96515957ba824c0bcecaa3756679258102ae7366
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52 bool tdp_enabled = false;
53
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66
67 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
69
70 #else
71
72 #define pgprintk(x...) do { } while (0)
73 #define rmap_printk(x...) do { } while (0)
74
75 #endif
76
77 #ifdef MMU_DEBUG
78 static bool dbg = 0;
79 module_param(dbg, bool, 0644);
80 #endif
81
82 #ifndef MMU_DEBUG
83 #define ASSERT(x) do { } while (0)
84 #else
85 #define ASSERT(x) \
86 if (!(x)) { \
87 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
88 __FILE__, __LINE__, #x); \
89 }
90 #endif
91
92 #define PTE_PREFETCH_NUM 8
93
94 #define PT_FIRST_AVAIL_BITS_SHIFT 10
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
97 #define PT64_LEVEL_BITS 9
98
99 #define PT64_LEVEL_SHIFT(level) \
100 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101
102 #define PT64_INDEX(address, level)\
103 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104
105
106 #define PT32_LEVEL_BITS 10
107
108 #define PT32_LEVEL_SHIFT(level) \
109 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110
111 #define PT32_LVL_OFFSET_MASK(level) \
112 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT32_LEVEL_BITS))) - 1))
114
115 #define PT32_INDEX(address, level)\
116 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
117
118
119 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
120 #define PT64_DIR_BASE_ADDR_MASK \
121 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 #define PT64_LVL_ADDR_MASK(level) \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT64_LEVEL_BITS))) - 1))
125 #define PT64_LVL_OFFSET_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
135
136 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137 | shadow_x_mask | shadow_nx_mask)
138
139 #define ACC_EXEC_MASK 1
140 #define ACC_WRITE_MASK PT_WRITABLE_MASK
141 #define ACC_USER_MASK PT_USER_MASK
142 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143
144 #include <trace/events/kvm.h>
145
146 #define CREATE_TRACE_POINTS
147 #include "mmutrace.h"
148
149 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
154 /* make pte_list_desc fit well in cache line */
155 #define PTE_LIST_EXT 3
156
157 struct pte_list_desc {
158 u64 *sptes[PTE_LIST_EXT];
159 struct pte_list_desc *more;
160 };
161
162 struct kvm_shadow_walk_iterator {
163 u64 addr;
164 hpa_t shadow_addr;
165 u64 *sptep;
166 int level;
167 unsigned index;
168 };
169
170 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)); \
173 shadow_walk_next(&(_walker)))
174
175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
177 shadow_walk_okay(&(_walker)) && \
178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
179 __shadow_walk_next(&(_walker), spte))
180
181 static struct kmem_cache *pte_list_desc_cache;
182 static struct kmem_cache *mmu_page_header_cache;
183 static struct percpu_counter kvm_total_used_mmu_pages;
184
185 static u64 __read_mostly shadow_nx_mask;
186 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187 static u64 __read_mostly shadow_user_mask;
188 static u64 __read_mostly shadow_accessed_mask;
189 static u64 __read_mostly shadow_dirty_mask;
190 static u64 __read_mostly shadow_mmio_mask;
191
192 static void mmu_spte_set(u64 *sptep, u64 spte);
193 static void mmu_free_roots(struct kvm_vcpu *vcpu);
194
195 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
196 {
197 shadow_mmio_mask = mmio_mask;
198 }
199 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
200
201 /*
202 * the low bit of the generation number is always presumed to be zero.
203 * This disables mmio caching during memslot updates. The concept is
204 * similar to a seqcount but instead of retrying the access we just punt
205 * and ignore the cache.
206 *
207 * spte bits 3-11 are used as bits 1-9 of the generation number,
208 * the bits 52-61 are used as bits 10-19 of the generation number.
209 */
210 #define MMIO_SPTE_GEN_LOW_SHIFT 2
211 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
212
213 #define MMIO_GEN_SHIFT 20
214 #define MMIO_GEN_LOW_SHIFT 10
215 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
216 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
217 #define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
218
219 static u64 generation_mmio_spte_mask(unsigned int gen)
220 {
221 u64 mask;
222
223 WARN_ON(gen > MMIO_MAX_GEN);
224
225 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
226 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
227 return mask;
228 }
229
230 static unsigned int get_mmio_spte_generation(u64 spte)
231 {
232 unsigned int gen;
233
234 spte &= ~shadow_mmio_mask;
235
236 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
237 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
238 return gen;
239 }
240
241 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
242 {
243 return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
244 }
245
246 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247 unsigned access)
248 {
249 unsigned int gen = kvm_current_mmio_generation(kvm);
250 u64 mask = generation_mmio_spte_mask(gen);
251
252 access &= ACC_WRITE_MASK | ACC_USER_MASK;
253 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
254
255 trace_mark_mmio_spte(sptep, gfn, access, gen);
256 mmu_spte_set(sptep, mask);
257 }
258
259 static bool is_mmio_spte(u64 spte)
260 {
261 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262 }
263
264 static gfn_t get_mmio_spte_gfn(u64 spte)
265 {
266 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267 return (spte & ~mask) >> PAGE_SHIFT;
268 }
269
270 static unsigned get_mmio_spte_access(u64 spte)
271 {
272 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273 return (spte & ~mask) & ~PAGE_MASK;
274 }
275
276 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277 pfn_t pfn, unsigned access)
278 {
279 if (unlikely(is_noslot_pfn(pfn))) {
280 mark_mmio_spte(kvm, sptep, gfn, access);
281 return true;
282 }
283
284 return false;
285 }
286
287 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288 {
289 unsigned int kvm_gen, spte_gen;
290
291 kvm_gen = kvm_current_mmio_generation(kvm);
292 spte_gen = get_mmio_spte_generation(spte);
293
294 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295 return likely(kvm_gen == spte_gen);
296 }
297
298 static inline u64 rsvd_bits(int s, int e)
299 {
300 return ((1ULL << (e - s + 1)) - 1) << s;
301 }
302
303 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
304 u64 dirty_mask, u64 nx_mask, u64 x_mask)
305 {
306 shadow_user_mask = user_mask;
307 shadow_accessed_mask = accessed_mask;
308 shadow_dirty_mask = dirty_mask;
309 shadow_nx_mask = nx_mask;
310 shadow_x_mask = x_mask;
311 }
312 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
313
314 static int is_cpuid_PSE36(void)
315 {
316 return 1;
317 }
318
319 static int is_nx(struct kvm_vcpu *vcpu)
320 {
321 return vcpu->arch.efer & EFER_NX;
322 }
323
324 static int is_shadow_present_pte(u64 pte)
325 {
326 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
327 }
328
329 static int is_large_pte(u64 pte)
330 {
331 return pte & PT_PAGE_SIZE_MASK;
332 }
333
334 static int is_rmap_spte(u64 pte)
335 {
336 return is_shadow_present_pte(pte);
337 }
338
339 static int is_last_spte(u64 pte, int level)
340 {
341 if (level == PT_PAGE_TABLE_LEVEL)
342 return 1;
343 if (is_large_pte(pte))
344 return 1;
345 return 0;
346 }
347
348 static pfn_t spte_to_pfn(u64 pte)
349 {
350 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
351 }
352
353 static gfn_t pse36_gfn_delta(u32 gpte)
354 {
355 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
356
357 return (gpte & PT32_DIR_PSE36_MASK) << shift;
358 }
359
360 #ifdef CONFIG_X86_64
361 static void __set_spte(u64 *sptep, u64 spte)
362 {
363 *sptep = spte;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368 *sptep = spte;
369 }
370
371 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
372 {
373 return xchg(sptep, spte);
374 }
375
376 static u64 __get_spte_lockless(u64 *sptep)
377 {
378 return ACCESS_ONCE(*sptep);
379 }
380
381 static bool __check_direct_spte_mmio_pf(u64 spte)
382 {
383 /* It is valid if the spte is zapped. */
384 return spte == 0ull;
385 }
386 #else
387 union split_spte {
388 struct {
389 u32 spte_low;
390 u32 spte_high;
391 };
392 u64 spte;
393 };
394
395 static void count_spte_clear(u64 *sptep, u64 spte)
396 {
397 struct kvm_mmu_page *sp = page_header(__pa(sptep));
398
399 if (is_shadow_present_pte(spte))
400 return;
401
402 /* Ensure the spte is completely set before we increase the count */
403 smp_wmb();
404 sp->clear_spte_count++;
405 }
406
407 static void __set_spte(u64 *sptep, u64 spte)
408 {
409 union split_spte *ssptep, sspte;
410
411 ssptep = (union split_spte *)sptep;
412 sspte = (union split_spte)spte;
413
414 ssptep->spte_high = sspte.spte_high;
415
416 /*
417 * If we map the spte from nonpresent to present, We should store
418 * the high bits firstly, then set present bit, so cpu can not
419 * fetch this spte while we are setting the spte.
420 */
421 smp_wmb();
422
423 ssptep->spte_low = sspte.spte_low;
424 }
425
426 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
427 {
428 union split_spte *ssptep, sspte;
429
430 ssptep = (union split_spte *)sptep;
431 sspte = (union split_spte)spte;
432
433 ssptep->spte_low = sspte.spte_low;
434
435 /*
436 * If we map the spte from present to nonpresent, we should clear
437 * present bit firstly to avoid vcpu fetch the old high bits.
438 */
439 smp_wmb();
440
441 ssptep->spte_high = sspte.spte_high;
442 count_spte_clear(sptep, spte);
443 }
444
445 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
446 {
447 union split_spte *ssptep, sspte, orig;
448
449 ssptep = (union split_spte *)sptep;
450 sspte = (union split_spte)spte;
451
452 /* xchg acts as a barrier before the setting of the high bits */
453 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
454 orig.spte_high = ssptep->spte_high;
455 ssptep->spte_high = sspte.spte_high;
456 count_spte_clear(sptep, spte);
457
458 return orig.spte;
459 }
460
461 /*
462 * The idea using the light way get the spte on x86_32 guest is from
463 * gup_get_pte(arch/x86/mm/gup.c).
464 *
465 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
466 * coalesces them and we are running out of the MMU lock. Therefore
467 * we need to protect against in-progress updates of the spte.
468 *
469 * Reading the spte while an update is in progress may get the old value
470 * for the high part of the spte. The race is fine for a present->non-present
471 * change (because the high part of the spte is ignored for non-present spte),
472 * but for a present->present change we must reread the spte.
473 *
474 * All such changes are done in two steps (present->non-present and
475 * non-present->present), hence it is enough to count the number of
476 * present->non-present updates: if it changed while reading the spte,
477 * we might have hit the race. This is done using clear_spte_count.
478 */
479 static u64 __get_spte_lockless(u64 *sptep)
480 {
481 struct kvm_mmu_page *sp = page_header(__pa(sptep));
482 union split_spte spte, *orig = (union split_spte *)sptep;
483 int count;
484
485 retry:
486 count = sp->clear_spte_count;
487 smp_rmb();
488
489 spte.spte_low = orig->spte_low;
490 smp_rmb();
491
492 spte.spte_high = orig->spte_high;
493 smp_rmb();
494
495 if (unlikely(spte.spte_low != orig->spte_low ||
496 count != sp->clear_spte_count))
497 goto retry;
498
499 return spte.spte;
500 }
501
502 static bool __check_direct_spte_mmio_pf(u64 spte)
503 {
504 union split_spte sspte = (union split_spte)spte;
505 u32 high_mmio_mask = shadow_mmio_mask >> 32;
506
507 /* It is valid if the spte is zapped. */
508 if (spte == 0ull)
509 return true;
510
511 /* It is valid if the spte is being zapped. */
512 if (sspte.spte_low == 0ull &&
513 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
514 return true;
515
516 return false;
517 }
518 #endif
519
520 static bool spte_is_locklessly_modifiable(u64 spte)
521 {
522 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
523 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
524 }
525
526 static bool spte_has_volatile_bits(u64 spte)
527 {
528 /*
529 * Always atomicly update spte if it can be updated
530 * out of mmu-lock, it can ensure dirty bit is not lost,
531 * also, it can help us to get a stable is_writable_pte()
532 * to ensure tlb flush is not missed.
533 */
534 if (spte_is_locklessly_modifiable(spte))
535 return true;
536
537 if (!shadow_accessed_mask)
538 return false;
539
540 if (!is_shadow_present_pte(spte))
541 return false;
542
543 if ((spte & shadow_accessed_mask) &&
544 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
545 return false;
546
547 return true;
548 }
549
550 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
551 {
552 return (old_spte & bit_mask) && !(new_spte & bit_mask);
553 }
554
555 /* Rules for using mmu_spte_set:
556 * Set the sptep from nonpresent to present.
557 * Note: the sptep being assigned *must* be either not present
558 * or in a state where the hardware will not attempt to update
559 * the spte.
560 */
561 static void mmu_spte_set(u64 *sptep, u64 new_spte)
562 {
563 WARN_ON(is_shadow_present_pte(*sptep));
564 __set_spte(sptep, new_spte);
565 }
566
567 /* Rules for using mmu_spte_update:
568 * Update the state bits, it means the mapped pfn is not changged.
569 *
570 * Whenever we overwrite a writable spte with a read-only one we
571 * should flush remote TLBs. Otherwise rmap_write_protect
572 * will find a read-only spte, even though the writable spte
573 * might be cached on a CPU's TLB, the return value indicates this
574 * case.
575 */
576 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
577 {
578 u64 old_spte = *sptep;
579 bool ret = false;
580
581 WARN_ON(!is_rmap_spte(new_spte));
582
583 if (!is_shadow_present_pte(old_spte)) {
584 mmu_spte_set(sptep, new_spte);
585 return ret;
586 }
587
588 if (!spte_has_volatile_bits(old_spte))
589 __update_clear_spte_fast(sptep, new_spte);
590 else
591 old_spte = __update_clear_spte_slow(sptep, new_spte);
592
593 /*
594 * For the spte updated out of mmu-lock is safe, since
595 * we always atomicly update it, see the comments in
596 * spte_has_volatile_bits().
597 */
598 if (spte_is_locklessly_modifiable(old_spte) &&
599 !is_writable_pte(new_spte))
600 ret = true;
601
602 if (!shadow_accessed_mask)
603 return ret;
604
605 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
606 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
607 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
608 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
609
610 return ret;
611 }
612
613 /*
614 * Rules for using mmu_spte_clear_track_bits:
615 * It sets the sptep from present to nonpresent, and track the
616 * state bits, it is used to clear the last level sptep.
617 */
618 static int mmu_spte_clear_track_bits(u64 *sptep)
619 {
620 pfn_t pfn;
621 u64 old_spte = *sptep;
622
623 if (!spte_has_volatile_bits(old_spte))
624 __update_clear_spte_fast(sptep, 0ull);
625 else
626 old_spte = __update_clear_spte_slow(sptep, 0ull);
627
628 if (!is_rmap_spte(old_spte))
629 return 0;
630
631 pfn = spte_to_pfn(old_spte);
632
633 /*
634 * KVM does not hold the refcount of the page used by
635 * kvm mmu, before reclaiming the page, we should
636 * unmap it from mmu first.
