thp: kvm mmu transparent hugepage support
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52 bool tdp_enabled = false;
53
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61 };
62
63 char *audit_point_name[] = {
64 "pre page fault",
65 "post page fault",
66 "pre pte write",
67 "post pte write",
68 "pre sync",
69 "post sync"
70 };
71
72 #undef MMU_DEBUG
73
74 #ifdef MMU_DEBUG
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
79 #else
80
81 #define pgprintk(x...) do { } while (0)
82 #define rmap_printk(x...) do { } while (0)
83
84 #endif
85
86 #ifdef MMU_DEBUG
87 static int dbg = 0;
88 module_param(dbg, bool, 0644);
89 #endif
90
91 static int oos_shadow = 1;
92 module_param(oos_shadow, bool, 0644);
93
94 #ifndef MMU_DEBUG
95 #define ASSERT(x) do { } while (0)
96 #else
97 #define ASSERT(x) \
98 if (!(x)) { \
99 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
100 __FILE__, __LINE__, #x); \
101 }
102 #endif
103
104 #define PTE_PREFETCH_NUM 8
105
106 #define PT_FIRST_AVAIL_BITS_SHIFT 9
107 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
108
109 #define PT64_LEVEL_BITS 9
110
111 #define PT64_LEVEL_SHIFT(level) \
112 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113
114 #define PT64_LEVEL_MASK(level) \
115 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
116
117 #define PT64_INDEX(address, level)\
118 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
119
120
121 #define PT32_LEVEL_BITS 10
122
123 #define PT32_LEVEL_SHIFT(level) \
124 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
125
126 #define PT32_LEVEL_MASK(level) \
127 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
128 #define PT32_LVL_OFFSET_MASK(level) \
129 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
130 * PT32_LEVEL_BITS))) - 1))
131
132 #define PT32_INDEX(address, level)\
133 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
134
135
136 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
137 #define PT64_DIR_BASE_ADDR_MASK \
138 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
139 #define PT64_LVL_ADDR_MASK(level) \
140 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
141 * PT64_LEVEL_BITS))) - 1))
142 #define PT64_LVL_OFFSET_MASK(level) \
143 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144 * PT64_LEVEL_BITS))) - 1))
145
146 #define PT32_BASE_ADDR_MASK PAGE_MASK
147 #define PT32_DIR_BASE_ADDR_MASK \
148 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
149 #define PT32_LVL_ADDR_MASK(level) \
150 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
151 * PT32_LEVEL_BITS))) - 1))
152
153 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
154 | PT64_NX_MASK)
155
156 #define RMAP_EXT 4
157
158 #define ACC_EXEC_MASK 1
159 #define ACC_WRITE_MASK PT_WRITABLE_MASK
160 #define ACC_USER_MASK PT_USER_MASK
161 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
162
163 #include <trace/events/kvm.h>
164
165 #define CREATE_TRACE_POINTS
166 #include "mmutrace.h"
167
168 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
169
170 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
171
172 struct kvm_rmap_desc {
173 u64 *sptes[RMAP_EXT];
174 struct kvm_rmap_desc *more;
175 };
176
177 struct kvm_shadow_walk_iterator {
178 u64 addr;
179 hpa_t shadow_addr;
180 int level;
181 u64 *sptep;
182 unsigned index;
183 };
184
185 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
186 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
187 shadow_walk_okay(&(_walker)); \
188 shadow_walk_next(&(_walker)))
189
190 typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
191
192 static struct kmem_cache *pte_chain_cache;
193 static struct kmem_cache *rmap_desc_cache;
194 static struct kmem_cache *mmu_page_header_cache;
195 static struct percpu_counter kvm_total_used_mmu_pages;
196
197 static u64 __read_mostly shadow_trap_nonpresent_pte;
198 static u64 __read_mostly shadow_notrap_nonpresent_pte;
199 static u64 __read_mostly shadow_nx_mask;
200 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
201 static u64 __read_mostly shadow_user_mask;
202 static u64 __read_mostly shadow_accessed_mask;
203 static u64 __read_mostly shadow_dirty_mask;
204
205 static inline u64 rsvd_bits(int s, int e)
206 {
207 return ((1ULL << (e - s + 1)) - 1) << s;
208 }
209
210 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
211 {
212 shadow_trap_nonpresent_pte = trap_pte;
213 shadow_notrap_nonpresent_pte = notrap_pte;
214 }
215 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
216
217 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
218 u64 dirty_mask, u64 nx_mask, u64 x_mask)
219 {
220 shadow_user_mask = user_mask;
221 shadow_accessed_mask = accessed_mask;
222 shadow_dirty_mask = dirty_mask;
223 shadow_nx_mask = nx_mask;
224 shadow_x_mask = x_mask;
225 }
226 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
227
228 static bool is_write_protection(struct kvm_vcpu *vcpu)
229 {
230 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
231 }
232
233 static int is_cpuid_PSE36(void)
234 {
235 return 1;
236 }
237
238 static int is_nx(struct kvm_vcpu *vcpu)
239 {
240 return vcpu->arch.efer & EFER_NX;
241 }
242
243 static int is_shadow_present_pte(u64 pte)
244 {
245 return pte != shadow_trap_nonpresent_pte
246 && pte != shadow_notrap_nonpresent_pte;
247 }
248
249 static int is_large_pte(u64 pte)
250 {
251 return pte & PT_PAGE_SIZE_MASK;
252 }
253
254 static int is_writable_pte(unsigned long pte)
255 {
256 return pte & PT_WRITABLE_MASK;
257 }
258
259 static int is_dirty_gpte(unsigned long pte)
260 {
261 return pte & PT_DIRTY_MASK;
262 }
263
264 static int is_rmap_spte(u64 pte)
265 {
266 return is_shadow_present_pte(pte);
267 }
268
269 static int is_last_spte(u64 pte, int level)
270 {
271 if (level == PT_PAGE_TABLE_LEVEL)
272 return 1;
273 if (is_large_pte(pte))
274 return 1;
275 return 0;
276 }
277
278 static pfn_t spte_to_pfn(u64 pte)
279 {
280 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
281 }
282
283 static gfn_t pse36_gfn_delta(u32 gpte)
284 {
285 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
286
287 return (gpte & PT32_DIR_PSE36_MASK) << shift;
288 }
289
290 static void __set_spte(u64 *sptep, u64 spte)
291 {
292 set_64bit(sptep, spte);
293 }
294
295 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
296 {
297 #ifdef CONFIG_X86_64
298 return xchg(sptep, new_spte);
299 #else
300 u64 old_spte;
301
302 do {
303 old_spte = *sptep;
304 } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
305
306 return old_spte;
307 #endif
308 }
309
310 static bool spte_has_volatile_bits(u64 spte)
311 {
312 if (!shadow_accessed_mask)
313 return false;
314
315 if (!is_shadow_present_pte(spte))
316 return false;
317
318 if ((spte & shadow_accessed_mask) &&
319 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
320 return false;
321
322 return true;
323 }
324
325 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
326 {
327 return (old_spte & bit_mask) && !(new_spte & bit_mask);
328 }
329
330 static void update_spte(u64 *sptep, u64 new_spte)
331 {
332 u64 mask, old_spte = *sptep;
333
334 WARN_ON(!is_rmap_spte(new_spte));
335
336 new_spte |= old_spte & shadow_dirty_mask;
337
338 mask = shadow_accessed_mask;
339 if (is_writable_pte(old_spte))
340 mask |= shadow_dirty_mask;
341
342 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
343 __set_spte(sptep, new_spte);
344 else
345 old_spte = __xchg_spte(sptep, new_spte);
346
347 if (!shadow_accessed_mask)
348 return;
349
350 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
351 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
352 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
353 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
354 }
355
356 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
357 struct kmem_cache *base_cache, int min)
358 {
359 void *obj;
360
361 if (cache->nobjs >= min)
362 return 0;
363 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
364 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
365 if (!obj)
366 return -ENOMEM;
367 cache->objects[cache->nobjs++] = obj;
368 }
369 return 0;
370 }
371
372 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
373 struct kmem_cache *cache)
374 {
375 while (mc->nobjs)
376 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
377 }
378
379 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
380 int min)
381 {
382 struct page *page;
383
384 if (cache->nobjs >= min)
385 return 0;
386 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
387 page = alloc_page(GFP_KERNEL);
388 if (!page)
389 return -ENOMEM;
390 cache->objects[cache->nobjs++] = page_address(page);
391 }
392 return 0;
393 }
394
395 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
396 {
397 while (mc->nobjs)
398 free_page((unsigned long)mc->objects[--mc->nobjs]);
399 }
400
401 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
402 {
403 int r;
404
405 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
406 pte_chain_cache, 4);
407 if (r)
408 goto out;
409 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
410 rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
411 if (r)
412 goto out;
413 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
414 if (r)
415 goto out;
416 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
417 mmu_page_header_cache, 4);
418 out:
419 return r;
420 }
421
422 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
423 {
424 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
425 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
426 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
427 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
428 mmu_page_header_cache);
429 }
430
431 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
432 size_t size)
433 {
434 void *p;
435
436 BUG_ON(!mc->nobjs);
437 p = mc->objects[--mc->nobjs];
438 return p;
439 }
440
441 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
442 {
443 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
444 sizeof(struct kvm_pte_chain));
445 }
446
447 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
448 {
449 kmem_cache_free(pte_chain_cache, pc);
450 }
451
452 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
453 {
454 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
455 sizeof(struct kvm_rmap_desc));
456 }
457
458 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
459 {
460 kmem_cache_free(rmap_desc_cache, rd);
461 }
462
463 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
464 {
465 if (!sp->role.direct)
466 return sp->gfns[index];
467
468 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
469 }
470
471 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
472 {
473 if (sp->role.direct)
474 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
475 else
476 sp->gfns[index] = gfn;
477 }
478
479 /*
480 * Return the pointer to the large page information for a given gfn,
481 * handling slots that are not large page aligned.
482 */
483 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
484 struct kvm_memory_slot *slot,
485 int level)
486 {
487 unsigned long idx;
488
489 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
490 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
491 return &slot->lpage_info[level - 2][idx];
492 }
493
494 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
495 {
496 struct kvm_memory_slot *slot;
497 struct kvm_lpage_info *linfo;
498 int i;
499
500 slot = gfn_to_memslot(kvm, gfn);
501 for (i = PT_DIRECTORY_LEVEL;
502 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
503 linfo = lpage_info_slot(gfn, slot, i);
504 linfo->write_count += 1;
505 }
506 }
507
508 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
509 {
510 struct kvm_memory_slot *slot;
511 struct kvm_lpage_info *linfo;
512 int i;
513
514 slot = gfn_to_memslot(kvm, gfn);
515 for (i = PT_DIRECTORY_LEVEL;
516 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
517 linfo = lpage_info_slot(gfn, slot, i);
518 linfo->write_count -= 1;
519 WARN_ON(linfo->write_count < 0);
520 }
521 }
522
523 static int has_wrprotected_page(struct kvm *kvm,
524 gfn_t gfn,
525 int level)
526 {
527 struct kvm_memory_slot *slot;
528 struct kvm_lpage_info *linfo;
529
530 slot = gfn_to_memslot(kvm, gfn);
531 if (slot) {
532 linfo = lpage_info_slot(gfn, slot, level);
533 return linfo->write_count;
534 }
535
536 return 1;
537 }
538
539 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
540 {
541 unsigned long page_size;
542 int i, ret = 0;
543
544 page_size = kvm_host_page_size(kvm, gfn);
545
546 for (i = PT_PAGE_TABLE_LEVEL;
547 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
548 if (page_size >= KVM_HPAGE_SIZE(i))
549 ret = i;
550 else
551 break;
552 }
553
554 return ret;
555 }
556
557 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
558 {
559 struct kvm_memory_slot *slot;
560 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
561 if (slot && slot->dirty_bitmap)
562 return true;
563 return false;
564 }
565
566 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
567 {
568 int host_level, level, max_level;
569
570 host_level = host_mapping_level(vcpu->kvm, large_gfn);
571
572 if (host_level == PT_PAGE_TABLE_LEVEL)
573 return host_level;
574
575 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
576 kvm_x86_ops->get_lpage_level() : host_level;
577
578 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
579 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
580 break;
581
582 return level - 1;
583 }
584
585 /*
586 * Take gfn and return the reverse mapping to it.
587 */
588
589 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
590 {
591 struct kvm_memory_slot *slot;
592 struct kvm_lpage_info *linfo;
593
594 slot = gfn_to_memslot(kvm, gfn);
595 if (likely(level == PT_PAGE_TABLE_LEVEL))
596 return &slot->rmap[gfn - slot->base_gfn];
597
598 linfo = lpage_info_slot(gfn, slot, level);
599
600 return &linfo->rmap_pde;
601 }
602
603 /*
604 * Reverse mapping data structures:
605 *
606 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
607 * that points to page_address(page).
