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3153 const u8 *new, int bytes,
3154 bool guest_initiated)
3155 {
3156 gfn_t gfn = gpa >> PAGE_SHIFT;
3157 union kvm_mmu_page_role mask = { .word = 0 };
3158 struct kvm_mmu_page *sp;
3159 struct hlist_node *node;
3160 LIST_HEAD(invalid_list);
3161 u64 entry, gentry, *spte;
3162 unsigned pte_size, page_offset, misaligned, quadrant, offset;
3163 int level, npte, invlpg_counter, r, flooded = 0;
3164 bool remote_flush, local_flush, zap_page;
3165
3166 /*
3167 * If we don't have indirect shadow pages, it means no page is
3168 * write-protected, so we can exit simply.
3169 */
3170 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3171 return;
3172
3173 zap_page = remote_flush = local_flush = false;
3174 offset = offset_in_page(gpa);
3175
3176 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3177
3178 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3179
3180 /*
3181 * Assume that the pte write on a page table of the same type
3182 * as the current vcpu paging mode since we update the sptes only
3183 * when they have the same mode.
3184 */
3185 if ((is_pae(vcpu) && bytes == 4) || !new) {
3186 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3187 if (is_pae(vcpu)) {
3188 gpa &= ~(gpa_t)7;
3189 bytes = 8;
3190 }
3191 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3192 if (r)
3193 gentry = 0;
3194 new = (const u8 *)&gentry;
3195 }
3196
3197 switch (bytes) {
3198 case 4:
3199 gentry = *(const u32 *)new;
3200 break;
3201 case 8:
3202 gentry = *(const u64 *)new;
3203 break;
3204 default:
3205 gentry = 0;
3206 break;
3207 }
3208
3209 spin_lock(&vcpu->kvm->mmu_lock);
3210 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3211 gentry = 0;
3212 kvm_mmu_free_some_pages(vcpu);
3213 ++vcpu->kvm->stat.mmu_pte_write;
3214 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3215 if (guest_initiated) {
3216 kvm_mmu_access_page(vcpu, gfn);
3217 if (gfn == vcpu->arch.last_pt_write_gfn
3218 && !last_updated_pte_accessed(vcpu)) {
3219 ++vcpu->arch.last_pt_write_count;
3220 if (vcpu->arch.last_pt_write_count >= 3)
3221 flooded = 1;
3222 } else {
3223 vcpu->arch.last_pt_write_gfn = gfn;
3224 vcpu->arch.last_pt_write_count = 1;
3225 vcpu->arch.last_pte_updated = NULL;
3226 }
3227 }
3228
3229 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3230 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3231 pte_size = sp->role.cr4_pae ? 8 : 4;
3232 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3233 misaligned |= bytes < 4;
3234 if (misaligned || flooded) {
3235 /*
3236 * Misaligned accesses are too much trouble to fix
3237 * up; also, they usually indicate a page is not used
3238 * as a page table.
3239 *
3240 * If we're seeing too many writes to a page,
3241 * it may no longer be a page table, or we may be
3242 * forking, in which case it is better to unmap the
3243 * page.
3244 */
3245 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3246 gpa, bytes, sp->role.word);
3247 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3248 &invalid_list);
3249 ++vcpu->kvm->stat.mmu_flooded;
3250 continue;
3251 }
3252 page_offset = offset;
3253 level = sp->role.level;
3254 npte = 1;
3255 if (!sp->role.cr4_pae) {
3256 page_offset <<= 1; /* 32->64 */
3257 /*
3258 * A 32-bit pde maps 4MB while the shadow pdes map
3259 * only 2MB. So we need to double the offset again
3260 * and zap two pdes instead of one.
