a22b5fe92167b268d344168e4f1f571be91c0701
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52 bool tdp_enabled = false;
53
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61 };
62
63 char *audit_point_name[] = {
64 "pre page fault",
65 "post page fault",
66 "pre pte write",
67 "post pte write",
68 "pre sync",
69 "post sync"
70 };
71
72 #undef MMU_DEBUG
73
74 #ifdef MMU_DEBUG
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
79 #else
80
81 #define pgprintk(x...) do { } while (0)
82 #define rmap_printk(x...) do { } while (0)
83
84 #endif
85
86 #ifdef MMU_DEBUG
87 static int dbg = 0;
88 module_param(dbg, bool, 0644);
89 #endif
90
91 static int oos_shadow = 1;
92 module_param(oos_shadow, bool, 0644);
93
94 #ifndef MMU_DEBUG
95 #define ASSERT(x) do { } while (0)
96 #else
97 #define ASSERT(x) \
98 if (!(x)) { \
99 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
100 __FILE__, __LINE__, #x); \
101 }
102 #endif
103
104 #define PTE_PREFETCH_NUM 8
105
106 #define PT_FIRST_AVAIL_BITS_SHIFT 9
107 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
108
109 #define PT64_LEVEL_BITS 9
110
111 #define PT64_LEVEL_SHIFT(level) \
112 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113
114 #define PT64_INDEX(address, level)\
115 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
116
117
118 #define PT32_LEVEL_BITS 10
119
120 #define PT32_LEVEL_SHIFT(level) \
121 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
122
123 #define PT32_LVL_OFFSET_MASK(level) \
124 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
125 * PT32_LEVEL_BITS))) - 1))
126
127 #define PT32_INDEX(address, level)\
128 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
129
130
131 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
132 #define PT64_DIR_BASE_ADDR_MASK \
133 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
134 #define PT64_LVL_ADDR_MASK(level) \
135 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
136 * PT64_LEVEL_BITS))) - 1))
137 #define PT64_LVL_OFFSET_MASK(level) \
138 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
139 * PT64_LEVEL_BITS))) - 1))
140
141 #define PT32_BASE_ADDR_MASK PAGE_MASK
142 #define PT32_DIR_BASE_ADDR_MASK \
143 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
144 #define PT32_LVL_ADDR_MASK(level) \
145 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
146 * PT32_LEVEL_BITS))) - 1))
147
148 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
149 | PT64_NX_MASK)
150
151 #define PTE_LIST_EXT 4
152
153 #define ACC_EXEC_MASK 1
154 #define ACC_WRITE_MASK PT_WRITABLE_MASK
155 #define ACC_USER_MASK PT_USER_MASK
156 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
157
158 #include <trace/events/kvm.h>
159
160 #define CREATE_TRACE_POINTS
161 #include "mmutrace.h"
162
163 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
164
165 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
166
167 struct pte_list_desc {
168 u64 *sptes[PTE_LIST_EXT];
169 struct pte_list_desc *more;
170 };
171
172 struct kvm_shadow_walk_iterator {
173 u64 addr;
174 hpa_t shadow_addr;
175 int level;
176 u64 *sptep;
177 unsigned index;
178 };
179
180 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
181 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
182 shadow_walk_okay(&(_walker)); \
183 shadow_walk_next(&(_walker)))
184
185 static struct kmem_cache *pte_list_desc_cache;
186 static struct kmem_cache *mmu_page_header_cache;
187 static struct percpu_counter kvm_total_used_mmu_pages;
188
189 static u64 __read_mostly shadow_nx_mask;
190 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
191 static u64 __read_mostly shadow_user_mask;
192 static u64 __read_mostly shadow_accessed_mask;
193 static u64 __read_mostly shadow_dirty_mask;
194
195 static inline u64 rsvd_bits(int s, int e)
196 {
197 return ((1ULL << (e - s + 1)) - 1) << s;
198 }
199
200 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
201 u64 dirty_mask, u64 nx_mask, u64 x_mask)
202 {
203 shadow_user_mask = user_mask;
204 shadow_accessed_mask = accessed_mask;
205 shadow_dirty_mask = dirty_mask;
206 shadow_nx_mask = nx_mask;
207 shadow_x_mask = x_mask;
208 }
209 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
210
211 static int is_cpuid_PSE36(void)
212 {
213 return 1;
214 }
215
216 static int is_nx(struct kvm_vcpu *vcpu)
217 {
218 return vcpu->arch.efer & EFER_NX;
219 }
220
221 static int is_shadow_present_pte(u64 pte)
222 {
223 return pte & PT_PRESENT_MASK;
224 }
225
226 static int is_large_pte(u64 pte)
227 {
228 return pte & PT_PAGE_SIZE_MASK;
229 }
230
231 static int is_dirty_gpte(unsigned long pte)
232 {
233 return pte & PT_DIRTY_MASK;
234 }
235
236 static int is_rmap_spte(u64 pte)
237 {
238 return is_shadow_present_pte(pte);
239 }
240
241 static int is_last_spte(u64 pte, int level)
242 {
243 if (level == PT_PAGE_TABLE_LEVEL)
244 return 1;
245 if (is_large_pte(pte))
246 return 1;
247 return 0;
248 }
249
250 static pfn_t spte_to_pfn(u64 pte)
251 {
252 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
253 }
254
255 static gfn_t pse36_gfn_delta(u32 gpte)
256 {
257 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
258
259 return (gpte & PT32_DIR_PSE36_MASK) << shift;
260 }
261
262 #ifdef CONFIG_X86_64
263 static void __set_spte(u64 *sptep, u64 spte)
264 {
265 *sptep = spte;
266 }
267
268 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
269 {
270 *sptep = spte;
271 }
272
273 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
274 {
275 return xchg(sptep, spte);
276 }
277 #else
278 union split_spte {
279 struct {
280 u32 spte_low;
281 u32 spte_high;
282 };
283 u64 spte;
284 };
285
286 static void __set_spte(u64 *sptep, u64 spte)
287 {
288 union split_spte *ssptep, sspte;
289
290 ssptep = (union split_spte *)sptep;
291 sspte = (union split_spte)spte;
292
293 ssptep->spte_high = sspte.spte_high;
294
295 /*
296 * If we map the spte from nonpresent to present, We should store
297 * the high bits firstly, then set present bit, so cpu can not
298 * fetch this spte while we are setting the spte.
299 */
300 smp_wmb();
301
302 ssptep->spte_low = sspte.spte_low;
303 }
304
305 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
306 {
307 union split_spte *ssptep, sspte;
308
309 ssptep = (union split_spte *)sptep;
310 sspte = (union split_spte)spte;
311
312 ssptep->spte_low = sspte.spte_low;
313
314 /*
315 * If we map the spte from present to nonpresent, we should clear
316 * present bit firstly to avoid vcpu fetch the old high bits.
317 */
318 smp_wmb();
319
320 ssptep->spte_high = sspte.spte_high;
321 }
322
323 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
324 {
325 union split_spte *ssptep, sspte, orig;
326
327 ssptep = (union split_spte *)sptep;
328 sspte = (union split_spte)spte;
329
330 /* xchg acts as a barrier before the setting of the high bits */
331 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
332 orig.spte_high = ssptep->spte_high = sspte.spte_high;
333
334 return orig.spte;
335 }
336 #endif
337
338 static bool spte_has_volatile_bits(u64 spte)
339 {
340 if (!shadow_accessed_mask)
341 return false;
342
343 if (!is_shadow_present_pte(spte))
344 return false;
345
346 if ((spte & shadow_accessed_mask) &&
347 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
348 return false;
349
350 return true;
351 }
352
353 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
354 {
355 return (old_spte & bit_mask) && !(new_spte & bit_mask);
356 }
357
358 /* Rules for using mmu_spte_set:
359 * Set the sptep from nonpresent to present.
360 * Note: the sptep being assigned *must* be either not present
361 * or in a state where the hardware will not attempt to update
362 * the spte.
363 */
364 static void mmu_spte_set(u64 *sptep, u64 new_spte)
365 {
366 WARN_ON(is_shadow_present_pte(*sptep));
367 __set_spte(sptep, new_spte);
368 }
369
370 /* Rules for using mmu_spte_update:
371 * Update the state bits, it means the mapped pfn is not changged.
372 */
373 static void mmu_spte_update(u64 *sptep, u64 new_spte)
374 {
375 u64 mask, old_spte = *sptep;
376
377 WARN_ON(!is_rmap_spte(new_spte));
378
379 if (!is_shadow_present_pte(old_spte))
380 return mmu_spte_set(sptep, new_spte);
381
382 new_spte |= old_spte & shadow_dirty_mask;
383
384 mask = shadow_accessed_mask;
385 if (is_writable_pte(old_spte))
386 mask |= shadow_dirty_mask;
387
388 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
389 __update_clear_spte_fast(sptep, new_spte);
390 else
391 old_spte = __update_clear_spte_slow(sptep, new_spte);
392
393 if (!shadow_accessed_mask)
394 return;
395
396 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
397 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
398 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
399 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
400 }
401
402 /*
403 * Rules for using mmu_spte_clear_track_bits:
404 * It sets the sptep from present to nonpresent, and track the
405 * state bits, it is used to clear the last level sptep.
406 */
407 static int mmu_spte_clear_track_bits(u64 *sptep)
408 {
409 pfn_t pfn;
410 u64 old_spte = *sptep;
411
412 if (!spte_has_volatile_bits(old_spte))
413 __update_clear_spte_fast(sptep, 0ull);
414 else
415 old_spte = __update_clear_spte_slow(sptep, 0ull);
416
417 if (!is_rmap_spte(old_spte))
418 return 0;
419
420 pfn = spte_to_pfn(old_spte);
421 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
422 kvm_set_pfn_accessed(pfn);
423 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
424 kvm_set_pfn_dirty(pfn);
425 return 1;
426 }
427
428 /*
429 * Rules for using mmu_spte_clear_no_track:
430 * Directly clear spte without caring the state bits of sptep,
431 * it is used to set the upper level spte.
432 */
433 static void mmu_spte_clear_no_track(u64 *sptep)
434 {
435 __update_clear_spte_fast(sptep, 0ull);
436 }
437
438 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
439 struct kmem_cache *base_cache, int min)
440 {
441 void *obj;
442
443 if (cache->nobjs >= min)
444 return 0;
445 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
446 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
447 if (!obj)
448 return -ENOMEM;
449 cache->objects[cache->nobjs++] = obj;
450 }
451 return 0;
452 }
453
454 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
455 struct kmem_cache *cache)
456 {
457 while (mc->nobjs)
458 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
459 }
460
461 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
462 int min)
463 {
464 void *page;
465
466 if (cache->nobjs >= min)
467 return 0;
468 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
469 page = (void *)__get_free_page(GFP_KERNEL);
470 if (!page)
471 return -ENOMEM;
472 cache->objects[cache->nobjs++] = page;
473 }
474 return 0;
475 }
476
477 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
478 {
479 while (mc->nobjs)
480 free_page((unsigned long)mc->objects[--mc->nobjs]);
481 }
482
483 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
484 {
485 int r;
486
487 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
488 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
489 if (r)
490 goto out;
491 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
492 if (r)
493 goto out;
494 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
495 mmu_page_header_cache, 4);
496 out:
497 return r;
498 }
499
500 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
501 {
502 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
503 pte_list_desc_cache);
504 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
505 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
506 mmu_page_header_cache);
507 }
508
509 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
510 size_t size)
511 {
512 void *p;
513
514 BUG_ON(!mc->nobjs);
515 p = mc->objects[--mc->nobjs];
516 return p;
517 }
518
519 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
520 {
521 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
522 sizeof(struct pte_list_desc));
523 }
524
525 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
526 {
527 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
528 }
529
530 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
531 {
532 if (!sp->role.direct)
533 return sp->gfns[index];
534
535 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
536 }
537
538 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
539 {
540 if (sp->role.direct)
541 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
542 else
543 sp->gfns[index] = gfn;
544 }
545
546 /*
547 * Return the pointer to the large page information for a given gfn,
548 * handling slots that are not large page aligned.