608 *
609 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
610 * containing more mappings.
611 *
612 * Returns the number of rmap entries before the spte was added or zero if
613 * the spte was not added.
614 *
615 */
616 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
617 {
618 struct kvm_mmu_page *sp;
619 struct kvm_rmap_desc *desc;
620 unsigned long *rmapp;
621 int i, count = 0;
622
623 if (!is_rmap_spte(*spte))
624 return count;
625 sp = page_header(__pa(spte));
626 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
627 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
628 if (!*rmapp) {
629 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
630 *rmapp = (unsigned long)spte;
631 } else if (!(*rmapp & 1)) {
632 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
633 desc = mmu_alloc_rmap_desc(vcpu);
634 desc->sptes[0] = (u64 *)*rmapp;
635 desc->sptes[1] = spte;
636 *rmapp = (unsigned long)desc | 1;
637 ++count;
638 } else {
639 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
640 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
641 while (desc->sptes[RMAP_EXT-1] && desc->more) {
642 desc = desc->more;
643 count += RMAP_EXT;
644 }
645 if (desc->sptes[RMAP_EXT-1]) {
646 desc->more = mmu_alloc_rmap_desc(vcpu);
647 desc = desc->more;
648 }
649 for (i = 0; desc->sptes[i]; ++i)
650 ++count;
651 desc->sptes[i] = spte;
652 }
653 return count;
654 }
655
656 static void rmap_desc_remove_entry(unsigned long *rmapp,
657 struct kvm_rmap_desc *desc,
658 int i,
659 struct kvm_rmap_desc *prev_desc)
660 {
661 int j;
662
663 for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
664 ;
665 desc->sptes[i] = desc->sptes[j];
666 desc->sptes[j] = NULL;
667 if (j != 0)
668 return;
669 if (!prev_desc && !desc->more)
670 *rmapp = (unsigned long)desc->sptes[0];
671 else
672 if (prev_desc)
673 prev_desc->more = desc->more;
674 else
675 *rmapp = (unsigned long)desc->more | 1;
676 mmu_free_rmap_desc(desc);
677 }
678
679 static void rmap_remove(struct kvm *kvm, u64 *spte)
680 {
681 struct kvm_rmap_desc *desc;
682 struct kvm_rmap_desc *prev_desc;
683 struct kvm_mmu_page *sp;
684 gfn_t gfn;
685 unsigned long *rmapp;
686 int i;
687
688 sp = page_header(__pa(spte));
689 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
690 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
691 if (!*rmapp) {
692 printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
693 BUG();
694 } else if (!(*rmapp & 1)) {
695 rmap_printk("rmap_remove: %p 1->0\n", spte);
696 if ((u64 *)*rmapp != spte) {
697 printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
698 BUG();
699 }
700 *rmapp = 0;
701 } else {
702 rmap_printk("rmap_remove: %p many->many\n", spte);
703 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
704 prev_desc = NULL;
705 while (desc) {
706 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
707 if (desc->sptes[i] == spte) {
708 rmap_desc_remove_entry(rmapp,
709 desc, i,
710 prev_desc);
711 return;
712 }
713 prev_desc = desc;
714 desc = desc->more;
715 }
716 pr_err("rmap_remove: %p many->many\n", spte);
717 BUG();
718 }
719 }
720
721 static int set_spte_track_bits(u64 *sptep, u64 new_spte)
722 {
723 pfn_t pfn;
724 u64 old_spte = *sptep;
725
726 if (!spte_has_volatile_bits(old_spte))
727 __set_spte(sptep, new_spte);
728 else
729 old_spte = __xchg_spte(sptep, new_spte);
730
731 if (!is_rmap_spte(old_spte))
732 return 0;
733
734 pfn = spte_to_pfn(old_spte);
735 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
736 kvm_set_pfn_accessed(pfn);
737 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
738 kvm_set_pfn_dirty(pfn);
739 return 1;
740 }
741
742 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
743 {
744 if (set_spte_track_bits(sptep, new_spte))
745 rmap_remove(kvm, sptep);
746 }
747
748 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
749 {
750 struct kvm_rmap_desc *desc;
751 u64 *prev_spte;
752 int i;
753
754 if (!*rmapp)
755 return NULL;
756 else if (!(*rmapp & 1)) {
757 if (!spte)
758 return (u64 *)*rmapp;
759 return NULL;
760 }
761 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
762 prev_spte = NULL;
763 while (desc) {
764 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
765 if (prev_spte == spte)
766 return desc->sptes[i];
767 prev_spte = desc->sptes[i];
768 }
769 desc = desc->more;
770 }
771 return NULL;
772 }
773
774 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
775 {
776 unsigned long *rmapp;
777 u64 *spte;
778 int i, write_protected = 0;
779
780 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
781
782 spte = rmap_next(kvm, rmapp, NULL);
783 while (spte) {
784 BUG_ON(!spte);
785 BUG_ON(!(*spte & PT_PRESENT_MASK));
786 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
787 if (is_writable_pte(*spte)) {
788 update_spte(spte, *spte & ~PT_WRITABLE_MASK);
789 write_protected = 1;
790 }
791 spte = rmap_next(kvm, rmapp, spte);
792 }
793
794 /* check for huge page mappings */
795 for (i = PT_DIRECTORY_LEVEL;
796 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
797 rmapp = gfn_to_rmap(kvm, gfn, i);
798 spte = rmap_next(kvm, rmapp, NULL);
799 while (spte) {
800 BUG_ON(!spte);
801 BUG_ON(!(*spte & PT_PRESENT_MASK));
802 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
803 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
804 if (is_writable_pte(*spte)) {
805 drop_spte(kvm, spte,
806 shadow_trap_nonpresent_pte);
807 --kvm->stat.lpages;
808 spte = NULL;
809 write_protected = 1;
810 }
811 spte = rmap_next(kvm, rmapp, spte);
812 }
813 }
814
815 return write_protected;
816 }
817
818 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
819 unsigned long data)
820 {
821 u64 *spte;
822 int need_tlb_flush = 0;
823
824 while ((spte = rmap_next(kvm, rmapp, NULL))) {
825 BUG_ON(!(*spte & PT_PRESENT_MASK));
826 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
827 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
828 need_tlb_flush = 1;
829 }
830 return need_tlb_flush;
831 }
832
833 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
834 unsigned long data)
835 {
836 int need_flush = 0;
837 u64 *spte, new_spte;
838 pte_t *ptep = (pte_t *)data;
839 pfn_t new_pfn;
840
841 WARN_ON(pte_huge(*ptep));
842 new_pfn = pte_pfn(*ptep);
843 spte = rmap_next(kvm, rmapp, NULL);
844 while (spte) {
845 BUG_ON(!is_shadow_present_pte(*spte));
846 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
847 need_flush = 1;
848 if (pte_write(*ptep)) {
849 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
850 spte = rmap_next(kvm, rmapp, NULL);
851 } else {
852 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
853 new_spte |= (u64)new_pfn << PAGE_SHIFT;
854
855 new_spte &= ~PT_WRITABLE_MASK;
856 new_spte &= ~SPTE_HOST_WRITEABLE;
857 new_spte &= ~shadow_accessed_mask;
858 set_spte_track_bits(spte, new_spte);
859 spte = rmap_next(kvm, rmapp, spte);
860 }
861 }
862 if (need_flush)
863 kvm_flush_remote_tlbs(kvm);
864
865 return 0;
866 }
867
868 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
869 unsigned long data,
870 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
871 unsigned long data))
872 {
873 int i, j;
874 int ret;
875 int retval = 0;
876 struct kvm_memslots *slots;
877
878 slots = kvm_memslots(kvm);
879
880 for (i = 0; i < slots->nmemslots; i++) {
881 struct kvm_memory_slot *memslot = &slots->memslots[i];
882 unsigned long start = memslot->userspace_addr;
883 unsigned long end;
884
885 end = start + (memslot->npages << PAGE_SHIFT);
886 if (hva >= start && hva < end) {
887 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
888 gfn_t gfn = memslot->base_gfn + gfn_offset;
889
890 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
891
892 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
893 struct kvm_lpage_info *linfo;
894
895 linfo = lpage_info_slot(gfn, memslot,
896 PT_DIRECTORY_LEVEL + j);
897 ret |= handler(kvm, &linfo->rmap_pde, data);
898 }
899 trace_kvm_age_page(hva, memslot, ret);
900 retval |= ret;
901 }
902 }
903
904 return retval;
905 }
906
907 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
908 {
909 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
910 }
911
912 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
913 {
914 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
915 }
916
917 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
918 unsigned long data)
919 {
920 u64 *spte;
921 int young = 0;
922
923 /*
924 * Emulate the accessed bit for EPT, by checking if this page has
925 * an EPT mapping, and clearing it if it does. On the next access,
926 * a new EPT mapping will be established.
927 * This has some overhead, but not as much as the cost of swapping
928 * out actively used pages or breaking up actively used hugepages.
