KVM: x86: move MTRR related code to a separate file
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52 bool tdp_enabled = false;
53
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77
78 #define PTE_PREFETCH_NUM 8
79
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
83 #define PT64_LEVEL_BITS 9
84
85 #define PT64_LEVEL_SHIFT(level) \
86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87
88 #define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92 #define PT32_LEVEL_BITS 10
93
94 #define PT32_LEVEL_SHIFT(level) \
95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96
97 #define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
100
101 #define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
121
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
124
125 #define ACC_EXEC_MASK 1
126 #define ACC_WRITE_MASK PT_WRITABLE_MASK
127 #define ACC_USER_MASK PT_USER_MASK
128 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
130 #include <trace/events/kvm.h>
131
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134
135 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
151 u64 *sptep;
152 int level;
153 unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183 shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
187 /*
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
195 */
196 #define MMIO_SPTE_GEN_LOW_SHIFT 2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
199 #define MMIO_GEN_SHIFT 20
200 #define MMIO_GEN_LOW_SHIFT 10
201 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
203
204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206 u64 mask;
207
208 WARN_ON(gen & ~MMIO_GEN_MASK);
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213 }
214
215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224 }
225
226 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
227 {
228 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
229 }
230
231 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
232 unsigned access)
233 {
234 unsigned int gen = kvm_current_mmio_generation(vcpu);
235 u64 mask = generation_mmio_spte_mask(gen);
236
237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239
240 trace_mark_mmio_spte(sptep, gfn, access, gen);
241 mmu_spte_set(sptep, mask);
242 }
243
244 static bool is_mmio_spte(u64 spte)
245 {
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248
249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252 return (spte & ~mask) >> PAGE_SHIFT;
253 }
254
255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258 return (spte & ~mask) & ~PAGE_MASK;
259 }
260
261 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
262 pfn_t pfn, unsigned access)
263 {
264 if (unlikely(is_noslot_pfn(pfn))) {
265 mark_mmio_spte(vcpu, sptep, gfn, access);
266 return true;
267 }
268
269 return false;
270 }
271
272 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
273 {
274 unsigned int kvm_gen, spte_gen;
275
276 kvm_gen = kvm_current_mmio_generation(vcpu);
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
281 }
282
283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
294 static int is_cpuid_PSE36(void)
295 {
296 return 1;
297 }
298
299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301 return vcpu->arch.efer & EFER_NX;
302 }
303
304 static int is_shadow_present_pte(u64 pte)
305 {
306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308
309 static int is_large_pte(u64 pte)
310 {
311 return pte & PT_PAGE_SIZE_MASK;
312 }
313
314 static int is_rmap_spte(u64 pte)
315 {
316 return is_shadow_present_pte(pte);
317 }
318
319 static int is_last_spte(u64 pte, int level)
320 {
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
323 if (is_large_pte(pte))
324 return 1;
325 return 0;
326 }
327
328 static pfn_t spte_to_pfn(u64 pte)
329 {
330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332
333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343 *sptep = spte;
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348 *sptep = spte;
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353 return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358 return ACCESS_ONCE(*sptep);
359 }
360
361 static bool __check_direct_spte_mmio_pf(u64 spte)
362 {
363 /* It is valid if the spte is zapped. */
364 return spte == 0ull;
365 }
366 #else
367 union split_spte {
368 struct {
369 u32 spte_low;
370 u32 spte_high;
371 };
372 u64 spte;
373 };
374
375 static void count_spte_clear(u64 *sptep, u64 spte)
376 {
377 struct kvm_mmu_page *sp = page_header(__pa(sptep));
378
379 if (is_shadow_present_pte(spte))
380 return;
381
382 /* Ensure the spte is completely set before we increase the count */
383 smp_wmb();
384 sp->clear_spte_count++;
385 }
386
387 static void __set_spte(u64 *sptep, u64 spte)
388 {
389 union split_spte *ssptep, sspte;
390
391 ssptep = (union split_spte *)sptep;
392 sspte = (union split_spte)spte;
393
394 ssptep->spte_high = sspte.spte_high;
395
396 /*
397 * If we map the spte from nonpresent to present, We should store
398 * the high bits firstly, then set present bit, so cpu can not
399 * fetch this spte while we are setting the spte.
400 */
401 smp_wmb();
402
403 ssptep->spte_low = sspte.spte_low;
404 }
405
406 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
407 {
408 union split_spte *ssptep, sspte;
409
410 ssptep = (union split_spte *)sptep;
411 sspte = (union split_spte)spte;
412
413 ssptep->spte_low = sspte.spte_low;
414
415 /*
416 * If we map the spte from present to nonpresent, we should clear
417 * present bit firstly to avoid vcpu fetch the old high bits.
418 */
419 smp_wmb();
420
421 ssptep->spte_high = sspte.spte_high;
422 count_spte_clear(sptep, spte);
423 }
424
425 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
426 {
427 union split_spte *ssptep, sspte, orig;
428
429 ssptep = (union split_spte *)sptep;
430 sspte = (union split_spte)spte;
431
432 /* xchg acts as a barrier before the setting of the high bits */
433 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
434 orig.spte_high = ssptep->spte_high;
435 ssptep->spte_high = sspte.spte_high;
436 count_spte_clear(sptep, spte);
437
438 return orig.spte;
439 }
440
441 /*
442 * The idea using the light way get the spte on x86_32 guest is from
443 * gup_get_pte(arch/x86/mm/gup.c).
444 *
445 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
446 * coalesces them and we are running out of the MMU lock. Therefore
447 * we need to protect against in-progress updates of the spte.
448 *
449 * Reading the spte while an update is in progress may get the old value
450 * for the high part of the spte. The race is fine for a present->non-present
451 * change (because the high part of the spte is ignored for non-present spte),
452 * but for a present->present change we must reread the spte.
453 *
454 * All such changes are done in two steps (present->non-present and
455 * non-present->present), hence it is enough to count the number of
456 * present->non-present updates: if it changed while reading the spte,
457 * we might have hit the race. This is done using clear_spte_count.
458 */
459 static u64 __get_spte_lockless(u64 *sptep)
460 {
461 struct kvm_mmu_page *sp = page_header(__pa(sptep));
462 union split_spte spte, *orig = (union split_spte *)sptep;
463 int count;
464
465 retry:
466 count = sp->clear_spte_count;
467 smp_rmb();
468
469 spte.spte_low = orig->spte_low;
470 smp_rmb();
471
472 spte.spte_high = orig->spte_high;
473 smp_rmb();
474
475 if (unlikely(spte.spte_low != orig->spte_low ||
476 count != sp->clear_spte_count))
477 goto retry;
478
479 return spte.spte;
480 }
481
482 static bool __check_direct_spte_mmio_pf(u64 spte)
483 {
484 union split_spte sspte = (union split_spte)spte;
485 u32 high_mmio_mask = shadow_mmio_mask >> 32;
486
487 /* It is valid if the spte is zapped. */
488 if (spte == 0ull)
489 return true;
490
491 /* It is valid if the spte is being zapped. */
492 if (sspte.spte_low == 0ull &&
493 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
494 return true;
495
496 return false;
497 }
498 #endif
499
500 static bool spte_is_locklessly_modifiable(u64 spte)
501 {
502 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
503 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
504 }
505
506 static bool spte_has_volatile_bits(u64 spte)
507 {
508 /*
509 * Always atomicly update spte if it can be updated
510 * out of mmu-lock, it can ensure dirty bit is not lost,
511 * also, it can help us to get a stable is_writable_pte()
512 * to ensure tlb flush is not missed.
513 */
514 if (spte_is_locklessly_modifiable(spte))
515 return true;
516
517 if (!shadow_accessed_mask)
518 return false;
519
520 if (!is_shadow_present_pte(spte))
521 return false;
522
523 if ((spte & shadow_accessed_mask) &&
524 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
525 return false;
526
527 return true;
528 }
529
530 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
531 {
532 return (old_spte & bit_mask) && !(new_spte & bit_mask);
533 }
534
535 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
536 {
537 return (old_spte & bit_mask) != (new_spte & bit_mask);
538 }
539
540 /* Rules for using mmu_spte_set:
541 * Set the sptep from nonpresent to present.
542 * Note: the sptep being assigned *must* be either not present
543 * or in a state where the hardware will not attempt to update
544 * the spte.
545 */
546 static void mmu_spte_set(u64 *sptep, u64 new_spte)
547 {
548 WARN_ON(is_shadow_present_pte(*sptep));
549 __set_spte(sptep, new_spte);
550 }
551
552 /* Rules for using mmu_spte_update:
553 * Update the state bits, it means the mapped pfn is not changged.
554 *
555 * Whenever we overwrite a writable spte with a read-only one we
556 * should flush remote TLBs. Otherwise rmap_write_protect
557 * will find a read-only spte, even though the writable spte
558 * might be cached on a CPU's TLB, the return value indicates this
559 * case.
560 */
561 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562 {
563 u64 old_spte = *sptep;
564 bool ret = false;
565
566 WARN_ON(!is_rmap_spte(new_spte));
567
568 if (!is_shadow_present_pte(old_spte)) {
569 mmu_spte_set(sptep, new_spte);
570 return ret;
571 }
572
573 if (!spte_has_volatile_bits(old_spte))
574 __update_clear_spte_fast(sptep, new_spte);
575 else
576 old_spte = __update_clear_spte_slow(sptep, new_spte);
577
578 /*
579 * For the spte updated out of mmu-lock is safe, since
580 * we always atomicly update it, see the comments in
581 * spte_has_volatile_bits().
582 */
583 if (spte_is_locklessly_modifiable(old_spte) &&
584 !is_writable_pte(new_spte))
585 ret = true;
586
587 if (!shadow_accessed_mask)
588 return ret;
589
590 /*
591 * Flush TLB when accessed/dirty bits are changed in the page tables,
592 * to guarantee consistency between TLB and page tables.
593 */
594 if (spte_is_bit_changed(old_spte, new_spte,
595 shadow_accessed_mask | shadow_dirty_mask))
596 ret = true;
597
598 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
599 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
600 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
601 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
602
603 return ret;
604 }
605
606 /*
607 * Rules for using mmu_spte_clear_track_bits:
608 * It sets the sptep from present to nonpresent, and track the
609 * state bits, it is used to clear the last level sptep.
610 */
611 static int mmu_spte_clear_track_bits(u64 *sptep)
612 {
613 pfn_t pfn;
614 u64 old_spte = *sptep;
615
616 if (!spte_has_volatile_bits(old_spte))
617 __update_clear_spte_fast(sptep, 0ull);
618 else
619 old_spte = __update_clear_spte_slow(sptep, 0ull);
620
621 if (!is_rmap_spte(old_spte))
622 return 0;
623
624 pfn = spte_to_pfn(old_spte);
625
626 /*
627 * KVM does not hold the refcount of the page used by
628 * kvm mmu, before reclaiming the page, we should
629 * unmap it from mmu first.
630 */
631 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
632
633 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
634 kvm_set_pfn_accessed(pfn);
635 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
636 kvm_set_pfn_dirty(pfn);
637 return 1;
638 }
639
640 /*
641 * Rules for using mmu_spte_clear_no_track:
642 * Directly clear spte without caring the state bits of sptep,
643 * it is used to set the upper level spte.
644 */
645 static void mmu_spte_clear_no_track(u64 *sptep)
646 {
647 __update_clear_spte_fast(sptep, 0ull);
648 }
649
650 static u64 mmu_spte_get_lockless(u64 *sptep)
651 {
652 return __get_spte_lockless(sptep);
653 }
654
655 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
656 {
657 /*
658 * Prevent page table teardown by making any free-er wait during
659 * kvm_flush_remote_tlbs() IPI to all active vcpus.
660 */
661 local_irq_disable();
662 vcpu->mode = READING_SHADOW_PAGE_TABLES;
663 /*
664 * Make sure a following spte read is not reordered ahead of the write
665 * to vcpu->mode.
666 */
667 smp_mb();
668 }
669
670 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
671 {
672 /*
673 * Make sure the write to vcpu->mode is not reordered in front of
674 * reads to sptes. If it does, kvm_commit_zap_page() can see us
675 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
676 */
677 smp_mb();
678 vcpu->mode = OUTSIDE_GUEST_MODE;
679 local_irq_enable();
680 }
681
682 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
683 struct kmem_cache *base_cache, int min)
684 {
685 void *obj;
686
687 if (cache->nobjs >= min)
688 return 0;
689 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
690 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
691 if (!obj)
692 return -ENOMEM;
693 cache->objects[cache->nobjs++] = obj;
694 }
695 return 0;
696 }
697
698 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
699 {
700 return cache->nobjs;
701 }
702
703 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
704 struct kmem_cache *cache)
705 {
706 while (mc->nobjs)
707 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
708 }
709
710 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
711 int min)
712 {
713 void *page;
714
715 if (cache->nobjs >= min)
716 return 0;
717 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
718 page = (void *)__get_free_page(GFP_KERNEL);
719 if (!page)
720 return -ENOMEM;
721 cache->objects[cache->nobjs++] = page;
722 }
723 return 0;
724 }
725
726 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
727 {
728 while (mc->nobjs)
729 free_page((unsigned long)mc->objects[--mc->nobjs]);
730 }
731
732 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
733 {
734 int r;
735
736 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
737 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
738 if (r)
739 goto out;
740 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
741 if (r)
742 goto out;
743 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
744 mmu_page_header_cache, 4);
745 out:
746 return r;
747 }
748
749 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
750 {
751 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
752 pte_list_desc_cache);
753 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
754 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
755 mmu_page_header_cache);
756 }
757
758 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
759 {
760 void *p;
761
762 BUG_ON(!mc->nobjs);
763 p = mc->objects[--mc->nobjs];
764 return p;
765 }
766
767 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
768 {
769 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
770 }
771
772 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
773 {
774 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
775 }
776
777 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
778 {
779 if (!sp->role.direct)
780 return sp->gfns[index];
781
782 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
783 }
784
785 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
786 {
787 if (sp->role.direct)
788 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
789 else
790 sp->gfns[index] = gfn;
791 }
792
793 /*
794 * Return the pointer to the large page information for a given gfn,
795 * handling slots that are not large page aligned.
