x86: Move call to print_modules() out of show_regs()
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 9
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149
150 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
151
152 /* make pte_list_desc fit well in cache line */
153 #define PTE_LIST_EXT 3
154
155 struct pte_list_desc {
156 u64 *sptes[PTE_LIST_EXT];
157 struct pte_list_desc *more;
158 };
159
160 struct kvm_shadow_walk_iterator {
161 u64 addr;
162 hpa_t shadow_addr;
163 u64 *sptep;
164 int level;
165 unsigned index;
166 };
167
168 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
170 shadow_walk_okay(&(_walker)); \
171 shadow_walk_next(&(_walker)))
172
173 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
175 shadow_walk_okay(&(_walker)) && \
176 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
177 __shadow_walk_next(&(_walker), spte))
178
179 static struct kmem_cache *pte_list_desc_cache;
180 static struct kmem_cache *mmu_page_header_cache;
181 static struct percpu_counter kvm_total_used_mmu_pages;
182
183 static u64 __read_mostly shadow_nx_mask;
184 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
185 static u64 __read_mostly shadow_user_mask;
186 static u64 __read_mostly shadow_accessed_mask;
187 static u64 __read_mostly shadow_dirty_mask;
188 static u64 __read_mostly shadow_mmio_mask;
189
190 static void mmu_spte_set(u64 *sptep, u64 spte);
191
192 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
193 {
194 shadow_mmio_mask = mmio_mask;
195 }
196 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
197
198 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
199 {
200 access &= ACC_WRITE_MASK | ACC_USER_MASK;
201
202 trace_mark_mmio_spte(sptep, gfn, access);
203 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
204 }
205
206 static bool is_mmio_spte(u64 spte)
207 {
208 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
209 }
210
211 static gfn_t get_mmio_spte_gfn(u64 spte)
212 {
213 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
214 }
215
216 static unsigned get_mmio_spte_access(u64 spte)
217 {
218 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
219 }
220
221 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
222 {
223 if (unlikely(is_noslot_pfn(pfn))) {
224 mark_mmio_spte(sptep, gfn, access);
225 return true;
226 }
227
228 return false;
229 }
230
231 static inline u64 rsvd_bits(int s, int e)
232 {
233 return ((1ULL << (e - s + 1)) - 1) << s;
234 }
235
236 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
237 u64 dirty_mask, u64 nx_mask, u64 x_mask)
238 {
239 shadow_user_mask = user_mask;
240 shadow_accessed_mask = accessed_mask;
241 shadow_dirty_mask = dirty_mask;
242 shadow_nx_mask = nx_mask;
243 shadow_x_mask = x_mask;
244 }
245 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
246
247 static int is_cpuid_PSE36(void)
248 {
249 return 1;
250 }
251
252 static int is_nx(struct kvm_vcpu *vcpu)
253 {
254 return vcpu->arch.efer & EFER_NX;
255 }
256
257 static int is_shadow_present_pte(u64 pte)
258 {
259 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
260 }
261
262 static int is_large_pte(u64 pte)
263 {
264 return pte & PT_PAGE_SIZE_MASK;
265 }
266
267 static int is_dirty_gpte(unsigned long pte)
268 {
269 return pte & PT_DIRTY_MASK;
270 }
271
272 static int is_rmap_spte(u64 pte)
273 {
274 return is_shadow_present_pte(pte);
275 }
276
277 static int is_last_spte(u64 pte, int level)
278 {
279 if (level == PT_PAGE_TABLE_LEVEL)
280 return 1;
281 if (is_large_pte(pte))
282 return 1;
283 return 0;
284 }
285
286 static pfn_t spte_to_pfn(u64 pte)
287 {
288 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
289 }
290
291 static gfn_t pse36_gfn_delta(u32 gpte)
292 {
293 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
294
295 return (gpte & PT32_DIR_PSE36_MASK) << shift;
296 }
297
298 #ifdef CONFIG_X86_64
299 static void __set_spte(u64 *sptep, u64 spte)
300 {
301 *sptep = spte;
302 }
303
304 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
305 {
306 *sptep = spte;
307 }
308
309 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
310 {
311 return xchg(sptep, spte);
312 }
313
314 static u64 __get_spte_lockless(u64 *sptep)
315 {
316 return ACCESS_ONCE(*sptep);
317 }
318
319 static bool __check_direct_spte_mmio_pf(u64 spte)
320 {
321 /* It is valid if the spte is zapped. */
322 return spte == 0ull;
323 }
324 #else
325 union split_spte {
326 struct {
327 u32 spte_low;
328 u32 spte_high;
329 };
330 u64 spte;
331 };
332
333 static void count_spte_clear(u64 *sptep, u64 spte)
334 {
335 struct kvm_mmu_page *sp = page_header(__pa(sptep));
336
337 if (is_shadow_present_pte(spte))
338 return;
339
340 /* Ensure the spte is completely set before we increase the count */
341 smp_wmb();
342 sp->clear_spte_count++;
343 }
344
345 static void __set_spte(u64 *sptep, u64 spte)
346 {
347 union split_spte *ssptep, sspte;
348
349 ssptep = (union split_spte *)sptep;
350 sspte = (union split_spte)spte;
351
352 ssptep->spte_high = sspte.spte_high;
353
354 /*
355 * If we map the spte from nonpresent to present, We should store
356 * the high bits firstly, then set present bit, so cpu can not
357 * fetch this spte while we are setting the spte.
358 */
359 smp_wmb();
360
361 ssptep->spte_low = sspte.spte_low;
362 }
363
364 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
365 {
366 union split_spte *ssptep, sspte;
367
368 ssptep = (union split_spte *)sptep;
369 sspte = (union split_spte)spte;
370
371 ssptep->spte_low = sspte.spte_low;
372
373 /*
374 * If we map the spte from present to nonpresent, we should clear
375 * present bit firstly to avoid vcpu fetch the old high bits.
376 */
377 smp_wmb();
378
379 ssptep->spte_high = sspte.spte_high;
380 count_spte_clear(sptep, spte);
381 }
382
383 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
384 {
385 union split_spte *ssptep, sspte, orig;
386
387 ssptep = (union split_spte *)sptep;
388 sspte = (union split_spte)spte;
389
390 /* xchg acts as a barrier before the setting of the high bits */
391 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
392 orig.spte_high = ssptep->spte_high;
393 ssptep->spte_high = sspte.spte_high;
394 count_spte_clear(sptep, spte);
395
396 return orig.spte;
397 }
398
399 /*
400 * The idea using the light way get the spte on x86_32 guest is from
401 * gup_get_pte(arch/x86/mm/gup.c).
402 * The difference is we can not catch the spte tlb flush if we leave
403 * guest mode, so we emulate it by increase clear_spte_count when spte
404 * is cleared.
405 */
406 static u64 __get_spte_lockless(u64 *sptep)
407 {
408 struct kvm_mmu_page *sp = page_header(__pa(sptep));
409 union split_spte spte, *orig = (union split_spte *)sptep;
410 int count;
411
412 retry:
413 count = sp->clear_spte_count;
414 smp_rmb();
415
416 spte.spte_low = orig->spte_low;
417 smp_rmb();
418
419 spte.spte_high = orig->spte_high;
420 smp_rmb();
421
422 if (unlikely(spte.spte_low != orig->spte_low ||
423 count != sp->clear_spte_count))
424 goto retry;
425
426 return spte.spte;
427 }
428
429 static bool __check_direct_spte_mmio_pf(u64 spte)
430 {
431 union split_spte sspte = (union split_spte)spte;
432 u32 high_mmio_mask = shadow_mmio_mask >> 32;
433
434 /* It is valid if the spte is zapped. */
435 if (spte == 0ull)
436 return true;
437
438 /* It is valid if the spte is being zapped. */
439 if (sspte.spte_low == 0ull &&
440 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
441 return true;
442
443 return false;
444 }
445 #endif
446
447 static bool spte_has_volatile_bits(u64 spte)
448 {
449 if (!shadow_accessed_mask)
450 return false;
451
452 if (!is_shadow_present_pte(spte))
453 return false;
454
455 if ((spte & shadow_accessed_mask) &&
456 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
457 return false;
458
459 return true;
460 }
461
462 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
463 {
464 return (old_spte & bit_mask) && !(new_spte & bit_mask);
465 }
466
467 /* Rules for using mmu_spte_set:
468 * Set the sptep from nonpresent to present.
469 * Note: the sptep being assigned *must* be either not present
470 * or in a state where the hardware will not attempt to update
471 * the spte.
472 */
473 static void mmu_spte_set(u64 *sptep, u64 new_spte)
474 {
475 WARN_ON(is_shadow_present_pte(*sptep));
476 __set_spte(sptep, new_spte);
477 }
478
479 /* Rules for using mmu_spte_update:
480 * Update the state bits, it means the mapped pfn is not changged.
481 */
482 static void mmu_spte_update(u64 *sptep, u64 new_spte)
483 {
484 u64 mask, old_spte = *sptep;
485
486 WARN_ON(!is_rmap_spte(new_spte));
487
488 if (!is_shadow_present_pte(old_spte))
489 return mmu_spte_set(sptep, new_spte);
490
491 new_spte |= old_spte & shadow_dirty_mask;
492
493 mask = shadow_accessed_mask;
494 if (is_writable_pte(old_spte))
495 mask |= shadow_dirty_mask;
496
497 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
498 __update_clear_spte_fast(sptep, new_spte);
499 else
500 old_spte = __update_clear_spte_slow(sptep, new_spte);
501
502 if (!shadow_accessed_mask)
503 return;
504
505 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
506 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
507 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
508 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
509 }
510
511 /*
512 * Rules for using mmu_spte_clear_track_bits:
513 * It sets the sptep from present to nonpresent, and track the
514 * state bits, it is used to clear the last level sptep.
515 */
516 static int mmu_spte_clear_track_bits(u64 *sptep)
517 {
518 pfn_t pfn;
519 u64 old_spte = *sptep;
520
521 if (!spte_has_volatile_bits(old_spte))
522 __update_clear_spte_fast(sptep, 0ull);
523 else
524 old_spte = __update_clear_spte_slow(sptep, 0ull);
525
526 if (!is_rmap_spte(old_spte))
527 return 0;
528
529 pfn = spte_to_pfn(old_spte);
530 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
531 kvm_set_pfn_accessed(pfn);
532 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
533 kvm_set_pfn_dirty(pfn);
534 return 1;
535 }
536
537 /*
538 * Rules for using mmu_spte_clear_no_track:
539 * Directly clear spte without caring the state bits of sptep,
540 * it is used to set the upper level spte.
541 */
542 static void mmu_spte_clear_no_track(u64 *sptep)
543 {
544 __update_clear_spte_fast(sptep, 0ull);
545 }
546
547 static u64 mmu_spte_get_lockless(u64 *sptep)
548 {
549 return __get_spte_lockless(sptep);
550 }
551
552 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
553 {
554 /*
555 * Prevent page table teardown by making any free-er wait during
556 * kvm_flush_remote_tlbs() IPI to all active vcpus.
557 */
558 local_irq_disable();
559 vcpu->mode = READING_SHADOW_PAGE_TABLES;
560 /*
561 * Make sure a following spte read is not reordered ahead of the write
562 * to vcpu->mode.
563 */
564 smp_mb();
565 }
566
567 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
568 {
569 /*
570 * Make sure the write to vcpu->mode is not reordered in front of
571 * reads to sptes. If it does, kvm_commit_zap_page() can see us
572 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
573 */
574 smp_mb();
575 vcpu->mode = OUTSIDE_GUEST_MODE;
576 local_irq_enable();
577 }
578
579 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
580 struct kmem_cache *base_cache, int min)
581 {
582 void *obj;
583
584 if (cache->nobjs >= min)
585 return 0;
586 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
587 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
588 if (!obj)
589 return -ENOMEM;
590 cache->objects[cache->nobjs++] = obj;
591 }
592 return 0;
593 }
594
595 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
596 {
597 return cache->nobjs;
598 }
599
600 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
601 struct kmem_cache *cache)
602 {
603 while (mc->nobjs)
604 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
605 }
606
607 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
608 int min)
609 {
610 void *page;
611
612 if (cache->nobjs >= min)
613 return 0;
614 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
615 page = (void *)__get_free_page(GFP_KERNEL);
616 if (!page)
617 return -ENOMEM;
618 cache->objects[cache->nobjs++] = page;
619 }
620 return 0;
621 }
622
623 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
624 {
625 while (mc->nobjs)
626 free_page((unsigned long)mc->objects[--mc->nobjs]);
627 }
628
629 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
630 {
631 int r;
632
633 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
634 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
635 if (r)
636 goto out;
637 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
638 if (r)
639 goto out;
640 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
641 mmu_page_header_cache, 4);
642 out:
643 return r;
644 }
645
646 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
647 {
648 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
649 pte_list_desc_cache);
650 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
651 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
652 mmu_page_header_cache);
653 }
654
655 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
656 size_t size)
657 {
658 void *p;
659
660 BUG_ON(!mc->nobjs);
661 p = mc->objects[--mc->nobjs];
662 return p;
663 }
664
665 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
666 {
667 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
668 sizeof(struct pte_list_desc));
669 }
670
671 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
672 {
673 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
674 }
675
676 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
677 {
678 if (!sp->role.direct)
679 return sp->gfns[index];
680
681 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
682 }
683
684 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
685 {
686 if (sp->role.direct)
687 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
688 else
689 sp->gfns[index] = gfn;
690 }
691
692 /*
693 * Return the pointer to the large page information for a given gfn,
694 * handling slots that are not large page aligned.