929 */
930 if (!shadow_accessed_mask)
931 return kvm_unmap_rmapp(kvm, rmapp, data);
932
933 spte = rmap_next(kvm, rmapp, NULL);
934 while (spte) {
935 int _young;
936 u64 _spte = *spte;
937 BUG_ON(!(_spte & PT_PRESENT_MASK));
938 _young = _spte & PT_ACCESSED_MASK;
939 if (_young) {
940 young = 1;
941 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
942 }
943 spte = rmap_next(kvm, rmapp, spte);
944 }
945 return young;
946 }
947
948 #define RMAP_RECYCLE_THRESHOLD 1000
949
950 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
951 {
952 unsigned long *rmapp;
953 struct kvm_mmu_page *sp;
954
955 sp = page_header(__pa(spte));
956
957 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
958
959 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
960 kvm_flush_remote_tlbs(vcpu->kvm);
961 }
962
963 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
964 {
965 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
966 }
967
968 #ifdef MMU_DEBUG
969 static int is_empty_shadow_page(u64 *spt)
970 {
971 u64 *pos;
972 u64 *end;
973
974 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
975 if (is_shadow_present_pte(*pos)) {
976 printk(KERN_ERR "%s: %p %llx\n", __func__,
977 pos, *pos);
978 return 0;
979 }
980 return 1;
981 }
982 #endif
983
984 /*
985 * This value is the sum of all of the kvm instances's
986 * kvm->arch.n_used_mmu_pages values. We need a global,
987 * aggregate version in order to make the slab shrinker
988 * faster
989 */
990 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
991 {
992 kvm->arch.n_used_mmu_pages += nr;
993 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
994 }
995
996 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
997 {
998 ASSERT(is_empty_shadow_page(sp->spt));
999 hlist_del(&sp->hash_link);
1000 list_del(&sp->link);
1001 __free_page(virt_to_page(sp->spt));
1002 if (!sp->role.direct)
1003 __free_page(virt_to_page(sp->gfns));
1004 kmem_cache_free(mmu_page_header_cache, sp);
1005 kvm_mod_used_mmu_pages(kvm, -1);
1006 }
1007
1008 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1009 {
1010 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1011 }
1012
1013 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1014 u64 *parent_pte, int direct)
1015 {
1016 struct kvm_mmu_page *sp;
1017
1018 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
1019 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1020 if (!direct)
1021 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1022 PAGE_SIZE);
1023 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1024 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1025 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1026 sp->multimapped = 0;
1027 sp->parent_pte = parent_pte;
1028 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1029 return sp;
1030 }
1031
1032 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1033 struct kvm_mmu_page *sp, u64 *parent_pte)
1034 {
1035 struct kvm_pte_chain *pte_chain;
1036 struct hlist_node *node;
1037 int i;
1038
1039 if (!parent_pte)
1040 return;
1041 if (!sp->multimapped) {
1042 u64 *old = sp->parent_pte;
1043
1044 if (!old) {
1045 sp->parent_pte = parent_pte;
1046 return;
1047 }
1048 sp->multimapped = 1;
1049 pte_chain = mmu_alloc_pte_chain(vcpu);
1050 INIT_HLIST_HEAD(&sp->parent_ptes);
1051 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1052 pte_chain->parent_ptes[0] = old;
1053 }
1054 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
1055 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
1056 continue;
1057 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
1058 if (!pte_chain->parent_ptes[i]) {
1059 pte_chain->parent_ptes[i] = parent_pte;
1060 return;
1061 }
1062 }
1063 pte_chain = mmu_alloc_pte_chain(vcpu);
1064 BUG_ON(!pte_chain);
1065 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1066 pte_chain->parent_ptes[0] = parent_pte;
1067 }
1068
1069 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1070 u64 *parent_pte)
1071 {
1072 struct kvm_pte_chain *pte_chain;
1073 struct hlist_node *node;
1074 int i;
1075
1076 if (!sp->multimapped) {
1077 BUG_ON(sp->parent_pte != parent_pte);
1078 sp->parent_pte = NULL;
1079 return;
1080 }
1081 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1082 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1083 if (!pte_chain->parent_ptes[i])
1084 break;
1085 if (pte_chain->parent_ptes[i] != parent_pte)
1086 continue;
1087 while (i + 1 < NR_PTE_CHAIN_ENTRIES
1088 && pte_chain->parent_ptes[i + 1]) {
1089 pte_chain->parent_ptes[i]
1090 = pte_chain->parent_ptes[i + 1];
1091 ++i;
1092 }
1093 pte_chain->parent_ptes[i] = NULL;
1094 if (i == 0) {
1095 hlist_del(&pte_chain->link);
1096 mmu_free_pte_chain(pte_chain);
1097 if (hlist_empty(&sp->parent_ptes)) {
1098 sp->multimapped = 0;
1099 sp->parent_pte = NULL;
1100 }
1101 }
1102 return;
1103 }
1104 BUG();
1105 }
1106
1107 static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1108 {
1109 struct kvm_pte_chain *pte_chain;
1110 struct hlist_node *node;
1111 struct kvm_mmu_page *parent_sp;
1112 int i;
1113
1114 if (!sp->multimapped && sp->parent_pte) {
1115 parent_sp = page_header(__pa(sp->parent_pte));
1116 fn(parent_sp, sp->parent_pte);
1117 return;
1118 }
1119
1120 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1121 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1122 u64 *spte = pte_chain->parent_ptes[i];
1123
1124 if (!spte)
1125 break;
1126 parent_sp = page_header(__pa(spte));
1127 fn(parent_sp, spte);
1128 }
1129 }
1130
1131 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
1132 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1133 {
1134 mmu_parent_walk(sp, mark_unsync);
1135 }
1136
1137 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
1138 {
1139 unsigned int index;
1140
1141 index = spte - sp->spt;
1142 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1143 return;
1144 if (sp->unsync_children++)
1145 return;
1146 kvm_mmu_mark_parents_unsync(sp);
1147 }
1148
1149 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1150 struct kvm_mmu_page *sp)
1151 {
1152 int i;
1153
1154 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1155 sp->spt[i] = shadow_trap_nonpresent_pte;
1156 }
1157
1158 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1159 struct kvm_mmu_page *sp)
1160 {
1161 return 1;
1162 }
1163
1164 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1165 {
1166 }
1167
1168 #define KVM_PAGE_ARRAY_NR 16
1169
1170 struct kvm_mmu_pages {
1171 struct mmu_page_and_offset {
1172 struct kvm_mmu_page *sp;
1173 unsigned int idx;
1174 } page[KVM_PAGE_ARRAY_NR];
1175 unsigned int nr;
1176 };
1177
1178 #define for_each_unsync_children(bitmap, idx) \
1179 for (idx = find_first_bit(bitmap, 512); \
1180 idx < 512; \
1181 idx = find_next_bit(bitmap, 512, idx+1))
1182
1183 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1184 int idx)
1185 {
1186 int i;
1187
1188 if (sp->unsync)
1189 for (i=0; i < pvec->nr; i++)
1190 if (pvec->page[i].sp == sp)
1191 return 0;
1192
1193 pvec->page[pvec->nr].sp = sp;
1194 pvec->page[pvec->nr].idx = idx;
1195 pvec->nr++;
1196 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1197 }
1198
1199 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1200 struct kvm_mmu_pages *pvec)
1201 {
1202 int i, ret, nr_unsync_leaf = 0;
1203
1204 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1205 struct kvm_mmu_page *child;
1206 u64 ent = sp->spt[i];
1207
1208 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1209 goto clear_child_bitmap;
1210
1211 child = page_header(ent & PT64_BASE_ADDR_MASK);
1212
1213 if (child->unsync_children) {
1214 if (mmu_pages_add(pvec, child, i))
1215 return -ENOSPC;
1216
1217 ret = __mmu_unsync_walk(child, pvec);
1218 if (!ret)
1219 goto clear_child_bitmap;
1220 else if (ret > 0)
1221 nr_unsync_leaf += ret;
1222 else
1223 return ret;
1224 } else if (child->unsync) {
1225 nr_unsync_leaf++;
1226 if (mmu_pages_add(pvec, child, i))
1227 return -ENOSPC;
1228 } else
1229 goto clear_child_bitmap;
1230
1231 continue;
1232
1233 clear_child_bitmap:
1234 __clear_bit(i, sp->unsync_child_bitmap);
1235 sp->unsync_children--;
1236 WARN_ON((int)sp->unsync_children < 0);
1237 }
1238
1239
1240 return nr_unsync_leaf;
1241 }
1242
1243 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1244 struct kvm_mmu_pages *pvec)
1245 {
1246 if (!sp->unsync_children)
1247 return 0;
1248
1249 mmu_pages_add(pvec, sp, 0);
1250 return __mmu_unsync_walk(sp, pvec);
1251 }
1252
1253 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1254 {
1255 WARN_ON(!sp->unsync);
1256 trace_kvm_mmu_sync_page(sp);
1257 sp->unsync = 0;
1258 --kvm->stat.mmu_unsync;
1259 }
1260
1261 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1262 struct list_head *invalid_list);
1263 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1264 struct list_head *invalid_list);
1265
1266 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1267 hlist_for_each_entry(sp, pos, \
1268 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1269 if ((sp)->gfn != (gfn)) {} else
1270
1271 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1272 hlist_for_each_entry(sp, pos, \
1273 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1274 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1275 (sp)->role.invalid) {} else
1276
1277 /* @sp->gfn should be write-protected at the call site */
1278 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1279 struct list_head *invalid_list, bool clear_unsync)
1280 {
1281 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1282 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1283 return 1;
1284 }
1285
1286 if (clear_unsync)
1287 kvm_unlink_unsync_page(vcpu->kvm, sp);
1288
1289 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1290 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1291 return 1;
1292 }
1293
1294 kvm_mmu_flush_tlb(vcpu);
1295 return 0;
1296 }
1297
1298 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1299 struct kvm_mmu_page *sp)
1300 {
1301 LIST_HEAD(invalid_list);
1302 int ret;
1303
1304 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1305 if (ret)
1306 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1307
1308 return ret;
1309 }
1310
1311 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1312 struct list_head *invalid_list)
1313 {
1314 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1315 }
1316
1317 /* @gfn should be write-protected at the call site */
1318 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1319 {
1320 struct kvm_mmu_page *s;
1321 struct hlist_node *node;
1322 LIST_HEAD(invalid_list);
1323 bool flush = false;
1324
1325 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1326 if (!s->unsync)
1327 continue;
1328
1329 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1330 kvm_unlink_unsync_page(vcpu->kvm, s);
1331 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1332 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1333 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1334 continue;
1335 }
1336 flush = true;
1337 }
1338
1339 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1340 if (flush)
1341 kvm_mmu_flush_tlb(vcpu);
1342 }
1343
1344 struct mmu_page_path {
1345 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1346 unsigned int idx[PT64_ROOT_LEVEL-1];
1347 };
1348
1349 #define for_each_sp(pvec, sp, parents, i) \
1350 for (i = mmu_pages_next(&pvec, &parents, -1), \
1351 sp = pvec.page[i].sp; \
1352 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1353 i = mmu_pages_next(&pvec, &parents, i))
1354
1355 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1356 struct mmu_page_path *parents,
1357 int i)
1358 {
1359 int n;
1360
1361 for (n = i+1; n < pvec->nr; n++) {
1362 struct kvm_mmu_page *sp = pvec->page[n].sp;
1363
1364 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1365 parents->idx[0] = pvec->page[n].idx;
1366 return n;
1367 }
1368
1369 parents->parent[sp->role.level-2] = sp;
1370 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1371 }
1372
1373 return n;
1374 }
1375
1376 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1377 {
1378 struct kvm_mmu_page *sp;
1379 unsigned int level = 0;
1380
1381 do {
1382 unsigned int idx = parents->idx[level];
1383
1384 sp = parents->parent[level];
1385 if (!sp)
1386 return;
1387
1388 --sp->unsync_children;
1389 WARN_ON((int)sp->unsync_children < 0);
1390 __clear_bit(idx, sp->unsync_child_bitmap);
1391 level++;
1392 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1393 }
1394
1395 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1396 struct mmu_page_path *parents,
1397 struct kvm_mmu_pages *pvec)
1398 {
1399 parents->parent[parent->role.level-1] = NULL;
1400 pvec->nr = 0;
1401 }
1402
1403 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1404 struct kvm_mmu_page *parent)
1405 {
1406 int i;
1407 struct kvm_mmu_page *sp;
1408 struct mmu_page_path parents;
1409 struct kvm_mmu_pages pages;
1410 LIST_HEAD(invalid_list);
1411
1412 kvm_mmu_pages_init(parent, &parents, &pages);
1413 while (mmu_unsync_walk(parent, &pages)) {
1414 int protected = 0;
1415
1416 for_each_sp(pages, sp, parents, i)
1417 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1418
1419 if (protected)
1420 kvm_flush_remote_tlbs(vcpu->kvm);
1421
1422 for_each_sp(pages, sp, parents, i) {
1423 kvm_sync_page(vcpu, sp, &invalid_list);
1424 mmu_pages_clear_parents(&parents);
1425 }
1426 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1427 cond_resched_lock(&vcpu->kvm->mmu_lock);
1428 kvm_mmu_pages_init(parent, &parents, &pages);
1429 }
1430 }
1431
1432 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1433 gfn_t gfn,
1434 gva_t gaddr,
1435 unsigned level,
1436 int direct,
1437 unsigned access,
1438 u64 *parent_pte)
1439 {
1440 union kvm_mmu_page_role role;
1441 unsigned quadrant;
1442 struct kvm_mmu_page *sp;
1443 struct hlist_node *node;
1444 bool need_sync = false;
1445
1446 role = vcpu->arch.mmu.base_role;
1447 role.level = level;
1448 role.direct = direct;
1449 if (role.direct)
1450 role.cr4_pae = 0;
1451 role.access = access;
1452 if (!vcpu->arch.mmu.direct_map
1453 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1454 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1455 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1456 role.quadrant = quadrant;
1457 }
1458 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1459 if (!need_sync && sp->unsync)
1460 need_sync = true;
1461
1462 if (sp->role.word != role.word)
1463 continue;
1464
1465 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1466 break;
1467
1468 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1469 if (sp->unsync_children) {
1470 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1471 kvm_mmu_mark_parents_unsync(sp);
1472 } else if (sp->unsync)
1473 kvm_mmu_mark_parents_unsync(sp);
1474
1475 trace_kvm_mmu_get_page(sp, false);
1476 return sp;
1477 }
1478 ++vcpu->kvm->stat.mmu_cache_miss;
1479 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1480 if (!sp)
1481 return sp;
1482 sp->gfn = gfn;
1483 sp->role = role;
1484 hlist_add_head(&sp->hash_link,
1485 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1486 if (!direct) {
1487 if (rmap_write_protect(vcpu->kvm, gfn))
1488 kvm_flush_remote_tlbs(vcpu->kvm);
1489 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1490 kvm_sync_pages(vcpu, gfn);
1491
1492 account_shadowed(vcpu->kvm, gfn);
1493 }
1494 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1495 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1496 else
1497 nonpaging_prefetch_page(vcpu, sp);
1498 trace_kvm_mmu_get_page(sp, true);
1499 return sp;
1500 }
1501
1502 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1503 struct kvm_vcpu *vcpu, u64 addr)
1504 {
1505 iterator->addr = addr;
1506 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1507 iterator->level = vcpu->arch.mmu.shadow_root_level;
1508
1509 if (iterator->level == PT64_ROOT_LEVEL &&
1510 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1511 !vcpu->arch.mmu.direct_map)
1512 --iterator->level;
1513
1514 if (iterator->level == PT32E_ROOT_LEVEL) {
1515 iterator->shadow_addr
1516 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1517 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1518 --iterator->level;
1519 if (!iterator->shadow_addr)
1520 iterator->level = 0;
1521 }
1522 }
1523
1524 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1525 {
1526 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1527 return false;
1528
1529 if (iterator->level == PT_PAGE_TABLE_LEVEL)
1530 if (is_large_pte(*iterator->sptep))
1531 return false;
1532
1533 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1534 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1535 return true;
1536 }
1537
1538 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1539 {
1540 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1541 --iterator->level;
1542 }
1543
1544 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1545 {
1546 u64 spte;
1547
1548 spte = __pa(sp->spt)
1549 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1550 | PT_WRITABLE_MASK | PT_USER_MASK;
1551 __set_spte(sptep, spte);
1552 }
1553
1554 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1555 {
1556 if (is_large_pte(*sptep)) {
1557 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1558 kvm_flush_remote_tlbs(vcpu->kvm);
1559 }
1560 }
1561
1562 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1563 unsigned direct_access)
1564 {
1565 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1566 struct kvm_mmu_page *child;
1567
1568 /*
1569 * For the direct sp, if the guest pte's dirty bit
1570 * changed form clean to dirty, it will corrupt the
1571 * sp's access: allow writable in the read-only sp,
1572 * so we should update the spte at this point to get
1573 * a new sp with the correct access.