796 */
797 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
798 struct kvm_memory_slot *slot,
799 int level)
800 {
801 unsigned long idx;
802
803 idx = gfn_to_index(gfn, slot->base_gfn, level);
804 return &slot->arch.lpage_info[level - 2][idx];
805 }
806
807 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809 struct kvm_memslots *slots;
810 struct kvm_memory_slot *slot;
811 struct kvm_lpage_info *linfo;
812 gfn_t gfn;
813 int i;
814
815 gfn = sp->gfn;
816 slots = kvm_memslots_for_spte_role(kvm, sp->role);
817 slot = __gfn_to_memslot(slots, gfn);
818 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
819 linfo = lpage_info_slot(gfn, slot, i);
820 linfo->write_count += 1;
821 }
822 kvm->arch.indirect_shadow_pages++;
823 }
824
825 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
826 {
827 struct kvm_memslots *slots;
828 struct kvm_memory_slot *slot;
829 struct kvm_lpage_info *linfo;
830 gfn_t gfn;
831 int i;
832
833 gfn = sp->gfn;
834 slots = kvm_memslots_for_spte_role(kvm, sp->role);
835 slot = __gfn_to_memslot(slots, gfn);
836 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
837 linfo = lpage_info_slot(gfn, slot, i);
838 linfo->write_count -= 1;
839 WARN_ON(linfo->write_count < 0);
840 }
841 kvm->arch.indirect_shadow_pages--;
842 }
843
844 static int has_wrprotected_page(struct kvm_vcpu *vcpu,
845 gfn_t gfn,
846 int level)
847 {
848 struct kvm_memory_slot *slot;
849 struct kvm_lpage_info *linfo;
850
851 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
852 if (slot) {
853 linfo = lpage_info_slot(gfn, slot, level);
854 return linfo->write_count;
855 }
856
857 return 1;
858 }
859
860 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
861 {
862 unsigned long page_size;
863 int i, ret = 0;
864
865 page_size = kvm_host_page_size(kvm, gfn);
866
867 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
868 if (page_size >= KVM_HPAGE_SIZE(i))
869 ret = i;
870 else
871 break;
872 }
873
874 return ret;
875 }
876
877 static struct kvm_memory_slot *
878 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
879 bool no_dirty_log)
880 {
881 struct kvm_memory_slot *slot;
882
883 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
884 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
885 (no_dirty_log && slot->dirty_bitmap))
886 slot = NULL;
887
888 return slot;
889 }
890
891 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
892 {
893 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
894 }
895
896 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
897 {
898 int host_level, level, max_level;
899
900 host_level = host_mapping_level(vcpu->kvm, large_gfn);
901
902 if (host_level == PT_PAGE_TABLE_LEVEL)
903 return host_level;
904
905 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
906
907 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
908 if (has_wrprotected_page(vcpu, large_gfn, level))
909 break;
910
911 return level - 1;
912 }
913
914 /*
915 * Pte mapping structures:
916 *
917 * If pte_list bit zero is zero, then pte_list point to the spte.
918 *
919 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
920 * pte_list_desc containing more mappings.
921 *
922 * Returns the number of pte entries before the spte was added or zero if
923 * the spte was not added.
924 *
925 */
926 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
927 unsigned long *pte_list)
928 {
929 struct pte_list_desc *desc;
930 int i, count = 0;
931
932 if (!*pte_list) {
933 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
934 *pte_list = (unsigned long)spte;
935 } else if (!(*pte_list & 1)) {
936 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
937 desc = mmu_alloc_pte_list_desc(vcpu);
938 desc->sptes[0] = (u64 *)*pte_list;
939 desc->sptes[1] = spte;
940 *pte_list = (unsigned long)desc | 1;
941 ++count;
942 } else {
943 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
944 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
945 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
946 desc = desc->more;
947 count += PTE_LIST_EXT;
948 }
949 if (desc->sptes[PTE_LIST_EXT-1]) {
950 desc->more = mmu_alloc_pte_list_desc(vcpu);
951 desc = desc->more;
952 }
953 for (i = 0; desc->sptes[i]; ++i)
954 ++count;
955 desc->sptes[i] = spte;
956 }
957 return count;
958 }
959
960 static void
961 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
962 int i, struct pte_list_desc *prev_desc)
963 {
964 int j;
965
966 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
967 ;
968 desc->sptes[i] = desc->sptes[j];
969 desc->sptes[j] = NULL;
970 if (j != 0)
971 return;
972 if (!prev_desc && !desc->more)
973 *pte_list = (unsigned long)desc->sptes[0];
974 else
975 if (prev_desc)
976 prev_desc->more = desc->more;
977 else
978 *pte_list = (unsigned long)desc->more | 1;
979 mmu_free_pte_list_desc(desc);
980 }
981
982 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
983 {
984 struct pte_list_desc *desc;
985 struct pte_list_desc *prev_desc;
986 int i;
987
988 if (!*pte_list) {
989 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
990 BUG();
991 } else if (!(*pte_list & 1)) {
992 rmap_printk("pte_list_remove: %p 1->0\n", spte);
993 if ((u64 *)*pte_list != spte) {
994 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
995 BUG();
996 }
997 *pte_list = 0;
998 } else {
999 rmap_printk("pte_list_remove: %p many->many\n", spte);
1000 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1001 prev_desc = NULL;
1002 while (desc) {
1003 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1004 if (desc->sptes[i] == spte) {
1005 pte_list_desc_remove_entry(pte_list,
1006 desc, i,
1007 prev_desc);
1008 return;
1009 }
1010 prev_desc = desc;
1011 desc = desc->more;
1012 }
1013 pr_err("pte_list_remove: %p many->many\n", spte);
1014 BUG();
1015 }
1016 }
1017
1018 typedef void (*pte_list_walk_fn) (u64 *spte);
1019 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1020 {
1021 struct pte_list_desc *desc;
1022 int i;
1023
1024 if (!*pte_list)
1025 return;
1026
1027 if (!(*pte_list & 1))
1028 return fn((u64 *)*pte_list);
1029
1030 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1031 while (desc) {
1032 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1033 fn(desc->sptes[i]);
1034 desc = desc->more;
1035 }
1036 }
1037
1038 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1039 struct kvm_memory_slot *slot)
1040 {
1041 unsigned long idx;
1042
1043 idx = gfn_to_index(gfn, slot->base_gfn, level);
1044 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1045 }
1046
1047 /*
1048 * Take gfn and return the reverse mapping to it.
1049 */
1050 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
1051 {
1052 struct kvm_memslots *slots;
1053 struct kvm_memory_slot *slot;
1054
1055 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1056 slot = __gfn_to_memslot(slots, gfn);
1057 return __gfn_to_rmap(gfn, sp->role.level, slot);
1058 }
1059
1060 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1061 {
1062 struct kvm_mmu_memory_cache *cache;
1063
1064 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1065 return mmu_memory_cache_free_objects(cache);
1066 }
1067
1068 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1069 {
1070 struct kvm_mmu_page *sp;
1071 unsigned long *rmapp;
1072
1073 sp = page_header(__pa(spte));
1074 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1075 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1076 return pte_list_add(vcpu, spte, rmapp);
1077 }
1078
1079 static void rmap_remove(struct kvm *kvm, u64 *spte)
1080 {
1081 struct kvm_mmu_page *sp;
1082 gfn_t gfn;
1083 unsigned long *rmapp;
1084
1085 sp = page_header(__pa(spte));
1086 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1087 rmapp = gfn_to_rmap(kvm, gfn, sp);
1088 pte_list_remove(spte, rmapp);
1089 }
1090
1091 /*
1092 * Used by the following functions to iterate through the sptes linked by a
1093 * rmap. All fields are private and not assumed to be used outside.
1094 */
1095 struct rmap_iterator {
1096 /* private fields */
1097 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1098 int pos; /* index of the sptep */
1099 };
1100
1101 /*
1102 * Iteration must be started by this function. This should also be used after
1103 * removing/dropping sptes from the rmap link because in such cases the
1104 * information in the itererator may not be valid.
1105 *
1106 * Returns sptep if found, NULL otherwise.
1107 */
1108 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1109 {
1110 if (!rmap)
1111 return NULL;
1112
1113 if (!(rmap & 1)) {
1114 iter->desc = NULL;
1115 return (u64 *)rmap;
1116 }
1117
1118 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1119 iter->pos = 0;
1120 return iter->desc->sptes[iter->pos];
1121 }
1122
1123 /*
1124 * Must be used with a valid iterator: e.g. after rmap_get_first().
1125 *
1126 * Returns sptep if found, NULL otherwise.
1127 */
1128 static u64 *rmap_get_next(struct rmap_iterator *iter)
1129 {
1130 if (iter->desc) {
1131 if (iter->pos < PTE_LIST_EXT - 1) {
1132 u64 *sptep;
1133
1134 ++iter->pos;
1135 sptep = iter->desc->sptes[iter->pos];
1136 if (sptep)
1137 return sptep;
1138 }
1139
1140 iter->desc = iter->desc->more;
1141
1142 if (iter->desc) {
1143 iter->pos = 0;
1144 /* desc->sptes[0] cannot be NULL */
1145 return iter->desc->sptes[iter->pos];
1146 }
1147 }
1148
1149 return NULL;
1150 }
1151
1152 #define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
1153 for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
1154 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1155 _spte_ = rmap_get_next(_iter_))
1156
1157 static void drop_spte(struct kvm *kvm, u64 *sptep)
1158 {
1159 if (mmu_spte_clear_track_bits(sptep))
1160 rmap_remove(kvm, sptep);
1161 }
1162
1163
1164 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1165 {
1166 if (is_large_pte(*sptep)) {
1167 WARN_ON(page_header(__pa(sptep))->role.level ==
1168 PT_PAGE_TABLE_LEVEL);
1169 drop_spte(kvm, sptep);
1170 --kvm->stat.lpages;
1171 return true;
1172 }
1173
1174 return false;
1175 }
1176
1177 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1178 {
1179 if (__drop_large_spte(vcpu->kvm, sptep))
1180 kvm_flush_remote_tlbs(vcpu->kvm);
1181 }
1182
1183 /*
1184 * Write-protect on the specified @sptep, @pt_protect indicates whether
1185 * spte write-protection is caused by protecting shadow page table.
1186 *
1187 * Note: write protection is difference between dirty logging and spte
1188 * protection:
1189 * - for dirty logging, the spte can be set to writable at anytime if
1190 * its dirty bitmap is properly set.
1191 * - for spte protection, the spte can be writable only after unsync-ing
1192 * shadow page.
1193 *
1194 * Return true if tlb need be flushed.
1195 */
1196 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1197 {
1198 u64 spte = *sptep;
1199
1200 if (!is_writable_pte(spte) &&
1201 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1202 return false;
1203
1204 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1205
1206 if (pt_protect)
1207 spte &= ~SPTE_MMU_WRITEABLE;
1208 spte = spte & ~PT_WRITABLE_MASK;
1209
1210 return mmu_spte_update(sptep, spte);
1211 }
1212
1213 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1214 bool pt_protect)
1215 {
1216 u64 *sptep;
1217 struct rmap_iterator iter;
1218 bool flush = false;
1219
1220 for_each_rmap_spte(rmapp, &iter, sptep)
1221 flush |= spte_write_protect(kvm, sptep, pt_protect);
1222
1223 return flush;
1224 }
1225
1226 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1227 {
1228 u64 spte = *sptep;
1229
1230 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1231
1232 spte &= ~shadow_dirty_mask;
1233
1234 return mmu_spte_update(sptep, spte);
1235 }
1236
1237 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1238 {
1239 u64 *sptep;
1240 struct rmap_iterator iter;
1241 bool flush = false;
1242
1243 for_each_rmap_spte(rmapp, &iter, sptep)
1244 flush |= spte_clear_dirty(kvm, sptep);
1245
1246 return flush;
1247 }
1248
1249 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1250 {
1251 u64 spte = *sptep;
1252
1253 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1254
1255 spte |= shadow_dirty_mask;
1256
1257 return mmu_spte_update(sptep, spte);
1258 }
1259
1260 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1261 {
1262 u64 *sptep;
1263 struct rmap_iterator iter;
1264 bool flush = false;
1265
1266 for_each_rmap_spte(rmapp, &iter, sptep)
1267 flush |= spte_set_dirty(kvm, sptep);
1268
1269 return flush;
1270 }
1271
1272 /**
1273 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1274 * @kvm: kvm instance
1275 * @slot: slot to protect
1276 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1277 * @mask: indicates which pages we should protect
1278 *
1279 * Used when we do not need to care about huge page mappings: e.g. during dirty
1280 * logging we do not have any such mappings.
1281 */
1282 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1283 struct kvm_memory_slot *slot,
1284 gfn_t gfn_offset, unsigned long mask)
1285 {
1286 unsigned long *rmapp;
1287
1288 while (mask) {
1289 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1290 PT_PAGE_TABLE_LEVEL, slot);
1291 __rmap_write_protect(kvm, rmapp, false);
1292
1293 /* clear the first set bit */
1294 mask &= mask - 1;
1295 }
1296 }
1297
1298 /**
1299 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1300 * @kvm: kvm instance
1301 * @slot: slot to clear D-bit
1302 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1303 * @mask: indicates which pages we should clear D-bit
1304 *
1305 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1306 */
1307 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1308 struct kvm_memory_slot *slot,
1309 gfn_t gfn_offset, unsigned long mask)
1310 {
1311 unsigned long *rmapp;
1312
1313 while (mask) {
1314 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1315 PT_PAGE_TABLE_LEVEL, slot);
1316 __rmap_clear_dirty(kvm, rmapp);
1317
1318 /* clear the first set bit */
1319 mask &= mask - 1;
1320 }
1321 }
1322 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1323
1324 /**
1325 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1326 * PT level pages.
1327 *
1328 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1329 * enable dirty logging for them.
1330 *
1331 * Used when we do not need to care about huge page mappings: e.g. during dirty
1332 * logging we do not have any such mappings.
