KVM: Remove memory alias support
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affilates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "mmu.h"
22 #include "x86.h"
23 #include "kvm_cache_regs.h"
24
25 #include <linux/kvm_host.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/module.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37
38 #include <asm/page.h>
39 #include <asm/cmpxchg.h>
40 #include <asm/io.h>
41 #include <asm/vmx.h>
42
43 /*
44 * When setting this variable to true it enables Two-Dimensional-Paging
45 * where the hardware walks 2 page tables:
46 * 1. the guest-virtual to guest-physical
47 * 2. while doing 1. it walks guest-physical to host-physical
48 * If the hardware supports that we don't need to do shadow paging.
49 */
50 bool tdp_enabled = false;
51
52 #undef MMU_DEBUG
53
54 #undef AUDIT
55
56 #ifdef AUDIT
57 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
58 #else
59 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
60 #endif
61
62 #ifdef MMU_DEBUG
63
64 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
65 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
66
67 #else
68
69 #define pgprintk(x...) do { } while (0)
70 #define rmap_printk(x...) do { } while (0)
71
72 #endif
73
74 #if defined(MMU_DEBUG) || defined(AUDIT)
75 static int dbg = 0;
76 module_param(dbg, bool, 0644);
77 #endif
78
79 static int oos_shadow = 1;
80 module_param(oos_shadow, bool, 0644);
81
82 #ifndef MMU_DEBUG
83 #define ASSERT(x) do { } while (0)
84 #else
85 #define ASSERT(x) \
86 if (!(x)) { \
87 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
88 __FILE__, __LINE__, #x); \
89 }
90 #endif
91
92 #define PT_FIRST_AVAIL_BITS_SHIFT 9
93 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
94
95 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
96
97 #define PT64_LEVEL_BITS 9
98
99 #define PT64_LEVEL_SHIFT(level) \
100 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101
102 #define PT64_LEVEL_MASK(level) \
103 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
104
105 #define PT64_INDEX(address, level)\
106 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
107
108
109 #define PT32_LEVEL_BITS 10
110
111 #define PT32_LEVEL_SHIFT(level) \
112 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
113
114 #define PT32_LEVEL_MASK(level) \
115 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
116 #define PT32_LVL_OFFSET_MASK(level) \
117 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
118 * PT32_LEVEL_BITS))) - 1))
119
120 #define PT32_INDEX(address, level)\
121 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
122
123
124 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
125 #define PT64_DIR_BASE_ADDR_MASK \
126 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
127 #define PT64_LVL_ADDR_MASK(level) \
128 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
129 * PT64_LEVEL_BITS))) - 1))
130 #define PT64_LVL_OFFSET_MASK(level) \
131 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
132 * PT64_LEVEL_BITS))) - 1))
133
134 #define PT32_BASE_ADDR_MASK PAGE_MASK
135 #define PT32_DIR_BASE_ADDR_MASK \
136 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
137 #define PT32_LVL_ADDR_MASK(level) \
138 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
139 * PT32_LEVEL_BITS))) - 1))
140
141 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
142 | PT64_NX_MASK)
143
144 #define RMAP_EXT 4
145
146 #define ACC_EXEC_MASK 1
147 #define ACC_WRITE_MASK PT_WRITABLE_MASK
148 #define ACC_USER_MASK PT_USER_MASK
149 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
150
151 #include <trace/events/kvm.h>
152
153 #define CREATE_TRACE_POINTS
154 #include "mmutrace.h"
155
156 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
157
158 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
159
160 struct kvm_rmap_desc {
161 u64 *sptes[RMAP_EXT];
162 struct kvm_rmap_desc *more;
163 };
164
165 struct kvm_shadow_walk_iterator {
166 u64 addr;
167 hpa_t shadow_addr;
168 int level;
169 u64 *sptep;
170 unsigned index;
171 };
172
173 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
175 shadow_walk_okay(&(_walker)); \
176 shadow_walk_next(&(_walker)))
177
178 typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
179
180 static struct kmem_cache *pte_chain_cache;
181 static struct kmem_cache *rmap_desc_cache;
182 static struct kmem_cache *mmu_page_header_cache;
183
184 static u64 __read_mostly shadow_trap_nonpresent_pte;
185 static u64 __read_mostly shadow_notrap_nonpresent_pte;
186 static u64 __read_mostly shadow_base_present_pte;
187 static u64 __read_mostly shadow_nx_mask;
188 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
189 static u64 __read_mostly shadow_user_mask;
190 static u64 __read_mostly shadow_accessed_mask;
191 static u64 __read_mostly shadow_dirty_mask;
192
193 static inline u64 rsvd_bits(int s, int e)
194 {
195 return ((1ULL << (e - s + 1)) - 1) << s;
196 }
197
198 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
199 {
200 shadow_trap_nonpresent_pte = trap_pte;
201 shadow_notrap_nonpresent_pte = notrap_pte;
202 }
203 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
204
205 void kvm_mmu_set_base_ptes(u64 base_pte)
206 {
207 shadow_base_present_pte = base_pte;
208 }
209 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
210
211 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
212 u64 dirty_mask, u64 nx_mask, u64 x_mask)
213 {
214 shadow_user_mask = user_mask;
215 shadow_accessed_mask = accessed_mask;
216 shadow_dirty_mask = dirty_mask;
217 shadow_nx_mask = nx_mask;
218 shadow_x_mask = x_mask;
219 }
220 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
221
222 static bool is_write_protection(struct kvm_vcpu *vcpu)
223 {
224 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
225 }
226
227 static int is_cpuid_PSE36(void)
228 {
229 return 1;
230 }
231
232 static int is_nx(struct kvm_vcpu *vcpu)
233 {
234 return vcpu->arch.efer & EFER_NX;
235 }
236
237 static int is_shadow_present_pte(u64 pte)
238 {
239 return pte != shadow_trap_nonpresent_pte
240 && pte != shadow_notrap_nonpresent_pte;
241 }
242
243 static int is_large_pte(u64 pte)
244 {
245 return pte & PT_PAGE_SIZE_MASK;
246 }
247
248 static int is_writable_pte(unsigned long pte)
249 {
250 return pte & PT_WRITABLE_MASK;
251 }
252
253 static int is_dirty_gpte(unsigned long pte)
254 {
255 return pte & PT_DIRTY_MASK;
256 }
257
258 static int is_rmap_spte(u64 pte)
259 {
260 return is_shadow_present_pte(pte);
261 }
262
263 static int is_last_spte(u64 pte, int level)
264 {
265 if (level == PT_PAGE_TABLE_LEVEL)
266 return 1;
267 if (is_large_pte(pte))
268 return 1;
269 return 0;
270 }
271
272 static pfn_t spte_to_pfn(u64 pte)
273 {
274 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
275 }
276
277 static gfn_t pse36_gfn_delta(u32 gpte)
278 {