3261 */
3262 if (level == PT32_ROOT_LEVEL) {
3263 page_offset &= ~7; /* kill rounding error */
3264 page_offset <<= 1;
3265 npte = 2;
3266 }
3267 quadrant = page_offset >> PAGE_SHIFT;
3268 page_offset &= ~PAGE_MASK;
3269 if (quadrant != sp->role.quadrant)
3270 continue;
3271 }
3272 local_flush = true;
3273 spte = &sp->spt[page_offset / sizeof(*spte)];
3274 while (npte--) {
3275 entry = *spte;
3276 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3277 if (gentry &&
3278 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3279 & mask.word))
3280 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3281 if (!remote_flush && need_remote_flush(entry, *spte))
3282 remote_flush = true;
3283 ++spte;
3284 }
3285 }
3286 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3287 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3288 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3289 spin_unlock(&vcpu->kvm->mmu_lock);
3290 }
3291
3292 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3293 {
3294 gpa_t gpa;
3295 int r;
3296
3297 if (vcpu->arch.mmu.direct_map)
3298 return 0;
3299
3300 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3301
3302 spin_lock(&vcpu->kvm->mmu_lock);
3303 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3304 spin_unlock(&vcpu->kvm->mmu_lock);
3305 return r;
3306 }
3307 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3308
3309 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3310 {
3311 LIST_HEAD(invalid_list);
3312
3313 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3314 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3315 struct kvm_mmu_page *sp;
3316
3317 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3318 struct kvm_mmu_page, link);
3319 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3320 ++vcpu->kvm->stat.mmu_recycled;
3321 }
3322 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3323 }
3324
3325 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3326 void *insn, int insn_len)
3327 {
3328 int r;
3329 enum emulation_result er;
3330
3331 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3332 if (r < 0)
3333 goto out;
3334
3335 if (!r) {
3336 r = 1;
3337 goto out;
3338 }
3339
3340 r = mmu_topup_memory_caches(vcpu);
3341 if (r)
3342 goto out;
3343
3344 er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3345
3346 switch (er) {
3347 case EMULATE_DONE:
3348 return 1;
3349 case EMULATE_DO_MMIO:
3350 ++vcpu->stat.mmio_exits;
3351 /* fall through */
3352 case EMULATE_FAIL:
3353 return 0;
3354 default:
3355 BUG();
3356 }
3357 out:
3358 return r;
3359 }
3360 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3361
3362 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3363 {
3364 vcpu->arch.mmu.invlpg(vcpu, gva);
3365 kvm_mmu_flush_tlb(vcpu);
3366 ++vcpu->stat.invlpg;
3367 }
3368 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3369
3370 void kvm_enable_tdp(void)
3371 {
3372 tdp_enabled = true;
3373 }
3374 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3375
3376 void kvm_disable_tdp(void)
3377 {
3378 tdp_enabled = false;
3379 }
3380 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3381
3382 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3383 {
3384 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3385 if (vcpu->arch.mmu.lm_root != NULL)
3386 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3387 }
3388
3389 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3390 {
3391 struct page *page;
3392 int i;
3393
3394 ASSERT(vcpu);
3395
3396 /*
3397 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3398 * Therefore we need to allocate shadow page tables in the first
3399 * 4GB of memory, which happens to fit the DMA32 zone.