1333 */
1334 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1335 struct kvm_memory_slot *slot,
1336 gfn_t gfn_offset, unsigned long mask)
1337 {
1338 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1339 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1340 mask);
1341 else
1342 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1343 }
1344
1345 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1346 {
1347 struct kvm_memory_slot *slot;
1348 unsigned long *rmapp;
1349 int i;
1350 bool write_protected = false;
1351
1352 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1353
1354 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1355 rmapp = __gfn_to_rmap(gfn, i, slot);
1356 write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
1357 }
1358
1359 return write_protected;
1360 }
1361
1362 static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1363 {
1364 u64 *sptep;
1365 struct rmap_iterator iter;
1366 bool flush = false;
1367
1368 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1369 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1370 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1371
1372 drop_spte(kvm, sptep);
1373 flush = true;
1374 }
1375
1376 return flush;
1377 }
1378
1379 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1380 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1381 unsigned long data)
1382 {
1383 return kvm_zap_rmapp(kvm, rmapp);
1384 }
1385
1386 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1387 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1388 unsigned long data)
1389 {
1390 u64 *sptep;
1391 struct rmap_iterator iter;
1392 int need_flush = 0;
1393 u64 new_spte;
1394 pte_t *ptep = (pte_t *)data;
1395 pfn_t new_pfn;
1396
1397 WARN_ON(pte_huge(*ptep));
1398 new_pfn = pte_pfn(*ptep);
1399
1400 restart:
1401 for_each_rmap_spte(rmapp, &iter, sptep) {
1402 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1403 sptep, *sptep, gfn, level);
1404
1405 need_flush = 1;
1406
1407 if (pte_write(*ptep)) {
1408 drop_spte(kvm, sptep);
1409 goto restart;
1410 } else {
1411 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1412 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1413
1414 new_spte &= ~PT_WRITABLE_MASK;
1415 new_spte &= ~SPTE_HOST_WRITEABLE;
1416 new_spte &= ~shadow_accessed_mask;
1417
1418 mmu_spte_clear_track_bits(sptep);
1419 mmu_spte_set(sptep, new_spte);
1420 }
1421 }
1422
1423 if (need_flush)
1424 kvm_flush_remote_tlbs(kvm);
1425
1426 return 0;
1427 }
1428
1429 struct slot_rmap_walk_iterator {
1430 /* input fields. */
1431 struct kvm_memory_slot *slot;
1432 gfn_t start_gfn;
1433 gfn_t end_gfn;
1434 int start_level;
1435 int end_level;
1436
1437 /* output fields. */
1438 gfn_t gfn;
1439 unsigned long *rmap;
1440 int level;
1441
1442 /* private field. */
1443 unsigned long *end_rmap;
1444 };
1445
1446 static void
1447 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1448 {
1449 iterator->level = level;
1450 iterator->gfn = iterator->start_gfn;
1451 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1452 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1453 iterator->slot);
1454 }
1455
1456 static void
1457 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1458 struct kvm_memory_slot *slot, int start_level,
1459 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1460 {
1461 iterator->slot = slot;
1462 iterator->start_level = start_level;
1463 iterator->end_level = end_level;
1464 iterator->start_gfn = start_gfn;
1465 iterator->end_gfn = end_gfn;
1466
1467 rmap_walk_init_level(iterator, iterator->start_level);
1468 }
1469
1470 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1471 {
1472 return !!iterator->rmap;
1473 }
1474
1475 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1476 {
1477 if (++iterator->rmap <= iterator->end_rmap) {
1478 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1479 return;
1480 }
1481
1482 if (++iterator->level > iterator->end_level) {
1483 iterator->rmap = NULL;
1484 return;
1485 }
1486
1487 rmap_walk_init_level(iterator, iterator->level);
1488 }
1489
1490 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1491 _start_gfn, _end_gfn, _iter_) \
1492 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1493 _end_level_, _start_gfn, _end_gfn); \
1494 slot_rmap_walk_okay(_iter_); \
1495 slot_rmap_walk_next(_iter_))
1496
1497 static int kvm_handle_hva_range(struct kvm *kvm,
1498 unsigned long start,
1499 unsigned long end,
1500 unsigned long data,
1501 int (*handler)(struct kvm *kvm,
1502 unsigned long *rmapp,
1503 struct kvm_memory_slot *slot,
1504 gfn_t gfn,
1505 int level,
1506 unsigned long data))
1507 {
1508 struct kvm_memslots *slots;
1509 struct kvm_memory_slot *memslot;
1510 struct slot_rmap_walk_iterator iterator;
1511 int ret = 0;
1512 int i;
1513
1514 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1515 slots = __kvm_memslots(kvm, i);
1516 kvm_for_each_memslot(memslot, slots) {
1517 unsigned long hva_start, hva_end;
1518 gfn_t gfn_start, gfn_end;
1519
1520 hva_start = max(start, memslot->userspace_addr);
1521 hva_end = min(end, memslot->userspace_addr +
1522 (memslot->npages << PAGE_SHIFT));
1523 if (hva_start >= hva_end)
1524 continue;
1525 /*
1526 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1527 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1528 */
1529 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1530 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1531
1532 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1533 PT_MAX_HUGEPAGE_LEVEL,
1534 gfn_start, gfn_end - 1,
1535 &iterator)
1536 ret |= handler(kvm, iterator.rmap, memslot,
1537 iterator.gfn, iterator.level, data);
1538 }
1539 }
1540
1541 return ret;
1542 }
1543
1544 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1545 unsigned long data,
1546 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1547 struct kvm_memory_slot *slot,
1548 gfn_t gfn, int level,
1549 unsigned long data))
1550 {
1551 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1552 }
1553
1554 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1555 {
1556 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1557 }
1558
1559 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1560 {
1561 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1562 }
1563
1564 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1565 {
1566 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1567 }
1568
1569 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1570 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1571 unsigned long data)
1572 {
1573 u64 *sptep;
1574 struct rmap_iterator uninitialized_var(iter);
1575 int young = 0;
1576
1577 BUG_ON(!shadow_accessed_mask);
1578
1579 for_each_rmap_spte(rmapp, &iter, sptep)
1580 if (*sptep & shadow_accessed_mask) {
1581 young = 1;
1582 clear_bit((ffs(shadow_accessed_mask) - 1),
1583 (unsigned long *)sptep);
1584 }
1585
1586 trace_kvm_age_page(gfn, level, slot, young);
1587 return young;
1588 }
1589
1590 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1591 struct kvm_memory_slot *slot, gfn_t gfn,
1592 int level, unsigned long data)
1593 {
1594 u64 *sptep;
1595 struct rmap_iterator iter;
1596 int young = 0;
1597
1598 /*
1599 * If there's no access bit in the secondary pte set by the
1600 * hardware it's up to gup-fast/gup to set the access bit in
1601 * the primary pte or in the page structure.
1602 */
1603 if (!shadow_accessed_mask)
1604 goto out;
1605
1606 for_each_rmap_spte(rmapp, &iter, sptep)
1607 if (*sptep & shadow_accessed_mask) {
1608 young = 1;
1609 break;
1610 }
1611 out:
1612 return young;
1613 }
1614
1615 #define RMAP_RECYCLE_THRESHOLD 1000
1616
1617 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1618 {
1619 unsigned long *rmapp;
1620 struct kvm_mmu_page *sp;
1621
1622 sp = page_header(__pa(spte));
1623
1624 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1625
1626 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1627 kvm_flush_remote_tlbs(vcpu->kvm);
1628 }
1629
1630 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1631 {
1632 /*
1633 * In case of absence of EPT Access and Dirty Bits supports,
1634 * emulate the accessed bit for EPT, by checking if this page has
1635 * an EPT mapping, and clearing it if it does. On the next access,
1636 * a new EPT mapping will be established.
1637 * This has some overhead, but not as much as the cost of swapping
1638 * out actively used pages or breaking up actively used hugepages.
1639 */
1640 if (!shadow_accessed_mask) {
1641 /*
1642 * We are holding the kvm->mmu_lock, and we are blowing up
1643 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1644 * This is correct as long as we don't decouple the mmu_lock
1645 * protected regions (like invalidate_range_start|end does).
1646 */
1647 kvm->mmu_notifier_seq++;
1648 return kvm_handle_hva_range(kvm, start, end, 0,
1649 kvm_unmap_rmapp);
1650 }
1651
1652 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1653 }
1654
1655 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1656 {
1657 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1658 }
1659
1660 #ifdef MMU_DEBUG
1661 static int is_empty_shadow_page(u64 *spt)
1662 {
1663 u64 *pos;
1664 u64 *end;
1665
1666 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1667 if (is_shadow_present_pte(*pos)) {
1668 printk(KERN_ERR "%s: %p %llx\n", __func__,
1669 pos, *pos);
1670 return 0;
1671 }
1672 return 1;
1673 }
1674 #endif
1675
1676 /*
1677 * This value is the sum of all of the kvm instances's
1678 * kvm->arch.n_used_mmu_pages values. We need a global,
1679 * aggregate version in order to make the slab shrinker
1680 * faster
1681 */
1682 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1683 {
1684 kvm->arch.n_used_mmu_pages += nr;
1685 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1686 }
1687
1688 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1689 {
1690 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1691 hlist_del(&sp->hash_link);
1692 list_del(&sp->link);
1693 free_page((unsigned long)sp->spt);
1694 if (!sp->role.direct)
1695 free_page((unsigned long)sp->gfns);
1696 kmem_cache_free(mmu_page_header_cache, sp);
1697 }
1698
1699 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1700 {
1701 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1702 }
1703
1704 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1705 struct kvm_mmu_page *sp, u64 *parent_pte)
1706 {
1707 if (!parent_pte)
1708 return;
1709
1710 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1711 }
1712
1713 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1714 u64 *parent_pte)
1715 {
1716 pte_list_remove(parent_pte, &sp->parent_ptes);
1717 }
1718
1719 static void drop_parent_pte(struct kvm_mmu_page *sp,
1720 u64 *parent_pte)
1721 {
1722 mmu_page_remove_parent_pte(sp, parent_pte);
1723 mmu_spte_clear_no_track(parent_pte);
1724 }
1725
1726 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1727 u64 *parent_pte, int direct)
1728 {
1729 struct kvm_mmu_page *sp;
1730
1731 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1732 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1733 if (!direct)
1734 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1735 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1736
1737 /*
1738 * The active_mmu_pages list is the FIFO list, do not move the
1739 * page until it is zapped. kvm_zap_obsolete_pages depends on
1740 * this feature. See the comments in kvm_zap_obsolete_pages().
1741 */
1742 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1743 sp->parent_ptes = 0;
1744 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1745 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1746 return sp;
1747 }
1748
1749 static void mark_unsync(u64 *spte);
1750 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1751 {
1752 pte_list_walk(&sp->parent_ptes, mark_unsync);
1753 }
1754
1755 static void mark_unsync(u64 *spte)
1756 {
1757 struct kvm_mmu_page *sp;
1758 unsigned int index;
1759
1760 sp = page_header(__pa(spte));
1761 index = spte - sp->spt;
1762 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1763 return;
1764 if (sp->unsync_children++)
1765 return;
1766 kvm_mmu_mark_parents_unsync(sp);
1767 }
1768
1769 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1770 struct kvm_mmu_page *sp)
1771 {
1772 return 1;
1773 }
1774
1775 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1776 {
1777 }
1778
1779 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1780 struct kvm_mmu_page *sp, u64 *spte,
1781 const void *pte)
1782 {
1783 WARN_ON(1);
1784 }
1785
1786 #define KVM_PAGE_ARRAY_NR 16
1787
1788 struct kvm_mmu_pages {
1789 struct mmu_page_and_offset {
1790 struct kvm_mmu_page *sp;
1791 unsigned int idx;
1792 } page[KVM_PAGE_ARRAY_NR];
1793 unsigned int nr;
1794 };
1795
1796 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1797 int idx)
1798 {
1799 int i;
1800
1801 if (sp->unsync)
1802 for (i=0; i < pvec->nr; i++)
1803 if (pvec->page[i].sp == sp)
1804 return 0;
1805
1806 pvec->page[pvec->nr].sp = sp;
1807 pvec->page[pvec->nr].idx = idx;
1808 pvec->nr++;
1809 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1810 }
1811
1812 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1813 struct kvm_mmu_pages *pvec)
1814 {
1815 int i, ret, nr_unsync_leaf = 0;
1816
1817 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1818 struct kvm_mmu_page *child;
1819 u64 ent = sp->spt[i];
1820
1821 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1822 goto clear_child_bitmap;
1823
1824 child = page_header(ent & PT64_BASE_ADDR_MASK);
1825
1826 if (child->unsync_children) {
1827 if (mmu_pages_add(pvec, child, i))
1828 return -ENOSPC;
1829
1830 ret = __mmu_unsync_walk(child, pvec);
1831 if (!ret)
1832 goto clear_child_bitmap;
1833 else if (ret > 0)
1834 nr_unsync_leaf += ret;
1835 else
1836 return ret;
1837 } else if (child->unsync) {
1838 nr_unsync_leaf++;
1839 if (mmu_pages_add(pvec, child, i))
1840 return -ENOSPC;
1841 } else
1842 goto clear_child_bitmap;
1843
1844 continue;
1845
1846 clear_child_bitmap:
1847 __clear_bit(i, sp->unsync_child_bitmap);
1848 sp->unsync_children--;
1849 WARN_ON((int)sp->unsync_children < 0);
1850 }
1851
1852
1853 return nr_unsync_leaf;
1854 }
1855
1856 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1857 struct kvm_mmu_pages *pvec)
1858 {
1859 if (!sp->unsync_children)
1860 return 0;
1861
1862 mmu_pages_add(pvec, sp, 0);
1863 return __mmu_unsync_walk(sp, pvec);
1864 }
1865
1866 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1867 {
1868 WARN_ON(!sp->unsync);
1869 trace_kvm_mmu_sync_page(sp);
1870 sp->unsync = 0;
1871 --kvm->stat.mmu_unsync;
1872 }
1873
1874 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1875 struct list_head *invalid_list);
1876 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1877 struct list_head *invalid_list);
1878
1879 /*
1880 * NOTE: we should pay more attention on the zapped-obsolete page
1881 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1882 * since it has been deleted from active_mmu_pages but still can be found
1883 * at hast list.
1884 *
1885 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1886 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1887 * all the obsolete pages.
1888 */
1889 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1890 hlist_for_each_entry(_sp, \
1891 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1892 if ((_sp)->gfn != (_gfn)) {} else
1893
1894 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1895 for_each_gfn_sp(_kvm, _sp, _gfn) \
1896 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1897
1898 /* @sp->gfn should be write-protected at the call site */
1899 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1900 struct list_head *invalid_list, bool clear_unsync)
1901 {
1902 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1903 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1904 return 1;
1905 }
1906
1907 if (clear_unsync)
1908 kvm_unlink_unsync_page(vcpu->kvm, sp);
1909
1910 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1911 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1912 return 1;
1913 }
1914
1915 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1916 return 0;
1917 }
1918
1919 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1920 struct kvm_mmu_page *sp)
1921 {
1922 LIST_HEAD(invalid_list);
1923 int ret;
1924
1925 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1926 if (ret)
1927 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1928
1929 return ret;
1930 }
1931
1932 #ifdef CONFIG_KVM_MMU_AUDIT
1933 #include "mmu_audit.c"
1934 #else
1935 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1936 static void mmu_audit_disable(void) { }
1937 #endif
1938
1939 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1940 struct list_head *invalid_list)
1941 {
1942 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1943 }
1944
1945 /* @gfn should be write-protected at the call site */
1946 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1947 {
1948 struct kvm_mmu_page *s;
1949 LIST_HEAD(invalid_list);
1950 bool flush = false;
1951
1952 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1953 if (!s->unsync)
1954 continue;
1955
1956 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1957 kvm_unlink_unsync_page(vcpu->kvm, s);
1958 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1959 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1960 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1961 continue;
1962 }
1963 flush = true;
1964 }
1965
1966 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1967 if (flush)
1968 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1969 }
1970
1971 struct mmu_page_path {
1972 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1973 unsigned int idx[PT64_ROOT_LEVEL-1];
1974 };
1975
1976 #define for_each_sp(pvec, sp, parents, i) \
1977 for (i = mmu_pages_next(&pvec, &parents, -1), \
1978 sp = pvec.page[i].sp; \
1979 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1980 i = mmu_pages_next(&pvec, &parents, i))
1981
1982 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1983 struct mmu_page_path *parents,
1984 int i)
1985 {
1986 int n;
1987
1988 for (n = i+1; n < pvec->nr; n++) {
1989 struct kvm_mmu_page *sp = pvec->page[n].sp;
1990
1991 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1992 parents->idx[0] = pvec->page[n].idx;
1993 return n;
1994 }
1995
1996 parents->parent[sp->role.level-2] = sp;
1997 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1998 }
1999
2000 return n;
2001 }
2002
2003 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2004 {
2005 struct kvm_mmu_page *sp;
2006 unsigned int level = 0;
2007
2008 do {
2009 unsigned int idx = parents->idx[level];
2010
2011 sp = parents->parent[level];
2012 if (!sp)
2013 return;
2014
2015 --sp->unsync_children;
2016 WARN_ON((int)sp->unsync_children < 0);
2017 __clear_bit(idx, sp->unsync_child_bitmap);
2018 level++;
2019 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2020 }
2021
2022 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2023 struct mmu_page_path *parents,
2024 struct kvm_mmu_pages *pvec)
2025 {
2026 parents->parent[parent->role.level-1] = NULL;
2027 pvec->nr = 0;
2028 }
2029
2030 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2031 struct kvm_mmu_page *parent)
2032 {
2033 int i;
2034 struct kvm_mmu_page *sp;
2035 struct mmu_page_path parents;
2036 struct kvm_mmu_pages pages;
2037 LIST_HEAD(invalid_list);
2038
2039 kvm_mmu_pages_init(parent, &parents, &pages);
2040 while (mmu_unsync_walk(parent, &pages)) {
2041 bool protected = false;
2042
2043 for_each_sp(pages, sp, parents, i)
2044 protected |= rmap_write_protect(vcpu, sp->gfn);
2045
2046 if (protected)
2047 kvm_flush_remote_tlbs(vcpu->kvm);
2048
2049 for_each_sp(pages, sp, parents, i) {
2050 kvm_sync_page(vcpu, sp, &invalid_list);
2051 mmu_pages_clear_parents(&parents);
2052 }
2053 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2054 cond_resched_lock(&vcpu->kvm->mmu_lock);
2055 kvm_mmu_pages_init(parent, &parents, &pages);
2056 }
2057 }
2058
2059 static void init_shadow_page_table(struct kvm_mmu_page *sp)
2060 {
2061 int i;
2062
2063 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2064 sp->spt[i] = 0ull;
2065 }
2066
2067 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2068 {
2069 sp->write_flooding_count = 0;
2070 }
2071
2072 static void clear_sp_write_flooding_count(u64 *spte)
2073 {
2074 struct kvm_mmu_page *sp = page_header(__pa(spte));
2075
2076 __clear_sp_write_flooding_count(sp);
2077 }
2078
2079 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2080 {
2081 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2082 }
2083
2084 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2085 gfn_t gfn,
2086 gva_t gaddr,
2087 unsigned level,
2088 int direct,
2089 unsigned access,
2090 u64 *parent_pte)
2091 {
2092 union kvm_mmu_page_role role;
2093 unsigned quadrant;
2094 struct kvm_mmu_page *sp;
2095 bool need_sync = false;
2096
2097 role = vcpu->arch.mmu.base_role;
2098 role.level = level;
2099 role.direct = direct;
2100 if (role.direct)
2101 role.cr4_pae = 0;
2102 role.access = access;
2103 if (!vcpu->arch.mmu.direct_map
2104 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2105 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2106 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2107 role.quadrant = quadrant;
2108 }
2109 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2110 if (is_obsolete_sp(vcpu->kvm, sp))
2111 continue;
2112
2113 if (!need_sync && sp->unsync)
2114 need_sync = true;
2115
2116 if (sp->role.word != role.word)
2117 continue;
2118
2119 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2120 break;
2121
2122 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2123 if (sp->unsync_children) {
2124 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2125 kvm_mmu_mark_parents_unsync(sp);
2126 } else if (sp->unsync)
2127 kvm_mmu_mark_parents_unsync(sp);
2128
2129 __clear_sp_write_flooding_count(sp);
2130 trace_kvm_mmu_get_page(sp, false);
2131 return sp;
2132 }
2133 ++vcpu->kvm->stat.mmu_cache_miss;
2134 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2135 if (!sp)
2136 return sp;
2137 sp->gfn = gfn;
2138 sp->role = role;
2139 hlist_add_head(&sp->hash_link,
2140 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2141 if (!direct) {
2142 if (rmap_write_protect(vcpu, gfn))
2143 kvm_flush_remote_tlbs(vcpu->kvm);
2144 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2145 kvm_sync_pages(vcpu, gfn);
2146
2147 account_shadowed(vcpu->kvm, sp);
2148 }
2149 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2150 init_shadow_page_table(sp);
2151 trace_kvm_mmu_get_page(sp, true);
2152 return sp;
2153 }
2154
2155 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2156 struct kvm_vcpu *vcpu, u64 addr)
2157 {
2158 iterator->addr = addr;
2159 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2160 iterator->level = vcpu->arch.mmu.shadow_root_level;
2161
2162 if (iterator->level == PT64_ROOT_LEVEL &&
2163 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2164 !vcpu->arch.mmu.direct_map)
2165 --iterator->level;
2166
2167 if (iterator->level == PT32E_ROOT_LEVEL) {
2168 iterator->shadow_addr
2169 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2170 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2171 --iterator->level;
2172 if (!iterator->shadow_addr)
2173 iterator->level = 0;
2174 }
2175 }
2176
2177 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2178 {
2179 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2180 return false;
2181
2182 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2183 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2184 return true;
2185 }
2186
2187 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2188 u64 spte)
2189 {
2190 if (is_last_spte(spte, iterator->level)) {
2191 iterator->level = 0;
2192 return;
2193 }
2194
2195 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2196 --iterator->level;
2197 }
2198
2199 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2200 {
2201 return __shadow_walk_next(iterator, *iterator->sptep);
2202 }
2203
2204 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2205 {
2206 u64 spte;
2207
2208 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2209 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2210
2211 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2212 shadow_user_mask | shadow_x_mask;
2213
2214 if (accessed)
2215 spte |= shadow_accessed_mask;
2216
2217 mmu_spte_set(sptep, spte);
2218 }
2219
2220 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2221 unsigned direct_access)
2222 {
2223 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2224 struct kvm_mmu_page *child;
2225
2226 /*
2227 * For the direct sp, if the guest pte's dirty bit
2228 * changed form clean to dirty, it will corrupt the
2229 * sp's access: allow writable in the read-only sp,
2230 * so we should update the spte at this point to get
2231 * a new sp with the correct access.