549 */
550 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
551 struct kvm_memory_slot *slot,
552 int level)
553 {
554 unsigned long idx;
555
556 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
557 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
558 return &slot->lpage_info[level - 2][idx];
559 }
560
561 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
562 {
563 struct kvm_memory_slot *slot;
564 struct kvm_lpage_info *linfo;
565 int i;
566
567 slot = gfn_to_memslot(kvm, gfn);
568 for (i = PT_DIRECTORY_LEVEL;
569 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
570 linfo = lpage_info_slot(gfn, slot, i);
571 linfo->write_count += 1;
572 }
573 kvm->arch.indirect_shadow_pages++;
574 }
575
576 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
577 {
578 struct kvm_memory_slot *slot;
579 struct kvm_lpage_info *linfo;
580 int i;
581
582 slot = gfn_to_memslot(kvm, gfn);
583 for (i = PT_DIRECTORY_LEVEL;
584 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
585 linfo = lpage_info_slot(gfn, slot, i);
586 linfo->write_count -= 1;
587 WARN_ON(linfo->write_count < 0);
588 }
589 kvm->arch.indirect_shadow_pages--;
590 }
591
592 static int has_wrprotected_page(struct kvm *kvm,
593 gfn_t gfn,
594 int level)
595 {
596 struct kvm_memory_slot *slot;
597 struct kvm_lpage_info *linfo;
598
599 slot = gfn_to_memslot(kvm, gfn);
600 if (slot) {
601 linfo = lpage_info_slot(gfn, slot, level);
602 return linfo->write_count;
603 }
604
605 return 1;
606 }
607
608 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
609 {
610 unsigned long page_size;
611 int i, ret = 0;
612
613 page_size = kvm_host_page_size(kvm, gfn);
614
615 for (i = PT_PAGE_TABLE_LEVEL;
616 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
617 if (page_size >= KVM_HPAGE_SIZE(i))
618 ret = i;
619 else
620 break;
621 }
622
623 return ret;
624 }
625
626 static struct kvm_memory_slot *
627 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
628 bool no_dirty_log)
629 {
630 struct kvm_memory_slot *slot;
631
632 slot = gfn_to_memslot(vcpu->kvm, gfn);
633 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
634 (no_dirty_log && slot->dirty_bitmap))
635 slot = NULL;
636
637 return slot;
638 }
639
640 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
641 {
642 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
643 }
644
645 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
646 {
647 int host_level, level, max_level;
648
649 host_level = host_mapping_level(vcpu->kvm, large_gfn);
650
651 if (host_level == PT_PAGE_TABLE_LEVEL)
652 return host_level;
653
654 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
655 kvm_x86_ops->get_lpage_level() : host_level;
656
657 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
658 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
659 break;
660
661 return level - 1;
662 }
663
664 /*
665 * Pte mapping structures:
666 *
667 * If pte_list bit zero is zero, then pte_list point to the spte.
668 *
669 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
670 * pte_list_desc containing more mappings.
671 *
672 * Returns the number of pte entries before the spte was added or zero if
673 * the spte was not added.
674 *
675 */
676 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
677 unsigned long *pte_list)
678 {
679 struct pte_list_desc *desc;
680 int i, count = 0;
681
682 if (!*pte_list) {
683 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
684 *pte_list = (unsigned long)spte;
685 } else if (!(*pte_list & 1)) {
686 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
687 desc = mmu_alloc_pte_list_desc(vcpu);
688 desc->sptes[0] = (u64 *)*pte_list;
689 desc->sptes[1] = spte;
690 *pte_list = (unsigned long)desc | 1;
691 ++count;
692 } else {
693 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
694 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
695 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
696 desc = desc->more;
697 count += PTE_LIST_EXT;
698 }
699 if (desc->sptes[PTE_LIST_EXT-1]) {
700 desc->more = mmu_alloc_pte_list_desc(vcpu);
701 desc = desc->more;
702 }
703 for (i = 0; desc->sptes[i]; ++i)
704 ++count;
705 desc->sptes[i] = spte;
706 }
707 return count;
708 }
709
710 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
711 {
712 struct pte_list_desc *desc;
713 u64 *prev_spte;
714 int i;
715
716 if (!*pte_list)
717 return NULL;
718 else if (!(*pte_list & 1)) {
719 if (!spte)
720 return (u64 *)*pte_list;
721 return NULL;
722 }
723 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
724 prev_spte = NULL;
725 while (desc) {
726 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
727 if (prev_spte == spte)
728 return desc->sptes[i];
729 prev_spte = desc->sptes[i];
730 }
731 desc = desc->more;
732 }
733 return NULL;
734 }
735
736 static void
737 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
738 int i, struct pte_list_desc *prev_desc)
739 {
740 int j;
741
742 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
743 ;
744 desc->sptes[i] = desc->sptes[j];
745 desc->sptes[j] = NULL;
746 if (j != 0)
747 return;
748 if (!prev_desc && !desc->more)
749 *pte_list = (unsigned long)desc->sptes[0];
750 else
751 if (prev_desc)
752 prev_desc->more = desc->more;
753 else
754 *pte_list = (unsigned long)desc->more | 1;
755 mmu_free_pte_list_desc(desc);
756 }
757
758 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
759 {
760 struct pte_list_desc *desc;
761 struct pte_list_desc *prev_desc;
762 int i;
763
764 if (!*pte_list) {
765 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
766 BUG();
767 } else if (!(*pte_list & 1)) {
768 rmap_printk("pte_list_remove: %p 1->0\n", spte);
769 if ((u64 *)*pte_list != spte) {
770 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
771 BUG();
772 }
773 *pte_list = 0;
774 } else {
775 rmap_printk("pte_list_remove: %p many->many\n", spte);
776 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
777 prev_desc = NULL;
778 while (desc) {
779 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
780 if (desc->sptes[i] == spte) {
781 pte_list_desc_remove_entry(pte_list,
782 desc, i,
783 prev_desc);
784 return;
785 }
786 prev_desc = desc;
787 desc = desc->more;
788 }
789 pr_err("pte_list_remove: %p many->many\n", spte);
790 BUG();
791 }
792 }
793
794 typedef void (*pte_list_walk_fn) (u64 *spte);
795 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
796 {
797 struct pte_list_desc *desc;
798 int i;
799
800 if (!*pte_list)
801 return;
802
803 if (!(*pte_list & 1))
804 return fn((u64 *)*pte_list);
805
806 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
807 while (desc) {
808 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
809 fn(desc->sptes[i]);
810 desc = desc->more;
811 }
812 }
813
814 /*
815 * Take gfn and return the reverse mapping to it.
816 */
817 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
818 {
819 struct kvm_memory_slot *slot;
820 struct kvm_lpage_info *linfo;
821
822 slot = gfn_to_memslot(kvm, gfn);
823 if (likely(level == PT_PAGE_TABLE_LEVEL))
824 return &slot->rmap[gfn - slot->base_gfn];
825
826 linfo = lpage_info_slot(gfn, slot, level);
827
828 return &linfo->rmap_pde;
829 }
830
831 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
832 {
833 struct kvm_mmu_page *sp;
834 unsigned long *rmapp;
835
836 sp = page_header(__pa(spte));
837 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
838 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
839 return pte_list_add(vcpu, spte, rmapp);
840 }
841
842 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
843 {
844 return pte_list_next(rmapp, spte);
845 }
846
847 static void rmap_remove(struct kvm *kvm, u64 *spte)
848 {
849 struct kvm_mmu_page *sp;
850 gfn_t gfn;
851 unsigned long *rmapp;
852
853 sp = page_header(__pa(spte));
854 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
855 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
856 pte_list_remove(spte, rmapp);
857 }
858
859 static void drop_spte(struct kvm *kvm, u64 *sptep)
860 {
861 if (mmu_spte_clear_track_bits(sptep))
862 rmap_remove(kvm, sptep);
863 }
864
865 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
866 {
867 unsigned long *rmapp;
868 u64 *spte;
869 int i, write_protected = 0;
870
871 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
872
873 spte = rmap_next(kvm, rmapp, NULL);
874 while (spte) {
875 BUG_ON(!spte);
876 BUG_ON(!(*spte & PT_PRESENT_MASK));
877 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
878 if (is_writable_pte(*spte)) {
879 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
880 write_protected = 1;
881 }
882 spte = rmap_next(kvm, rmapp, spte);
883 }
884
885 /* check for huge page mappings */
886 for (i = PT_DIRECTORY_LEVEL;
887 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
888 rmapp = gfn_to_rmap(kvm, gfn, i);
889 spte = rmap_next(kvm, rmapp, NULL);
890 while (spte) {
891 BUG_ON(!spte);
892 BUG_ON(!(*spte & PT_PRESENT_MASK));
893 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
894 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
895 if (is_writable_pte(*spte)) {
896 drop_spte(kvm, spte);
897 --kvm->stat.lpages;
898 spte = NULL;
899 write_protected = 1;
900 }
901 spte = rmap_next(kvm, rmapp, spte);
902 }
903 }
904
905 return write_protected;
906 }
907
908 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
909 unsigned long data)
910 {
911 u64 *spte;
912 int need_tlb_flush = 0;
913
914 while ((spte = rmap_next(kvm, rmapp, NULL))) {
915 BUG_ON(!(*spte & PT_PRESENT_MASK));
916 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
917 drop_spte(kvm, spte);
918 need_tlb_flush = 1;
919 }
920 return need_tlb_flush;
921 }
922
923 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
924 unsigned long data)
925 {
926 int need_flush = 0;
927 u64 *spte, new_spte;
928 pte_t *ptep = (pte_t *)data;
929 pfn_t new_pfn;
930
931 WARN_ON(pte_huge(*ptep));
932 new_pfn = pte_pfn(*ptep);
933 spte = rmap_next(kvm, rmapp, NULL);
934 while (spte) {
935 BUG_ON(!is_shadow_present_pte(*spte));
936 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
937 need_flush = 1;
938 if (pte_write(*ptep)) {
939 drop_spte(kvm, spte);
940 spte = rmap_next(kvm, rmapp, NULL);
941 } else {
942 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
943 new_spte |= (u64)new_pfn << PAGE_SHIFT;
944
945 new_spte &= ~PT_WRITABLE_MASK;
946 new_spte &= ~SPTE_HOST_WRITEABLE;
947 new_spte &= ~shadow_accessed_mask;
948 mmu_spte_clear_track_bits(spte);
949 mmu_spte_set(spte, new_spte);
950 spte = rmap_next(kvm, rmapp, spte);
951 }
952 }
953 if (need_flush)
954 kvm_flush_remote_tlbs(kvm);
955
956 return 0;
957 }
958
959 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
960 unsigned long data,
961 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
962 unsigned long data))
963 {
964 int i, j;
965 int ret;
966 int retval = 0;
967 struct kvm_memslots *slots;
968
969 slots = kvm_memslots(kvm);
970
971 for (i = 0; i < slots->nmemslots; i++) {
972 struct kvm_memory_slot *memslot = &slots->memslots[i];
973 unsigned long start = memslot->userspace_addr;
974 unsigned long end;
975
976 end = start + (memslot->npages << PAGE_SHIFT);
977 if (hva >= start && hva < end) {
978 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
979 gfn_t gfn = memslot->base_gfn + gfn_offset;
980
981 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
982
983 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
984 struct kvm_lpage_info *linfo;
985
986 linfo = lpage_info_slot(gfn, memslot,
987 PT_DIRECTORY_LEVEL + j);
988 ret |= handler(kvm, &linfo->rmap_pde, data);
989 }
990 trace_kvm_age_page(hva, memslot, ret);
991 retval |= ret;
992 }
993 }
994
995 return retval;
996 }
997
998 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
999 {
1000 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1001 }
1002
1003 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1004 {
1005 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1006 }
1007
1008 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1009 unsigned long data)
1010 {
1011 u64 *spte;
1012 int young = 0;
1013
1014 /*
1015 * Emulate the accessed bit for EPT, by checking if this page has
1016 * an EPT mapping, and clearing it if it does. On the next access,
1017 * a new EPT mapping will be established.
1018 * This has some overhead, but not as much as the cost of swapping
1019 * out actively used pages or breaking up actively used hugepages.
1020 */
1021 if (!shadow_accessed_mask)
1022 return kvm_unmap_rmapp(kvm, rmapp, data);
1023
1024 spte = rmap_next(kvm, rmapp, NULL);
1025 while (spte) {
1026 int _young;
1027 u64 _spte = *spte;
1028 BUG_ON(!(_spte & PT_PRESENT_MASK));
1029 _young = _spte & PT_ACCESSED_MASK;
1030 if (_young) {
1031 young = 1;
1032 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1033 }
1034 spte = rmap_next(kvm, rmapp, spte);
1035 }
1036 return young;
1037 }
1038
1039 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1040 unsigned long data)
1041 {
1042 u64 *spte;
1043 int young = 0;
1044
1045 /*
1046 * If there's no access bit in the secondary pte set by the
1047 * hardware it's up to gup-fast/gup to set the access bit in
1048 * the primary pte or in the page structure.