1574 */
1575 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1576 if (child->role.access == direct_access)
1577 return;
1578
1579 mmu_page_remove_parent_pte(child, sptep);
1580 __set_spte(sptep, shadow_trap_nonpresent_pte);
1581 kvm_flush_remote_tlbs(vcpu->kvm);
1582 }
1583 }
1584
1585 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1586 struct kvm_mmu_page *sp)
1587 {
1588 unsigned i;
1589 u64 *pt;
1590 u64 ent;
1591
1592 pt = sp->spt;
1593
1594 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1595 ent = pt[i];
1596
1597 if (is_shadow_present_pte(ent)) {
1598 if (!is_last_spte(ent, sp->role.level)) {
1599 ent &= PT64_BASE_ADDR_MASK;
1600 mmu_page_remove_parent_pte(page_header(ent),
1601 &pt[i]);
1602 } else {
1603 if (is_large_pte(ent))
1604 --kvm->stat.lpages;
1605 drop_spte(kvm, &pt[i],
1606 shadow_trap_nonpresent_pte);
1607 }
1608 }
1609 pt[i] = shadow_trap_nonpresent_pte;
1610 }
1611 }
1612
1613 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1614 {
1615 mmu_page_remove_parent_pte(sp, parent_pte);
1616 }
1617
1618 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1619 {
1620 int i;
1621 struct kvm_vcpu *vcpu;
1622
1623 kvm_for_each_vcpu(i, vcpu, kvm)
1624 vcpu->arch.last_pte_updated = NULL;
1625 }
1626
1627 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1628 {
1629 u64 *parent_pte;
1630
1631 while (sp->multimapped || sp->parent_pte) {
1632 if (!sp->multimapped)
1633 parent_pte = sp->parent_pte;
1634 else {
1635 struct kvm_pte_chain *chain;
1636
1637 chain = container_of(sp->parent_ptes.first,
1638 struct kvm_pte_chain, link);
1639 parent_pte = chain->parent_ptes[0];
1640 }
1641 BUG_ON(!parent_pte);
1642 kvm_mmu_put_page(sp, parent_pte);
1643 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1644 }
1645 }
1646
1647 static int mmu_zap_unsync_children(struct kvm *kvm,
1648 struct kvm_mmu_page *parent,
1649 struct list_head *invalid_list)
1650 {
1651 int i, zapped = 0;
1652 struct mmu_page_path parents;
1653 struct kvm_mmu_pages pages;
1654
1655 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1656 return 0;
1657
1658 kvm_mmu_pages_init(parent, &parents, &pages);
1659 while (mmu_unsync_walk(parent, &pages)) {
1660 struct kvm_mmu_page *sp;
1661
1662 for_each_sp(pages, sp, parents, i) {
1663 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1664 mmu_pages_clear_parents(&parents);
1665 zapped++;
1666 }
1667 kvm_mmu_pages_init(parent, &parents, &pages);
1668 }
1669
1670 return zapped;
1671 }
1672
1673 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1674 struct list_head *invalid_list)
1675 {
1676 int ret;
1677
1678 trace_kvm_mmu_prepare_zap_page(sp);
1679 ++kvm->stat.mmu_shadow_zapped;
1680 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1681 kvm_mmu_page_unlink_children(kvm, sp);
1682 kvm_mmu_unlink_parents(kvm, sp);
1683 if (!sp->role.invalid && !sp->role.direct)
1684 unaccount_shadowed(kvm, sp->gfn);
1685 if (sp->unsync)
1686 kvm_unlink_unsync_page(kvm, sp);
1687 if (!sp->root_count) {
1688 /* Count self */
1689 ret++;
1690 list_move(&sp->link, invalid_list);
1691 } else {
1692 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1693 kvm_reload_remote_mmus(kvm);
1694 }
1695
1696 sp->role.invalid = 1;
1697 kvm_mmu_reset_last_pte_updated(kvm);
1698 return ret;
1699 }
1700
1701 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1702 struct list_head *invalid_list)
1703 {
1704 struct kvm_mmu_page *sp;
1705
1706 if (list_empty(invalid_list))
1707 return;
1708
1709 kvm_flush_remote_tlbs(kvm);
1710
1711 do {
1712 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1713 WARN_ON(!sp->role.invalid || sp->root_count);
1714 kvm_mmu_free_page(kvm, sp);
1715 } while (!list_empty(invalid_list));
1716
1717 }
1718
1719 /*
1720 * Changing the number of mmu pages allocated to the vm
1721 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1722 */
1723 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1724 {
1725 LIST_HEAD(invalid_list);
1726 /*
1727 * If we set the number of mmu pages to be smaller be than the
1728 * number of actived pages , we must to free some mmu pages before we
1729 * change the value
1730 */
1731
1732 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1733 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1734 !list_empty(&kvm->arch.active_mmu_pages)) {
1735 struct kvm_mmu_page *page;
1736
1737 page = container_of(kvm->arch.active_mmu_pages.prev,
1738 struct kvm_mmu_page, link);
1739 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1740 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1741 }
1742 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1743 }
1744
1745 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1746 }
1747
1748 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1749 {
1750 struct kvm_mmu_page *sp;
1751 struct hlist_node *node;
1752 LIST_HEAD(invalid_list);
1753 int r;
1754
1755 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1756 r = 0;
1757
1758 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1759 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1760 sp->role.word);
1761 r = 1;
1762 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1763 }
1764 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1765 return r;
1766 }
1767
1768 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1769 {
1770 struct kvm_mmu_page *sp;
1771 struct hlist_node *node;
1772 LIST_HEAD(invalid_list);
1773
1774 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1775 pgprintk("%s: zap %llx %x\n",
1776 __func__, gfn, sp->role.word);
1777 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1778 }
1779 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1780 }
1781
1782 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1783 {
1784 int slot = memslot_id(kvm, gfn);
1785 struct kvm_mmu_page *sp = page_header(__pa(pte));
1786
1787 __set_bit(slot, sp->slot_bitmap);
1788 }
1789
1790 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1791 {
1792 int i;
1793 u64 *pt = sp->spt;
1794
1795 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1796 return;
1797
1798 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1799 if (pt[i] == shadow_notrap_nonpresent_pte)
1800 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1801 }
1802 }
1803
1804 /*
1805 * The function is based on mtrr_type_lookup() in
1806 * arch/x86/kernel/cpu/mtrr/generic.c
1807 */
1808 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1809 u64 start, u64 end)
1810 {
1811 int i;
1812 u64 base, mask;
1813 u8 prev_match, curr_match;
1814 int num_var_ranges = KVM_NR_VAR_MTRR;
1815
1816 if (!mtrr_state->enabled)
1817 return 0xFF;
1818
1819 /* Make end inclusive end, instead of exclusive */
1820 end--;
1821
1822 /* Look in fixed ranges. Just return the type as per start */
1823 if (mtrr_state->have_fixed && (start < 0x100000)) {
1824 int idx;
1825
1826 if (start < 0x80000) {
1827 idx = 0;
1828 idx += (start >> 16);
1829 return mtrr_state->fixed_ranges[idx];
1830 } else if (start < 0xC0000) {
1831 idx = 1 * 8;
1832 idx += ((start - 0x80000) >> 14);
1833 return mtrr_state->fixed_ranges[idx];
1834 } else if (start < 0x1000000) {
1835 idx = 3 * 8;
1836 idx += ((start - 0xC0000) >> 12);
1837 return mtrr_state->fixed_ranges[idx];
1838 }
1839 }
1840
1841 /*
1842 * Look in variable ranges
1843 * Look of multiple ranges matching this address and pick type
1844 * as per MTRR precedence
1845 */
1846 if (!(mtrr_state->enabled & 2))
1847 return mtrr_state->def_type;
1848
1849 prev_match = 0xFF;
1850 for (i = 0; i < num_var_ranges; ++i) {
1851 unsigned short start_state, end_state;
1852
1853 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1854 continue;
1855
1856 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1857 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1858 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1859 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1860
1861 start_state = ((start & mask) == (base & mask));
1862 end_state = ((end & mask) == (base & mask));
1863 if (start_state != end_state)
1864 return 0xFE;
1865
1866 if ((start & mask) != (base & mask))
1867 continue;
1868
1869 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1870 if (prev_match == 0xFF) {
1871 prev_match = curr_match;
1872 continue;
1873 }
1874
1875 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1876 curr_match == MTRR_TYPE_UNCACHABLE)
1877 return MTRR_TYPE_UNCACHABLE;
1878
1879 if ((prev_match == MTRR_TYPE_WRBACK &&
1880 curr_match == MTRR_TYPE_WRTHROUGH) ||
1881 (prev_match == MTRR_TYPE_WRTHROUGH &&
1882 curr_match == MTRR_TYPE_WRBACK)) {
1883 prev_match = MTRR_TYPE_WRTHROUGH;
1884 curr_match = MTRR_TYPE_WRTHROUGH;
1885 }
1886
1887 if (prev_match != curr_match)
1888 return MTRR_TYPE_UNCACHABLE;
1889 }
1890
1891 if (prev_match != 0xFF)
1892 return prev_match;
1893
1894 return mtrr_state->def_type;
1895 }
1896
1897 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1898 {
1899 u8 mtrr;
1900
1901 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1902 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1903 if (mtrr == 0xfe || mtrr == 0xff)
1904 mtrr = MTRR_TYPE_WRBACK;
1905 return mtrr;
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1908
1909 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1910 {
1911 trace_kvm_mmu_unsync_page(sp);
1912 ++vcpu->kvm->stat.mmu_unsync;
1913 sp->unsync = 1;
1914
1915 kvm_mmu_mark_parents_unsync(sp);
1916 mmu_convert_notrap(sp);
1917 }
1918
1919 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1920 {
1921 struct kvm_mmu_page *s;
1922 struct hlist_node *node;
1923
1924 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1925 if (s->unsync)
1926 continue;
1927 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1928 __kvm_unsync_page(vcpu, s);
1929 }
1930 }
1931
1932 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1933 bool can_unsync)
1934 {
1935 struct kvm_mmu_page *s;
1936 struct hlist_node *node;
1937 bool need_unsync = false;
1938
1939 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1940 if (!can_unsync)
1941 return 1;
1942
1943 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1944 return 1;
1945
1946 if (!need_unsync && !s->unsync) {
1947 if (!oos_shadow)
1948 return 1;
1949 need_unsync = true;
1950 }
1951 }
1952 if (need_unsync)
1953 kvm_unsync_pages(vcpu, gfn);
1954 return 0;
1955 }
1956
1957 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1958 unsigned pte_access, int user_fault,
1959 int write_fault, int dirty, int level,
1960 gfn_t gfn, pfn_t pfn, bool speculative,
1961 bool can_unsync, bool host_writable)
1962 {
1963 u64 spte, entry = *sptep;
1964 int ret = 0;
1965
1966 /*
1967 * We don't set the accessed bit, since we sometimes want to see
1968 * whether the guest actually used the pte (in order to detect
1969 * demand paging).
1970 */
1971 spte = PT_PRESENT_MASK;
1972 if (!speculative)
1973 spte |= shadow_accessed_mask;
1974 if (!dirty)
1975 pte_access &= ~ACC_WRITE_MASK;
1976 if (pte_access & ACC_EXEC_MASK)
1977 spte |= shadow_x_mask;
1978 else
1979 spte |= shadow_nx_mask;
1980 if (pte_access & ACC_USER_MASK)
1981 spte |= shadow_user_mask;
1982 if (level > PT_PAGE_TABLE_LEVEL)
1983 spte |= PT_PAGE_SIZE_MASK;
1984 if (tdp_enabled)
1985 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1986 kvm_is_mmio_pfn(pfn));
1987
1988 if (host_writable)
1989 spte |= SPTE_HOST_WRITEABLE;
1990 else
1991 pte_access &= ~ACC_WRITE_MASK;
1992
1993 spte |= (u64)pfn << PAGE_SHIFT;
1994
1995 if ((pte_access & ACC_WRITE_MASK)
1996 || (!vcpu->arch.mmu.direct_map && write_fault
1997 && !is_write_protection(vcpu) && !user_fault)) {
1998
1999 if (level > PT_PAGE_TABLE_LEVEL &&
2000 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2001 ret = 1;
2002 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2003 goto done;
2004 }
2005
2006 spte |= PT_WRITABLE_MASK;
2007
2008 if (!vcpu->arch.mmu.direct_map
2009 && !(pte_access & ACC_WRITE_MASK))
2010 spte &= ~PT_USER_MASK;
2011
2012 /*
2013 * Optimization: for pte sync, if spte was writable the hash
2014 * lookup is unnecessary (and expensive). Write protection
2015 * is responsibility of mmu_get_page / kvm_sync_page.