279 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
280
281 return (gpte & PT32_DIR_PSE36_MASK) << shift;
282 }
283
284 static void __set_spte(u64 *sptep, u64 spte)
285 {
286 #ifdef CONFIG_X86_64
287 set_64bit((unsigned long *)sptep, spte);
288 #else
289 set_64bit((unsigned long long *)sptep, spte);
290 #endif
291 }
292
293 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
294 struct kmem_cache *base_cache, int min)
295 {
296 void *obj;
297
298 if (cache->nobjs >= min)
299 return 0;
300 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
301 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
302 if (!obj)
303 return -ENOMEM;
304 cache->objects[cache->nobjs++] = obj;
305 }
306 return 0;
307 }
308
309 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
310 struct kmem_cache *cache)
311 {
312 while (mc->nobjs)
313 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
314 }
315
316 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
317 int min)
318 {
319 struct page *page;
320
321 if (cache->nobjs >= min)
322 return 0;
323 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
324 page = alloc_page(GFP_KERNEL);
325 if (!page)
326 return -ENOMEM;
327 cache->objects[cache->nobjs++] = page_address(page);
328 }
329 return 0;
330 }
331
332 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
333 {
334 while (mc->nobjs)
335 free_page((unsigned long)mc->objects[--mc->nobjs]);
336 }
337
338 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
339 {
340 int r;
341
342 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
343 pte_chain_cache, 4);
344 if (r)
345 goto out;
346 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
347 rmap_desc_cache, 4);
348 if (r)
349 goto out;
350 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
351 if (r)
352 goto out;
353 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
354 mmu_page_header_cache, 4);
355 out:
356 return r;
357 }
358
359 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
360 {
361 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
362 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
363 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
364 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
365 mmu_page_header_cache);
366 }
367
368 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
369 size_t size)
370 {
371 void *p;
372
373 BUG_ON(!mc->nobjs);
374 p = mc->objects[--mc->nobjs];
375 return p;
376 }
377
378 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
379 {
380 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
381 sizeof(struct kvm_pte_chain));
382 }
383
384 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
385 {
386 kmem_cache_free(pte_chain_cache, pc);
387 }
388
389 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
390 {
391 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
392 sizeof(struct kvm_rmap_desc));
393 }
394
395 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
396 {
397 kmem_cache_free(rmap_desc_cache, rd);
398 }
399
400 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
401 {
402 if (!sp->role.direct)
403 return sp->gfns[index];
404
405 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
406 }
407
408 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
409 {
410 if (sp->role.direct)
411 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
412 else
413 sp->gfns[index] = gfn;
414 }
415
416 /*
417 * Return the pointer to the largepage write count for a given
418 * gfn, handling slots that are not large page aligned.
419 */
420 static int *slot_largepage_idx(gfn_t gfn,
421 struct kvm_memory_slot *slot,
422 int level)
423 {
424 unsigned long idx;
425
426 idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
427 (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
428 return &slot->lpage_info[level - 2][idx].write_count;
429 }
430
431 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
432 {
433 struct kvm_memory_slot *slot;
434 int *write_count;
435 int i;
436
437 slot = gfn_to_memslot(kvm, gfn);
438 for (i = PT_DIRECTORY_LEVEL;
439 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
440 write_count = slot_largepage_idx(gfn, slot, i);
441 *write_count += 1;
442 }
443 }
444
445 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
446 {
447 struct kvm_memory_slot *slot;
448 int *write_count;
449 int i;
450
451 slot = gfn_to_memslot(kvm, gfn);
452 for (i = PT_DIRECTORY_LEVEL;
453 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
454 write_count = slot_largepage_idx(gfn, slot, i);
455 *write_count -= 1;
456 WARN_ON(*write_count < 0);
457 }
458 }
459
460 static int has_wrprotected_page(struct kvm *kvm,
461 gfn_t gfn,
462 int level)
463 {
464 struct kvm_memory_slot *slot;
465 int *largepage_idx;
466
467 slot = gfn_to_memslot(kvm, gfn);
468 if (slot) {
469 largepage_idx = slot_largepage_idx(gfn, slot, level);
470 return *largepage_idx;
471 }
472
473 return 1;
474 }
475
476 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
477 {
478 unsigned long page_size;
479 int i, ret = 0;
480
481 page_size = kvm_host_page_size(kvm, gfn);
482
483 for (i = PT_PAGE_TABLE_LEVEL;
484 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
485 if (page_size >= KVM_HPAGE_SIZE(i))
486 ret = i;
487 else
488 break;
489 }
490
491 return ret;
492 }
493
494 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
495 {
496 struct kvm_memory_slot *slot;
497 int host_level, level, max_level;
498
499 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
500 if (slot && slot->dirty_bitmap)
501 return PT_PAGE_TABLE_LEVEL;
502
503 host_level = host_mapping_level(vcpu->kvm, large_gfn);
504
505 if (host_level == PT_PAGE_TABLE_LEVEL)
506 return host_level;
507
508 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
509 kvm_x86_ops->get_lpage_level() : host_level;
510
511 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
512 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
513 break;
514
515 return level - 1;
516 }
517
518 /*
519 * Take gfn and return the reverse mapping to it.
520 */
521
522 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
523 {
524 struct kvm_memory_slot *slot;
525 unsigned long idx;
526
527 slot = gfn_to_memslot(kvm, gfn);
528 if (likely(level == PT_PAGE_TABLE_LEVEL))
529 return &slot->rmap[gfn - slot->base_gfn];
530
531 idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
532 (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
533
534 return &slot->lpage_info[level - 2][idx].rmap_pde;
535 }
536
537 /*
538 * Reverse mapping data structures:
539 *
540 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
541 * that points to page_address(page).
542 *
543 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
544 * containing more mappings.
545 *
546 * Returns the number of rmap entries before the spte was added or zero if
547 * the spte was not added.