637 */
638 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
639
640 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
641 kvm_set_pfn_accessed(pfn);
642 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
643 kvm_set_pfn_dirty(pfn);
644 return 1;
645 }
646
647 /*
648 * Rules for using mmu_spte_clear_no_track:
649 * Directly clear spte without caring the state bits of sptep,
650 * it is used to set the upper level spte.
651 */
652 static void mmu_spte_clear_no_track(u64 *sptep)
653 {
654 __update_clear_spte_fast(sptep, 0ull);
655 }
656
657 static u64 mmu_spte_get_lockless(u64 *sptep)
658 {
659 return __get_spte_lockless(sptep);
660 }
661
662 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
663 {
664 /*
665 * Prevent page table teardown by making any free-er wait during
666 * kvm_flush_remote_tlbs() IPI to all active vcpus.
667 */
668 local_irq_disable();
669 vcpu->mode = READING_SHADOW_PAGE_TABLES;
670 /*
671 * Make sure a following spte read is not reordered ahead of the write
672 * to vcpu->mode.
673 */
674 smp_mb();
675 }
676
677 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
678 {
679 /*
680 * Make sure the write to vcpu->mode is not reordered in front of
681 * reads to sptes. If it does, kvm_commit_zap_page() can see us
682 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
683 */
684 smp_mb();
685 vcpu->mode = OUTSIDE_GUEST_MODE;
686 local_irq_enable();
687 }
688
689 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
690 struct kmem_cache *base_cache, int min)
691 {
692 void *obj;
693
694 if (cache->nobjs >= min)
695 return 0;
696 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
697 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
698 if (!obj)
699 return -ENOMEM;
700 cache->objects[cache->nobjs++] = obj;
701 }
702 return 0;
703 }
704
705 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
706 {
707 return cache->nobjs;
708 }
709
710 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
711 struct kmem_cache *cache)
712 {
713 while (mc->nobjs)
714 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
715 }
716
717 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
718 int min)
719 {
720 void *page;
721
722 if (cache->nobjs >= min)
723 return 0;
724 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
725 page = (void *)__get_free_page(GFP_KERNEL);
726 if (!page)
727 return -ENOMEM;
728 cache->objects[cache->nobjs++] = page;
729 }
730 return 0;
731 }
732
733 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
734 {
735 while (mc->nobjs)
736 free_page((unsigned long)mc->objects[--mc->nobjs]);
737 }
738
739 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
740 {
741 int r;
742
743 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
744 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
745 if (r)
746 goto out;
747 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
748 if (r)
749 goto out;
750 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
751 mmu_page_header_cache, 4);
752 out:
753 return r;
754 }
755
756 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
757 {
758 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
759 pte_list_desc_cache);
760 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
761 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
762 mmu_page_header_cache);
763 }
764
765 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
766 {
767 void *p;
768
769 BUG_ON(!mc->nobjs);
770 p = mc->objects[--mc->nobjs];
771 return p;
772 }
773
774 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
775 {
776 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
777 }
778
779 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
780 {
781 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
782 }
783
784 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
785 {
786 if (!sp->role.direct)
787 return sp->gfns[index];
788
789 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
790 }
791
792 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
793 {
794 if (sp->role.direct)
795 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
796 else
797 sp->gfns[index] = gfn;
798 }
799
800 /*
801 * Return the pointer to the large page information for a given gfn,
802 * handling slots that are not large page aligned.
803 */
804 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
805 struct kvm_memory_slot *slot,
806 int level)
807 {
808 unsigned long idx;
809
810 idx = gfn_to_index(gfn, slot->base_gfn, level);
811 return &slot->arch.lpage_info[level - 2][idx];
812 }
813
814 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
815 {
816 struct kvm_memory_slot *slot;
817 struct kvm_lpage_info *linfo;
818 int i;
819
820 slot = gfn_to_memslot(kvm, gfn);
821 for (i = PT_DIRECTORY_LEVEL;
822 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
823 linfo = lpage_info_slot(gfn, slot, i);
824 linfo->write_count += 1;
825 }
826 kvm->arch.indirect_shadow_pages++;
827 }
828
829 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
830 {
831 struct kvm_memory_slot *slot;
832 struct kvm_lpage_info *linfo;
833 int i;
834
835 slot = gfn_to_memslot(kvm, gfn);
836 for (i = PT_DIRECTORY_LEVEL;
837 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
838 linfo = lpage_info_slot(gfn, slot, i);
839 linfo->write_count -= 1;
840 WARN_ON(linfo->write_count < 0);
841 }
842 kvm->arch.indirect_shadow_pages--;
843 }
844
845 static int has_wrprotected_page(struct kvm *kvm,
846 gfn_t gfn,
847 int level)
848 {
849 struct kvm_memory_slot *slot;
850 struct kvm_lpage_info *linfo;
851
852 slot = gfn_to_memslot(kvm, gfn);
853 if (slot) {
854 linfo = lpage_info_slot(gfn, slot, level);
855 return linfo->write_count;
856 }
857
858 return 1;
859 }
860
861 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
862 {
863 unsigned long page_size;
864 int i, ret = 0;
865
866 page_size = kvm_host_page_size(kvm, gfn);
867
868 for (i = PT_PAGE_TABLE_LEVEL;
869 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
870 if (page_size >= KVM_HPAGE_SIZE(i))
871 ret = i;
872 else
873 break;
874 }
875
876 return ret;
877 }
878
879 static struct kvm_memory_slot *
880 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
881 bool no_dirty_log)
882 {
883 struct kvm_memory_slot *slot;
884
885 slot = gfn_to_memslot(vcpu->kvm, gfn);
886 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
887 (no_dirty_log && slot->dirty_bitmap))
888 slot = NULL;
889
890 return slot;
891 }
892
893 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
894 {
895 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
896 }
897
898 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
899 {
900 int host_level, level, max_level;
901
902 host_level = host_mapping_level(vcpu->kvm, large_gfn);
903
904 if (host_level == PT_PAGE_TABLE_LEVEL)
905 return host_level;
906
907 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
908
909 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
910 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
911 break;
912
913 return level - 1;
914 }
915
916 /*
917 * Pte mapping structures:
918 *
919 * If pte_list bit zero is zero, then pte_list point to the spte.
920 *
921 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
922 * pte_list_desc containing more mappings.
923 *
924 * Returns the number of pte entries before the spte was added or zero if
925 * the spte was not added.
926 *
927 */
928 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
929 unsigned long *pte_list)
930 {
931 struct pte_list_desc *desc;
932 int i, count = 0;
933
934 if (!*pte_list) {
935 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
936 *pte_list = (unsigned long)spte;
937 } else if (!(*pte_list & 1)) {
938 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
939 desc = mmu_alloc_pte_list_desc(vcpu);
940 desc->sptes[0] = (u64 *)*pte_list;
941 desc->sptes[1] = spte;
942 *pte_list = (unsigned long)desc | 1;
943 ++count;
944 } else {
945 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
946 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
947 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
948 desc = desc->more;
949 count += PTE_LIST_EXT;
950 }
951 if (desc->sptes[PTE_LIST_EXT-1]) {
952 desc->more = mmu_alloc_pte_list_desc(vcpu);
953 desc = desc->more;
954 }
955 for (i = 0; desc->sptes[i]; ++i)
956 ++count;
957 desc->sptes[i] = spte;
958 }
959 return count;
960 }
961
962 static void
963 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
964 int i, struct pte_list_desc *prev_desc)
965 {
966 int j;
967
968 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
969 ;
970 desc->sptes[i] = desc->sptes[j];
971 desc->sptes[j] = NULL;
972 if (j != 0)
973 return;
974 if (!prev_desc && !desc->more)
975 *pte_list = (unsigned long)desc->sptes[0];
976 else
977 if (prev_desc)
978 prev_desc->more = desc->more;
979 else
980 *pte_list = (unsigned long)desc->more | 1;
981 mmu_free_pte_list_desc(desc);
982 }
983
984 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
985 {
986 struct pte_list_desc *desc;
987 struct pte_list_desc *prev_desc;
988 int i;
989
990 if (!*pte_list) {
991 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
992 BUG();
993 } else if (!(*pte_list & 1)) {
994 rmap_printk("pte_list_remove: %p 1->0\n", spte);
995 if ((u64 *)*pte_list != spte) {
996 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
997 BUG();
998 }
999 *pte_list = 0;
1000 } else {
1001 rmap_printk("pte_list_remove: %p many->many\n", spte);
1002 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1003 prev_desc = NULL;
1004 while (desc) {
1005 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1006 if (desc->sptes[i] == spte) {
1007 pte_list_desc_remove_entry(pte_list,
1008 desc, i,
1009 prev_desc);
1010 return;
1011 }
1012 prev_desc = desc;
1013 desc = desc->more;
1014 }
1015 pr_err("pte_list_remove: %p many->many\n", spte);
1016 BUG();
1017 }
1018 }
1019
1020 typedef void (*pte_list_walk_fn) (u64 *spte);
1021 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1022 {
1023 struct pte_list_desc *desc;
1024 int i;
1025
1026 if (!*pte_list)
1027 return;
1028
1029 if (!(*pte_list & 1))
1030 return fn((u64 *)*pte_list);
1031
1032 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1033 while (desc) {
1034 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1035 fn(desc->sptes[i]);
1036 desc = desc->more;
1037 }
1038 }
1039
1040 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1041 struct kvm_memory_slot *slot)
1042 {
1043 unsigned long idx;
1044
1045 idx = gfn_to_index(gfn, slot->base_gfn, level);
1046 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1047 }
1048
1049 /*
1050 * Take gfn and return the reverse mapping to it.
1051 */
1052 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1053 {
1054 struct kvm_memory_slot *slot;
1055
1056 slot = gfn_to_memslot(kvm, gfn);
1057 return __gfn_to_rmap(gfn, level, slot);
1058 }
1059
1060 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1061 {
1062 struct kvm_mmu_memory_cache *cache;
1063
1064 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1065 return mmu_memory_cache_free_objects(cache);
1066 }
1067
1068 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1069 {
1070 struct kvm_mmu_page *sp;
1071 unsigned long *rmapp;
1072
1073 sp = page_header(__pa(spte));
1074 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1075 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1076 return pte_list_add(vcpu, spte, rmapp);
1077 }
1078
1079 static void rmap_remove(struct kvm *kvm, u64 *spte)
1080 {
1081 struct kvm_mmu_page *sp;
1082 gfn_t gfn;
1083 unsigned long *rmapp;
1084
1085 sp = page_header(__pa(spte));
1086 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1087 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1088 pte_list_remove(spte, rmapp);
1089 }
1090
1091 /*
1092 * Used by the following functions to iterate through the sptes linked by a
1093 * rmap. All fields are private and not assumed to be used outside.
1094 */
1095 struct rmap_iterator {
1096 /* private fields */
1097 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1098 int pos; /* index of the sptep */
1099 };
1100
1101 /*
1102 * Iteration must be started by this function. This should also be used after
1103 * removing/dropping sptes from the rmap link because in such cases the
1104 * information in the itererator may not be valid.
1105 *
1106 * Returns sptep if found, NULL otherwise.
1107 */
1108 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1109 {
1110 if (!rmap)
1111 return NULL;
1112
1113 if (!(rmap & 1)) {
1114 iter->desc = NULL;
1115 return (u64 *)rmap;
1116 }
1117
1118 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1119 iter->pos = 0;
1120 return iter->desc->sptes[iter->pos];
1121 }
1122
1123 /*
1124 * Must be used with a valid iterator: e.g. after rmap_get_first().
1125 *
1126 * Returns sptep if found, NULL otherwise.
1127 */
1128 static u64 *rmap_get_next(struct rmap_iterator *iter)
1129 {
1130 if (iter->desc) {
1131 if (iter->pos < PTE_LIST_EXT - 1) {
1132 u64 *sptep;
1133
1134 ++iter->pos;
1135 sptep = iter->desc->sptes[iter->pos];
1136 if (sptep)
1137 return sptep;
1138 }
1139
1140 iter->desc = iter->desc->more;
1141
1142 if (iter->desc) {
1143 iter->pos = 0;
1144 /* desc->sptes[0] cannot be NULL */
1145 return iter->desc->sptes[iter->pos];
1146 }
1147 }
1148
1149 return NULL;
1150 }
1151
1152 static void drop_spte(struct kvm *kvm, u64 *sptep)
1153 {
1154 if (mmu_spte_clear_track_bits(sptep))
1155 rmap_remove(kvm, sptep);
1156 }
1157
1158
1159 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1160 {
1161 if (is_large_pte(*sptep)) {
1162 WARN_ON(page_header(__pa(sptep))->role.level ==
1163 PT_PAGE_TABLE_LEVEL);
1164 drop_spte(kvm, sptep);
1165 --kvm->stat.lpages;
1166 return true;
1167 }
1168
1169 return false;
1170 }
1171
1172 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1173 {
1174 if (__drop_large_spte(vcpu->kvm, sptep))
1175 kvm_flush_remote_tlbs(vcpu->kvm);
1176 }
1177
1178 /*
1179 * Write-protect on the specified @sptep, @pt_protect indicates whether
1180 * spte write-protection is caused by protecting shadow page table.
1181 *
1182 * Note: write protection is difference between drity logging and spte
1183 * protection:
1184 * - for dirty logging, the spte can be set to writable at anytime if
1185 * its dirty bitmap is properly set.
1186 * - for spte protection, the spte can be writable only after unsync-ing
1187 * shadow page.
1188 *
1189 * Return true if tlb need be flushed.
1190 */
1191 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1192 {
1193 u64 spte = *sptep;
1194
1195 if (!is_writable_pte(spte) &&
1196 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1197 return false;
1198
1199 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1200
1201 if (pt_protect)
1202 spte &= ~SPTE_MMU_WRITEABLE;
1203 spte = spte & ~PT_WRITABLE_MASK;
1204
1205 return mmu_spte_update(sptep, spte);
1206 }
1207
1208 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1209 bool pt_protect)
1210 {
1211 u64 *sptep;
1212 struct rmap_iterator iter;
1213 bool flush = false;
1214
1215 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1216 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1217
1218 flush |= spte_write_protect(kvm, sptep, pt_protect);
1219 sptep = rmap_get_next(&iter);
1220 }
1221
1222 return flush;
1223 }
1224
1225 /**
1226 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1227 * @kvm: kvm instance
1228 * @slot: slot to protect
1229 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1230 * @mask: indicates which pages we should protect
1231 *
1232 * Used when we do not need to care about huge page mappings: e.g. during dirty
1233 * logging we do not have any such mappings.