695 */
696 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
697 struct kvm_memory_slot *slot,
698 int level)
699 {
700 unsigned long idx;
701
702 idx = gfn_to_index(gfn, slot->base_gfn, level);
703 return &slot->arch.lpage_info[level - 2][idx];
704 }
705
706 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
707 {
708 struct kvm_memory_slot *slot;
709 struct kvm_lpage_info *linfo;
710 int i;
711
712 slot = gfn_to_memslot(kvm, gfn);
713 for (i = PT_DIRECTORY_LEVEL;
714 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
715 linfo = lpage_info_slot(gfn, slot, i);
716 linfo->write_count += 1;
717 }
718 kvm->arch.indirect_shadow_pages++;
719 }
720
721 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
722 {
723 struct kvm_memory_slot *slot;
724 struct kvm_lpage_info *linfo;
725 int i;
726
727 slot = gfn_to_memslot(kvm, gfn);
728 for (i = PT_DIRECTORY_LEVEL;
729 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
730 linfo = lpage_info_slot(gfn, slot, i);
731 linfo->write_count -= 1;
732 WARN_ON(linfo->write_count < 0);
733 }
734 kvm->arch.indirect_shadow_pages--;
735 }
736
737 static int has_wrprotected_page(struct kvm *kvm,
738 gfn_t gfn,
739 int level)
740 {
741 struct kvm_memory_slot *slot;
742 struct kvm_lpage_info *linfo;
743
744 slot = gfn_to_memslot(kvm, gfn);
745 if (slot) {
746 linfo = lpage_info_slot(gfn, slot, level);
747 return linfo->write_count;
748 }
749
750 return 1;
751 }
752
753 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
754 {
755 unsigned long page_size;
756 int i, ret = 0;
757
758 page_size = kvm_host_page_size(kvm, gfn);
759
760 for (i = PT_PAGE_TABLE_LEVEL;
761 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
762 if (page_size >= KVM_HPAGE_SIZE(i))
763 ret = i;
764 else
765 break;
766 }
767
768 return ret;
769 }
770
771 static struct kvm_memory_slot *
772 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
773 bool no_dirty_log)
774 {
775 struct kvm_memory_slot *slot;
776
777 slot = gfn_to_memslot(vcpu->kvm, gfn);
778 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
779 (no_dirty_log && slot->dirty_bitmap))
780 slot = NULL;
781
782 return slot;
783 }
784
785 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
786 {
787 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
788 }
789
790 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
791 {
792 int host_level, level, max_level;
793
794 host_level = host_mapping_level(vcpu->kvm, large_gfn);
795
796 if (host_level == PT_PAGE_TABLE_LEVEL)
797 return host_level;
798
799 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
800 kvm_x86_ops->get_lpage_level() : host_level;
801
802 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
803 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
804 break;
805
806 return level - 1;
807 }
808
809 /*
810 * Pte mapping structures:
811 *
812 * If pte_list bit zero is zero, then pte_list point to the spte.
813 *
814 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
815 * pte_list_desc containing more mappings.
816 *
817 * Returns the number of pte entries before the spte was added or zero if
818 * the spte was not added.
819 *
820 */
821 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
822 unsigned long *pte_list)
823 {
824 struct pte_list_desc *desc;
825 int i, count = 0;
826
827 if (!*pte_list) {
828 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
829 *pte_list = (unsigned long)spte;
830 } else if (!(*pte_list & 1)) {
831 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
832 desc = mmu_alloc_pte_list_desc(vcpu);
833 desc->sptes[0] = (u64 *)*pte_list;
834 desc->sptes[1] = spte;
835 *pte_list = (unsigned long)desc | 1;
836 ++count;
837 } else {
838 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
839 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
840 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
841 desc = desc->more;
842 count += PTE_LIST_EXT;
843 }
844 if (desc->sptes[PTE_LIST_EXT-1]) {
845 desc->more = mmu_alloc_pte_list_desc(vcpu);
846 desc = desc->more;
847 }
848 for (i = 0; desc->sptes[i]; ++i)
849 ++count;
850 desc->sptes[i] = spte;
851 }
852 return count;
853 }
854
855 static void
856 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
857 int i, struct pte_list_desc *prev_desc)
858 {
859 int j;
860
861 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
862 ;
863 desc->sptes[i] = desc->sptes[j];
864 desc->sptes[j] = NULL;
865 if (j != 0)
866 return;
867 if (!prev_desc && !desc->more)
868 *pte_list = (unsigned long)desc->sptes[0];
869 else
870 if (prev_desc)
871 prev_desc->more = desc->more;
872 else
873 *pte_list = (unsigned long)desc->more | 1;
874 mmu_free_pte_list_desc(desc);
875 }
876
877 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
878 {
879 struct pte_list_desc *desc;
880 struct pte_list_desc *prev_desc;
881 int i;
882
883 if (!*pte_list) {
884 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
885 BUG();
886 } else if (!(*pte_list & 1)) {
887 rmap_printk("pte_list_remove: %p 1->0\n", spte);
888 if ((u64 *)*pte_list != spte) {
889 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
890 BUG();
891 }
892 *pte_list = 0;
893 } else {
894 rmap_printk("pte_list_remove: %p many->many\n", spte);
895 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
896 prev_desc = NULL;
897 while (desc) {
898 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
899 if (desc->sptes[i] == spte) {
900 pte_list_desc_remove_entry(pte_list,
901 desc, i,
902 prev_desc);
903 return;
904 }
905 prev_desc = desc;
906 desc = desc->more;
907 }
908 pr_err("pte_list_remove: %p many->many\n", spte);
909 BUG();
910 }
911 }
912
913 typedef void (*pte_list_walk_fn) (u64 *spte);
914 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
915 {
916 struct pte_list_desc *desc;
917 int i;
918
919 if (!*pte_list)
920 return;
921
922 if (!(*pte_list & 1))
923 return fn((u64 *)*pte_list);
924
925 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
926 while (desc) {
927 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
928 fn(desc->sptes[i]);
929 desc = desc->more;
930 }
931 }
932
933 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
934 struct kvm_memory_slot *slot)
935 {
936 struct kvm_lpage_info *linfo;
937
938 if (likely(level == PT_PAGE_TABLE_LEVEL))
939 return &slot->rmap[gfn - slot->base_gfn];
940
941 linfo = lpage_info_slot(gfn, slot, level);
942 return &linfo->rmap_pde;
943 }
944
945 /*
946 * Take gfn and return the reverse mapping to it.
947 */
948 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
949 {
950 struct kvm_memory_slot *slot;
951
952 slot = gfn_to_memslot(kvm, gfn);
953 return __gfn_to_rmap(gfn, level, slot);
954 }
955
956 static bool rmap_can_add(struct kvm_vcpu *vcpu)
957 {
958 struct kvm_mmu_memory_cache *cache;
959
960 cache = &vcpu->arch.mmu_pte_list_desc_cache;
961 return mmu_memory_cache_free_objects(cache);
962 }
963
964 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
965 {
966 struct kvm_mmu_page *sp;
967 unsigned long *rmapp;
968
969 sp = page_header(__pa(spte));
970 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
971 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
972 return pte_list_add(vcpu, spte, rmapp);
973 }
974
975 static void rmap_remove(struct kvm *kvm, u64 *spte)
976 {
977 struct kvm_mmu_page *sp;
978 gfn_t gfn;
979 unsigned long *rmapp;
980
981 sp = page_header(__pa(spte));
982 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
983 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
984 pte_list_remove(spte, rmapp);
985 }
986
987 /*
988 * Used by the following functions to iterate through the sptes linked by a
989 * rmap. All fields are private and not assumed to be used outside.
990 */
991 struct rmap_iterator {
992 /* private fields */
993 struct pte_list_desc *desc; /* holds the sptep if not NULL */
994 int pos; /* index of the sptep */
995 };
996
997 /*
998 * Iteration must be started by this function. This should also be used after
999 * removing/dropping sptes from the rmap link because in such cases the
1000 * information in the itererator may not be valid.
1001 *
1002 * Returns sptep if found, NULL otherwise.
1003 */
1004 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1005 {
1006 if (!rmap)
1007 return NULL;
1008
1009 if (!(rmap & 1)) {
1010 iter->desc = NULL;
1011 return (u64 *)rmap;
1012 }
1013
1014 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1015 iter->pos = 0;
1016 return iter->desc->sptes[iter->pos];
1017 }
1018
1019 /*
1020 * Must be used with a valid iterator: e.g. after rmap_get_first().
1021 *
1022 * Returns sptep if found, NULL otherwise.
1023 */
1024 static u64 *rmap_get_next(struct rmap_iterator *iter)
1025 {
1026 if (iter->desc) {
1027 if (iter->pos < PTE_LIST_EXT - 1) {
1028 u64 *sptep;
1029
1030 ++iter->pos;
1031 sptep = iter->desc->sptes[iter->pos];
1032 if (sptep)
1033 return sptep;
1034 }
1035
1036 iter->desc = iter->desc->more;
1037
1038 if (iter->desc) {
1039 iter->pos = 0;
1040 /* desc->sptes[0] cannot be NULL */
1041 return iter->desc->sptes[iter->pos];
1042 }
1043 }
1044
1045 return NULL;
1046 }
1047
1048 static void drop_spte(struct kvm *kvm, u64 *sptep)
1049 {
1050 if (mmu_spte_clear_track_bits(sptep))
1051 rmap_remove(kvm, sptep);
1052 }
1053
1054 static int __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
1055 {
1056 u64 *sptep;
1057 struct rmap_iterator iter;
1058 int write_protected = 0;
1059
1060 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1061 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1062 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1063
1064 if (!is_writable_pte(*sptep)) {
1065 sptep = rmap_get_next(&iter);
1066 continue;
1067 }
1068
1069 if (level == PT_PAGE_TABLE_LEVEL) {
1070 mmu_spte_update(sptep, *sptep & ~PT_WRITABLE_MASK);
1071 sptep = rmap_get_next(&iter);
1072 } else {
1073 BUG_ON(!is_large_pte(*sptep));
1074 drop_spte(kvm, sptep);
1075 --kvm->stat.lpages;
1076 sptep = rmap_get_first(*rmapp, &iter);
1077 }
1078
1079 write_protected = 1;
1080 }
1081
1082 return write_protected;
1083 }
1084
1085 /**
1086 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1087 * @kvm: kvm instance
1088 * @slot: slot to protect
1089 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1090 * @mask: indicates which pages we should protect
1091 *
1092 * Used when we do not need to care about huge page mappings: e.g. during dirty
1093 * logging we do not have any such mappings.
1094 */
1095 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1096 struct kvm_memory_slot *slot,
1097 gfn_t gfn_offset, unsigned long mask)
1098 {
1099 unsigned long *rmapp;
1100
1101 while (mask) {
1102 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1103 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL);
1104
1105 /* clear the first set bit */
1106 mask &= mask - 1;
1107 }
1108 }
1109
1110 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1111 {
1112 struct kvm_memory_slot *slot;
1113 unsigned long *rmapp;
1114 int i;
1115 int write_protected = 0;
1116
1117 slot = gfn_to_memslot(kvm, gfn);
1118
1119 for (i = PT_PAGE_TABLE_LEVEL;
1120 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1121 rmapp = __gfn_to_rmap(gfn, i, slot);
1122 write_protected |= __rmap_write_protect(kvm, rmapp, i);
1123 }
1124
1125 return write_protected;
1126 }
1127
1128 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1129 unsigned long data)
1130 {
1131 u64 *sptep;
1132 struct rmap_iterator iter;
1133 int need_tlb_flush = 0;
1134
1135 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1136 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1137 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1138
1139 drop_spte(kvm, sptep);
1140 need_tlb_flush = 1;
1141 }
1142
1143 return need_tlb_flush;
1144 }
1145
1146 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1147 unsigned long data)
1148 {
1149 u64 *sptep;
1150 struct rmap_iterator iter;
1151 int need_flush = 0;
1152 u64 new_spte;
1153 pte_t *ptep = (pte_t *)data;
1154 pfn_t new_pfn;
1155
1156 WARN_ON(pte_huge(*ptep));
1157 new_pfn = pte_pfn(*ptep);
1158
1159 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1160 BUG_ON(!is_shadow_present_pte(*sptep));
1161 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1162
1163 need_flush = 1;
1164
1165 if (pte_write(*ptep)) {
1166 drop_spte(kvm, sptep);
1167 sptep = rmap_get_first(*rmapp, &iter);
1168 } else {
1169 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1170 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1171
1172 new_spte &= ~PT_WRITABLE_MASK;
1173 new_spte &= ~SPTE_HOST_WRITEABLE;
1174 new_spte &= ~shadow_accessed_mask;
1175
1176 mmu_spte_clear_track_bits(sptep);
1177 mmu_spte_set(sptep, new_spte);
1178 sptep = rmap_get_next(&iter);
1179 }
1180 }
1181
1182 if (need_flush)
1183 kvm_flush_remote_tlbs(kvm);
1184
1185 return 0;
1186 }
1187
1188 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1189 unsigned long data,
1190 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1191 unsigned long data))
1192 {
1193 int j;
1194 int ret;
1195 int retval = 0;
1196 struct kvm_memslots *slots;
1197 struct kvm_memory_slot *memslot;
1198
1199 slots = kvm_memslots(kvm);
1200
1201 kvm_for_each_memslot(memslot, slots) {
1202 unsigned long start = memslot->userspace_addr;
1203 unsigned long end;
1204
1205 end = start + (memslot->npages << PAGE_SHIFT);
1206 if (hva >= start && hva < end) {
1207 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1208 gfn_t gfn = memslot->base_gfn + gfn_offset;
1209
1210 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1211
1212 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1213 struct kvm_lpage_info *linfo;
1214
1215 linfo = lpage_info_slot(gfn, memslot,
1216 PT_DIRECTORY_LEVEL + j);
1217 ret |= handler(kvm, &linfo->rmap_pde, data);
1218 }
1219 trace_kvm_age_page(hva, memslot, ret);
1220 retval |= ret;
1221 }
1222 }
1223
1224 return retval;
1225 }
1226
1227 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1228 {
1229 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1230 }
1231
1232 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1233 {
1234 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1235 }
1236
1237 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1238 unsigned long data)
1239 {
1240 u64 *sptep;
1241 struct rmap_iterator iter;
1242 int young = 0;
1243
1244 /*
1245 * Emulate the accessed bit for EPT, by checking if this page has
1246 * an EPT mapping, and clearing it if it does. On the next access,
1247 * a new EPT mapping will be established.