548 *
549 */
550 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
551 {
552 struct kvm_mmu_page *sp;
553 struct kvm_rmap_desc *desc;
554 unsigned long *rmapp;
555 int i, count = 0;
556
557 if (!is_rmap_spte(*spte))
558 return count;
559 sp = page_header(__pa(spte));
560 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
561 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
562 if (!*rmapp) {
563 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
564 *rmapp = (unsigned long)spte;
565 } else if (!(*rmapp & 1)) {
566 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
567 desc = mmu_alloc_rmap_desc(vcpu);
568 desc->sptes[0] = (u64 *)*rmapp;
569 desc->sptes[1] = spte;
570 *rmapp = (unsigned long)desc | 1;
571 } else {
572 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
573 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
574 while (desc->sptes[RMAP_EXT-1] && desc->more) {
575 desc = desc->more;
576 count += RMAP_EXT;
577 }
578 if (desc->sptes[RMAP_EXT-1]) {
579 desc->more = mmu_alloc_rmap_desc(vcpu);
580 desc = desc->more;
581 }
582 for (i = 0; desc->sptes[i]; ++i)
583 ;
584 desc->sptes[i] = spte;
585 }
586 return count;
587 }
588
589 static void rmap_desc_remove_entry(unsigned long *rmapp,
590 struct kvm_rmap_desc *desc,
591 int i,
592 struct kvm_rmap_desc *prev_desc)
593 {
594 int j;
595
596 for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
597 ;
598 desc->sptes[i] = desc->sptes[j];
599 desc->sptes[j] = NULL;
600 if (j != 0)
601 return;
602 if (!prev_desc && !desc->more)
603 *rmapp = (unsigned long)desc->sptes[0];
604 else
605 if (prev_desc)
606 prev_desc->more = desc->more;
607 else
608 *rmapp = (unsigned long)desc->more | 1;
609 mmu_free_rmap_desc(desc);
610 }
611
612 static void rmap_remove(struct kvm *kvm, u64 *spte)
613 {
614 struct kvm_rmap_desc *desc;
615 struct kvm_rmap_desc *prev_desc;
616 struct kvm_mmu_page *sp;
617 pfn_t pfn;
618 gfn_t gfn;
619 unsigned long *rmapp;
620 int i;
621
622 if (!is_rmap_spte(*spte))
623 return;
624 sp = page_header(__pa(spte));
625 pfn = spte_to_pfn(*spte);
626 if (*spte & shadow_accessed_mask)
627 kvm_set_pfn_accessed(pfn);
628 if (is_writable_pte(*spte))
629 kvm_set_pfn_dirty(pfn);
630 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
631 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
632 if (!*rmapp) {
633 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
634 BUG();
635 } else if (!(*rmapp & 1)) {
636 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
637 if ((u64 *)*rmapp != spte) {
638 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
639 spte, *spte);
640 BUG();
641 }
642 *rmapp = 0;
643 } else {
644 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
645 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
646 prev_desc = NULL;
647 while (desc) {
648 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
649 if (desc->sptes[i] == spte) {
650 rmap_desc_remove_entry(rmapp,
651 desc, i,
652 prev_desc);
653 return;
654 }
655 prev_desc = desc;
656 desc = desc->more;
657 }
658 pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
659 BUG();
660 }
661 }
662
663 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
664 {
665 struct kvm_rmap_desc *desc;
666 u64 *prev_spte;
667 int i;
668
669 if (!*rmapp)
670 return NULL;
671 else if (!(*rmapp & 1)) {
672 if (!spte)
673 return (u64 *)*rmapp;
674 return NULL;
675 }
676 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
677 prev_spte = NULL;
678 while (desc) {
679 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
680 if (prev_spte == spte)
681 return desc->sptes[i];
682 prev_spte = desc->sptes[i];
683 }
684 desc = desc->more;
685 }
686 return NULL;
687 }
688
689 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
690 {
691 unsigned long *rmapp;
692 u64 *spte;
693 int i, write_protected = 0;
694
695 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
696
697 spte = rmap_next(kvm, rmapp, NULL);
698 while (spte) {
699 BUG_ON(!spte);
700 BUG_ON(!(*spte & PT_PRESENT_MASK));
701 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
702 if (is_writable_pte(*spte)) {
703 __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
704 write_protected = 1;
705 }
706 spte = rmap_next(kvm, rmapp, spte);
707 }
708 if (write_protected) {
709 pfn_t pfn;
710
711 spte = rmap_next(kvm, rmapp, NULL);
712 pfn = spte_to_pfn(*spte);
713 kvm_set_pfn_dirty(pfn);
714 }
715
716 /* check for huge page mappings */
717 for (i = PT_DIRECTORY_LEVEL;
718 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
719 rmapp = gfn_to_rmap(kvm, gfn, i);
720 spte = rmap_next(kvm, rmapp, NULL);
721 while (spte) {
722 BUG_ON(!spte);
723 BUG_ON(!(*spte & PT_PRESENT_MASK));
724 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
725 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
726 if (is_writable_pte(*spte)) {
727 rmap_remove(kvm, spte);
728 --kvm->stat.lpages;
729 __set_spte(spte, shadow_trap_nonpresent_pte);
730 spte = NULL;
731 write_protected = 1;
732 }
733 spte = rmap_next(kvm, rmapp, spte);
734 }
735 }
736
737 return write_protected;
738 }
739
740 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
741 unsigned long data)
742 {
743 u64 *spte;
744 int need_tlb_flush = 0;
745
746 while ((spte = rmap_next(kvm, rmapp, NULL))) {
747 BUG_ON(!(*spte & PT_PRESENT_MASK));
748 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
749 rmap_remove(kvm, spte);
750 __set_spte(spte, shadow_trap_nonpresent_pte);
751 need_tlb_flush = 1;
752 }
753 return need_tlb_flush;
754 }
755
756 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
757 unsigned long data)
758 {
759 int need_flush = 0;
760 u64 *spte, new_spte;
761 pte_t *ptep = (pte_t *)data;
762 pfn_t new_pfn;
763
764 WARN_ON(pte_huge(*ptep));
765 new_pfn = pte_pfn(*ptep);
766 spte = rmap_next(kvm, rmapp, NULL);
767 while (spte) {
768 BUG_ON(!is_shadow_present_pte(*spte));
769 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
770 need_flush = 1;
771 if (pte_write(*ptep)) {
772 rmap_remove(kvm, spte);
773 __set_spte(spte, shadow_trap_nonpresent_pte);
774 spte = rmap_next(kvm, rmapp, NULL);
775 } else {
776 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
777 new_spte |= (u64)new_pfn << PAGE_SHIFT;
778
779 new_spte &= ~PT_WRITABLE_MASK;
780 new_spte &= ~SPTE_HOST_WRITEABLE;
781 if (is_writable_pte(*spte))
782 kvm_set_pfn_dirty(spte_to_pfn(*spte));
783 __set_spte(spte, new_spte);
784 spte = rmap_next(kvm, rmapp, spte);
785 }
786 }
787 if (need_flush)
788 kvm_flush_remote_tlbs(kvm);
789
790 return 0;
791 }
792
793 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
794 unsigned long data,
795 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
796 unsigned long data))
797 {
798 int i, j;
799 int ret;
800 int retval = 0;
801 struct kvm_memslots *slots;
802
803 slots = kvm_memslots(kvm);
804
805 for (i = 0; i < slots->nmemslots; i++) {
806 struct kvm_memory_slot *memslot = &slots->memslots[i];
807 unsigned long start = memslot->userspace_addr;
808 unsigned long end;
809
810 end = start + (memslot->npages << PAGE_SHIFT);
811 if (hva >= start && hva < end) {
812 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
813
814 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
815
816 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
817 int idx = gfn_offset;
818 idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
819 ret |= handler(kvm,
820 &memslot->lpage_info[j][idx].rmap_pde,
821 data);
822 }
823 trace_kvm_age_page(hva, memslot, ret);
824 retval |= ret;
825 }
826 }
827
828 return retval;
829 }
830
831 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
832 {
833 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
834 }
835
836 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
837 {
838 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
839 }
840
841 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
842 unsigned long data)
843 {
844 u64 *spte;
845 int young = 0;
846
847 /*
848 * Emulate the accessed bit for EPT, by checking if this page has
849 * an EPT mapping, and clearing it if it does. On the next access,
850 * a new EPT mapping will be established.