1049 */
1050 if (!shadow_accessed_mask)
1051 goto out;
1052
1053 spte = rmap_next(kvm, rmapp, NULL);
1054 while (spte) {
1055 u64 _spte = *spte;
1056 BUG_ON(!(_spte & PT_PRESENT_MASK));
1057 young = _spte & PT_ACCESSED_MASK;
1058 if (young) {
1059 young = 1;
1060 break;
1061 }
1062 spte = rmap_next(kvm, rmapp, spte);
1063 }
1064 out:
1065 return young;
1066 }
1067
1068 #define RMAP_RECYCLE_THRESHOLD 1000
1069
1070 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1071 {
1072 unsigned long *rmapp;
1073 struct kvm_mmu_page *sp;
1074
1075 sp = page_header(__pa(spte));
1076
1077 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1078
1079 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1080 kvm_flush_remote_tlbs(vcpu->kvm);
1081 }
1082
1083 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1084 {
1085 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1086 }
1087
1088 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1089 {
1090 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1091 }
1092
1093 #ifdef MMU_DEBUG
1094 static int is_empty_shadow_page(u64 *spt)
1095 {
1096 u64 *pos;
1097 u64 *end;
1098
1099 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1100 if (is_shadow_present_pte(*pos)) {
1101 printk(KERN_ERR "%s: %p %llx\n", __func__,
1102 pos, *pos);
1103 return 0;
1104 }
1105 return 1;
1106 }
1107 #endif
1108
1109 /*
1110 * This value is the sum of all of the kvm instances's
1111 * kvm->arch.n_used_mmu_pages values. We need a global,
1112 * aggregate version in order to make the slab shrinker
1113 * faster
1114 */
1115 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1116 {
1117 kvm->arch.n_used_mmu_pages += nr;
1118 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1119 }
1120
1121 /*
1122 * Remove the sp from shadow page cache, after call it,
1123 * we can not find this sp from the cache, and the shadow
1124 * page table is still valid.
1125 * It should be under the protection of mmu lock.
1126 */
1127 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1128 {
1129 ASSERT(is_empty_shadow_page(sp->spt));
1130 hlist_del(&sp->hash_link);
1131 if (!sp->role.direct)
1132 free_page((unsigned long)sp->gfns);
1133 }
1134
1135 /*
1136 * Free the shadow page table and the sp, we can do it
1137 * out of the protection of mmu lock.
1138 */
1139 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1140 {
1141 list_del(&sp->link);
1142 free_page((unsigned long)sp->spt);
1143 kmem_cache_free(mmu_page_header_cache, sp);
1144 }
1145
1146 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1147 {
1148 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1149 }
1150
1151 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1152 struct kvm_mmu_page *sp, u64 *parent_pte)
1153 {
1154 if (!parent_pte)
1155 return;
1156
1157 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1158 }
1159
1160 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1161 u64 *parent_pte)
1162 {
1163 pte_list_remove(parent_pte, &sp->parent_ptes);
1164 }
1165
1166 static void drop_parent_pte(struct kvm_mmu_page *sp,
1167 u64 *parent_pte)
1168 {
1169 mmu_page_remove_parent_pte(sp, parent_pte);
1170 mmu_spte_clear_no_track(parent_pte);
1171 }
1172
1173 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1174 u64 *parent_pte, int direct)
1175 {
1176 struct kvm_mmu_page *sp;
1177 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1178 sizeof *sp);
1179 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1180 if (!direct)
1181 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1182 PAGE_SIZE);
1183 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1184 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1185 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1186 sp->parent_ptes = 0;
1187 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1188 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1189 return sp;
1190 }
1191
1192 static void mark_unsync(u64 *spte);
1193 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1194 {
1195 pte_list_walk(&sp->parent_ptes, mark_unsync);
1196 }
1197
1198 static void mark_unsync(u64 *spte)
1199 {
1200 struct kvm_mmu_page *sp;
1201 unsigned int index;
1202
1203 sp = page_header(__pa(spte));
1204 index = spte - sp->spt;
1205 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1206 return;
1207 if (sp->unsync_children++)
1208 return;
1209 kvm_mmu_mark_parents_unsync(sp);
1210 }
1211
1212 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1213 struct kvm_mmu_page *sp)
1214 {
1215 return 1;
1216 }
1217
1218 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1219 {
1220 }
1221
1222 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1223 struct kvm_mmu_page *sp, u64 *spte,
1224 const void *pte)
1225 {
1226 WARN_ON(1);
1227 }
1228
1229 #define KVM_PAGE_ARRAY_NR 16
1230
1231 struct kvm_mmu_pages {
1232 struct mmu_page_and_offset {
1233 struct kvm_mmu_page *sp;
1234 unsigned int idx;
1235 } page[KVM_PAGE_ARRAY_NR];
1236 unsigned int nr;
1237 };
1238
1239 #define for_each_unsync_children(bitmap, idx) \
1240 for (idx = find_first_bit(bitmap, 512); \
1241 idx < 512; \
1242 idx = find_next_bit(bitmap, 512, idx+1))
1243
1244 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1245 int idx)
1246 {
1247 int i;
1248
1249 if (sp->unsync)
1250 for (i=0; i < pvec->nr; i++)
1251 if (pvec->page[i].sp == sp)
1252 return 0;
1253
1254 pvec->page[pvec->nr].sp = sp;
1255 pvec->page[pvec->nr].idx = idx;
1256 pvec->nr++;
1257 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1258 }
1259
1260 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1261 struct kvm_mmu_pages *pvec)
1262 {
1263 int i, ret, nr_unsync_leaf = 0;
1264
1265 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1266 struct kvm_mmu_page *child;
1267 u64 ent = sp->spt[i];
1268
1269 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1270 goto clear_child_bitmap;
1271
1272 child = page_header(ent & PT64_BASE_ADDR_MASK);
1273
1274 if (child->unsync_children) {
1275 if (mmu_pages_add(pvec, child, i))
1276 return -ENOSPC;
1277
1278 ret = __mmu_unsync_walk(child, pvec);
1279 if (!ret)
1280 goto clear_child_bitmap;
1281 else if (ret > 0)
1282 nr_unsync_leaf += ret;
1283 else
1284 return ret;
1285 } else if (child->unsync) {
1286 nr_unsync_leaf++;
1287 if (mmu_pages_add(pvec, child, i))
1288 return -ENOSPC;
1289 } else
1290 goto clear_child_bitmap;
1291
1292 continue;
1293
1294 clear_child_bitmap:
1295 __clear_bit(i, sp->unsync_child_bitmap);
1296 sp->unsync_children--;
1297 WARN_ON((int)sp->unsync_children < 0);
1298 }
1299
1300
1301 return nr_unsync_leaf;
1302 }
1303
1304 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1305 struct kvm_mmu_pages *pvec)
1306 {
1307 if (!sp->unsync_children)
1308 return 0;
1309
1310 mmu_pages_add(pvec, sp, 0);
1311 return __mmu_unsync_walk(sp, pvec);
1312 }
1313
1314 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1315 {
1316 WARN_ON(!sp->unsync);
1317 trace_kvm_mmu_sync_page(sp);
1318 sp->unsync = 0;
1319 --kvm->stat.mmu_unsync;
1320 }
1321
1322 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1323 struct list_head *invalid_list);
1324 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1325 struct list_head *invalid_list);
1326
1327 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1328 hlist_for_each_entry(sp, pos, \
1329 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1330 if ((sp)->gfn != (gfn)) {} else
1331
1332 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1333 hlist_for_each_entry(sp, pos, \
1334 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1335 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1336 (sp)->role.invalid) {} else
1337
1338 /* @sp->gfn should be write-protected at the call site */
1339 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1340 struct list_head *invalid_list, bool clear_unsync)
1341 {
1342 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1343 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1344 return 1;
1345 }
1346
1347 if (clear_unsync)
1348 kvm_unlink_unsync_page(vcpu->kvm, sp);
1349
1350 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1351 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1352 return 1;
1353 }
1354
1355 kvm_mmu_flush_tlb(vcpu);
1356 return 0;
1357 }
1358
1359 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1360 struct kvm_mmu_page *sp)
1361 {
1362 LIST_HEAD(invalid_list);
1363 int ret;
1364
1365 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1366 if (ret)
1367 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1368
1369 return ret;
1370 }
1371
1372 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1373 struct list_head *invalid_list)
1374 {
1375 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1376 }
1377
1378 /* @gfn should be write-protected at the call site */
1379 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1380 {
1381 struct kvm_mmu_page *s;
1382 struct hlist_node *node;
1383 LIST_HEAD(invalid_list);
1384 bool flush = false;
1385
1386 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1387 if (!s->unsync)
1388 continue;
1389
1390 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1391 kvm_unlink_unsync_page(vcpu->kvm, s);
1392 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1393 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1394 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1395 continue;
1396 }
1397 flush = true;
1398 }
1399
1400 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1401 if (flush)
1402 kvm_mmu_flush_tlb(vcpu);
1403 }
1404
1405 struct mmu_page_path {
1406 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1407 unsigned int idx[PT64_ROOT_LEVEL-1];
1408 };
1409
1410 #define for_each_sp(pvec, sp, parents, i) \
1411 for (i = mmu_pages_next(&pvec, &parents, -1), \
1412 sp = pvec.page[i].sp; \
1413 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1414 i = mmu_pages_next(&pvec, &parents, i))
1415
1416 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1417 struct mmu_page_path *parents,
1418 int i)
1419 {
1420 int n;
1421
1422 for (n = i+1; n < pvec->nr; n++) {
1423 struct kvm_mmu_page *sp = pvec->page[n].sp;
1424
1425 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1426 parents->idx[0] = pvec->page[n].idx;
1427 return n;
1428 }
1429
1430 parents->parent[sp->role.level-2] = sp;
1431 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1432 }
1433
1434 return n;
1435 }
1436
1437 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1438 {
1439 struct kvm_mmu_page *sp;
1440 unsigned int level = 0;
1441
1442 do {
1443 unsigned int idx = parents->idx[level];
1444
1445 sp = parents->parent[level];
1446 if (!sp)
1447 return;
1448
1449 --sp->unsync_children;
1450 WARN_ON((int)sp->unsync_children < 0);
1451 __clear_bit(idx, sp->unsync_child_bitmap);
1452 level++;
1453 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1454 }
1455
1456 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1457 struct mmu_page_path *parents,
1458 struct kvm_mmu_pages *pvec)
1459 {
1460 parents->parent[parent->role.level-1] = NULL;
1461 pvec->nr = 0;
1462 }
1463
1464 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1465 struct kvm_mmu_page *parent)
1466 {
1467 int i;
1468 struct kvm_mmu_page *sp;
1469 struct mmu_page_path parents;
1470 struct kvm_mmu_pages pages;
1471 LIST_HEAD(invalid_list);
1472
1473 kvm_mmu_pages_init(parent, &parents, &pages);
1474 while (mmu_unsync_walk(parent, &pages)) {
1475 int protected = 0;
1476
1477 for_each_sp(pages, sp, parents, i)
1478 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1479
1480 if (protected)
1481 kvm_flush_remote_tlbs(vcpu->kvm);
1482
1483 for_each_sp(pages, sp, parents, i) {
1484 kvm_sync_page(vcpu, sp, &invalid_list);
1485 mmu_pages_clear_parents(&parents);
1486 }
1487 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1488 cond_resched_lock(&vcpu->kvm->mmu_lock);
1489 kvm_mmu_pages_init(parent, &parents, &pages);
1490 }
1491 }
1492
1493 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1494 {
1495 int i;
1496
1497 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1498 sp->spt[i] = 0ull;
1499 }
1500
1501 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1502 gfn_t gfn,
1503 gva_t gaddr,
1504 unsigned level,
1505 int direct,
1506 unsigned access,
1507 u64 *parent_pte)
1508 {
1509 union kvm_mmu_page_role role;
1510 unsigned quadrant;
1511 struct kvm_mmu_page *sp;
1512 struct hlist_node *node;
1513 bool need_sync = false;
1514
1515 role = vcpu->arch.mmu.base_role;
1516 role.level = level;
1517 role.direct = direct;
1518 if (role.direct)
1519 role.cr4_pae = 0;
1520 role.access = access;
1521 if (!vcpu->arch.mmu.direct_map
1522 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1523 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1524 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1525 role.quadrant = quadrant;
1526 }
1527 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1528 if (!need_sync && sp->unsync)
1529 need_sync = true;
1530
1531 if (sp->role.word != role.word)
1532 continue;
1533
1534 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1535 break;
1536
1537 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1538 if (sp->unsync_children) {
1539 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1540 kvm_mmu_mark_parents_unsync(sp);
1541 } else if (sp->unsync)
1542 kvm_mmu_mark_parents_unsync(sp);
1543
1544 trace_kvm_mmu_get_page(sp, false);
1545 return sp;
1546 }
1547 ++vcpu->kvm->stat.mmu_cache_miss;
1548 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1549 if (!sp)
1550 return sp;
1551 sp->gfn = gfn;
1552 sp->role = role;
1553 hlist_add_head(&sp->hash_link,
1554 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1555 if (!direct) {
1556 if (rmap_write_protect(vcpu->kvm, gfn))
1557 kvm_flush_remote_tlbs(vcpu->kvm);
1558 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1559 kvm_sync_pages(vcpu, gfn);
1560
1561 account_shadowed(vcpu->kvm, gfn);
1562 }
1563 init_shadow_page_table(sp);
1564 trace_kvm_mmu_get_page(sp, true);
1565 return sp;
1566 }
1567
1568 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1569 struct kvm_vcpu *vcpu, u64 addr)
1570 {
1571 iterator->addr = addr;
1572 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1573 iterator->level = vcpu->arch.mmu.shadow_root_level;
1574
1575 if (iterator->level == PT64_ROOT_LEVEL &&
1576 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1577 !vcpu->arch.mmu.direct_map)
1578 --iterator->level;
1579
1580 if (iterator->level == PT32E_ROOT_LEVEL) {
1581 iterator->shadow_addr
1582 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1583 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1584 --iterator->level;
1585 if (!iterator->shadow_addr)
1586 iterator->level = 0;
1587 }
1588 }
1589
1590 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1591 {
1592 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1593 return false;
1594
1595 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1596 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1597 return true;
1598 }
1599
1600 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1601 {
1602 if (is_last_spte(*iterator->sptep, iterator->level)) {
1603 iterator->level = 0;
1604 return;
1605 }
1606
1607 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1608 --iterator->level;
1609 }
1610
1611 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1612 {
1613 u64 spte;
1614
1615 spte = __pa(sp->spt)
1616 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1617 | PT_WRITABLE_MASK | PT_USER_MASK;
1618 mmu_spte_set(sptep, spte);
1619 }
1620
1621 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1622 {
1623 if (is_large_pte(*sptep)) {
1624 drop_spte(vcpu->kvm, sptep);
1625 kvm_flush_remote_tlbs(vcpu->kvm);
1626 }
1627 }
1628
1629 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1630 unsigned direct_access)
1631 {
1632 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1633 struct kvm_mmu_page *child;
1634
1635 /*
1636 * For the direct sp, if the guest pte's dirty bit
1637 * changed form clean to dirty, it will corrupt the
1638 * sp's access: allow writable in the read-only sp,
1639 * so we should update the spte at this point to get
1640 * a new sp with the correct access.