1234 */
1235 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1236 struct kvm_memory_slot *slot,
1237 gfn_t gfn_offset, unsigned long mask)
1238 {
1239 unsigned long *rmapp;
1240
1241 while (mask) {
1242 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1243 PT_PAGE_TABLE_LEVEL, slot);
1244 __rmap_write_protect(kvm, rmapp, false);
1245
1246 /* clear the first set bit */
1247 mask &= mask - 1;
1248 }
1249 }
1250
1251 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1252 {
1253 struct kvm_memory_slot *slot;
1254 unsigned long *rmapp;
1255 int i;
1256 bool write_protected = false;
1257
1258 slot = gfn_to_memslot(kvm, gfn);
1259
1260 for (i = PT_PAGE_TABLE_LEVEL;
1261 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1262 rmapp = __gfn_to_rmap(gfn, i, slot);
1263 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1264 }
1265
1266 return write_protected;
1267 }
1268
1269 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1270 struct kvm_memory_slot *slot, unsigned long data)
1271 {
1272 u64 *sptep;
1273 struct rmap_iterator iter;
1274 int need_tlb_flush = 0;
1275
1276 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1277 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1278 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1279
1280 drop_spte(kvm, sptep);
1281 need_tlb_flush = 1;
1282 }
1283
1284 return need_tlb_flush;
1285 }
1286
1287 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1288 struct kvm_memory_slot *slot, unsigned long data)
1289 {
1290 u64 *sptep;
1291 struct rmap_iterator iter;
1292 int need_flush = 0;
1293 u64 new_spte;
1294 pte_t *ptep = (pte_t *)data;
1295 pfn_t new_pfn;
1296
1297 WARN_ON(pte_huge(*ptep));
1298 new_pfn = pte_pfn(*ptep);
1299
1300 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1301 BUG_ON(!is_shadow_present_pte(*sptep));
1302 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1303
1304 need_flush = 1;
1305
1306 if (pte_write(*ptep)) {
1307 drop_spte(kvm, sptep);
1308 sptep = rmap_get_first(*rmapp, &iter);
1309 } else {
1310 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1311 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1312
1313 new_spte &= ~PT_WRITABLE_MASK;
1314 new_spte &= ~SPTE_HOST_WRITEABLE;
1315 new_spte &= ~shadow_accessed_mask;
1316
1317 mmu_spte_clear_track_bits(sptep);
1318 mmu_spte_set(sptep, new_spte);
1319 sptep = rmap_get_next(&iter);
1320 }
1321 }
1322
1323 if (need_flush)
1324 kvm_flush_remote_tlbs(kvm);
1325
1326 return 0;
1327 }
1328
1329 static int kvm_handle_hva_range(struct kvm *kvm,
1330 unsigned long start,
1331 unsigned long end,
1332 unsigned long data,
1333 int (*handler)(struct kvm *kvm,
1334 unsigned long *rmapp,
1335 struct kvm_memory_slot *slot,
1336 unsigned long data))
1337 {
1338 int j;
1339 int ret = 0;
1340 struct kvm_memslots *slots;
1341 struct kvm_memory_slot *memslot;
1342
1343 slots = kvm_memslots(kvm);
1344
1345 kvm_for_each_memslot(memslot, slots) {
1346 unsigned long hva_start, hva_end;
1347 gfn_t gfn_start, gfn_end;
1348
1349 hva_start = max(start, memslot->userspace_addr);
1350 hva_end = min(end, memslot->userspace_addr +
1351 (memslot->npages << PAGE_SHIFT));
1352 if (hva_start >= hva_end)
1353 continue;
1354 /*
1355 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1356 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1357 */
1358 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1359 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1360
1361 for (j = PT_PAGE_TABLE_LEVEL;
1362 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1363 unsigned long idx, idx_end;
1364 unsigned long *rmapp;
1365
1366 /*
1367 * {idx(page_j) | page_j intersects with
1368 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1369 */
1370 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1371 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1372
1373 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1374
1375 for (; idx <= idx_end; ++idx)
1376 ret |= handler(kvm, rmapp++, memslot, data);
1377 }
1378 }
1379
1380 return ret;
1381 }
1382
1383 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1384 unsigned long data,
1385 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1386 struct kvm_memory_slot *slot,
1387 unsigned long data))
1388 {
1389 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1390 }
1391
1392 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1393 {
1394 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1395 }
1396
1397 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1398 {
1399 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1400 }
1401
1402 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1403 {
1404 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1405 }
1406
1407 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1408 struct kvm_memory_slot *slot, unsigned long data)
1409 {
1410 u64 *sptep;
1411 struct rmap_iterator uninitialized_var(iter);
1412 int young = 0;
1413
1414 /*
1415 * In case of absence of EPT Access and Dirty Bits supports,
1416 * emulate the accessed bit for EPT, by checking if this page has
1417 * an EPT mapping, and clearing it if it does. On the next access,
1418 * a new EPT mapping will be established.
1419 * This has some overhead, but not as much as the cost of swapping
1420 * out actively used pages or breaking up actively used hugepages.
1421 */
1422 if (!shadow_accessed_mask) {
1423 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1424 goto out;
1425 }
1426
1427 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1428 sptep = rmap_get_next(&iter)) {
1429 BUG_ON(!is_shadow_present_pte(*sptep));
1430
1431 if (*sptep & shadow_accessed_mask) {
1432 young = 1;
1433 clear_bit((ffs(shadow_accessed_mask) - 1),
1434 (unsigned long *)sptep);
1435 }
1436 }
1437 out:
1438 /* @data has hva passed to kvm_age_hva(). */
1439 trace_kvm_age_page(data, slot, young);
1440 return young;
1441 }
1442
1443 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1444 struct kvm_memory_slot *slot, unsigned long data)
1445 {
1446 u64 *sptep;
1447 struct rmap_iterator iter;
1448 int young = 0;
1449
1450 /*
1451 * If there's no access bit in the secondary pte set by the
1452 * hardware it's up to gup-fast/gup to set the access bit in
1453 * the primary pte or in the page structure.
1454 */
1455 if (!shadow_accessed_mask)
1456 goto out;
1457
1458 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1459 sptep = rmap_get_next(&iter)) {
1460 BUG_ON(!is_shadow_present_pte(*sptep));
1461
1462 if (*sptep & shadow_accessed_mask) {
1463 young = 1;
1464 break;
1465 }
1466 }
1467 out:
1468 return young;
1469 }
1470
1471 #define RMAP_RECYCLE_THRESHOLD 1000
1472
1473 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1474 {
1475 unsigned long *rmapp;
1476 struct kvm_mmu_page *sp;
1477
1478 sp = page_header(__pa(spte));
1479
1480 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1481
1482 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1483 kvm_flush_remote_tlbs(vcpu->kvm);
1484 }
1485
1486 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1487 {
1488 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1489 }
1490
1491 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1492 {
1493 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1494 }
1495
1496 #ifdef MMU_DEBUG
1497 static int is_empty_shadow_page(u64 *spt)
1498 {
1499 u64 *pos;
1500 u64 *end;
1501
1502 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1503 if (is_shadow_present_pte(*pos)) {
1504 printk(KERN_ERR "%s: %p %llx\n", __func__,
1505 pos, *pos);
1506 return 0;
1507 }
1508 return 1;
1509 }
1510 #endif
1511
1512 /*
1513 * This value is the sum of all of the kvm instances's
1514 * kvm->arch.n_used_mmu_pages values. We need a global,
1515 * aggregate version in order to make the slab shrinker
1516 * faster
1517 */
1518 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1519 {
1520 kvm->arch.n_used_mmu_pages += nr;
1521 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1522 }
1523
1524 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1525 {
1526 ASSERT(is_empty_shadow_page(sp->spt));
1527 hlist_del(&sp->hash_link);
1528 list_del(&sp->link);
1529 free_page((unsigned long)sp->spt);
1530 if (!sp->role.direct)
1531 free_page((unsigned long)sp->gfns);
1532 kmem_cache_free(mmu_page_header_cache, sp);
1533 }
1534
1535 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1536 {
1537 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1538 }
1539
1540 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1541 struct kvm_mmu_page *sp, u64 *parent_pte)
1542 {
1543 if (!parent_pte)
1544 return;
1545
1546 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1547 }
1548
1549 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1550 u64 *parent_pte)
1551 {
1552 pte_list_remove(parent_pte, &sp->parent_ptes);
1553 }
1554
1555 static void drop_parent_pte(struct kvm_mmu_page *sp,
1556 u64 *parent_pte)
1557 {
1558 mmu_page_remove_parent_pte(sp, parent_pte);
1559 mmu_spte_clear_no_track(parent_pte);
1560 }
1561
1562 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1563 u64 *parent_pte, int direct)
1564 {
1565 struct kvm_mmu_page *sp;
1566
1567 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1568 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1569 if (!direct)
1570 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1571 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1572
1573 /*
1574 * The active_mmu_pages list is the FIFO list, do not move the
1575 * page until it is zapped. kvm_zap_obsolete_pages depends on
1576 * this feature. See the comments in kvm_zap_obsolete_pages().
1577 */
1578 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1579 sp->parent_ptes = 0;
1580 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1581 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1582 return sp;
1583 }
1584
1585 static void mark_unsync(u64 *spte);
1586 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1587 {
1588 pte_list_walk(&sp->parent_ptes, mark_unsync);
1589 }
1590
1591 static void mark_unsync(u64 *spte)
1592 {
1593 struct kvm_mmu_page *sp;
1594 unsigned int index;
1595
1596 sp = page_header(__pa(spte));
1597 index = spte - sp->spt;
1598 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1599 return;
1600 if (sp->unsync_children++)
1601 return;
1602 kvm_mmu_mark_parents_unsync(sp);
1603 }
1604
1605 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1606 struct kvm_mmu_page *sp)
1607 {
1608 return 1;
1609 }
1610
1611 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1612 {
1613 }
1614
1615 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1616 struct kvm_mmu_page *sp, u64 *spte,
1617 const void *pte)
1618 {
1619 WARN_ON(1);
1620 }
1621
1622 #define KVM_PAGE_ARRAY_NR 16
1623
1624 struct kvm_mmu_pages {
1625 struct mmu_page_and_offset {
1626 struct kvm_mmu_page *sp;
1627 unsigned int idx;
1628 } page[KVM_PAGE_ARRAY_NR];
1629 unsigned int nr;
1630 };
1631
1632 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1633 int idx)
1634 {
1635 int i;
1636
1637 if (sp->unsync)
1638 for (i=0; i < pvec->nr; i++)
1639 if (pvec->page[i].sp == sp)
1640 return 0;
1641
1642 pvec->page[pvec->nr].sp = sp;
1643 pvec->page[pvec->nr].idx = idx;
1644 pvec->nr++;
1645 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1646 }
1647
1648 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1649 struct kvm_mmu_pages *pvec)
1650 {
1651 int i, ret, nr_unsync_leaf = 0;
1652
1653 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1654 struct kvm_mmu_page *child;
1655 u64 ent = sp->spt[i];
1656
1657 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1658 goto clear_child_bitmap;
1659
1660 child = page_header(ent & PT64_BASE_ADDR_MASK);
1661
1662 if (child->unsync_children) {
1663 if (mmu_pages_add(pvec, child, i))
1664 return -ENOSPC;
1665
1666 ret = __mmu_unsync_walk(child, pvec);
1667 if (!ret)
1668 goto clear_child_bitmap;
1669 else if (ret > 0)
1670 nr_unsync_leaf += ret;
1671 else
1672 return ret;
1673 } else if (child->unsync) {
1674 nr_unsync_leaf++;
1675 if (mmu_pages_add(pvec, child, i))
1676 return -ENOSPC;
1677 } else
1678 goto clear_child_bitmap;
1679
1680 continue;
1681
1682 clear_child_bitmap:
1683 __clear_bit(i, sp->unsync_child_bitmap);
1684 sp->unsync_children--;
1685 WARN_ON((int)sp->unsync_children < 0);
1686 }
1687
1688
1689 return nr_unsync_leaf;
1690 }
1691
1692 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1693 struct kvm_mmu_pages *pvec)
1694 {
1695 if (!sp->unsync_children)
1696 return 0;
1697
1698 mmu_pages_add(pvec, sp, 0);
1699 return __mmu_unsync_walk(sp, pvec);
1700 }
1701
1702 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1703 {
1704 WARN_ON(!sp->unsync);
1705 trace_kvm_mmu_sync_page(sp);
1706 sp->unsync = 0;
1707 --kvm->stat.mmu_unsync;
1708 }
1709
1710 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1711 struct list_head *invalid_list);
1712 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1713 struct list_head *invalid_list);
1714
1715 /*
1716 * NOTE: we should pay more attention on the zapped-obsolete page
1717 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1718 * since it has been deleted from active_mmu_pages but still can be found
1719 * at hast list.
1720 *
1721 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1722 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1723 * all the obsolete pages.