2232 */
2233 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2234 if (child->role.access == direct_access)
2235 return;
2236
2237 drop_parent_pte(child, sptep);
2238 kvm_flush_remote_tlbs(vcpu->kvm);
2239 }
2240 }
2241
2242 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2243 u64 *spte)
2244 {
2245 u64 pte;
2246 struct kvm_mmu_page *child;
2247
2248 pte = *spte;
2249 if (is_shadow_present_pte(pte)) {
2250 if (is_last_spte(pte, sp->role.level)) {
2251 drop_spte(kvm, spte);
2252 if (is_large_pte(pte))
2253 --kvm->stat.lpages;
2254 } else {
2255 child = page_header(pte & PT64_BASE_ADDR_MASK);
2256 drop_parent_pte(child, spte);
2257 }
2258 return true;
2259 }
2260
2261 if (is_mmio_spte(pte))
2262 mmu_spte_clear_no_track(spte);
2263
2264 return false;
2265 }
2266
2267 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2268 struct kvm_mmu_page *sp)
2269 {
2270 unsigned i;
2271
2272 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2273 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2274 }
2275
2276 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2277 {
2278 mmu_page_remove_parent_pte(sp, parent_pte);
2279 }
2280
2281 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2282 {
2283 u64 *sptep;
2284 struct rmap_iterator iter;
2285
2286 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2287 drop_parent_pte(sp, sptep);
2288 }
2289
2290 static int mmu_zap_unsync_children(struct kvm *kvm,
2291 struct kvm_mmu_page *parent,
2292 struct list_head *invalid_list)
2293 {
2294 int i, zapped = 0;
2295 struct mmu_page_path parents;
2296 struct kvm_mmu_pages pages;
2297
2298 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2299 return 0;
2300
2301 kvm_mmu_pages_init(parent, &parents, &pages);
2302 while (mmu_unsync_walk(parent, &pages)) {
2303 struct kvm_mmu_page *sp;
2304
2305 for_each_sp(pages, sp, parents, i) {
2306 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2307 mmu_pages_clear_parents(&parents);
2308 zapped++;
2309 }
2310 kvm_mmu_pages_init(parent, &parents, &pages);
2311 }
2312
2313 return zapped;
2314 }
2315
2316 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2317 struct list_head *invalid_list)
2318 {
2319 int ret;
2320
2321 trace_kvm_mmu_prepare_zap_page(sp);
2322 ++kvm->stat.mmu_shadow_zapped;
2323 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2324 kvm_mmu_page_unlink_children(kvm, sp);
2325 kvm_mmu_unlink_parents(kvm, sp);
2326
2327 if (!sp->role.invalid && !sp->role.direct)
2328 unaccount_shadowed(kvm, sp);
2329
2330 if (sp->unsync)
2331 kvm_unlink_unsync_page(kvm, sp);
2332 if (!sp->root_count) {
2333 /* Count self */
2334 ret++;
2335 list_move(&sp->link, invalid_list);
2336 kvm_mod_used_mmu_pages(kvm, -1);
2337 } else {
2338 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2339
2340 /*
2341 * The obsolete pages can not be used on any vcpus.
2342 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2343 */
2344 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2345 kvm_reload_remote_mmus(kvm);
2346 }
2347
2348 sp->role.invalid = 1;
2349 return ret;
2350 }
2351
2352 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2353 struct list_head *invalid_list)
2354 {
2355 struct kvm_mmu_page *sp, *nsp;
2356
2357 if (list_empty(invalid_list))
2358 return;
2359
2360 /*
2361 * wmb: make sure everyone sees our modifications to the page tables
2362 * rmb: make sure we see changes to vcpu->mode
2363 */
2364 smp_mb();
2365
2366 /*
2367 * Wait for all vcpus to exit guest mode and/or lockless shadow
2368 * page table walks.
2369 */
2370 kvm_flush_remote_tlbs(kvm);
2371
2372 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2373 WARN_ON(!sp->role.invalid || sp->root_count);
2374 kvm_mmu_free_page(sp);
2375 }
2376 }
2377
2378 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2379 struct list_head *invalid_list)
2380 {
2381 struct kvm_mmu_page *sp;
2382
2383 if (list_empty(&kvm->arch.active_mmu_pages))
2384 return false;
2385
2386 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2387 struct kvm_mmu_page, link);
2388 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2389
2390 return true;
2391 }
2392
2393 /*
2394 * Changing the number of mmu pages allocated to the vm
2395 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2396 */
2397 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2398 {
2399 LIST_HEAD(invalid_list);
2400
2401 spin_lock(&kvm->mmu_lock);
2402
2403 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2404 /* Need to free some mmu pages to achieve the goal. */
2405 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2406 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2407 break;
2408
2409 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2410 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2411 }
2412
2413 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2414
2415 spin_unlock(&kvm->mmu_lock);
2416 }
2417
2418 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2419 {
2420 struct kvm_mmu_page *sp;
2421 LIST_HEAD(invalid_list);
2422 int r;
2423
2424 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2425 r = 0;
2426 spin_lock(&kvm->mmu_lock);
2427 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2428 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2429 sp->role.word);
2430 r = 1;
2431 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2432 }
2433 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2434 spin_unlock(&kvm->mmu_lock);
2435
2436 return r;
2437 }
2438 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2439
2440 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2441 {
2442 trace_kvm_mmu_unsync_page(sp);
2443 ++vcpu->kvm->stat.mmu_unsync;
2444 sp->unsync = 1;
2445
2446 kvm_mmu_mark_parents_unsync(sp);
2447 }
2448
2449 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2450 {
2451 struct kvm_mmu_page *s;
2452
2453 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2454 if (s->unsync)
2455 continue;
2456 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2457 __kvm_unsync_page(vcpu, s);
2458 }
2459 }
2460
2461 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2462 bool can_unsync)
2463 {
2464 struct kvm_mmu_page *s;
2465 bool need_unsync = false;
2466
2467 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2468 if (!can_unsync)
2469 return 1;
2470
2471 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2472 return 1;
2473
2474 if (!s->unsync)
2475 need_unsync = true;
2476 }
2477 if (need_unsync)
2478 kvm_unsync_pages(vcpu, gfn);
2479 return 0;
2480 }
2481
2482 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2483 unsigned pte_access, int level,
2484 gfn_t gfn, pfn_t pfn, bool speculative,
2485 bool can_unsync, bool host_writable)
2486 {
2487 u64 spte;
2488 int ret = 0;
2489
2490 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2491 return 0;
2492
2493 spte = PT_PRESENT_MASK;
2494 if (!speculative)
2495 spte |= shadow_accessed_mask;
2496
2497 if (pte_access & ACC_EXEC_MASK)
2498 spte |= shadow_x_mask;
2499 else
2500 spte |= shadow_nx_mask;
2501
2502 if (pte_access & ACC_USER_MASK)
2503 spte |= shadow_user_mask;
2504
2505 if (level > PT_PAGE_TABLE_LEVEL)
2506 spte |= PT_PAGE_SIZE_MASK;
2507 if (tdp_enabled)
2508 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2509 kvm_is_reserved_pfn(pfn));
2510
2511 if (host_writable)
2512 spte |= SPTE_HOST_WRITEABLE;
2513 else
2514 pte_access &= ~ACC_WRITE_MASK;
2515
2516 spte |= (u64)pfn << PAGE_SHIFT;
2517
2518 if (pte_access & ACC_WRITE_MASK) {
2519
2520 /*
2521 * Other vcpu creates new sp in the window between
2522 * mapping_level() and acquiring mmu-lock. We can
2523 * allow guest to retry the access, the mapping can
2524 * be fixed if guest refault.
2525 */
2526 if (level > PT_PAGE_TABLE_LEVEL &&
2527 has_wrprotected_page(vcpu, gfn, level))
2528 goto done;
2529
2530 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2531
2532 /*
2533 * Optimization: for pte sync, if spte was writable the hash
2534 * lookup is unnecessary (and expensive). Write protection
2535 * is responsibility of mmu_get_page / kvm_sync_page.
2536 * Same reasoning can be applied to dirty page accounting.
2537 */
2538 if (!can_unsync && is_writable_pte(*sptep))
2539 goto set_pte;
2540
2541 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2542 pgprintk("%s: found shadow page for %llx, marking ro\n",
2543 __func__, gfn);
2544 ret = 1;
2545 pte_access &= ~ACC_WRITE_MASK;
2546 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2547 }
2548 }
2549
2550 if (pte_access & ACC_WRITE_MASK) {
2551 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2552 spte |= shadow_dirty_mask;
2553 }
2554
2555 set_pte:
2556 if (mmu_spte_update(sptep, spte))
2557 kvm_flush_remote_tlbs(vcpu->kvm);
2558 done:
2559 return ret;
2560 }
2561
2562 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2563 unsigned pte_access, int write_fault, int *emulate,
2564 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2565 bool host_writable)
2566 {
2567 int was_rmapped = 0;
2568 int rmap_count;
2569
2570 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2571 *sptep, write_fault, gfn);
2572
2573 if (is_rmap_spte(*sptep)) {
2574 /*
2575 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2576 * the parent of the now unreachable PTE.
2577 */
2578 if (level > PT_PAGE_TABLE_LEVEL &&
2579 !is_large_pte(*sptep)) {
2580 struct kvm_mmu_page *child;
2581 u64 pte = *sptep;
2582
2583 child = page_header(pte & PT64_BASE_ADDR_MASK);
2584 drop_parent_pte(child, sptep);
2585 kvm_flush_remote_tlbs(vcpu->kvm);
2586 } else if (pfn != spte_to_pfn(*sptep)) {
2587 pgprintk("hfn old %llx new %llx\n",
2588 spte_to_pfn(*sptep), pfn);
2589 drop_spte(vcpu->kvm, sptep);
2590 kvm_flush_remote_tlbs(vcpu->kvm);
2591 } else
2592 was_rmapped = 1;
2593 }
2594
2595 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2596 true, host_writable)) {
2597 if (write_fault)
2598 *emulate = 1;
2599 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2600 }
2601
2602 if (unlikely(is_mmio_spte(*sptep) && emulate))
2603 *emulate = 1;
2604
2605 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2606 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2607 is_large_pte(*sptep)? "2MB" : "4kB",
2608 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2609 *sptep, sptep);
2610 if (!was_rmapped && is_large_pte(*sptep))
2611 ++vcpu->kvm->stat.lpages;
2612
2613 if (is_shadow_present_pte(*sptep)) {
2614 if (!was_rmapped) {
2615 rmap_count = rmap_add(vcpu, sptep, gfn);
2616 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2617 rmap_recycle(vcpu, sptep, gfn);
2618 }
2619 }
2620
2621 kvm_release_pfn_clean(pfn);
2622 }
2623
2624 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2625 bool no_dirty_log)
2626 {
2627 struct kvm_memory_slot *slot;
2628
2629 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2630 if (!slot)
2631 return KVM_PFN_ERR_FAULT;
2632
2633 return gfn_to_pfn_memslot_atomic(slot, gfn);
2634 }
2635
2636 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2637 struct kvm_mmu_page *sp,
2638 u64 *start, u64 *end)
2639 {
2640 struct page *pages[PTE_PREFETCH_NUM];
2641 struct kvm_memory_slot *slot;
2642 unsigned access = sp->role.access;
2643 int i, ret;
2644 gfn_t gfn;
2645
2646 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2647 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2648 if (!slot)
2649 return -1;
2650
2651 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2652 if (ret <= 0)
2653 return -1;
2654
2655 for (i = 0; i < ret; i++, gfn++, start++)
2656 mmu_set_spte(vcpu, start, access, 0, NULL,
2657 sp->role.level, gfn, page_to_pfn(pages[i]),
2658 true, true);
2659
2660 return 0;
2661 }
2662
2663 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2664 struct kvm_mmu_page *sp, u64 *sptep)
2665 {
2666 u64 *spte, *start = NULL;
2667 int i;
2668
2669 WARN_ON(!sp->role.direct);
2670
2671 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2672 spte = sp->spt + i;
2673
2674 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2675 if (is_shadow_present_pte(*spte) || spte == sptep) {
2676 if (!start)
2677 continue;
2678 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2679 break;
2680 start = NULL;
2681 } else if (!start)
2682 start = spte;
2683 }
2684 }
2685
2686 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2687 {
2688 struct kvm_mmu_page *sp;
2689
2690 /*
2691 * Since it's no accessed bit on EPT, it's no way to
2692 * distinguish between actually accessed translations
2693 * and prefetched, so disable pte prefetch if EPT is
2694 * enabled.