851 * This has some overhead, but not as much as the cost of swapping
852 * out actively used pages or breaking up actively used hugepages.
853 */
854 if (!shadow_accessed_mask)
855 return kvm_unmap_rmapp(kvm, rmapp, data);
856
857 spte = rmap_next(kvm, rmapp, NULL);
858 while (spte) {
859 int _young;
860 u64 _spte = *spte;
861 BUG_ON(!(_spte & PT_PRESENT_MASK));
862 _young = _spte & PT_ACCESSED_MASK;
863 if (_young) {
864 young = 1;
865 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
866 }
867 spte = rmap_next(kvm, rmapp, spte);
868 }
869 return young;
870 }
871
872 #define RMAP_RECYCLE_THRESHOLD 1000
873
874 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
875 {
876 unsigned long *rmapp;
877 struct kvm_mmu_page *sp;
878
879 sp = page_header(__pa(spte));
880
881 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
882
883 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
884 kvm_flush_remote_tlbs(vcpu->kvm);
885 }
886
887 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
888 {
889 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
890 }
891
892 #ifdef MMU_DEBUG
893 static int is_empty_shadow_page(u64 *spt)
894 {
895 u64 *pos;
896 u64 *end;
897
898 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
899 if (is_shadow_present_pte(*pos)) {
900 printk(KERN_ERR "%s: %p %llx\n", __func__,
901 pos, *pos);
902 return 0;
903 }
904 return 1;
905 }
906 #endif
907
908 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
909 {
910 ASSERT(is_empty_shadow_page(sp->spt));
911 hlist_del(&sp->hash_link);
912 list_del(&sp->link);
913 __free_page(virt_to_page(sp->spt));
914 if (!sp->role.direct)
915 __free_page(virt_to_page(sp->gfns));
916 kmem_cache_free(mmu_page_header_cache, sp);
917 ++kvm->arch.n_free_mmu_pages;
918 }
919
920 static unsigned kvm_page_table_hashfn(gfn_t gfn)
921 {
922 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
923 }
924
925 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
926 u64 *parent_pte, int direct)
927 {
928 struct kvm_mmu_page *sp;
929
930 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
931 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
932 if (!direct)
933 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
934 PAGE_SIZE);
935 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
936 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
937 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
938 sp->multimapped = 0;
939 sp->parent_pte = parent_pte;
940 --vcpu->kvm->arch.n_free_mmu_pages;
941 return sp;
942 }
943
944 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
945 struct kvm_mmu_page *sp, u64 *parent_pte)
946 {
947 struct kvm_pte_chain *pte_chain;
948 struct hlist_node *node;
949 int i;
950
951 if (!parent_pte)
952 return;
953 if (!sp->multimapped) {
954 u64 *old = sp->parent_pte;
955
956 if (!old) {
957 sp->parent_pte = parent_pte;
958 return;
959 }
960 sp->multimapped = 1;
961 pte_chain = mmu_alloc_pte_chain(vcpu);
962 INIT_HLIST_HEAD(&sp->parent_ptes);
963 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
964 pte_chain->parent_ptes[0] = old;
965 }
966 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
967 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
968 continue;
969 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
970 if (!pte_chain->parent_ptes[i]) {
971 pte_chain->parent_ptes[i] = parent_pte;
972 return;
973 }
974 }
975 pte_chain = mmu_alloc_pte_chain(vcpu);
976 BUG_ON(!pte_chain);
977 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
978 pte_chain->parent_ptes[0] = parent_pte;
979 }
980
981 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
982 u64 *parent_pte)
983 {
984 struct kvm_pte_chain *pte_chain;
985 struct hlist_node *node;
986 int i;
987
988 if (!sp->multimapped) {
989 BUG_ON(sp->parent_pte != parent_pte);
990 sp->parent_pte = NULL;
991 return;
992 }
993 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
994 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
995 if (!pte_chain->parent_ptes[i])
996 break;
997 if (pte_chain->parent_ptes[i] != parent_pte)
998 continue;
999 while (i + 1 < NR_PTE_CHAIN_ENTRIES
1000 && pte_chain->parent_ptes[i + 1]) {
1001 pte_chain->parent_ptes[i]
1002 = pte_chain->parent_ptes[i + 1];
1003 ++i;
1004 }
1005 pte_chain->parent_ptes[i] = NULL;
1006 if (i == 0) {
1007 hlist_del(&pte_chain->link);
1008 mmu_free_pte_chain(pte_chain);
1009 if (hlist_empty(&sp->parent_ptes)) {
1010 sp->multimapped = 0;
1011 sp->parent_pte = NULL;
1012 }
1013 }
1014 return;
1015 }
1016 BUG();
1017 }
1018
1019 static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1020 {
1021 struct kvm_pte_chain *pte_chain;
1022 struct hlist_node *node;
1023 struct kvm_mmu_page *parent_sp;
1024 int i;
1025
1026 if (!sp->multimapped && sp->parent_pte) {
1027 parent_sp = page_header(__pa(sp->parent_pte));
1028 fn(parent_sp, sp->parent_pte);
1029 return;
1030 }
1031
1032 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1033 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1034 u64 *spte = pte_chain->parent_ptes[i];
1035
1036 if (!spte)
1037 break;
1038 parent_sp = page_header(__pa(spte));
1039 fn(parent_sp, spte);
1040 }
1041 }
1042
1043 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
1044 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1045 {
1046 mmu_parent_walk(sp, mark_unsync);
1047 }
1048
1049 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
1050 {
1051 unsigned int index;
1052
1053 index = spte - sp->spt;
1054 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1055 return;
1056 if (sp->unsync_children++)
1057 return;
1058 kvm_mmu_mark_parents_unsync(sp);
1059 }
1060
1061 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1062 struct kvm_mmu_page *sp)
1063 {
1064 int i;
1065
1066 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1067 sp->spt[i] = shadow_trap_nonpresent_pte;
1068 }
1069
1070 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1071 struct kvm_mmu_page *sp, bool clear_unsync)
1072 {
1073 return 1;
1074 }
1075
1076 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1077 {
1078 }
1079
1080 #define KVM_PAGE_ARRAY_NR 16
1081
1082 struct kvm_mmu_pages {
1083 struct mmu_page_and_offset {
1084 struct kvm_mmu_page *sp;
1085 unsigned int idx;
1086 } page[KVM_PAGE_ARRAY_NR];
1087 unsigned int nr;
1088 };
1089
1090 #define for_each_unsync_children(bitmap, idx) \
1091 for (idx = find_first_bit(bitmap, 512); \
1092 idx < 512; \
1093 idx = find_next_bit(bitmap, 512, idx+1))
1094
1095 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1096 int idx)
1097 {
1098 int i;
1099
1100 if (sp->unsync)
1101 for (i=0; i < pvec->nr; i++)
1102 if (pvec->page[i].sp == sp)
1103 return 0;
1104
1105 pvec->page[pvec->nr].sp = sp;
1106 pvec->page[pvec->nr].idx = idx;
1107 pvec->nr++;
1108 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1109 }
1110
1111 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1112 struct kvm_mmu_pages *pvec)
1113 {
1114 int i, ret, nr_unsync_leaf = 0;
1115
1116 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1117 struct kvm_mmu_page *child;
1118 u64 ent = sp->spt[i];
1119