1641 */
1642 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1643 if (child->role.access == direct_access)
1644 return;
1645
1646 drop_parent_pte(child, sptep);
1647 kvm_flush_remote_tlbs(vcpu->kvm);
1648 }
1649 }
1650
1651 static void mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1652 u64 *spte)
1653 {
1654 u64 pte;
1655 struct kvm_mmu_page *child;
1656
1657 pte = *spte;
1658 if (is_shadow_present_pte(pte)) {
1659 if (is_last_spte(pte, sp->role.level))
1660 drop_spte(kvm, spte);
1661 else {
1662 child = page_header(pte & PT64_BASE_ADDR_MASK);
1663 drop_parent_pte(child, spte);
1664 }
1665 }
1666
1667 if (is_large_pte(pte))
1668 --kvm->stat.lpages;
1669 }
1670
1671 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1672 struct kvm_mmu_page *sp)
1673 {
1674 unsigned i;
1675
1676 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1677 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1678 }
1679
1680 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1681 {
1682 mmu_page_remove_parent_pte(sp, parent_pte);
1683 }
1684
1685 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1686 {
1687 int i;
1688 struct kvm_vcpu *vcpu;
1689
1690 kvm_for_each_vcpu(i, vcpu, kvm)
1691 vcpu->arch.last_pte_updated = NULL;
1692 }
1693
1694 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1695 {
1696 u64 *parent_pte;
1697
1698 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1699 drop_parent_pte(sp, parent_pte);
1700 }
1701
1702 static int mmu_zap_unsync_children(struct kvm *kvm,
1703 struct kvm_mmu_page *parent,
1704 struct list_head *invalid_list)
1705 {
1706 int i, zapped = 0;
1707 struct mmu_page_path parents;
1708 struct kvm_mmu_pages pages;
1709
1710 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1711 return 0;
1712
1713 kvm_mmu_pages_init(parent, &parents, &pages);
1714 while (mmu_unsync_walk(parent, &pages)) {
1715 struct kvm_mmu_page *sp;
1716
1717 for_each_sp(pages, sp, parents, i) {
1718 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1719 mmu_pages_clear_parents(&parents);
1720 zapped++;
1721 }
1722 kvm_mmu_pages_init(parent, &parents, &pages);
1723 }
1724
1725 return zapped;
1726 }
1727
1728 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1729 struct list_head *invalid_list)
1730 {
1731 int ret;
1732
1733 trace_kvm_mmu_prepare_zap_page(sp);
1734 ++kvm->stat.mmu_shadow_zapped;
1735 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1736 kvm_mmu_page_unlink_children(kvm, sp);
1737 kvm_mmu_unlink_parents(kvm, sp);
1738 if (!sp->role.invalid && !sp->role.direct)
1739 unaccount_shadowed(kvm, sp->gfn);
1740 if (sp->unsync)
1741 kvm_unlink_unsync_page(kvm, sp);
1742 if (!sp->root_count) {
1743 /* Count self */
1744 ret++;
1745 list_move(&sp->link, invalid_list);
1746 kvm_mod_used_mmu_pages(kvm, -1);
1747 } else {
1748 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1749 kvm_reload_remote_mmus(kvm);
1750 }
1751
1752 sp->role.invalid = 1;
1753 kvm_mmu_reset_last_pte_updated(kvm);
1754 return ret;
1755 }
1756
1757 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1758 struct list_head *invalid_list)
1759 {
1760 struct kvm_mmu_page *sp;
1761
1762 if (list_empty(invalid_list))
1763 return;
1764
1765 kvm_flush_remote_tlbs(kvm);
1766
1767 do {
1768 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1769 WARN_ON(!sp->role.invalid || sp->root_count);
1770 kvm_mmu_isolate_page(sp);
1771 kvm_mmu_free_page(sp);
1772 } while (!list_empty(invalid_list));
1773
1774 }
1775
1776 /*
1777 * Changing the number of mmu pages allocated to the vm
1778 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1779 */
1780 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1781 {
1782 LIST_HEAD(invalid_list);
1783 /*
1784 * If we set the number of mmu pages to be smaller be than the
1785 * number of actived pages , we must to free some mmu pages before we
1786 * change the value
1787 */
1788
1789 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1790 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1791 !list_empty(&kvm->arch.active_mmu_pages)) {
1792 struct kvm_mmu_page *page;
1793
1794 page = container_of(kvm->arch.active_mmu_pages.prev,
1795 struct kvm_mmu_page, link);
1796 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1797 }
1798 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1799 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1800 }
1801
1802 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1803 }
1804
1805 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1806 {
1807 struct kvm_mmu_page *sp;
1808 struct hlist_node *node;
1809 LIST_HEAD(invalid_list);
1810 int r;
1811
1812 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1813 r = 0;
1814
1815 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1816 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1817 sp->role.word);
1818 r = 1;
1819 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1820 }
1821 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1822 return r;
1823 }
1824
1825 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1826 {
1827 struct kvm_mmu_page *sp;
1828 struct hlist_node *node;
1829 LIST_HEAD(invalid_list);
1830
1831 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1832 pgprintk("%s: zap %llx %x\n",
1833 __func__, gfn, sp->role.word);
1834 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1835 }
1836 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1837 }
1838
1839 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1840 {
1841 int slot = memslot_id(kvm, gfn);
1842 struct kvm_mmu_page *sp = page_header(__pa(pte));
1843
1844 __set_bit(slot, sp->slot_bitmap);
1845 }
1846
1847 /*
1848 * The function is based on mtrr_type_lookup() in
1849 * arch/x86/kernel/cpu/mtrr/generic.c
1850 */
1851 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1852 u64 start, u64 end)
1853 {
1854 int i;
1855 u64 base, mask;
1856 u8 prev_match, curr_match;
1857 int num_var_ranges = KVM_NR_VAR_MTRR;
1858
1859 if (!mtrr_state->enabled)
1860 return 0xFF;
1861
1862 /* Make end inclusive end, instead of exclusive */
1863 end--;
1864
1865 /* Look in fixed ranges. Just return the type as per start */
1866 if (mtrr_state->have_fixed && (start < 0x100000)) {
1867 int idx;
1868
1869 if (start < 0x80000) {
1870 idx = 0;
1871 idx += (start >> 16);
1872 return mtrr_state->fixed_ranges[idx];
1873 } else if (start < 0xC0000) {
1874 idx = 1 * 8;
1875 idx += ((start - 0x80000) >> 14);
1876 return mtrr_state->fixed_ranges[idx];
1877 } else if (start < 0x1000000) {
1878 idx = 3 * 8;
1879 idx += ((start - 0xC0000) >> 12);
1880 return mtrr_state->fixed_ranges[idx];
1881 }
1882 }
1883
1884 /*
1885 * Look in variable ranges
1886 * Look of multiple ranges matching this address and pick type
1887 * as per MTRR precedence
1888 */
1889 if (!(mtrr_state->enabled & 2))
1890 return mtrr_state->def_type;
1891
1892 prev_match = 0xFF;
1893 for (i = 0; i < num_var_ranges; ++i) {
1894 unsigned short start_state, end_state;
1895
1896 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1897 continue;
1898
1899 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1900 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1901 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1902 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1903
1904 start_state = ((start & mask) == (base & mask));
1905 end_state = ((end & mask) == (base & mask));
1906 if (start_state != end_state)
1907 return 0xFE;
1908
1909 if ((start & mask) != (base & mask))
1910 continue;
1911
1912 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1913 if (prev_match == 0xFF) {
1914 prev_match = curr_match;
1915 continue;
1916 }
1917
1918 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1919 curr_match == MTRR_TYPE_UNCACHABLE)
1920 return MTRR_TYPE_UNCACHABLE;
1921
1922 if ((prev_match == MTRR_TYPE_WRBACK &&
1923 curr_match == MTRR_TYPE_WRTHROUGH) ||
1924 (prev_match == MTRR_TYPE_WRTHROUGH &&
1925 curr_match == MTRR_TYPE_WRBACK)) {
1926 prev_match = MTRR_TYPE_WRTHROUGH;
1927 curr_match = MTRR_TYPE_WRTHROUGH;
1928 }
1929
1930 if (prev_match != curr_match)
1931 return MTRR_TYPE_UNCACHABLE;
1932 }
1933
1934 if (prev_match != 0xFF)
1935 return prev_match;
1936
1937 return mtrr_state->def_type;
1938 }
1939
1940 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1941 {
1942 u8 mtrr;
1943
1944 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1945 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1946 if (mtrr == 0xfe || mtrr == 0xff)
1947 mtrr = MTRR_TYPE_WRBACK;
1948 return mtrr;
1949 }
1950 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1951
1952 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1953 {
1954 trace_kvm_mmu_unsync_page(sp);
1955 ++vcpu->kvm->stat.mmu_unsync;
1956 sp->unsync = 1;
1957
1958 kvm_mmu_mark_parents_unsync(sp);
1959 }
1960
1961 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1962 {
1963 struct kvm_mmu_page *s;
1964 struct hlist_node *node;
1965
1966 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1967 if (s->unsync)
1968 continue;
1969 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1970 __kvm_unsync_page(vcpu, s);
1971 }
1972 }
1973
1974 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1975 bool can_unsync)
1976 {
1977 struct kvm_mmu_page *s;
1978 struct hlist_node *node;
1979 bool need_unsync = false;
1980
1981 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1982 if (!can_unsync)
1983 return 1;
1984
1985 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1986 return 1;
1987
1988 if (!need_unsync && !s->unsync) {
1989 if (!oos_shadow)
1990 return 1;
1991 need_unsync = true;
1992 }
1993 }
1994 if (need_unsync)
1995 kvm_unsync_pages(vcpu, gfn);
1996 return 0;
1997 }
1998
1999 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2000 unsigned pte_access, int user_fault,
2001 int write_fault, int level,
2002 gfn_t gfn, pfn_t pfn, bool speculative,
2003 bool can_unsync, bool host_writable)
2004 {
2005 u64 spte, entry = *sptep;
2006 int ret = 0;
2007
2008 /*
2009 * We don't set the accessed bit, since we sometimes want to see
2010 * whether the guest actually used the pte (in order to detect
2011 * demand paging).