2016 * Same reasoning can be applied to dirty page accounting.
2017 */
2018 if (!can_unsync && is_writable_pte(*sptep))
2019 goto set_pte;
2020
2021 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2022 pgprintk("%s: found shadow page for %llx, marking ro\n",
2023 __func__, gfn);
2024 ret = 1;
2025 pte_access &= ~ACC_WRITE_MASK;
2026 if (is_writable_pte(spte))
2027 spte &= ~PT_WRITABLE_MASK;
2028 }
2029 }
2030
2031 if (pte_access & ACC_WRITE_MASK)
2032 mark_page_dirty(vcpu->kvm, gfn);
2033
2034 set_pte:
2035 update_spte(sptep, spte);
2036 /*
2037 * If we overwrite a writable spte with a read-only one we
2038 * should flush remote TLBs. Otherwise rmap_write_protect
2039 * will find a read-only spte, even though the writable spte
2040 * might be cached on a CPU's TLB.
2041 */
2042 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2043 kvm_flush_remote_tlbs(vcpu->kvm);
2044 done:
2045 return ret;
2046 }
2047
2048 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2049 unsigned pt_access, unsigned pte_access,
2050 int user_fault, int write_fault, int dirty,
2051 int *ptwrite, int level, gfn_t gfn,
2052 pfn_t pfn, bool speculative,
2053 bool host_writable)
2054 {
2055 int was_rmapped = 0;
2056 int rmap_count;
2057
2058 pgprintk("%s: spte %llx access %x write_fault %d"
2059 " user_fault %d gfn %llx\n",
2060 __func__, *sptep, pt_access,
2061 write_fault, user_fault, gfn);
2062
2063 if (is_rmap_spte(*sptep)) {
2064 /*
2065 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2066 * the parent of the now unreachable PTE.
2067 */
2068 if (level > PT_PAGE_TABLE_LEVEL &&
2069 !is_large_pte(*sptep)) {
2070 struct kvm_mmu_page *child;
2071 u64 pte = *sptep;
2072
2073 child = page_header(pte & PT64_BASE_ADDR_MASK);
2074 mmu_page_remove_parent_pte(child, sptep);
2075 __set_spte(sptep, shadow_trap_nonpresent_pte);
2076 kvm_flush_remote_tlbs(vcpu->kvm);
2077 } else if (pfn != spte_to_pfn(*sptep)) {
2078 pgprintk("hfn old %llx new %llx\n",
2079 spte_to_pfn(*sptep), pfn);
2080 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2081 kvm_flush_remote_tlbs(vcpu->kvm);
2082 } else
2083 was_rmapped = 1;
2084 }
2085
2086 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2087 dirty, level, gfn, pfn, speculative, true,
2088 host_writable)) {
2089 if (write_fault)
2090 *ptwrite = 1;
2091 kvm_mmu_flush_tlb(vcpu);
2092 }
2093
2094 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2095 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2096 is_large_pte(*sptep)? "2MB" : "4kB",
2097 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2098 *sptep, sptep);
2099 if (!was_rmapped && is_large_pte(*sptep))
2100 ++vcpu->kvm->stat.lpages;
2101
2102 page_header_update_slot(vcpu->kvm, sptep, gfn);
2103 if (!was_rmapped) {
2104 rmap_count = rmap_add(vcpu, sptep, gfn);
2105 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2106 rmap_recycle(vcpu, sptep, gfn);
2107 }
2108 kvm_release_pfn_clean(pfn);
2109 if (speculative) {
2110 vcpu->arch.last_pte_updated = sptep;
2111 vcpu->arch.last_pte_gfn = gfn;
2112 }
2113 }
2114
2115 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2116 {
2117 }
2118
2119 static struct kvm_memory_slot *
2120 pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log)
2121 {
2122 struct kvm_memory_slot *slot;
2123
2124 slot = gfn_to_memslot(vcpu->kvm, gfn);
2125 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
2126 (no_dirty_log && slot->dirty_bitmap))
2127 slot = NULL;
2128
2129 return slot;
2130 }
2131
2132 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2133 bool no_dirty_log)
2134 {
2135 struct kvm_memory_slot *slot;
2136 unsigned long hva;
2137
2138 slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log);
2139 if (!slot) {
2140 get_page(bad_page);
2141 return page_to_pfn(bad_page);
2142 }
2143
2144 hva = gfn_to_hva_memslot(slot, gfn);
2145
2146 return hva_to_pfn_atomic(vcpu->kvm, hva);
2147 }
2148
2149 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2150 struct kvm_mmu_page *sp,
2151 u64 *start, u64 *end)
2152 {
2153 struct page *pages[PTE_PREFETCH_NUM];
2154 unsigned access = sp->role.access;
2155 int i, ret;
2156 gfn_t gfn;
2157
2158 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2159 if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK))
2160 return -1;
2161
2162 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2163 if (ret <= 0)
2164 return -1;
2165
2166 for (i = 0; i < ret; i++, gfn++, start++)
2167 mmu_set_spte(vcpu, start, ACC_ALL,
2168 access, 0, 0, 1, NULL,
2169 sp->role.level, gfn,
2170 page_to_pfn(pages[i]), true, true);
2171
2172 return 0;
2173 }
2174
2175 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2176 struct kvm_mmu_page *sp, u64 *sptep)
2177 {
2178 u64 *spte, *start = NULL;
2179 int i;
2180
2181 WARN_ON(!sp->role.direct);
2182
2183 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2184 spte = sp->spt + i;
2185
2186 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2187 if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2188 if (!start)
2189 continue;
2190 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2191 break;
2192 start = NULL;
2193 } else if (!start)
2194 start = spte;
2195 }
2196 }
2197
2198 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2199 {
2200 struct kvm_mmu_page *sp;
2201
2202 /*
2203 * Since it's no accessed bit on EPT, it's no way to
2204 * distinguish between actually accessed translations
2205 * and prefetched, so disable pte prefetch if EPT is
2206 * enabled.
2207 */
2208 if (!shadow_accessed_mask)
2209 return;
2210
2211 sp = page_header(__pa(sptep));
2212 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2213 return;
2214
2215 __direct_pte_prefetch(vcpu, sp, sptep);
2216 }
2217
2218 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2219 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2220 bool prefault)
2221 {
2222 struct kvm_shadow_walk_iterator iterator;
2223 struct kvm_mmu_page *sp;
2224 int pt_write = 0;
2225 gfn_t pseudo_gfn;
2226
2227 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2228 if (iterator.level == level) {
2229 unsigned pte_access = ACC_ALL;
2230
2231 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2232 0, write, 1, &pt_write,
2233 level, gfn, pfn, prefault, map_writable);
2234 direct_pte_prefetch(vcpu, iterator.sptep);
2235 ++vcpu->stat.pf_fixed;
2236 break;
2237 }
2238
2239 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2240 u64 base_addr = iterator.addr;
2241
2242 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2243 pseudo_gfn = base_addr >> PAGE_SHIFT;
2244 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2245 iterator.level - 1,
2246 1, ACC_ALL, iterator.sptep);
2247 if (!sp) {
2248 pgprintk("nonpaging_map: ENOMEM\n");
2249 kvm_release_pfn_clean(pfn);
2250 return -ENOMEM;
2251 }
2252
2253 __set_spte(iterator.sptep,
2254 __pa(sp->spt)
2255 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2256 | shadow_user_mask | shadow_x_mask
2257 | shadow_accessed_mask);
2258 }
2259 }
2260 return pt_write;
2261 }
2262
2263 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2264 {
2265 siginfo_t info;
2266
2267 info.si_signo = SIGBUS;
2268 info.si_errno = 0;
2269 info.si_code = BUS_MCEERR_AR;
2270 info.si_addr = (void __user *)address;
2271 info.si_addr_lsb = PAGE_SHIFT;
2272
2273 send_sig_info(SIGBUS, &info, tsk);
2274 }
2275
2276 static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2277 {
2278 kvm_release_pfn_clean(pfn);
2279 if (is_hwpoison_pfn(pfn)) {
2280 kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
2281 return 0;
2282 } else if (is_fault_pfn(pfn))
2283 return -EFAULT;
2284
2285 return 1;
2286 }
2287
2288 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2289 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2290 {
2291 pfn_t pfn = *pfnp;
2292 gfn_t gfn = *gfnp;
2293 int level = *levelp;
2294
2295 /*
2296 * Check if it's a transparent hugepage. If this would be an
2297 * hugetlbfs page, level wouldn't be set to
2298 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2299 * here.
2300 */
2301 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2302 level == PT_PAGE_TABLE_LEVEL &&
2303 PageTransCompound(pfn_to_page(pfn)) &&
2304 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2305 unsigned long mask;
2306 /*
2307 * mmu_notifier_retry was successful and we hold the
2308 * mmu_lock here, so the pmd can't become splitting
2309 * from under us, and in turn
2310 * __split_huge_page_refcount() can't run from under
2311 * us and we can safely transfer the refcount from
2312 * PG_tail to PG_head as we switch the pfn to tail to
2313 * head.
2314 */
2315 *levelp = level = PT_DIRECTORY_LEVEL;
2316 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2317 VM_BUG_ON((gfn & mask) != (pfn & mask));
2318 if (pfn & mask) {
2319 gfn &= ~mask;
2320 *gfnp = gfn;
2321 kvm_release_pfn_clean(pfn);
2322 pfn &= ~mask;
2323 if (!get_page_unless_zero(pfn_to_page(pfn)))
2324 BUG();
2325 *pfnp = pfn;
2326 }
2327 }
2328 }
2329
2330 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2331 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2332
2333 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2334 bool prefault)
2335 {
2336 int r;
2337 int level;
2338 int force_pt_level;
2339 pfn_t pfn;
2340 unsigned long mmu_seq;
2341 bool map_writable;
2342
2343 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2344 if (likely(!force_pt_level)) {
2345 level = mapping_level(vcpu, gfn);
2346 /*
2347 * This path builds a PAE pagetable - so we can map
2348 * 2mb pages at maximum. Therefore check if the level
2349 * is larger than that.
2350 */
2351 if (level > PT_DIRECTORY_LEVEL)
2352 level = PT_DIRECTORY_LEVEL;
2353
2354 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2355 } else
2356 level = PT_PAGE_TABLE_LEVEL;
2357
2358 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2359 smp_rmb();
2360
2361 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2362 return 0;
2363
2364 /* mmio */
2365 if (is_error_pfn(pfn))
2366 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2367
2368 spin_lock(&vcpu->kvm->mmu_lock);
2369 if (mmu_notifier_retry(vcpu, mmu_seq))
2370 goto out_unlock;
2371 kvm_mmu_free_some_pages(vcpu);
2372 if (likely(!force_pt_level))
2373 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2374 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2375 prefault);
2376 spin_unlock(&vcpu->kvm->mmu_lock);
2377
2378
2379 return r;
2380
2381 out_unlock:
2382 spin_unlock(&vcpu->kvm->mmu_lock);
2383 kvm_release_pfn_clean(pfn);
2384 return 0;
2385 }
2386
2387
2388 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2389 {
2390 int i;
2391 struct kvm_mmu_page *sp;
2392 LIST_HEAD(invalid_list);
2393
2394 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2395 return;
2396 spin_lock(&vcpu->kvm->mmu_lock);
2397 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2398 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2399 vcpu->arch.mmu.direct_map)) {
2400 hpa_t root = vcpu->arch.mmu.root_hpa;
2401
2402 sp = page_header(root);
2403 --sp->root_count;
2404 if (!sp->root_count && sp->role.invalid) {
2405 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2406 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2407 }
2408 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2409 spin_unlock(&vcpu->kvm->mmu_lock);
2410 return;
2411 }
2412 for (i = 0; i < 4; ++i) {
2413 hpa_t root = vcpu->arch.mmu.pae_root[i];
2414
2415 if (root) {
2416 root &= PT64_BASE_ADDR_MASK;
2417 sp = page_header(root);
2418 --sp->root_count;
2419 if (!sp->root_count && sp->role.invalid)
2420 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2421 &invalid_list);
2422 }
2423 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2424 }
2425 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2426 spin_unlock(&vcpu->kvm->mmu_lock);
2427 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2428 }
2429
2430 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2431 {
2432 int ret = 0;
2433
2434 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2435 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2436 ret = 1;
2437 }
2438
2439 return ret;
2440 }
2441
2442 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2443 {
2444 struct kvm_mmu_page *sp;
2445 unsigned i;
2446
2447 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2448 spin_lock(&vcpu->kvm->mmu_lock);
2449 kvm_mmu_free_some_pages(vcpu);
2450 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2451 1, ACC_ALL, NULL);
2452 ++sp->root_count;
2453 spin_unlock(&vcpu->kvm->mmu_lock);
2454 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2455 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2456 for (i = 0; i < 4; ++i) {
2457 hpa_t root = vcpu->arch.mmu.pae_root[i];
2458
2459 ASSERT(!VALID_PAGE(root));
2460 spin_lock(&vcpu->kvm->mmu_lock);
2461 kvm_mmu_free_some_pages(vcpu);
2462 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2463 i << 30,
2464 PT32_ROOT_LEVEL, 1, ACC_ALL,
2465 NULL);
2466 root = __pa(sp->spt);
2467 ++sp->root_count;
2468 spin_unlock(&vcpu->kvm->mmu_lock);
2469 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2470 }
2471 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2472 } else
2473 BUG();
2474
2475 return 0;
2476 }
2477
2478 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2479 {
2480 struct kvm_mmu_page *sp;
2481 u64 pdptr, pm_mask;
2482 gfn_t root_gfn;
2483 int i;
2484
2485 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2486
2487 if (mmu_check_root(vcpu, root_gfn))
2488 return 1;
2489
2490 /*
2491 * Do we shadow a long mode page table? If so we need to
2492 * write-protect the guests page table root.
