50fe8541ed3906f5f8f3991d26b2c084adbac9d6
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
32
33 #include <asm/page.h>
34 #include <asm/cmpxchg.h>
35 #include <asm/io.h>
36 #include <asm/vmx.h>
37
38 /*
39 * When setting this variable to true it enables Two-Dimensional-Paging
40 * where the hardware walks 2 page tables:
41 * 1. the guest-virtual to guest-physical
42 * 2. while doing 1. it walks guest-physical to host-physical
43 * If the hardware supports that we don't need to do shadow paging.
44 */
45 bool tdp_enabled = false;
46
47 #undef MMU_DEBUG
48
49 #undef AUDIT
50
51 #ifdef AUDIT
52 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
53 #else
54 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
55 #endif
56
57 #ifdef MMU_DEBUG
58
59 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
60 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
61
62 #else
63
64 #define pgprintk(x...) do { } while (0)
65 #define rmap_printk(x...) do { } while (0)
66
67 #endif
68
69 #if defined(MMU_DEBUG) || defined(AUDIT)
70 static int dbg = 0;
71 module_param(dbg, bool, 0644);
72 #endif
73
74 static int oos_shadow = 1;
75 module_param(oos_shadow, bool, 0644);
76
77 #ifndef MMU_DEBUG
78 #define ASSERT(x) do { } while (0)
79 #else
80 #define ASSERT(x) \
81 if (!(x)) { \
82 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
83 __FILE__, __LINE__, #x); \
84 }
85 #endif
86
87 #define PT_FIRST_AVAIL_BITS_SHIFT 9
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
90 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
91
92 #define PT64_LEVEL_BITS 9
93
94 #define PT64_LEVEL_SHIFT(level) \
95 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
96
97 #define PT64_LEVEL_MASK(level) \
98 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
99
100 #define PT64_INDEX(address, level)\
101 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
102
103
104 #define PT32_LEVEL_BITS 10
105
106 #define PT32_LEVEL_SHIFT(level) \
107 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
108
109 #define PT32_LEVEL_MASK(level) \
110 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
111
112 #define PT32_INDEX(address, level)\
113 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
114
115
116 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
117 #define PT64_DIR_BASE_ADDR_MASK \
118 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
119
120 #define PT32_BASE_ADDR_MASK PAGE_MASK
121 #define PT32_DIR_BASE_ADDR_MASK \
122 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
123
124 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
125 | PT64_NX_MASK)
126
127 #define PFERR_PRESENT_MASK (1U << 0)
128 #define PFERR_WRITE_MASK (1U << 1)
129 #define PFERR_USER_MASK (1U << 2)
130 #define PFERR_RSVD_MASK (1U << 3)
131 #define PFERR_FETCH_MASK (1U << 4)
132
133 #define PT_DIRECTORY_LEVEL 2
134 #define PT_PAGE_TABLE_LEVEL 1
135
136 #define RMAP_EXT 4
137
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
144
145 struct kvm_rmap_desc {
146 u64 *sptes[RMAP_EXT];
147 struct kvm_rmap_desc *more;
148 };
149
150 struct kvm_shadow_walk_iterator {
151 u64 addr;
152 hpa_t shadow_addr;
153 int level;
154 u64 *sptep;
155 unsigned index;
156 };
157
158 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
159 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
160 shadow_walk_okay(&(_walker)); \
161 shadow_walk_next(&(_walker)))
162
163
164 struct kvm_unsync_walk {
165 int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
166 };
167
168 typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
169
170 static struct kmem_cache *pte_chain_cache;
171 static struct kmem_cache *rmap_desc_cache;
172 static struct kmem_cache *mmu_page_header_cache;
173
174 static u64 __read_mostly shadow_trap_nonpresent_pte;
175 static u64 __read_mostly shadow_notrap_nonpresent_pte;
176 static u64 __read_mostly shadow_base_present_pte;
177 static u64 __read_mostly shadow_nx_mask;
178 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
179 static u64 __read_mostly shadow_user_mask;
180 static u64 __read_mostly shadow_accessed_mask;
181 static u64 __read_mostly shadow_dirty_mask;
182
183 static inline u64 rsvd_bits(int s, int e)
184 {
185 return ((1ULL << (e - s + 1)) - 1) << s;
186 }
187
188 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
189 {
190 shadow_trap_nonpresent_pte = trap_pte;
191 shadow_notrap_nonpresent_pte = notrap_pte;
192 }
193 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
194
195 void kvm_mmu_set_base_ptes(u64 base_pte)
196 {
197 shadow_base_present_pte = base_pte;
198 }
199 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
200
201 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
202 u64 dirty_mask, u64 nx_mask, u64 x_mask)
203 {
204 shadow_user_mask = user_mask;
205 shadow_accessed_mask = accessed_mask;
206 shadow_dirty_mask = dirty_mask;
207 shadow_nx_mask = nx_mask;
208 shadow_x_mask = x_mask;
209 }
210 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
211
212 static int is_write_protection(struct kvm_vcpu *vcpu)
213 {
214 return vcpu->arch.cr0 & X86_CR0_WP;
215 }
216
217 static int is_cpuid_PSE36(void)
218 {
219 return 1;
220 }
221
222 static int is_nx(struct kvm_vcpu *vcpu)
223 {
224 return vcpu->arch.shadow_efer & EFER_NX;
225 }
226
227 static int is_shadow_present_pte(u64 pte)
228 {
229 return pte != shadow_trap_nonpresent_pte
230 && pte != shadow_notrap_nonpresent_pte;
231 }
232
233 static int is_large_pte(u64 pte)
234 {
235 return pte & PT_PAGE_SIZE_MASK;
236 }
237
238 static int is_writeble_pte(unsigned long pte)
239 {
240 return pte & PT_WRITABLE_MASK;
241 }
242
243 static int is_dirty_gpte(unsigned long pte)
244 {
245 return pte & PT_DIRTY_MASK;
246 }
247
248 static int is_rmap_spte(u64 pte)
249 {
250 return is_shadow_present_pte(pte);
251 }
252
253 static int is_last_spte(u64 pte, int level)
254 {
255 if (level == PT_PAGE_TABLE_LEVEL)
256 return 1;
257 if (level == PT_DIRECTORY_LEVEL && is_large_pte(pte))
258 return 1;
259 return 0;
260 }
261
262 static pfn_t spte_to_pfn(u64 pte)
263 {
264 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
265 }
266
267 static gfn_t pse36_gfn_delta(u32 gpte)
268 {
269 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
270
271 return (gpte & PT32_DIR_PSE36_MASK) << shift;
272 }
273
274 static void __set_spte(u64 *sptep, u64 spte)
275 {
276 #ifdef CONFIG_X86_64
277 set_64bit((unsigned long *)sptep, spte);
278 #else
279 set_64bit((unsigned long long *)sptep, spte);
280 #endif
281 }
282
283 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
284 struct kmem_cache *base_cache, int min)
285 {
286 void *obj;
287
288 if (cache->nobjs >= min)
289 return 0;
290 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
291 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
292 if (!obj)
293 return -ENOMEM;
294 cache->objects[cache->nobjs++] = obj;
295 }
296 return 0;
297 }
298
299 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
300 {
301 while (mc->nobjs)
302 kfree(mc->objects[--mc->nobjs]);
303 }
304
305 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
306 int min)
307 {
308 struct page *page;
309
310 if (cache->nobjs >= min)
311 return 0;
312 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
313 page = alloc_page(GFP_KERNEL);
314 if (!page)
315 return -ENOMEM;
316 set_page_private(page, 0);
317 cache->objects[cache->nobjs++] = page_address(page);
318 }
319 return 0;
320 }
321
322 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
323 {
324 while (mc->nobjs)
325 free_page((unsigned long)mc->objects[--mc->nobjs]);
326 }
327
328 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
329 {
330 int r;
331
332 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
333 pte_chain_cache, 4);
334 if (r)
335 goto out;
336 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
337 rmap_desc_cache, 4);
338 if (r)
339 goto out;
340 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
341 if (r)
342 goto out;
343 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
344 mmu_page_header_cache, 4);
345 out:
346 return r;
347 }
348
349 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
350 {
351 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
352 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
353 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
354 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
355 }
356
357 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
358 size_t size)
359 {
360 void *p;
361
362 BUG_ON(!mc->nobjs);
363 p = mc->objects[--mc->nobjs];
364 return p;
365 }
366
367 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
368 {
369 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
370 sizeof(struct kvm_pte_chain));
371 }
372
373 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
374 {
375 kfree(pc);
376 }
377
378 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
379 {
380 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
381 sizeof(struct kvm_rmap_desc));
382 }
383
384 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
385 {
386 kfree(rd);
387 }
388
389 /*
390 * Return the pointer to the largepage write count for a given
391 * gfn, handling slots that are not large page aligned.
392 */
393 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
394 {
395 unsigned long idx;
396
397 idx = (gfn / KVM_PAGES_PER_HPAGE) -
398 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
399 return &slot->lpage_info[idx].write_count;
400 }
401
402 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
403 {
404 int *write_count;
405
406 gfn = unalias_gfn(kvm, gfn);
407 write_count = slot_largepage_idx(gfn,
408 gfn_to_memslot_unaliased(kvm, gfn));
409 *write_count += 1;
410 }
411
412 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
413 {
414 int *write_count;
415
416 gfn = unalias_gfn(kvm, gfn);
417 write_count = slot_largepage_idx(gfn,
418 gfn_to_memslot_unaliased(kvm, gfn));
419 *write_count -= 1;
420 WARN_ON(*write_count < 0);
421 }
422
423 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
424 {
425 struct kvm_memory_slot *slot;
426 int *largepage_idx;
427
428 gfn = unalias_gfn(kvm, gfn);
429 slot = gfn_to_memslot_unaliased(kvm, gfn);
430 if (slot) {
431 largepage_idx = slot_largepage_idx(gfn, slot);
432 return *largepage_idx;
433 }
434
435 return 1;
436 }
437
438 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
439 {
440 struct vm_area_struct *vma;
441 unsigned long addr;
442 int ret = 0;
443
444 addr = gfn_to_hva(kvm, gfn);
445 if (kvm_is_error_hva(addr))
446 return ret;
447
448 down_read(&current->mm->mmap_sem);
449 vma = find_vma(current->mm, addr);
450 if (vma && is_vm_hugetlb_page(vma))
451 ret = 1;
452 up_read(&current->mm->mmap_sem);
453
454 return ret;
455 }
456
457 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
458 {
459 struct kvm_memory_slot *slot;
460
461 if (has_wrprotected_page(vcpu->kvm, large_gfn))
462 return 0;
463
464 if (!host_largepage_backed(vcpu->kvm, large_gfn))
465 return 0;
466
467 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
468 if (slot && slot->dirty_bitmap)
469 return 0;
470
471 return 1;
472 }
473
474 /*
475 * Take gfn and return the reverse mapping to it.
476 * Note: gfn must be unaliased before this function get called
477 */
478
479 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
480 {
481 struct kvm_memory_slot *slot;
482 unsigned long idx;
483
484 slot = gfn_to_memslot(kvm, gfn);
485 if (!lpage)
486 return &slot->rmap[gfn - slot->base_gfn];
487
488 idx = (gfn / KVM_PAGES_PER_HPAGE) -
489 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
490
491 return &slot->lpage_info[idx].rmap_pde;
492 }
493
494 /*
495 * Reverse mapping data structures:
496 *
497 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
498 * that points to page_address(page).
499 *
500 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
501 * containing more mappings.
502 *
503 * Returns the number of rmap entries before the spte was added or zero if
504 * the spte was not added.