1120 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1121 goto clear_child_bitmap;
1122
1123 child = page_header(ent & PT64_BASE_ADDR_MASK);
1124
1125 if (child->unsync_children) {
1126 if (mmu_pages_add(pvec, child, i))
1127 return -ENOSPC;
1128
1129 ret = __mmu_unsync_walk(child, pvec);
1130 if (!ret)
1131 goto clear_child_bitmap;
1132 else if (ret > 0)
1133 nr_unsync_leaf += ret;
1134 else
1135 return ret;
1136 } else if (child->unsync) {
1137 nr_unsync_leaf++;
1138 if (mmu_pages_add(pvec, child, i))
1139 return -ENOSPC;
1140 } else
1141 goto clear_child_bitmap;
1142
1143 continue;
1144
1145 clear_child_bitmap:
1146 __clear_bit(i, sp->unsync_child_bitmap);
1147 sp->unsync_children--;
1148 WARN_ON((int)sp->unsync_children < 0);
1149 }
1150
1151
1152 return nr_unsync_leaf;
1153 }
1154
1155 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1156 struct kvm_mmu_pages *pvec)
1157 {
1158 if (!sp->unsync_children)
1159 return 0;
1160
1161 mmu_pages_add(pvec, sp, 0);
1162 return __mmu_unsync_walk(sp, pvec);
1163 }
1164
1165 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1166 {
1167 WARN_ON(!sp->unsync);
1168 trace_kvm_mmu_sync_page(sp);
1169 sp->unsync = 0;
1170 --kvm->stat.mmu_unsync;
1171 }
1172
1173 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1174 struct list_head *invalid_list);
1175 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1176 struct list_head *invalid_list);
1177
1178 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1179 hlist_for_each_entry(sp, pos, \
1180 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1181 if ((sp)->gfn != (gfn)) {} else
1182
1183 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1184 hlist_for_each_entry(sp, pos, \
1185 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1186 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1187 (sp)->role.invalid) {} else
1188
1189 /* @sp->gfn should be write-protected at the call site */
1190 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1191 struct list_head *invalid_list, bool clear_unsync)
1192 {
1193 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1194 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1195 return 1;
1196 }
1197
1198 if (clear_unsync)
1199 kvm_unlink_unsync_page(vcpu->kvm, sp);
1200
1201 if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
1202 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1203 return 1;
1204 }
1205
1206 kvm_mmu_flush_tlb(vcpu);
1207 return 0;
1208 }
1209
1210 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1211 struct kvm_mmu_page *sp)
1212 {
1213 LIST_HEAD(invalid_list);
1214 int ret;
1215
1216 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1217 if (ret)
1218 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1219
1220 return ret;
1221 }
1222
1223 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1224 struct list_head *invalid_list)
1225 {
1226 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1227 }
1228
1229 /* @gfn should be write-protected at the call site */
1230 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1231 {
1232 struct kvm_mmu_page *s;
1233 struct hlist_node *node;
1234 LIST_HEAD(invalid_list);
1235 bool flush = false;
1236
1237 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1238 if (!s->unsync)
1239 continue;
1240
1241 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1242 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1243 (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
1244 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1245 continue;
1246 }
1247 kvm_unlink_unsync_page(vcpu->kvm, s);
1248 flush = true;
1249 }
1250
1251 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1252 if (flush)
1253 kvm_mmu_flush_tlb(vcpu);
1254 }
1255
1256 struct mmu_page_path {
1257 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1258 unsigned int idx[PT64_ROOT_LEVEL-1];
1259 };
1260
1261 #define for_each_sp(pvec, sp, parents, i) \
1262 for (i = mmu_pages_next(&pvec, &parents, -1), \
1263 sp = pvec.page[i].sp; \
1264 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1265 i = mmu_pages_next(&pvec, &parents, i))
1266
1267 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1268 struct mmu_page_path *parents,
1269 int i)
1270 {
1271 int n;
1272
1273 for (n = i+1; n < pvec->nr; n++) {
1274 struct kvm_mmu_page *sp = pvec->page[n].sp;
1275
1276 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1277 parents->idx[0] = pvec->page[n].idx;
1278 return n;
1279 }
1280
1281 parents->parent[sp->role.level-2] = sp;
1282 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1283 }
1284
1285 return n;
1286 }
1287
1288 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1289 {
1290 struct kvm_mmu_page *sp;
1291 unsigned int level = 0;
1292
1293 do {
1294 unsigned int idx = parents->idx[level];
1295
1296 sp = parents->parent[level];
1297 if (!sp)
1298 return;
1299
1300 --sp->unsync_children;
1301 WARN_ON((int)sp->unsync_children < 0);
1302 __clear_bit(idx, sp->unsync_child_bitmap);
1303 level++;
1304 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1305 }
1306
1307 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1308 struct mmu_page_path *parents,
1309 struct kvm_mmu_pages *pvec)
1310 {
1311 parents->parent[parent->role.level-1] = NULL;
1312 pvec->nr = 0;
1313 }
1314
1315 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1316 struct kvm_mmu_page *parent)
1317 {
1318 int i;
1319 struct kvm_mmu_page *sp;
1320 struct mmu_page_path parents;
1321 struct kvm_mmu_pages pages;
1322 LIST_HEAD(invalid_list);
1323
1324 kvm_mmu_pages_init(parent, &parents, &pages);
1325 while (mmu_unsync_walk(parent, &pages)) {
1326 int protected = 0;
1327
1328 for_each_sp(pages, sp, parents, i)
1329 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1330
1331 if (protected)
1332 kvm_flush_remote_tlbs(vcpu->kvm);
1333
1334 for_each_sp(pages, sp, parents, i) {
1335 kvm_sync_page(vcpu, sp, &invalid_list);
1336 mmu_pages_clear_parents(&parents);
1337 }
1338 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1339 cond_resched_lock(&vcpu->kvm->mmu_lock);
1340 kvm_mmu_pages_init(parent, &parents, &pages);
1341 }
1342 }
1343
1344 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1345 gfn_t gfn,
1346 gva_t gaddr,
1347 unsigned level,
1348 int direct,
1349 unsigned access,
1350 u64 *parent_pte)
1351 {
1352 union kvm_mmu_page_role role;
1353 unsigned quadrant;
1354 struct kvm_mmu_page *sp;
1355 struct hlist_node *node;
1356 bool need_sync = false;
1357
1358 role = vcpu->arch.mmu.base_role;
1359 role.level = level;
1360 role.direct = direct;
1361 if (role.direct)
1362 role.cr4_pae = 0;
1363 role.access = access;
1364 if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1365 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1366 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1367 role.quadrant = quadrant;
1368 }
1369 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1370 if (!need_sync && sp->unsync)
1371 need_sync = true;
1372
1373 if (sp->role.word != role.word)
1374 continue;
1375
1376 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1377 break;