2012 */
2013 spte = PT_PRESENT_MASK;
2014 if (!speculative)
2015 spte |= shadow_accessed_mask;
2016
2017 if (pte_access & ACC_EXEC_MASK)
2018 spte |= shadow_x_mask;
2019 else
2020 spte |= shadow_nx_mask;
2021 if (pte_access & ACC_USER_MASK)
2022 spte |= shadow_user_mask;
2023 if (level > PT_PAGE_TABLE_LEVEL)
2024 spte |= PT_PAGE_SIZE_MASK;
2025 if (tdp_enabled)
2026 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2027 kvm_is_mmio_pfn(pfn));
2028
2029 if (host_writable)
2030 spte |= SPTE_HOST_WRITEABLE;
2031 else
2032 pte_access &= ~ACC_WRITE_MASK;
2033
2034 spte |= (u64)pfn << PAGE_SHIFT;
2035
2036 if ((pte_access & ACC_WRITE_MASK)
2037 || (!vcpu->arch.mmu.direct_map && write_fault
2038 && !is_write_protection(vcpu) && !user_fault)) {
2039
2040 if (level > PT_PAGE_TABLE_LEVEL &&
2041 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2042 ret = 1;
2043 drop_spte(vcpu->kvm, sptep);
2044 goto done;
2045 }
2046
2047 spte |= PT_WRITABLE_MASK;
2048
2049 if (!vcpu->arch.mmu.direct_map
2050 && !(pte_access & ACC_WRITE_MASK)) {
2051 spte &= ~PT_USER_MASK;
2052 /*
2053 * If we converted a user page to a kernel page,
2054 * so that the kernel can write to it when cr0.wp=0,
2055 * then we should prevent the kernel from executing it
2056 * if SMEP is enabled.
2057 */
2058 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2059 spte |= PT64_NX_MASK;
2060 }
2061
2062 /*
2063 * Optimization: for pte sync, if spte was writable the hash
2064 * lookup is unnecessary (and expensive). Write protection
2065 * is responsibility of mmu_get_page / kvm_sync_page.
2066 * Same reasoning can be applied to dirty page accounting.
2067 */
2068 if (!can_unsync && is_writable_pte(*sptep))
2069 goto set_pte;
2070
2071 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2072 pgprintk("%s: found shadow page for %llx, marking ro\n",
2073 __func__, gfn);
2074 ret = 1;
2075 pte_access &= ~ACC_WRITE_MASK;
2076 if (is_writable_pte(spte))
2077 spte &= ~PT_WRITABLE_MASK;
2078 }
2079 }
2080
2081 if (pte_access & ACC_WRITE_MASK)
2082 mark_page_dirty(vcpu->kvm, gfn);
2083
2084 set_pte:
2085 mmu_spte_update(sptep, spte);
2086 /*
2087 * If we overwrite a writable spte with a read-only one we
2088 * should flush remote TLBs. Otherwise rmap_write_protect
2089 * will find a read-only spte, even though the writable spte
2090 * might be cached on a CPU's TLB.
2091 */
2092 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2093 kvm_flush_remote_tlbs(vcpu->kvm);
2094 done:
2095 return ret;
2096 }
2097
2098 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2099 unsigned pt_access, unsigned pte_access,
2100 int user_fault, int write_fault,
2101 int *emulate, int level, gfn_t gfn,
2102 pfn_t pfn, bool speculative,
2103 bool host_writable)
2104 {
2105 int was_rmapped = 0;
2106 int rmap_count;
2107
2108 pgprintk("%s: spte %llx access %x write_fault %d"
2109 " user_fault %d gfn %llx\n",
2110 __func__, *sptep, pt_access,
2111 write_fault, user_fault, gfn);
2112
2113 if (is_rmap_spte(*sptep)) {
2114 /*
2115 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2116 * the parent of the now unreachable PTE.
2117 */
2118 if (level > PT_PAGE_TABLE_LEVEL &&
2119 !is_large_pte(*sptep)) {
2120 struct kvm_mmu_page *child;
2121 u64 pte = *sptep;
2122
2123 child = page_header(pte & PT64_BASE_ADDR_MASK);
2124 drop_parent_pte(child, sptep);
2125 kvm_flush_remote_tlbs(vcpu->kvm);
2126 } else if (pfn != spte_to_pfn(*sptep)) {
2127 pgprintk("hfn old %llx new %llx\n",
2128 spte_to_pfn(*sptep), pfn);
2129 drop_spte(vcpu->kvm, sptep);
2130 kvm_flush_remote_tlbs(vcpu->kvm);
2131 } else
2132 was_rmapped = 1;
2133 }
2134
2135 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2136 level, gfn, pfn, speculative, true,
2137 host_writable)) {
2138 if (write_fault)
2139 *emulate = 1;
2140 kvm_mmu_flush_tlb(vcpu);
2141 }
2142
2143 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2144 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2145 is_large_pte(*sptep)? "2MB" : "4kB",
2146 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2147 *sptep, sptep);
2148 if (!was_rmapped && is_large_pte(*sptep))
2149 ++vcpu->kvm->stat.lpages;
2150
2151 if (is_shadow_present_pte(*sptep)) {
2152 page_header_update_slot(vcpu->kvm, sptep, gfn);
2153 if (!was_rmapped) {
2154 rmap_count = rmap_add(vcpu, sptep, gfn);
2155 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2156 rmap_recycle(vcpu, sptep, gfn);
2157 }
2158 }
2159 kvm_release_pfn_clean(pfn);
2160 if (speculative) {
2161 vcpu->arch.last_pte_updated = sptep;
2162 vcpu->arch.last_pte_gfn = gfn;
2163 }
2164 }
2165
2166 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2167 {
2168 }
2169
2170 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2171 bool no_dirty_log)
2172 {
2173 struct kvm_memory_slot *slot;
2174 unsigned long hva;
2175
2176 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2177 if (!slot) {
2178 get_page(fault_page);
2179 return page_to_pfn(fault_page);
2180 }
2181
2182 hva = gfn_to_hva_memslot(slot, gfn);
2183
2184 return hva_to_pfn_atomic(vcpu->kvm, hva);
2185 }
2186
2187 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2188 struct kvm_mmu_page *sp,
2189 u64 *start, u64 *end)
2190 {
2191 struct page *pages[PTE_PREFETCH_NUM];
2192 unsigned access = sp->role.access;
2193 int i, ret;
2194 gfn_t gfn;
2195
2196 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2197 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2198 return -1;
2199
2200 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2201 if (ret <= 0)
2202 return -1;
2203
2204 for (i = 0; i < ret; i++, gfn++, start++)
2205 mmu_set_spte(vcpu, start, ACC_ALL,
2206 access, 0, 0, NULL,
2207 sp->role.level, gfn,
2208 page_to_pfn(pages[i]), true, true);
2209
2210 return 0;
2211 }
2212
2213 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2214 struct kvm_mmu_page *sp, u64 *sptep)
2215 {
2216 u64 *spte, *start = NULL;
2217 int i;
2218
2219 WARN_ON(!sp->role.direct);
2220
2221 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2222 spte = sp->spt + i;
2223
2224 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2225 if (is_shadow_present_pte(*spte) || spte == sptep) {
2226 if (!start)
2227 continue;
2228 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2229 break;
2230 start = NULL;
2231 } else if (!start)
2232 start = spte;
2233 }
2234 }
2235
2236 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2237 {
2238 struct kvm_mmu_page *sp;
2239
2240 /*
2241 * Since it's no accessed bit on EPT, it's no way to
2242 * distinguish between actually accessed translations
2243 * and prefetched, so disable pte prefetch if EPT is
2244 * enabled.
2245 */
2246 if (!shadow_accessed_mask)
2247 return;
2248
2249 sp = page_header(__pa(sptep));
2250 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2251 return;
2252
2253 __direct_pte_prefetch(vcpu, sp, sptep);
2254 }
2255
2256 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2257 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2258 bool prefault)
2259 {
2260 struct kvm_shadow_walk_iterator iterator;
2261 struct kvm_mmu_page *sp;
2262 int emulate = 0;
2263 gfn_t pseudo_gfn;
2264
2265 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2266 if (iterator.level == level) {
2267 unsigned pte_access = ACC_ALL;
2268
2269 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2270 0, write, &emulate,
2271 level, gfn, pfn, prefault, map_writable);
2272 direct_pte_prefetch(vcpu, iterator.sptep);
2273 ++vcpu->stat.pf_fixed;
2274 break;
2275 }
2276
2277 if (!is_shadow_present_pte(*iterator.sptep)) {
2278 u64 base_addr = iterator.addr;
2279
2280 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2281 pseudo_gfn = base_addr >> PAGE_SHIFT;
2282 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2283 iterator.level - 1,
2284 1, ACC_ALL, iterator.sptep);
2285 if (!sp) {
2286 pgprintk("nonpaging_map: ENOMEM\n");
2287 kvm_release_pfn_clean(pfn);
2288 return -ENOMEM;
2289 }
2290
2291 mmu_spte_set(iterator.sptep,
2292 __pa(sp->spt)
2293 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2294 | shadow_user_mask | shadow_x_mask
2295 | shadow_accessed_mask);
2296 }
2297 }
2298 return emulate;
2299 }
2300
2301 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2302 {
2303 siginfo_t info;
2304
2305 info.si_signo = SIGBUS;
2306 info.si_errno = 0;
2307 info.si_code = BUS_MCEERR_AR;
2308 info.si_addr = (void __user *)address;
2309 info.si_addr_lsb = PAGE_SHIFT;
2310
2311 send_sig_info(SIGBUS, &info, tsk);
2312 }
2313
2314 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2315 {
2316 kvm_release_pfn_clean(pfn);
2317 if (is_hwpoison_pfn(pfn)) {
2318 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2319 return 0;
2320 }
2321
2322 return -EFAULT;
2323 }
2324
2325 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2326 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2327 {
2328 pfn_t pfn = *pfnp;
2329 gfn_t gfn = *gfnp;
2330 int level = *levelp;
2331
2332 /*
2333 * Check if it's a transparent hugepage. If this would be an
2334 * hugetlbfs page, level wouldn't be set to
2335 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2336 * here.
2337 */
2338 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2339 level == PT_PAGE_TABLE_LEVEL &&
2340 PageTransCompound(pfn_to_page(pfn)) &&
2341 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2342 unsigned long mask;
2343 /*
2344 * mmu_notifier_retry was successful and we hold the
2345 * mmu_lock here, so the pmd can't become splitting
2346 * from under us, and in turn
2347 * __split_huge_page_refcount() can't run from under
2348 * us and we can safely transfer the refcount from
2349 * PG_tail to PG_head as we switch the pfn to tail to
2350 * head.
2351 */
2352 *levelp = level = PT_DIRECTORY_LEVEL;
2353 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2354 VM_BUG_ON((gfn & mask) != (pfn & mask));
2355 if (pfn & mask) {
2356 gfn &= ~mask;
2357 *gfnp = gfn;
2358 kvm_release_pfn_clean(pfn);
2359 pfn &= ~mask;
2360 if (!get_page_unless_zero(pfn_to_page(pfn)))
2361 BUG();
2362 *pfnp = pfn;
2363 }
2364 }
2365 }
2366
2367 static bool mmu_invalid_pfn(pfn_t pfn)
2368 {
2369 return unlikely(is_invalid_pfn(pfn) || is_noslot_pfn(pfn));
2370 }
2371
2372 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2373 pfn_t pfn, unsigned access, int *ret_val)
2374 {
2375 bool ret = true;
2376
2377 /* The pfn is invalid, report the error! */
2378 if (unlikely(is_invalid_pfn(pfn))) {
2379 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2380 goto exit;
2381 }
2382
2383 if (unlikely(is_noslot_pfn(pfn))) {
2384 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2385 *ret_val = 1;
2386 goto exit;
2387 }
2388
2389 ret = false;
2390 exit:
2391 return ret;
2392 }
2393
2394 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2395 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2396
2397 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2398 bool prefault)
2399 {
2400 int r;
2401 int level;
2402 int force_pt_level;
2403 pfn_t pfn;
2404 unsigned long mmu_seq;
2405 bool map_writable;
2406
2407 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2408 if (likely(!force_pt_level)) {
2409 level = mapping_level(vcpu, gfn);
2410 /*
2411 * This path builds a PAE pagetable - so we can map
2412 * 2mb pages at maximum. Therefore check if the level
2413 * is larger than that.