505 *
506 */
507 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
508 {
509 struct kvm_mmu_page *sp;
510 struct kvm_rmap_desc *desc;
511 unsigned long *rmapp;
512 int i, count = 0;
513
514 if (!is_rmap_spte(*spte))
515 return count;
516 gfn = unalias_gfn(vcpu->kvm, gfn);
517 sp = page_header(__pa(spte));
518 sp->gfns[spte - sp->spt] = gfn;
519 rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
520 if (!*rmapp) {
521 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
522 *rmapp = (unsigned long)spte;
523 } else if (!(*rmapp & 1)) {
524 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
525 desc = mmu_alloc_rmap_desc(vcpu);
526 desc->sptes[0] = (u64 *)*rmapp;
527 desc->sptes[1] = spte;
528 *rmapp = (unsigned long)desc | 1;
529 } else {
530 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
531 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
532 while (desc->sptes[RMAP_EXT-1] && desc->more) {
533 desc = desc->more;
534 count += RMAP_EXT;
535 }
536 if (desc->sptes[RMAP_EXT-1]) {
537 desc->more = mmu_alloc_rmap_desc(vcpu);
538 desc = desc->more;
539 }
540 for (i = 0; desc->sptes[i]; ++i)
541 ;
542 desc->sptes[i] = spte;
543 }
544 return count;
545 }
546
547 static void rmap_desc_remove_entry(unsigned long *rmapp,
548 struct kvm_rmap_desc *desc,
549 int i,
550 struct kvm_rmap_desc *prev_desc)
551 {
552 int j;
553
554 for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
555 ;
556 desc->sptes[i] = desc->sptes[j];
557 desc->sptes[j] = NULL;
558 if (j != 0)
559 return;
560 if (!prev_desc && !desc->more)
561 *rmapp = (unsigned long)desc->sptes[0];
562 else
563 if (prev_desc)
564 prev_desc->more = desc->more;
565 else
566 *rmapp = (unsigned long)desc->more | 1;
567 mmu_free_rmap_desc(desc);
568 }
569
570 static void rmap_remove(struct kvm *kvm, u64 *spte)
571 {
572 struct kvm_rmap_desc *desc;
573 struct kvm_rmap_desc *prev_desc;
574 struct kvm_mmu_page *sp;
575 pfn_t pfn;
576 unsigned long *rmapp;
577 int i;
578
579 if (!is_rmap_spte(*spte))
580 return;
581 sp = page_header(__pa(spte));
582 pfn = spte_to_pfn(*spte);
583 if (*spte & shadow_accessed_mask)
584 kvm_set_pfn_accessed(pfn);
585 if (is_writeble_pte(*spte))
586 kvm_release_pfn_dirty(pfn);
587 else
588 kvm_release_pfn_clean(pfn);
589 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
590 if (!*rmapp) {
591 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
592 BUG();
593 } else if (!(*rmapp & 1)) {
594 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
595 if ((u64 *)*rmapp != spte) {
596 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
597 spte, *spte);
598 BUG();
599 }
600 *rmapp = 0;
601 } else {
602 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
603 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
604 prev_desc = NULL;
605 while (desc) {
606 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
607 if (desc->sptes[i] == spte) {
608 rmap_desc_remove_entry(rmapp,
609 desc, i,
610 prev_desc);
611 return;
612 }
613 prev_desc = desc;
614 desc = desc->more;
615 }
616 BUG();
617 }
618 }
619
620 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
621 {
622 struct kvm_rmap_desc *desc;
623 struct kvm_rmap_desc *prev_desc;
624 u64 *prev_spte;
625 int i;
626
627 if (!*rmapp)
628 return NULL;
629 else if (!(*rmapp & 1)) {
630 if (!spte)
631 return (u64 *)*rmapp;
632 return NULL;
633 }
634 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
635 prev_desc = NULL;
636 prev_spte = NULL;
637 while (desc) {
638 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
639 if (prev_spte == spte)
640 return desc->sptes[i];
641 prev_spte = desc->sptes[i];
642 }
643 desc = desc->more;
644 }
645 return NULL;
646 }
647
648 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
649 {
650 unsigned long *rmapp;
651 u64 *spte;
652 int write_protected = 0;
653
654 gfn = unalias_gfn(kvm, gfn);
655 rmapp = gfn_to_rmap(kvm, gfn, 0);
656
657 spte = rmap_next(kvm, rmapp, NULL);
658 while (spte) {
659 BUG_ON(!spte);
660 BUG_ON(!(*spte & PT_PRESENT_MASK));
661 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
662 if (is_writeble_pte(*spte)) {
663 __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
664 write_protected = 1;
665 }
666 spte = rmap_next(kvm, rmapp, spte);
667 }
668 if (write_protected) {
669 pfn_t pfn;
670
671 spte = rmap_next(kvm, rmapp, NULL);
672 pfn = spte_to_pfn(*spte);
673 kvm_set_pfn_dirty(pfn);
674 }
675
676 /* check for huge page mappings */
677 rmapp = gfn_to_rmap(kvm, gfn, 1);
678 spte = rmap_next(kvm, rmapp, NULL);
679 while (spte) {
680 BUG_ON(!spte);
681 BUG_ON(!(*spte & PT_PRESENT_MASK));
682 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
683 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
684 if (is_writeble_pte(*spte)) {
685 rmap_remove(kvm, spte);
686 --kvm->stat.lpages;
687 __set_spte(spte, shadow_trap_nonpresent_pte);
688 spte = NULL;
689 write_protected = 1;
690 }
691 spte = rmap_next(kvm, rmapp, spte);
692 }
693
694 return write_protected;
695 }
696
697 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
698 {
699 u64 *spte;
700 int need_tlb_flush = 0;
701
702 while ((spte = rmap_next(kvm, rmapp, NULL))) {
703 BUG_ON(!(*spte & PT_PRESENT_MASK));
704 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
705 rmap_remove(kvm, spte);
706 __set_spte(spte, shadow_trap_nonpresent_pte);
707 need_tlb_flush = 1;
708 }
709 return need_tlb_flush;
710 }
711
712 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
713 int (*handler)(struct kvm *kvm, unsigned long *rmapp))
714 {
715 int i;
716 int retval = 0;
717
718 /*
719 * If mmap_sem isn't taken, we can look the memslots with only
720 * the mmu_lock by skipping over the slots with userspace_addr == 0.
721 */
722 for (i = 0; i < kvm->nmemslots; i++) {
723 struct kvm_memory_slot *memslot = &kvm->memslots[i];
724 unsigned long start = memslot->userspace_addr;
725 unsigned long end;
726
727 /* mmu_lock protects userspace_addr */
728 if (!start)
729 continue;
730
731 end = start + (memslot->npages << PAGE_SHIFT);
732 if (hva >= start && hva < end) {
733 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
734 retval |= handler(kvm, &memslot->rmap[gfn_offset]);
735 retval |= handler(kvm,
736 &memslot->lpage_info[
737 gfn_offset /
738 KVM_PAGES_PER_HPAGE].rmap_pde);
739 }
740 }
741
742 return retval;
743 }
744
745 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
746 {
747 return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
748 }
749
750 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
751 {
752 u64 *spte;
753 int young = 0;
754
755 /* always return old for EPT */
756 if (!shadow_accessed_mask)
757 return 0;
758
759 spte = rmap_next(kvm, rmapp, NULL);
760 while (spte) {
761 int _young;
762 u64 _spte = *spte;
763 BUG_ON(!(_spte & PT_PRESENT_MASK));
764 _young = _spte & PT_ACCESSED_MASK;
765 if (_young) {
766 young = 1;
767 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
768 }
769 spte = rmap_next(kvm, rmapp, spte);
770 }
771 return young;
772 }
773
774 #define RMAP_RECYCLE_THRESHOLD 1000
775
776 static void rmap_recycle(struct kvm_vcpu *vcpu, gfn_t gfn, int lpage)
777 {
778 unsigned long *rmapp;
779
780 gfn = unalias_gfn(vcpu->kvm, gfn);
781 rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
782
783 kvm_unmap_rmapp(vcpu->kvm, rmapp);
784 kvm_flush_remote_tlbs(vcpu->kvm);
785 }
786
787 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
788 {
789 return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
790 }
791
792 #ifdef MMU_DEBUG
793 static int is_empty_shadow_page(u64 *spt)
794 {
795 u64 *pos;
796 u64 *end;
797
798 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
799 if (is_shadow_present_pte(*pos)) {
800 printk(KERN_ERR "%s: %p %llx\n", __func__,
801 pos, *pos);
802 return 0;
803 }
804 return 1;
805 }
806 #endif
807
808 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
809 {
810 ASSERT(is_empty_shadow_page(sp->spt));
811 list_del(&sp->link);
812 __free_page(virt_to_page(sp->spt));
813 __free_page(virt_to_page(sp->gfns));
814 kfree(sp);
815 ++kvm->arch.n_free_mmu_pages;
816 }
817
818 static unsigned kvm_page_table_hashfn(gfn_t gfn)
819 {
820 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
821 }
822
823 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
824 u64 *parent_pte)
825 {
826 struct kvm_mmu_page *sp;
827
828 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
829 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
830 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
831 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
832 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
833 INIT_LIST_HEAD(&sp->oos_link);
834 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
835 sp->multimapped = 0;
836 sp->parent_pte = parent_pte;
837 --vcpu->kvm->arch.n_free_mmu_pages;
838 return sp;
839 }
840
841 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
842 struct kvm_mmu_page *sp, u64 *parent_pte)
843 {
844 struct kvm_pte_chain *pte_chain;
845 struct hlist_node *node;
846 int i;
847
848 if (!parent_pte)
849 return;
850 if (!sp->multimapped) {
851 u64 *old = sp->parent_pte;
852
853 if (!old) {
854 sp->parent_pte = parent_pte;
855 return;
856 }
857 sp->multimapped = 1;
858 pte_chain = mmu_alloc_pte_chain(vcpu);
859 INIT_HLIST_HEAD(&sp->parent_ptes);
860 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
861 pte_chain->parent_ptes[0] = old;
862 }
863 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
864 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
865 continue;
866 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
867 if (!pte_chain->parent_ptes[i]) {
868 pte_chain->parent_ptes[i] = parent_pte;
869 return;
870 }
871 }
872 pte_chain = mmu_alloc_pte_chain(vcpu);
873 BUG_ON(!pte_chain);
874 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
875 pte_chain->parent_ptes[0] = parent_pte;
876 }
877
878 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
879 u64 *parent_pte)
880 {
881 struct kvm_pte_chain *pte_chain;
882 struct hlist_node *node;
883 int i;
884
885 if (!sp->multimapped) {
886 BUG_ON(sp->parent_pte != parent_pte);
887 sp->parent_pte = NULL;
888 return;
889 }
890 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
891 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
892 if (!pte_chain->parent_ptes[i])
893 break;
894 if (pte_chain->parent_ptes[i] != parent_pte)
895 continue;
896 while (i + 1 < NR_PTE_CHAIN_ENTRIES
897 && pte_chain->parent_ptes[i + 1]) {
898 pte_chain->parent_ptes[i]
899 = pte_chain->parent_ptes[i + 1];
900 ++i;
901 }
902 pte_chain->parent_ptes[i] = NULL;
903 if (i == 0) {
904 hlist_del(&pte_chain->link);
905 mmu_free_pte_chain(pte_chain);
906 if (hlist_empty(&sp->parent_ptes)) {
907 sp->multimapped = 0;
908 sp->parent_pte = NULL;
909 }
910 }
911 return;
912 }
913 BUG();
914 }
915
916
917 static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
918 mmu_parent_walk_fn fn)
919 {
920 struct kvm_pte_chain *pte_chain;
921 struct hlist_node *node;
922 struct kvm_mmu_page *parent_sp;
923 int i;
924
925 if (!sp->multimapped && sp->parent_pte) {