1248 * This has some overhead, but not as much as the cost of swapping
1249 * out actively used pages or breaking up actively used hugepages.
1250 */
1251 if (!shadow_accessed_mask)
1252 return kvm_unmap_rmapp(kvm, rmapp, data);
1253
1254 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1255 sptep = rmap_get_next(&iter)) {
1256 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1257
1258 if (*sptep & PT_ACCESSED_MASK) {
1259 young = 1;
1260 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)sptep);
1261 }
1262 }
1263
1264 return young;
1265 }
1266
1267 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1268 unsigned long data)
1269 {
1270 u64 *sptep;
1271 struct rmap_iterator iter;
1272 int young = 0;
1273
1274 /*
1275 * If there's no access bit in the secondary pte set by the
1276 * hardware it's up to gup-fast/gup to set the access bit in
1277 * the primary pte or in the page structure.
1278 */
1279 if (!shadow_accessed_mask)
1280 goto out;
1281
1282 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1283 sptep = rmap_get_next(&iter)) {
1284 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1285
1286 if (*sptep & PT_ACCESSED_MASK) {
1287 young = 1;
1288 break;
1289 }
1290 }
1291 out:
1292 return young;
1293 }
1294
1295 #define RMAP_RECYCLE_THRESHOLD 1000
1296
1297 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1298 {
1299 unsigned long *rmapp;
1300 struct kvm_mmu_page *sp;
1301
1302 sp = page_header(__pa(spte));
1303
1304 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1305
1306 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1307 kvm_flush_remote_tlbs(vcpu->kvm);
1308 }
1309
1310 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1311 {
1312 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1313 }
1314
1315 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1316 {
1317 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1318 }
1319
1320 #ifdef MMU_DEBUG
1321 static int is_empty_shadow_page(u64 *spt)
1322 {
1323 u64 *pos;
1324 u64 *end;
1325
1326 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1327 if (is_shadow_present_pte(*pos)) {
1328 printk(KERN_ERR "%s: %p %llx\n", __func__,
1329 pos, *pos);
1330 return 0;
1331 }
1332 return 1;
1333 }
1334 #endif
1335
1336 /*
1337 * This value is the sum of all of the kvm instances's
1338 * kvm->arch.n_used_mmu_pages values. We need a global,
1339 * aggregate version in order to make the slab shrinker
1340 * faster
1341 */
1342 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1343 {
1344 kvm->arch.n_used_mmu_pages += nr;
1345 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1346 }
1347
1348 /*
1349 * Remove the sp from shadow page cache, after call it,
1350 * we can not find this sp from the cache, and the shadow
1351 * page table is still valid.
1352 * It should be under the protection of mmu lock.
1353 */
1354 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1355 {
1356 ASSERT(is_empty_shadow_page(sp->spt));
1357 hlist_del(&sp->hash_link);
1358 if (!sp->role.direct)
1359 free_page((unsigned long)sp->gfns);
1360 }
1361
1362 /*
1363 * Free the shadow page table and the sp, we can do it
1364 * out of the protection of mmu lock.
1365 */
1366 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1367 {
1368 list_del(&sp->link);
1369 free_page((unsigned long)sp->spt);
1370 kmem_cache_free(mmu_page_header_cache, sp);
1371 }
1372
1373 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1374 {
1375 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1376 }
1377
1378 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1379 struct kvm_mmu_page *sp, u64 *parent_pte)
1380 {
1381 if (!parent_pte)
1382 return;
1383
1384 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1385 }
1386
1387 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1388 u64 *parent_pte)
1389 {
1390 pte_list_remove(parent_pte, &sp->parent_ptes);
1391 }
1392
1393 static void drop_parent_pte(struct kvm_mmu_page *sp,
1394 u64 *parent_pte)
1395 {
1396 mmu_page_remove_parent_pte(sp, parent_pte);
1397 mmu_spte_clear_no_track(parent_pte);
1398 }
1399
1400 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1401 u64 *parent_pte, int direct)
1402 {
1403 struct kvm_mmu_page *sp;
1404 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1405 sizeof *sp);
1406 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1407 if (!direct)
1408 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1409 PAGE_SIZE);
1410 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1411 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1412 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1413 sp->parent_ptes = 0;
1414 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1415 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1416 return sp;
1417 }
1418
1419 static void mark_unsync(u64 *spte);
1420 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1421 {
1422 pte_list_walk(&sp->parent_ptes, mark_unsync);
1423 }
1424
1425 static void mark_unsync(u64 *spte)
1426 {
1427 struct kvm_mmu_page *sp;
1428 unsigned int index;
1429
1430 sp = page_header(__pa(spte));
1431 index = spte - sp->spt;
1432 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1433 return;
1434 if (sp->unsync_children++)
1435 return;
1436 kvm_mmu_mark_parents_unsync(sp);
1437 }
1438
1439 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1440 struct kvm_mmu_page *sp)
1441 {
1442 return 1;
1443 }
1444
1445 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1446 {
1447 }
1448
1449 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1450 struct kvm_mmu_page *sp, u64 *spte,
1451 const void *pte)
1452 {
1453 WARN_ON(1);
1454 }
1455
1456 #define KVM_PAGE_ARRAY_NR 16
1457
1458 struct kvm_mmu_pages {
1459 struct mmu_page_and_offset {
1460 struct kvm_mmu_page *sp;
1461 unsigned int idx;
1462 } page[KVM_PAGE_ARRAY_NR];
1463 unsigned int nr;
1464 };
1465
1466 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1467 int idx)
1468 {
1469 int i;
1470
1471 if (sp->unsync)
1472 for (i=0; i < pvec->nr; i++)
1473 if (pvec->page[i].sp == sp)
1474 return 0;
1475
1476 pvec->page[pvec->nr].sp = sp;
1477 pvec->page[pvec->nr].idx = idx;
1478 pvec->nr++;
1479 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1480 }
1481
1482 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1483 struct kvm_mmu_pages *pvec)
1484 {
1485 int i, ret, nr_unsync_leaf = 0;
1486
1487 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1488 struct kvm_mmu_page *child;
1489 u64 ent = sp->spt[i];
1490
1491 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1492 goto clear_child_bitmap;
1493
1494 child = page_header(ent & PT64_BASE_ADDR_MASK);
1495
1496 if (child->unsync_children) {
1497 if (mmu_pages_add(pvec, child, i))
1498 return -ENOSPC;
1499
1500 ret = __mmu_unsync_walk(child, pvec);
1501 if (!ret)
1502 goto clear_child_bitmap;
1503 else if (ret > 0)
1504 nr_unsync_leaf += ret;
1505 else
1506 return ret;
1507 } else if (child->unsync) {
1508 nr_unsync_leaf++;
1509 if (mmu_pages_add(pvec, child, i))
1510 return -ENOSPC;
1511 } else
1512 goto clear_child_bitmap;
1513
1514 continue;
1515
1516 clear_child_bitmap:
1517 __clear_bit(i, sp->unsync_child_bitmap);
1518 sp->unsync_children--;
1519 WARN_ON((int)sp->unsync_children < 0);
1520 }
1521
1522
1523 return nr_unsync_leaf;
1524 }
1525
1526 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1527 struct kvm_mmu_pages *pvec)
1528 {
1529 if (!sp->unsync_children)
1530 return 0;
1531
1532 mmu_pages_add(pvec, sp, 0);
1533 return __mmu_unsync_walk(sp, pvec);
1534 }
1535
1536 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1537 {
1538 WARN_ON(!sp->unsync);
1539 trace_kvm_mmu_sync_page(sp);
1540 sp->unsync = 0;
1541 --kvm->stat.mmu_unsync;
1542 }
1543
1544 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1545 struct list_head *invalid_list);
1546 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1547 struct list_head *invalid_list);
1548
1549 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1550 hlist_for_each_entry(sp, pos, \
1551 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1552 if ((sp)->gfn != (gfn)) {} else
1553
1554 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1555 hlist_for_each_entry(sp, pos, \
1556 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1557 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1558 (sp)->role.invalid) {} else
1559
1560 /* @sp->gfn should be write-protected at the call site */
1561 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1562 struct list_head *invalid_list, bool clear_unsync)
1563 {
1564 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1565 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1566 return 1;
1567 }
1568
1569 if (clear_unsync)
1570 kvm_unlink_unsync_page(vcpu->kvm, sp);
1571
1572 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1573 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1574 return 1;
1575 }
1576
1577 kvm_mmu_flush_tlb(vcpu);
1578 return 0;
1579 }
1580
1581 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1582 struct kvm_mmu_page *sp)
1583 {
1584 LIST_HEAD(invalid_list);
1585 int ret;
1586
1587 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1588 if (ret)
1589 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1590
1591 return ret;
1592 }
1593
1594 #ifdef CONFIG_KVM_MMU_AUDIT
1595 #include "mmu_audit.c"
1596 #else
1597 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1598 static void mmu_audit_disable(void) { }
1599 #endif
1600
1601 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1602 struct list_head *invalid_list)
1603 {
1604 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1605 }
1606
1607 /* @gfn should be write-protected at the call site */
1608 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1609 {
1610 struct kvm_mmu_page *s;
1611 struct hlist_node *node;
1612 LIST_HEAD(invalid_list);
1613 bool flush = false;
1614
1615 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1616 if (!s->unsync)
1617 continue;
1618
1619 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1620 kvm_unlink_unsync_page(vcpu->kvm, s);
1621 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1622 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1623 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1624 continue;
1625 }
1626 flush = true;
1627 }
1628
1629 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1630 if (flush)
1631 kvm_mmu_flush_tlb(vcpu);
1632 }
1633
1634 struct mmu_page_path {
1635 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1636 unsigned int idx[PT64_ROOT_LEVEL-1];
1637 };
1638
1639 #define for_each_sp(pvec, sp, parents, i) \
1640 for (i = mmu_pages_next(&pvec, &parents, -1), \
1641 sp = pvec.page[i].sp; \
1642 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1643 i = mmu_pages_next(&pvec, &parents, i))
1644
1645 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1646 struct mmu_page_path *parents,
1647 int i)
1648 {
1649 int n;
1650
1651 for (n = i+1; n < pvec->nr; n++) {
1652 struct kvm_mmu_page *sp = pvec->page[n].sp;
1653
1654 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1655 parents->idx[0] = pvec->page[n].idx;
1656 return n;
1657 }
1658
1659 parents->parent[sp->role.level-2] = sp;
1660 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1661 }
1662
1663 return n;
1664 }
1665
1666 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1667 {
1668 struct kvm_mmu_page *sp;
1669 unsigned int level = 0;
1670
1671 do {
1672 unsigned int idx = parents->idx[level];
1673
1674 sp = parents->parent[level];
1675 if (!sp)
1676 return;
1677
1678 --sp->unsync_children;
1679 WARN_ON((int)sp->unsync_children < 0);
1680 __clear_bit(idx, sp->unsync_child_bitmap);
1681 level++;
1682 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1683 }
1684
1685 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1686 struct mmu_page_path *parents,
1687 struct kvm_mmu_pages *pvec)
1688 {
1689 parents->parent[parent->role.level-1] = NULL;
1690 pvec->nr = 0;
1691 }
1692
1693 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1694 struct kvm_mmu_page *parent)
1695 {
1696 int i;
1697 struct kvm_mmu_page *sp;
1698 struct mmu_page_path parents;
1699 struct kvm_mmu_pages pages;
1700 LIST_HEAD(invalid_list);
1701
1702 kvm_mmu_pages_init(parent, &parents, &pages);
1703 while (mmu_unsync_walk(parent, &pages)) {
1704 int protected = 0;
1705
1706 for_each_sp(pages, sp, parents, i)
1707 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1708
1709 if (protected)
1710 kvm_flush_remote_tlbs(vcpu->kvm);
1711
1712 for_each_sp(pages, sp, parents, i) {
1713 kvm_sync_page(vcpu, sp, &invalid_list);
1714 mmu_pages_clear_parents(&parents);
1715 }
1716 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1717 cond_resched_lock(&vcpu->kvm->mmu_lock);
1718 kvm_mmu_pages_init(parent, &parents, &pages);
1719 }
1720 }
1721
1722 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1723 {
1724 int i;
1725
1726 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1727 sp->spt[i] = 0ull;
1728 }
1729
1730 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1731 {
1732 sp->write_flooding_count = 0;
1733 }
1734
1735 static void clear_sp_write_flooding_count(u64 *spte)
1736 {
1737 struct kvm_mmu_page *sp = page_header(__pa(spte));
1738
1739 __clear_sp_write_flooding_count(sp);
1740 }
1741
1742 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1743 gfn_t gfn,
1744 gva_t gaddr,
1745 unsigned level,
1746 int direct,
1747 unsigned access,
1748 u64 *parent_pte)
1749 {
1750 union kvm_mmu_page_role role;
1751 unsigned quadrant;
1752 struct kvm_mmu_page *sp;
1753 struct hlist_node *node;
1754 bool need_sync = false;
1755
1756 role = vcpu->arch.mmu.base_role;
1757 role.level = level;
1758 role.direct = direct;
1759 if (role.direct)
1760 role.cr4_pae = 0;
1761 role.access = access;
1762 if (!vcpu->arch.mmu.direct_map
1763 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1764 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1765 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1766 role.quadrant = quadrant;
1767 }
1768 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1769 if (!need_sync && sp->unsync)
1770 need_sync = true;
1771
1772 if (sp->role.word != role.word)
1773 continue;
1774
1775 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1776 break;
1777
1778 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1779 if (sp->unsync_children) {