1378
1379 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1380 if (sp->unsync_children) {
1381 set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
1382 kvm_mmu_mark_parents_unsync(sp);
1383 } else if (sp->unsync)
1384 kvm_mmu_mark_parents_unsync(sp);
1385
1386 trace_kvm_mmu_get_page(sp, false);
1387 return sp;
1388 }
1389 ++vcpu->kvm->stat.mmu_cache_miss;
1390 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1391 if (!sp)
1392 return sp;
1393 sp->gfn = gfn;
1394 sp->role = role;
1395 hlist_add_head(&sp->hash_link,
1396 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1397 if (!direct) {
1398 if (rmap_write_protect(vcpu->kvm, gfn))
1399 kvm_flush_remote_tlbs(vcpu->kvm);
1400 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1401 kvm_sync_pages(vcpu, gfn);
1402
1403 account_shadowed(vcpu->kvm, gfn);
1404 }
1405 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1406 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1407 else
1408 nonpaging_prefetch_page(vcpu, sp);
1409 trace_kvm_mmu_get_page(sp, true);
1410 return sp;
1411 }
1412
1413 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1414 struct kvm_vcpu *vcpu, u64 addr)
1415 {
1416 iterator->addr = addr;
1417 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1418 iterator->level = vcpu->arch.mmu.shadow_root_level;
1419 if (iterator->level == PT32E_ROOT_LEVEL) {
1420 iterator->shadow_addr
1421 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1422 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1423 --iterator->level;
1424 if (!iterator->shadow_addr)
1425 iterator->level = 0;
1426 }
1427 }
1428
1429 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1430 {
1431 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1432 return false;
1433
1434 if (iterator->level == PT_PAGE_TABLE_LEVEL)
1435 if (is_large_pte(*iterator->sptep))
1436 return false;
1437
1438 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1439 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1440 return true;
1441 }
1442
1443 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1444 {
1445 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1446 --iterator->level;
1447 }
1448
1449 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1450 struct kvm_mmu_page *sp)
1451 {
1452 unsigned i;
1453 u64 *pt;
1454 u64 ent;
1455
1456 pt = sp->spt;
1457
1458 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1459 ent = pt[i];
1460
1461 if (is_shadow_present_pte(ent)) {
1462 if (!is_last_spte(ent, sp->role.level)) {
1463 ent &= PT64_BASE_ADDR_MASK;
1464 mmu_page_remove_parent_pte(page_header(ent),
1465 &pt[i]);
1466 } else {
1467 if (is_large_pte(ent))
1468 --kvm->stat.lpages;
1469 rmap_remove(kvm, &pt[i]);
1470 }
1471 }
1472 pt[i] = shadow_trap_nonpresent_pte;
1473 }
1474 }
1475
1476 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1477 {
1478 mmu_page_remove_parent_pte(sp, parent_pte);
1479 }
1480
1481 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1482 {
1483 int i;
1484 struct kvm_vcpu *vcpu;
1485
1486 kvm_for_each_vcpu(i, vcpu, kvm)
1487 vcpu->arch.last_pte_updated = NULL;
1488 }
1489
1490 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1491 {
1492 u64 *parent_pte;
1493
1494 while (sp->multimapped || sp->parent_pte) {
1495 if (!sp->multimapped)
1496 parent_pte = sp->parent_pte;
1497 else {
1498 struct kvm_pte_chain *chain;
1499
1500 chain = container_of(sp->parent_ptes.first,
1501 struct kvm_pte_chain, link);
1502 parent_pte = chain->parent_ptes[0];
1503 }
1504 BUG_ON(!parent_pte);
1505 kvm_mmu_put_page(sp, parent_pte);
1506 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1507 }
1508 }
1509
1510 static int mmu_zap_unsync_children(struct kvm *kvm,
1511 struct kvm_mmu_page *parent,
1512 struct list_head *invalid_list)
1513 {
1514 int i, zapped = 0;
1515 struct mmu_page_path parents;
1516 struct kvm_mmu_pages pages;
1517
1518 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1519 return 0;
1520
1521 kvm_mmu_pages_init(parent, &parents, &pages);
1522 while (mmu_unsync_walk(parent, &pages)) {
1523 struct kvm_mmu_page *sp;
1524
1525 for_each_sp(pages, sp, parents, i) {
1526 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1527 mmu_pages_clear_parents(&parents);
1528 zapped++;
1529 }
1530 kvm_mmu_pages_init(parent, &parents, &pages);
1531 }
1532
1533 return zapped;
1534 }
1535
1536 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1537 struct list_head *invalid_list)
1538 {
1539 int ret;
1540
1541 trace_kvm_mmu_prepare_zap_page(sp);
1542 ++kvm->stat.mmu_shadow_zapped;
1543 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1544 kvm_mmu_page_unlink_children(kvm, sp);
1545 kvm_mmu_unlink_parents(kvm, sp);
1546 if (!sp->role.invalid && !sp->role.direct)
1547 unaccount_shadowed(kvm, sp->gfn);
1548 if (sp->unsync)
1549 kvm_unlink_unsync_page(kvm, sp);
1550 if (!sp->root_count) {
1551 /* Count self */
1552 ret++;
1553 list_move(&sp->link, invalid_list);
1554 } else {
1555 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1556 kvm_reload_remote_mmus(kvm);
1557 }
1558
1559 sp->role.invalid = 1;
1560 kvm_mmu_reset_last_pte_updated(kvm);
1561 return ret;
1562 }
1563
1564 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1565 struct list_head *invalid_list)
1566 {
1567 struct kvm_mmu_page *sp;
1568
1569 if (list_empty(invalid_list))
1570 return;
1571
1572 kvm_flush_remote_tlbs(kvm);
1573
1574 do {
1575 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1576 WARN_ON(!sp->role.invalid || sp->root_count);
1577 kvm_mmu_free_page(kvm, sp);
1578 } while (!list_empty(invalid_list));
1579
1580 }
1581
1582 /*
1583 * Changing the number of mmu pages allocated to the vm
1584 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1585 */
1586 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1587 {
1588 int used_pages;
1589 LIST_HEAD(invalid_list);
1590
1591 used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
1592 used_pages = max(0, used_pages);
1593
1594 /*
1595 * If we set the number of mmu pages to be smaller be than the
1596 * number of actived pages , we must to free some mmu pages before we
1597 * change the value
1598 */
1599
1600 if (used_pages > kvm_nr_mmu_pages) {
1601 while (used_pages > kvm_nr_mmu_pages &&
1602 !list_empty(&kvm->arch.active_mmu_pages)) {
1603 struct kvm_mmu_page *page;
1604
1605 page = container_of(kvm->arch.active_mmu_pages.prev,
1606 struct kvm_mmu_page, link);
1607 used_pages -= kvm_mmu_prepare_zap_page(kvm, page,
1608 &invalid_list);
1609 }
1610 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1611 kvm_nr_mmu_pages = used_pages;
1612 kvm->arch.n_free_mmu_pages = 0;
1613 }
1614 else
1615 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1616 - kvm->arch.n_alloc_mmu_pages;
1617
1618 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1619 }
1620
1621 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1622 {
1623 struct kvm_mmu_page *sp;
1624 struct hlist_node *node;
1625 LIST_HEAD(invalid_list);
1626 int r;
1627
1628 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1629 r = 0;
1630