926 parent_sp = page_header(__pa(sp->parent_pte));
927 fn(vcpu, parent_sp);
928 mmu_parent_walk(vcpu, parent_sp, fn);
929 return;
930 }
931 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
932 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
933 if (!pte_chain->parent_ptes[i])
934 break;
935 parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
936 fn(vcpu, parent_sp);
937 mmu_parent_walk(vcpu, parent_sp, fn);
938 }
939 }
940
941 static void kvm_mmu_update_unsync_bitmap(u64 *spte)
942 {
943 unsigned int index;
944 struct kvm_mmu_page *sp = page_header(__pa(spte));
945
946 index = spte - sp->spt;
947 if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
948 sp->unsync_children++;
949 WARN_ON(!sp->unsync_children);
950 }
951
952 static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
953 {
954 struct kvm_pte_chain *pte_chain;
955 struct hlist_node *node;
956 int i;
957
958 if (!sp->parent_pte)
959 return;
960
961 if (!sp->multimapped) {
962 kvm_mmu_update_unsync_bitmap(sp->parent_pte);
963 return;
964 }
965
966 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
967 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
968 if (!pte_chain->parent_ptes[i])
969 break;
970 kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
971 }
972 }
973
974 static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
975 {
976 kvm_mmu_update_parents_unsync(sp);
977 return 1;
978 }
979
980 static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
981 struct kvm_mmu_page *sp)
982 {
983 mmu_parent_walk(vcpu, sp, unsync_walk_fn);
984 kvm_mmu_update_parents_unsync(sp);
985 }
986
987 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
988 struct kvm_mmu_page *sp)
989 {
990 int i;
991
992 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
993 sp->spt[i] = shadow_trap_nonpresent_pte;
994 }
995
996 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
997 struct kvm_mmu_page *sp)
998 {
999 return 1;
1000 }
1001
1002 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1003 {
1004 }
1005
1006 #define KVM_PAGE_ARRAY_NR 16
1007
1008 struct kvm_mmu_pages {
1009 struct mmu_page_and_offset {
1010 struct kvm_mmu_page *sp;
1011 unsigned int idx;
1012 } page[KVM_PAGE_ARRAY_NR];
1013 unsigned int nr;
1014 };
1015
1016 #define for_each_unsync_children(bitmap, idx) \
1017 for (idx = find_first_bit(bitmap, 512); \
1018 idx < 512; \
1019 idx = find_next_bit(bitmap, 512, idx+1))
1020
1021 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1022 int idx)
1023 {
1024 int i;
1025
1026 if (sp->unsync)
1027 for (i=0; i < pvec->nr; i++)
1028 if (pvec->page[i].sp == sp)
1029 return 0;
1030
1031 pvec->page[pvec->nr].sp = sp;
1032 pvec->page[pvec->nr].idx = idx;
1033 pvec->nr++;
1034 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1035 }
1036
1037 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1038 struct kvm_mmu_pages *pvec)
1039 {
1040 int i, ret, nr_unsync_leaf = 0;
1041
1042 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1043 u64 ent = sp->spt[i];
1044
1045 if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
1046 struct kvm_mmu_page *child;
1047 child = page_header(ent & PT64_BASE_ADDR_MASK);
1048
1049 if (child->unsync_children) {
1050 if (mmu_pages_add(pvec, child, i))
1051 return -ENOSPC;
1052
1053 ret = __mmu_unsync_walk(child, pvec);
1054 if (!ret)
1055 __clear_bit(i, sp->unsync_child_bitmap);
1056 else if (ret > 0)
1057 nr_unsync_leaf += ret;
1058 else
1059 return ret;
1060 }
1061
1062 if (child->unsync) {
1063 nr_unsync_leaf++;
1064 if (mmu_pages_add(pvec, child, i))
1065 return -ENOSPC;
1066 }
1067 }
1068 }
1069
1070 if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
1071 sp->unsync_children = 0;
1072
1073 return nr_unsync_leaf;
1074 }
1075
1076 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1077 struct kvm_mmu_pages *pvec)
1078 {
1079 if (!sp->unsync_children)
1080 return 0;
1081
1082 mmu_pages_add(pvec, sp, 0);
1083 return __mmu_unsync_walk(sp, pvec);
1084 }
1085
1086 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
1087 {
1088 unsigned index;
1089 struct hlist_head *bucket;
1090 struct kvm_mmu_page *sp;
1091 struct hlist_node *node;
1092
1093 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1094 index = kvm_page_table_hashfn(gfn);
1095 bucket = &kvm->arch.mmu_page_hash[index];
1096 hlist_for_each_entry(sp, node, bucket, hash_link)
1097 if (sp->gfn == gfn && !sp->role.direct
1098 && !sp->role.invalid) {
1099 pgprintk("%s: found role %x\n",
1100 __func__, sp->role.word);
1101 return sp;
1102 }
1103 return NULL;
1104 }
1105
1106 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1107 {
1108 WARN_ON(!sp->unsync);
1109 sp->unsync = 0;
1110 --kvm->stat.mmu_unsync;
1111 }
1112
1113 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
1114
1115 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1116 {
1117 if (sp->role.glevels != vcpu->arch.mmu.root_level) {
1118 kvm_mmu_zap_page(vcpu->kvm, sp);
1119 return 1;
1120 }
1121
1122 if (rmap_write_protect(vcpu->kvm, sp->gfn))
1123 kvm_flush_remote_tlbs(vcpu->kvm);
1124 kvm_unlink_unsync_page(vcpu->kvm, sp);
1125 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1126 kvm_mmu_zap_page(vcpu->kvm, sp);
1127 return 1;
1128 }
1129
1130 kvm_mmu_flush_tlb(vcpu);
1131 return 0;
1132 }
1133
1134 struct mmu_page_path {
1135 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1136 unsigned int idx[PT64_ROOT_LEVEL-1];
1137 };
1138
1139 #define for_each_sp(pvec, sp, parents, i) \
1140 for (i = mmu_pages_next(&pvec, &parents, -1), \
1141 sp = pvec.page[i].sp; \
1142 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1143 i = mmu_pages_next(&pvec, &parents, i))
1144
1145 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1146 struct mmu_page_path *parents,
1147 int i)
1148 {
1149 int n;
1150
1151 for (n = i+1; n < pvec->nr; n++) {
1152 struct kvm_mmu_page *sp = pvec->page[n].sp;
1153
1154 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1155 parents->idx[0] = pvec->page[n].idx;
1156 return n;
1157 }
1158
1159 parents->parent[sp->role.level-2] = sp;
1160 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1161 }
1162
1163 return n;
1164 }
1165
1166 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1167 {
1168 struct kvm_mmu_page *sp;
1169 unsigned int level = 0;
1170
1171 do {
1172 unsigned int idx = parents->idx[level];
1173
1174 sp = parents->parent[level];
1175 if (!sp)
1176 return;
1177
1178 --sp->unsync_children;
1179 WARN_ON((int)sp->unsync_children < 0);
1180 __clear_bit(idx, sp->unsync_child_bitmap);
1181 level++;
1182 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1183 }
1184
1185 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1186 struct mmu_page_path *parents,
1187 struct kvm_mmu_pages *pvec)
1188 {
1189 parents->parent[parent->role.level-1] = NULL;
1190 pvec->nr = 0;
1191 }
1192
1193 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1194 struct kvm_mmu_page *parent)
1195 {
1196 int i;
1197 struct kvm_mmu_page *sp;
1198 struct mmu_page_path parents;
1199 struct kvm_mmu_pages pages;
1200
1201 kvm_mmu_pages_init(parent, &parents, &pages);
1202 while (mmu_unsync_walk(parent, &pages)) {
1203 int protected = 0;
1204
1205 for_each_sp(pages, sp, parents, i)
1206 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1207
1208 if (protected)
1209 kvm_flush_remote_tlbs(vcpu->kvm);
1210
1211 for_each_sp(pages, sp, parents, i) {
1212 kvm_sync_page(vcpu, sp);
1213 mmu_pages_clear_parents(&parents);
1214 }
1215 cond_resched_lock(&vcpu->kvm->mmu_lock);
1216 kvm_mmu_pages_init(parent, &parents, &pages);
1217 }
1218 }
1219
1220 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1221 gfn_t gfn,
1222 gva_t gaddr,
1223 unsigned level,
1224 int direct,
1225 unsigned access,
1226 u64 *parent_pte)
1227 {
1228 union kvm_mmu_page_role role;
1229 unsigned index;
1230 unsigned quadrant;
1231 struct hlist_head *bucket;
1232 struct kvm_mmu_page *sp;
1233 struct hlist_node *node, *tmp;
1234
1235 role = vcpu->arch.mmu.base_role;
1236 role.level = level;
1237 role.direct = direct;
1238 role.access = access;
1239 if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1240 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1241 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1242 role.quadrant = quadrant;
1243 }
1244 pgprintk("%s: looking gfn %lx role %x\n", __func__,
1245 gfn, role.word);
1246 index = kvm_page_table_hashfn(gfn);
1247 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1248 hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
1249 if (sp->gfn == gfn) {
1250 if (sp->unsync)
1251 if (kvm_sync_page(vcpu, sp))
1252 continue;
1253
1254 if (sp->role.word != role.word)
1255 continue;
1256
1257 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1258 if (sp->unsync_children) {
1259 set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
1260 kvm_mmu_mark_parents_unsync(vcpu, sp);
1261 }
1262 pgprintk("%s: found\n", __func__);
1263 return sp;
1264 }
1265 ++vcpu->kvm->stat.mmu_cache_miss;
1266 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
1267 if (!sp)
1268 return sp;
1269 pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
1270 sp->gfn = gfn;
1271 sp->role = role;
1272 hlist_add_head(&sp->hash_link, bucket);
1273 if (!direct) {
1274 if (rmap_write_protect(vcpu->kvm, gfn))
1275 kvm_flush_remote_tlbs(vcpu->kvm);
1276 account_shadowed(vcpu->kvm, gfn);
1277 }
1278 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1279 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1280 else
1281 nonpaging_prefetch_page(vcpu, sp);
1282 return sp;
1283 }
1284
1285 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1286 struct kvm_vcpu *vcpu, u64 addr)
1287 {
1288 iterator->addr = addr;
1289 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1290 iterator->level = vcpu->arch.mmu.shadow_root_level;
1291 if (iterator->level == PT32E_ROOT_LEVEL) {
1292 iterator->shadow_addr
1293 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1294 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1295 --iterator->level;
1296 if (!iterator->shadow_addr)
1297 iterator->level = 0;
1298 }
1299 }
1300
1301 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1302 {
1303 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1304 return false;
1305 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1306 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1307 return true;
1308 }
1309
1310 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1311 {
1312 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1313 --iterator->level;
1314 }
1315
1316 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1317 struct kvm_mmu_page *sp)
1318 {
1319 unsigned i;
1320 u64 *pt;
1321 u64 ent;
1322
1323 pt = sp->spt;
1324
1325 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1326 ent = pt[i];
1327
1328 if (is_shadow_present_pte(ent)) {
1329 if (!is_last_spte(ent, sp->role.level)) {
1330 ent &= PT64_BASE_ADDR_MASK;
1331 mmu_page_remove_parent_pte(page_header(ent),
1332 &pt[i]);
1333 } else {
1334 if (is_large_pte(ent))
1335 --kvm->stat.lpages;