1724 */
1725 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1726 hlist_for_each_entry(_sp, \
1727 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1728 if ((_sp)->gfn != (_gfn)) {} else
1729
1730 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1731 for_each_gfn_sp(_kvm, _sp, _gfn) \
1732 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1733
1734 /* @sp->gfn should be write-protected at the call site */
1735 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1736 struct list_head *invalid_list, bool clear_unsync)
1737 {
1738 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1739 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1740 return 1;
1741 }
1742
1743 if (clear_unsync)
1744 kvm_unlink_unsync_page(vcpu->kvm, sp);
1745
1746 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1747 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1748 return 1;
1749 }
1750
1751 kvm_mmu_flush_tlb(vcpu);
1752 return 0;
1753 }
1754
1755 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1756 struct kvm_mmu_page *sp)
1757 {
1758 LIST_HEAD(invalid_list);
1759 int ret;
1760
1761 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1762 if (ret)
1763 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1764
1765 return ret;
1766 }
1767
1768 #ifdef CONFIG_KVM_MMU_AUDIT
1769 #include "mmu_audit.c"
1770 #else
1771 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1772 static void mmu_audit_disable(void) { }
1773 #endif
1774
1775 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1776 struct list_head *invalid_list)
1777 {
1778 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1779 }
1780
1781 /* @gfn should be write-protected at the call site */
1782 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1783 {
1784 struct kvm_mmu_page *s;
1785 LIST_HEAD(invalid_list);
1786 bool flush = false;
1787
1788 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1789 if (!s->unsync)
1790 continue;
1791
1792 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1793 kvm_unlink_unsync_page(vcpu->kvm, s);
1794 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1795 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1796 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1797 continue;
1798 }
1799 flush = true;
1800 }
1801
1802 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1803 if (flush)
1804 kvm_mmu_flush_tlb(vcpu);
1805 }
1806
1807 struct mmu_page_path {
1808 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1809 unsigned int idx[PT64_ROOT_LEVEL-1];
1810 };
1811
1812 #define for_each_sp(pvec, sp, parents, i) \
1813 for (i = mmu_pages_next(&pvec, &parents, -1), \
1814 sp = pvec.page[i].sp; \
1815 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1816 i = mmu_pages_next(&pvec, &parents, i))
1817
1818 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1819 struct mmu_page_path *parents,
1820 int i)
1821 {
1822 int n;
1823
1824 for (n = i+1; n < pvec->nr; n++) {
1825 struct kvm_mmu_page *sp = pvec->page[n].sp;
1826
1827 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1828 parents->idx[0] = pvec->page[n].idx;
1829 return n;
1830 }
1831
1832 parents->parent[sp->role.level-2] = sp;
1833 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1834 }
1835
1836 return n;
1837 }
1838
1839 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1840 {
1841 struct kvm_mmu_page *sp;
1842 unsigned int level = 0;
1843
1844 do {
1845 unsigned int idx = parents->idx[level];
1846
1847 sp = parents->parent[level];
1848 if (!sp)
1849 return;
1850
1851 --sp->unsync_children;
1852 WARN_ON((int)sp->unsync_children < 0);
1853 __clear_bit(idx, sp->unsync_child_bitmap);
1854 level++;
1855 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1856 }
1857
1858 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1859 struct mmu_page_path *parents,
1860 struct kvm_mmu_pages *pvec)
1861 {
1862 parents->parent[parent->role.level-1] = NULL;
1863 pvec->nr = 0;
1864 }
1865
1866 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1867 struct kvm_mmu_page *parent)
1868 {
1869 int i;
1870 struct kvm_mmu_page *sp;
1871 struct mmu_page_path parents;
1872 struct kvm_mmu_pages pages;
1873 LIST_HEAD(invalid_list);
1874
1875 kvm_mmu_pages_init(parent, &parents, &pages);
1876 while (mmu_unsync_walk(parent, &pages)) {
1877 bool protected = false;
1878
1879 for_each_sp(pages, sp, parents, i)
1880 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1881
1882 if (protected)
1883 kvm_flush_remote_tlbs(vcpu->kvm);
1884
1885 for_each_sp(pages, sp, parents, i) {
1886 kvm_sync_page(vcpu, sp, &invalid_list);
1887 mmu_pages_clear_parents(&parents);
1888 }
1889 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1890 cond_resched_lock(&vcpu->kvm->mmu_lock);
1891 kvm_mmu_pages_init(parent, &parents, &pages);
1892 }
1893 }
1894
1895 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1896 {
1897 int i;
1898
1899 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1900 sp->spt[i] = 0ull;
1901 }
1902
1903 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1904 {
1905 sp->write_flooding_count = 0;
1906 }
1907
1908 static void clear_sp_write_flooding_count(u64 *spte)
1909 {
1910 struct kvm_mmu_page *sp = page_header(__pa(spte));
1911
1912 __clear_sp_write_flooding_count(sp);
1913 }
1914
1915 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1916 {
1917 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1918 }
1919
1920 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1921 gfn_t gfn,
1922 gva_t gaddr,
1923 unsigned level,
1924 int direct,
1925 unsigned access,
1926 u64 *parent_pte)
1927 {
1928 union kvm_mmu_page_role role;
1929 unsigned quadrant;
1930 struct kvm_mmu_page *sp;
1931 bool need_sync = false;
1932
1933 role = vcpu->arch.mmu.base_role;
1934 role.level = level;
1935 role.direct = direct;
1936 if (role.direct)
1937 role.cr4_pae = 0;
1938 role.access = access;
1939 if (!vcpu->arch.mmu.direct_map
1940 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1941 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1942 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1943 role.quadrant = quadrant;
1944 }
1945 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1946 if (is_obsolete_sp(vcpu->kvm, sp))
1947 continue;
1948
1949 if (!need_sync && sp->unsync)
1950 need_sync = true;
1951
1952 if (sp->role.word != role.word)
1953 continue;
1954
1955 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1956 break;
1957
1958 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1959 if (sp->unsync_children) {
1960 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1961 kvm_mmu_mark_parents_unsync(sp);
1962 } else if (sp->unsync)
1963 kvm_mmu_mark_parents_unsync(sp);
1964
1965 __clear_sp_write_flooding_count(sp);
1966 trace_kvm_mmu_get_page(sp, false);
1967 return sp;
1968 }
1969 ++vcpu->kvm->stat.mmu_cache_miss;
1970 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1971 if (!sp)
1972 return sp;
1973 sp->gfn = gfn;
1974 sp->role = role;
1975 hlist_add_head(&sp->hash_link,
1976 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1977 if (!direct) {
1978 if (rmap_write_protect(vcpu->kvm, gfn))
1979 kvm_flush_remote_tlbs(vcpu->kvm);
1980 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1981 kvm_sync_pages(vcpu, gfn);
1982
1983 account_shadowed(vcpu->kvm, gfn);
1984 }
1985 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1986 init_shadow_page_table(sp);
1987 trace_kvm_mmu_get_page(sp, true);
1988 return sp;
1989 }
1990
1991 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1992 struct kvm_vcpu *vcpu, u64 addr)
1993 {
1994 iterator->addr = addr;
1995 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1996 iterator->level = vcpu->arch.mmu.shadow_root_level;
1997
1998 if (iterator->level == PT64_ROOT_LEVEL &&
1999 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2000 !vcpu->arch.mmu.direct_map)
2001 --iterator->level;
2002
2003 if (iterator->level == PT32E_ROOT_LEVEL) {
2004 iterator->shadow_addr
2005 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2006 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2007 --iterator->level;
2008 if (!iterator->shadow_addr)
2009 iterator->level = 0;
2010 }
2011 }
2012
2013 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2014 {
2015 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2016 return false;
2017
2018 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2019 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2020 return true;
2021 }
2022
2023 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2024 u64 spte)
2025 {
2026 if (is_last_spte(spte, iterator->level)) {
2027 iterator->level = 0;
2028 return;
2029 }
2030
2031 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2032 --iterator->level;
2033 }
2034
2035 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2036 {
2037 return __shadow_walk_next(iterator, *iterator->sptep);
2038 }
2039
2040 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2041 {
2042 u64 spte;
2043
2044 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2045 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2046
2047 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2048 shadow_user_mask | shadow_x_mask;
2049
2050 if (accessed)
2051 spte |= shadow_accessed_mask;
2052
2053 mmu_spte_set(sptep, spte);
2054 }
2055
2056 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2057 unsigned direct_access)
2058 {
2059 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2060 struct kvm_mmu_page *child;
2061
2062 /*
2063 * For the direct sp, if the guest pte's dirty bit
2064 * changed form clean to dirty, it will corrupt the
2065 * sp's access: allow writable in the read-only sp,
2066 * so we should update the spte at this point to get
2067 * a new sp with the correct access.
2068 */
2069 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2070 if (child->role.access == direct_access)
2071 return;
2072
2073 drop_parent_pte(child, sptep);
2074 kvm_flush_remote_tlbs(vcpu->kvm);
2075 }
2076 }
2077
2078 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2079 u64 *spte)
2080 {
2081 u64 pte;
2082 struct kvm_mmu_page *child;
2083
2084 pte = *spte;
2085 if (is_shadow_present_pte(pte)) {
2086 if (is_last_spte(pte, sp->role.level)) {
2087 drop_spte(kvm, spte);
2088 if (is_large_pte(pte))
2089 --kvm->stat.lpages;
2090 } else {
2091 child = page_header(pte & PT64_BASE_ADDR_MASK);
2092 drop_parent_pte(child, spte);
2093 }
2094 return true;
2095 }
2096
2097 if (is_mmio_spte(pte))
2098 mmu_spte_clear_no_track(spte);
2099
2100 return false;
2101 }
2102
2103 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2104 struct kvm_mmu_page *sp)
2105 {
2106 unsigned i;
2107
2108 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2109 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2110 }
2111
2112 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2113 {
2114 mmu_page_remove_parent_pte(sp, parent_pte);
2115 }
2116
2117 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2118 {
2119 u64 *sptep;
2120 struct rmap_iterator iter;
2121
2122 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2123 drop_parent_pte(sp, sptep);
2124 }
2125
2126 static int mmu_zap_unsync_children(struct kvm *kvm,
2127 struct kvm_mmu_page *parent,
2128 struct list_head *invalid_list)
2129 {
2130 int i, zapped = 0;
2131 struct mmu_page_path parents;
2132 struct kvm_mmu_pages pages;
2133
2134 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2135 return 0;
2136
2137 kvm_mmu_pages_init(parent, &parents, &pages);
2138 while (mmu_unsync_walk(parent, &pages)) {
2139 struct kvm_mmu_page *sp;
2140
2141 for_each_sp(pages, sp, parents, i) {
2142 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2143 mmu_pages_clear_parents(&parents);
2144 zapped++;
2145 }
2146 kvm_mmu_pages_init(parent, &parents, &pages);
2147 }
2148
2149 return zapped;
2150 }
2151
2152 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2153 struct list_head *invalid_list)
2154 {
2155 int ret;
2156
2157 trace_kvm_mmu_prepare_zap_page(sp);
2158 ++kvm->stat.mmu_shadow_zapped;
2159 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2160 kvm_mmu_page_unlink_children(kvm, sp);
2161 kvm_mmu_unlink_parents(kvm, sp);
2162
2163 if (!sp->role.invalid && !sp->role.direct)
2164 unaccount_shadowed(kvm, sp->gfn);
2165
2166 if (sp->unsync)
2167 kvm_unlink_unsync_page(kvm, sp);
2168 if (!sp->root_count) {
2169 /* Count self */
2170 ret++;
2171 list_move(&sp->link, invalid_list);
2172 kvm_mod_used_mmu_pages(kvm, -1);
2173 } else {
2174 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2175
2176 /*
2177 * The obsolete pages can not be used on any vcpus.
2178 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2179 */
2180 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2181 kvm_reload_remote_mmus(kvm);
2182 }
2183
2184 sp->role.invalid = 1;
2185 return ret;
2186 }
2187
2188 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2189 struct list_head *invalid_list)
2190 {
2191 struct kvm_mmu_page *sp, *nsp;
2192
2193 if (list_empty(invalid_list))
2194 return;
2195
2196 /*
2197 * wmb: make sure everyone sees our modifications to the page tables
2198 * rmb: make sure we see changes to vcpu->mode
2199 */
2200 smp_mb();
2201
2202 /*
2203 * Wait for all vcpus to exit guest mode and/or lockless shadow
2204 * page table walks.
2205 */
2206 kvm_flush_remote_tlbs(kvm);
2207
2208 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2209 WARN_ON(!sp->role.invalid || sp->root_count);
2210 kvm_mmu_free_page(sp);
2211 }
2212 }
2213
2214 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2215 struct list_head *invalid_list)
2216 {
2217 struct kvm_mmu_page *sp;
2218
2219 if (list_empty(&kvm->arch.active_mmu_pages))
2220 return false;
2221
2222 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2223 struct kvm_mmu_page, link);
2224 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2225
2226 return true;
2227 }
2228
2229 /*
2230 * Changing the number of mmu pages allocated to the vm
2231 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2232 */
2233 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2234 {
2235 LIST_HEAD(invalid_list);
2236
2237 spin_lock(&kvm->mmu_lock);
2238
2239 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2240 /* Need to free some mmu pages to achieve the goal. */
2241 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2242 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2243 break;
2244
2245 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2246 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2247 }
2248
2249 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2250
2251 spin_unlock(&kvm->mmu_lock);
2252 }
2253
2254 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2255 {
2256 struct kvm_mmu_page *sp;
2257 LIST_HEAD(invalid_list);
2258 int r;
2259
2260 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2261 r = 0;
2262 spin_lock(&kvm->mmu_lock);
2263 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2264 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2265 sp->role.word);
2266 r = 1;
2267 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2268 }
2269 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2270 spin_unlock(&kvm->mmu_lock);
2271
2272 return r;
2273 }
2274 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2275
2276 /*
2277 * The function is based on mtrr_type_lookup() in
2278 * arch/x86/kernel/cpu/mtrr/generic.c
2279 */
2280 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2281 u64 start, u64 end)
2282 {
2283 int i;
2284 u64 base, mask;
2285 u8 prev_match, curr_match;
2286 int num_var_ranges = KVM_NR_VAR_MTRR;
2287
2288 if (!mtrr_state->enabled)
2289 return 0xFF;
2290
2291 /* Make end inclusive end, instead of exclusive */
2292 end--;
2293
2294 /* Look in fixed ranges. Just return the type as per start */
2295 if (mtrr_state->have_fixed && (start < 0x100000)) {
2296 int idx;
2297
2298 if (start < 0x80000) {
2299 idx = 0;
2300 idx += (start >> 16);
2301 return mtrr_state->fixed_ranges[idx];
2302 } else if (start < 0xC0000) {
2303 idx = 1 * 8;
2304 idx += ((start - 0x80000) >> 14);
2305 return mtrr_state->fixed_ranges[idx];
2306 } else if (start < 0x1000000) {
2307 idx = 3 * 8;
2308 idx += ((start - 0xC0000) >> 12);
2309 return mtrr_state->fixed_ranges[idx];
2310 }
2311 }
2312
2313 /*
2314 * Look in variable ranges
2315 * Look of multiple ranges matching this address and pick type
2316 * as per MTRR precedence
2317 */
2318 if (!(mtrr_state->enabled & 2))
2319 return mtrr_state->def_type;
2320
2321 prev_match = 0xFF;
2322 for (i = 0; i < num_var_ranges; ++i) {
2323 unsigned short start_state, end_state;
2324
2325 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2326 continue;
2327
2328 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2329 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2330 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2331 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2332
2333 start_state = ((start & mask) == (base & mask));
2334 end_state = ((end & mask) == (base & mask));
2335 if (start_state != end_state)
2336 return 0xFE;
2337
2338 if ((start & mask) != (base & mask))
2339 continue;
2340
2341 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2342 if (prev_match == 0xFF) {
2343 prev_match = curr_match;
2344 continue;
2345 }
2346
2347 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2348 curr_match == MTRR_TYPE_UNCACHABLE)
2349 return MTRR_TYPE_UNCACHABLE;
2350
2351 if ((prev_match == MTRR_TYPE_WRBACK &&
2352 curr_match == MTRR_TYPE_WRTHROUGH) ||
2353 (prev_match == MTRR_TYPE_WRTHROUGH &&
2354 curr_match == MTRR_TYPE_WRBACK)) {
2355 prev_match = MTRR_TYPE_WRTHROUGH;
2356 curr_match = MTRR_TYPE_WRTHROUGH;
2357 }
2358
2359 if (prev_match != curr_match)
2360 return MTRR_TYPE_UNCACHABLE;
2361 }
2362
2363 if (prev_match != 0xFF)
2364 return prev_match;
2365
2366 return mtrr_state->def_type;
2367 }
2368
2369 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2370 {
2371 u8 mtrr;
2372
2373 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2374 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2375 if (mtrr == 0xfe || mtrr == 0xff)
2376 mtrr = MTRR_TYPE_WRBACK;
2377 return mtrr;
2378 }
2379 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2380
2381 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2382 {
2383 trace_kvm_mmu_unsync_page(sp);
2384 ++vcpu->kvm->stat.mmu_unsync;
2385 sp->unsync = 1;
2386
2387 kvm_mmu_mark_parents_unsync(sp);
2388 }
2389
2390 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2391 {
2392 struct kvm_mmu_page *s;
2393
2394 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2395 if (s->unsync)
2396 continue;
2397 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2398 __kvm_unsync_page(vcpu, s);
2399 }
2400 }
2401
2402 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2403 bool can_unsync)
2404 {
2405 struct kvm_mmu_page *s;
2406 bool need_unsync = false;
2407
2408 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2409 if (!can_unsync)
2410 return 1;
2411
2412 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2413 return 1;
2414
2415 if (!s->unsync)
2416 need_unsync = true;
2417 }
2418 if (need_unsync)
2419 kvm_unsync_pages(vcpu, gfn);
2420 return 0;
2421 }
2422
2423 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2424 unsigned pte_access, int level,
2425 gfn_t gfn, pfn_t pfn, bool speculative,
2426 bool can_unsync, bool host_writable)
2427 {
2428 u64 spte;
2429 int ret = 0;
2430
2431 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2432 return 0;
2433
2434 spte = PT_PRESENT_MASK;
2435 if (!speculative)
2436 spte |= shadow_accessed_mask;
2437
2438 if (pte_access & ACC_EXEC_MASK)
2439 spte |= shadow_x_mask;
2440 else
2441 spte |= shadow_nx_mask;
2442
2443 if (pte_access & ACC_USER_MASK)
2444 spte |= shadow_user_mask;
2445
2446 if (level > PT_PAGE_TABLE_LEVEL)
2447 spte |= PT_PAGE_SIZE_MASK;
2448 if (tdp_enabled)
2449 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2450 kvm_is_mmio_pfn(pfn));
2451
2452 if (host_writable)
2453 spte |= SPTE_HOST_WRITEABLE;
2454 else
2455 pte_access &= ~ACC_WRITE_MASK;
2456
2457 spte |= (u64)pfn << PAGE_SHIFT;
2458
2459 if (pte_access & ACC_WRITE_MASK) {
2460
2461 /*
2462 * Other vcpu creates new sp in the window between
2463 * mapping_level() and acquiring mmu-lock. We can
2464 * allow guest to retry the access, the mapping can
2465 * be fixed if guest refault.