1631 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1632 pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1633 sp->role.word);
1634 r = 1;
1635 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1636 }
1637 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1638 return r;
1639 }
1640
1641 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1642 {
1643 struct kvm_mmu_page *sp;
1644 struct hlist_node *node;
1645 LIST_HEAD(invalid_list);
1646
1647 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1648 pgprintk("%s: zap %lx %x\n",
1649 __func__, gfn, sp->role.word);
1650 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1651 }
1652 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1653 }
1654
1655 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1656 {
1657 int slot = memslot_id(kvm, gfn);
1658 struct kvm_mmu_page *sp = page_header(__pa(pte));
1659
1660 __set_bit(slot, sp->slot_bitmap);
1661 }
1662
1663 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1664 {
1665 int i;
1666 u64 *pt = sp->spt;
1667
1668 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1669 return;
1670
1671 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1672 if (pt[i] == shadow_notrap_nonpresent_pte)
1673 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1674 }
1675 }
1676
1677 /*
1678 * The function is based on mtrr_type_lookup() in
1679 * arch/x86/kernel/cpu/mtrr/generic.c
1680 */
1681 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1682 u64 start, u64 end)
1683 {
1684 int i;
1685 u64 base, mask;
1686 u8 prev_match, curr_match;
1687 int num_var_ranges = KVM_NR_VAR_MTRR;
1688
1689 if (!mtrr_state->enabled)
1690 return 0xFF;
1691
1692 /* Make end inclusive end, instead of exclusive */
1693 end--;
1694
1695 /* Look in fixed ranges. Just return the type as per start */
1696 if (mtrr_state->have_fixed && (start < 0x100000)) {
1697 int idx;
1698
1699 if (start < 0x80000) {
1700 idx = 0;
1701 idx += (start >> 16);
1702 return mtrr_state->fixed_ranges[idx];
1703 } else if (start < 0xC0000) {
1704 idx = 1 * 8;
1705 idx += ((start - 0x80000) >> 14);
1706 return mtrr_state->fixed_ranges[idx];
1707 } else if (start < 0x1000000) {
1708 idx = 3 * 8;
1709 idx += ((start - 0xC0000) >> 12);
1710 return mtrr_state->fixed_ranges[idx];
1711 }
1712 }
1713
1714 /*
1715 * Look in variable ranges
1716 * Look of multiple ranges matching this address and pick type
1717 * as per MTRR precedence
1718 */
1719 if (!(mtrr_state->enabled & 2))
1720 return mtrr_state->def_type;
1721
1722 prev_match = 0xFF;
1723 for (i = 0; i < num_var_ranges; ++i) {
1724 unsigned short start_state, end_state;
1725
1726 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1727 continue;
1728
1729 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1730 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1731 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1732 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1733
1734 start_state = ((start & mask) == (base & mask));
1735 end_state = ((end & mask) == (base & mask));
1736 if (start_state != end_state)
1737 return 0xFE;
1738
1739 if ((start & mask) != (base & mask))
1740 continue;
1741
1742 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1743 if (prev_match == 0xFF) {
1744 prev_match = curr_match;
1745 continue;
1746 }
1747
1748 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1749 curr_match == MTRR_TYPE_UNCACHABLE)
1750 return MTRR_TYPE_UNCACHABLE;
1751
1752 if ((prev_match == MTRR_TYPE_WRBACK &&
1753 curr_match == MTRR_TYPE_WRTHROUGH) ||
1754 (prev_match == MTRR_TYPE_WRTHROUGH &&
1755 curr_match == MTRR_TYPE_WRBACK)) {
1756 prev_match = MTRR_TYPE_WRTHROUGH;
1757 curr_match = MTRR_TYPE_WRTHROUGH;
1758 }
1759
1760 if (prev_match != curr_match)
1761 return MTRR_TYPE_UNCACHABLE;
1762 }
1763
1764 if (prev_match != 0xFF)
1765 return prev_match;
1766
1767 return mtrr_state->def_type;
1768 }
1769
1770 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1771 {
1772 u8 mtrr;
1773
1774 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1775 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1776 if (mtrr == 0xfe || mtrr == 0xff)
1777 mtrr = MTRR_TYPE_WRBACK;
1778 return mtrr;
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1781
1782 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1783 {
1784 trace_kvm_mmu_unsync_page(sp);
1785 ++vcpu->kvm->stat.mmu_unsync;
1786 sp->unsync = 1;
1787
1788 kvm_mmu_mark_parents_unsync(sp);
1789 mmu_convert_notrap(sp);
1790 }
1791
1792 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1793 {
1794 struct kvm_mmu_page *s;
1795 struct hlist_node *node;
1796
1797 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1798 if (s->unsync)
1799 continue;
1800 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1801 __kvm_unsync_page(vcpu, s);
1802 }
1803 }
1804
1805 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1806 bool can_unsync)
1807 {
1808 struct kvm_mmu_page *s;
1809 struct hlist_node *node;
1810 bool need_unsync = false;
1811
1812 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1813 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1814 return 1;
1815
1816 if (!need_unsync && !s->unsync) {
1817 if (!can_unsync || !oos_shadow)
1818 return 1;
1819 need_unsync = true;
1820 }
1821 }
1822 if (need_unsync)
1823 kvm_unsync_pages(vcpu, gfn);
1824 return 0;
1825 }
1826
1827 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1828 unsigned pte_access, int user_fault,
1829 int write_fault, int dirty, int level,
1830 gfn_t gfn, pfn_t pfn, bool speculative,
1831 bool can_unsync, bool reset_host_protection)
1832 {
1833 u64 spte;
1834 int ret = 0;
1835
1836 /*
1837 * We don't set the accessed bit, since we sometimes want to see
1838 * whether the guest actually used the pte (in order to detect
1839 * demand paging).
1840 */
1841 spte = shadow_base_present_pte | shadow_dirty_mask;
1842 if (!speculative)
1843 spte |= shadow_accessed_mask;
1844 if (!dirty)
1845 pte_access &= ~ACC_WRITE_MASK;
1846 if (pte_access & ACC_EXEC_MASK)
1847 spte |= shadow_x_mask;
1848 else
1849 spte |= shadow_nx_mask;
1850 if (pte_access & ACC_USER_MASK)
1851 spte |= shadow_user_mask;
1852 if (level > PT_PAGE_TABLE_LEVEL)
1853 spte |= PT_PAGE_SIZE_MASK;
1854 if (tdp_enabled)
1855 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1856 kvm_is_mmio_pfn(pfn));
1857
1858 if (reset_host_protection)
1859 spte |= SPTE_HOST_WRITEABLE;
1860
1861 spte |= (u64)pfn << PAGE_SHIFT;
1862
1863 if ((pte_access & ACC_WRITE_MASK)
1864 || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
1865 && !user_fault)) {
1866
1867 if (level > PT_PAGE_TABLE_LEVEL &&
1868 has_wrprotected_page(vcpu->kvm, gfn, level)) {
1869 ret = 1;
1870 rmap_remove(vcpu->kvm, sptep);
1871 spte = shadow_trap_nonpresent_pte;
1872 goto set_pte;
1873 }
1874
1875 spte |= PT_WRITABLE_MASK;
1876
1877 if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
1878 spte &= ~PT_USER_MASK;
1879
1880 /*
1881 * Optimization: for pte sync, if spte was writable the hash
1882 * lookup is unnecessary (and expensive). Write protection
1883 * is responsibility of mmu_get_page / kvm_sync_page.