2695 */
2696 if (!shadow_accessed_mask)
2697 return;
2698
2699 sp = page_header(__pa(sptep));
2700 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2701 return;
2702
2703 __direct_pte_prefetch(vcpu, sp, sptep);
2704 }
2705
2706 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2707 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2708 bool prefault)
2709 {
2710 struct kvm_shadow_walk_iterator iterator;
2711 struct kvm_mmu_page *sp;
2712 int emulate = 0;
2713 gfn_t pseudo_gfn;
2714
2715 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2716 return 0;
2717
2718 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2719 if (iterator.level == level) {
2720 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2721 write, &emulate, level, gfn, pfn,
2722 prefault, map_writable);
2723 direct_pte_prefetch(vcpu, iterator.sptep);
2724 ++vcpu->stat.pf_fixed;
2725 break;
2726 }
2727
2728 drop_large_spte(vcpu, iterator.sptep);
2729 if (!is_shadow_present_pte(*iterator.sptep)) {
2730 u64 base_addr = iterator.addr;
2731
2732 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2733 pseudo_gfn = base_addr >> PAGE_SHIFT;
2734 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2735 iterator.level - 1,
2736 1, ACC_ALL, iterator.sptep);
2737
2738 link_shadow_page(iterator.sptep, sp, true);
2739 }
2740 }
2741 return emulate;
2742 }
2743
2744 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2745 {
2746 siginfo_t info;
2747
2748 info.si_signo = SIGBUS;
2749 info.si_errno = 0;
2750 info.si_code = BUS_MCEERR_AR;
2751 info.si_addr = (void __user *)address;
2752 info.si_addr_lsb = PAGE_SHIFT;
2753
2754 send_sig_info(SIGBUS, &info, tsk);
2755 }
2756
2757 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2758 {
2759 /*
2760 * Do not cache the mmio info caused by writing the readonly gfn
2761 * into the spte otherwise read access on readonly gfn also can
2762 * caused mmio page fault and treat it as mmio access.
2763 * Return 1 to tell kvm to emulate it.
2764 */
2765 if (pfn == KVM_PFN_ERR_RO_FAULT)
2766 return 1;
2767
2768 if (pfn == KVM_PFN_ERR_HWPOISON) {
2769 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2770 return 0;
2771 }
2772
2773 return -EFAULT;
2774 }
2775
2776 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2777 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2778 {
2779 pfn_t pfn = *pfnp;
2780 gfn_t gfn = *gfnp;
2781 int level = *levelp;
2782
2783 /*
2784 * Check if it's a transparent hugepage. If this would be an
2785 * hugetlbfs page, level wouldn't be set to
2786 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2787 * here.
2788 */
2789 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2790 level == PT_PAGE_TABLE_LEVEL &&
2791 PageTransCompound(pfn_to_page(pfn)) &&
2792 !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2793 unsigned long mask;
2794 /*
2795 * mmu_notifier_retry was successful and we hold the
2796 * mmu_lock here, so the pmd can't become splitting
2797 * from under us, and in turn
2798 * __split_huge_page_refcount() can't run from under
2799 * us and we can safely transfer the refcount from
2800 * PG_tail to PG_head as we switch the pfn to tail to
2801 * head.
2802 */
2803 *levelp = level = PT_DIRECTORY_LEVEL;
2804 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2805 VM_BUG_ON((gfn & mask) != (pfn & mask));
2806 if (pfn & mask) {
2807 gfn &= ~mask;
2808 *gfnp = gfn;
2809 kvm_release_pfn_clean(pfn);
2810 pfn &= ~mask;
2811 kvm_get_pfn(pfn);
2812 *pfnp = pfn;
2813 }
2814 }
2815 }
2816
2817 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2818 pfn_t pfn, unsigned access, int *ret_val)
2819 {
2820 bool ret = true;
2821
2822 /* The pfn is invalid, report the error! */
2823 if (unlikely(is_error_pfn(pfn))) {
2824 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2825 goto exit;
2826 }
2827
2828 if (unlikely(is_noslot_pfn(pfn)))
2829 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2830
2831 ret = false;
2832 exit:
2833 return ret;
2834 }
2835
2836 static bool page_fault_can_be_fast(u32 error_code)
2837 {
2838 /*
2839 * Do not fix the mmio spte with invalid generation number which
2840 * need to be updated by slow page fault path.
2841 */
2842 if (unlikely(error_code & PFERR_RSVD_MASK))
2843 return false;
2844
2845 /*
2846 * #PF can be fast only if the shadow page table is present and it
2847 * is caused by write-protect, that means we just need change the
2848 * W bit of the spte which can be done out of mmu-lock.
2849 */
2850 if (!(error_code & PFERR_PRESENT_MASK) ||
2851 !(error_code & PFERR_WRITE_MASK))
2852 return false;
2853
2854 return true;
2855 }
2856
2857 static bool
2858 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2859 u64 *sptep, u64 spte)
2860 {
2861 gfn_t gfn;
2862
2863 WARN_ON(!sp->role.direct);
2864
2865 /*
2866 * The gfn of direct spte is stable since it is calculated
2867 * by sp->gfn.
2868 */
2869 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2870
2871 /*
2872 * Theoretically we could also set dirty bit (and flush TLB) here in
2873 * order to eliminate unnecessary PML logging. See comments in
2874 * set_spte. But fast_page_fault is very unlikely to happen with PML
2875 * enabled, so we do not do this. This might result in the same GPA
2876 * to be logged in PML buffer again when the write really happens, and
2877 * eventually to be called by mark_page_dirty twice. But it's also no
2878 * harm. This also avoids the TLB flush needed after setting dirty bit
2879 * so non-PML cases won't be impacted.
2880 *
2881 * Compare with set_spte where instead shadow_dirty_mask is set.
2882 */
2883 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2884 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2885
2886 return true;
2887 }
2888
2889 /*
2890 * Return value:
2891 * - true: let the vcpu to access on the same address again.
2892 * - false: let the real page fault path to fix it.
2893 */
2894 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2895 u32 error_code)
2896 {
2897 struct kvm_shadow_walk_iterator iterator;
2898 struct kvm_mmu_page *sp;
2899 bool ret = false;
2900 u64 spte = 0ull;
2901
2902 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2903 return false;
2904
2905 if (!page_fault_can_be_fast(error_code))
2906 return false;
2907
2908 walk_shadow_page_lockless_begin(vcpu);
2909 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2910 if (!is_shadow_present_pte(spte) || iterator.level < level)
2911 break;
2912
2913 /*
2914 * If the mapping has been changed, let the vcpu fault on the
2915 * same address again.
2916 */
2917 if (!is_rmap_spte(spte)) {
2918 ret = true;
2919 goto exit;
2920 }
2921
2922 sp = page_header(__pa(iterator.sptep));
2923 if (!is_last_spte(spte, sp->role.level))
2924 goto exit;
2925
2926 /*
2927 * Check if it is a spurious fault caused by TLB lazily flushed.
2928 *
2929 * Need not check the access of upper level table entries since
2930 * they are always ACC_ALL.
2931 */
2932 if (is_writable_pte(spte)) {
2933 ret = true;
2934 goto exit;
2935 }
2936
2937 /*
2938 * Currently, to simplify the code, only the spte write-protected
2939 * by dirty-log can be fast fixed.
2940 */
2941 if (!spte_is_locklessly_modifiable(spte))
2942 goto exit;
2943
2944 /*
2945 * Do not fix write-permission on the large spte since we only dirty
2946 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2947 * that means other pages are missed if its slot is dirty-logged.
2948 *
2949 * Instead, we let the slow page fault path create a normal spte to
2950 * fix the access.
2951 *
2952 * See the comments in kvm_arch_commit_memory_region().
2953 */
2954 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2955 goto exit;
2956
2957 /*
2958 * Currently, fast page fault only works for direct mapping since
2959 * the gfn is not stable for indirect shadow page.
2960 * See Documentation/virtual/kvm/locking.txt to get more detail.
2961 */
2962 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2963 exit:
2964 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2965 spte, ret);
2966 walk_shadow_page_lockless_end(vcpu);
2967
2968 return ret;
2969 }
2970
2971 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2972 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2973 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2974
2975 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2976 gfn_t gfn, bool prefault)
2977 {
2978 int r;
2979 int level;
2980 int force_pt_level;
2981 pfn_t pfn;
2982 unsigned long mmu_seq;
2983 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2984
2985 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2986 if (likely(!force_pt_level)) {
2987 level = mapping_level(vcpu, gfn);
2988 /*
2989 * This path builds a PAE pagetable - so we can map
2990 * 2mb pages at maximum. Therefore check if the level
2991 * is larger than that.
2992 */
2993 if (level > PT_DIRECTORY_LEVEL)
2994 level = PT_DIRECTORY_LEVEL;
2995
2996 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2997 } else
2998 level = PT_PAGE_TABLE_LEVEL;
2999
3000 if (fast_page_fault(vcpu, v, level, error_code))
3001 return 0;
3002
3003 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3004 smp_rmb();
3005
3006 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3007 return 0;
3008
3009 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3010 return r;
3011
3012 spin_lock(&vcpu->kvm->mmu_lock);
3013 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3014 goto out_unlock;
3015 make_mmu_pages_available(vcpu);
3016 if (likely(!force_pt_level))
3017 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3018 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3019 prefault);
3020 spin_unlock(&vcpu->kvm->mmu_lock);
3021
3022
3023 return r;
3024
3025 out_unlock:
3026 spin_unlock(&vcpu->kvm->mmu_lock);
3027 kvm_release_pfn_clean(pfn);
3028 return 0;
3029 }
3030
3031
3032 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3033 {
3034 int i;
3035 struct kvm_mmu_page *sp;
3036 LIST_HEAD(invalid_list);
3037
3038 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3039 return;
3040
3041 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3042 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3043 vcpu->arch.mmu.direct_map)) {
3044 hpa_t root = vcpu->arch.mmu.root_hpa;
3045
3046 spin_lock(&vcpu->kvm->mmu_lock);
3047 sp = page_header(root);
3048 --sp->root_count;
3049 if (!sp->root_count && sp->role.invalid) {
3050 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3051 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3052 }
3053 spin_unlock(&vcpu->kvm->mmu_lock);
3054 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3055 return;
3056 }
3057
3058 spin_lock(&vcpu->kvm->mmu_lock);
3059 for (i = 0; i < 4; ++i) {
3060 hpa_t root = vcpu->arch.mmu.pae_root[i];
3061
3062 if (root) {
3063 root &= PT64_BASE_ADDR_MASK;
3064 sp = page_header(root);
3065 --sp->root_count;
3066 if (!sp->root_count && sp->role.invalid)
3067 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3068 &invalid_list);
3069 }
3070 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3071 }
3072 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3073 spin_unlock(&vcpu->kvm->mmu_lock);
3074 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3075 }
3076
3077 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3078 {
3079 int ret = 0;
3080
3081 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3082 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3083 ret = 1;
3084 }
3085
3086 return ret;
3087 }
3088
3089 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3090 {
3091 struct kvm_mmu_page *sp;
3092 unsigned i;
3093
3094 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3095 spin_lock(&vcpu->kvm->mmu_lock);
3096 make_mmu_pages_available(vcpu);
3097 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3098 1, ACC_ALL, NULL);
3099 ++sp->root_count;
3100 spin_unlock(&vcpu->kvm->mmu_lock);
3101 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3102 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3103 for (i = 0; i < 4; ++i) {
3104 hpa_t root = vcpu->arch.mmu.pae_root[i];
3105
3106 MMU_WARN_ON(VALID_PAGE(root));
3107 spin_lock(&vcpu->kvm->mmu_lock);
3108 make_mmu_pages_available(vcpu);
3109 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3110 i << 30,
3111 PT32_ROOT_LEVEL, 1, ACC_ALL,
3112 NULL);
3113 root = __pa(sp->spt);
3114 ++sp->root_count;
3115 spin_unlock(&vcpu->kvm->mmu_lock);
3116 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3117 }
3118 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3119 } else
3120 BUG();
3121
3122 return 0;
3123 }
3124
3125 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3126 {
3127 struct kvm_mmu_page *sp;
3128 u64 pdptr, pm_mask;
3129 gfn_t root_gfn;
3130 int i;
3131
3132 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3133
3134 if (mmu_check_root(vcpu, root_gfn))
3135 return 1;
3136
3137 /*
3138 * Do we shadow a long mode page table? If so we need to
3139 * write-protect the guests page table root.
3140 */
3141 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3142 hpa_t root = vcpu->arch.mmu.root_hpa;
3143
3144 MMU_WARN_ON(VALID_PAGE(root));
3145
3146 spin_lock(&vcpu->kvm->mmu_lock);
3147 make_mmu_pages_available(vcpu);
3148 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3149 0, ACC_ALL, NULL);
3150 root = __pa(sp->spt);
3151 ++sp->root_count;
3152 spin_unlock(&vcpu->kvm->mmu_lock);
3153 vcpu->arch.mmu.root_hpa = root;
3154 return 0;
3155 }
3156
3157 /*
3158 * We shadow a 32 bit page table. This may be a legacy 2-level
3159 * or a PAE 3-level page table. In either case we need to be aware that
3160 * the shadow page table may be a PAE or a long mode page table.
3161 */
3162 pm_mask = PT_PRESENT_MASK;
3163 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3164 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3165
3166 for (i = 0; i < 4; ++i) {
3167 hpa_t root = vcpu->arch.mmu.pae_root[i];
3168
3169 MMU_WARN_ON(VALID_PAGE(root));
3170 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3171 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3172 if (!is_present_gpte(pdptr)) {
3173 vcpu->arch.mmu.pae_root[i] = 0;
3174 continue;
3175 }
3176 root_gfn = pdptr >> PAGE_SHIFT;
3177 if (mmu_check_root(vcpu, root_gfn))
3178 return 1;
3179 }
3180 spin_lock(&vcpu->kvm->mmu_lock);
3181 make_mmu_pages_available(vcpu);
3182 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3183 PT32_ROOT_LEVEL, 0,
3184 ACC_ALL, NULL);
3185 root = __pa(sp->spt);
3186 ++sp->root_count;
3187 spin_unlock(&vcpu->kvm->mmu_lock);
3188
3189 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3190 }
3191 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3192
3193 /*
3194 * If we shadow a 32 bit page table with a long mode page
3195 * table we enter this path.