2466 */
2467 if (level > PT_PAGE_TABLE_LEVEL &&
2468 has_wrprotected_page(vcpu->kvm, gfn, level))
2469 goto done;
2470
2471 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2472
2473 /*
2474 * Optimization: for pte sync, if spte was writable the hash
2475 * lookup is unnecessary (and expensive). Write protection
2476 * is responsibility of mmu_get_page / kvm_sync_page.
2477 * Same reasoning can be applied to dirty page accounting.
2478 */
2479 if (!can_unsync && is_writable_pte(*sptep))
2480 goto set_pte;
2481
2482 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2483 pgprintk("%s: found shadow page for %llx, marking ro\n",
2484 __func__, gfn);
2485 ret = 1;
2486 pte_access &= ~ACC_WRITE_MASK;
2487 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2488 }
2489 }
2490
2491 if (pte_access & ACC_WRITE_MASK)
2492 mark_page_dirty(vcpu->kvm, gfn);
2493
2494 set_pte:
2495 if (mmu_spte_update(sptep, spte))
2496 kvm_flush_remote_tlbs(vcpu->kvm);
2497 done:
2498 return ret;
2499 }
2500
2501 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2502 unsigned pte_access, int write_fault, int *emulate,
2503 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2504 bool host_writable)
2505 {
2506 int was_rmapped = 0;
2507 int rmap_count;
2508
2509 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2510 *sptep, write_fault, gfn);
2511
2512 if (is_rmap_spte(*sptep)) {
2513 /*
2514 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2515 * the parent of the now unreachable PTE.
2516 */
2517 if (level > PT_PAGE_TABLE_LEVEL &&
2518 !is_large_pte(*sptep)) {
2519 struct kvm_mmu_page *child;
2520 u64 pte = *sptep;
2521
2522 child = page_header(pte & PT64_BASE_ADDR_MASK);
2523 drop_parent_pte(child, sptep);
2524 kvm_flush_remote_tlbs(vcpu->kvm);
2525 } else if (pfn != spte_to_pfn(*sptep)) {
2526 pgprintk("hfn old %llx new %llx\n",
2527 spte_to_pfn(*sptep), pfn);
2528 drop_spte(vcpu->kvm, sptep);
2529 kvm_flush_remote_tlbs(vcpu->kvm);
2530 } else
2531 was_rmapped = 1;
2532 }
2533
2534 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2535 true, host_writable)) {
2536 if (write_fault)
2537 *emulate = 1;
2538 kvm_mmu_flush_tlb(vcpu);
2539 }
2540
2541 if (unlikely(is_mmio_spte(*sptep) && emulate))
2542 *emulate = 1;
2543
2544 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2545 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2546 is_large_pte(*sptep)? "2MB" : "4kB",
2547 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2548 *sptep, sptep);
2549 if (!was_rmapped && is_large_pte(*sptep))
2550 ++vcpu->kvm->stat.lpages;
2551
2552 if (is_shadow_present_pte(*sptep)) {
2553 if (!was_rmapped) {
2554 rmap_count = rmap_add(vcpu, sptep, gfn);
2555 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2556 rmap_recycle(vcpu, sptep, gfn);
2557 }
2558 }
2559
2560 kvm_release_pfn_clean(pfn);
2561 }
2562
2563 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2564 bool no_dirty_log)
2565 {
2566 struct kvm_memory_slot *slot;
2567
2568 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2569 if (!slot)
2570 return KVM_PFN_ERR_FAULT;
2571
2572 return gfn_to_pfn_memslot_atomic(slot, gfn);
2573 }
2574
2575 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2576 struct kvm_mmu_page *sp,
2577 u64 *start, u64 *end)
2578 {
2579 struct page *pages[PTE_PREFETCH_NUM];
2580 unsigned access = sp->role.access;
2581 int i, ret;
2582 gfn_t gfn;
2583
2584 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2585 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2586 return -1;
2587
2588 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2589 if (ret <= 0)
2590 return -1;
2591
2592 for (i = 0; i < ret; i++, gfn++, start++)
2593 mmu_set_spte(vcpu, start, access, 0, NULL,
2594 sp->role.level, gfn, page_to_pfn(pages[i]),
2595 true, true);
2596
2597 return 0;
2598 }
2599
2600 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2601 struct kvm_mmu_page *sp, u64 *sptep)
2602 {
2603 u64 *spte, *start = NULL;
2604 int i;
2605
2606 WARN_ON(!sp->role.direct);
2607
2608 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2609 spte = sp->spt + i;
2610
2611 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2612 if (is_shadow_present_pte(*spte) || spte == sptep) {
2613 if (!start)
2614 continue;
2615 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2616 break;
2617 start = NULL;
2618 } else if (!start)
2619 start = spte;
2620 }
2621 }
2622
2623 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2624 {
2625 struct kvm_mmu_page *sp;
2626
2627 /*
2628 * Since it's no accessed bit on EPT, it's no way to
2629 * distinguish between actually accessed translations
2630 * and prefetched, so disable pte prefetch if EPT is
2631 * enabled.
2632 */
2633 if (!shadow_accessed_mask)
2634 return;
2635
2636 sp = page_header(__pa(sptep));
2637 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2638 return;
2639
2640 __direct_pte_prefetch(vcpu, sp, sptep);
2641 }
2642
2643 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2644 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2645 bool prefault)
2646 {
2647 struct kvm_shadow_walk_iterator iterator;
2648 struct kvm_mmu_page *sp;
2649 int emulate = 0;
2650 gfn_t pseudo_gfn;
2651
2652 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2653 return 0;
2654
2655 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2656 if (iterator.level == level) {
2657 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2658 write, &emulate, level, gfn, pfn,
2659 prefault, map_writable);
2660 direct_pte_prefetch(vcpu, iterator.sptep);
2661 ++vcpu->stat.pf_fixed;
2662 break;
2663 }
2664
2665 drop_large_spte(vcpu, iterator.sptep);
2666 if (!is_shadow_present_pte(*iterator.sptep)) {
2667 u64 base_addr = iterator.addr;
2668
2669 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2670 pseudo_gfn = base_addr >> PAGE_SHIFT;
2671 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2672 iterator.level - 1,
2673 1, ACC_ALL, iterator.sptep);
2674
2675 link_shadow_page(iterator.sptep, sp, true);
2676 }
2677 }
2678 return emulate;
2679 }
2680
2681 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2682 {
2683 siginfo_t info;
2684
2685 info.si_signo = SIGBUS;
2686 info.si_errno = 0;
2687 info.si_code = BUS_MCEERR_AR;
2688 info.si_addr = (void __user *)address;
2689 info.si_addr_lsb = PAGE_SHIFT;
2690
2691 send_sig_info(SIGBUS, &info, tsk);
2692 }
2693
2694 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2695 {
2696 /*
2697 * Do not cache the mmio info caused by writing the readonly gfn
2698 * into the spte otherwise read access on readonly gfn also can
2699 * caused mmio page fault and treat it as mmio access.
2700 * Return 1 to tell kvm to emulate it.
2701 */
2702 if (pfn == KVM_PFN_ERR_RO_FAULT)
2703 return 1;
2704
2705 if (pfn == KVM_PFN_ERR_HWPOISON) {
2706 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2707 return 0;
2708 }
2709
2710 return -EFAULT;
2711 }
2712
2713 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2714 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2715 {
2716 pfn_t pfn = *pfnp;
2717 gfn_t gfn = *gfnp;
2718 int level = *levelp;
2719
2720 /*
2721 * Check if it's a transparent hugepage. If this would be an
2722 * hugetlbfs page, level wouldn't be set to
2723 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2724 * here.
2725 */
2726 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2727 level == PT_PAGE_TABLE_LEVEL &&
2728 PageTransCompound(pfn_to_page(pfn)) &&
2729 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2730 unsigned long mask;
2731 /*
2732 * mmu_notifier_retry was successful and we hold the
2733 * mmu_lock here, so the pmd can't become splitting
2734 * from under us, and in turn
2735 * __split_huge_page_refcount() can't run from under
2736 * us and we can safely transfer the refcount from
2737 * PG_tail to PG_head as we switch the pfn to tail to
2738 * head.
2739 */
2740 *levelp = level = PT_DIRECTORY_LEVEL;
2741 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2742 VM_BUG_ON((gfn & mask) != (pfn & mask));
2743 if (pfn & mask) {
2744 gfn &= ~mask;
2745 *gfnp = gfn;
2746 kvm_release_pfn_clean(pfn);
2747 pfn &= ~mask;
2748 kvm_get_pfn(pfn);
2749 *pfnp = pfn;
2750 }
2751 }
2752 }
2753
2754 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2755 pfn_t pfn, unsigned access, int *ret_val)
2756 {
2757 bool ret = true;
2758
2759 /* The pfn is invalid, report the error! */
2760 if (unlikely(is_error_pfn(pfn))) {
2761 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2762 goto exit;
2763 }
2764
2765 if (unlikely(is_noslot_pfn(pfn)))
2766 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2767
2768 ret = false;
2769 exit:
2770 return ret;
2771 }
2772
2773 static bool page_fault_can_be_fast(u32 error_code)
2774 {
2775 /*
2776 * Do not fix the mmio spte with invalid generation number which
2777 * need to be updated by slow page fault path.
2778 */
2779 if (unlikely(error_code & PFERR_RSVD_MASK))
2780 return false;
2781
2782 /*
2783 * #PF can be fast only if the shadow page table is present and it
2784 * is caused by write-protect, that means we just need change the
2785 * W bit of the spte which can be done out of mmu-lock.
2786 */
2787 if (!(error_code & PFERR_PRESENT_MASK) ||
2788 !(error_code & PFERR_WRITE_MASK))
2789 return false;
2790
2791 return true;
2792 }
2793
2794 static bool
2795 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2796 u64 *sptep, u64 spte)
2797 {
2798 gfn_t gfn;
2799
2800 WARN_ON(!sp->role.direct);
2801
2802 /*
2803 * The gfn of direct spte is stable since it is calculated
2804 * by sp->gfn.
2805 */
2806 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2807
2808 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2809 mark_page_dirty(vcpu->kvm, gfn);
2810
2811 return true;
2812 }
2813
2814 /*
2815 * Return value:
2816 * - true: let the vcpu to access on the same address again.
2817 * - false: let the real page fault path to fix it.
2818 */
2819 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2820 u32 error_code)
2821 {
2822 struct kvm_shadow_walk_iterator iterator;
2823 struct kvm_mmu_page *sp;
2824 bool ret = false;
2825 u64 spte = 0ull;
2826
2827 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2828 return false;
2829
2830 if (!page_fault_can_be_fast(error_code))
2831 return false;
2832
2833 walk_shadow_page_lockless_begin(vcpu);
2834 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2835 if (!is_shadow_present_pte(spte) || iterator.level < level)
2836 break;
2837
2838 /*
2839 * If the mapping has been changed, let the vcpu fault on the
2840 * same address again.
2841 */
2842 if (!is_rmap_spte(spte)) {
2843 ret = true;
2844 goto exit;
2845 }
2846
2847 sp = page_header(__pa(iterator.sptep));
2848 if (!is_last_spte(spte, sp->role.level))
2849 goto exit;
2850
2851 /*
2852 * Check if it is a spurious fault caused by TLB lazily flushed.
2853 *
2854 * Need not check the access of upper level table entries since
2855 * they are always ACC_ALL.
2856 */
2857 if (is_writable_pte(spte)) {
2858 ret = true;
2859 goto exit;
2860 }
2861
2862 /*
2863 * Currently, to simplify the code, only the spte write-protected
2864 * by dirty-log can be fast fixed.
2865 */
2866 if (!spte_is_locklessly_modifiable(spte))
2867 goto exit;
2868
2869 /*
2870 * Do not fix write-permission on the large spte since we only dirty
2871 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2872 * that means other pages are missed if its slot is dirty-logged.
2873 *
2874 * Instead, we let the slow page fault path create a normal spte to
2875 * fix the access.
2876 *
2877 * See the comments in kvm_arch_commit_memory_region().
2878 */
2879 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2880 goto exit;
2881
2882 /*
2883 * Currently, fast page fault only works for direct mapping since
2884 * the gfn is not stable for indirect shadow page.
2885 * See Documentation/virtual/kvm/locking.txt to get more detail.
2886 */
2887 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2888 exit:
2889 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2890 spte, ret);
2891 walk_shadow_page_lockless_end(vcpu);
2892
2893 return ret;
2894 }
2895
2896 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2897 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2898 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2899
2900 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2901 gfn_t gfn, bool prefault)
2902 {
2903 int r;
2904 int level;
2905 int force_pt_level;
2906 pfn_t pfn;
2907 unsigned long mmu_seq;
2908 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2909
2910 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2911 if (likely(!force_pt_level)) {
2912 level = mapping_level(vcpu, gfn);
2913 /*
2914 * This path builds a PAE pagetable - so we can map
2915 * 2mb pages at maximum. Therefore check if the level
2916 * is larger than that.