2493 */
2494 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2495 hpa_t root = vcpu->arch.mmu.root_hpa;
2496
2497 ASSERT(!VALID_PAGE(root));
2498
2499 spin_lock(&vcpu->kvm->mmu_lock);
2500 kvm_mmu_free_some_pages(vcpu);
2501 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2502 0, ACC_ALL, NULL);
2503 root = __pa(sp->spt);
2504 ++sp->root_count;
2505 spin_unlock(&vcpu->kvm->mmu_lock);
2506 vcpu->arch.mmu.root_hpa = root;
2507 return 0;
2508 }
2509
2510 /*
2511 * We shadow a 32 bit page table. This may be a legacy 2-level
2512 * or a PAE 3-level page table. In either case we need to be aware that
2513 * the shadow page table may be a PAE or a long mode page table.
2514 */
2515 pm_mask = PT_PRESENT_MASK;
2516 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2517 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2518
2519 for (i = 0; i < 4; ++i) {
2520 hpa_t root = vcpu->arch.mmu.pae_root[i];
2521
2522 ASSERT(!VALID_PAGE(root));
2523 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2524 pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2525 if (!is_present_gpte(pdptr)) {
2526 vcpu->arch.mmu.pae_root[i] = 0;
2527 continue;
2528 }
2529 root_gfn = pdptr >> PAGE_SHIFT;
2530 if (mmu_check_root(vcpu, root_gfn))
2531 return 1;
2532 }
2533 spin_lock(&vcpu->kvm->mmu_lock);
2534 kvm_mmu_free_some_pages(vcpu);
2535 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2536 PT32_ROOT_LEVEL, 0,
2537 ACC_ALL, NULL);
2538 root = __pa(sp->spt);
2539 ++sp->root_count;
2540 spin_unlock(&vcpu->kvm->mmu_lock);
2541
2542 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2543 }
2544 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2545
2546 /*
2547 * If we shadow a 32 bit page table with a long mode page
2548 * table we enter this path.
2549 */
2550 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2551 if (vcpu->arch.mmu.lm_root == NULL) {
2552 /*
2553 * The additional page necessary for this is only
2554 * allocated on demand.
2555 */
2556
2557 u64 *lm_root;
2558
2559 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2560 if (lm_root == NULL)
2561 return 1;
2562
2563 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2564
2565 vcpu->arch.mmu.lm_root = lm_root;
2566 }
2567
2568 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2569 }
2570
2571 return 0;
2572 }
2573
2574 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2575 {
2576 if (vcpu->arch.mmu.direct_map)
2577 return mmu_alloc_direct_roots(vcpu);
2578 else
2579 return mmu_alloc_shadow_roots(vcpu);
2580 }
2581
2582 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2583 {
2584 int i;
2585 struct kvm_mmu_page *sp;
2586
2587 if (vcpu->arch.mmu.direct_map)
2588 return;
2589
2590 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2591 return;
2592
2593 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2594 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2595 hpa_t root = vcpu->arch.mmu.root_hpa;
2596 sp = page_header(root);
2597 mmu_sync_children(vcpu, sp);
2598 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2599 return;
2600 }
2601 for (i = 0; i < 4; ++i) {
2602 hpa_t root = vcpu->arch.mmu.pae_root[i];
2603
2604 if (root && VALID_PAGE(root)) {
2605 root &= PT64_BASE_ADDR_MASK;
2606 sp = page_header(root);
2607 mmu_sync_children(vcpu, sp);
2608 }
2609 }
2610 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2611 }
2612
2613 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2614 {
2615 spin_lock(&vcpu->kvm->mmu_lock);
2616 mmu_sync_roots(vcpu);
2617 spin_unlock(&vcpu->kvm->mmu_lock);
2618 }
2619
2620 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2621 u32 access, struct x86_exception *exception)
2622 {
2623 if (exception)
2624 exception->error_code = 0;
2625 return vaddr;
2626 }
2627
2628 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2629 u32 access,
2630 struct x86_exception *exception)
2631 {
2632 if (exception)
2633 exception->error_code = 0;
2634 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2635 }
2636
2637 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2638 u32 error_code, bool prefault)
2639 {
2640 gfn_t gfn;
2641 int r;
2642
2643 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2644 r = mmu_topup_memory_caches(vcpu);
2645 if (r)
2646 return r;
2647
2648 ASSERT(vcpu);
2649 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2650
2651 gfn = gva >> PAGE_SHIFT;
2652
2653 return nonpaging_map(vcpu, gva & PAGE_MASK,
2654 error_code & PFERR_WRITE_MASK, gfn, prefault);
2655 }
2656
2657 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
2658 {
2659 struct kvm_arch_async_pf arch;
2660
2661 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
2662 arch.gfn = gfn;
2663 arch.direct_map = vcpu->arch.mmu.direct_map;
2664 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
2665
2666 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
2667 }
2668
2669 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
2670 {
2671 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
2672 kvm_event_needs_reinjection(vcpu)))
2673 return false;
2674
2675 return kvm_x86_ops->interrupt_allowed(vcpu);
2676 }
2677
2678 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2679 gva_t gva, pfn_t *pfn, bool write, bool *writable)
2680 {
2681 bool async;
2682
2683 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
2684
2685 if (!async)
2686 return false; /* *pfn has correct page already */
2687
2688 put_page(pfn_to_page(*pfn));
2689
2690 if (!prefault && can_do_async_pf(vcpu)) {
2691 trace_kvm_try_async_get_page(gva, gfn);
2692 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
2693 trace_kvm_async_pf_doublefault(gva, gfn);
2694 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2695 return true;
2696 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
2697 return true;
2698 }
2699
2700 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
2701
2702 return false;
2703 }
2704
2705 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
2706 bool prefault)
2707 {
2708 pfn_t pfn;
2709 int r;
2710 int level;
2711 int force_pt_level;
2712 gfn_t gfn = gpa >> PAGE_SHIFT;
2713 unsigned long mmu_seq;
2714 int write = error_code & PFERR_WRITE_MASK;
2715 bool map_writable;
2716
2717 ASSERT(vcpu);
2718 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2719
2720 r = mmu_topup_memory_caches(vcpu);
2721 if (r)
2722 return r;
2723
2724 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2725 if (likely(!force_pt_level)) {
2726 level = mapping_level(vcpu, gfn);
2727 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2728 } else
2729 level = PT_PAGE_TABLE_LEVEL;
2730
2731 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2732 smp_rmb();
2733
2734 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
2735 return 0;
2736
2737 /* mmio */
2738 if (is_error_pfn(pfn))
2739 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2740 spin_lock(&vcpu->kvm->mmu_lock);
2741 if (mmu_notifier_retry(vcpu, mmu_seq))
2742 goto out_unlock;
2743 kvm_mmu_free_some_pages(vcpu);
2744 if (likely(!force_pt_level))
2745 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2746 r = __direct_map(vcpu, gpa, write, map_writable,
2747 level, gfn, pfn, prefault);
2748 spin_unlock(&vcpu->kvm->mmu_lock);
2749
2750 return r;
2751
2752 out_unlock:
2753 spin_unlock(&vcpu->kvm->mmu_lock);
2754 kvm_release_pfn_clean(pfn);
2755 return 0;
2756 }
2757
2758 static void nonpaging_free(struct kvm_vcpu *vcpu)
2759 {
2760 mmu_free_roots(vcpu);
2761 }
2762
2763 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2764 struct kvm_mmu *context)
2765 {
2766 context->new_cr3 = nonpaging_new_cr3;
2767 context->page_fault = nonpaging_page_fault;
2768 context->gva_to_gpa = nonpaging_gva_to_gpa;
2769 context->free = nonpaging_free;
2770 context->prefetch_page = nonpaging_prefetch_page;
2771 context->sync_page = nonpaging_sync_page;
2772 context->invlpg = nonpaging_invlpg;
2773 context->root_level = 0;
2774 context->shadow_root_level = PT32E_ROOT_LEVEL;
2775 context->root_hpa = INVALID_PAGE;
2776 context->direct_map = true;
2777 context->nx = false;
2778 return 0;
2779 }
2780
2781 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2782 {
2783 ++vcpu->stat.tlb_flush;
2784 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2785 }
2786
2787 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2788 {
2789 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
2790 mmu_free_roots(vcpu);
2791 }
2792
2793 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2794 {
2795 return kvm_read_cr3(vcpu);
2796 }
2797
2798 static void inject_page_fault(struct kvm_vcpu *vcpu,
2799 struct x86_exception *fault)
2800 {
2801 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
2802 }
2803
2804 static void paging_free(struct kvm_vcpu *vcpu)
2805 {
2806 nonpaging_free(vcpu);
2807 }
2808
2809 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2810 {
2811 int bit7;
2812
2813 bit7 = (gpte >> 7) & 1;
2814 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2815 }
2816
2817 #define PTTYPE 64
2818 #include "paging_tmpl.h"
2819 #undef PTTYPE
2820
2821 #define PTTYPE 32
2822 #include "paging_tmpl.h"
2823 #undef PTTYPE
2824
2825 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2826 struct kvm_mmu *context,
2827 int level)
2828 {
2829 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2830 u64 exb_bit_rsvd = 0;
2831
2832 if (!context->nx)
2833 exb_bit_rsvd = rsvd_bits(63, 63);
2834 switch (level) {
2835 case PT32_ROOT_LEVEL:
2836 /* no rsvd bits for 2 level 4K page table entries */
2837 context->rsvd_bits_mask[0][1] = 0;
2838 context->rsvd_bits_mask[0][0] = 0;
2839 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2840
2841 if (!is_pse(vcpu)) {
2842 context->rsvd_bits_mask[1][1] = 0;
2843 break;
2844 }
2845
2846 if (is_cpuid_PSE36())
2847 /* 36bits PSE 4MB page */
2848 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2849 else
2850 /* 32 bits PSE 4MB page */
2851 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2852 break;
2853 case PT32E_ROOT_LEVEL:
2854 context->rsvd_bits_mask[0][2] =
2855 rsvd_bits(maxphyaddr, 63) |
2856 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2857 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2858 rsvd_bits(maxphyaddr, 62); /* PDE */
2859 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2860 rsvd_bits(maxphyaddr, 62); /* PTE */
2861 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2862 rsvd_bits(maxphyaddr, 62) |
2863 rsvd_bits(13, 20); /* large page */
2864 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2865 break;
2866 case PT64_ROOT_LEVEL:
2867 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2868 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2869 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2870 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2871 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2872 rsvd_bits(maxphyaddr, 51);
2873 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2874 rsvd_bits(maxphyaddr, 51);
2875 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2876 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2877 rsvd_bits(maxphyaddr, 51) |
2878 rsvd_bits(13, 29);
2879 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2880 rsvd_bits(maxphyaddr, 51) |
2881 rsvd_bits(13, 20); /* large page */
2882 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2883 break;
2884 }
2885 }
2886
2887 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2888 struct kvm_mmu *context,
2889 int level)
2890 {
2891 context->nx = is_nx(vcpu);
2892
2893 reset_rsvds_bits_mask(vcpu, context, level);
2894
2895 ASSERT(is_pae(vcpu));
2896 context->new_cr3 = paging_new_cr3;
2897 context->page_fault = paging64_page_fault;
2898 context->gva_to_gpa = paging64_gva_to_gpa;
2899 context->prefetch_page = paging64_prefetch_page;
2900 context->sync_page = paging64_sync_page;
2901 context->invlpg = paging64_invlpg;
2902 context->free = paging_free;
2903 context->root_level = level;
2904 context->shadow_root_level = level;
2905 context->root_hpa = INVALID_PAGE;