1780 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1781 kvm_mmu_mark_parents_unsync(sp);
1782 } else if (sp->unsync)
1783 kvm_mmu_mark_parents_unsync(sp);
1784
1785 __clear_sp_write_flooding_count(sp);
1786 trace_kvm_mmu_get_page(sp, false);
1787 return sp;
1788 }
1789 ++vcpu->kvm->stat.mmu_cache_miss;
1790 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1791 if (!sp)
1792 return sp;
1793 sp->gfn = gfn;
1794 sp->role = role;
1795 hlist_add_head(&sp->hash_link,
1796 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1797 if (!direct) {
1798 if (rmap_write_protect(vcpu->kvm, gfn))
1799 kvm_flush_remote_tlbs(vcpu->kvm);
1800 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1801 kvm_sync_pages(vcpu, gfn);
1802
1803 account_shadowed(vcpu->kvm, gfn);
1804 }
1805 init_shadow_page_table(sp);
1806 trace_kvm_mmu_get_page(sp, true);
1807 return sp;
1808 }
1809
1810 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1811 struct kvm_vcpu *vcpu, u64 addr)
1812 {
1813 iterator->addr = addr;
1814 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1815 iterator->level = vcpu->arch.mmu.shadow_root_level;
1816
1817 if (iterator->level == PT64_ROOT_LEVEL &&
1818 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1819 !vcpu->arch.mmu.direct_map)
1820 --iterator->level;
1821
1822 if (iterator->level == PT32E_ROOT_LEVEL) {
1823 iterator->shadow_addr
1824 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1825 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1826 --iterator->level;
1827 if (!iterator->shadow_addr)
1828 iterator->level = 0;
1829 }
1830 }
1831
1832 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1833 {
1834 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1835 return false;
1836
1837 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1838 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1839 return true;
1840 }
1841
1842 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1843 u64 spte)
1844 {
1845 if (is_last_spte(spte, iterator->level)) {
1846 iterator->level = 0;
1847 return;
1848 }
1849
1850 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1851 --iterator->level;
1852 }
1853
1854 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1855 {
1856 return __shadow_walk_next(iterator, *iterator->sptep);
1857 }
1858
1859 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1860 {
1861 u64 spte;
1862
1863 spte = __pa(sp->spt)
1864 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1865 | PT_WRITABLE_MASK | PT_USER_MASK;
1866 mmu_spte_set(sptep, spte);
1867 }
1868
1869 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1870 {
1871 if (is_large_pte(*sptep)) {
1872 drop_spte(vcpu->kvm, sptep);
1873 --vcpu->kvm->stat.lpages;
1874 kvm_flush_remote_tlbs(vcpu->kvm);
1875 }
1876 }
1877
1878 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1879 unsigned direct_access)
1880 {
1881 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1882 struct kvm_mmu_page *child;
1883
1884 /*
1885 * For the direct sp, if the guest pte's dirty bit
1886 * changed form clean to dirty, it will corrupt the
1887 * sp's access: allow writable in the read-only sp,
1888 * so we should update the spte at this point to get
1889 * a new sp with the correct access.
1890 */
1891 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1892 if (child->role.access == direct_access)
1893 return;
1894
1895 drop_parent_pte(child, sptep);
1896 kvm_flush_remote_tlbs(vcpu->kvm);
1897 }
1898 }
1899
1900 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1901 u64 *spte)
1902 {
1903 u64 pte;
1904 struct kvm_mmu_page *child;
1905
1906 pte = *spte;
1907 if (is_shadow_present_pte(pte)) {
1908 if (is_last_spte(pte, sp->role.level)) {
1909 drop_spte(kvm, spte);
1910 if (is_large_pte(pte))
1911 --kvm->stat.lpages;
1912 } else {
1913 child = page_header(pte & PT64_BASE_ADDR_MASK);
1914 drop_parent_pte(child, spte);
1915 }
1916 return true;
1917 }
1918
1919 if (is_mmio_spte(pte))
1920 mmu_spte_clear_no_track(spte);
1921
1922 return false;
1923 }
1924
1925 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1926 struct kvm_mmu_page *sp)
1927 {
1928 unsigned i;
1929
1930 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1931 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1932 }
1933
1934 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1935 {
1936 mmu_page_remove_parent_pte(sp, parent_pte);
1937 }
1938
1939 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1940 {
1941 u64 *sptep;
1942 struct rmap_iterator iter;
1943
1944 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
1945 drop_parent_pte(sp, sptep);
1946 }
1947
1948 static int mmu_zap_unsync_children(struct kvm *kvm,
1949 struct kvm_mmu_page *parent,
1950 struct list_head *invalid_list)
1951 {
1952 int i, zapped = 0;
1953 struct mmu_page_path parents;
1954 struct kvm_mmu_pages pages;
1955
1956 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1957 return 0;
1958
1959 kvm_mmu_pages_init(parent, &parents, &pages);
1960 while (mmu_unsync_walk(parent, &pages)) {
1961 struct kvm_mmu_page *sp;
1962
1963 for_each_sp(pages, sp, parents, i) {
1964 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1965 mmu_pages_clear_parents(&parents);
1966 zapped++;
1967 }
1968 kvm_mmu_pages_init(parent, &parents, &pages);
1969 }
1970
1971 return zapped;
1972 }
1973
1974 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1975 struct list_head *invalid_list)
1976 {
1977 int ret;
1978
1979 trace_kvm_mmu_prepare_zap_page(sp);
1980 ++kvm->stat.mmu_shadow_zapped;
1981 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1982 kvm_mmu_page_unlink_children(kvm, sp);
1983 kvm_mmu_unlink_parents(kvm, sp);
1984 if (!sp->role.invalid && !sp->role.direct)
1985 unaccount_shadowed(kvm, sp->gfn);
1986 if (sp->unsync)
1987 kvm_unlink_unsync_page(kvm, sp);
1988 if (!sp->root_count) {
1989 /* Count self */
1990 ret++;
1991 list_move(&sp->link, invalid_list);
1992 kvm_mod_used_mmu_pages(kvm, -1);
1993 } else {
1994 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1995 kvm_reload_remote_mmus(kvm);
1996 }
1997
1998 sp->role.invalid = 1;
1999 return ret;
2000 }
2001
2002 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2003 struct list_head *invalid_list)
2004 {
2005 struct kvm_mmu_page *sp;
2006
2007 if (list_empty(invalid_list))
2008 return;
2009
2010 /*
2011 * wmb: make sure everyone sees our modifications to the page tables
2012 * rmb: make sure we see changes to vcpu->mode
2013 */
2014 smp_mb();
2015
2016 /*
2017 * Wait for all vcpus to exit guest mode and/or lockless shadow
2018 * page table walks.
2019 */
2020 kvm_flush_remote_tlbs(kvm);
2021
2022 do {
2023 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2024 WARN_ON(!sp->role.invalid || sp->root_count);
2025 kvm_mmu_isolate_page(sp);
2026 kvm_mmu_free_page(sp);
2027 } while (!list_empty(invalid_list));
2028 }
2029
2030 /*
2031 * Changing the number of mmu pages allocated to the vm
2032 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2033 */
2034 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2035 {
2036 LIST_HEAD(invalid_list);
2037 /*
2038 * If we set the number of mmu pages to be smaller be than the
2039 * number of actived pages , we must to free some mmu pages before we
2040 * change the value
2041 */
2042
2043 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2044 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2045 !list_empty(&kvm->arch.active_mmu_pages)) {
2046 struct kvm_mmu_page *page;
2047
2048 page = container_of(kvm->arch.active_mmu_pages.prev,
2049 struct kvm_mmu_page, link);
2050 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2051 }
2052 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2053 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2054 }
2055
2056 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2057 }
2058
2059 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2060 {
2061 struct kvm_mmu_page *sp;
2062 struct hlist_node *node;
2063 LIST_HEAD(invalid_list);
2064 int r;
2065
2066 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2067 r = 0;
2068 spin_lock(&kvm->mmu_lock);
2069 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2070 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2071 sp->role.word);
2072 r = 1;
2073 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2074 }
2075 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2076 spin_unlock(&kvm->mmu_lock);
2077
2078 return r;
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2081
2082 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2083 {
2084 int slot = memslot_id(kvm, gfn);
2085 struct kvm_mmu_page *sp = page_header(__pa(pte));
2086
2087 __set_bit(slot, sp->slot_bitmap);
2088 }
2089
2090 /*
2091 * The function is based on mtrr_type_lookup() in
2092 * arch/x86/kernel/cpu/mtrr/generic.c
2093 */
2094 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2095 u64 start, u64 end)
2096 {
2097 int i;
2098 u64 base, mask;
2099 u8 prev_match, curr_match;
2100 int num_var_ranges = KVM_NR_VAR_MTRR;
2101
2102 if (!mtrr_state->enabled)
2103 return 0xFF;
2104
2105 /* Make end inclusive end, instead of exclusive */
2106 end--;
2107
2108 /* Look in fixed ranges. Just return the type as per start */
2109 if (mtrr_state->have_fixed && (start < 0x100000)) {
2110 int idx;
2111
2112 if (start < 0x80000) {
2113 idx = 0;
2114 idx += (start >> 16);
2115 return mtrr_state->fixed_ranges[idx];
2116 } else if (start < 0xC0000) {
2117 idx = 1 * 8;
2118 idx += ((start - 0x80000) >> 14);
2119 return mtrr_state->fixed_ranges[idx];
2120 } else if (start < 0x1000000) {
2121 idx = 3 * 8;
2122 idx += ((start - 0xC0000) >> 12);
2123 return mtrr_state->fixed_ranges[idx];
2124 }
2125 }
2126
2127 /*
2128 * Look in variable ranges
2129 * Look of multiple ranges matching this address and pick type
2130 * as per MTRR precedence
2131 */
2132 if (!(mtrr_state->enabled & 2))
2133 return mtrr_state->def_type;
2134
2135 prev_match = 0xFF;
2136 for (i = 0; i < num_var_ranges; ++i) {
2137 unsigned short start_state, end_state;
2138
2139 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2140 continue;
2141
2142 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2143 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2144 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2145 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2146
2147 start_state = ((start & mask) == (base & mask));
2148 end_state = ((end & mask) == (base & mask));
2149 if (start_state != end_state)
2150 return 0xFE;
2151
2152 if ((start & mask) != (base & mask))
2153 continue;
2154
2155 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2156 if (prev_match == 0xFF) {
2157 prev_match = curr_match;
2158 continue;
2159 }
2160
2161 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2162 curr_match == MTRR_TYPE_UNCACHABLE)
2163 return MTRR_TYPE_UNCACHABLE;
2164
2165 if ((prev_match == MTRR_TYPE_WRBACK &&
2166 curr_match == MTRR_TYPE_WRTHROUGH) ||
2167 (prev_match == MTRR_TYPE_WRTHROUGH &&
2168 curr_match == MTRR_TYPE_WRBACK)) {
2169 prev_match = MTRR_TYPE_WRTHROUGH;
2170 curr_match = MTRR_TYPE_WRTHROUGH;
2171 }
2172
2173 if (prev_match != curr_match)
2174 return MTRR_TYPE_UNCACHABLE;
2175 }
2176
2177 if (prev_match != 0xFF)
2178 return prev_match;
2179
2180 return mtrr_state->def_type;
2181 }
2182
2183 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2184 {
2185 u8 mtrr;
2186
2187 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2188 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2189 if (mtrr == 0xfe || mtrr == 0xff)
2190 mtrr = MTRR_TYPE_WRBACK;
2191 return mtrr;
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2194
2195 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2196 {
2197 trace_kvm_mmu_unsync_page(sp);
2198 ++vcpu->kvm->stat.mmu_unsync;
2199 sp->unsync = 1;
2200
2201 kvm_mmu_mark_parents_unsync(sp);
2202 }
2203
2204 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2205 {
2206 struct kvm_mmu_page *s;
2207 struct hlist_node *node;
2208
2209 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2210 if (s->unsync)
2211 continue;
2212 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2213 __kvm_unsync_page(vcpu, s);
2214 }
2215 }
2216
2217 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2218 bool can_unsync)
2219 {
2220 struct kvm_mmu_page *s;
2221 struct hlist_node *node;
2222 bool need_unsync = false;
2223
2224 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2225 if (!can_unsync)
2226 return 1;
2227
2228 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2229 return 1;
2230
2231 if (!need_unsync && !s->unsync) {
2232 need_unsync = true;
2233 }
2234 }
2235 if (need_unsync)
2236 kvm_unsync_pages(vcpu, gfn);
2237 return 0;
2238 }
2239
2240 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2241 unsigned pte_access, int user_fault,
2242 int write_fault, int level,
2243 gfn_t gfn, pfn_t pfn, bool speculative,
2244 bool can_unsync, bool host_writable)
2245 {
2246 u64 spte, entry = *sptep;
2247 int ret = 0;
2248
2249 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2250 return 0;
2251
2252 spte = PT_PRESENT_MASK;
2253 if (!speculative)
2254 spte |= shadow_accessed_mask;
2255
2256 if (pte_access & ACC_EXEC_MASK)
2257 spte |= shadow_x_mask;
2258 else
2259 spte |= shadow_nx_mask;
2260 if (pte_access & ACC_USER_MASK)
2261 spte |= shadow_user_mask;
2262 if (level > PT_PAGE_TABLE_LEVEL)
2263 spte |= PT_PAGE_SIZE_MASK;
2264 if (tdp_enabled)
2265 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2266 kvm_is_mmio_pfn(pfn));
2267
2268 if (host_writable)
2269 spte |= SPTE_HOST_WRITEABLE;
2270 else
2271 pte_access &= ~ACC_WRITE_MASK;
2272
2273 spte |= (u64)pfn << PAGE_SHIFT;
2274
2275 if ((pte_access & ACC_WRITE_MASK)
2276 || (!vcpu->arch.mmu.direct_map && write_fault
2277 && !is_write_protection(vcpu) && !user_fault)) {
2278
2279 if (level > PT_PAGE_TABLE_LEVEL &&
2280 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2281 ret = 1;
2282 drop_spte(vcpu->kvm, sptep);
2283 goto done;
2284 }
2285
2286 spte |= PT_WRITABLE_MASK;
2287
2288 if (!vcpu->arch.mmu.direct_map
2289 && !(pte_access & ACC_WRITE_MASK)) {
2290 spte &= ~PT_USER_MASK;
2291 /*
2292 * If we converted a user page to a kernel page,
2293 * so that the kernel can write to it when cr0.wp=0,
2294 * then we should prevent the kernel from executing it
2295 * if SMEP is enabled.