3400 */
3401 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3402 if (!page)
3403 return -ENOMEM;
3404
3405 vcpu->arch.mmu.pae_root = page_address(page);
3406 for (i = 0; i < 4; ++i)
3407 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3408
3409 return 0;
3410 }
3411
3412 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3413 {
3414 ASSERT(vcpu);
3415 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3416
3417 return alloc_mmu_pages(vcpu);
3418 }
3419
3420 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3421 {
3422 ASSERT(vcpu);
3423 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3424
3425 return init_kvm_mmu(vcpu);
3426 }
3427
3428 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3429 {
3430 struct kvm_mmu_page *sp;
3431
3432 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3433 int i;
3434 u64 *pt;
3435
3436 if (!test_bit(slot, sp->slot_bitmap))
3437 continue;
3438
3439 pt = sp->spt;
3440 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3441 if (!is_shadow_present_pte(pt[i]) ||
3442 !is_last_spte(pt[i], sp->role.level))
3443 continue;
3444
3445 if (is_large_pte(pt[i])) {
3446 drop_spte(kvm, &pt[i],
3447 shadow_trap_nonpresent_pte);
3448 --kvm->stat.lpages;
3449 continue;
3450 }
3451
3452 /* avoid RMW */
3453 if (is_writable_pte(pt[i]))
3454 update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
3455 }
3456 }
3457 kvm_flush_remote_tlbs(kvm);
3458 }
3459
3460 void kvm_mmu_zap_all(struct kvm *kvm)
3461 {
3462 struct kvm_mmu_page *sp, *node;
3463 LIST_HEAD(invalid_list);
3464
3465 spin_lock(&kvm->mmu_lock);
3466 restart:
3467 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3468 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3469 goto restart;
3470
3471 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3472 spin_unlock(&kvm->mmu_lock);
3473 }
3474
3475 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3476 struct list_head *invalid_list)
3477 {
3478 struct kvm_mmu_page *page;
3479
3480 page = container_of(kvm->arch.active_mmu_pages.prev,
3481 struct kvm_mmu_page, link);
3482 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3483 }
3484
3485 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3486 {
3487 struct kvm *kvm;
3488 struct kvm *kvm_freed = NULL;
3489 int nr_to_scan = sc->nr_to_scan;
3490
3491 if (nr_to_scan == 0)
3492 goto out;
3493
3494 raw_spin_lock(&kvm_lock);
3495
3496 list_for_each_entry(kvm, &vm_list, vm_list) {
3497 int idx, freed_pages;
3498 LIST_HEAD(invalid_list);
3499
3500 idx = srcu_read_lock(&kvm->srcu);
3501 spin_lock(&kvm->mmu_lock);
3502 if (!kvm_freed && nr_to_scan > 0 &&
3503 kvm->arch.n_used_mmu_pages > 0) {
3504 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3505 &invalid_list);
3506 kvm_freed = kvm;
3507 }
3508 nr_to_scan--;
3509
3510 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3511 spin_unlock(&kvm->mmu_lock);
3512 srcu_read_unlock(&kvm->srcu, idx);
3513 }
3514 if (kvm_freed)
3515 list_move_tail(&kvm_freed->vm_list, &vm_list);
3516
3517 raw_spin_unlock(&kvm_lock);
3518
3519 out:
3520 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3521 }
3522
3523 static struct shrinker mmu_shrinker = {
3524 .shrink = mmu_shrink,
3525 .seeks = DEFAULT_SEEKS * 10,
3526 };
3527
3528 static void mmu_destroy_caches(void)
3529 {
3530 if (pte_list_desc_cache)
3531 kmem_cache_destroy(pte_list_desc_cache);
3532 if (mmu_page_header_cache)
3533 kmem_cache_destroy(mmu_page_header_cache);
3534 }
3535
3536 int kvm_mmu_module_init(void)
3537 {
3538 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3539 sizeof(struct pte_list_desc),
3540 0, 0, NULL);
3541 if (!pte_list_desc_cache)
3542 goto nomem;
3543
3544 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3545 sizeof(struct kvm_mmu_page),
3546 0, 0, NULL);
3547 if (!mmu_page_header_cache)
3548 goto nomem;
3549
3550 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3551 goto nomem;
3552
3553 register_shrinker(&mmu_shrinker);
3554
3555 return 0;
3556
3557 nomem:
3558 mmu_destroy_caches();
3559 return -ENOMEM;
3560 }
3561
3562 /*
3563 * Caculate mmu pages needed for kvm.