2414 */
2415 if (level > PT_DIRECTORY_LEVEL)
2416 level = PT_DIRECTORY_LEVEL;
2417
2418 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2419 } else
2420 level = PT_PAGE_TABLE_LEVEL;
2421
2422 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2423 smp_rmb();
2424
2425 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2426 return 0;
2427
2428 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2429 return r;
2430
2431 spin_lock(&vcpu->kvm->mmu_lock);
2432 if (mmu_notifier_retry(vcpu, mmu_seq))
2433 goto out_unlock;
2434 kvm_mmu_free_some_pages(vcpu);
2435 if (likely(!force_pt_level))
2436 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2437 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2438 prefault);
2439 spin_unlock(&vcpu->kvm->mmu_lock);
2440
2441
2442 return r;
2443
2444 out_unlock:
2445 spin_unlock(&vcpu->kvm->mmu_lock);
2446 kvm_release_pfn_clean(pfn);
2447 return 0;
2448 }
2449
2450
2451 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2452 {
2453 int i;
2454 struct kvm_mmu_page *sp;
2455 LIST_HEAD(invalid_list);
2456
2457 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2458 return;
2459 spin_lock(&vcpu->kvm->mmu_lock);
2460 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2461 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2462 vcpu->arch.mmu.direct_map)) {
2463 hpa_t root = vcpu->arch.mmu.root_hpa;
2464
2465 sp = page_header(root);
2466 --sp->root_count;
2467 if (!sp->root_count && sp->role.invalid) {
2468 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2469 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2470 }
2471 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2472 spin_unlock(&vcpu->kvm->mmu_lock);
2473 return;
2474 }
2475 for (i = 0; i < 4; ++i) {
2476 hpa_t root = vcpu->arch.mmu.pae_root[i];
2477
2478 if (root) {
2479 root &= PT64_BASE_ADDR_MASK;
2480 sp = page_header(root);
2481 --sp->root_count;
2482 if (!sp->root_count && sp->role.invalid)
2483 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2484 &invalid_list);
2485 }
2486 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2487 }
2488 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2489 spin_unlock(&vcpu->kvm->mmu_lock);
2490 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2491 }
2492
2493 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2494 {
2495 int ret = 0;
2496
2497 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2498 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2499 ret = 1;
2500 }
2501
2502 return ret;
2503 }
2504
2505 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2506 {
2507 struct kvm_mmu_page *sp;
2508 unsigned i;
2509
2510 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2511 spin_lock(&vcpu->kvm->mmu_lock);
2512 kvm_mmu_free_some_pages(vcpu);
2513 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2514 1, ACC_ALL, NULL);
2515 ++sp->root_count;
2516 spin_unlock(&vcpu->kvm->mmu_lock);
2517 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2518 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2519 for (i = 0; i < 4; ++i) {
2520 hpa_t root = vcpu->arch.mmu.pae_root[i];
2521
2522 ASSERT(!VALID_PAGE(root));
2523 spin_lock(&vcpu->kvm->mmu_lock);
2524 kvm_mmu_free_some_pages(vcpu);
2525 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2526 i << 30,
2527 PT32_ROOT_LEVEL, 1, ACC_ALL,
2528 NULL);
2529 root = __pa(sp->spt);
2530 ++sp->root_count;
2531 spin_unlock(&vcpu->kvm->mmu_lock);
2532 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2533 }
2534 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2535 } else
2536 BUG();
2537
2538 return 0;
2539 }
2540
2541 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2542 {
2543 struct kvm_mmu_page *sp;
2544 u64 pdptr, pm_mask;
2545 gfn_t root_gfn;
2546 int i;
2547
2548 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2549
2550 if (mmu_check_root(vcpu, root_gfn))
2551 return 1;
2552
2553 /*
2554 * Do we shadow a long mode page table? If so we need to
2555 * write-protect the guests page table root.
2556 */
2557 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2558 hpa_t root = vcpu->arch.mmu.root_hpa;
2559
2560 ASSERT(!VALID_PAGE(root));
2561
2562 spin_lock(&vcpu->kvm->mmu_lock);
2563 kvm_mmu_free_some_pages(vcpu);
2564 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2565 0, ACC_ALL, NULL);
2566 root = __pa(sp->spt);
2567 ++sp->root_count;
2568 spin_unlock(&vcpu->kvm->mmu_lock);
2569 vcpu->arch.mmu.root_hpa = root;
2570 return 0;
2571 }
2572
2573 /*
2574 * We shadow a 32 bit page table. This may be a legacy 2-level
2575 * or a PAE 3-level page table. In either case we need to be aware that
2576 * the shadow page table may be a PAE or a long mode page table.
2577 */
2578 pm_mask = PT_PRESENT_MASK;
2579 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2580 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2581
2582 for (i = 0; i < 4; ++i) {
2583 hpa_t root = vcpu->arch.mmu.pae_root[i];
2584
2585 ASSERT(!VALID_PAGE(root));
2586 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2587 pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2588 if (!is_present_gpte(pdptr)) {
2589 vcpu->arch.mmu.pae_root[i] = 0;
2590 continue;
2591 }
2592 root_gfn = pdptr >> PAGE_SHIFT;
2593 if (mmu_check_root(vcpu, root_gfn))
2594 return 1;
2595 }
2596 spin_lock(&vcpu->kvm->mmu_lock);
2597 kvm_mmu_free_some_pages(vcpu);
2598 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2599 PT32_ROOT_LEVEL, 0,
2600 ACC_ALL, NULL);
2601 root = __pa(sp->spt);
2602 ++sp->root_count;
2603 spin_unlock(&vcpu->kvm->mmu_lock);
2604
2605 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2606 }
2607 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2608
2609 /*
2610 * If we shadow a 32 bit page table with a long mode page
2611 * table we enter this path.
2612 */
2613 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2614 if (vcpu->arch.mmu.lm_root == NULL) {
2615 /*
2616 * The additional page necessary for this is only
2617 * allocated on demand.
2618 */
2619
2620 u64 *lm_root;
2621
2622 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2623 if (lm_root == NULL)
2624 return 1;
2625
2626 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2627
2628 vcpu->arch.mmu.lm_root = lm_root;
2629 }
2630
2631 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2632 }
2633
2634 return 0;
2635 }
2636
2637 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2638 {
2639 if (vcpu->arch.mmu.direct_map)
2640 return mmu_alloc_direct_roots(vcpu);
2641 else
2642 return mmu_alloc_shadow_roots(vcpu);
2643 }
2644
2645 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2646 {
2647 int i;
2648 struct kvm_mmu_page *sp;
2649
2650 if (vcpu->arch.mmu.direct_map)
2651 return;
2652
2653 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2654 return;
2655
2656 vcpu_clear_mmio_info(vcpu, ~0ul);
2657 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2658 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2659 hpa_t root = vcpu->arch.mmu.root_hpa;
2660 sp = page_header(root);
2661 mmu_sync_children(vcpu, sp);
2662 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2663 return;
2664 }
2665 for (i = 0; i < 4; ++i) {
2666 hpa_t root = vcpu->arch.mmu.pae_root[i];
2667
2668 if (root && VALID_PAGE(root)) {
2669 root &= PT64_BASE_ADDR_MASK;
2670 sp = page_header(root);
2671 mmu_sync_children(vcpu, sp);
2672 }
2673 }
2674 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2675 }
2676
2677 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2678 {
2679 spin_lock(&vcpu->kvm->mmu_lock);
2680 mmu_sync_roots(vcpu);
2681 spin_unlock(&vcpu->kvm->mmu_lock);
2682 }
2683
2684 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2685 u32 access, struct x86_exception *exception)
2686 {
2687 if (exception)
2688 exception->error_code = 0;
2689 return vaddr;
2690 }
2691
2692 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2693 u32 access,
2694 struct x86_exception *exception)
2695 {
2696 if (exception)
2697 exception->error_code = 0;
2698 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2699 }
2700
2701 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2702 u32 error_code, bool prefault)
2703 {
2704 gfn_t gfn;
2705 int r;
2706
2707 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2708 r = mmu_topup_memory_caches(vcpu);
2709 if (r)
2710 return r;
2711
2712 ASSERT(vcpu);
2713 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2714
2715 gfn = gva >> PAGE_SHIFT;
2716
2717 return nonpaging_map(vcpu, gva & PAGE_MASK,
2718 error_code & PFERR_WRITE_MASK, gfn, prefault);
2719 }
2720
2721 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
2722 {
2723 struct kvm_arch_async_pf arch;
2724
2725 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
2726 arch.gfn = gfn;
2727 arch.direct_map = vcpu->arch.mmu.direct_map;
2728 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
2729
2730 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
2731 }
2732
2733 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
2734 {
2735 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
2736 kvm_event_needs_reinjection(vcpu)))
2737 return false;
2738
2739 return kvm_x86_ops->interrupt_allowed(vcpu);
2740 }
2741
2742 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2743 gva_t gva, pfn_t *pfn, bool write, bool *writable)
2744 {
2745 bool async;
2746
2747 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
2748
2749 if (!async)
2750 return false; /* *pfn has correct page already */
2751
2752 put_page(pfn_to_page(*pfn));
2753
2754 if (!prefault && can_do_async_pf(vcpu)) {
2755 trace_kvm_try_async_get_page(gva, gfn);
2756 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
2757 trace_kvm_async_pf_doublefault(gva, gfn);
2758 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2759 return true;
2760 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
2761 return true;
2762 }
2763
2764 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
2765
2766 return false;
2767 }
2768
2769 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
2770 bool prefault)
2771 {
2772 pfn_t pfn;
2773 int r;
2774 int level;
2775 int force_pt_level;
2776 gfn_t gfn = gpa >> PAGE_SHIFT;
2777 unsigned long mmu_seq;
2778 int write = error_code & PFERR_WRITE_MASK;
2779 bool map_writable;
2780
2781 ASSERT(vcpu);
2782 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2783
2784 r = mmu_topup_memory_caches(vcpu);
2785 if (r)
2786 return r;
2787
2788 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2789 if (likely(!force_pt_level)) {
2790 level = mapping_level(vcpu, gfn);
2791 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2792 } else
2793 level = PT_PAGE_TABLE_LEVEL;
2794
2795 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2796 smp_rmb();
2797
2798 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
2799 return 0;
2800
2801 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
2802 return r;
2803
2804 spin_lock(&vcpu->kvm->mmu_lock);
2805 if (mmu_notifier_retry(vcpu, mmu_seq))
2806 goto out_unlock;
2807 kvm_mmu_free_some_pages(vcpu);
2808 if (likely(!force_pt_level))
2809 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2810 r = __direct_map(vcpu, gpa, write, map_writable,
2811 level, gfn, pfn, prefault);
2812 spin_unlock(&vcpu->kvm->mmu_lock);
2813
2814 return r;
2815
2816 out_unlock:
2817 spin_unlock(&vcpu->kvm->mmu_lock);
2818 kvm_release_pfn_clean(pfn);
2819 return 0;
2820 }
2821
2822 static void nonpaging_free(struct kvm_vcpu *vcpu)
2823 {
2824 mmu_free_roots(vcpu);
2825 }
2826
2827 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2828 struct kvm_mmu *context)
2829 {
2830 context->new_cr3 = nonpaging_new_cr3;
2831 context->page_fault = nonpaging_page_fault;
2832 context->gva_to_gpa = nonpaging_gva_to_gpa;
2833 context->free = nonpaging_free;
2834 context->sync_page = nonpaging_sync_page;
2835 context->invlpg = nonpaging_invlpg;
2836 context->update_pte = nonpaging_update_pte;
2837 context->root_level = 0;
2838 context->shadow_root_level = PT32E_ROOT_LEVEL;
2839 context->root_hpa = INVALID_PAGE;
2840 context->direct_map = true;
2841 context->nx = false;
2842 return 0;
2843 }
2844
2845 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2846 {
2847 ++vcpu->stat.tlb_flush;
2848 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2849 }
2850
2851 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2852 {
2853 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
2854 mmu_free_roots(vcpu);
2855 }
2856
2857 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2858 {
2859 return kvm_read_cr3(vcpu);
2860 }
2861
2862 static void inject_page_fault(struct kvm_vcpu *vcpu,
2863 struct x86_exception *fault)
2864 {
2865 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
2866 }
2867
2868 static void paging_free(struct kvm_vcpu *vcpu)
2869 {
2870 nonpaging_free(vcpu);
2871 }
2872
2873 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2874 {
2875 int bit7;
2876
2877 bit7 = (gpte >> 7) & 1;
2878 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2879 }
2880
2881 #define PTTYPE 64
2882 #include "paging_tmpl.h"
2883 #undef PTTYPE
2884
2885 #define PTTYPE 32
2886 #include "paging_tmpl.h"
2887 #undef PTTYPE
2888
2889 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2890 struct kvm_mmu *context,
2891 int level)
2892 {
2893 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2894 u64 exb_bit_rsvd = 0;
2895
2896 if (!context->nx)
2897 exb_bit_rsvd = rsvd_bits(63, 63);
2898 switch (level) {
2899 case PT32_ROOT_LEVEL:
2900 /* no rsvd bits for 2 level 4K page table entries */
2901 context->rsvd_bits_mask[0][1] = 0;
2902 context->rsvd_bits_mask[0][0] = 0;
2903 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2904
2905 if (!is_pse(vcpu)) {
2906 context->rsvd_bits_mask[1][1] = 0;
2907 break;
2908 }
2909
2910 if (is_cpuid_PSE36())
2911 /* 36bits PSE 4MB page */
2912 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2913 else
2914 /* 32 bits PSE 4MB page */
2915 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2916 break;
2917 case PT32E_ROOT_LEVEL:
2918 context->rsvd_bits_mask[0][2] =
2919 rsvd_bits(maxphyaddr, 63) |
2920 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2921 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2922 rsvd_bits(maxphyaddr, 62); /* PDE */
2923 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2924 rsvd_bits(maxphyaddr, 62); /* PTE */
2925 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2926 rsvd_bits(maxphyaddr, 62) |
2927 rsvd_bits(13, 20); /* large page */
2928 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2929 break;
2930 case PT64_ROOT_LEVEL:
2931 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2932 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2933 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2934 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2935 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2936 rsvd_bits(maxphyaddr, 51);
2937 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2938 rsvd_bits(maxphyaddr, 51);
2939 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2940 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2941 rsvd_bits(maxphyaddr, 51) |
2942 rsvd_bits(13, 29);
2943 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2944 rsvd_bits(maxphyaddr, 51) |
2945 rsvd_bits(13, 20); /* large page */
2946 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2947 break;
2948 }
2949 }
2950
2951 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2952 struct kvm_mmu *context,
2953 int level)
2954 {
2955 context->nx = is_nx(vcpu);
2956
2957 reset_rsvds_bits_mask(vcpu, context, level);
2958
2959 ASSERT(is_pae(vcpu));
2960 context->new_cr3 = paging_new_cr3;
2961 context->page_fault = paging64_page_fault;
2962 context->gva_to_gpa = paging64_gva_to_gpa;
2963 context->sync_page = paging64_sync_page;
2964 context->invlpg = paging64_invlpg;
2965 context->update_pte = paging64_update_pte;
2966 context->free = paging_free;
2967 context->root_level = level;
2968 context->shadow_root_level = level;
2969 context->root_hpa = INVALID_PAGE;
2970 context->direct_map = false;
2971 return 0;
2972 }
2973
2974 static int paging64_init_context(struct kvm_vcpu *vcpu,
2975 struct kvm_mmu *context)
2976 {
2977 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2978 }
2979
2980 static int paging32_init_context(struct kvm_vcpu *vcpu,
2981 struct kvm_mmu *context)
2982 {
2983 context->nx = false;
2984
2985 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2986
2987 context->new_cr3 = paging_new_cr3;
2988 context->page_fault = paging32_page_fault;
2989 context->gva_to_gpa = paging32_gva_to_gpa;
2990 context->free = paging_free;
2991 context->sync_page = paging32_sync_page;
2992 context->invlpg = paging32_invlpg;
2993 context->update_pte = paging32_update_pte;
2994 context->root_level = PT32_ROOT_LEVEL;
2995 context->shadow_root_level = PT32E_ROOT_LEVEL;
2996 context->root_hpa = INVALID_PAGE;
2997 context->direct_map = false;
2998 return 0;
2999 }
3000
3001 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3002 struct kvm_mmu *context)
3003 {
3004 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3005 }
3006
3007 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3008 {
3009 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3010
3011 context->base_role.word = 0;
3012 context->new_cr3 = nonpaging_new_cr3;
3013 context->page_fault = tdp_page_fault;
3014 context->free = nonpaging_free;
3015 context->sync_page = nonpaging_sync_page;
3016 context->invlpg = nonpaging_invlpg;
3017 context->update_pte = nonpaging_update_pte;
3018 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3019 context->root_hpa = INVALID_PAGE;
3020 context->direct_map = true;
3021 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3022 context->get_cr3 = get_cr3;
3023 context->inject_page_fault = kvm_inject_page_fault;
3024 context->nx = is_nx(vcpu);
3025
3026 if (!is_paging(vcpu)) {
3027 context->nx = false;
3028 context->gva_to_gpa = nonpaging_gva_to_gpa;
3029 context->root_level = 0;
3030 } else if (is_long_mode(vcpu)) {
3031 context->nx = is_nx(vcpu);
3032 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
3033 context->gva_to_gpa = paging64_gva_to_gpa;
3034 context->root_level = PT64_ROOT_LEVEL;
3035 } else if (is_pae(vcpu)) {
3036 context->nx = is_nx(vcpu);
3037 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
3038 context->gva_to_gpa = paging64_gva_to_gpa;
3039 context->root_level = PT32E_ROOT_LEVEL;
3040 } else {
3041 context->nx = false;
3042 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3043 context->gva_to_gpa = paging32_gva_to_gpa;
3044 context->root_level = PT32_ROOT_LEVEL;
3045 }
3046
3047 return 0;
3048 }
3049
3050 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3051 {
3052 int r;
3053 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3054 ASSERT(vcpu);
3055 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3056
3057 if (!is_paging(vcpu))
3058 r = nonpaging_init_context(vcpu, context);
3059 else if (is_long_mode(vcpu))
3060 r = paging64_init_context(vcpu, context);
3061 else if (is_pae(vcpu))
3062 r = paging32E_init_context(vcpu, context);
3063 else
3064 r = paging32_init_context(vcpu, context);
3065
3066 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3067 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3068 vcpu->arch.mmu.base_role.smep_andnot_wp
3069 = smep && !is_write_protection(vcpu);
3070
3071 return r;
3072 }
3073 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3074
3075 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3076 {
3077 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3078
3079 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3080 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3081 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3082
3083 return r;
3084 }
3085
3086 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3087 {
3088 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3089
3090 g_context->get_cr3 = get_cr3;
3091 g_context->inject_page_fault = kvm_inject_page_fault;
3092
3093 /*
3094 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3095 * translation of l2_gpa to l1_gpa addresses is done using the
3096 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3097 * functions between mmu and nested_mmu are swapped.
3098 */
3099 if (!is_paging(vcpu)) {
3100 g_context->nx = false;
3101 g_context->root_level = 0;
3102 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3103 } else if (is_long_mode(vcpu)) {
3104 g_context->nx = is_nx(vcpu);
3105 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3106 g_context->root_level = PT64_ROOT_LEVEL;
3107 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3108 } else if (is_pae(vcpu)) {
3109 g_context->nx = is_nx(vcpu);
3110 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3111 g_context->root_level = PT32E_ROOT_LEVEL;
3112 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3113 } else {
3114 g_context->nx = false;
3115 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3116 g_context->root_level = PT32_ROOT_LEVEL;
3117 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3118 }
3119
3120 return 0;
3121 }
3122
3123 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3124 {
3125 if (mmu_is_nested(vcpu))
3126 return init_kvm_nested_mmu(vcpu);
3127 else if (tdp_enabled)
3128 return init_kvm_tdp_mmu(vcpu);
3129 else
3130 return init_kvm_softmmu(vcpu);
3131 }
3132
3133 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3134 {
3135 ASSERT(vcpu);
3136 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3137 /* mmu.free() should set root_hpa = INVALID_PAGE */
3138 vcpu->arch.mmu.free(vcpu);
3139 }
3140
3141 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3142 {
3143 destroy_kvm_mmu(vcpu);
3144 return init_kvm_mmu(vcpu);
3145 }
3146 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3147
3148 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3149 {
3150 int r;
3151
3152 r = mmu_topup_memory_caches(vcpu);
3153 if (r)
3154 goto out;
3155 r = mmu_alloc_roots(vcpu);
3156 spin_lock(&vcpu->kvm->mmu_lock);
3157 mmu_sync_roots(vcpu);
3158 spin_unlock(&vcpu->kvm->mmu_lock);
3159 if (r)
3160 goto out;
3161 /* set_cr3() should ensure TLB has been flushed */
3162 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3163 out:
3164 return r;
3165 }
3166 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3167
3168 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3169 {
3170 mmu_free_roots(vcpu);
3171 }
3172 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3173
3174 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3175 struct kvm_mmu_page *sp, u64 *spte,
3176 const void *new)
3177 {
3178 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3179 ++vcpu->kvm->stat.mmu_pde_zapped;
3180 return;
3181 }
3182
3183 ++vcpu->kvm->stat.mmu_pte_updated;
3184 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3185 }
3186
3187 static bool need_remote_flush(u64 old, u64 new)
3188 {
3189 if (!is_shadow_present_pte(old))
3190 return false;
3191 if (!is_shadow_present_pte(new))
3192 return true;
3193 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3194 return true;
3195 old ^= PT64_NX_MASK;
3196 new ^= PT64_NX_MASK;
3197 return (old & ~new & PT64_PERM_MASK) != 0;
3198 }
3199
3200 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3201 bool remote_flush, bool local_flush)
3202 {
3203 if (zap_page)
3204 return;
3205
3206 if (remote_flush)
3207 kvm_flush_remote_tlbs(vcpu->kvm);
3208 else if (local_flush)
3209 kvm_mmu_flush_tlb(vcpu);
3210 }
3211
3212 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3213 {
3214 u64 *spte = vcpu->arch.last_pte_updated;
3215
3216 return !!(spte && (*spte & shadow_accessed_mask));
3217 }
3218
3219 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3220 {
3221 u64 *spte = vcpu->arch.last_pte_updated;
3222
3223 if (spte
3224 && vcpu->arch.last_pte_gfn == gfn
3225 && shadow_accessed_mask
3226 && !(*spte & shadow_accessed_mask)
3227 && is_shadow_present_pte(*spte))
3228 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3229 }
3230
3231 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3232 const u8 *new, int bytes,
3233 bool guest_initiated)
3234 {
3235 gfn_t gfn = gpa >> PAGE_SHIFT;
3236 union kvm_mmu_page_role mask = { .word = 0 };
3237 struct kvm_mmu_page *sp;
3238 struct hlist_node *node;
3239 LIST_HEAD(invalid_list);
3240 u64 entry, gentry, *spte;
3241 unsigned pte_size, page_offset, misaligned, quadrant, offset;
3242 int level, npte, invlpg_counter, r, flooded = 0;
3243 bool remote_flush, local_flush, zap_page;
3244
3245 /*
3246 * If we don't have indirect shadow pages, it means no page is
3247 * write-protected, so we can exit simply.
3248 */
3249 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3250 return;
3251
3252 zap_page = remote_flush = local_flush = false;
3253 offset = offset_in_page(gpa);
3254
3255 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3256
3257 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3258
3259 /*
3260 * Assume that the pte write on a page table of the same type
3261 * as the current vcpu paging mode since we update the sptes only
3262 * when they have the same mode.
3263 */
3264 if ((is_pae(vcpu) && bytes == 4) || !new) {
3265 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3266 if (is_pae(vcpu)) {
3267 gpa &= ~(gpa_t)7;
3268 bytes = 8;
3269 }
3270 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3271 if (r)
3272 gentry = 0;
3273 new = (const u8 *)&gentry;
3274 }
3275
3276 switch (bytes) {
3277 case 4:
3278 gentry = *(const u32 *)new;
3279 break;
3280 case 8:
3281 gentry = *(const u64 *)new;
3282 break;
3283 default:
3284 gentry = 0;
3285 break;
3286 }
3287
3288 spin_lock(&vcpu->kvm->mmu_lock);
3289 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3290 gentry = 0;
3291 kvm_mmu_free_some_pages(vcpu);
3292 ++vcpu->kvm->stat.mmu_pte_write;
3293 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3294 if (guest_initiated) {
3295 kvm_mmu_access_page(vcpu, gfn);
3296 if (gfn == vcpu->arch.last_pt_write_gfn
3297 && !last_updated_pte_accessed(vcpu)) {
3298 ++vcpu->arch.last_pt_write_count;
3299 if (vcpu->arch.last_pt_write_count >= 3)
3300 flooded = 1;
3301 } else {
3302 vcpu->arch.last_pt_write_gfn = gfn;
3303 vcpu->arch.last_pt_write_count = 1;
3304 vcpu->arch.last_pte_updated = NULL;
3305 }
3306 }
3307
3308 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3309 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3310 pte_size = sp->role.cr4_pae ? 8 : 4;
3311 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3312 misaligned |= bytes < 4;
3313 if (misaligned || flooded) {
3314 /*
3315 * Misaligned accesses are too much trouble to fix
3316 * up; also, they usually indicate a page is not used
3317 * as a page table.
3318 *
3319 * If we're seeing too many writes to a page,
3320 * it may no longer be a page table, or we may be
3321 * forking, in which case it is better to unmap the
3322 * page.