3196 */
3197 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3198 if (vcpu->arch.mmu.lm_root == NULL) {
3199 /*
3200 * The additional page necessary for this is only
3201 * allocated on demand.
3202 */
3203
3204 u64 *lm_root;
3205
3206 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3207 if (lm_root == NULL)
3208 return 1;
3209
3210 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3211
3212 vcpu->arch.mmu.lm_root = lm_root;
3213 }
3214
3215 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3216 }
3217
3218 return 0;
3219 }
3220
3221 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3222 {
3223 if (vcpu->arch.mmu.direct_map)
3224 return mmu_alloc_direct_roots(vcpu);
3225 else
3226 return mmu_alloc_shadow_roots(vcpu);
3227 }
3228
3229 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3230 {
3231 int i;
3232 struct kvm_mmu_page *sp;
3233
3234 if (vcpu->arch.mmu.direct_map)
3235 return;
3236
3237 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3238 return;
3239
3240 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3241 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3242 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3243 hpa_t root = vcpu->arch.mmu.root_hpa;
3244 sp = page_header(root);
3245 mmu_sync_children(vcpu, sp);
3246 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3247 return;
3248 }
3249 for (i = 0; i < 4; ++i) {
3250 hpa_t root = vcpu->arch.mmu.pae_root[i];
3251
3252 if (root && VALID_PAGE(root)) {
3253 root &= PT64_BASE_ADDR_MASK;
3254 sp = page_header(root);
3255 mmu_sync_children(vcpu, sp);
3256 }
3257 }
3258 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3259 }
3260
3261 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3262 {
3263 spin_lock(&vcpu->kvm->mmu_lock);
3264 mmu_sync_roots(vcpu);
3265 spin_unlock(&vcpu->kvm->mmu_lock);
3266 }
3267 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3268
3269 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3270 u32 access, struct x86_exception *exception)
3271 {
3272 if (exception)
3273 exception->error_code = 0;
3274 return vaddr;
3275 }
3276
3277 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3278 u32 access,
3279 struct x86_exception *exception)
3280 {
3281 if (exception)
3282 exception->error_code = 0;
3283 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3284 }
3285
3286 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3287 {
3288 if (direct)
3289 return vcpu_match_mmio_gpa(vcpu, addr);
3290
3291 return vcpu_match_mmio_gva(vcpu, addr);
3292 }
3293
3294
3295 /*
3296 * On direct hosts, the last spte is only allows two states
3297 * for mmio page fault:
3298 * - It is the mmio spte
3299 * - It is zapped or it is being zapped.
3300 *
3301 * This function completely checks the spte when the last spte
3302 * is not the mmio spte.
3303 */
3304 static bool check_direct_spte_mmio_pf(u64 spte)
3305 {
3306 return __check_direct_spte_mmio_pf(spte);
3307 }
3308
3309 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3310 {
3311 struct kvm_shadow_walk_iterator iterator;
3312 u64 spte = 0ull;
3313
3314 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3315 return spte;
3316
3317 walk_shadow_page_lockless_begin(vcpu);
3318 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3319 if (!is_shadow_present_pte(spte))
3320 break;
3321 walk_shadow_page_lockless_end(vcpu);
3322
3323 return spte;
3324 }
3325
3326 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3327 {
3328 u64 spte;
3329
3330 if (quickly_check_mmio_pf(vcpu, addr, direct))
3331 return RET_MMIO_PF_EMULATE;
3332
3333 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3334
3335 if (is_mmio_spte(spte)) {
3336 gfn_t gfn = get_mmio_spte_gfn(spte);
3337 unsigned access = get_mmio_spte_access(spte);
3338
3339 if (!check_mmio_spte(vcpu, spte))
3340 return RET_MMIO_PF_INVALID;
3341
3342 if (direct)
3343 addr = 0;
3344
3345 trace_handle_mmio_page_fault(addr, gfn, access);
3346 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3347 return RET_MMIO_PF_EMULATE;
3348 }
3349
3350 /*
3351 * It's ok if the gva is remapped by other cpus on shadow guest,
3352 * it's a BUG if the gfn is not a mmio page.
3353 */
3354 if (direct && !check_direct_spte_mmio_pf(spte))
3355 return RET_MMIO_PF_BUG;
3356
3357 /*
3358 * If the page table is zapped by other cpus, let CPU fault again on
3359 * the address.
3360 */
3361 return RET_MMIO_PF_RETRY;
3362 }
3363 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3364
3365 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3366 u32 error_code, bool direct)
3367 {
3368 int ret;
3369
3370 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3371 WARN_ON(ret == RET_MMIO_PF_BUG);
3372 return ret;
3373 }
3374
3375 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3376 u32 error_code, bool prefault)
3377 {
3378 gfn_t gfn;
3379 int r;
3380
3381 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3382
3383 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3384 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3385
3386 if (likely(r != RET_MMIO_PF_INVALID))
3387 return r;
3388 }
3389
3390 r = mmu_topup_memory_caches(vcpu);
3391 if (r)
3392 return r;
3393
3394 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3395
3396 gfn = gva >> PAGE_SHIFT;
3397
3398 return nonpaging_map(vcpu, gva & PAGE_MASK,
3399 error_code, gfn, prefault);
3400 }
3401
3402 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3403 {
3404 struct kvm_arch_async_pf arch;
3405
3406 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3407 arch.gfn = gfn;
3408 arch.direct_map = vcpu->arch.mmu.direct_map;
3409 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3410
3411 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3412 }
3413
3414 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3415 {
3416 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3417 kvm_event_needs_reinjection(vcpu)))
3418 return false;
3419
3420 return kvm_x86_ops->interrupt_allowed(vcpu);
3421 }
3422
3423 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3424 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3425 {
3426 struct kvm_memory_slot *slot;
3427 bool async;
3428
3429 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3430 async = false;
3431 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3432 if (!async)
3433 return false; /* *pfn has correct page already */
3434
3435 if (!prefault && can_do_async_pf(vcpu)) {
3436 trace_kvm_try_async_get_page(gva, gfn);
3437 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3438 trace_kvm_async_pf_doublefault(gva, gfn);
3439 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3440 return true;
3441 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3442 return true;
3443 }
3444
3445 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3446 return false;
3447 }
3448
3449 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3450 bool prefault)
3451 {
3452 pfn_t pfn;
3453 int r;
3454 int level;
3455 int force_pt_level;
3456 gfn_t gfn = gpa >> PAGE_SHIFT;
3457 unsigned long mmu_seq;
3458 int write = error_code & PFERR_WRITE_MASK;
3459 bool map_writable;
3460
3461 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3462
3463 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3464 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3465
3466 if (likely(r != RET_MMIO_PF_INVALID))
3467 return r;
3468 }
3469
3470 r = mmu_topup_memory_caches(vcpu);
3471 if (r)
3472 return r;
3473
3474 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3475 if (likely(!force_pt_level)) {
3476 level = mapping_level(vcpu, gfn);
3477 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3478 } else
3479 level = PT_PAGE_TABLE_LEVEL;
3480
3481 if (fast_page_fault(vcpu, gpa, level, error_code))
3482 return 0;
3483
3484 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3485 smp_rmb();
3486
3487 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3488 return 0;
3489
3490 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3491 return r;
3492
3493 spin_lock(&vcpu->kvm->mmu_lock);
3494 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3495 goto out_unlock;
3496 make_mmu_pages_available(vcpu);
3497 if (likely(!force_pt_level))
3498 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3499 r = __direct_map(vcpu, gpa, write, map_writable,
3500 level, gfn, pfn, prefault);
3501 spin_unlock(&vcpu->kvm->mmu_lock);
3502
3503 return r;
3504
3505 out_unlock:
3506 spin_unlock(&vcpu->kvm->mmu_lock);
3507 kvm_release_pfn_clean(pfn);
3508 return 0;
3509 }
3510
3511 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3512 struct kvm_mmu *context)
3513 {
3514 context->page_fault = nonpaging_page_fault;
3515 context->gva_to_gpa = nonpaging_gva_to_gpa;
3516 context->sync_page = nonpaging_sync_page;
3517 context->invlpg = nonpaging_invlpg;
3518 context->update_pte = nonpaging_update_pte;
3519 context->root_level = 0;
3520 context->shadow_root_level = PT32E_ROOT_LEVEL;
3521 context->root_hpa = INVALID_PAGE;
3522 context->direct_map = true;
3523 context->nx = false;
3524 }
3525
3526 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3527 {
3528 mmu_free_roots(vcpu);
3529 }
3530
3531 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3532 {
3533 return kvm_read_cr3(vcpu);
3534 }
3535
3536 static void inject_page_fault(struct kvm_vcpu *vcpu,
3537 struct x86_exception *fault)
3538 {
3539 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3540 }
3541
3542 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3543 unsigned access, int *nr_present)
3544 {
3545 if (unlikely(is_mmio_spte(*sptep))) {
3546 if (gfn != get_mmio_spte_gfn(*sptep)) {
3547 mmu_spte_clear_no_track(sptep);
3548 return true;
3549 }
3550
3551 (*nr_present)++;
3552 mark_mmio_spte(vcpu, sptep, gfn, access);
3553 return true;
3554 }
3555
3556 return false;
3557 }
3558
3559 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3560 {
3561 unsigned index;
3562
3563 index = level - 1;
3564 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3565 return mmu->last_pte_bitmap & (1 << index);
3566 }
3567
3568 #define PTTYPE_EPT 18 /* arbitrary */
3569 #define PTTYPE PTTYPE_EPT
3570 #include "paging_tmpl.h"
3571 #undef PTTYPE
3572
3573 #define PTTYPE 64
3574 #include "paging_tmpl.h"
3575 #undef PTTYPE
3576
3577 #define PTTYPE 32
3578 #include "paging_tmpl.h"
3579 #undef PTTYPE
3580
3581 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3582 struct kvm_mmu *context)
3583 {
3584 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3585 u64 exb_bit_rsvd = 0;
3586 u64 gbpages_bit_rsvd = 0;
3587 u64 nonleaf_bit8_rsvd = 0;
3588
3589 context->bad_mt_xwr = 0;
3590
3591 if (!context->nx)
3592 exb_bit_rsvd = rsvd_bits(63, 63);
3593 if (!guest_cpuid_has_gbpages(vcpu))
3594 gbpages_bit_rsvd = rsvd_bits(7, 7);
3595
3596 /*
3597 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3598 * leaf entries) on AMD CPUs only.
3599 */
3600 if (guest_cpuid_is_amd(vcpu))
3601 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3602
3603 switch (context->root_level) {
3604 case PT32_ROOT_LEVEL:
3605 /* no rsvd bits for 2 level 4K page table entries */
3606 context->rsvd_bits_mask[0][1] = 0;
3607 context->rsvd_bits_mask[0][0] = 0;
3608 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3609
3610 if (!is_pse(vcpu)) {
3611 context->rsvd_bits_mask[1][1] = 0;
3612 break;
3613 }
3614
3615 if (is_cpuid_PSE36())
3616 /* 36bits PSE 4MB page */
3617 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3618 else
3619 /* 32 bits PSE 4MB page */
3620 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3621 break;
3622 case PT32E_ROOT_LEVEL:
3623 context->rsvd_bits_mask[0][2] =
3624 rsvd_bits(maxphyaddr, 63) |
3625 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3626 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3627 rsvd_bits(maxphyaddr, 62); /* PDE */
3628 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3629 rsvd_bits(maxphyaddr, 62); /* PTE */
3630 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3631 rsvd_bits(maxphyaddr, 62) |
3632 rsvd_bits(13, 20); /* large page */
3633 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3634 break;
3635 case PT64_ROOT_LEVEL:
3636 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3637 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3638 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3639 nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3640 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3641 rsvd_bits(maxphyaddr, 51);
3642 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3643 rsvd_bits(maxphyaddr, 51);
3644 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3645 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3646 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3647 rsvd_bits(13, 29);
3648 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3649 rsvd_bits(maxphyaddr, 51) |
3650 rsvd_bits(13, 20); /* large page */
3651 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3652 break;
3653 }
3654 }
3655
3656 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3657 struct kvm_mmu *context, bool execonly)
3658 {
3659 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3660 int pte;
3661
3662 context->rsvd_bits_mask[0][3] =
3663 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3664 context->rsvd_bits_mask[0][2] =
3665 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3666 context->rsvd_bits_mask[0][1] =
3667 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3668 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3669
3670 /* large page */
3671 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3672 context->rsvd_bits_mask[1][2] =
3673 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3674 context->rsvd_bits_mask[1][1] =
3675 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3676 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3677
3678 for (pte = 0; pte < 64; pte++) {
3679 int rwx_bits = pte & 7;
3680 int mt = pte >> 3;
3681 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3682 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3683 (rwx_bits == 0x4 && !execonly))
3684 context->bad_mt_xwr |= (1ull << pte);
3685 }
3686 }
3687
3688 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3689 struct kvm_mmu *mmu, bool ept)
3690 {
3691 unsigned bit, byte, pfec;
3692 u8 map;
3693 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3694
3695 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3696 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3697 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3698 pfec = byte << 1;
3699 map = 0;
3700 wf = pfec & PFERR_WRITE_MASK;
3701 uf = pfec & PFERR_USER_MASK;
3702 ff = pfec & PFERR_FETCH_MASK;
3703 /*
3704 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3705 * subject to SMAP restrictions, and cleared otherwise. The
3706 * bit is only meaningful if the SMAP bit is set in CR4.
3707 */
3708 smapf = !(pfec & PFERR_RSVD_MASK);
3709 for (bit = 0; bit < 8; ++bit) {
3710 x = bit & ACC_EXEC_MASK;
3711 w = bit & ACC_WRITE_MASK;
3712 u = bit & ACC_USER_MASK;
3713
3714 if (!ept) {
3715 /* Not really needed: !nx will cause pte.nx to fault */
3716 x |= !mmu->nx;
3717 /* Allow supervisor writes if !cr0.wp */
3718 w |= !is_write_protection(vcpu) && !uf;
3719 /* Disallow supervisor fetches of user code if cr4.smep */
3720 x &= !(cr4_smep && u && !uf);
3721
3722 /*
3723 * SMAP:kernel-mode data accesses from user-mode
3724 * mappings should fault. A fault is considered
3725 * as a SMAP violation if all of the following
3726 * conditions are ture:
3727 * - X86_CR4_SMAP is set in CR4
3728 * - An user page is accessed
3729 * - Page fault in kernel mode
3730 * - if CPL = 3 or X86_EFLAGS_AC is clear
3731 *
3732 * Here, we cover the first three conditions.
3733 * The fourth is computed dynamically in
3734 * permission_fault() and is in smapf.
3735 *
3736 * Also, SMAP does not affect instruction
3737 * fetches, add the !ff check here to make it
3738 * clearer.