1336 rmap_remove(kvm, &pt[i]);
1337 }
1338 }
1339 pt[i] = shadow_trap_nonpresent_pte;
1340 }
1341 }
1342
1343 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1344 {
1345 mmu_page_remove_parent_pte(sp, parent_pte);
1346 }
1347
1348 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1349 {
1350 int i;
1351 struct kvm_vcpu *vcpu;
1352
1353 kvm_for_each_vcpu(i, vcpu, kvm)
1354 vcpu->arch.last_pte_updated = NULL;
1355 }
1356
1357 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1358 {
1359 u64 *parent_pte;
1360
1361 while (sp->multimapped || sp->parent_pte) {
1362 if (!sp->multimapped)
1363 parent_pte = sp->parent_pte;
1364 else {
1365 struct kvm_pte_chain *chain;
1366
1367 chain = container_of(sp->parent_ptes.first,
1368 struct kvm_pte_chain, link);
1369 parent_pte = chain->parent_ptes[0];
1370 }
1371 BUG_ON(!parent_pte);
1372 kvm_mmu_put_page(sp, parent_pte);
1373 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1374 }
1375 }
1376
1377 static int mmu_zap_unsync_children(struct kvm *kvm,
1378 struct kvm_mmu_page *parent)
1379 {
1380 int i, zapped = 0;
1381 struct mmu_page_path parents;
1382 struct kvm_mmu_pages pages;
1383
1384 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1385 return 0;
1386
1387 kvm_mmu_pages_init(parent, &parents, &pages);
1388 while (mmu_unsync_walk(parent, &pages)) {
1389 struct kvm_mmu_page *sp;
1390
1391 for_each_sp(pages, sp, parents, i) {
1392 kvm_mmu_zap_page(kvm, sp);
1393 mmu_pages_clear_parents(&parents);
1394 }
1395 zapped += pages.nr;
1396 kvm_mmu_pages_init(parent, &parents, &pages);
1397 }
1398
1399 return zapped;
1400 }
1401
1402 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1403 {
1404 int ret;
1405 ++kvm->stat.mmu_shadow_zapped;
1406 ret = mmu_zap_unsync_children(kvm, sp);
1407 kvm_mmu_page_unlink_children(kvm, sp);
1408 kvm_mmu_unlink_parents(kvm, sp);
1409 kvm_flush_remote_tlbs(kvm);
1410 if (!sp->role.invalid && !sp->role.direct)
1411 unaccount_shadowed(kvm, sp->gfn);
1412 if (sp->unsync)
1413 kvm_unlink_unsync_page(kvm, sp);
1414 if (!sp->root_count) {
1415 hlist_del(&sp->hash_link);
1416 kvm_mmu_free_page(kvm, sp);
1417 } else {
1418 sp->role.invalid = 1;
1419 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1420 kvm_reload_remote_mmus(kvm);
1421 }
1422 kvm_mmu_reset_last_pte_updated(kvm);
1423 return ret;
1424 }
1425
1426 /*
1427 * Changing the number of mmu pages allocated to the vm
1428 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1429 */
1430 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1431 {
1432 int used_pages;
1433
1434 used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
1435 used_pages = max(0, used_pages);
1436
1437 /*
1438 * If we set the number of mmu pages to be smaller be than the
1439 * number of actived pages , we must to free some mmu pages before we
1440 * change the value
1441 */
1442
1443 if (used_pages > kvm_nr_mmu_pages) {
1444 while (used_pages > kvm_nr_mmu_pages) {
1445 struct kvm_mmu_page *page;
1446
1447 page = container_of(kvm->arch.active_mmu_pages.prev,
1448 struct kvm_mmu_page, link);
1449 kvm_mmu_zap_page(kvm, page);
1450 used_pages--;
1451 }
1452 kvm->arch.n_free_mmu_pages = 0;
1453 }
1454 else
1455 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1456 - kvm->arch.n_alloc_mmu_pages;
1457
1458 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1459 }
1460
1461 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1462 {
1463 unsigned index;
1464 struct hlist_head *bucket;
1465 struct kvm_mmu_page *sp;
1466 struct hlist_node *node, *n;
1467 int r;
1468
1469 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1470 r = 0;
1471 index = kvm_page_table_hashfn(gfn);
1472 bucket = &kvm->arch.mmu_page_hash[index];
1473 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
1474 if (sp->gfn == gfn && !sp->role.direct) {
1475 pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1476 sp->role.word);
1477 r = 1;
1478 if (kvm_mmu_zap_page(kvm, sp))
1479 n = bucket->first;
1480 }
1481 return r;
1482 }
1483
1484 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1485 {
1486 unsigned index;
1487 struct hlist_head *bucket;
1488 struct kvm_mmu_page *sp;
1489 struct hlist_node *node, *nn;
1490
1491 index = kvm_page_table_hashfn(gfn);
1492 bucket = &kvm->arch.mmu_page_hash[index];
1493 hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
1494 if (sp->gfn == gfn && !sp->role.direct
1495 && !sp->role.invalid) {
1496 pgprintk("%s: zap %lx %x\n",
1497 __func__, gfn, sp->role.word);
1498 kvm_mmu_zap_page(kvm, sp);
1499 }
1500 }
1501 }
1502
1503 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1504 {
1505 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
1506 struct kvm_mmu_page *sp = page_header(__pa(pte));
1507
1508 __set_bit(slot, sp->slot_bitmap);
1509 }
1510
1511 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1512 {
1513 int i;
1514 u64 *pt = sp->spt;
1515
1516 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1517 return;
1518
1519 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1520 if (pt[i] == shadow_notrap_nonpresent_pte)
1521 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1522 }
1523 }
1524
1525 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1526 {
1527 struct page *page;
1528
1529 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1530
1531 if (gpa == UNMAPPED_GVA)
1532 return NULL;
1533
1534 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1535
1536 return page;
1537 }
1538
1539 /*
1540 * The function is based on mtrr_type_lookup() in
1541 * arch/x86/kernel/cpu/mtrr/generic.c
1542 */
1543 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1544 u64 start, u64 end)
1545 {
1546 int i;
1547 u64 base, mask;
1548 u8 prev_match, curr_match;
1549 int num_var_ranges = KVM_NR_VAR_MTRR;
1550
1551 if (!mtrr_state->enabled)
1552 return 0xFF;
1553
1554 /* Make end inclusive end, instead of exclusive */
1555 end--;
1556
1557 /* Look in fixed ranges. Just return the type as per start */
1558 if (mtrr_state->have_fixed && (start < 0x100000)) {
1559 int idx;
1560
1561 if (start < 0x80000) {
1562 idx = 0;
1563 idx += (start >> 16);
1564 return mtrr_state->fixed_ranges[idx];
1565 } else if (start < 0xC0000) {
1566 idx = 1 * 8;
1567 idx += ((start - 0x80000) >> 14);
1568 return mtrr_state->fixed_ranges[idx];
1569 } else if (start < 0x1000000) {
1570 idx = 3 * 8;
1571 idx += ((start - 0xC0000) >> 12);
1572 return mtrr_state->fixed_ranges[idx];
1573 }
1574 }
1575
1576 /*
1577 * Look in variable ranges
1578 * Look of multiple ranges matching this address and pick type
1579 * as per MTRR precedence
1580 */
1581 if (!(mtrr_state->enabled & 2))
1582 return mtrr_state->def_type;
1583
1584 prev_match = 0xFF;
1585 for (i = 0; i < num_var_ranges; ++i) {
1586 unsigned short start_state, end_state;
1587
1588 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1589 continue;
1590
1591 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1592 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1593 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1594 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1595
1596 start_state = ((start & mask) == (base & mask));
1597 end_state = ((end & mask) == (base & mask));
1598 if (start_state != end_state)
1599 return 0xFE;
1600
1601 if ((start & mask) != (base & mask))
1602 continue;
1603
1604 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1605 if (prev_match == 0xFF) {
1606 prev_match = curr_match;
1607 continue;
1608 }
1609
1610 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1611 curr_match == MTRR_TYPE_UNCACHABLE)
1612 return MTRR_TYPE_UNCACHABLE;
1613
1614 if ((prev_match == MTRR_TYPE_WRBACK &&
1615 curr_match == MTRR_TYPE_WRTHROUGH) ||
1616 (prev_match == MTRR_TYPE_WRTHROUGH &&
1617 curr_match == MTRR_TYPE_WRBACK)) {
1618 prev_match = MTRR_TYPE_WRTHROUGH;
1619 curr_match = MTRR_TYPE_WRTHROUGH;
1620 }
1621
1622 if (prev_match != curr_match)
1623 return MTRR_TYPE_UNCACHABLE;
1624 }
1625
1626 if (prev_match != 0xFF)
1627 return prev_match;
1628
1629 return mtrr_state->def_type;
1630 }
1631
1632 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1633 {
1634 u8 mtrr;
1635
1636 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1637 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1638 if (mtrr == 0xfe || mtrr == 0xff)
1639 mtrr = MTRR_TYPE_WRBACK;
1640 return mtrr;
1641 }
1642 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1643
1644 static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1645 {
1646 unsigned index;
1647 struct hlist_head *bucket;
1648 struct kvm_mmu_page *s;
1649 struct hlist_node *node, *n;
1650
1651 index = kvm_page_table_hashfn(sp->gfn);
1652 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1653 /* don't unsync if pagetable is shadowed with multiple roles */
1654 hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
1655 if (s->gfn != sp->gfn || s->role.direct)
1656 continue;
1657 if (s->role.word != sp->role.word)
1658 return 1;
1659 }
1660 ++vcpu->kvm->stat.mmu_unsync;
1661 sp->unsync = 1;
1662
1663 kvm_mmu_mark_parents_unsync(vcpu, sp);
1664
1665 mmu_convert_notrap(sp);
1666 return 0;
1667 }
1668
1669 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1670 bool can_unsync)
1671 {
1672 struct kvm_mmu_page *shadow;
1673
1674 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1675 if (shadow) {
1676 if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
1677 return 1;
1678 if (shadow->unsync)
1679 return 0;
1680 if (can_unsync && oos_shadow)
1681 return kvm_unsync_page(vcpu, shadow);
1682 return 1;
1683 }
1684 return 0;
1685 }
1686
1687 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1688 unsigned pte_access, int user_fault,
1689 int write_fault, int dirty, int largepage,
1690 gfn_t gfn, pfn_t pfn, bool speculative,
1691 bool can_unsync)
1692 {
1693 u64 spte;
1694 int ret = 0;
1695
1696 /*
1697 * We don't set the accessed bit, since we sometimes want to see
1698 * whether the guest actually used the pte (in order to detect
1699 * demand paging).
1700 */
1701 spte = shadow_base_present_pte | shadow_dirty_mask;
1702 if (!speculative)
1703 spte |= shadow_accessed_mask;
1704 if (!dirty)
1705 pte_access &= ~ACC_WRITE_MASK;
1706 if (pte_access & ACC_EXEC_MASK)
1707 spte |= shadow_x_mask;
1708 else
1709 spte |= shadow_nx_mask;
1710 if (pte_access & ACC_USER_MASK)
1711 spte |= shadow_user_mask;
1712 if (largepage)
1713 spte |= PT_PAGE_SIZE_MASK;
1714 if (tdp_enabled)
1715 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1716 kvm_is_mmio_pfn(pfn));
1717
1718 spte |= (u64)pfn << PAGE_SHIFT;
1719
1720 if ((pte_access & ACC_WRITE_MASK)
1721 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1722
1723 if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
1724 ret = 1;
1725 spte = shadow_trap_nonpresent_pte;
1726 goto set_pte;
1727 }
1728
1729 spte |= PT_WRITABLE_MASK;
1730
1731 /*
1732 * Optimization: for pte sync, if spte was writable the hash
1733 * lookup is unnecessary (and expensive). Write protection
1734 * is responsibility of mmu_get_page / kvm_sync_page.