3323 */
3324 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3325 gpa, bytes, sp->role.word);
3326 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3327 &invalid_list);
3328 ++vcpu->kvm->stat.mmu_flooded;
3329 continue;
3330 }
3331 page_offset = offset;
3332 level = sp->role.level;
3333 npte = 1;
3334 if (!sp->role.cr4_pae) {
3335 page_offset <<= 1; /* 32->64 */
3336 /*
3337 * A 32-bit pde maps 4MB while the shadow pdes map
3338 * only 2MB. So we need to double the offset again
3339 * and zap two pdes instead of one.
3340 */
3341 if (level == PT32_ROOT_LEVEL) {
3342 page_offset &= ~7; /* kill rounding error */
3343 page_offset <<= 1;
3344 npte = 2;
3345 }
3346 quadrant = page_offset >> PAGE_SHIFT;
3347 page_offset &= ~PAGE_MASK;
3348 if (quadrant != sp->role.quadrant)
3349 continue;
3350 }
3351 local_flush = true;
3352 spte = &sp->spt[page_offset / sizeof(*spte)];
3353 while (npte--) {
3354 entry = *spte;
3355 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3356 if (gentry &&
3357 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3358 & mask.word))
3359 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3360 if (!remote_flush && need_remote_flush(entry, *spte))
3361 remote_flush = true;
3362 ++spte;
3363 }
3364 }
3365 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3366 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3367 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3368 spin_unlock(&vcpu->kvm->mmu_lock);
3369 }
3370
3371 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3372 {
3373 gpa_t gpa;
3374 int r;
3375
3376 if (vcpu->arch.mmu.direct_map)
3377 return 0;
3378
3379 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3380
3381 spin_lock(&vcpu->kvm->mmu_lock);
3382 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3383 spin_unlock(&vcpu->kvm->mmu_lock);
3384 return r;
3385 }
3386 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3387
3388 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3389 {
3390 LIST_HEAD(invalid_list);
3391
3392 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3393 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3394 struct kvm_mmu_page *sp;
3395
3396 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3397 struct kvm_mmu_page, link);
3398 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3399 ++vcpu->kvm->stat.mmu_recycled;
3400 }
3401 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3402 }
3403
3404 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3405 void *insn, int insn_len)
3406 {
3407 int r;
3408 enum emulation_result er;
3409
3410 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3411 if (r < 0)
3412 goto out;
3413
3414 if (!r) {
3415 r = 1;
3416 goto out;
3417 }
3418
3419 r = mmu_topup_memory_caches(vcpu);
3420 if (r)
3421 goto out;
3422
3423 er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3424
3425 switch (er) {
3426 case EMULATE_DONE:
3427 return 1;
3428 case EMULATE_DO_MMIO:
3429 ++vcpu->stat.mmio_exits;
3430 /* fall through */
3431 case EMULATE_FAIL:
3432 return 0;
3433 default:
3434 BUG();
3435 }
3436 out:
3437 return r;
3438 }
3439 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3440
3441 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3442 {
3443 vcpu->arch.mmu.invlpg(vcpu, gva);
3444 kvm_mmu_flush_tlb(vcpu);
3445 ++vcpu->stat.invlpg;
3446 }
3447 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3448
3449 void kvm_enable_tdp(void)
3450 {
3451 tdp_enabled = true;
3452 }
3453 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3454
3455 void kvm_disable_tdp(void)
3456 {
3457 tdp_enabled = false;
3458 }
3459 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3460
3461 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3462 {
3463 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3464 if (vcpu->arch.mmu.lm_root != NULL)
3465 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3466 }
3467
3468 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3469 {
3470 struct page *page;
3471 int i;
3472
3473 ASSERT(vcpu);
3474
3475 /*
3476 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3477 * Therefore we need to allocate shadow page tables in the first
3478 * 4GB of memory, which happens to fit the DMA32 zone.
3479 */
3480 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3481 if (!page)
3482 return -ENOMEM;
3483
3484 vcpu->arch.mmu.pae_root = page_address(page);
3485 for (i = 0; i < 4; ++i)
3486 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3487
3488 return 0;
3489 }
3490
3491 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3492 {
3493 ASSERT(vcpu);
3494 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3495
3496 return alloc_mmu_pages(vcpu);
3497 }
3498
3499 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3500 {
3501 ASSERT(vcpu);
3502 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3503
3504 return init_kvm_mmu(vcpu);
3505 }
3506
3507 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3508 {
3509 struct kvm_mmu_page *sp;
3510
3511 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3512 int i;
3513 u64 *pt;
3514
3515 if (!test_bit(slot, sp->slot_bitmap))
3516 continue;
3517
3518 pt = sp->spt;
3519 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3520 if (!is_shadow_present_pte(pt[i]) ||
3521 !is_last_spte(pt[i], sp->role.level))
3522 continue;
3523
3524 if (is_large_pte(pt[i])) {
3525 drop_spte(kvm, &pt[i]);
3526 --kvm->stat.lpages;
3527 continue;
3528 }
3529
3530 /* avoid RMW */
3531 if (is_writable_pte(pt[i]))
3532 mmu_spte_update(&pt[i],
3533 pt[i] & ~PT_WRITABLE_MASK);
3534 }
3535 }
3536 kvm_flush_remote_tlbs(kvm);
3537 }
3538
3539 void kvm_mmu_zap_all(struct kvm *kvm)
3540 {
3541 struct kvm_mmu_page *sp, *node;
3542 LIST_HEAD(invalid_list);
3543
3544 spin_lock(&kvm->mmu_lock);
3545 restart:
3546 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3547 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3548 goto restart;
3549
3550 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3551 spin_unlock(&kvm->mmu_lock);
3552 }
3553
3554 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3555 struct list_head *invalid_list)
3556 {
3557 struct kvm_mmu_page *page;
3558
3559 page = container_of(kvm->arch.active_mmu_pages.prev,
3560 struct kvm_mmu_page, link);
3561 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3562 }
3563
3564 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3565 {
3566 struct kvm *kvm;
3567 struct kvm *kvm_freed = NULL;
3568 int nr_to_scan = sc->nr_to_scan;
3569
3570 if (nr_to_scan == 0)
3571 goto out;
3572
3573 raw_spin_lock(&kvm_lock);
3574
3575 list_for_each_entry(kvm, &vm_list, vm_list) {
3576 int idx, freed_pages;
3577 LIST_HEAD(invalid_list);
3578
3579 idx = srcu_read_lock(&kvm->srcu);
3580 spin_lock(&kvm->mmu_lock);
3581 if (!kvm_freed && nr_to_scan > 0 &&
3582 kvm->arch.n_used_mmu_pages > 0) {
3583 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3584 &invalid_list);
3585 kvm_freed = kvm;
3586 }
3587 nr_to_scan--;
3588
3589 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3590 spin_unlock(&kvm->mmu_lock);
3591 srcu_read_unlock(&kvm->srcu, idx);
3592 }
3593 if (kvm_freed)
3594 list_move_tail(&kvm_freed->vm_list, &vm_list);
3595
3596 raw_spin_unlock(&kvm_lock);
3597
3598 out:
3599 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3600 }
3601
3602 static struct shrinker mmu_shrinker = {
3603 .shrink = mmu_shrink,
3604 .seeks = DEFAULT_SEEKS * 10,
3605 };
3606
3607 static void mmu_destroy_caches(void)
3608 {
3609 if (pte_list_desc_cache)
3610 kmem_cache_destroy(pte_list_desc_cache);
3611 if (mmu_page_header_cache)
3612 kmem_cache_destroy(mmu_page_header_cache);
3613 }
3614
3615 int kvm_mmu_module_init(void)
3616 {
3617 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3618 sizeof(struct pte_list_desc),
3619 0, 0, NULL);
3620 if (!pte_list_desc_cache)
3621 goto nomem;
3622
3623 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3624 sizeof(struct kvm_mmu_page),
3625 0, 0, NULL);
3626 if (!mmu_page_header_cache)
3627 goto nomem;
3628
3629 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3630 goto nomem;
3631
3632 register_shrinker(&mmu_shrinker);
3633
3634 return 0;
3635
3636 nomem:
3637 mmu_destroy_caches();
3638 return -ENOMEM;
3639 }
3640
3641 /*
3642 * Caculate mmu pages needed for kvm.
3643 */
3644 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3645 {
3646 int i;
3647 unsigned int nr_mmu_pages;
3648 unsigned int nr_pages = 0;
3649 struct kvm_memslots *slots;
3650
3651 slots = kvm_memslots(kvm);
3652
3653 for (i = 0; i < slots->nmemslots; i++)
3654 nr_pages += slots->memslots[i].npages;
3655
3656 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3657 nr_mmu_pages = max(nr_mmu_pages,
3658 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3659
3660 return nr_mmu_pages;
3661 }
3662
3663 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3664 unsigned len)
3665 {
3666 if (len > buffer->len)
3667 return NULL;
3668 return buffer->ptr;
3669 }
3670
3671 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3672 unsigned len)
3673 {
3674 void *ret;
3675
3676 ret = pv_mmu_peek_buffer(buffer, len);
3677 if (!ret)
3678 return ret;
3679 buffer->ptr += len;
3680 buffer->len -= len;
3681 buffer->processed += len;
3682 return ret;
3683 }
3684
3685 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3686 gpa_t addr, gpa_t value)
3687 {
3688 int bytes = 8;
3689 int r;
3690
3691 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3692 bytes = 4;
3693
3694 r = mmu_topup_memory_caches(vcpu);
3695 if (r)
3696 return r;
3697
3698 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3699 return -EFAULT;
3700
3701 return 1;
3702 }
3703
3704 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3705 {
3706 (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
3707 return 1;
3708 }
3709
3710 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3711 {
3712 spin_lock(&vcpu->kvm->mmu_lock);
3713 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3714 spin_unlock(&vcpu->kvm->mmu_lock);
3715 return 1;
3716 }
3717
3718 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3719 struct kvm_pv_mmu_op_buffer *buffer)
3720 {
3721 struct kvm_mmu_op_header *header;
3722
3723 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3724 if (!header)
3725 return 0;
3726 switch (header->op) {
3727 case KVM_MMU_OP_WRITE_PTE: {
3728 struct kvm_mmu_op_write_pte *wpte;
3729
3730 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3731 if (!wpte)
3732 return 0;
3733 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3734 wpte->pte_val);
3735 }
3736 case KVM_MMU_OP_FLUSH_TLB: {
3737 struct kvm_mmu_op_flush_tlb *ftlb;
3738
3739 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3740 if (!ftlb)
3741 return 0;
3742 return kvm_pv_mmu_flush_tlb(vcpu);
3743 }
3744 case KVM_MMU_OP_RELEASE_PT: {
3745 struct kvm_mmu_op_release_pt *rpt;
3746
3747 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3748 if (!rpt)
3749 return 0;
3750 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3751 }
3752 default: return 0;
3753 }
3754 }
3755
3756 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3757 gpa_t addr, unsigned long *ret)
3758 {
3759 int r;
3760 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3761
3762 buffer->ptr = buffer->buf;
3763 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3764 buffer->processed = 0;
3765
3766 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3767 if (r)
3768 goto out;
3769
3770 while (buffer->len) {
3771 r = kvm_pv_mmu_op_one(vcpu, buffer);
3772 if (r < 0)
3773 goto out;
3774 if (r == 0)
3775 break;
3776 }
3777
3778 r = 1;
3779 out:
3780 *ret = buffer->processed;
3781 return r;
3782 }
3783
3784 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3785 {
3786 struct kvm_shadow_walk_iterator iterator;
3787 int nr_sptes = 0;
3788
3789 spin_lock(&vcpu->kvm->mmu_lock);
3790 for_each_shadow_entry(vcpu, addr, iterator) {
3791 sptes[iterator.level-1] = *iterator.sptep;
3792 nr_sptes++;
3793 if (!is_shadow_present_pte(*iterator.sptep))
3794 break;
3795 }
3796 spin_unlock(&vcpu->kvm->mmu_lock);
3797
3798 return nr_sptes;
3799 }
3800 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3801
3802 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3803 {
3804 ASSERT(vcpu);
3805
3806 destroy_kvm_mmu(vcpu);
3807 free_mmu_pages(vcpu);
3808 mmu_free_memory_caches(vcpu);
3809 }
3810
3811 #ifdef CONFIG_KVM_MMU_AUDIT
3812 #include "mmu_audit.c"
3813 #else
3814 static void mmu_audit_disable(void) { }
3815 #endif
3816
3817 void kvm_mmu_module_exit(void)
3818 {
3819 mmu_destroy_caches();
3820 percpu_counter_destroy(&kvm_total_used_mmu_pages);
3821 unregister_shrinker(&mmu_shrinker);
3822 mmu_audit_disable();
3823 }
This page took 0.150735 seconds and 4 git commands to generate.