2917 */
2918 if (level > PT_DIRECTORY_LEVEL)
2919 level = PT_DIRECTORY_LEVEL;
2920
2921 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2922 } else
2923 level = PT_PAGE_TABLE_LEVEL;
2924
2925 if (fast_page_fault(vcpu, v, level, error_code))
2926 return 0;
2927
2928 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2929 smp_rmb();
2930
2931 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2932 return 0;
2933
2934 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2935 return r;
2936
2937 spin_lock(&vcpu->kvm->mmu_lock);
2938 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2939 goto out_unlock;
2940 make_mmu_pages_available(vcpu);
2941 if (likely(!force_pt_level))
2942 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2943 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2944 prefault);
2945 spin_unlock(&vcpu->kvm->mmu_lock);
2946
2947
2948 return r;
2949
2950 out_unlock:
2951 spin_unlock(&vcpu->kvm->mmu_lock);
2952 kvm_release_pfn_clean(pfn);
2953 return 0;
2954 }
2955
2956
2957 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2958 {
2959 int i;
2960 struct kvm_mmu_page *sp;
2961 LIST_HEAD(invalid_list);
2962
2963 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2964 return;
2965
2966 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2967 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2968 vcpu->arch.mmu.direct_map)) {
2969 hpa_t root = vcpu->arch.mmu.root_hpa;
2970
2971 spin_lock(&vcpu->kvm->mmu_lock);
2972 sp = page_header(root);
2973 --sp->root_count;
2974 if (!sp->root_count && sp->role.invalid) {
2975 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2976 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2977 }
2978 spin_unlock(&vcpu->kvm->mmu_lock);
2979 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2980 return;
2981 }
2982
2983 spin_lock(&vcpu->kvm->mmu_lock);
2984 for (i = 0; i < 4; ++i) {
2985 hpa_t root = vcpu->arch.mmu.pae_root[i];
2986
2987 if (root) {
2988 root &= PT64_BASE_ADDR_MASK;
2989 sp = page_header(root);
2990 --sp->root_count;
2991 if (!sp->root_count && sp->role.invalid)
2992 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2993 &invalid_list);
2994 }
2995 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2996 }
2997 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2998 spin_unlock(&vcpu->kvm->mmu_lock);
2999 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3000 }
3001
3002 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3003 {
3004 int ret = 0;
3005
3006 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3007 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3008 ret = 1;
3009 }
3010
3011 return ret;
3012 }
3013
3014 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3015 {
3016 struct kvm_mmu_page *sp;
3017 unsigned i;
3018
3019 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3020 spin_lock(&vcpu->kvm->mmu_lock);
3021 make_mmu_pages_available(vcpu);
3022 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3023 1, ACC_ALL, NULL);
3024 ++sp->root_count;
3025 spin_unlock(&vcpu->kvm->mmu_lock);
3026 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3027 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3028 for (i = 0; i < 4; ++i) {
3029 hpa_t root = vcpu->arch.mmu.pae_root[i];
3030
3031 ASSERT(!VALID_PAGE(root));
3032 spin_lock(&vcpu->kvm->mmu_lock);
3033 make_mmu_pages_available(vcpu);
3034 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3035 i << 30,
3036 PT32_ROOT_LEVEL, 1, ACC_ALL,
3037 NULL);
3038 root = __pa(sp->spt);
3039 ++sp->root_count;
3040 spin_unlock(&vcpu->kvm->mmu_lock);
3041 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3042 }
3043 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3044 } else
3045 BUG();
3046
3047 return 0;
3048 }
3049
3050 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3051 {
3052 struct kvm_mmu_page *sp;
3053 u64 pdptr, pm_mask;
3054 gfn_t root_gfn;
3055 int i;
3056
3057 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3058
3059 if (mmu_check_root(vcpu, root_gfn))
3060 return 1;
3061
3062 /*
3063 * Do we shadow a long mode page table? If so we need to
3064 * write-protect the guests page table root.
3065 */
3066 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3067 hpa_t root = vcpu->arch.mmu.root_hpa;
3068
3069 ASSERT(!VALID_PAGE(root));
3070
3071 spin_lock(&vcpu->kvm->mmu_lock);
3072 make_mmu_pages_available(vcpu);
3073 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3074 0, ACC_ALL, NULL);
3075 root = __pa(sp->spt);
3076 ++sp->root_count;
3077 spin_unlock(&vcpu->kvm->mmu_lock);
3078 vcpu->arch.mmu.root_hpa = root;
3079 return 0;
3080 }
3081
3082 /*
3083 * We shadow a 32 bit page table. This may be a legacy 2-level
3084 * or a PAE 3-level page table. In either case we need to be aware that
3085 * the shadow page table may be a PAE or a long mode page table.
3086 */
3087 pm_mask = PT_PRESENT_MASK;
3088 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3089 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3090
3091 for (i = 0; i < 4; ++i) {
3092 hpa_t root = vcpu->arch.mmu.pae_root[i];
3093
3094 ASSERT(!VALID_PAGE(root));
3095 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3096 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3097 if (!is_present_gpte(pdptr)) {
3098 vcpu->arch.mmu.pae_root[i] = 0;
3099 continue;
3100 }
3101 root_gfn = pdptr >> PAGE_SHIFT;
3102 if (mmu_check_root(vcpu, root_gfn))
3103 return 1;
3104 }
3105 spin_lock(&vcpu->kvm->mmu_lock);
3106 make_mmu_pages_available(vcpu);
3107 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3108 PT32_ROOT_LEVEL, 0,
3109 ACC_ALL, NULL);
3110 root = __pa(sp->spt);
3111 ++sp->root_count;
3112 spin_unlock(&vcpu->kvm->mmu_lock);
3113
3114 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3115 }
3116 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3117
3118 /*
3119 * If we shadow a 32 bit page table with a long mode page
3120 * table we enter this path.
3121 */
3122 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3123 if (vcpu->arch.mmu.lm_root == NULL) {
3124 /*
3125 * The additional page necessary for this is only
3126 * allocated on demand.
3127 */
3128
3129 u64 *lm_root;
3130
3131 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3132 if (lm_root == NULL)
3133 return 1;
3134
3135 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3136
3137 vcpu->arch.mmu.lm_root = lm_root;
3138 }
3139
3140 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3141 }
3142
3143 return 0;
3144 }
3145
3146 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3147 {
3148 if (vcpu->arch.mmu.direct_map)
3149 return mmu_alloc_direct_roots(vcpu);
3150 else
3151 return mmu_alloc_shadow_roots(vcpu);
3152 }
3153
3154 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3155 {
3156 int i;
3157 struct kvm_mmu_page *sp;
3158
3159 if (vcpu->arch.mmu.direct_map)
3160 return;
3161
3162 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3163 return;
3164
3165 vcpu_clear_mmio_info(vcpu, ~0ul);
3166 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3167 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3168 hpa_t root = vcpu->arch.mmu.root_hpa;
3169 sp = page_header(root);
3170 mmu_sync_children(vcpu, sp);
3171 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3172 return;
3173 }
3174 for (i = 0; i < 4; ++i) {
3175 hpa_t root = vcpu->arch.mmu.pae_root[i];
3176
3177 if (root && VALID_PAGE(root)) {
3178 root &= PT64_BASE_ADDR_MASK;
3179 sp = page_header(root);
3180 mmu_sync_children(vcpu, sp);
3181 }
3182 }
3183 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3184 }
3185
3186 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3187 {
3188 spin_lock(&vcpu->kvm->mmu_lock);
3189 mmu_sync_roots(vcpu);
3190 spin_unlock(&vcpu->kvm->mmu_lock);
3191 }
3192 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3193
3194 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3195 u32 access, struct x86_exception *exception)
3196 {
3197 if (exception)
3198 exception->error_code = 0;
3199 return vaddr;
3200 }
3201
3202 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3203 u32 access,
3204 struct x86_exception *exception)
3205 {
3206 if (exception)
3207 exception->error_code = 0;
3208 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3209 }
3210
3211 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3212 {
3213 if (direct)
3214 return vcpu_match_mmio_gpa(vcpu, addr);
3215
3216 return vcpu_match_mmio_gva(vcpu, addr);
3217 }
3218
3219
3220 /*
3221 * On direct hosts, the last spte is only allows two states
3222 * for mmio page fault:
3223 * - It is the mmio spte
3224 * - It is zapped or it is being zapped.
3225 *
3226 * This function completely checks the spte when the last spte
3227 * is not the mmio spte.
3228 */
3229 static bool check_direct_spte_mmio_pf(u64 spte)
3230 {
3231 return __check_direct_spte_mmio_pf(spte);
3232 }
3233
3234 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3235 {
3236 struct kvm_shadow_walk_iterator iterator;
3237 u64 spte = 0ull;
3238
3239 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3240 return spte;
3241
3242 walk_shadow_page_lockless_begin(vcpu);
3243 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3244 if (!is_shadow_present_pte(spte))
3245 break;
3246 walk_shadow_page_lockless_end(vcpu);
3247
3248 return spte;
3249 }
3250
3251 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3252 {
3253 u64 spte;
3254
3255 if (quickly_check_mmio_pf(vcpu, addr, direct))
3256 return RET_MMIO_PF_EMULATE;
3257
3258 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3259
3260 if (is_mmio_spte(spte)) {
3261 gfn_t gfn = get_mmio_spte_gfn(spte);
3262 unsigned access = get_mmio_spte_access(spte);
3263
3264 if (!check_mmio_spte(vcpu->kvm, spte))
3265 return RET_MMIO_PF_INVALID;
3266
3267 if (direct)
3268 addr = 0;
3269
3270 trace_handle_mmio_page_fault(addr, gfn, access);
3271 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3272 return RET_MMIO_PF_EMULATE;
3273 }
3274
3275 /*
3276 * It's ok if the gva is remapped by other cpus on shadow guest,
3277 * it's a BUG if the gfn is not a mmio page.
3278 */
3279 if (direct && !check_direct_spte_mmio_pf(spte))
3280 return RET_MMIO_PF_BUG;
3281
3282 /*
3283 * If the page table is zapped by other cpus, let CPU fault again on
3284 * the address.
3285 */
3286 return RET_MMIO_PF_RETRY;
3287 }
3288 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3289
3290 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3291 u32 error_code, bool direct)
3292 {
3293 int ret;
3294
3295 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3296 WARN_ON(ret == RET_MMIO_PF_BUG);
3297 return ret;
3298 }
3299
3300 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3301 u32 error_code, bool prefault)
3302 {
3303 gfn_t gfn;
3304 int r;
3305
3306 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3307
3308 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3309 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3310
3311 if (likely(r != RET_MMIO_PF_INVALID))
3312 return r;
3313 }
3314
3315 r = mmu_topup_memory_caches(vcpu);
3316 if (r)
3317 return r;
3318
3319 ASSERT(vcpu);
3320 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3321
3322 gfn = gva >> PAGE_SHIFT;
3323
3324 return nonpaging_map(vcpu, gva & PAGE_MASK,
3325 error_code, gfn, prefault);
3326 }
3327
3328 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3329 {
3330 struct kvm_arch_async_pf arch;
3331
3332 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3333 arch.gfn = gfn;
3334 arch.direct_map = vcpu->arch.mmu.direct_map;
3335 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3336
3337 return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3338 }
3339
3340 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3341 {
3342 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3343 kvm_event_needs_reinjection(vcpu)))
3344 return false;
3345
3346 return kvm_x86_ops->interrupt_allowed(vcpu);
3347 }
3348
3349 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3350 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3351 {
3352 bool async;
3353
3354 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3355
3356 if (!async)
3357 return false; /* *pfn has correct page already */
3358
3359 if (!prefault && can_do_async_pf(vcpu)) {
3360 trace_kvm_try_async_get_page(gva, gfn);
3361 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3362 trace_kvm_async_pf_doublefault(gva, gfn);
3363 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3364 return true;
3365 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3366 return true;
3367 }
3368
3369 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3370
3371 return false;
3372 }
3373
3374 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3375 bool prefault)
3376 {
3377 pfn_t pfn;
3378 int r;
3379 int level;
3380 int force_pt_level;
3381 gfn_t gfn = gpa >> PAGE_SHIFT;
3382 unsigned long mmu_seq;
3383 int write = error_code & PFERR_WRITE_MASK;
3384 bool map_writable;
3385
3386 ASSERT(vcpu);
3387 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3388
3389 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3390 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3391
3392 if (likely(r != RET_MMIO_PF_INVALID))
3393 return r;
3394 }
3395
3396 r = mmu_topup_memory_caches(vcpu);
3397 if (r)
3398 return r;
3399
3400 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3401 if (likely(!force_pt_level)) {
3402 level = mapping_level(vcpu, gfn);
3403 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3404 } else
3405 level = PT_PAGE_TABLE_LEVEL;
3406
3407 if (fast_page_fault(vcpu, gpa, level, error_code))
3408 return 0;
3409
3410 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3411 smp_rmb();
3412
3413 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3414 return 0;
3415
3416 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3417 return r;
3418
3419 spin_lock(&vcpu->kvm->mmu_lock);
3420 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3421 goto out_unlock;
3422 make_mmu_pages_available(vcpu);
3423 if (likely(!force_pt_level))
3424 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3425 r = __direct_map(vcpu, gpa, write, map_writable,
3426 level, gfn, pfn, prefault);
3427 spin_unlock(&vcpu->kvm->mmu_lock);
3428
3429 return r;
3430
3431 out_unlock:
3432 spin_unlock(&vcpu->kvm->mmu_lock);
3433 kvm_release_pfn_clean(pfn);
3434 return 0;
3435 }
3436
3437 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3438 struct kvm_mmu *context)
3439 {
3440 context->page_fault = nonpaging_page_fault;
3441 context->gva_to_gpa = nonpaging_gva_to_gpa;
3442 context->sync_page = nonpaging_sync_page;
3443 context->invlpg = nonpaging_invlpg;
3444 context->update_pte = nonpaging_update_pte;
3445 context->root_level = 0;
3446 context->shadow_root_level = PT32E_ROOT_LEVEL;
3447 context->root_hpa = INVALID_PAGE;
3448 context->direct_map = true;
3449 context->nx = false;
3450 }
3451
3452 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3453 {
3454 ++vcpu->stat.tlb_flush;
3455 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3456 }
3457 EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
3458
3459 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3460 {
3461 mmu_free_roots(vcpu);
3462 }
3463
3464 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3465 {
3466 return kvm_read_cr3(vcpu);
3467 }
3468
3469 static void inject_page_fault(struct kvm_vcpu *vcpu,
3470 struct x86_exception *fault)
3471 {
3472 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3473 }
3474
3475 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3476 unsigned access, int *nr_present)
3477 {
3478 if (unlikely(is_mmio_spte(*sptep))) {
3479 if (gfn != get_mmio_spte_gfn(*sptep)) {
3480 mmu_spte_clear_no_track(sptep);
3481 return true;
3482 }
3483
3484 (*nr_present)++;
3485 mark_mmio_spte(kvm, sptep, gfn, access);
3486 return true;
3487 }
3488
3489 return false;
3490 }
3491
3492 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3493 {
3494 unsigned index;
3495
3496 index = level - 1;
3497 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3498 return mmu->last_pte_bitmap & (1 << index);
3499 }
3500
3501 #define PTTYPE_EPT 18 /* arbitrary */
3502 #define PTTYPE PTTYPE_EPT
3503 #include "paging_tmpl.h"
3504 #undef PTTYPE
3505
3506 #define PTTYPE 64
3507 #include "paging_tmpl.h"
3508 #undef PTTYPE
3509
3510 #define PTTYPE 32
3511 #include "paging_tmpl.h"
3512 #undef PTTYPE
3513
3514 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3515 struct kvm_mmu *context)
3516 {
3517 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3518 u64 exb_bit_rsvd = 0;
3519 u64 gbpages_bit_rsvd = 0;
3520
3521 context->bad_mt_xwr = 0;
3522
3523 if (!context->nx)
3524 exb_bit_rsvd = rsvd_bits(63, 63);
3525 if (!guest_cpuid_has_gbpages(vcpu))
3526 gbpages_bit_rsvd = rsvd_bits(7, 7);
3527 switch (context->root_level) {
3528 case PT32_ROOT_LEVEL:
3529 /* no rsvd bits for 2 level 4K page table entries */
3530 context->rsvd_bits_mask[0][1] = 0;
3531 context->rsvd_bits_mask[0][0] = 0;
3532 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3533
3534 if (!is_pse(vcpu)) {
3535 context->rsvd_bits_mask[1][1] = 0;
3536 break;
3537 }
3538
3539 if (is_cpuid_PSE36())
3540 /* 36bits PSE 4MB page */
3541 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3542 else
3543 /* 32 bits PSE 4MB page */
3544 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3545 break;
3546 case PT32E_ROOT_LEVEL:
3547 context->rsvd_bits_mask[0][2] =
3548 rsvd_bits(maxphyaddr, 63) |
3549 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3550 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3551 rsvd_bits(maxphyaddr, 62); /* PDE */
3552 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3553 rsvd_bits(maxphyaddr, 62); /* PTE */
3554 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3555 rsvd_bits(maxphyaddr, 62) |
3556 rsvd_bits(13, 20); /* large page */
3557 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3558 break;
3559 case PT64_ROOT_LEVEL:
3560 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3561 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 7);
3562 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3563 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3564 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3565 rsvd_bits(maxphyaddr, 51);
3566 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3567 rsvd_bits(maxphyaddr, 51);
3568 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3569 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3570 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3571 rsvd_bits(13, 29);
3572 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3573 rsvd_bits(maxphyaddr, 51) |
3574 rsvd_bits(13, 20); /* large page */
3575 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3576 break;
3577 }
3578 }
3579
3580 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3581 struct kvm_mmu *context, bool execonly)
3582 {
3583 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3584 int pte;
3585
3586 context->rsvd_bits_mask[0][3] =
3587 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3588 context->rsvd_bits_mask[0][2] =
3589 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3590 context->rsvd_bits_mask[0][1] =
3591 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3592 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3593
3594 /* large page */
3595 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3596 context->rsvd_bits_mask[1][2] =
3597 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3598 context->rsvd_bits_mask[1][1] =
3599 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3600 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3601
3602 for (pte = 0; pte < 64; pte++) {
3603 int rwx_bits = pte & 7;
3604 int mt = pte >> 3;
3605 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3606 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3607 (rwx_bits == 0x4 && !execonly))
3608 context->bad_mt_xwr |= (1ull << pte);
3609 }
3610 }
3611
3612 void update_permission_bitmask(struct kvm_vcpu *vcpu,
3613 struct kvm_mmu *mmu, bool ept)
3614 {
3615 unsigned bit, byte, pfec;
3616 u8 map;
3617 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3618
3619 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3620 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3621 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3622 pfec = byte << 1;
3623 map = 0;
3624 wf = pfec & PFERR_WRITE_MASK;
3625 uf = pfec & PFERR_USER_MASK;
3626 ff = pfec & PFERR_FETCH_MASK;
3627 /*
3628 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3629 * subject to SMAP restrictions, and cleared otherwise. The
3630 * bit is only meaningful if the SMAP bit is set in CR4.