1735 * Same reasoning can be applied to dirty page accounting.
1736 */
1737 if (!can_unsync && is_writeble_pte(*sptep))
1738 goto set_pte;
1739
1740 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
1741 pgprintk("%s: found shadow page for %lx, marking ro\n",
1742 __func__, gfn);
1743 ret = 1;
1744 pte_access &= ~ACC_WRITE_MASK;
1745 if (is_writeble_pte(spte))
1746 spte &= ~PT_WRITABLE_MASK;
1747 }
1748 }
1749
1750 if (pte_access & ACC_WRITE_MASK)
1751 mark_page_dirty(vcpu->kvm, gfn);
1752
1753 set_pte:
1754 __set_spte(sptep, spte);
1755 return ret;
1756 }
1757
1758 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1759 unsigned pt_access, unsigned pte_access,
1760 int user_fault, int write_fault, int dirty,
1761 int *ptwrite, int largepage, gfn_t gfn,
1762 pfn_t pfn, bool speculative)
1763 {
1764 int was_rmapped = 0;
1765 int was_writeble = is_writeble_pte(*sptep);
1766 int rmap_count;
1767
1768 pgprintk("%s: spte %llx access %x write_fault %d"
1769 " user_fault %d gfn %lx\n",
1770 __func__, *sptep, pt_access,
1771 write_fault, user_fault, gfn);
1772
1773 if (is_rmap_spte(*sptep)) {
1774 /*
1775 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1776 * the parent of the now unreachable PTE.
1777 */
1778 if (largepage && !is_large_pte(*sptep)) {
1779 struct kvm_mmu_page *child;
1780 u64 pte = *sptep;
1781
1782 child = page_header(pte & PT64_BASE_ADDR_MASK);
1783 mmu_page_remove_parent_pte(child, sptep);
1784 } else if (pfn != spte_to_pfn(*sptep)) {
1785 pgprintk("hfn old %lx new %lx\n",
1786 spte_to_pfn(*sptep), pfn);
1787 rmap_remove(vcpu->kvm, sptep);
1788 } else
1789 was_rmapped = 1;
1790 }
1791 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
1792 dirty, largepage, gfn, pfn, speculative, true)) {
1793 if (write_fault)
1794 *ptwrite = 1;
1795 kvm_x86_ops->tlb_flush(vcpu);
1796 }
1797
1798 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
1799 pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1800 is_large_pte(*sptep)? "2MB" : "4kB",
1801 is_present_pte(*sptep)?"RW":"R", gfn,
1802 *shadow_pte, sptep);
1803 if (!was_rmapped && is_large_pte(*sptep))
1804 ++vcpu->kvm->stat.lpages;
1805
1806 page_header_update_slot(vcpu->kvm, sptep, gfn);
1807 if (!was_rmapped) {
1808 rmap_count = rmap_add(vcpu, sptep, gfn, largepage);
1809 if (!is_rmap_spte(*sptep))
1810 kvm_release_pfn_clean(pfn);
1811 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
1812 rmap_recycle(vcpu, gfn, largepage);
1813 } else {
1814 if (was_writeble)
1815 kvm_release_pfn_dirty(pfn);
1816 else
1817 kvm_release_pfn_clean(pfn);
1818 }
1819 if (speculative) {
1820 vcpu->arch.last_pte_updated = sptep;
1821 vcpu->arch.last_pte_gfn = gfn;
1822 }
1823 }
1824
1825 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1826 {
1827 }
1828
1829 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1830 int largepage, gfn_t gfn, pfn_t pfn)
1831 {
1832 struct kvm_shadow_walk_iterator iterator;
1833 struct kvm_mmu_page *sp;
1834 int pt_write = 0;
1835 gfn_t pseudo_gfn;
1836
1837 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
1838 if (iterator.level == PT_PAGE_TABLE_LEVEL
1839 || (largepage && iterator.level == PT_DIRECTORY_LEVEL)) {
1840 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
1841 0, write, 1, &pt_write,
1842 largepage, gfn, pfn, false);
1843 ++vcpu->stat.pf_fixed;
1844 break;
1845 }
1846
1847 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
1848 pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
1849 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
1850 iterator.level - 1,
1851 1, ACC_ALL, iterator.sptep);
1852 if (!sp) {
1853 pgprintk("nonpaging_map: ENOMEM\n");
1854 kvm_release_pfn_clean(pfn);
1855 return -ENOMEM;
1856 }
1857
1858 __set_spte(iterator.sptep,
1859 __pa(sp->spt)
1860 | PT_PRESENT_MASK | PT_WRITABLE_MASK
1861 | shadow_user_mask | shadow_x_mask);
1862 }
1863 }
1864 return pt_write;
1865 }
1866
1867 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1868 {
1869 int r;
1870 int largepage = 0;
1871 pfn_t pfn;
1872 unsigned long mmu_seq;
1873
1874 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1875 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1876 largepage = 1;
1877 }
1878
1879 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1880 smp_rmb();
1881 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1882
1883 /* mmio */
1884 if (is_error_pfn(pfn)) {
1885 kvm_release_pfn_clean(pfn);
1886 return 1;
1887 }
1888
1889 spin_lock(&vcpu->kvm->mmu_lock);
1890 if (mmu_notifier_retry(vcpu, mmu_seq))
1891 goto out_unlock;
1892 kvm_mmu_free_some_pages(vcpu);
1893 r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
1894 spin_unlock(&vcpu->kvm->mmu_lock);
1895
1896
1897 return r;
1898
1899 out_unlock:
1900 spin_unlock(&vcpu->kvm->mmu_lock);
1901 kvm_release_pfn_clean(pfn);
1902 return 0;
1903 }
1904
1905
1906 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1907 {
1908 int i;
1909 struct kvm_mmu_page *sp;
1910
1911 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1912 return;
1913 spin_lock(&vcpu->kvm->mmu_lock);
1914 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1915 hpa_t root = vcpu->arch.mmu.root_hpa;
1916
1917 sp = page_header(root);
1918 --sp->root_count;
1919 if (!sp->root_count && sp->role.invalid)
1920 kvm_mmu_zap_page(vcpu->kvm, sp);
1921 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1922 spin_unlock(&vcpu->kvm->mmu_lock);
1923 return;
1924 }
1925 for (i = 0; i < 4; ++i) {
1926 hpa_t root = vcpu->arch.mmu.pae_root[i];
1927
1928 if (root) {
1929 root &= PT64_BASE_ADDR_MASK;
1930 sp = page_header(root);
1931 --sp->root_count;
1932 if (!sp->root_count && sp->role.invalid)
1933 kvm_mmu_zap_page(vcpu->kvm, sp);
1934 }
1935 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1936 }
1937 spin_unlock(&vcpu->kvm->mmu_lock);
1938 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1939 }
1940
1941 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
1942 {
1943 int ret = 0;
1944
1945 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
1946 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1947 ret = 1;
1948 }
1949
1950 return ret;
1951 }
1952
1953 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
1954 {
1955 int i;
1956 gfn_t root_gfn;
1957 struct kvm_mmu_page *sp;
1958 int direct = 0;
1959 u64 pdptr;
1960
1961 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1962
1963 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1964 hpa_t root = vcpu->arch.mmu.root_hpa;
1965
1966 ASSERT(!VALID_PAGE(root));
1967 if (tdp_enabled)
1968 direct = 1;
1969 if (mmu_check_root(vcpu, root_gfn))
1970 return 1;
1971 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1972 PT64_ROOT_LEVEL, direct,
1973 ACC_ALL, NULL);
1974 root = __pa(sp->spt);
1975 ++sp->root_count;
1976 vcpu->arch.mmu.root_hpa = root;
1977 return 0;
1978 }
1979 direct = !is_paging(vcpu);
1980 if (tdp_enabled)
1981 direct = 1;
1982 for (i = 0; i < 4; ++i) {
1983 hpa_t root = vcpu->arch.mmu.pae_root[i];
1984
1985 ASSERT(!VALID_PAGE(root));
1986 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1987 pdptr = kvm_pdptr_read(vcpu, i);
1988 if (!is_present_gpte(pdptr)) {
1989 vcpu->arch.mmu.pae_root[i] = 0;
1990 continue;
1991 }
1992 root_gfn = pdptr >> PAGE_SHIFT;
1993 } else if (vcpu->arch.mmu.root_level == 0)
1994 root_gfn = 0;
1995 if (mmu_check_root(vcpu, root_gfn))
1996 return 1;
1997 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1998 PT32_ROOT_LEVEL, direct,
1999 ACC_ALL, NULL);
2000 root = __pa(sp->spt);
2001 ++sp->root_count;
2002 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2003 }
2004 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2005 return 0;
2006 }
2007
2008 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2009 {
2010 int i;
2011 struct kvm_mmu_page *sp;
2012
2013 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2014 return;
2015 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2016 hpa_t root = vcpu->arch.mmu.root_hpa;
2017 sp = page_header(root);
2018 mmu_sync_children(vcpu, sp);
2019 return;
2020 }
2021 for (i = 0; i < 4; ++i) {
2022 hpa_t root = vcpu->arch.mmu.pae_root[i];
2023
2024 if (root && VALID_PAGE(root)) {
2025 root &= PT64_BASE_ADDR_MASK;
2026 sp = page_header(root);
2027 mmu_sync_children(vcpu, sp);
2028 }
2029 }
2030 }
2031
2032 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2033 {
2034 spin_lock(&vcpu->kvm->mmu_lock);
2035 mmu_sync_roots(vcpu);
2036 spin_unlock(&vcpu->kvm->mmu_lock);
2037 }
2038
2039 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
2040 {
2041 return vaddr;
2042 }
2043
2044 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2045 u32 error_code)
2046 {
2047 gfn_t gfn;
2048 int r;
2049
2050 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2051 r = mmu_topup_memory_caches(vcpu);
2052 if (r)
2053 return r;
2054
2055 ASSERT(vcpu);
2056 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2057
2058 gfn = gva >> PAGE_SHIFT;
2059
2060 return nonpaging_map(vcpu, gva & PAGE_MASK,
2061 error_code & PFERR_WRITE_MASK, gfn);
2062 }
2063
2064 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2065 u32 error_code)
2066 {
2067 pfn_t pfn;
2068 int r;
2069 int largepage = 0;
2070 gfn_t gfn = gpa >> PAGE_SHIFT;
2071 unsigned long mmu_seq;
2072
2073 ASSERT(vcpu);
2074 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2075
2076 r = mmu_topup_memory_caches(vcpu);
2077 if (r)
2078 return r;
2079
2080 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
2081 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
2082 largepage = 1;
2083 }
2084 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2085 smp_rmb();
2086 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2087 if (is_error_pfn(pfn)) {
2088 kvm_release_pfn_clean(pfn);
2089 return 1;
2090 }
2091 spin_lock(&vcpu->kvm->mmu_lock);
2092 if (mmu_notifier_retry(vcpu, mmu_seq))
2093 goto out_unlock;
2094 kvm_mmu_free_some_pages(vcpu);
2095 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2096 largepage, gfn, pfn);
2097 spin_unlock(&vcpu->kvm->mmu_lock);
2098
2099 return r;
2100
2101 out_unlock:
2102 spin_unlock(&vcpu->kvm->mmu_lock);
2103 kvm_release_pfn_clean(pfn);
2104 return 0;
2105 }
2106
2107 static void nonpaging_free(struct kvm_vcpu *vcpu)
2108 {
2109 mmu_free_roots(vcpu);
2110 }
2111
2112 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
2113 {
2114 struct kvm_mmu *context = &vcpu->arch.mmu;
2115
2116 context->new_cr3 = nonpaging_new_cr3;