2296 */
2297 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2298 spte |= PT64_NX_MASK;
2299 }
2300
2301 /*
2302 * Optimization: for pte sync, if spte was writable the hash
2303 * lookup is unnecessary (and expensive). Write protection
2304 * is responsibility of mmu_get_page / kvm_sync_page.
2305 * Same reasoning can be applied to dirty page accounting.
2306 */
2307 if (!can_unsync && is_writable_pte(*sptep))
2308 goto set_pte;
2309
2310 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2311 pgprintk("%s: found shadow page for %llx, marking ro\n",
2312 __func__, gfn);
2313 ret = 1;
2314 pte_access &= ~ACC_WRITE_MASK;
2315 if (is_writable_pte(spte))
2316 spte &= ~PT_WRITABLE_MASK;
2317 }
2318 }
2319
2320 if (pte_access & ACC_WRITE_MASK)
2321 mark_page_dirty(vcpu->kvm, gfn);
2322
2323 set_pte:
2324 mmu_spte_update(sptep, spte);
2325 /*
2326 * If we overwrite a writable spte with a read-only one we
2327 * should flush remote TLBs. Otherwise rmap_write_protect
2328 * will find a read-only spte, even though the writable spte
2329 * might be cached on a CPU's TLB.
2330 */
2331 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2332 kvm_flush_remote_tlbs(vcpu->kvm);
2333 done:
2334 return ret;
2335 }
2336
2337 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2338 unsigned pt_access, unsigned pte_access,
2339 int user_fault, int write_fault,
2340 int *emulate, int level, gfn_t gfn,
2341 pfn_t pfn, bool speculative,
2342 bool host_writable)
2343 {
2344 int was_rmapped = 0;
2345 int rmap_count;
2346
2347 pgprintk("%s: spte %llx access %x write_fault %d"
2348 " user_fault %d gfn %llx\n",
2349 __func__, *sptep, pt_access,
2350 write_fault, user_fault, gfn);
2351
2352 if (is_rmap_spte(*sptep)) {
2353 /*
2354 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2355 * the parent of the now unreachable PTE.
2356 */
2357 if (level > PT_PAGE_TABLE_LEVEL &&
2358 !is_large_pte(*sptep)) {
2359 struct kvm_mmu_page *child;
2360 u64 pte = *sptep;
2361
2362 child = page_header(pte & PT64_BASE_ADDR_MASK);
2363 drop_parent_pte(child, sptep);
2364 kvm_flush_remote_tlbs(vcpu->kvm);
2365 } else if (pfn != spte_to_pfn(*sptep)) {
2366 pgprintk("hfn old %llx new %llx\n",
2367 spte_to_pfn(*sptep), pfn);
2368 drop_spte(vcpu->kvm, sptep);
2369 kvm_flush_remote_tlbs(vcpu->kvm);
2370 } else
2371 was_rmapped = 1;
2372 }
2373
2374 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2375 level, gfn, pfn, speculative, true,
2376 host_writable)) {
2377 if (write_fault)
2378 *emulate = 1;
2379 kvm_mmu_flush_tlb(vcpu);
2380 }
2381
2382 if (unlikely(is_mmio_spte(*sptep) && emulate))
2383 *emulate = 1;
2384
2385 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2386 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2387 is_large_pte(*sptep)? "2MB" : "4kB",
2388 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2389 *sptep, sptep);
2390 if (!was_rmapped && is_large_pte(*sptep))
2391 ++vcpu->kvm->stat.lpages;
2392
2393 if (is_shadow_present_pte(*sptep)) {
2394 page_header_update_slot(vcpu->kvm, sptep, gfn);
2395 if (!was_rmapped) {
2396 rmap_count = rmap_add(vcpu, sptep, gfn);
2397 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2398 rmap_recycle(vcpu, sptep, gfn);
2399 }
2400 }
2401 kvm_release_pfn_clean(pfn);
2402 }
2403
2404 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2405 {
2406 }
2407
2408 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2409 bool no_dirty_log)
2410 {
2411 struct kvm_memory_slot *slot;
2412 unsigned long hva;
2413
2414 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2415 if (!slot) {
2416 get_page(fault_page);
2417 return page_to_pfn(fault_page);
2418 }
2419
2420 hva = gfn_to_hva_memslot(slot, gfn);
2421
2422 return hva_to_pfn_atomic(vcpu->kvm, hva);
2423 }
2424
2425 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2426 struct kvm_mmu_page *sp,
2427 u64 *start, u64 *end)
2428 {
2429 struct page *pages[PTE_PREFETCH_NUM];
2430 unsigned access = sp->role.access;
2431 int i, ret;
2432 gfn_t gfn;
2433
2434 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2435 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2436 return -1;
2437
2438 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2439 if (ret <= 0)
2440 return -1;
2441
2442 for (i = 0; i < ret; i++, gfn++, start++)
2443 mmu_set_spte(vcpu, start, ACC_ALL,
2444 access, 0, 0, NULL,
2445 sp->role.level, gfn,
2446 page_to_pfn(pages[i]), true, true);
2447
2448 return 0;
2449 }
2450
2451 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2452 struct kvm_mmu_page *sp, u64 *sptep)
2453 {
2454 u64 *spte, *start = NULL;
2455 int i;
2456
2457 WARN_ON(!sp->role.direct);
2458
2459 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2460 spte = sp->spt + i;
2461
2462 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2463 if (is_shadow_present_pte(*spte) || spte == sptep) {
2464 if (!start)
2465 continue;
2466 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2467 break;
2468 start = NULL;
2469 } else if (!start)
2470 start = spte;
2471 }
2472 }
2473
2474 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2475 {
2476 struct kvm_mmu_page *sp;
2477
2478 /*
2479 * Since it's no accessed bit on EPT, it's no way to
2480 * distinguish between actually accessed translations
2481 * and prefetched, so disable pte prefetch if EPT is
2482 * enabled.
2483 */
2484 if (!shadow_accessed_mask)
2485 return;
2486
2487 sp = page_header(__pa(sptep));
2488 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2489 return;
2490
2491 __direct_pte_prefetch(vcpu, sp, sptep);
2492 }
2493
2494 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2495 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2496 bool prefault)
2497 {
2498 struct kvm_shadow_walk_iterator iterator;
2499 struct kvm_mmu_page *sp;
2500 int emulate = 0;
2501 gfn_t pseudo_gfn;
2502
2503 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2504 if (iterator.level == level) {
2505 unsigned pte_access = ACC_ALL;
2506
2507 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2508 0, write, &emulate,
2509 level, gfn, pfn, prefault, map_writable);
2510 direct_pte_prefetch(vcpu, iterator.sptep);
2511 ++vcpu->stat.pf_fixed;
2512 break;
2513 }
2514
2515 if (!is_shadow_present_pte(*iterator.sptep)) {
2516 u64 base_addr = iterator.addr;
2517
2518 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2519 pseudo_gfn = base_addr >> PAGE_SHIFT;
2520 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2521 iterator.level - 1,
2522 1, ACC_ALL, iterator.sptep);
2523 if (!sp) {
2524 pgprintk("nonpaging_map: ENOMEM\n");
2525 kvm_release_pfn_clean(pfn);
2526 return -ENOMEM;
2527 }
2528
2529 mmu_spte_set(iterator.sptep,
2530 __pa(sp->spt)
2531 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2532 | shadow_user_mask | shadow_x_mask
2533 | shadow_accessed_mask);
2534 }
2535 }
2536 return emulate;
2537 }
2538
2539 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2540 {
2541 siginfo_t info;
2542
2543 info.si_signo = SIGBUS;
2544 info.si_errno = 0;
2545 info.si_code = BUS_MCEERR_AR;
2546 info.si_addr = (void __user *)address;
2547 info.si_addr_lsb = PAGE_SHIFT;
2548
2549 send_sig_info(SIGBUS, &info, tsk);
2550 }
2551
2552 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2553 {
2554 kvm_release_pfn_clean(pfn);
2555 if (is_hwpoison_pfn(pfn)) {
2556 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2557 return 0;
2558 }
2559
2560 return -EFAULT;
2561 }
2562
2563 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2564 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2565 {
2566 pfn_t pfn = *pfnp;
2567 gfn_t gfn = *gfnp;
2568 int level = *levelp;
2569
2570 /*
2571 * Check if it's a transparent hugepage. If this would be an
2572 * hugetlbfs page, level wouldn't be set to
2573 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2574 * here.
2575 */
2576 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2577 level == PT_PAGE_TABLE_LEVEL &&
2578 PageTransCompound(pfn_to_page(pfn)) &&
2579 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2580 unsigned long mask;
2581 /*
2582 * mmu_notifier_retry was successful and we hold the
2583 * mmu_lock here, so the pmd can't become splitting
2584 * from under us, and in turn
2585 * __split_huge_page_refcount() can't run from under
2586 * us and we can safely transfer the refcount from
2587 * PG_tail to PG_head as we switch the pfn to tail to
2588 * head.
2589 */
2590 *levelp = level = PT_DIRECTORY_LEVEL;
2591 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2592 VM_BUG_ON((gfn & mask) != (pfn & mask));
2593 if (pfn & mask) {
2594 gfn &= ~mask;
2595 *gfnp = gfn;
2596 kvm_release_pfn_clean(pfn);
2597 pfn &= ~mask;
2598 kvm_get_pfn(pfn);
2599 *pfnp = pfn;
2600 }
2601 }
2602 }
2603
2604 static bool mmu_invalid_pfn(pfn_t pfn)
2605 {
2606 return unlikely(is_invalid_pfn(pfn));
2607 }
2608
2609 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2610 pfn_t pfn, unsigned access, int *ret_val)
2611 {
2612 bool ret = true;
2613
2614 /* The pfn is invalid, report the error! */
2615 if (unlikely(is_invalid_pfn(pfn))) {
2616 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2617 goto exit;
2618 }
2619
2620 if (unlikely(is_noslot_pfn(pfn)))
2621 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2622
2623 ret = false;
2624 exit:
2625 return ret;
2626 }
2627
2628 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2629 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2630
2631 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2632 bool prefault)
2633 {
2634 int r;
2635 int level;
2636 int force_pt_level;
2637 pfn_t pfn;
2638 unsigned long mmu_seq;
2639 bool map_writable;
2640
2641 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2642 if (likely(!force_pt_level)) {
2643 level = mapping_level(vcpu, gfn);
2644 /*
2645 * This path builds a PAE pagetable - so we can map
2646 * 2mb pages at maximum. Therefore check if the level
2647 * is larger than that.