3564 */
3565 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3566 {
3567 int i;
3568 unsigned int nr_mmu_pages;
3569 unsigned int nr_pages = 0;
3570 struct kvm_memslots *slots;
3571
3572 slots = kvm_memslots(kvm);
3573
3574 for (i = 0; i < slots->nmemslots; i++)
3575 nr_pages += slots->memslots[i].npages;
3576
3577 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3578 nr_mmu_pages = max(nr_mmu_pages,
3579 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3580
3581 return nr_mmu_pages;
3582 }
3583
3584 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3585 unsigned len)
3586 {
3587 if (len > buffer->len)
3588 return NULL;
3589 return buffer->ptr;
3590 }
3591
3592 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3593 unsigned len)
3594 {
3595 void *ret;
3596
3597 ret = pv_mmu_peek_buffer(buffer, len);
3598 if (!ret)
3599 return ret;
3600 buffer->ptr += len;
3601 buffer->len -= len;
3602 buffer->processed += len;
3603 return ret;
3604 }
3605
3606 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3607 gpa_t addr, gpa_t value)
3608 {
3609 int bytes = 8;
3610 int r;
3611
3612 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3613 bytes = 4;
3614
3615 r = mmu_topup_memory_caches(vcpu);
3616 if (r)
3617 return r;
3618
3619 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3620 return -EFAULT;
3621
3622 return 1;
3623 }
3624
3625 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3626 {
3627 (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
3628 return 1;
3629 }
3630
3631 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3632 {
3633 spin_lock(&vcpu->kvm->mmu_lock);
3634 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3635 spin_unlock(&vcpu->kvm->mmu_lock);
3636 return 1;
3637 }
3638
3639 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3640 struct kvm_pv_mmu_op_buffer *buffer)
3641 {
3642 struct kvm_mmu_op_header *header;
3643
3644 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3645 if (!header)
3646 return 0;
3647 switch (header->op) {
3648 case KVM_MMU_OP_WRITE_PTE: {
3649 struct kvm_mmu_op_write_pte *wpte;
3650
3651 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3652 if (!wpte)
3653 return 0;
3654 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3655 wpte->pte_val);
3656 }
3657 case KVM_MMU_OP_FLUSH_TLB: {
3658 struct kvm_mmu_op_flush_tlb *ftlb;
3659
3660 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3661 if (!ftlb)
3662 return 0;
3663 return kvm_pv_mmu_flush_tlb(vcpu);
3664 }
3665 case KVM_MMU_OP_RELEASE_PT: {
3666 struct kvm_mmu_op_release_pt *rpt;
3667
3668 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3669 if (!rpt)
3670 return 0;
3671 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3672 }
3673 default: return 0;
3674 }
3675 }
3676
3677 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3678 gpa_t addr, unsigned long *ret)
3679 {
3680 int r;
3681 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3682
3683 buffer->ptr = buffer->buf;
3684 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3685 buffer->processed = 0;
3686
3687 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3688 if (r)
3689 goto out;
3690
3691 while (buffer->len) {
3692 r = kvm_pv_mmu_op_one(vcpu, buffer);
3693 if (r < 0)
3694 goto out;
3695 if (r == 0)
3696 break;
3697 }
3698
3699 r = 1;
3700 out:
3701 *ret = buffer->processed;
3702 return r;
3703 }
3704
3705 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3706 {
3707 struct kvm_shadow_walk_iterator iterator;
3708 int nr_sptes = 0;
3709
3710 spin_lock(&vcpu->kvm->mmu_lock);
3711 for_each_shadow_entry(vcpu, addr, iterator) {
3712 sptes[iterator.level-1] = *iterator.sptep;
3713 nr_sptes++;
3714 if (!is_shadow_present_pte(*iterator.sptep))
3715 break;
3716 }
3717 spin_unlock(&vcpu->kvm->mmu_lock);
3718
3719 return nr_sptes;
3720 }
3721 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3722
3723 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3724 {
3725 ASSERT(vcpu);
3726
3727 destroy_kvm_mmu(vcpu);
3728 free_mmu_pages(vcpu);
3729 mmu_free_memory_caches(vcpu);
3730 }
3731
3732 #ifdef CONFIG_KVM_MMU_AUDIT
3733 #include "mmu_audit.c"
3734 #else
3735 static void mmu_audit_disable(void) { }
3736 #endif
3737
3738 void kvm_mmu_module_exit(void)
3739 {
3740 mmu_destroy_caches();
3741 percpu_counter_destroy(&kvm_total_used_mmu_pages);
3742 unregister_shrinker(&mmu_shrinker);
3743 mmu_audit_disable();
3744 }
This page took 0.128678 seconds and 5 git commands to generate.