2117 context->page_fault = nonpaging_page_fault;
2118 context->gva_to_gpa = nonpaging_gva_to_gpa;
2119 context->free = nonpaging_free;
2120 context->prefetch_page = nonpaging_prefetch_page;
2121 context->sync_page = nonpaging_sync_page;
2122 context->invlpg = nonpaging_invlpg;
2123 context->root_level = 0;
2124 context->shadow_root_level = PT32E_ROOT_LEVEL;
2125 context->root_hpa = INVALID_PAGE;
2126 return 0;
2127 }
2128
2129 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2130 {
2131 ++vcpu->stat.tlb_flush;
2132 kvm_x86_ops->tlb_flush(vcpu);
2133 }
2134
2135 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2136 {
2137 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2138 mmu_free_roots(vcpu);
2139 }
2140
2141 static void inject_page_fault(struct kvm_vcpu *vcpu,
2142 u64 addr,
2143 u32 err_code)
2144 {
2145 kvm_inject_page_fault(vcpu, addr, err_code);
2146 }
2147
2148 static void paging_free(struct kvm_vcpu *vcpu)
2149 {
2150 nonpaging_free(vcpu);
2151 }
2152
2153 static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
2154 {
2155 int bit7;
2156
2157 bit7 = (gpte >> 7) & 1;
2158 return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
2159 }
2160
2161 #define PTTYPE 64
2162 #include "paging_tmpl.h"
2163 #undef PTTYPE
2164
2165 #define PTTYPE 32
2166 #include "paging_tmpl.h"
2167 #undef PTTYPE
2168
2169 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
2170 {
2171 struct kvm_mmu *context = &vcpu->arch.mmu;
2172 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2173 u64 exb_bit_rsvd = 0;
2174
2175 if (!is_nx(vcpu))
2176 exb_bit_rsvd = rsvd_bits(63, 63);
2177 switch (level) {
2178 case PT32_ROOT_LEVEL:
2179 /* no rsvd bits for 2 level 4K page table entries */
2180 context->rsvd_bits_mask[0][1] = 0;
2181 context->rsvd_bits_mask[0][0] = 0;
2182 if (is_cpuid_PSE36())
2183 /* 36bits PSE 4MB page */
2184 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2185 else
2186 /* 32 bits PSE 4MB page */
2187 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2188 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
2189 break;
2190 case PT32E_ROOT_LEVEL:
2191 context->rsvd_bits_mask[0][2] =
2192 rsvd_bits(maxphyaddr, 63) |
2193 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2194 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2195 rsvd_bits(maxphyaddr, 62); /* PDE */
2196 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2197 rsvd_bits(maxphyaddr, 62); /* PTE */
2198 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2199 rsvd_bits(maxphyaddr, 62) |
2200 rsvd_bits(13, 20); /* large page */
2201 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
2202 break;
2203 case PT64_ROOT_LEVEL:
2204 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2205 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2206 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2207 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2208 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2209 rsvd_bits(maxphyaddr, 51);
2210 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2211 rsvd_bits(maxphyaddr, 51);
2212 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2213 context->rsvd_bits_mask[1][2] = context->rsvd_bits_mask[0][2];
2214 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2215 rsvd_bits(maxphyaddr, 51) |
2216 rsvd_bits(13, 20); /* large page */
2217 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
2218 break;
2219 }
2220 }
2221
2222 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
2223 {
2224 struct kvm_mmu *context = &vcpu->arch.mmu;
2225
2226 ASSERT(is_pae(vcpu));
2227 context->new_cr3 = paging_new_cr3;
2228 context->page_fault = paging64_page_fault;
2229 context->gva_to_gpa = paging64_gva_to_gpa;
2230 context->prefetch_page = paging64_prefetch_page;
2231 context->sync_page = paging64_sync_page;
2232 context->invlpg = paging64_invlpg;
2233 context->free = paging_free;
2234 context->root_level = level;
2235 context->shadow_root_level = level;
2236 context->root_hpa = INVALID_PAGE;
2237 return 0;
2238 }
2239
2240 static int paging64_init_context(struct kvm_vcpu *vcpu)
2241 {
2242 reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
2243 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
2244 }
2245
2246 static int paging32_init_context(struct kvm_vcpu *vcpu)
2247 {
2248 struct kvm_mmu *context = &vcpu->arch.mmu;
2249
2250 reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
2251 context->new_cr3 = paging_new_cr3;
2252 context->page_fault = paging32_page_fault;
2253 context->gva_to_gpa = paging32_gva_to_gpa;
2254 context->free = paging_free;
2255 context->prefetch_page = paging32_prefetch_page;
2256 context->sync_page = paging32_sync_page;
2257 context->invlpg = paging32_invlpg;
2258 context->root_level = PT32_ROOT_LEVEL;
2259 context->shadow_root_level = PT32E_ROOT_LEVEL;
2260 context->root_hpa = INVALID_PAGE;
2261 return 0;
2262 }
2263
2264 static int paging32E_init_context(struct kvm_vcpu *vcpu)
2265 {
2266 reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
2267 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
2268 }
2269
2270 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2271 {
2272 struct kvm_mmu *context = &vcpu->arch.mmu;
2273
2274 context->new_cr3 = nonpaging_new_cr3;
2275 context->page_fault = tdp_page_fault;
2276 context->free = nonpaging_free;
2277 context->prefetch_page = nonpaging_prefetch_page;
2278 context->sync_page = nonpaging_sync_page;
2279 context->invlpg = nonpaging_invlpg;
2280 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2281 context->root_hpa = INVALID_PAGE;
2282
2283 if (!is_paging(vcpu)) {
2284 context->gva_to_gpa = nonpaging_gva_to_gpa;
2285 context->root_level = 0;
2286 } else if (is_long_mode(vcpu)) {
2287 reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
2288 context->gva_to_gpa = paging64_gva_to_gpa;
2289 context->root_level = PT64_ROOT_LEVEL;
2290 } else if (is_pae(vcpu)) {
2291 reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
2292 context->gva_to_gpa = paging64_gva_to_gpa;
2293 context->root_level = PT32E_ROOT_LEVEL;
2294 } else {
2295 reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
2296 context->gva_to_gpa = paging32_gva_to_gpa;
2297 context->root_level = PT32_ROOT_LEVEL;
2298 }
2299
2300 return 0;
2301 }
2302
2303 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2304 {
2305 int r;
2306
2307 ASSERT(vcpu);
2308 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2309
2310 if (!is_paging(vcpu))
2311 r = nonpaging_init_context(vcpu);
2312 else if (is_long_mode(vcpu))
2313 r = paging64_init_context(vcpu);
2314 else if (is_pae(vcpu))
2315 r = paging32E_init_context(vcpu);
2316 else
2317 r = paging32_init_context(vcpu);
2318
2319 vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
2320
2321 return r;
2322 }
2323
2324 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2325 {
2326 vcpu->arch.update_pte.pfn = bad_pfn;
2327
2328 if (tdp_enabled)
2329 return init_kvm_tdp_mmu(vcpu);
2330 else
2331 return init_kvm_softmmu(vcpu);
2332 }
2333
2334 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2335 {
2336 ASSERT(vcpu);
2337 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
2338 vcpu->arch.mmu.free(vcpu);
2339 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2340 }
2341 }
2342
2343 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2344 {
2345 destroy_kvm_mmu(vcpu);
2346 return init_kvm_mmu(vcpu);
2347 }
2348 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2349
2350 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2351 {
2352 int r;
2353
2354 r = mmu_topup_memory_caches(vcpu);
2355 if (r)
2356 goto out;
2357 spin_lock(&vcpu->kvm->mmu_lock);
2358 kvm_mmu_free_some_pages(vcpu);
2359 r = mmu_alloc_roots(vcpu);
2360 mmu_sync_roots(vcpu);
2361 spin_unlock(&vcpu->kvm->mmu_lock);
2362 if (r)
2363 goto out;
2364 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2365 kvm_mmu_flush_tlb(vcpu);
2366 out:
2367 return r;
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2370
2371 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2372 {
2373 mmu_free_roots(vcpu);
2374 }
2375
2376 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2377 struct kvm_mmu_page *sp,
2378 u64 *spte)
2379 {
2380 u64 pte;
2381 struct kvm_mmu_page *child;
2382
2383 pte = *spte;
2384 if (is_shadow_present_pte(pte)) {
2385 if (is_last_spte(pte, sp->role.level))
2386 rmap_remove(vcpu->kvm, spte);
2387 else {
2388 child = page_header(pte & PT64_BASE_ADDR_MASK);
2389 mmu_page_remove_parent_pte(child, spte);
2390 }
2391 }
2392 __set_spte(spte, shadow_trap_nonpresent_pte);
2393 if (is_large_pte(pte))
2394 --vcpu->kvm->stat.lpages;
2395 }
2396
2397 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
2398 struct kvm_mmu_page *sp,
2399 u64 *spte,
2400 const void *new)
2401 {
2402 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
2403 if (!vcpu->arch.update_pte.largepage ||
2404 sp->role.glevels == PT32_ROOT_LEVEL) {
2405 ++vcpu->kvm->stat.mmu_pde_zapped;
2406 return;
2407 }
2408 }
2409
2410 ++vcpu->kvm->stat.mmu_pte_updated;
2411 if (sp->role.glevels == PT32_ROOT_LEVEL)
2412 paging32_update_pte(vcpu, sp, spte, new);
2413 else
2414 paging64_update_pte(vcpu, sp, spte, new);
2415 }
2416
2417 static bool need_remote_flush(u64 old, u64 new)
2418 {
2419 if (!is_shadow_present_pte(old))
2420 return false;
2421 if (!is_shadow_present_pte(new))
2422 return true;
2423 if ((old ^ new) & PT64_BASE_ADDR_MASK)
2424 return true;
2425 old ^= PT64_NX_MASK;
2426 new ^= PT64_NX_MASK;
2427 return (old & ~new & PT64_PERM_MASK) != 0;
2428 }
2429
2430 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
2431 {
2432 if (need_remote_flush(old, new))
2433 kvm_flush_remote_tlbs(vcpu->kvm);
2434 else
2435 kvm_mmu_flush_tlb(vcpu);
2436 }
2437
2438 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
2439 {
2440 u64 *spte = vcpu->arch.last_pte_updated;
2441
2442 return !!(spte && (*spte & shadow_accessed_mask));
2443 }
2444
2445 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2446 const u8 *new, int bytes)
2447 {
2448 gfn_t gfn;
2449 int r;
2450 u64 gpte = 0;
2451 pfn_t pfn;
2452
2453 vcpu->arch.update_pte.largepage = 0;
2454
2455 if (bytes != 4 && bytes != 8)
2456 return;
2457
2458 /*
2459 * Assume that the pte write on a page table of the same type
2460 * as the current vcpu paging mode. This is nearly always true
2461 * (might be false while changing modes). Note it is verified later
2462 * by update_pte().