2648 */
2649 if (level > PT_DIRECTORY_LEVEL)
2650 level = PT_DIRECTORY_LEVEL;
2651
2652 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2653 } else
2654 level = PT_PAGE_TABLE_LEVEL;
2655
2656 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2657 smp_rmb();
2658
2659 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2660 return 0;
2661
2662 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2663 return r;
2664
2665 spin_lock(&vcpu->kvm->mmu_lock);
2666 if (mmu_notifier_retry(vcpu, mmu_seq))
2667 goto out_unlock;
2668 kvm_mmu_free_some_pages(vcpu);
2669 if (likely(!force_pt_level))
2670 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2671 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2672 prefault);
2673 spin_unlock(&vcpu->kvm->mmu_lock);
2674
2675
2676 return r;
2677
2678 out_unlock:
2679 spin_unlock(&vcpu->kvm->mmu_lock);
2680 kvm_release_pfn_clean(pfn);
2681 return 0;
2682 }
2683
2684
2685 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2686 {
2687 int i;
2688 struct kvm_mmu_page *sp;
2689 LIST_HEAD(invalid_list);
2690
2691 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2692 return;
2693 spin_lock(&vcpu->kvm->mmu_lock);
2694 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2695 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2696 vcpu->arch.mmu.direct_map)) {
2697 hpa_t root = vcpu->arch.mmu.root_hpa;
2698
2699 sp = page_header(root);
2700 --sp->root_count;
2701 if (!sp->root_count && sp->role.invalid) {
2702 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2703 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2704 }
2705 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2706 spin_unlock(&vcpu->kvm->mmu_lock);
2707 return;
2708 }
2709 for (i = 0; i < 4; ++i) {
2710 hpa_t root = vcpu->arch.mmu.pae_root[i];
2711
2712 if (root) {
2713 root &= PT64_BASE_ADDR_MASK;
2714 sp = page_header(root);
2715 --sp->root_count;
2716 if (!sp->root_count && sp->role.invalid)
2717 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2718 &invalid_list);
2719 }
2720 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2721 }
2722 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2723 spin_unlock(&vcpu->kvm->mmu_lock);
2724 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2725 }
2726
2727 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2728 {
2729 int ret = 0;
2730
2731 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2732 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2733 ret = 1;
2734 }
2735
2736 return ret;
2737 }
2738
2739 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2740 {
2741 struct kvm_mmu_page *sp;
2742 unsigned i;
2743
2744 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2745 spin_lock(&vcpu->kvm->mmu_lock);
2746 kvm_mmu_free_some_pages(vcpu);
2747 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2748 1, ACC_ALL, NULL);
2749 ++sp->root_count;
2750 spin_unlock(&vcpu->kvm->mmu_lock);
2751 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2752 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2753 for (i = 0; i < 4; ++i) {
2754 hpa_t root = vcpu->arch.mmu.pae_root[i];
2755
2756 ASSERT(!VALID_PAGE(root));
2757 spin_lock(&vcpu->kvm->mmu_lock);
2758 kvm_mmu_free_some_pages(vcpu);
2759 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2760 i << 30,
2761 PT32_ROOT_LEVEL, 1, ACC_ALL,
2762 NULL);
2763 root = __pa(sp->spt);
2764 ++sp->root_count;
2765 spin_unlock(&vcpu->kvm->mmu_lock);
2766 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2767 }
2768 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2769 } else
2770 BUG();
2771
2772 return 0;
2773 }
2774
2775 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2776 {
2777 struct kvm_mmu_page *sp;
2778 u64 pdptr, pm_mask;
2779 gfn_t root_gfn;
2780 int i;
2781
2782 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2783
2784 if (mmu_check_root(vcpu, root_gfn))
2785 return 1;
2786
2787 /*
2788 * Do we shadow a long mode page table? If so we need to
2789 * write-protect the guests page table root.
2790 */
2791 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2792 hpa_t root = vcpu->arch.mmu.root_hpa;
2793
2794 ASSERT(!VALID_PAGE(root));
2795
2796 spin_lock(&vcpu->kvm->mmu_lock);
2797 kvm_mmu_free_some_pages(vcpu);
2798 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2799 0, ACC_ALL, NULL);
2800 root = __pa(sp->spt);
2801 ++sp->root_count;
2802 spin_unlock(&vcpu->kvm->mmu_lock);
2803 vcpu->arch.mmu.root_hpa = root;
2804 return 0;
2805 }
2806
2807 /*
2808 * We shadow a 32 bit page table. This may be a legacy 2-level
2809 * or a PAE 3-level page table. In either case we need to be aware that
2810 * the shadow page table may be a PAE or a long mode page table.
2811 */
2812 pm_mask = PT_PRESENT_MASK;
2813 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2814 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2815
2816 for (i = 0; i < 4; ++i) {
2817 hpa_t root = vcpu->arch.mmu.pae_root[i];
2818
2819 ASSERT(!VALID_PAGE(root));
2820 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2821 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2822 if (!is_present_gpte(pdptr)) {
2823 vcpu->arch.mmu.pae_root[i] = 0;
2824 continue;
2825 }
2826 root_gfn = pdptr >> PAGE_SHIFT;
2827 if (mmu_check_root(vcpu, root_gfn))
2828 return 1;
2829 }
2830 spin_lock(&vcpu->kvm->mmu_lock);
2831 kvm_mmu_free_some_pages(vcpu);
2832 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2833 PT32_ROOT_LEVEL, 0,
2834 ACC_ALL, NULL);
2835 root = __pa(sp->spt);
2836 ++sp->root_count;
2837 spin_unlock(&vcpu->kvm->mmu_lock);
2838
2839 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2840 }
2841 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2842
2843 /*
2844 * If we shadow a 32 bit page table with a long mode page
2845 * table we enter this path.
2846 */
2847 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2848 if (vcpu->arch.mmu.lm_root == NULL) {
2849 /*
2850 * The additional page necessary for this is only
2851 * allocated on demand.
2852 */
2853
2854 u64 *lm_root;
2855
2856 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2857 if (lm_root == NULL)
2858 return 1;
2859
2860 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2861
2862 vcpu->arch.mmu.lm_root = lm_root;
2863 }
2864
2865 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2866 }
2867
2868 return 0;
2869 }
2870
2871 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2872 {
2873 if (vcpu->arch.mmu.direct_map)
2874 return mmu_alloc_direct_roots(vcpu);
2875 else
2876 return mmu_alloc_shadow_roots(vcpu);
2877 }
2878
2879 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2880 {
2881 int i;
2882 struct kvm_mmu_page *sp;
2883
2884 if (vcpu->arch.mmu.direct_map)
2885 return;
2886
2887 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2888 return;
2889
2890 vcpu_clear_mmio_info(vcpu, ~0ul);
2891 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2892 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2893 hpa_t root = vcpu->arch.mmu.root_hpa;
2894 sp = page_header(root);
2895 mmu_sync_children(vcpu, sp);
2896 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2897 return;
2898 }
2899 for (i = 0; i < 4; ++i) {
2900 hpa_t root = vcpu->arch.mmu.pae_root[i];
2901
2902 if (root && VALID_PAGE(root)) {
2903 root &= PT64_BASE_ADDR_MASK;
2904 sp = page_header(root);
2905 mmu_sync_children(vcpu, sp);
2906 }
2907 }
2908 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2909 }
2910
2911 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2912 {
2913 spin_lock(&vcpu->kvm->mmu_lock);
2914 mmu_sync_roots(vcpu);
2915 spin_unlock(&vcpu->kvm->mmu_lock);
2916 }
2917
2918 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2919 u32 access, struct x86_exception *exception)
2920 {
2921 if (exception)
2922 exception->error_code = 0;
2923 return vaddr;
2924 }
2925
2926 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2927 u32 access,
2928 struct x86_exception *exception)
2929 {
2930 if (exception)
2931 exception->error_code = 0;
2932 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2933 }
2934
2935 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2936 {
2937 if (direct)
2938 return vcpu_match_mmio_gpa(vcpu, addr);
2939
2940 return vcpu_match_mmio_gva(vcpu, addr);
2941 }
2942
2943
2944 /*
2945 * On direct hosts, the last spte is only allows two states
2946 * for mmio page fault:
2947 * - It is the mmio spte
2948 * - It is zapped or it is being zapped.
2949 *
2950 * This function completely checks the spte when the last spte
2951 * is not the mmio spte.
2952 */
2953 static bool check_direct_spte_mmio_pf(u64 spte)
2954 {
2955 return __check_direct_spte_mmio_pf(spte);
2956 }
2957
2958 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2959 {
2960 struct kvm_shadow_walk_iterator iterator;
2961 u64 spte = 0ull;
2962
2963 walk_shadow_page_lockless_begin(vcpu);
2964 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2965 if (!is_shadow_present_pte(spte))
2966 break;
2967 walk_shadow_page_lockless_end(vcpu);
2968
2969 return spte;
2970 }
2971
2972 /*
2973 * If it is a real mmio page fault, return 1 and emulat the instruction
2974 * directly, return 0 to let CPU fault again on the address, -1 is
2975 * returned if bug is detected.
2976 */
2977 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2978 {
2979 u64 spte;
2980
2981 if (quickly_check_mmio_pf(vcpu, addr, direct))
2982 return 1;
2983
2984 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2985
2986 if (is_mmio_spte(spte)) {
2987 gfn_t gfn = get_mmio_spte_gfn(spte);
2988 unsigned access = get_mmio_spte_access(spte);
2989
2990 if (direct)
2991 addr = 0;
2992
2993 trace_handle_mmio_page_fault(addr, gfn, access);
2994 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2995 return 1;
2996 }
2997
2998 /*
2999 * It's ok if the gva is remapped by other cpus on shadow guest,
3000 * it's a BUG if the gfn is not a mmio page.
3001 */
3002 if (direct && !check_direct_spte_mmio_pf(spte))
3003 return -1;
3004
3005 /*
3006 * If the page table is zapped by other cpus, let CPU fault again on
3007 * the address.