2906 context->direct_map = false;
2907 return 0;
2908 }
2909
2910 static int paging64_init_context(struct kvm_vcpu *vcpu,
2911 struct kvm_mmu *context)
2912 {
2913 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2914 }
2915
2916 static int paging32_init_context(struct kvm_vcpu *vcpu,
2917 struct kvm_mmu *context)
2918 {
2919 context->nx = false;
2920
2921 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2922
2923 context->new_cr3 = paging_new_cr3;
2924 context->page_fault = paging32_page_fault;
2925 context->gva_to_gpa = paging32_gva_to_gpa;
2926 context->free = paging_free;
2927 context->prefetch_page = paging32_prefetch_page;
2928 context->sync_page = paging32_sync_page;
2929 context->invlpg = paging32_invlpg;
2930 context->root_level = PT32_ROOT_LEVEL;
2931 context->shadow_root_level = PT32E_ROOT_LEVEL;
2932 context->root_hpa = INVALID_PAGE;
2933 context->direct_map = false;
2934 return 0;
2935 }
2936
2937 static int paging32E_init_context(struct kvm_vcpu *vcpu,
2938 struct kvm_mmu *context)
2939 {
2940 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2941 }
2942
2943 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2944 {
2945 struct kvm_mmu *context = vcpu->arch.walk_mmu;
2946
2947 context->base_role.word = 0;
2948 context->new_cr3 = nonpaging_new_cr3;
2949 context->page_fault = tdp_page_fault;
2950 context->free = nonpaging_free;
2951 context->prefetch_page = nonpaging_prefetch_page;
2952 context->sync_page = nonpaging_sync_page;
2953 context->invlpg = nonpaging_invlpg;
2954 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2955 context->root_hpa = INVALID_PAGE;
2956 context->direct_map = true;
2957 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2958 context->get_cr3 = get_cr3;
2959 context->inject_page_fault = kvm_inject_page_fault;
2960 context->nx = is_nx(vcpu);
2961
2962 if (!is_paging(vcpu)) {
2963 context->nx = false;
2964 context->gva_to_gpa = nonpaging_gva_to_gpa;
2965 context->root_level = 0;
2966 } else if (is_long_mode(vcpu)) {
2967 context->nx = is_nx(vcpu);
2968 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
2969 context->gva_to_gpa = paging64_gva_to_gpa;
2970 context->root_level = PT64_ROOT_LEVEL;
2971 } else if (is_pae(vcpu)) {
2972 context->nx = is_nx(vcpu);
2973 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
2974 context->gva_to_gpa = paging64_gva_to_gpa;
2975 context->root_level = PT32E_ROOT_LEVEL;
2976 } else {
2977 context->nx = false;
2978 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2979 context->gva_to_gpa = paging32_gva_to_gpa;
2980 context->root_level = PT32_ROOT_LEVEL;
2981 }
2982
2983 return 0;
2984 }
2985
2986 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
2987 {
2988 int r;
2989 ASSERT(vcpu);
2990 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2991
2992 if (!is_paging(vcpu))
2993 r = nonpaging_init_context(vcpu, context);
2994 else if (is_long_mode(vcpu))
2995 r = paging64_init_context(vcpu, context);
2996 else if (is_pae(vcpu))
2997 r = paging32E_init_context(vcpu, context);
2998 else
2999 r = paging32_init_context(vcpu, context);
3000
3001 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3002 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3003
3004 return r;
3005 }
3006 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3007
3008 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3009 {
3010 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3011
3012 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3013 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3014 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3015
3016 return r;
3017 }
3018
3019 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3020 {
3021 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3022
3023 g_context->get_cr3 = get_cr3;
3024 g_context->inject_page_fault = kvm_inject_page_fault;
3025
3026 /*
3027 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3028 * translation of l2_gpa to l1_gpa addresses is done using the
3029 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3030 * functions between mmu and nested_mmu are swapped.
3031 */
3032 if (!is_paging(vcpu)) {
3033 g_context->nx = false;
3034 g_context->root_level = 0;
3035 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3036 } else if (is_long_mode(vcpu)) {
3037 g_context->nx = is_nx(vcpu);
3038 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3039 g_context->root_level = PT64_ROOT_LEVEL;
3040 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3041 } else if (is_pae(vcpu)) {
3042 g_context->nx = is_nx(vcpu);
3043 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3044 g_context->root_level = PT32E_ROOT_LEVEL;
3045 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3046 } else {
3047 g_context->nx = false;
3048 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3049 g_context->root_level = PT32_ROOT_LEVEL;
3050 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3051 }
3052
3053 return 0;
3054 }
3055
3056 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3057 {
3058 vcpu->arch.update_pte.pfn = bad_pfn;
3059
3060 if (mmu_is_nested(vcpu))
3061 return init_kvm_nested_mmu(vcpu);
3062 else if (tdp_enabled)
3063 return init_kvm_tdp_mmu(vcpu);
3064 else
3065 return init_kvm_softmmu(vcpu);
3066 }
3067
3068 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3069 {
3070 ASSERT(vcpu);
3071 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3072 /* mmu.free() should set root_hpa = INVALID_PAGE */
3073 vcpu->arch.mmu.free(vcpu);
3074 }
3075
3076 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3077 {
3078 destroy_kvm_mmu(vcpu);
3079 return init_kvm_mmu(vcpu);
3080 }
3081 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3082
3083 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3084 {
3085 int r;
3086
3087 r = mmu_topup_memory_caches(vcpu);
3088 if (r)
3089 goto out;
3090 r = mmu_alloc_roots(vcpu);
3091 spin_lock(&vcpu->kvm->mmu_lock);
3092 mmu_sync_roots(vcpu);
3093 spin_unlock(&vcpu->kvm->mmu_lock);
3094 if (r)
3095 goto out;
3096 /* set_cr3() should ensure TLB has been flushed */
3097 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3098 out:
3099 return r;
3100 }
3101 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3102
3103 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3104 {
3105 mmu_free_roots(vcpu);
3106 }
3107 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3108
3109 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
3110 struct kvm_mmu_page *sp,
3111 u64 *spte)
3112 {
3113 u64 pte;
3114 struct kvm_mmu_page *child;
3115
3116 pte = *spte;
3117 if (is_shadow_present_pte(pte)) {
3118 if (is_last_spte(pte, sp->role.level))
3119 drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
3120 else {
3121 child = page_header(pte & PT64_BASE_ADDR_MASK);
3122 mmu_page_remove_parent_pte(child, spte);
3123 }
3124 }
3125 __set_spte(spte, shadow_trap_nonpresent_pte);
3126 if (is_large_pte(pte))
3127 --vcpu->kvm->stat.lpages;
3128 }
3129
3130 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3131 struct kvm_mmu_page *sp,
3132 u64 *spte,
3133 const void *new)
3134 {
3135 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3136 ++vcpu->kvm->stat.mmu_pde_zapped;
3137 return;
3138 }
3139
3140 ++vcpu->kvm->stat.mmu_pte_updated;
3141 if (!sp->role.cr4_pae)
3142 paging32_update_pte(vcpu, sp, spte, new);
3143 else
3144 paging64_update_pte(vcpu, sp, spte, new);
3145 }
3146
3147 static bool need_remote_flush(u64 old, u64 new)
3148 {
3149 if (!is_shadow_present_pte(old))
3150 return false;
3151 if (!is_shadow_present_pte(new))
3152 return true;
3153 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3154 return true;
3155 old ^= PT64_NX_MASK;
3156 new ^= PT64_NX_MASK;
3157 return (old & ~new & PT64_PERM_MASK) != 0;
3158 }
3159
3160 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3161 bool remote_flush, bool local_flush)
3162 {
3163 if (zap_page)
3164 return;
3165
3166 if (remote_flush)
3167 kvm_flush_remote_tlbs(vcpu->kvm);
3168 else if (local_flush)
3169 kvm_mmu_flush_tlb(vcpu);
3170 }
3171
3172 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3173 {
3174 u64 *spte = vcpu->arch.last_pte_updated;
3175
3176 return !!(spte && (*spte & shadow_accessed_mask));
3177 }
3178
3179 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3180 u64 gpte)
3181 {
3182 gfn_t gfn;
3183 pfn_t pfn;
3184
3185 if (!is_present_gpte(gpte))
3186 return;
3187 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
3188
3189 vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
3190 smp_rmb();
3191 pfn = gfn_to_pfn(vcpu->kvm, gfn);
3192
3193 if (is_error_pfn(pfn)) {
3194 kvm_release_pfn_clean(pfn);
3195 return;
3196 }
3197 vcpu->arch.update_pte.gfn = gfn;
3198 vcpu->arch.update_pte.pfn = pfn;
3199 }
3200
3201 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3202 {
3203 u64 *spte = vcpu->arch.last_pte_updated;
3204
3205 if (spte
3206 && vcpu->arch.last_pte_gfn == gfn
3207 && shadow_accessed_mask
3208 && !(*spte & shadow_accessed_mask)
3209 && is_shadow_present_pte(*spte))
3210 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3211 }
3212
3213 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3214 const u8 *new, int bytes,
3215 bool guest_initiated)
3216 {
3217 gfn_t gfn = gpa >> PAGE_SHIFT;
3218 union kvm_mmu_page_role mask = { .word = 0 };
3219 struct kvm_mmu_page *sp;
3220 struct hlist_node *node;
3221 LIST_HEAD(invalid_list);
3222 u64 entry, gentry;
3223 u64 *spte;
3224 unsigned offset = offset_in_page(gpa);
3225 unsigned pte_size;
3226 unsigned page_offset;
3227 unsigned misaligned;
3228 unsigned quadrant;
3229 int level;
3230 int flooded = 0;
3231 int npte;
3232 int r;
3233 int invlpg_counter;
3234 bool remote_flush, local_flush, zap_page;
3235
3236 zap_page = remote_flush = local_flush = false;
3237
3238 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3239
3240 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3241
3242 /*
3243 * Assume that the pte write on a page table of the same type
3244 * as the current vcpu paging mode. This is nearly always true
3245 * (might be false while changing modes). Note it is verified later
3246 * by update_pte().
3247 */
3248 if ((is_pae(vcpu) && bytes == 4) || !new) {
3249 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3250 if (is_pae(vcpu)) {
3251 gpa &= ~(gpa_t)7;
3252 bytes = 8;
3253 }
3254 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3255 if (r)
3256 gentry = 0;
3257 new = (const u8 *)&gentry;
3258 }
3259
3260 switch (bytes) {
3261 case 4:
3262 gentry = *(const u32 *)new;
3263 break;
3264 case 8:
3265 gentry = *(const u64 *)new;
3266 break;
3267 default:
3268 gentry = 0;
3269 break;
3270 }
3271
3272 mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
3273 spin_lock(&vcpu->kvm->mmu_lock);
3274 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3275 gentry = 0;
3276 kvm_mmu_access_page(vcpu, gfn);
3277 kvm_mmu_free_some_pages(vcpu);
3278 ++vcpu->kvm->stat.mmu_pte_write;
3279 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3280 if (guest_initiated) {
3281 if (gfn == vcpu->arch.last_pt_write_gfn
3282 && !last_updated_pte_accessed(vcpu)) {
3283 ++vcpu->arch.last_pt_write_count;
3284 if (vcpu->arch.last_pt_write_count >= 3)
3285 flooded = 1;
3286 } else {
3287 vcpu->arch.last_pt_write_gfn = gfn;
3288 vcpu->arch.last_pt_write_count = 1;
3289 vcpu->arch.last_pte_updated = NULL;
3290 }
3291 }
3292
3293 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3294 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3295 pte_size = sp->role.cr4_pae ? 8 : 4;
3296 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3297 misaligned |= bytes < 4;
3298 if (misaligned || flooded) {
3299 /*
3300 * Misaligned accesses are too much trouble to fix
3301 * up; also, they usually indicate a page is not used
3302 * as a page table.
3303 *
3304 * If we're seeing too many writes to a page,
3305 * it may no longer be a page table, or we may be
3306 * forking, in which case it is better to unmap the
3307 * page.