3631 */
3632 smapf = !(pfec & PFERR_RSVD_MASK);
3633 for (bit = 0; bit < 8; ++bit) {
3634 x = bit & ACC_EXEC_MASK;
3635 w = bit & ACC_WRITE_MASK;
3636 u = bit & ACC_USER_MASK;
3637
3638 if (!ept) {
3639 /* Not really needed: !nx will cause pte.nx to fault */
3640 x |= !mmu->nx;
3641 /* Allow supervisor writes if !cr0.wp */
3642 w |= !is_write_protection(vcpu) && !uf;
3643 /* Disallow supervisor fetches of user code if cr4.smep */
3644 x &= !(cr4_smep && u && !uf);
3645
3646 /*
3647 * SMAP:kernel-mode data accesses from user-mode
3648 * mappings should fault. A fault is considered
3649 * as a SMAP violation if all of the following
3650 * conditions are ture:
3651 * - X86_CR4_SMAP is set in CR4
3652 * - An user page is accessed
3653 * - Page fault in kernel mode
3654 * - if CPL = 3 or X86_EFLAGS_AC is clear
3655 *
3656 * Here, we cover the first three conditions.
3657 * The fourth is computed dynamically in
3658 * permission_fault() and is in smapf.
3659 *
3660 * Also, SMAP does not affect instruction
3661 * fetches, add the !ff check here to make it
3662 * clearer.
3663 */
3664 smap = cr4_smap && u && !uf && !ff;
3665 } else
3666 /* Not really needed: no U/S accesses on ept */
3667 u = 1;
3668
3669 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3670 (smapf && smap);
3671 map |= fault << bit;
3672 }
3673 mmu->permissions[byte] = map;
3674 }
3675 }
3676
3677 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3678 {
3679 u8 map;
3680 unsigned level, root_level = mmu->root_level;
3681 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3682
3683 if (root_level == PT32E_ROOT_LEVEL)
3684 --root_level;
3685 /* PT_PAGE_TABLE_LEVEL always terminates */
3686 map = 1 | (1 << ps_set_index);
3687 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3688 if (level <= PT_PDPE_LEVEL
3689 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3690 map |= 1 << (ps_set_index | (level - 1));
3691 }
3692 mmu->last_pte_bitmap = map;
3693 }
3694
3695 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3696 struct kvm_mmu *context,
3697 int level)
3698 {
3699 context->nx = is_nx(vcpu);
3700 context->root_level = level;
3701
3702 reset_rsvds_bits_mask(vcpu, context);
3703 update_permission_bitmask(vcpu, context, false);
3704 update_last_pte_bitmap(vcpu, context);
3705
3706 ASSERT(is_pae(vcpu));
3707 context->page_fault = paging64_page_fault;
3708 context->gva_to_gpa = paging64_gva_to_gpa;
3709 context->sync_page = paging64_sync_page;
3710 context->invlpg = paging64_invlpg;
3711 context->update_pte = paging64_update_pte;
3712 context->shadow_root_level = level;
3713 context->root_hpa = INVALID_PAGE;
3714 context->direct_map = false;
3715 }
3716
3717 static void paging64_init_context(struct kvm_vcpu *vcpu,
3718 struct kvm_mmu *context)
3719 {
3720 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3721 }
3722
3723 static void paging32_init_context(struct kvm_vcpu *vcpu,
3724 struct kvm_mmu *context)
3725 {
3726 context->nx = false;
3727 context->root_level = PT32_ROOT_LEVEL;
3728
3729 reset_rsvds_bits_mask(vcpu, context);
3730 update_permission_bitmask(vcpu, context, false);
3731 update_last_pte_bitmap(vcpu, context);
3732
3733 context->page_fault = paging32_page_fault;
3734 context->gva_to_gpa = paging32_gva_to_gpa;
3735 context->sync_page = paging32_sync_page;
3736 context->invlpg = paging32_invlpg;
3737 context->update_pte = paging32_update_pte;
3738 context->shadow_root_level = PT32E_ROOT_LEVEL;
3739 context->root_hpa = INVALID_PAGE;
3740 context->direct_map = false;
3741 }
3742
3743 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3744 struct kvm_mmu *context)
3745 {
3746 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3747 }
3748
3749 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3750 {
3751 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3752
3753 context->base_role.word = 0;
3754 context->page_fault = tdp_page_fault;
3755 context->sync_page = nonpaging_sync_page;
3756 context->invlpg = nonpaging_invlpg;
3757 context->update_pte = nonpaging_update_pte;
3758 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3759 context->root_hpa = INVALID_PAGE;
3760 context->direct_map = true;
3761 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3762 context->get_cr3 = get_cr3;
3763 context->get_pdptr = kvm_pdptr_read;
3764 context->inject_page_fault = kvm_inject_page_fault;
3765
3766 if (!is_paging(vcpu)) {
3767 context->nx = false;
3768 context->gva_to_gpa = nonpaging_gva_to_gpa;
3769 context->root_level = 0;
3770 } else if (is_long_mode(vcpu)) {
3771 context->nx = is_nx(vcpu);
3772 context->root_level = PT64_ROOT_LEVEL;
3773 reset_rsvds_bits_mask(vcpu, context);
3774 context->gva_to_gpa = paging64_gva_to_gpa;
3775 } else if (is_pae(vcpu)) {
3776 context->nx = is_nx(vcpu);
3777 context->root_level = PT32E_ROOT_LEVEL;
3778 reset_rsvds_bits_mask(vcpu, context);
3779 context->gva_to_gpa = paging64_gva_to_gpa;
3780 } else {
3781 context->nx = false;
3782 context->root_level = PT32_ROOT_LEVEL;
3783 reset_rsvds_bits_mask(vcpu, context);
3784 context->gva_to_gpa = paging32_gva_to_gpa;
3785 }
3786
3787 update_permission_bitmask(vcpu, context, false);
3788 update_last_pte_bitmap(vcpu, context);
3789 }
3790
3791 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3792 {
3793 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3794 ASSERT(vcpu);
3795 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3796
3797 if (!is_paging(vcpu))
3798 nonpaging_init_context(vcpu, context);
3799 else if (is_long_mode(vcpu))
3800 paging64_init_context(vcpu, context);
3801 else if (is_pae(vcpu))
3802 paging32E_init_context(vcpu, context);
3803 else
3804 paging32_init_context(vcpu, context);
3805
3806 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3807 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3808 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3809 vcpu->arch.mmu.base_role.smep_andnot_wp
3810 = smep && !is_write_protection(vcpu);
3811 }
3812 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3813
3814 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
3815 bool execonly)
3816 {
3817 ASSERT(vcpu);
3818 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3819
3820 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3821
3822 context->nx = true;
3823 context->page_fault = ept_page_fault;
3824 context->gva_to_gpa = ept_gva_to_gpa;
3825 context->sync_page = ept_sync_page;
3826 context->invlpg = ept_invlpg;
3827 context->update_pte = ept_update_pte;
3828 context->root_level = context->shadow_root_level;
3829 context->root_hpa = INVALID_PAGE;
3830 context->direct_map = false;
3831
3832 update_permission_bitmask(vcpu, context, true);
3833 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3834 }
3835 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3836
3837 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3838 {
3839 kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3840 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3841 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3842 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3843 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3844 }
3845
3846 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3847 {
3848 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3849
3850 g_context->get_cr3 = get_cr3;
3851 g_context->get_pdptr = kvm_pdptr_read;
3852 g_context->inject_page_fault = kvm_inject_page_fault;
3853
3854 /*
3855 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3856 * translation of l2_gpa to l1_gpa addresses is done using the
3857 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3858 * functions between mmu and nested_mmu are swapped.
3859 */
3860 if (!is_paging(vcpu)) {
3861 g_context->nx = false;
3862 g_context->root_level = 0;
3863 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3864 } else if (is_long_mode(vcpu)) {
3865 g_context->nx = is_nx(vcpu);
3866 g_context->root_level = PT64_ROOT_LEVEL;
3867 reset_rsvds_bits_mask(vcpu, g_context);
3868 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3869 } else if (is_pae(vcpu)) {
3870 g_context->nx = is_nx(vcpu);
3871 g_context->root_level = PT32E_ROOT_LEVEL;
3872 reset_rsvds_bits_mask(vcpu, g_context);
3873 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3874 } else {
3875 g_context->nx = false;
3876 g_context->root_level = PT32_ROOT_LEVEL;
3877 reset_rsvds_bits_mask(vcpu, g_context);
3878 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3879 }
3880
3881 update_permission_bitmask(vcpu, g_context, false);
3882 update_last_pte_bitmap(vcpu, g_context);
3883 }
3884
3885 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3886 {
3887 if (mmu_is_nested(vcpu))
3888 return init_kvm_nested_mmu(vcpu);
3889 else if (tdp_enabled)
3890 return init_kvm_tdp_mmu(vcpu);
3891 else
3892 return init_kvm_softmmu(vcpu);
3893 }
3894
3895 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3896 {
3897 ASSERT(vcpu);
3898
3899 kvm_mmu_unload(vcpu);
3900 init_kvm_mmu(vcpu);
3901 }
3902 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3903
3904 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3905 {
3906 int r;
3907
3908 r = mmu_topup_memory_caches(vcpu);
3909 if (r)
3910 goto out;
3911 r = mmu_alloc_roots(vcpu);
3912 kvm_mmu_sync_roots(vcpu);
3913 if (r)
3914 goto out;
3915 /* set_cr3() should ensure TLB has been flushed */
3916 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3917 out:
3918 return r;
3919 }
3920 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3921
3922 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3923 {
3924 mmu_free_roots(vcpu);
3925 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3926 }
3927 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3928
3929 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3930 struct kvm_mmu_page *sp, u64 *spte,
3931 const void *new)
3932 {
3933 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3934 ++vcpu->kvm->stat.mmu_pde_zapped;
3935 return;
3936 }
3937
3938 ++vcpu->kvm->stat.mmu_pte_updated;
3939 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3940 }
3941
3942 static bool need_remote_flush(u64 old, u64 new)
3943 {
3944 if (!is_shadow_present_pte(old))
3945 return false;
3946 if (!is_shadow_present_pte(new))
3947 return true;
3948 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3949 return true;
3950 old ^= shadow_nx_mask;
3951 new ^= shadow_nx_mask;
3952 return (old & ~new & PT64_PERM_MASK) != 0;
3953 }
3954
3955 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3956 bool remote_flush, bool local_flush)
3957 {
3958 if (zap_page)
3959 return;
3960
3961 if (remote_flush)
3962 kvm_flush_remote_tlbs(vcpu->kvm);
3963 else if (local_flush)
3964 kvm_mmu_flush_tlb(vcpu);
3965 }
3966
3967 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3968 const u8 *new, int *bytes)
3969 {
3970 u64 gentry;
3971 int r;
3972
3973 /*
3974 * Assume that the pte write on a page table of the same type
3975 * as the current vcpu paging mode since we update the sptes only
3976 * when they have the same mode.
3977 */
3978 if (is_pae(vcpu) && *bytes == 4) {
3979 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3980 *gpa &= ~(gpa_t)7;
3981 *bytes = 8;
3982 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3983 if (r)
3984 gentry = 0;
3985 new = (const u8 *)&gentry;
3986 }
3987
3988 switch (*bytes) {
3989 case 4:
3990 gentry = *(const u32 *)new;
3991 break;
3992 case 8:
3993 gentry = *(const u64 *)new;
3994 break;
3995 default:
3996 gentry = 0;
3997 break;
3998 }
3999
4000 return gentry;
4001 }
4002
4003 /*
4004 * If we're seeing too many writes to a page, it may no longer be a page table,
4005 * or we may be forking, in which case it is better to unmap the page.
4006 */
4007 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4008 {
4009 /*
4010 * Skip write-flooding detected for the sp whose level is 1, because
4011 * it can become unsync, then the guest page is not write-protected.
4012 */
4013 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4014 return false;
4015
4016 return ++sp->write_flooding_count >= 3;
4017 }
4018
4019 /*
4020 * Misaligned accesses are too much trouble to fix up; also, they usually
4021 * indicate a page is not used as a page table.
4022 */
4023 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4024 int bytes)
4025 {
4026 unsigned offset, pte_size, misaligned;
4027
4028 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4029 gpa, bytes, sp->role.word);
4030
4031 offset = offset_in_page(gpa);
4032 pte_size = sp->role.cr4_pae ? 8 : 4;
4033
4034 /*
4035 * Sometimes, the OS only writes the last one bytes to update status
4036 * bits, for example, in linux, andb instruction is used in clear_bit().