3008 */
3009 return 0;
3010 }
3011 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3012
3013 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3014 u32 error_code, bool direct)
3015 {
3016 int ret;
3017
3018 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3019 WARN_ON(ret < 0);
3020 return ret;
3021 }
3022
3023 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3024 u32 error_code, bool prefault)
3025 {
3026 gfn_t gfn;
3027 int r;
3028
3029 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3030
3031 if (unlikely(error_code & PFERR_RSVD_MASK))
3032 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3033
3034 r = mmu_topup_memory_caches(vcpu);
3035 if (r)
3036 return r;
3037
3038 ASSERT(vcpu);
3039 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3040
3041 gfn = gva >> PAGE_SHIFT;
3042
3043 return nonpaging_map(vcpu, gva & PAGE_MASK,
3044 error_code & PFERR_WRITE_MASK, gfn, prefault);
3045 }
3046
3047 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3048 {
3049 struct kvm_arch_async_pf arch;
3050
3051 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3052 arch.gfn = gfn;
3053 arch.direct_map = vcpu->arch.mmu.direct_map;
3054 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3055
3056 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3057 }
3058
3059 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3060 {
3061 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3062 kvm_event_needs_reinjection(vcpu)))
3063 return false;
3064
3065 return kvm_x86_ops->interrupt_allowed(vcpu);
3066 }
3067
3068 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3069 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3070 {
3071 bool async;
3072
3073 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3074
3075 if (!async)
3076 return false; /* *pfn has correct page already */
3077
3078 put_page(pfn_to_page(*pfn));
3079
3080 if (!prefault && can_do_async_pf(vcpu)) {
3081 trace_kvm_try_async_get_page(gva, gfn);
3082 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3083 trace_kvm_async_pf_doublefault(gva, gfn);
3084 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3085 return true;
3086 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3087 return true;
3088 }
3089
3090 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3091
3092 return false;
3093 }
3094
3095 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3096 bool prefault)
3097 {
3098 pfn_t pfn;
3099 int r;
3100 int level;
3101 int force_pt_level;
3102 gfn_t gfn = gpa >> PAGE_SHIFT;
3103 unsigned long mmu_seq;
3104 int write = error_code & PFERR_WRITE_MASK;
3105 bool map_writable;
3106
3107 ASSERT(vcpu);
3108 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3109
3110 if (unlikely(error_code & PFERR_RSVD_MASK))
3111 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3112
3113 r = mmu_topup_memory_caches(vcpu);
3114 if (r)
3115 return r;
3116
3117 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3118 if (likely(!force_pt_level)) {
3119 level = mapping_level(vcpu, gfn);
3120 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3121 } else
3122 level = PT_PAGE_TABLE_LEVEL;
3123
3124 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3125 smp_rmb();
3126
3127 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3128 return 0;
3129
3130 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3131 return r;
3132
3133 spin_lock(&vcpu->kvm->mmu_lock);
3134 if (mmu_notifier_retry(vcpu, mmu_seq))
3135 goto out_unlock;
3136 kvm_mmu_free_some_pages(vcpu);
3137 if (likely(!force_pt_level))
3138 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3139 r = __direct_map(vcpu, gpa, write, map_writable,
3140 level, gfn, pfn, prefault);
3141 spin_unlock(&vcpu->kvm->mmu_lock);
3142
3143 return r;
3144
3145 out_unlock:
3146 spin_unlock(&vcpu->kvm->mmu_lock);
3147 kvm_release_pfn_clean(pfn);
3148 return 0;
3149 }
3150
3151 static void nonpaging_free(struct kvm_vcpu *vcpu)
3152 {
3153 mmu_free_roots(vcpu);
3154 }
3155
3156 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3157 struct kvm_mmu *context)
3158 {
3159 context->new_cr3 = nonpaging_new_cr3;
3160 context->page_fault = nonpaging_page_fault;
3161 context->gva_to_gpa = nonpaging_gva_to_gpa;
3162 context->free = nonpaging_free;
3163 context->sync_page = nonpaging_sync_page;
3164 context->invlpg = nonpaging_invlpg;
3165 context->update_pte = nonpaging_update_pte;
3166 context->root_level = 0;
3167 context->shadow_root_level = PT32E_ROOT_LEVEL;
3168 context->root_hpa = INVALID_PAGE;
3169 context->direct_map = true;
3170 context->nx = false;
3171 return 0;
3172 }
3173
3174 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3175 {
3176 ++vcpu->stat.tlb_flush;
3177 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3178 }
3179
3180 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3181 {
3182 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3183 mmu_free_roots(vcpu);
3184 }
3185
3186 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3187 {
3188 return kvm_read_cr3(vcpu);
3189 }
3190
3191 static void inject_page_fault(struct kvm_vcpu *vcpu,
3192 struct x86_exception *fault)
3193 {
3194 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3195 }
3196
3197 static void paging_free(struct kvm_vcpu *vcpu)
3198 {
3199 nonpaging_free(vcpu);
3200 }
3201
3202 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3203 {
3204 int bit7;
3205
3206 bit7 = (gpte >> 7) & 1;
3207 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3208 }
3209
3210 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3211 int *nr_present)
3212 {
3213 if (unlikely(is_mmio_spte(*sptep))) {
3214 if (gfn != get_mmio_spte_gfn(*sptep)) {
3215 mmu_spte_clear_no_track(sptep);
3216 return true;
3217 }
3218
3219 (*nr_present)++;
3220 mark_mmio_spte(sptep, gfn, access);
3221 return true;
3222 }
3223
3224 return false;
3225 }
3226
3227 #define PTTYPE 64
3228 #include "paging_tmpl.h"
3229 #undef PTTYPE
3230
3231 #define PTTYPE 32
3232 #include "paging_tmpl.h"
3233 #undef PTTYPE
3234
3235 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3236 struct kvm_mmu *context)
3237 {
3238 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3239 u64 exb_bit_rsvd = 0;
3240
3241 if (!context->nx)
3242 exb_bit_rsvd = rsvd_bits(63, 63);
3243 switch (context->root_level) {
3244 case PT32_ROOT_LEVEL:
3245 /* no rsvd bits for 2 level 4K page table entries */
3246 context->rsvd_bits_mask[0][1] = 0;
3247 context->rsvd_bits_mask[0][0] = 0;
3248 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3249
3250 if (!is_pse(vcpu)) {
3251 context->rsvd_bits_mask[1][1] = 0;
3252 break;
3253 }
3254
3255 if (is_cpuid_PSE36())
3256 /* 36bits PSE 4MB page */
3257 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3258 else
3259 /* 32 bits PSE 4MB page */
3260 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3261 break;
3262 case PT32E_ROOT_LEVEL:
3263 context->rsvd_bits_mask[0][2] =
3264 rsvd_bits(maxphyaddr, 63) |
3265 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3266 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3267 rsvd_bits(maxphyaddr, 62); /* PDE */
3268 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3269 rsvd_bits(maxphyaddr, 62); /* PTE */
3270 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3271 rsvd_bits(maxphyaddr, 62) |
3272 rsvd_bits(13, 20); /* large page */
3273 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3274 break;
3275 case PT64_ROOT_LEVEL:
3276 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3277 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3278 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3279 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3280 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3281 rsvd_bits(maxphyaddr, 51);
3282 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3283 rsvd_bits(maxphyaddr, 51);
3284 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3285 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3286 rsvd_bits(maxphyaddr, 51) |
3287 rsvd_bits(13, 29);
3288 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3289 rsvd_bits(maxphyaddr, 51) |
3290 rsvd_bits(13, 20); /* large page */
3291 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3292 break;
3293 }
3294 }
3295
3296 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3297 struct kvm_mmu *context,
3298 int level)
3299 {
3300 context->nx = is_nx(vcpu);
3301 context->root_level = level;
3302
3303 reset_rsvds_bits_mask(vcpu, context);
3304
3305 ASSERT(is_pae(vcpu));
3306 context->new_cr3 = paging_new_cr3;
3307 context->page_fault = paging64_page_fault;
3308 context->gva_to_gpa = paging64_gva_to_gpa;
3309 context->sync_page = paging64_sync_page;
3310 context->invlpg = paging64_invlpg;
3311 context->update_pte = paging64_update_pte;
3312 context->free = paging_free;
3313 context->shadow_root_level = level;
3314 context->root_hpa = INVALID_PAGE;
3315 context->direct_map = false;
3316 return 0;
3317 }
3318
3319 static int paging64_init_context(struct kvm_vcpu *vcpu,
3320 struct kvm_mmu *context)
3321 {
3322 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3323 }
3324
3325 static int paging32_init_context(struct kvm_vcpu *vcpu,
3326 struct kvm_mmu *context)
3327 {
3328 context->nx = false;
3329 context->root_level = PT32_ROOT_LEVEL;
3330
3331 reset_rsvds_bits_mask(vcpu, context);
3332
3333 context->new_cr3 = paging_new_cr3;
3334 context->page_fault = paging32_page_fault;
3335 context->gva_to_gpa = paging32_gva_to_gpa;
3336 context->free = paging_free;
3337 context->sync_page = paging32_sync_page;
3338 context->invlpg = paging32_invlpg;
3339 context->update_pte = paging32_update_pte;
3340 context->shadow_root_level = PT32E_ROOT_LEVEL;
3341 context->root_hpa = INVALID_PAGE;
3342 context->direct_map = false;
3343 return 0;
3344 }
3345
3346 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3347 struct kvm_mmu *context)
3348 {
3349 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3350 }
3351
3352 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3353 {
3354 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3355
3356 context->base_role.word = 0;
3357 context->new_cr3 = nonpaging_new_cr3;
3358 context->page_fault = tdp_page_fault;
3359 context->free = nonpaging_free;
3360 context->sync_page = nonpaging_sync_page;
3361 context->invlpg = nonpaging_invlpg;
3362 context->update_pte = nonpaging_update_pte;
3363 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3364 context->root_hpa = INVALID_PAGE;
3365 context->direct_map = true;
3366 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3367 context->get_cr3 = get_cr3;
3368 context->get_pdptr = kvm_pdptr_read;
3369 context->inject_page_fault = kvm_inject_page_fault;
3370
3371 if (!is_paging(vcpu)) {
3372 context->nx = false;
3373 context->gva_to_gpa = nonpaging_gva_to_gpa;
3374 context->root_level = 0;
3375 } else if (is_long_mode(vcpu)) {
3376 context->nx = is_nx(vcpu);
3377 context->root_level = PT64_ROOT_LEVEL;
3378 reset_rsvds_bits_mask(vcpu, context);
3379 context->gva_to_gpa = paging64_gva_to_gpa;
3380 } else if (is_pae(vcpu)) {
3381 context->nx = is_nx(vcpu);
3382 context->root_level = PT32E_ROOT_LEVEL;
3383 reset_rsvds_bits_mask(vcpu, context);
3384 context->gva_to_gpa = paging64_gva_to_gpa;
3385 } else {
3386 context->nx = false;
3387 context->root_level = PT32_ROOT_LEVEL;
3388 reset_rsvds_bits_mask(vcpu, context);
3389 context->gva_to_gpa = paging32_gva_to_gpa;
3390 }
3391
3392 return 0;
3393 }
3394
3395 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3396 {
3397 int r;
3398 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3399 ASSERT(vcpu);
3400 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3401
3402 if (!is_paging(vcpu))
3403 r = nonpaging_init_context(vcpu, context);
3404 else if (is_long_mode(vcpu))
3405 r = paging64_init_context(vcpu, context);
3406 else if (is_pae(vcpu))
3407 r = paging32E_init_context(vcpu, context);
3408 else
3409 r = paging32_init_context(vcpu, context);
3410
3411 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3412 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3413 vcpu->arch.mmu.base_role.smep_andnot_wp
3414 = smep && !is_write_protection(vcpu);
3415
3416 return r;
3417 }
3418 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3419
3420 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3421 {
3422 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3423
3424 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3425 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3426 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3427 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3428
3429 return r;
3430 }
3431
3432 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3433 {
3434 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3435
3436 g_context->get_cr3 = get_cr3;
3437 g_context->get_pdptr = kvm_pdptr_read;
3438 g_context->inject_page_fault = kvm_inject_page_fault;
3439
3440 /*
3441 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3442 * translation of l2_gpa to l1_gpa addresses is done using the
3443 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3444 * functions between mmu and nested_mmu are swapped.
3445 */
3446 if (!is_paging(vcpu)) {
3447 g_context->nx = false;
3448 g_context->root_level = 0;
3449 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3450 } else if (is_long_mode(vcpu)) {
3451 g_context->nx = is_nx(vcpu);
3452 g_context->root_level = PT64_ROOT_LEVEL;
3453 reset_rsvds_bits_mask(vcpu, g_context);
3454 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3455 } else if (is_pae(vcpu)) {
3456 g_context->nx = is_nx(vcpu);
3457 g_context->root_level = PT32E_ROOT_LEVEL;
3458 reset_rsvds_bits_mask(vcpu, g_context);
3459 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3460 } else {
3461 g_context->nx = false;
3462 g_context->root_level = PT32_ROOT_LEVEL;
3463 reset_rsvds_bits_mask(vcpu, g_context);
3464 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3465 }
3466
3467 return 0;
3468 }
3469
3470 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3471 {
3472 if (mmu_is_nested(vcpu))
3473 return init_kvm_nested_mmu(vcpu);
3474 else if (tdp_enabled)
3475 return init_kvm_tdp_mmu(vcpu);
3476 else
3477 return init_kvm_softmmu(vcpu);
3478 }
3479
3480 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3481 {
3482 ASSERT(vcpu);
3483 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3484 /* mmu.free() should set root_hpa = INVALID_PAGE */
3485 vcpu->arch.mmu.free(vcpu);
3486 }
3487
3488 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3489 {
3490 destroy_kvm_mmu(vcpu);
3491 return init_kvm_mmu(vcpu);
3492 }
3493 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3494
3495 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3496 {
3497 int r;
3498
3499 r = mmu_topup_memory_caches(vcpu);
3500 if (r)
3501 goto out;
3502 r = mmu_alloc_roots(vcpu);
3503 spin_lock(&vcpu->kvm->mmu_lock);
3504 mmu_sync_roots(vcpu);
3505 spin_unlock(&vcpu->kvm->mmu_lock);
3506 if (r)
3507 goto out;
3508 /* set_cr3() should ensure TLB has been flushed */
3509 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3510 out:
3511 return r;
3512 }
3513 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3514
3515 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3516 {
3517 mmu_free_roots(vcpu);
3518 }
3519 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3520
3521 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3522 struct kvm_mmu_page *sp, u64 *spte,
3523 const void *new)
3524 {
3525 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3526 ++vcpu->kvm->stat.mmu_pde_zapped;
3527 return;
3528 }
3529
3530 ++vcpu->kvm->stat.mmu_pte_updated;
3531 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3532 }
3533
3534 static bool need_remote_flush(u64 old, u64 new)
3535 {
3536 if (!is_shadow_present_pte(old))
3537 return false;
3538 if (!is_shadow_present_pte(new))
3539 return true;
3540 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3541 return true;
3542 old ^= PT64_NX_MASK;
3543 new ^= PT64_NX_MASK;
3544 return (old & ~new & PT64_PERM_MASK) != 0;
3545 }
3546
3547 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3548 bool remote_flush, bool local_flush)
3549 {
3550 if (zap_page)
3551 return;
3552
3553 if (remote_flush)
3554 kvm_flush_remote_tlbs(vcpu->kvm);
3555 else if (local_flush)
3556 kvm_mmu_flush_tlb(vcpu);
3557 }
3558
3559 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3560 const u8 *new, int *bytes)
3561 {
3562 u64 gentry;
3563 int r;
3564
3565 /*
3566 * Assume that the pte write on a page table of the same type
3567 * as the current vcpu paging mode since we update the sptes only
3568 * when they have the same mode.