3308 */
3309 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3310 gpa, bytes, sp->role.word);
3311 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3312 &invalid_list);
3313 ++vcpu->kvm->stat.mmu_flooded;
3314 continue;
3315 }
3316 page_offset = offset;
3317 level = sp->role.level;
3318 npte = 1;
3319 if (!sp->role.cr4_pae) {
3320 page_offset <<= 1; /* 32->64 */
3321 /*
3322 * A 32-bit pde maps 4MB while the shadow pdes map
3323 * only 2MB. So we need to double the offset again
3324 * and zap two pdes instead of one.
3325 */
3326 if (level == PT32_ROOT_LEVEL) {
3327 page_offset &= ~7; /* kill rounding error */
3328 page_offset <<= 1;
3329 npte = 2;
3330 }
3331 quadrant = page_offset >> PAGE_SHIFT;
3332 page_offset &= ~PAGE_MASK;
3333 if (quadrant != sp->role.quadrant)
3334 continue;
3335 }
3336 local_flush = true;
3337 spte = &sp->spt[page_offset / sizeof(*spte)];
3338 while (npte--) {
3339 entry = *spte;
3340 mmu_pte_write_zap_pte(vcpu, sp, spte);
3341 if (gentry &&
3342 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3343 & mask.word))
3344 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3345 if (!remote_flush && need_remote_flush(entry, *spte))
3346 remote_flush = true;
3347 ++spte;
3348 }
3349 }
3350 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3351 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3352 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3353 spin_unlock(&vcpu->kvm->mmu_lock);
3354 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
3355 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
3356 vcpu->arch.update_pte.pfn = bad_pfn;
3357 }
3358 }
3359
3360 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3361 {
3362 gpa_t gpa;
3363 int r;
3364
3365 if (vcpu->arch.mmu.direct_map)
3366 return 0;
3367
3368 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3369
3370 spin_lock(&vcpu->kvm->mmu_lock);
3371 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3372 spin_unlock(&vcpu->kvm->mmu_lock);
3373 return r;
3374 }
3375 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3376
3377 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3378 {
3379 LIST_HEAD(invalid_list);
3380
3381 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3382 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3383 struct kvm_mmu_page *sp;
3384
3385 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3386 struct kvm_mmu_page, link);
3387 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3388 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3389 ++vcpu->kvm->stat.mmu_recycled;
3390 }
3391 }
3392
3393 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3394 void *insn, int insn_len)
3395 {
3396 int r;
3397 enum emulation_result er;
3398
3399 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3400 if (r < 0)
3401 goto out;
3402
3403 if (!r) {
3404 r = 1;
3405 goto out;
3406 }
3407
3408 r = mmu_topup_memory_caches(vcpu);
3409 if (r)
3410 goto out;
3411
3412 er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3413
3414 switch (er) {
3415 case EMULATE_DONE:
3416 return 1;
3417 case EMULATE_DO_MMIO:
3418 ++vcpu->stat.mmio_exits;
3419 /* fall through */
3420 case EMULATE_FAIL:
3421 return 0;
3422 default:
3423 BUG();
3424 }
3425 out:
3426 return r;
3427 }
3428 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3429
3430 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3431 {
3432 vcpu->arch.mmu.invlpg(vcpu, gva);
3433 kvm_mmu_flush_tlb(vcpu);
3434 ++vcpu->stat.invlpg;
3435 }
3436 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3437
3438 void kvm_enable_tdp(void)
3439 {
3440 tdp_enabled = true;
3441 }
3442 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3443
3444 void kvm_disable_tdp(void)
3445 {
3446 tdp_enabled = false;
3447 }
3448 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3449
3450 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3451 {
3452 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3453 if (vcpu->arch.mmu.lm_root != NULL)
3454 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3455 }
3456
3457 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3458 {
3459 struct page *page;
3460 int i;
3461
3462 ASSERT(vcpu);
3463
3464 /*
3465 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3466 * Therefore we need to allocate shadow page tables in the first
3467 * 4GB of memory, which happens to fit the DMA32 zone.
3468 */
3469 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3470 if (!page)
3471 return -ENOMEM;
3472
3473 vcpu->arch.mmu.pae_root = page_address(page);
3474 for (i = 0; i < 4; ++i)
3475 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3476
3477 return 0;
3478 }
3479
3480 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3481 {
3482 ASSERT(vcpu);
3483 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3484
3485 return alloc_mmu_pages(vcpu);
3486 }
3487
3488 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3489 {
3490 ASSERT(vcpu);
3491 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3492
3493 return init_kvm_mmu(vcpu);
3494 }
3495
3496 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3497 {
3498 struct kvm_mmu_page *sp;
3499
3500 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3501 int i;
3502 u64 *pt;
3503
3504 if (!test_bit(slot, sp->slot_bitmap))
3505 continue;
3506
3507 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
3508 continue;
3509
3510 pt = sp->spt;
3511 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
3512 /* avoid RMW */
3513 if (is_writable_pte(pt[i]))
3514 update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
3515 }
3516 kvm_flush_remote_tlbs(kvm);
3517 }
3518
3519 void kvm_mmu_zap_all(struct kvm *kvm)
3520 {
3521 struct kvm_mmu_page *sp, *node;
3522 LIST_HEAD(invalid_list);
3523
3524 spin_lock(&kvm->mmu_lock);
3525 restart:
3526 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3527 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3528 goto restart;
3529
3530 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3531 spin_unlock(&kvm->mmu_lock);
3532 }
3533
3534 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3535 struct list_head *invalid_list)
3536 {
3537 struct kvm_mmu_page *page;
3538
3539 page = container_of(kvm->arch.active_mmu_pages.prev,
3540 struct kvm_mmu_page, link);
3541 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3542 }
3543
3544 static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
3545 {
3546 struct kvm *kvm;
3547 struct kvm *kvm_freed = NULL;
3548
3549 if (nr_to_scan == 0)
3550 goto out;
3551
3552 spin_lock(&kvm_lock);
3553
3554 list_for_each_entry(kvm, &vm_list, vm_list) {
3555 int idx, freed_pages;
3556 LIST_HEAD(invalid_list);
3557
3558 idx = srcu_read_lock(&kvm->srcu);
3559 spin_lock(&kvm->mmu_lock);
3560 if (!kvm_freed && nr_to_scan > 0 &&
3561 kvm->arch.n_used_mmu_pages > 0) {
3562 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3563 &invalid_list);
3564 kvm_freed = kvm;
3565 }
3566 nr_to_scan--;
3567
3568 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3569 spin_unlock(&kvm->mmu_lock);
3570 srcu_read_unlock(&kvm->srcu, idx);
3571 }
3572 if (kvm_freed)
3573 list_move_tail(&kvm_freed->vm_list, &vm_list);
3574
3575 spin_unlock(&kvm_lock);
3576
3577 out:
3578 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3579 }
3580
3581 static struct shrinker mmu_shrinker = {
3582 .shrink = mmu_shrink,
3583 .seeks = DEFAULT_SEEKS * 10,
3584 };
3585
3586 static void mmu_destroy_caches(void)
3587 {
3588 if (pte_chain_cache)
3589 kmem_cache_destroy(pte_chain_cache);
3590 if (rmap_desc_cache)
3591 kmem_cache_destroy(rmap_desc_cache);
3592 if (mmu_page_header_cache)
3593 kmem_cache_destroy(mmu_page_header_cache);
3594 }
3595
3596 int kvm_mmu_module_init(void)
3597 {
3598 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
3599 sizeof(struct kvm_pte_chain),
3600 0, 0, NULL);
3601 if (!pte_chain_cache)
3602 goto nomem;
3603 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
3604 sizeof(struct kvm_rmap_desc),
3605 0, 0, NULL);
3606 if (!rmap_desc_cache)
3607 goto nomem;
3608
3609 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3610 sizeof(struct kvm_mmu_page),
3611 0, 0, NULL);
3612 if (!mmu_page_header_cache)
3613 goto nomem;
3614
3615 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3616 goto nomem;
3617
3618 register_shrinker(&mmu_shrinker);
3619
3620 return 0;
3621
3622 nomem:
3623 mmu_destroy_caches();
3624 return -ENOMEM;
3625 }
3626
3627 /*
3628 * Caculate mmu pages needed for kvm.
3629 */
3630 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3631 {
3632 int i;
3633 unsigned int nr_mmu_pages;
3634 unsigned int nr_pages = 0;
3635 struct kvm_memslots *slots;
3636
3637 slots = kvm_memslots(kvm);
3638
3639 for (i = 0; i < slots->nmemslots; i++)
3640 nr_pages += slots->memslots[i].npages;
3641
3642 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3643 nr_mmu_pages = max(nr_mmu_pages,
3644 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3645
3646 return nr_mmu_pages;
3647 }
3648
3649 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3650 unsigned len)
3651 {
3652 if (len > buffer->len)
3653 return NULL;
3654 return buffer->ptr;
3655 }
3656
3657 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3658 unsigned len)
3659 {
3660 void *ret;
3661
3662 ret = pv_mmu_peek_buffer(buffer, len);
3663 if (!ret)
3664 return ret;
3665 buffer->ptr += len;
3666 buffer->len -= len;
3667 buffer->processed += len;
3668 return ret;
3669 }
3670
3671 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3672 gpa_t addr, gpa_t value)
3673 {
3674 int bytes = 8;
3675 int r;
3676
3677 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3678 bytes = 4;
3679
3680 r = mmu_topup_memory_caches(vcpu);
3681 if (r)
3682 return r;
3683
3684 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3685 return -EFAULT;
3686
3687 return 1;
3688 }
3689
3690 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3691 {
3692 (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
3693 return 1;
3694 }
3695
3696 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3697 {
3698 spin_lock(&vcpu->kvm->mmu_lock);
3699 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3700 spin_unlock(&vcpu->kvm->mmu_lock);
3701 return 1;
3702 }
3703
3704 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3705 struct kvm_pv_mmu_op_buffer *buffer)
3706 {
3707 struct kvm_mmu_op_header *header;
3708
3709 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3710 if (!header)
3711 return 0;
3712 switch (header->op) {
3713 case KVM_MMU_OP_WRITE_PTE: {
3714 struct kvm_mmu_op_write_pte *wpte;
3715
3716 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3717 if (!wpte)
3718 return 0;
3719 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3720 wpte->pte_val);
3721 }
3722 case KVM_MMU_OP_FLUSH_TLB: {
3723 struct kvm_mmu_op_flush_tlb *ftlb;
3724
3725 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3726 if (!ftlb)
3727 return 0;
3728 return kvm_pv_mmu_flush_tlb(vcpu);
3729 }
3730 case KVM_MMU_OP_RELEASE_PT: {
3731 struct kvm_mmu_op_release_pt *rpt;
3732
3733 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3734 if (!rpt)
3735 return 0;
3736 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3737 }
3738 default: return 0;
3739 }
3740 }
3741
3742 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3743 gpa_t addr, unsigned long *ret)
3744 {
3745 int r;
3746 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3747
3748 buffer->ptr = buffer->buf;
3749 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3750 buffer->processed = 0;
3751
3752 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3753 if (r)
3754 goto out;
3755
3756 while (buffer->len) {
3757 r = kvm_pv_mmu_op_one(vcpu, buffer);
3758 if (r < 0)
3759 goto out;
3760 if (r == 0)
3761 break;
3762 }
3763
3764 r = 1;
3765 out:
3766 *ret = buffer->processed;
3767 return r;
3768 }
3769
3770 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3771 {
3772 struct kvm_shadow_walk_iterator iterator;
3773 int nr_sptes = 0;
3774
3775 spin_lock(&vcpu->kvm->mmu_lock);
3776 for_each_shadow_entry(vcpu, addr, iterator) {
3777 sptes[iterator.level-1] = *iterator.sptep;
3778 nr_sptes++;
3779 if (!is_shadow_present_pte(*iterator.sptep))
3780 break;
3781 }
3782 spin_unlock(&vcpu->kvm->mmu_lock);
3783
3784 return nr_sptes;
3785 }
3786 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3787
3788 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3789 {
3790 ASSERT(vcpu);
3791
3792 destroy_kvm_mmu(vcpu);
3793 free_mmu_pages(vcpu);
3794 mmu_free_memory_caches(vcpu);
3795 }
3796
3797 #ifdef CONFIG_KVM_MMU_AUDIT
3798 #include "mmu_audit.c"
3799 #else
3800 static void mmu_audit_disable(void) { }
3801 #endif
3802
3803 void kvm_mmu_module_exit(void)
3804 {
3805 mmu_destroy_caches();
3806 percpu_counter_destroy(&kvm_total_used_mmu_pages);
3807 unregister_shrinker(&mmu_shrinker);
3808 mmu_audit_disable();
3809 }
This page took 0.112993 seconds and 5 git commands to generate.