2463 */
2464 if (is_pae(vcpu)) {
2465 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2466 if ((bytes == 4) && (gpa % 4 == 0)) {
2467 r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
2468 if (r)
2469 return;
2470 memcpy((void *)&gpte + (gpa % 8), new, 4);
2471 } else if ((bytes == 8) && (gpa % 8 == 0)) {
2472 memcpy((void *)&gpte, new, 8);
2473 }
2474 } else {
2475 if ((bytes == 4) && (gpa % 4 == 0))
2476 memcpy((void *)&gpte, new, 4);
2477 }
2478 if (!is_present_gpte(gpte))
2479 return;
2480 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
2481
2482 if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
2483 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
2484 vcpu->arch.update_pte.largepage = 1;
2485 }
2486 vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
2487 smp_rmb();
2488 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2489
2490 if (is_error_pfn(pfn)) {
2491 kvm_release_pfn_clean(pfn);
2492 return;
2493 }
2494 vcpu->arch.update_pte.gfn = gfn;
2495 vcpu->arch.update_pte.pfn = pfn;
2496 }
2497
2498 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2499 {
2500 u64 *spte = vcpu->arch.last_pte_updated;
2501
2502 if (spte
2503 && vcpu->arch.last_pte_gfn == gfn
2504 && shadow_accessed_mask
2505 && !(*spte & shadow_accessed_mask)
2506 && is_shadow_present_pte(*spte))
2507 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
2508 }
2509
2510 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2511 const u8 *new, int bytes,
2512 bool guest_initiated)
2513 {
2514 gfn_t gfn = gpa >> PAGE_SHIFT;
2515 struct kvm_mmu_page *sp;
2516 struct hlist_node *node, *n;
2517 struct hlist_head *bucket;
2518 unsigned index;
2519 u64 entry, gentry;
2520 u64 *spte;
2521 unsigned offset = offset_in_page(gpa);
2522 unsigned pte_size;
2523 unsigned page_offset;
2524 unsigned misaligned;
2525 unsigned quadrant;
2526 int level;
2527 int flooded = 0;
2528 int npte;
2529 int r;
2530
2531 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
2532 mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
2533 spin_lock(&vcpu->kvm->mmu_lock);
2534 kvm_mmu_access_page(vcpu, gfn);
2535 kvm_mmu_free_some_pages(vcpu);
2536 ++vcpu->kvm->stat.mmu_pte_write;
2537 kvm_mmu_audit(vcpu, "pre pte write");
2538 if (guest_initiated) {
2539 if (gfn == vcpu->arch.last_pt_write_gfn
2540 && !last_updated_pte_accessed(vcpu)) {
2541 ++vcpu->arch.last_pt_write_count;
2542 if (vcpu->arch.last_pt_write_count >= 3)
2543 flooded = 1;
2544 } else {
2545 vcpu->arch.last_pt_write_gfn = gfn;
2546 vcpu->arch.last_pt_write_count = 1;
2547 vcpu->arch.last_pte_updated = NULL;
2548 }
2549 }
2550 index = kvm_page_table_hashfn(gfn);
2551 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
2552 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
2553 if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
2554 continue;
2555 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
2556 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
2557 misaligned |= bytes < 4;
2558 if (misaligned || flooded) {
2559 /*
2560 * Misaligned accesses are too much trouble to fix
2561 * up; also, they usually indicate a page is not used
2562 * as a page table.
2563 *
2564 * If we're seeing too many writes to a page,
2565 * it may no longer be a page table, or we may be
2566 * forking, in which case it is better to unmap the
2567 * page.
2568 */
2569 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2570 gpa, bytes, sp->role.word);
2571 if (kvm_mmu_zap_page(vcpu->kvm, sp))
2572 n = bucket->first;
2573 ++vcpu->kvm->stat.mmu_flooded;
2574 continue;
2575 }
2576 page_offset = offset;
2577 level = sp->role.level;
2578 npte = 1;
2579 if (sp->role.glevels == PT32_ROOT_LEVEL) {
2580 page_offset <<= 1; /* 32->64 */
2581 /*
2582 * A 32-bit pde maps 4MB while the shadow pdes map
2583 * only 2MB. So we need to double the offset again
2584 * and zap two pdes instead of one.
2585 */
2586 if (level == PT32_ROOT_LEVEL) {
2587 page_offset &= ~7; /* kill rounding error */
2588 page_offset <<= 1;
2589 npte = 2;
2590 }
2591 quadrant = page_offset >> PAGE_SHIFT;
2592 page_offset &= ~PAGE_MASK;
2593 if (quadrant != sp->role.quadrant)
2594 continue;
2595 }
2596 spte = &sp->spt[page_offset / sizeof(*spte)];
2597 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
2598 gentry = 0;
2599 r = kvm_read_guest_atomic(vcpu->kvm,
2600 gpa & ~(u64)(pte_size - 1),
2601 &gentry, pte_size);
2602 new = (const void *)&gentry;
2603 if (r < 0)
2604 new = NULL;
2605 }
2606 while (npte--) {
2607 entry = *spte;
2608 mmu_pte_write_zap_pte(vcpu, sp, spte);
2609 if (new)
2610 mmu_pte_write_new_pte(vcpu, sp, spte, new);
2611 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
2612 ++spte;
2613 }
2614 }
2615 kvm_mmu_audit(vcpu, "post pte write");
2616 spin_unlock(&vcpu->kvm->mmu_lock);
2617 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
2618 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
2619 vcpu->arch.update_pte.pfn = bad_pfn;
2620 }
2621 }
2622
2623 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2624 {
2625 gpa_t gpa;
2626 int r;
2627
2628 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
2629
2630 spin_lock(&vcpu->kvm->mmu_lock);
2631 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2632 spin_unlock(&vcpu->kvm->mmu_lock);
2633 return r;
2634 }
2635 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
2636
2637 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
2638 {
2639 while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
2640 struct kvm_mmu_page *sp;
2641
2642 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
2643 struct kvm_mmu_page, link);
2644 kvm_mmu_zap_page(vcpu->kvm, sp);
2645 ++vcpu->kvm->stat.mmu_recycled;
2646 }
2647 }
2648
2649 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
2650 {
2651 int r;
2652 enum emulation_result er;
2653
2654 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
2655 if (r < 0)
2656 goto out;
2657
2658 if (!r) {
2659 r = 1;
2660 goto out;
2661 }
2662
2663 r = mmu_topup_memory_caches(vcpu);
2664 if (r)
2665 goto out;
2666
2667 er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
2668
2669 switch (er) {
2670 case EMULATE_DONE:
2671 return 1;
2672 case EMULATE_DO_MMIO:
2673 ++vcpu->stat.mmio_exits;
2674 return 0;
2675 case EMULATE_FAIL:
2676 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2677 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2678 return 0;
2679 default:
2680 BUG();
2681 }
2682 out:
2683 return r;
2684 }
2685 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
2686
2687 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
2688 {
2689 vcpu->arch.mmu.invlpg(vcpu, gva);
2690 kvm_mmu_flush_tlb(vcpu);
2691 ++vcpu->stat.invlpg;
2692 }
2693 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
2694
2695 void kvm_enable_tdp(void)
2696 {
2697 tdp_enabled = true;
2698 }
2699 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
2700
2701 void kvm_disable_tdp(void)
2702 {
2703 tdp_enabled = false;
2704 }
2705 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
2706
2707 static void free_mmu_pages(struct kvm_vcpu *vcpu)
2708 {
2709 free_page((unsigned long)vcpu->arch.mmu.pae_root);
2710 }
2711
2712 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
2713 {
2714 struct page *page;
2715 int i;
2716
2717 ASSERT(vcpu);
2718
2719 if (vcpu->kvm->arch.n_requested_mmu_pages)
2720 vcpu->kvm->arch.n_free_mmu_pages =
2721 vcpu->kvm->arch.n_requested_mmu_pages;
2722 else
2723 vcpu->kvm->arch.n_free_mmu_pages =
2724 vcpu->kvm->arch.n_alloc_mmu_pages;
2725 /*
2726 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2727 * Therefore we need to allocate shadow page tables in the first
2728 * 4GB of memory, which happens to fit the DMA32 zone.
2729 */
2730 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
2731 if (!page)
2732 goto error_1;
2733 vcpu->arch.mmu.pae_root = page_address(page);
2734 for (i = 0; i < 4; ++i)
2735 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2736
2737 return 0;
2738
2739 error_1:
2740 free_mmu_pages(vcpu);
2741 return -ENOMEM;
2742 }
2743
2744 int kvm_mmu_create(struct kvm_vcpu *vcpu)
2745 {
2746 ASSERT(vcpu);
2747 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2748
2749 return alloc_mmu_pages(vcpu);
2750 }
2751
2752 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
2753 {
2754 ASSERT(vcpu);
2755 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2756
2757 return init_kvm_mmu(vcpu);
2758 }
2759
2760 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
2761 {
2762 ASSERT(vcpu);
2763
2764 destroy_kvm_mmu(vcpu);
2765 free_mmu_pages(vcpu);
2766 mmu_free_memory_caches(vcpu);
2767 }
2768
2769 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
2770 {
2771 struct kvm_mmu_page *sp;
2772
2773 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
2774 int i;
2775 u64 *pt;
2776
2777 if (!test_bit(slot, sp->slot_bitmap))
2778 continue;
2779
2780 pt = sp->spt;
2781 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2782 /* avoid RMW */
2783 if (pt[i] & PT_WRITABLE_MASK)
2784 pt[i] &= ~PT_WRITABLE_MASK;
2785 }
2786 kvm_flush_remote_tlbs(kvm);
2787 }
2788
2789 void kvm_mmu_zap_all(struct kvm *kvm)
2790 {
2791 struct kvm_mmu_page *sp, *node;
2792
2793 spin_lock(&kvm->mmu_lock);
2794 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
2795 if (kvm_mmu_zap_page(kvm, sp))
2796 node = container_of(kvm->arch.active_mmu_pages.next,
2797 struct kvm_mmu_page, link);
2798 spin_unlock(&kvm->mmu_lock);
2799
2800 kvm_flush_remote_tlbs(kvm);
2801 }
2802
2803 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
2804 {
2805 struct kvm_mmu_page *page;
2806
2807 page = container_of(kvm->arch.active_mmu_pages.prev,
2808 struct kvm_mmu_page, link);
2809 kvm_mmu_zap_page(kvm, page);
2810 }
2811
2812 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
2813 {
2814 struct kvm *kvm;
2815 struct kvm *kvm_freed = NULL;
2816 int cache_count = 0;
2817
2818 spin_lock(&kvm_lock);
2819
2820 list_for_each_entry(kvm, &vm_list, vm_list) {
2821 int npages;
2822
2823 if (!down_read_trylock(&kvm->slots_lock))
2824 continue;
2825 spin_lock(&kvm->mmu_lock);
2826 npages = kvm->arch.n_alloc_mmu_pages -
2827 kvm->arch.n_free_mmu_pages;
2828 cache_count += npages;
2829 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
2830 kvm_mmu_remove_one_alloc_mmu_page(kvm);
2831 cache_count--;
2832 kvm_freed = kvm;
2833 }
2834 nr_to_scan--;
2835
2836 spin_unlock(&kvm->mmu_lock);
2837 up_read(&kvm->slots_lock);
2838 }
2839 if (kvm_freed)
2840 list_move_tail(&kvm_freed->vm_list, &vm_list);
2841
2842 spin_unlock(&kvm_lock);
2843
2844 return cache_count;
2845 }
2846
2847 static struct shrinker mmu_shrinker = {
2848 .shrink = mmu_shrink,
2849 .seeks = DEFAULT_SEEKS * 10,
2850 };
2851
2852 static void mmu_destroy_caches(void)
2853 {
2854 if (pte_chain_cache)
2855 kmem_cache_destroy(pte_chain_cache);
2856 if (rmap_desc_cache)
2857 kmem_cache_destroy(rmap_desc_cache);
2858 if (mmu_page_header_cache)
2859 kmem_cache_destroy(mmu_page_header_cache);
2860 }
2861
2862 void kvm_mmu_module_exit(void)
2863 {
2864 mmu_destroy_caches();
2865 unregister_shrinker(&mmu_shrinker);
2866 }
2867
2868 int kvm_mmu_module_init(void)
2869 {
2870 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2871 sizeof(struct kvm_pte_chain),
2872 0, 0, NULL);
2873 if (!pte_chain_cache)
2874 goto nomem;
2875 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2876 sizeof(struct kvm_rmap_desc),
2877 0, 0, NULL);
2878 if (!rmap_desc_cache)
2879 goto nomem;
2880
2881 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2882 sizeof(struct kvm_mmu_page),
2883 0, 0, NULL);
2884 if (!mmu_page_header_cache)
2885 goto nomem;
2886
2887 register_shrinker(&mmu_shrinker);
2888
2889 return 0;
2890
2891 nomem:
2892 mmu_destroy_caches();
2893 return -ENOMEM;
2894 }
2895
2896 /*
2897 * Caculate mmu pages needed for kvm.