3569 */
3570 if (is_pae(vcpu) && *bytes == 4) {
3571 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3572 *gpa &= ~(gpa_t)7;
3573 *bytes = 8;
3574 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3575 if (r)
3576 gentry = 0;
3577 new = (const u8 *)&gentry;
3578 }
3579
3580 switch (*bytes) {
3581 case 4:
3582 gentry = *(const u32 *)new;
3583 break;
3584 case 8:
3585 gentry = *(const u64 *)new;
3586 break;
3587 default:
3588 gentry = 0;
3589 break;
3590 }
3591
3592 return gentry;
3593 }
3594
3595 /*
3596 * If we're seeing too many writes to a page, it may no longer be a page table,
3597 * or we may be forking, in which case it is better to unmap the page.
3598 */
3599 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3600 {
3601 /*
3602 * Skip write-flooding detected for the sp whose level is 1, because
3603 * it can become unsync, then the guest page is not write-protected.
3604 */
3605 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3606 return false;
3607
3608 return ++sp->write_flooding_count >= 3;
3609 }
3610
3611 /*
3612 * Misaligned accesses are too much trouble to fix up; also, they usually
3613 * indicate a page is not used as a page table.
3614 */
3615 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3616 int bytes)
3617 {
3618 unsigned offset, pte_size, misaligned;
3619
3620 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3621 gpa, bytes, sp->role.word);
3622
3623 offset = offset_in_page(gpa);
3624 pte_size = sp->role.cr4_pae ? 8 : 4;
3625
3626 /*
3627 * Sometimes, the OS only writes the last one bytes to update status
3628 * bits, for example, in linux, andb instruction is used in clear_bit().
3629 */
3630 if (!(offset & (pte_size - 1)) && bytes == 1)
3631 return false;
3632
3633 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3634 misaligned |= bytes < 4;
3635
3636 return misaligned;
3637 }
3638
3639 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3640 {
3641 unsigned page_offset, quadrant;
3642 u64 *spte;
3643 int level;
3644
3645 page_offset = offset_in_page(gpa);
3646 level = sp->role.level;
3647 *nspte = 1;
3648 if (!sp->role.cr4_pae) {
3649 page_offset <<= 1; /* 32->64 */
3650 /*
3651 * A 32-bit pde maps 4MB while the shadow pdes map
3652 * only 2MB. So we need to double the offset again
3653 * and zap two pdes instead of one.
3654 */
3655 if (level == PT32_ROOT_LEVEL) {
3656 page_offset &= ~7; /* kill rounding error */
3657 page_offset <<= 1;
3658 *nspte = 2;
3659 }
3660 quadrant = page_offset >> PAGE_SHIFT;
3661 page_offset &= ~PAGE_MASK;
3662 if (quadrant != sp->role.quadrant)
3663 return NULL;
3664 }
3665
3666 spte = &sp->spt[page_offset / sizeof(*spte)];
3667 return spte;
3668 }
3669
3670 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3671 const u8 *new, int bytes)
3672 {
3673 gfn_t gfn = gpa >> PAGE_SHIFT;
3674 union kvm_mmu_page_role mask = { .word = 0 };
3675 struct kvm_mmu_page *sp;
3676 struct hlist_node *node;
3677 LIST_HEAD(invalid_list);
3678 u64 entry, gentry, *spte;
3679 int npte;
3680 bool remote_flush, local_flush, zap_page;
3681
3682 /*
3683 * If we don't have indirect shadow pages, it means no page is
3684 * write-protected, so we can exit simply.
3685 */
3686 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3687 return;
3688
3689 zap_page = remote_flush = local_flush = false;
3690
3691 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3692
3693 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3694
3695 /*
3696 * No need to care whether allocation memory is successful
3697 * or not since pte prefetch is skiped if it does not have
3698 * enough objects in the cache.
3699 */
3700 mmu_topup_memory_caches(vcpu);
3701
3702 spin_lock(&vcpu->kvm->mmu_lock);
3703 ++vcpu->kvm->stat.mmu_pte_write;
3704 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3705
3706 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3707 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3708 if (detect_write_misaligned(sp, gpa, bytes) ||
3709 detect_write_flooding(sp)) {
3710 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3711 &invalid_list);
3712 ++vcpu->kvm->stat.mmu_flooded;
3713 continue;
3714 }
3715
3716 spte = get_written_sptes(sp, gpa, &npte);
3717 if (!spte)
3718 continue;
3719
3720 local_flush = true;
3721 while (npte--) {
3722 entry = *spte;
3723 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3724 if (gentry &&
3725 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3726 & mask.word) && rmap_can_add(vcpu))
3727 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3728 if (!remote_flush && need_remote_flush(entry, *spte))
3729 remote_flush = true;
3730 ++spte;
3731 }
3732 }
3733 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3734 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3735 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3736 spin_unlock(&vcpu->kvm->mmu_lock);
3737 }
3738
3739 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3740 {
3741 gpa_t gpa;
3742 int r;
3743
3744 if (vcpu->arch.mmu.direct_map)
3745 return 0;
3746
3747 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3748
3749 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3750
3751 return r;
3752 }
3753 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3754
3755 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3756 {
3757 LIST_HEAD(invalid_list);
3758
3759 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3760 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3761 struct kvm_mmu_page *sp;
3762
3763 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3764 struct kvm_mmu_page, link);
3765 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3766 ++vcpu->kvm->stat.mmu_recycled;
3767 }
3768 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3769 }
3770
3771 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3772 {
3773 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3774 return vcpu_match_mmio_gpa(vcpu, addr);
3775
3776 return vcpu_match_mmio_gva(vcpu, addr);
3777 }
3778
3779 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3780 void *insn, int insn_len)
3781 {
3782 int r, emulation_type = EMULTYPE_RETRY;
3783 enum emulation_result er;
3784
3785 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3786 if (r < 0)
3787 goto out;
3788
3789 if (!r) {
3790 r = 1;
3791 goto out;
3792 }
3793
3794 if (is_mmio_page_fault(vcpu, cr2))
3795 emulation_type = 0;
3796
3797 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3798
3799 switch (er) {
3800 case EMULATE_DONE:
3801 return 1;
3802 case EMULATE_DO_MMIO:
3803 ++vcpu->stat.mmio_exits;
3804 /* fall through */
3805 case EMULATE_FAIL:
3806 return 0;
3807 default:
3808 BUG();
3809 }
3810 out:
3811 return r;
3812 }
3813 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3814
3815 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3816 {
3817 vcpu->arch.mmu.invlpg(vcpu, gva);
3818 kvm_mmu_flush_tlb(vcpu);
3819 ++vcpu->stat.invlpg;
3820 }
3821 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3822
3823 void kvm_enable_tdp(void)
3824 {
3825 tdp_enabled = true;
3826 }
3827 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3828
3829 void kvm_disable_tdp(void)
3830 {
3831 tdp_enabled = false;
3832 }
3833 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3834
3835 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3836 {
3837 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3838 if (vcpu->arch.mmu.lm_root != NULL)
3839 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3840 }
3841
3842 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3843 {
3844 struct page *page;
3845 int i;
3846
3847 ASSERT(vcpu);
3848
3849 /*
3850 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3851 * Therefore we need to allocate shadow page tables in the first
3852 * 4GB of memory, which happens to fit the DMA32 zone.
3853 */
3854 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3855 if (!page)
3856 return -ENOMEM;
3857
3858 vcpu->arch.mmu.pae_root = page_address(page);
3859 for (i = 0; i < 4; ++i)
3860 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3861
3862 return 0;
3863 }
3864
3865 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3866 {
3867 ASSERT(vcpu);
3868
3869 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3870 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3871 vcpu->arch.mmu.translate_gpa = translate_gpa;
3872 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
3873
3874 return alloc_mmu_pages(vcpu);
3875 }
3876
3877 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3878 {
3879 ASSERT(vcpu);
3880 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3881
3882 return init_kvm_mmu(vcpu);
3883 }
3884
3885 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3886 {
3887 struct kvm_mmu_page *sp;
3888
3889 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3890 int i;
3891 u64 *pt;
3892
3893 if (!test_bit(slot, sp->slot_bitmap))
3894 continue;
3895
3896 pt = sp->spt;
3897 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3898 if (!is_shadow_present_pte(pt[i]) ||
3899 !is_last_spte(pt[i], sp->role.level))
3900 continue;
3901
3902 if (is_large_pte(pt[i])) {
3903 drop_spte(kvm, &pt[i]);
3904 --kvm->stat.lpages;
3905 continue;
3906 }
3907
3908 /* avoid RMW */
3909 if (is_writable_pte(pt[i]))
3910 mmu_spte_update(&pt[i],
3911 pt[i] & ~PT_WRITABLE_MASK);
3912 }
3913 }
3914 kvm_flush_remote_tlbs(kvm);
3915 }
3916
3917 void kvm_mmu_zap_all(struct kvm *kvm)
3918 {
3919 struct kvm_mmu_page *sp, *node;
3920 LIST_HEAD(invalid_list);
3921
3922 spin_lock(&kvm->mmu_lock);
3923 restart:
3924 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3925 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3926 goto restart;
3927
3928 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3929 spin_unlock(&kvm->mmu_lock);
3930 }
3931
3932 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3933 struct list_head *invalid_list)
3934 {
3935 struct kvm_mmu_page *page;
3936
3937 page = container_of(kvm->arch.active_mmu_pages.prev,
3938 struct kvm_mmu_page, link);
3939 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3940 }
3941
3942 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3943 {
3944 struct kvm *kvm;
3945 struct kvm *kvm_freed = NULL;
3946 int nr_to_scan = sc->nr_to_scan;
3947
3948 if (nr_to_scan == 0)
3949 goto out;
3950
3951 raw_spin_lock(&kvm_lock);
3952
3953 list_for_each_entry(kvm, &vm_list, vm_list) {
3954 int idx;
3955 LIST_HEAD(invalid_list);
3956
3957 idx = srcu_read_lock(&kvm->srcu);
3958 spin_lock(&kvm->mmu_lock);
3959 if (!kvm_freed && nr_to_scan > 0 &&
3960 kvm->arch.n_used_mmu_pages > 0) {
3961 kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3962 &invalid_list);
3963 kvm_freed = kvm;
3964 }
3965 nr_to_scan--;
3966
3967 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3968 spin_unlock(&kvm->mmu_lock);
3969 srcu_read_unlock(&kvm->srcu, idx);
3970 }
3971 if (kvm_freed)
3972 list_move_tail(&kvm_freed->vm_list, &vm_list);
3973
3974 raw_spin_unlock(&kvm_lock);
3975
3976 out:
3977 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3978 }
3979
3980 static struct shrinker mmu_shrinker = {
3981 .shrink = mmu_shrink,
3982 .seeks = DEFAULT_SEEKS * 10,
3983 };
3984
3985 static void mmu_destroy_caches(void)
3986 {
3987 if (pte_list_desc_cache)
3988 kmem_cache_destroy(pte_list_desc_cache);
3989 if (mmu_page_header_cache)
3990 kmem_cache_destroy(mmu_page_header_cache);
3991 }
3992
3993 int kvm_mmu_module_init(void)
3994 {
3995 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3996 sizeof(struct pte_list_desc),
3997 0, 0, NULL);
3998 if (!pte_list_desc_cache)
3999 goto nomem;
4000
4001 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4002 sizeof(struct kvm_mmu_page),
4003 0, 0, NULL);
4004 if (!mmu_page_header_cache)
4005 goto nomem;
4006
4007 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4008 goto nomem;
4009
4010 register_shrinker(&mmu_shrinker);
4011
4012 return 0;
4013
4014 nomem:
4015 mmu_destroy_caches();
4016 return -ENOMEM;
4017 }
4018
4019 /*
4020 * Caculate mmu pages needed for kvm.
4021 */
4022 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4023 {
4024 unsigned int nr_mmu_pages;
4025 unsigned int nr_pages = 0;
4026 struct kvm_memslots *slots;
4027 struct kvm_memory_slot *memslot;
4028
4029 slots = kvm_memslots(kvm);
4030
4031 kvm_for_each_memslot(memslot, slots)
4032 nr_pages += memslot->npages;
4033
4034 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4035 nr_mmu_pages = max(nr_mmu_pages,
4036 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4037
4038 return nr_mmu_pages;
4039 }
4040
4041 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4042 {
4043 struct kvm_shadow_walk_iterator iterator;
4044 u64 spte;
4045 int nr_sptes = 0;
4046
4047 walk_shadow_page_lockless_begin(vcpu);
4048 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4049 sptes[iterator.level-1] = spte;
4050 nr_sptes++;
4051 if (!is_shadow_present_pte(spte))
4052 break;
4053 }
4054 walk_shadow_page_lockless_end(vcpu);
4055
4056 return nr_sptes;
4057 }
4058 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4059
4060 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4061 {
4062 ASSERT(vcpu);
4063
4064 destroy_kvm_mmu(vcpu);
4065 free_mmu_pages(vcpu);
4066 mmu_free_memory_caches(vcpu);
4067 }
4068
4069 void kvm_mmu_module_exit(void)
4070 {
4071 mmu_destroy_caches();
4072 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4073 unregister_shrinker(&mmu_shrinker);
4074 mmu_audit_disable();
4075 }
This page took 0.191624 seconds and 5 git commands to generate.