3739 */
3740 smap = cr4_smap && u && !uf && !ff;
3741 } else
3742 /* Not really needed: no U/S accesses on ept */
3743 u = 1;
3744
3745 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3746 (smapf && smap);
3747 map |= fault << bit;
3748 }
3749 mmu->permissions[byte] = map;
3750 }
3751 }
3752
3753 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3754 {
3755 u8 map;
3756 unsigned level, root_level = mmu->root_level;
3757 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3758
3759 if (root_level == PT32E_ROOT_LEVEL)
3760 --root_level;
3761 /* PT_PAGE_TABLE_LEVEL always terminates */
3762 map = 1 | (1 << ps_set_index);
3763 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3764 if (level <= PT_PDPE_LEVEL
3765 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3766 map |= 1 << (ps_set_index | (level - 1));
3767 }
3768 mmu->last_pte_bitmap = map;
3769 }
3770
3771 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3772 struct kvm_mmu *context,
3773 int level)
3774 {
3775 context->nx = is_nx(vcpu);
3776 context->root_level = level;
3777
3778 reset_rsvds_bits_mask(vcpu, context);
3779 update_permission_bitmask(vcpu, context, false);
3780 update_last_pte_bitmap(vcpu, context);
3781
3782 MMU_WARN_ON(!is_pae(vcpu));
3783 context->page_fault = paging64_page_fault;
3784 context->gva_to_gpa = paging64_gva_to_gpa;
3785 context->sync_page = paging64_sync_page;
3786 context->invlpg = paging64_invlpg;
3787 context->update_pte = paging64_update_pte;
3788 context->shadow_root_level = level;
3789 context->root_hpa = INVALID_PAGE;
3790 context->direct_map = false;
3791 }
3792
3793 static void paging64_init_context(struct kvm_vcpu *vcpu,
3794 struct kvm_mmu *context)
3795 {
3796 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3797 }
3798
3799 static void paging32_init_context(struct kvm_vcpu *vcpu,
3800 struct kvm_mmu *context)
3801 {
3802 context->nx = false;
3803 context->root_level = PT32_ROOT_LEVEL;
3804
3805 reset_rsvds_bits_mask(vcpu, context);
3806 update_permission_bitmask(vcpu, context, false);
3807 update_last_pte_bitmap(vcpu, context);
3808
3809 context->page_fault = paging32_page_fault;
3810 context->gva_to_gpa = paging32_gva_to_gpa;
3811 context->sync_page = paging32_sync_page;
3812 context->invlpg = paging32_invlpg;
3813 context->update_pte = paging32_update_pte;
3814 context->shadow_root_level = PT32E_ROOT_LEVEL;
3815 context->root_hpa = INVALID_PAGE;
3816 context->direct_map = false;
3817 }
3818
3819 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3820 struct kvm_mmu *context)
3821 {
3822 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3823 }
3824
3825 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3826 {
3827 struct kvm_mmu *context = &vcpu->arch.mmu;
3828
3829 context->base_role.word = 0;
3830 context->base_role.smm = is_smm(vcpu);
3831 context->page_fault = tdp_page_fault;
3832 context->sync_page = nonpaging_sync_page;
3833 context->invlpg = nonpaging_invlpg;
3834 context->update_pte = nonpaging_update_pte;
3835 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3836 context->root_hpa = INVALID_PAGE;
3837 context->direct_map = true;
3838 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3839 context->get_cr3 = get_cr3;
3840 context->get_pdptr = kvm_pdptr_read;
3841 context->inject_page_fault = kvm_inject_page_fault;
3842
3843 if (!is_paging(vcpu)) {
3844 context->nx = false;
3845 context->gva_to_gpa = nonpaging_gva_to_gpa;
3846 context->root_level = 0;
3847 } else if (is_long_mode(vcpu)) {
3848 context->nx = is_nx(vcpu);
3849 context->root_level = PT64_ROOT_LEVEL;
3850 reset_rsvds_bits_mask(vcpu, context);
3851 context->gva_to_gpa = paging64_gva_to_gpa;
3852 } else if (is_pae(vcpu)) {
3853 context->nx = is_nx(vcpu);
3854 context->root_level = PT32E_ROOT_LEVEL;
3855 reset_rsvds_bits_mask(vcpu, context);
3856 context->gva_to_gpa = paging64_gva_to_gpa;
3857 } else {
3858 context->nx = false;
3859 context->root_level = PT32_ROOT_LEVEL;
3860 reset_rsvds_bits_mask(vcpu, context);
3861 context->gva_to_gpa = paging32_gva_to_gpa;
3862 }
3863
3864 update_permission_bitmask(vcpu, context, false);
3865 update_last_pte_bitmap(vcpu, context);
3866 }
3867
3868 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3869 {
3870 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3871 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3872 struct kvm_mmu *context = &vcpu->arch.mmu;
3873
3874 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3875
3876 if (!is_paging(vcpu))
3877 nonpaging_init_context(vcpu, context);
3878 else if (is_long_mode(vcpu))
3879 paging64_init_context(vcpu, context);
3880 else if (is_pae(vcpu))
3881 paging32E_init_context(vcpu, context);
3882 else
3883 paging32_init_context(vcpu, context);
3884
3885 context->base_role.nxe = is_nx(vcpu);
3886 context->base_role.cr4_pae = !!is_pae(vcpu);
3887 context->base_role.cr0_wp = is_write_protection(vcpu);
3888 context->base_role.smep_andnot_wp
3889 = smep && !is_write_protection(vcpu);
3890 context->base_role.smap_andnot_wp
3891 = smap && !is_write_protection(vcpu);
3892 context->base_role.smm = is_smm(vcpu);
3893 }
3894 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3895
3896 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
3897 {
3898 struct kvm_mmu *context = &vcpu->arch.mmu;
3899
3900 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3901
3902 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3903
3904 context->nx = true;
3905 context->page_fault = ept_page_fault;
3906 context->gva_to_gpa = ept_gva_to_gpa;
3907 context->sync_page = ept_sync_page;
3908 context->invlpg = ept_invlpg;
3909 context->update_pte = ept_update_pte;
3910 context->root_level = context->shadow_root_level;
3911 context->root_hpa = INVALID_PAGE;
3912 context->direct_map = false;
3913
3914 update_permission_bitmask(vcpu, context, true);
3915 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3916 }
3917 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3918
3919 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3920 {
3921 struct kvm_mmu *context = &vcpu->arch.mmu;
3922
3923 kvm_init_shadow_mmu(vcpu);
3924 context->set_cr3 = kvm_x86_ops->set_cr3;
3925 context->get_cr3 = get_cr3;
3926 context->get_pdptr = kvm_pdptr_read;
3927 context->inject_page_fault = kvm_inject_page_fault;
3928 }
3929
3930 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3931 {
3932 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3933
3934 g_context->get_cr3 = get_cr3;
3935 g_context->get_pdptr = kvm_pdptr_read;
3936 g_context->inject_page_fault = kvm_inject_page_fault;
3937
3938 /*
3939 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3940 * translation of l2_gpa to l1_gpa addresses is done using the
3941 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3942 * functions between mmu and nested_mmu are swapped.
3943 */
3944 if (!is_paging(vcpu)) {
3945 g_context->nx = false;
3946 g_context->root_level = 0;
3947 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3948 } else if (is_long_mode(vcpu)) {
3949 g_context->nx = is_nx(vcpu);
3950 g_context->root_level = PT64_ROOT_LEVEL;
3951 reset_rsvds_bits_mask(vcpu, g_context);
3952 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3953 } else if (is_pae(vcpu)) {
3954 g_context->nx = is_nx(vcpu);
3955 g_context->root_level = PT32E_ROOT_LEVEL;
3956 reset_rsvds_bits_mask(vcpu, g_context);
3957 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3958 } else {
3959 g_context->nx = false;
3960 g_context->root_level = PT32_ROOT_LEVEL;
3961 reset_rsvds_bits_mask(vcpu, g_context);
3962 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3963 }
3964
3965 update_permission_bitmask(vcpu, g_context, false);
3966 update_last_pte_bitmap(vcpu, g_context);
3967 }
3968
3969 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3970 {
3971 if (mmu_is_nested(vcpu))
3972 init_kvm_nested_mmu(vcpu);
3973 else if (tdp_enabled)
3974 init_kvm_tdp_mmu(vcpu);
3975 else
3976 init_kvm_softmmu(vcpu);
3977 }
3978
3979 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3980 {
3981 kvm_mmu_unload(vcpu);
3982 init_kvm_mmu(vcpu);
3983 }
3984 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3985
3986 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3987 {
3988 int r;
3989
3990 r = mmu_topup_memory_caches(vcpu);
3991 if (r)
3992 goto out;
3993 r = mmu_alloc_roots(vcpu);
3994 kvm_mmu_sync_roots(vcpu);
3995 if (r)
3996 goto out;
3997 /* set_cr3() should ensure TLB has been flushed */
3998 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3999 out:
4000 return r;
4001 }
4002 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4003
4004 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4005 {
4006 mmu_free_roots(vcpu);
4007 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4008 }
4009 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4010
4011 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4012 struct kvm_mmu_page *sp, u64 *spte,
4013 const void *new)
4014 {
4015 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4016 ++vcpu->kvm->stat.mmu_pde_zapped;
4017 return;
4018 }
4019
4020 ++vcpu->kvm->stat.mmu_pte_updated;
4021 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4022 }
4023
4024 static bool need_remote_flush(u64 old, u64 new)
4025 {
4026 if (!is_shadow_present_pte(old))
4027 return false;
4028 if (!is_shadow_present_pte(new))
4029 return true;
4030 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4031 return true;
4032 old ^= shadow_nx_mask;
4033 new ^= shadow_nx_mask;
4034 return (old & ~new & PT64_PERM_MASK) != 0;
4035 }
4036
4037 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4038 bool remote_flush, bool local_flush)
4039 {
4040 if (zap_page)
4041 return;
4042
4043 if (remote_flush)
4044 kvm_flush_remote_tlbs(vcpu->kvm);
4045 else if (local_flush)
4046 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4047 }
4048
4049 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4050 const u8 *new, int *bytes)
4051 {
4052 u64 gentry;
4053 int r;
4054
4055 /*
4056 * Assume that the pte write on a page table of the same type
4057 * as the current vcpu paging mode since we update the sptes only
4058 * when they have the same mode.
4059 */
4060 if (is_pae(vcpu) && *bytes == 4) {
4061 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4062 *gpa &= ~(gpa_t)7;
4063 *bytes = 8;
4064 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4065 if (r)
4066 gentry = 0;
4067 new = (const u8 *)&gentry;
4068 }
4069
4070 switch (*bytes) {
4071 case 4:
4072 gentry = *(const u32 *)new;
4073 break;
4074 case 8:
4075 gentry = *(const u64 *)new;
4076 break;
4077 default:
4078 gentry = 0;
4079 break;
4080 }
4081
4082 return gentry;
4083 }
4084
4085 /*
4086 * If we're seeing too many writes to a page, it may no longer be a page table,
4087 * or we may be forking, in which case it is better to unmap the page.
4088 */
4089 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4090 {
4091 /*
4092 * Skip write-flooding detected for the sp whose level is 1, because
4093 * it can become unsync, then the guest page is not write-protected.
4094 */
4095 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4096 return false;
4097
4098 return ++sp->write_flooding_count >= 3;
4099 }
4100
4101 /*
4102 * Misaligned accesses are too much trouble to fix up; also, they usually
4103 * indicate a page is not used as a page table.
4104 */
4105 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4106 int bytes)
4107 {
4108 unsigned offset, pte_size, misaligned;
4109
4110 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4111 gpa, bytes, sp->role.word);
4112
4113 offset = offset_in_page(gpa);
4114 pte_size = sp->role.cr4_pae ? 8 : 4;
4115
4116 /*
4117 * Sometimes, the OS only writes the last one bytes to update status
4118 * bits, for example, in linux, andb instruction is used in clear_bit().
4119 */
4120 if (!(offset & (pte_size - 1)) && bytes == 1)
4121 return false;
4122
4123 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4124 misaligned |= bytes < 4;
4125
4126 return misaligned;
4127 }
4128
4129 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4130 {
4131 unsigned page_offset, quadrant;
4132 u64 *spte;
4133 int level;
4134
4135 page_offset = offset_in_page(gpa);
4136 level = sp->role.level;
4137 *nspte = 1;
4138 if (!sp->role.cr4_pae) {
4139 page_offset <<= 1; /* 32->64 */
4140 /*
4141 * A 32-bit pde maps 4MB while the shadow pdes map
4142 * only 2MB. So we need to double the offset again
4143 * and zap two pdes instead of one.
4144 */
4145 if (level == PT32_ROOT_LEVEL) {
4146 page_offset &= ~7; /* kill rounding error */
4147 page_offset <<= 1;
4148 *nspte = 2;
4149 }
4150 quadrant = page_offset >> PAGE_SHIFT;
4151 page_offset &= ~PAGE_MASK;
4152 if (quadrant != sp->role.quadrant)
4153 return NULL;
4154 }
4155
4156 spte = &sp->spt[page_offset / sizeof(*spte)];
4157 return spte;
4158 }
4159
4160 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4161 const u8 *new, int bytes)
4162 {
4163 gfn_t gfn = gpa >> PAGE_SHIFT;
4164 struct kvm_mmu_page *sp;
4165 LIST_HEAD(invalid_list);
4166 u64 entry, gentry, *spte;
4167 int npte;
4168 bool remote_flush, local_flush, zap_page;
4169 union kvm_mmu_page_role mask = { };
4170
4171 mask.cr0_wp = 1;
4172 mask.cr4_pae = 1;
4173 mask.nxe = 1;
4174 mask.smep_andnot_wp = 1;
4175 mask.smap_andnot_wp = 1;
4176 mask.smm = 1;
4177
4178 /*
4179 * If we don't have indirect shadow pages, it means no page is
4180 * write-protected, so we can exit simply.
4181 */
4182 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4183 return;
4184
4185 zap_page = remote_flush = local_flush = false;
4186
4187 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4188
4189 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4190
4191 /*
4192 * No need to care whether allocation memory is successful
4193 * or not since pte prefetch is skiped if it does not have
4194 * enough objects in the cache.
4195 */
4196 mmu_topup_memory_caches(vcpu);
4197
4198 spin_lock(&vcpu->kvm->mmu_lock);
4199 ++vcpu->kvm->stat.mmu_pte_write;
4200 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4201
4202 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4203 if (detect_write_misaligned(sp, gpa, bytes) ||
4204 detect_write_flooding(sp)) {
4205 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4206 &invalid_list);
4207 ++vcpu->kvm->stat.mmu_flooded;
4208 continue;
4209 }
4210
4211 spte = get_written_sptes(sp, gpa, &npte);
4212 if (!spte)
4213 continue;
4214
4215 local_flush = true;
4216 while (npte--) {
4217 entry = *spte;
4218 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4219 if (gentry &&
4220 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4221 & mask.word) && rmap_can_add(vcpu))
4222 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4223 if (need_remote_flush(entry, *spte))
4224 remote_flush = true;
4225 ++spte;
4226 }
4227 }
4228 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4229 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4230 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4231 spin_unlock(&vcpu->kvm->mmu_lock);
4232 }
4233
4234 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4235 {
4236 gpa_t gpa;
4237 int r;
4238
4239 if (vcpu->arch.mmu.direct_map)
4240 return 0;
4241
4242 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4243
4244 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4245
4246 return r;
4247 }
4248 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4249
4250 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4251 {
4252 LIST_HEAD(invalid_list);
4253
4254 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4255 return;
4256
4257 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4258 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4259 break;
4260
4261 ++vcpu->kvm->stat.mmu_recycled;
4262 }
4263 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4264 }
4265
4266 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4267 {
4268 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4269 return vcpu_match_mmio_gpa(vcpu, addr);
4270
4271 return vcpu_match_mmio_gva(vcpu, addr);
4272 }
4273
4274 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4275 void *insn, int insn_len)
4276 {
4277 int r, emulation_type = EMULTYPE_RETRY;
4278 enum emulation_result er;
4279
4280 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4281 if (r < 0)
4282 goto out;
4283
4284 if (!r) {
4285 r = 1;
4286 goto out;
4287 }
4288
4289 if (is_mmio_page_fault(vcpu, cr2))
4290 emulation_type = 0;
4291
4292 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4293
4294 switch (er) {
4295 case EMULATE_DONE:
4296 return 1;
4297 case EMULATE_USER_EXIT:
4298 ++vcpu->stat.mmio_exits;
4299 /* fall through */
4300 case EMULATE_FAIL:
4301 return 0;
4302 default:
4303 BUG();
4304 }
4305 out:
4306 return r;
4307 }
4308 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4309
4310 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4311 {
4312 vcpu->arch.mmu.invlpg(vcpu, gva);
4313 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4314 ++vcpu->stat.invlpg;
4315 }
4316 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4317
4318 void kvm_enable_tdp(void)
4319 {
4320 tdp_enabled = true;
4321 }
4322 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4323
4324 void kvm_disable_tdp(void)
4325 {
4326 tdp_enabled = false;
4327 }
4328 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4329
4330 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4331 {
4332 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4333 if (vcpu->arch.mmu.lm_root != NULL)
4334 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4335 }
4336
4337 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4338 {
4339 struct page *page;
4340 int i;
4341
4342 /*
4343 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4344 * Therefore we need to allocate shadow page tables in the first
4345 * 4GB of memory, which happens to fit the DMA32 zone.