4037 */
4038 if (!(offset & (pte_size - 1)) && bytes == 1)
4039 return false;
4040
4041 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4042 misaligned |= bytes < 4;
4043
4044 return misaligned;
4045 }
4046
4047 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4048 {
4049 unsigned page_offset, quadrant;
4050 u64 *spte;
4051 int level;
4052
4053 page_offset = offset_in_page(gpa);
4054 level = sp->role.level;
4055 *nspte = 1;
4056 if (!sp->role.cr4_pae) {
4057 page_offset <<= 1; /* 32->64 */
4058 /*
4059 * A 32-bit pde maps 4MB while the shadow pdes map
4060 * only 2MB. So we need to double the offset again
4061 * and zap two pdes instead of one.
4062 */
4063 if (level == PT32_ROOT_LEVEL) {
4064 page_offset &= ~7; /* kill rounding error */
4065 page_offset <<= 1;
4066 *nspte = 2;
4067 }
4068 quadrant = page_offset >> PAGE_SHIFT;
4069 page_offset &= ~PAGE_MASK;
4070 if (quadrant != sp->role.quadrant)
4071 return NULL;
4072 }
4073
4074 spte = &sp->spt[page_offset / sizeof(*spte)];
4075 return spte;
4076 }
4077
4078 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4079 const u8 *new, int bytes)
4080 {
4081 gfn_t gfn = gpa >> PAGE_SHIFT;
4082 union kvm_mmu_page_role mask = { .word = 0 };
4083 struct kvm_mmu_page *sp;
4084 LIST_HEAD(invalid_list);
4085 u64 entry, gentry, *spte;
4086 int npte;
4087 bool remote_flush, local_flush, zap_page;
4088
4089 /*
4090 * If we don't have indirect shadow pages, it means no page is
4091 * write-protected, so we can exit simply.
4092 */
4093 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4094 return;
4095
4096 zap_page = remote_flush = local_flush = false;
4097
4098 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4099
4100 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4101
4102 /*
4103 * No need to care whether allocation memory is successful
4104 * or not since pte prefetch is skiped if it does not have
4105 * enough objects in the cache.
4106 */
4107 mmu_topup_memory_caches(vcpu);
4108
4109 spin_lock(&vcpu->kvm->mmu_lock);
4110 ++vcpu->kvm->stat.mmu_pte_write;
4111 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4112
4113 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4114 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4115 if (detect_write_misaligned(sp, gpa, bytes) ||
4116 detect_write_flooding(sp)) {
4117 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4118 &invalid_list);
4119 ++vcpu->kvm->stat.mmu_flooded;
4120 continue;
4121 }
4122
4123 spte = get_written_sptes(sp, gpa, &npte);
4124 if (!spte)
4125 continue;
4126
4127 local_flush = true;
4128 while (npte--) {
4129 entry = *spte;
4130 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4131 if (gentry &&
4132 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4133 & mask.word) && rmap_can_add(vcpu))
4134 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4135 if (need_remote_flush(entry, *spte))
4136 remote_flush = true;
4137 ++spte;
4138 }
4139 }
4140 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4141 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4142 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4143 spin_unlock(&vcpu->kvm->mmu_lock);
4144 }
4145
4146 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4147 {
4148 gpa_t gpa;
4149 int r;
4150
4151 if (vcpu->arch.mmu.direct_map)
4152 return 0;
4153
4154 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4155
4156 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4157
4158 return r;
4159 }
4160 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4161
4162 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4163 {
4164 LIST_HEAD(invalid_list);
4165
4166 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4167 return;
4168
4169 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4170 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4171 break;
4172
4173 ++vcpu->kvm->stat.mmu_recycled;
4174 }
4175 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4176 }
4177
4178 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4179 {
4180 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4181 return vcpu_match_mmio_gpa(vcpu, addr);
4182
4183 return vcpu_match_mmio_gva(vcpu, addr);
4184 }
4185
4186 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4187 void *insn, int insn_len)
4188 {
4189 int r, emulation_type = EMULTYPE_RETRY;
4190 enum emulation_result er;
4191
4192 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4193 if (r < 0)
4194 goto out;
4195
4196 if (!r) {
4197 r = 1;
4198 goto out;
4199 }
4200
4201 if (is_mmio_page_fault(vcpu, cr2))
4202 emulation_type = 0;
4203
4204 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4205
4206 switch (er) {
4207 case EMULATE_DONE:
4208 return 1;
4209 case EMULATE_USER_EXIT:
4210 ++vcpu->stat.mmio_exits;
4211 /* fall through */
4212 case EMULATE_FAIL:
4213 return 0;
4214 default:
4215 BUG();
4216 }
4217 out:
4218 return r;
4219 }
4220 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4221
4222 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4223 {
4224 vcpu->arch.mmu.invlpg(vcpu, gva);
4225 kvm_mmu_flush_tlb(vcpu);
4226 ++vcpu->stat.invlpg;
4227 }
4228 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4229
4230 void kvm_enable_tdp(void)
4231 {
4232 tdp_enabled = true;
4233 }
4234 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4235
4236 void kvm_disable_tdp(void)
4237 {
4238 tdp_enabled = false;
4239 }
4240 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4241
4242 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4243 {
4244 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4245 if (vcpu->arch.mmu.lm_root != NULL)
4246 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4247 }
4248
4249 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4250 {
4251 struct page *page;
4252 int i;
4253
4254 ASSERT(vcpu);
4255
4256 /*
4257 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4258 * Therefore we need to allocate shadow page tables in the first
4259 * 4GB of memory, which happens to fit the DMA32 zone.
4260 */
4261 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4262 if (!page)
4263 return -ENOMEM;
4264
4265 vcpu->arch.mmu.pae_root = page_address(page);
4266 for (i = 0; i < 4; ++i)
4267 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4268
4269 return 0;
4270 }
4271
4272 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4273 {
4274 ASSERT(vcpu);
4275
4276 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4277 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4278 vcpu->arch.mmu.translate_gpa = translate_gpa;
4279 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4280
4281 return alloc_mmu_pages(vcpu);
4282 }
4283
4284 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4285 {
4286 ASSERT(vcpu);
4287 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4288
4289 init_kvm_mmu(vcpu);
4290 }
4291
4292 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4293 {
4294 struct kvm_memory_slot *memslot;
4295 gfn_t last_gfn;
4296 int i;
4297
4298 memslot = id_to_memslot(kvm->memslots, slot);
4299 last_gfn = memslot->base_gfn + memslot->npages - 1;
4300
4301 spin_lock(&kvm->mmu_lock);
4302
4303 for (i = PT_PAGE_TABLE_LEVEL;
4304 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4305 unsigned long *rmapp;
4306 unsigned long last_index, index;
4307
4308 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4309 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4310
4311 for (index = 0; index <= last_index; ++index, ++rmapp) {
4312 if (*rmapp)
4313 __rmap_write_protect(kvm, rmapp, false);
4314
4315 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4316 cond_resched_lock(&kvm->mmu_lock);
4317 }
4318 }
4319
4320 spin_unlock(&kvm->mmu_lock);
4321
4322 /*
4323 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4324 * which do tlb flush out of mmu-lock should be serialized by
4325 * kvm->slots_lock otherwise tlb flush would be missed.
4326 */
4327 lockdep_assert_held(&kvm->slots_lock);
4328
4329 /*
4330 * We can flush all the TLBs out of the mmu lock without TLB
4331 * corruption since we just change the spte from writable to
4332 * readonly so that we only need to care the case of changing
4333 * spte from present to present (changing the spte from present
4334 * to nonpresent will flush all the TLBs immediately), in other
4335 * words, the only case we care is mmu_spte_update() where we
4336 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4337 * instead of PT_WRITABLE_MASK, that means it does not depend
4338 * on PT_WRITABLE_MASK anymore.
4339 */
4340 kvm_flush_remote_tlbs(kvm);
4341 }
4342
4343 #define BATCH_ZAP_PAGES 10
4344 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4345 {
4346 struct kvm_mmu_page *sp, *node;
4347 int batch = 0;
4348
4349 restart:
4350 list_for_each_entry_safe_reverse(sp, node,
4351 &kvm->arch.active_mmu_pages, link) {
4352 int ret;
4353
4354 /*
4355 * No obsolete page exists before new created page since
4356 * active_mmu_pages is the FIFO list.
4357 */
4358 if (!is_obsolete_sp(kvm, sp))
4359 break;
4360
4361 /*
4362 * Since we are reversely walking the list and the invalid
4363 * list will be moved to the head, skip the invalid page
4364 * can help us to avoid the infinity list walking.
4365 */
4366 if (sp->role.invalid)
4367 continue;
4368
4369 /*
4370 * Need not flush tlb since we only zap the sp with invalid
4371 * generation number.
4372 */
4373 if (batch >= BATCH_ZAP_PAGES &&
4374 cond_resched_lock(&kvm->mmu_lock)) {
4375 batch = 0;
4376 goto restart;
4377 }
4378
4379 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4380 &kvm->arch.zapped_obsolete_pages);
4381 batch += ret;
4382
4383 if (ret)
4384 goto restart;
4385 }
4386
4387 /*
4388 * Should flush tlb before free page tables since lockless-walking
4389 * may use the pages.
4390 */
4391 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4392 }
4393
4394 /*
4395 * Fast invalidate all shadow pages and use lock-break technique
4396 * to zap obsolete pages.
4397 *
4398 * It's required when memslot is being deleted or VM is being
4399 * destroyed, in these cases, we should ensure that KVM MMU does
4400 * not use any resource of the being-deleted slot or all slots
4401 * after calling the function.
4402 */
4403 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4404 {
4405 spin_lock(&kvm->mmu_lock);
4406 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4407 kvm->arch.mmu_valid_gen++;
4408
4409 /*
4410 * Notify all vcpus to reload its shadow page table
4411 * and flush TLB. Then all vcpus will switch to new
4412 * shadow page table with the new mmu_valid_gen.
4413 *
4414 * Note: we should do this under the protection of
4415 * mmu-lock, otherwise, vcpu would purge shadow page
4416 * but miss tlb flush.
4417 */
4418 kvm_reload_remote_mmus(kvm);
4419
4420 kvm_zap_obsolete_pages(kvm);
4421 spin_unlock(&kvm->mmu_lock);
4422 }
4423
4424 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4425 {
4426 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4427 }
4428
4429 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4430 {
4431 /*
4432 * The very rare case: if the generation-number is round,
4433 * zap all shadow pages.
4434 */
4435 if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4436 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4437 kvm_mmu_invalidate_zap_all_pages(kvm);
4438 }
4439 }
4440
4441 static unsigned long
4442 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4443 {
4444 struct kvm *kvm;
4445 int nr_to_scan = sc->nr_to_scan;
4446 unsigned long freed = 0;
4447
4448 spin_lock(&kvm_lock);
4449
4450 list_for_each_entry(kvm, &vm_list, vm_list) {
4451 int idx;
4452 LIST_HEAD(invalid_list);
4453
4454 /*
4455 * Never scan more than sc->nr_to_scan VM instances.
4456 * Will not hit this condition practically since we do not try
4457 * to shrink more than one VM and it is very unlikely to see
4458 * !n_used_mmu_pages so many times.
4459 */
4460 if (!nr_to_scan--)
4461 break;
4462 /*
4463 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4464 * here. We may skip a VM instance errorneosly, but we do not
4465 * want to shrink a VM that only started to populate its MMU
4466 * anyway.
4467 */
4468 if (!kvm->arch.n_used_mmu_pages &&
4469 !kvm_has_zapped_obsolete_pages(kvm))
4470 continue;
4471
4472 idx = srcu_read_lock(&kvm->srcu);
4473 spin_lock(&kvm->mmu_lock);
4474
4475 if (kvm_has_zapped_obsolete_pages(kvm)) {
4476 kvm_mmu_commit_zap_page(kvm,
4477 &kvm->arch.zapped_obsolete_pages);
4478 goto unlock;
4479 }
4480
4481 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4482 freed++;
4483 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4484
4485 unlock:
4486 spin_unlock(&kvm->mmu_lock);
4487 srcu_read_unlock(&kvm->srcu, idx);
4488
4489 /*
4490 * unfair on small ones
4491 * per-vm shrinkers cry out
4492 * sadness comes quickly
4493 */
4494 list_move_tail(&kvm->vm_list, &vm_list);
4495 break;
4496 }
4497
4498 spin_unlock(&kvm_lock);
4499 return freed;
4500 }
4501
4502 static unsigned long
4503 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4504 {
4505 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4506 }
4507
4508 static struct shrinker mmu_shrinker = {
4509 .count_objects = mmu_shrink_count,
4510 .scan_objects = mmu_shrink_scan,
4511 .seeks = DEFAULT_SEEKS * 10,
4512 };
4513
4514 static void mmu_destroy_caches(void)
4515 {
4516 if (pte_list_desc_cache)
4517 kmem_cache_destroy(pte_list_desc_cache);
4518 if (mmu_page_header_cache)
4519 kmem_cache_destroy(mmu_page_header_cache);
4520 }
4521
4522 int kvm_mmu_module_init(void)
4523 {
4524 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4525 sizeof(struct pte_list_desc),
4526 0, 0, NULL);
4527 if (!pte_list_desc_cache)
4528 goto nomem;
4529
4530 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4531 sizeof(struct kvm_mmu_page),
4532 0, 0, NULL);
4533 if (!mmu_page_header_cache)
4534 goto nomem;
4535
4536 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4537 goto nomem;
4538
4539 register_shrinker(&mmu_shrinker);
4540
4541 return 0;
4542
4543 nomem:
4544 mmu_destroy_caches();
4545 return -ENOMEM;
4546 }
4547
4548 /*
4549 * Caculate mmu pages needed for kvm.
4550 */
4551 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4552 {
4553 unsigned int nr_mmu_pages;
4554 unsigned int nr_pages = 0;
4555 struct kvm_memslots *slots;
4556 struct kvm_memory_slot *memslot;
4557
4558 slots = kvm_memslots(kvm);
4559
4560 kvm_for_each_memslot(memslot, slots)
4561 nr_pages += memslot->npages;
4562
4563 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4564 nr_mmu_pages = max(nr_mmu_pages,
4565 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4566
4567 return nr_mmu_pages;
4568 }
4569
4570 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4571 {
4572 struct kvm_shadow_walk_iterator iterator;
4573 u64 spte;
4574 int nr_sptes = 0;
4575
4576 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4577 return nr_sptes;
4578
4579 walk_shadow_page_lockless_begin(vcpu);
4580 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4581 sptes[iterator.level-1] = spte;
4582 nr_sptes++;
4583 if (!is_shadow_present_pte(spte))
4584 break;
4585 }
4586 walk_shadow_page_lockless_end(vcpu);
4587
4588 return nr_sptes;
4589 }
4590 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4591
4592 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4593 {
4594 ASSERT(vcpu);
4595
4596 kvm_mmu_unload(vcpu);
4597 free_mmu_pages(vcpu);
4598 mmu_free_memory_caches(vcpu);
4599 }
4600
4601 void kvm_mmu_module_exit(void)
4602 {
4603 mmu_destroy_caches();
4604 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4605 unregister_shrinker(&mmu_shrinker);
4606 mmu_audit_disable();
4607 }
This page took 0.175476 seconds and 4 git commands to generate.