2898 */
2899 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2900 {
2901 int i;
2902 unsigned int nr_mmu_pages;
2903 unsigned int nr_pages = 0;
2904
2905 for (i = 0; i < kvm->nmemslots; i++)
2906 nr_pages += kvm->memslots[i].npages;
2907
2908 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2909 nr_mmu_pages = max(nr_mmu_pages,
2910 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2911
2912 return nr_mmu_pages;
2913 }
2914
2915 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2916 unsigned len)
2917 {
2918 if (len > buffer->len)
2919 return NULL;
2920 return buffer->ptr;
2921 }
2922
2923 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2924 unsigned len)
2925 {
2926 void *ret;
2927
2928 ret = pv_mmu_peek_buffer(buffer, len);
2929 if (!ret)
2930 return ret;
2931 buffer->ptr += len;
2932 buffer->len -= len;
2933 buffer->processed += len;
2934 return ret;
2935 }
2936
2937 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2938 gpa_t addr, gpa_t value)
2939 {
2940 int bytes = 8;
2941 int r;
2942
2943 if (!is_long_mode(vcpu) && !is_pae(vcpu))
2944 bytes = 4;
2945
2946 r = mmu_topup_memory_caches(vcpu);
2947 if (r)
2948 return r;
2949
2950 if (!emulator_write_phys(vcpu, addr, &value, bytes))
2951 return -EFAULT;
2952
2953 return 1;
2954 }
2955
2956 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2957 {
2958 kvm_set_cr3(vcpu, vcpu->arch.cr3);
2959 return 1;
2960 }
2961
2962 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2963 {
2964 spin_lock(&vcpu->kvm->mmu_lock);
2965 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2966 spin_unlock(&vcpu->kvm->mmu_lock);
2967 return 1;
2968 }
2969
2970 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2971 struct kvm_pv_mmu_op_buffer *buffer)
2972 {
2973 struct kvm_mmu_op_header *header;
2974
2975 header = pv_mmu_peek_buffer(buffer, sizeof *header);
2976 if (!header)
2977 return 0;
2978 switch (header->op) {
2979 case KVM_MMU_OP_WRITE_PTE: {
2980 struct kvm_mmu_op_write_pte *wpte;
2981
2982 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2983 if (!wpte)
2984 return 0;
2985 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2986 wpte->pte_val);
2987 }
2988 case KVM_MMU_OP_FLUSH_TLB: {
2989 struct kvm_mmu_op_flush_tlb *ftlb;
2990
2991 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2992 if (!ftlb)
2993 return 0;
2994 return kvm_pv_mmu_flush_tlb(vcpu);
2995 }
2996 case KVM_MMU_OP_RELEASE_PT: {
2997 struct kvm_mmu_op_release_pt *rpt;
2998
2999 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3000 if (!rpt)
3001 return 0;
3002 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3003 }
3004 default: return 0;
3005 }
3006 }
3007
3008 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3009 gpa_t addr, unsigned long *ret)
3010 {
3011 int r;
3012 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3013
3014 buffer->ptr = buffer->buf;
3015 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3016 buffer->processed = 0;
3017
3018 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3019 if (r)
3020 goto out;
3021
3022 while (buffer->len) {
3023 r = kvm_pv_mmu_op_one(vcpu, buffer);
3024 if (r < 0)
3025 goto out;
3026 if (r == 0)
3027 break;
3028 }
3029
3030 r = 1;
3031 out:
3032 *ret = buffer->processed;
3033 return r;
3034 }
3035
3036 #ifdef AUDIT
3037
3038 static const char *audit_msg;
3039
3040 static gva_t canonicalize(gva_t gva)
3041 {
3042 #ifdef CONFIG_X86_64
3043 gva = (long long)(gva << 16) >> 16;
3044 #endif
3045 return gva;
3046 }
3047
3048
3049 typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
3050 u64 *sptep);
3051
3052 static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
3053 inspect_spte_fn fn)
3054 {
3055 int i;
3056
3057 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3058 u64 ent = sp->spt[i];
3059
3060 if (is_shadow_present_pte(ent)) {
3061 if (sp->role.level > 1 && !is_large_pte(ent)) {
3062 struct kvm_mmu_page *child;
3063 child = page_header(ent & PT64_BASE_ADDR_MASK);
3064 __mmu_spte_walk(kvm, child, fn);
3065 }
3066 if (sp->role.level == 1)
3067 fn(kvm, sp, &sp->spt[i]);
3068 }
3069 }
3070 }
3071
3072 static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
3073 {
3074 int i;
3075 struct kvm_mmu_page *sp;
3076
3077 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3078 return;
3079 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3080 hpa_t root = vcpu->arch.mmu.root_hpa;
3081 sp = page_header(root);
3082 __mmu_spte_walk(vcpu->kvm, sp, fn);
3083 return;
3084 }
3085 for (i = 0; i < 4; ++i) {
3086 hpa_t root = vcpu->arch.mmu.pae_root[i];
3087
3088 if (root && VALID_PAGE(root)) {
3089 root &= PT64_BASE_ADDR_MASK;
3090 sp = page_header(root);
3091 __mmu_spte_walk(vcpu->kvm, sp, fn);
3092 }
3093 }
3094 return;
3095 }
3096
3097 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
3098 gva_t va, int level)
3099 {
3100 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
3101 int i;
3102 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
3103
3104 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
3105 u64 ent = pt[i];
3106
3107 if (ent == shadow_trap_nonpresent_pte)
3108 continue;
3109
3110 va = canonicalize(va);
3111 if (level > 1) {
3112 if (is_shadow_present_pte(ent))
3113 audit_mappings_page(vcpu, ent, va, level - 1);
3114 } else {
3115 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
3116 gfn_t gfn = gpa >> PAGE_SHIFT;
3117 pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
3118 hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
3119
3120 if (is_error_pfn(pfn)) {
3121 kvm_release_pfn_clean(pfn);
3122 continue;
3123 }
3124
3125 if (is_shadow_present_pte(ent)
3126 && (ent & PT64_BASE_ADDR_MASK) != hpa)
3127 printk(KERN_ERR "xx audit error: (%s) levels %d"
3128 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3129 audit_msg, vcpu->arch.mmu.root_level,
3130 va, gpa, hpa, ent,
3131 is_shadow_present_pte(ent));
3132 else if (ent == shadow_notrap_nonpresent_pte
3133 && !is_error_hpa(hpa))
3134 printk(KERN_ERR "audit: (%s) notrap shadow,"
3135 " valid guest gva %lx\n", audit_msg, va);
3136 kvm_release_pfn_clean(pfn);
3137
3138 }
3139 }
3140 }
3141
3142 static void audit_mappings(struct kvm_vcpu *vcpu)
3143 {
3144 unsigned i;
3145
3146 if (vcpu->arch.mmu.root_level == 4)
3147 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
3148 else
3149 for (i = 0; i < 4; ++i)
3150 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
3151 audit_mappings_page(vcpu,
3152 vcpu->arch.mmu.pae_root[i],
3153 i << 30,
3154 2);
3155 }
3156
3157 static int count_rmaps(struct kvm_vcpu *vcpu)
3158 {
3159 int nmaps = 0;
3160 int i, j, k;
3161
3162 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
3163 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
3164 struct kvm_rmap_desc *d;
3165
3166 for (j = 0; j < m->npages; ++j) {
3167 unsigned long *rmapp = &m->rmap[j];
3168
3169 if (!*rmapp)
3170 continue;
3171 if (!(*rmapp & 1)) {
3172 ++nmaps;
3173 continue;
3174 }
3175 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
3176 while (d) {
3177 for (k = 0; k < RMAP_EXT; ++k)
3178 if (d->sptes[k])
3179 ++nmaps;
3180 else
3181 break;
3182 d = d->more;
3183 }
3184 }
3185 }
3186 return nmaps;
3187 }
3188
3189 void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
3190 {
3191 unsigned long *rmapp;
3192 struct kvm_mmu_page *rev_sp;
3193 gfn_t gfn;
3194
3195 if (*sptep & PT_WRITABLE_MASK) {
3196 rev_sp = page_header(__pa(sptep));
3197 gfn = rev_sp->gfns[sptep - rev_sp->spt];
3198
3199 if (!gfn_to_memslot(kvm, gfn)) {
3200 if (!printk_ratelimit())
3201 return;
3202 printk(KERN_ERR "%s: no memslot for gfn %ld\n",
3203 audit_msg, gfn);
3204 printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
3205 audit_msg, sptep - rev_sp->spt,
3206 rev_sp->gfn);
3207 dump_stack();
3208 return;
3209 }
3210
3211 rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt], 0);
3212 if (!*rmapp) {
3213 if (!printk_ratelimit())
3214 return;
3215 printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
3216 audit_msg, *sptep);
3217 dump_stack();
3218 }
3219 }
3220
3221 }
3222
3223 void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
3224 {
3225 mmu_spte_walk(vcpu, inspect_spte_has_rmap);
3226 }
3227
3228 static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
3229 {
3230 struct kvm_mmu_page *sp;
3231 int i;
3232
3233 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3234 u64 *pt = sp->spt;
3235
3236 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
3237 continue;
3238
3239 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3240 u64 ent = pt[i];
3241
3242 if (!(ent & PT_PRESENT_MASK))
3243 continue;
3244 if (!(ent & PT_WRITABLE_MASK))
3245 continue;
3246 inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
3247 }
3248 }
3249 return;
3250 }
3251
3252 static void audit_rmap(struct kvm_vcpu *vcpu)
3253 {
3254 check_writable_mappings_rmap(vcpu);
3255 count_rmaps(vcpu);
3256 }
3257
3258 static void audit_write_protection(struct kvm_vcpu *vcpu)
3259 {
3260 struct kvm_mmu_page *sp;
3261 struct kvm_memory_slot *slot;
3262 unsigned long *rmapp;
3263 u64 *spte;
3264 gfn_t gfn;
3265
3266 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3267 if (sp->role.direct)
3268 continue;
3269 if (sp->unsync)
3270 continue;
3271
3272 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
3273 slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
3274 rmapp = &slot->rmap[gfn - slot->base_gfn];
3275
3276 spte = rmap_next(vcpu->kvm, rmapp, NULL);
3277 while (spte) {
3278 if (*spte & PT_WRITABLE_MASK)
3279 printk(KERN_ERR "%s: (%s) shadow page has "
3280 "writable mappings: gfn %lx role %x\n",
3281 __func__, audit_msg, sp->gfn,
3282 sp->role.word);
3283 spte = rmap_next(vcpu->kvm, rmapp, spte);
3284 }
3285 }
3286 }
3287
3288 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
3289 {
3290 int olddbg = dbg;
3291
3292 dbg = 0;
3293 audit_msg = msg;
3294 audit_rmap(vcpu);
3295 audit_write_protection(vcpu);
3296 if (strcmp("pre pte write", audit_msg) != 0)
3297 audit_mappings(vcpu);
3298 audit_writable_sptes_have_rmaps(vcpu);
3299 dbg = olddbg;
3300 }
3301
3302 #endif
This page took 0.141573 seconds and 4 git commands to generate.