4346 */
4347 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4348 if (!page)
4349 return -ENOMEM;
4350
4351 vcpu->arch.mmu.pae_root = page_address(page);
4352 for (i = 0; i < 4; ++i)
4353 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4354
4355 return 0;
4356 }
4357
4358 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4359 {
4360 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4361 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4362 vcpu->arch.mmu.translate_gpa = translate_gpa;
4363 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4364
4365 return alloc_mmu_pages(vcpu);
4366 }
4367
4368 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4369 {
4370 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4371
4372 init_kvm_mmu(vcpu);
4373 }
4374
4375 /* The return value indicates if tlb flush on all vcpus is needed. */
4376 typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4377
4378 /* The caller should hold mmu-lock before calling this function. */
4379 static bool
4380 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4381 slot_level_handler fn, int start_level, int end_level,
4382 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4383 {
4384 struct slot_rmap_walk_iterator iterator;
4385 bool flush = false;
4386
4387 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4388 end_gfn, &iterator) {
4389 if (iterator.rmap)
4390 flush |= fn(kvm, iterator.rmap);
4391
4392 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4393 if (flush && lock_flush_tlb) {
4394 kvm_flush_remote_tlbs(kvm);
4395 flush = false;
4396 }
4397 cond_resched_lock(&kvm->mmu_lock);
4398 }
4399 }
4400
4401 if (flush && lock_flush_tlb) {
4402 kvm_flush_remote_tlbs(kvm);
4403 flush = false;
4404 }
4405
4406 return flush;
4407 }
4408
4409 static bool
4410 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4411 slot_level_handler fn, int start_level, int end_level,
4412 bool lock_flush_tlb)
4413 {
4414 return slot_handle_level_range(kvm, memslot, fn, start_level,
4415 end_level, memslot->base_gfn,
4416 memslot->base_gfn + memslot->npages - 1,
4417 lock_flush_tlb);
4418 }
4419
4420 static bool
4421 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4422 slot_level_handler fn, bool lock_flush_tlb)
4423 {
4424 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4425 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4426 }
4427
4428 static bool
4429 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4430 slot_level_handler fn, bool lock_flush_tlb)
4431 {
4432 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4433 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4434 }
4435
4436 static bool
4437 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4438 slot_level_handler fn, bool lock_flush_tlb)
4439 {
4440 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4441 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4442 }
4443
4444 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4445 {
4446 struct kvm_memslots *slots;
4447 struct kvm_memory_slot *memslot;
4448 int i;
4449
4450 spin_lock(&kvm->mmu_lock);
4451 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4452 slots = __kvm_memslots(kvm, i);
4453 kvm_for_each_memslot(memslot, slots) {
4454 gfn_t start, end;
4455
4456 start = max(gfn_start, memslot->base_gfn);
4457 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4458 if (start >= end)
4459 continue;
4460
4461 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4462 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4463 start, end - 1, true);
4464 }
4465 }
4466
4467 spin_unlock(&kvm->mmu_lock);
4468 }
4469
4470 static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4471 {
4472 return __rmap_write_protect(kvm, rmapp, false);
4473 }
4474
4475 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4476 struct kvm_memory_slot *memslot)
4477 {
4478 bool flush;
4479
4480 spin_lock(&kvm->mmu_lock);
4481 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4482 false);
4483 spin_unlock(&kvm->mmu_lock);
4484
4485 /*
4486 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4487 * which do tlb flush out of mmu-lock should be serialized by
4488 * kvm->slots_lock otherwise tlb flush would be missed.
4489 */
4490 lockdep_assert_held(&kvm->slots_lock);
4491
4492 /*
4493 * We can flush all the TLBs out of the mmu lock without TLB
4494 * corruption since we just change the spte from writable to
4495 * readonly so that we only need to care the case of changing
4496 * spte from present to present (changing the spte from present
4497 * to nonpresent will flush all the TLBs immediately), in other
4498 * words, the only case we care is mmu_spte_update() where we
4499 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4500 * instead of PT_WRITABLE_MASK, that means it does not depend
4501 * on PT_WRITABLE_MASK anymore.
4502 */
4503 if (flush)
4504 kvm_flush_remote_tlbs(kvm);
4505 }
4506
4507 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4508 unsigned long *rmapp)
4509 {
4510 u64 *sptep;
4511 struct rmap_iterator iter;
4512 int need_tlb_flush = 0;
4513 pfn_t pfn;
4514 struct kvm_mmu_page *sp;
4515
4516 restart:
4517 for_each_rmap_spte(rmapp, &iter, sptep) {
4518 sp = page_header(__pa(sptep));
4519 pfn = spte_to_pfn(*sptep);
4520
4521 /*
4522 * We cannot do huge page mapping for indirect shadow pages,
4523 * which are found on the last rmap (level = 1) when not using
4524 * tdp; such shadow pages are synced with the page table in
4525 * the guest, and the guest page table is using 4K page size
4526 * mapping if the indirect sp has level = 1.
4527 */
4528 if (sp->role.direct &&
4529 !kvm_is_reserved_pfn(pfn) &&
4530 PageTransCompound(pfn_to_page(pfn))) {
4531 drop_spte(kvm, sptep);
4532 need_tlb_flush = 1;
4533 goto restart;
4534 }
4535 }
4536
4537 return need_tlb_flush;
4538 }
4539
4540 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4541 const struct kvm_memory_slot *memslot)
4542 {
4543 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
4544 spin_lock(&kvm->mmu_lock);
4545 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4546 kvm_mmu_zap_collapsible_spte, true);
4547 spin_unlock(&kvm->mmu_lock);
4548 }
4549
4550 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4551 struct kvm_memory_slot *memslot)
4552 {
4553 bool flush;
4554
4555 spin_lock(&kvm->mmu_lock);
4556 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4557 spin_unlock(&kvm->mmu_lock);
4558
4559 lockdep_assert_held(&kvm->slots_lock);
4560
4561 /*
4562 * It's also safe to flush TLBs out of mmu lock here as currently this
4563 * function is only used for dirty logging, in which case flushing TLB
4564 * out of mmu lock also guarantees no dirty pages will be lost in
4565 * dirty_bitmap.
4566 */
4567 if (flush)
4568 kvm_flush_remote_tlbs(kvm);
4569 }
4570 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4571
4572 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4573 struct kvm_memory_slot *memslot)
4574 {
4575 bool flush;
4576
4577 spin_lock(&kvm->mmu_lock);
4578 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4579 false);
4580 spin_unlock(&kvm->mmu_lock);
4581
4582 /* see kvm_mmu_slot_remove_write_access */
4583 lockdep_assert_held(&kvm->slots_lock);
4584
4585 if (flush)
4586 kvm_flush_remote_tlbs(kvm);
4587 }
4588 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4589
4590 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4591 struct kvm_memory_slot *memslot)
4592 {
4593 bool flush;
4594
4595 spin_lock(&kvm->mmu_lock);
4596 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4597 spin_unlock(&kvm->mmu_lock);
4598
4599 lockdep_assert_held(&kvm->slots_lock);
4600
4601 /* see kvm_mmu_slot_leaf_clear_dirty */
4602 if (flush)
4603 kvm_flush_remote_tlbs(kvm);
4604 }
4605 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4606
4607 #define BATCH_ZAP_PAGES 10
4608 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4609 {
4610 struct kvm_mmu_page *sp, *node;
4611 int batch = 0;
4612
4613 restart:
4614 list_for_each_entry_safe_reverse(sp, node,
4615 &kvm->arch.active_mmu_pages, link) {
4616 int ret;
4617
4618 /*
4619 * No obsolete page exists before new created page since
4620 * active_mmu_pages is the FIFO list.
4621 */
4622 if (!is_obsolete_sp(kvm, sp))
4623 break;
4624
4625 /*
4626 * Since we are reversely walking the list and the invalid
4627 * list will be moved to the head, skip the invalid page
4628 * can help us to avoid the infinity list walking.
4629 */
4630 if (sp->role.invalid)
4631 continue;
4632
4633 /*
4634 * Need not flush tlb since we only zap the sp with invalid
4635 * generation number.
4636 */
4637 if (batch >= BATCH_ZAP_PAGES &&
4638 cond_resched_lock(&kvm->mmu_lock)) {
4639 batch = 0;
4640 goto restart;
4641 }
4642
4643 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4644 &kvm->arch.zapped_obsolete_pages);
4645 batch += ret;
4646
4647 if (ret)
4648 goto restart;
4649 }
4650
4651 /*
4652 * Should flush tlb before free page tables since lockless-walking
4653 * may use the pages.
4654 */
4655 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4656 }
4657
4658 /*
4659 * Fast invalidate all shadow pages and use lock-break technique
4660 * to zap obsolete pages.
4661 *
4662 * It's required when memslot is being deleted or VM is being
4663 * destroyed, in these cases, we should ensure that KVM MMU does
4664 * not use any resource of the being-deleted slot or all slots
4665 * after calling the function.
4666 */
4667 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4668 {
4669 spin_lock(&kvm->mmu_lock);
4670 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4671 kvm->arch.mmu_valid_gen++;
4672
4673 /*
4674 * Notify all vcpus to reload its shadow page table
4675 * and flush TLB. Then all vcpus will switch to new
4676 * shadow page table with the new mmu_valid_gen.
4677 *
4678 * Note: we should do this under the protection of
4679 * mmu-lock, otherwise, vcpu would purge shadow page
4680 * but miss tlb flush.
4681 */
4682 kvm_reload_remote_mmus(kvm);
4683
4684 kvm_zap_obsolete_pages(kvm);
4685 spin_unlock(&kvm->mmu_lock);
4686 }
4687
4688 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4689 {
4690 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4691 }
4692
4693 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4694 {
4695 /*
4696 * The very rare case: if the generation-number is round,
4697 * zap all shadow pages.
4698 */
4699 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4700 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4701 kvm_mmu_invalidate_zap_all_pages(kvm);
4702 }
4703 }
4704
4705 static unsigned long
4706 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4707 {
4708 struct kvm *kvm;
4709 int nr_to_scan = sc->nr_to_scan;
4710 unsigned long freed = 0;
4711
4712 spin_lock(&kvm_lock);
4713
4714 list_for_each_entry(kvm, &vm_list, vm_list) {
4715 int idx;
4716 LIST_HEAD(invalid_list);
4717
4718 /*
4719 * Never scan more than sc->nr_to_scan VM instances.
4720 * Will not hit this condition practically since we do not try
4721 * to shrink more than one VM and it is very unlikely to see
4722 * !n_used_mmu_pages so many times.
4723 */
4724 if (!nr_to_scan--)
4725 break;
4726 /*
4727 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4728 * here. We may skip a VM instance errorneosly, but we do not
4729 * want to shrink a VM that only started to populate its MMU
4730 * anyway.
4731 */
4732 if (!kvm->arch.n_used_mmu_pages &&
4733 !kvm_has_zapped_obsolete_pages(kvm))
4734 continue;
4735
4736 idx = srcu_read_lock(&kvm->srcu);
4737 spin_lock(&kvm->mmu_lock);
4738
4739 if (kvm_has_zapped_obsolete_pages(kvm)) {
4740 kvm_mmu_commit_zap_page(kvm,
4741 &kvm->arch.zapped_obsolete_pages);
4742 goto unlock;
4743 }
4744
4745 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4746 freed++;
4747 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4748
4749 unlock:
4750 spin_unlock(&kvm->mmu_lock);
4751 srcu_read_unlock(&kvm->srcu, idx);
4752
4753 /*
4754 * unfair on small ones
4755 * per-vm shrinkers cry out
4756 * sadness comes quickly
4757 */
4758 list_move_tail(&kvm->vm_list, &vm_list);
4759 break;
4760 }
4761
4762 spin_unlock(&kvm_lock);
4763 return freed;
4764 }
4765
4766 static unsigned long
4767 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4768 {
4769 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4770 }
4771
4772 static struct shrinker mmu_shrinker = {
4773 .count_objects = mmu_shrink_count,
4774 .scan_objects = mmu_shrink_scan,
4775 .seeks = DEFAULT_SEEKS * 10,
4776 };
4777
4778 static void mmu_destroy_caches(void)
4779 {
4780 if (pte_list_desc_cache)
4781 kmem_cache_destroy(pte_list_desc_cache);
4782 if (mmu_page_header_cache)
4783 kmem_cache_destroy(mmu_page_header_cache);
4784 }
4785
4786 int kvm_mmu_module_init(void)
4787 {
4788 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4789 sizeof(struct pte_list_desc),
4790 0, 0, NULL);
4791 if (!pte_list_desc_cache)
4792 goto nomem;
4793
4794 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4795 sizeof(struct kvm_mmu_page),
4796 0, 0, NULL);
4797 if (!mmu_page_header_cache)
4798 goto nomem;
4799
4800 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4801 goto nomem;
4802
4803 register_shrinker(&mmu_shrinker);
4804
4805 return 0;
4806
4807 nomem:
4808 mmu_destroy_caches();
4809 return -ENOMEM;
4810 }
4811
4812 /*
4813 * Caculate mmu pages needed for kvm.
4814 */
4815 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4816 {
4817 unsigned int nr_mmu_pages;
4818 unsigned int nr_pages = 0;
4819 struct kvm_memslots *slots;
4820 struct kvm_memory_slot *memslot;
4821 int i;
4822
4823 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4824 slots = __kvm_memslots(kvm, i);
4825
4826 kvm_for_each_memslot(memslot, slots)
4827 nr_pages += memslot->npages;
4828 }
4829
4830 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4831 nr_mmu_pages = max(nr_mmu_pages,
4832 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4833
4834 return nr_mmu_pages;
4835 }
4836
4837 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4838 {
4839 struct kvm_shadow_walk_iterator iterator;
4840 u64 spte;
4841 int nr_sptes = 0;
4842
4843 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4844 return nr_sptes;
4845
4846 walk_shadow_page_lockless_begin(vcpu);
4847 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4848 sptes[iterator.level-1] = spte;
4849 nr_sptes++;
4850 if (!is_shadow_present_pte(spte))
4851 break;
4852 }
4853 walk_shadow_page_lockless_end(vcpu);
4854
4855 return nr_sptes;
4856 }
4857 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4858
4859 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4860 {
4861 kvm_mmu_unload(vcpu);
4862 free_mmu_pages(vcpu);
4863 mmu_free_memory_caches(vcpu);
4864 }
4865
4866 void kvm_mmu_module_exit(void)
4867 {
4868 mmu_destroy_caches();
4869 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4870 unregister_shrinker(&mmu_shrinker);
4871 mmu_audit_disable();
4872 }
This page took 0.282745 seconds and 5 git commands to generate.