1884 * Same reasoning can be applied to dirty page accounting.
1885 */
1886 if (!can_unsync && is_writable_pte(*sptep))
1887 goto set_pte;
1888
1889 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
1890 pgprintk("%s: found shadow page for %lx, marking ro\n",
1891 __func__, gfn);
1892 ret = 1;
1893 pte_access &= ~ACC_WRITE_MASK;
1894 if (is_writable_pte(spte))
1895 spte &= ~PT_WRITABLE_MASK;
1896 }
1897 }
1898
1899 if (pte_access & ACC_WRITE_MASK)
1900 mark_page_dirty(vcpu->kvm, gfn);
1901
1902 set_pte:
1903 __set_spte(sptep, spte);
1904 return ret;
1905 }
1906
1907 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1908 unsigned pt_access, unsigned pte_access,
1909 int user_fault, int write_fault, int dirty,
1910 int *ptwrite, int level, gfn_t gfn,
1911 pfn_t pfn, bool speculative,
1912 bool reset_host_protection)
1913 {
1914 int was_rmapped = 0;
1915 int was_writable = is_writable_pte(*sptep);
1916 int rmap_count;
1917
1918 pgprintk("%s: spte %llx access %x write_fault %d"
1919 " user_fault %d gfn %lx\n",
1920 __func__, *sptep, pt_access,
1921 write_fault, user_fault, gfn);
1922
1923 if (is_rmap_spte(*sptep)) {
1924 /*
1925 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1926 * the parent of the now unreachable PTE.
1927 */
1928 if (level > PT_PAGE_TABLE_LEVEL &&
1929 !is_large_pte(*sptep)) {
1930 struct kvm_mmu_page *child;
1931 u64 pte = *sptep;
1932
1933 child = page_header(pte & PT64_BASE_ADDR_MASK);
1934 mmu_page_remove_parent_pte(child, sptep);
1935 __set_spte(sptep, shadow_trap_nonpresent_pte);
1936 kvm_flush_remote_tlbs(vcpu->kvm);
1937 } else if (pfn != spte_to_pfn(*sptep)) {
1938 pgprintk("hfn old %lx new %lx\n",
1939 spte_to_pfn(*sptep), pfn);
1940 rmap_remove(vcpu->kvm, sptep);
1941 __set_spte(sptep, shadow_trap_nonpresent_pte);
1942 kvm_flush_remote_tlbs(vcpu->kvm);
1943 } else
1944 was_rmapped = 1;
1945 }
1946
1947 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
1948 dirty, level, gfn, pfn, speculative, true,
1949 reset_host_protection)) {
1950 if (write_fault)
1951 *ptwrite = 1;
1952 kvm_mmu_flush_tlb(vcpu);
1953 }
1954
1955 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
1956 pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1957 is_large_pte(*sptep)? "2MB" : "4kB",
1958 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
1959 *sptep, sptep);
1960 if (!was_rmapped && is_large_pte(*sptep))
1961 ++vcpu->kvm->stat.lpages;
1962
1963 page_header_update_slot(vcpu->kvm, sptep, gfn);
1964 if (!was_rmapped) {
1965 rmap_count = rmap_add(vcpu, sptep, gfn);
1966 kvm_release_pfn_clean(pfn);
1967 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
1968 rmap_recycle(vcpu, sptep, gfn);
1969 } else {
1970 if (was_writable)
1971 kvm_release_pfn_dirty(pfn);
1972 else
1973 kvm_release_pfn_clean(pfn);
1974 }
1975 if (speculative) {
1976 vcpu->arch.last_pte_updated = sptep;
1977 vcpu->arch.last_pte_gfn = gfn;
1978 }
1979 }
1980
1981 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1982 {
1983 }
1984
1985 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1986 int level, gfn_t gfn, pfn_t pfn)
1987 {
1988 struct kvm_shadow_walk_iterator iterator;
1989 struct kvm_mmu_page *sp;
1990 int pt_write = 0;
1991 gfn_t pseudo_gfn;
1992
1993 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
1994 if (iterator.level == level) {
1995 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
1996 0, write, 1, &pt_write,
1997 level, gfn, pfn, false, true);
1998 ++vcpu->stat.pf_fixed;
1999 break;
2000 }
2001
2002 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2003 u64 base_addr = iterator.addr;
2004
2005 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2006 pseudo_gfn = base_addr >> PAGE_SHIFT;
2007 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2008 iterator.level - 1,
2009 1, ACC_ALL, iterator.sptep);
2010 if (!sp) {
2011 pgprintk("nonpaging_map: ENOMEM\n");
2012 kvm_release_pfn_clean(pfn);
2013 return -ENOMEM;
2014 }
2015
2016 __set_spte(iterator.sptep,
2017 __pa(sp->spt)
2018 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2019 | shadow_user_mask | shadow_x_mask);
2020 }
2021 }
2022 return pt_write;
2023 }
2024
2025 static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
2026 {
2027 char buf[1];
2028 void __user *hva;
2029 int r;
2030
2031 /* Touch the page, so send SIGBUS */
2032 hva = (void __user *)gfn_to_hva(kvm, gfn);
2033 r = copy_from_user(buf, hva, 1);
2034 }
2035
2036 static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2037 {
2038 kvm_release_pfn_clean(pfn);
2039 if (is_hwpoison_pfn(pfn)) {
2040 kvm_send_hwpoison_signal(kvm, gfn);
2041 return 0;
2042 }
2043 return 1;
2044 }
2045
2046 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
2047 {
2048 int r;
2049 int level;
2050 pfn_t pfn;
2051 unsigned long mmu_seq;
2052
2053 level = mapping_level(vcpu, gfn);
2054
2055 /*
2056 * This path builds a PAE pagetable - so we can map 2mb pages at
2057 * maximum. Therefore check if the level is larger than that.
2058 */
2059 if (level > PT_DIRECTORY_LEVEL)
2060 level = PT_DIRECTORY_LEVEL;
2061
2062 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2063
2064 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2065 smp_rmb();
2066 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2067
2068 /* mmio */
2069 if (is_error_pfn(pfn))
2070 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2071
2072 spin_lock(&vcpu->kvm->mmu_lock);
2073 if (mmu_notifier_retry(vcpu, mmu_seq))
2074 goto out_unlock;
2075 kvm_mmu_free_some_pages(vcpu);
2076 r = __direct_map(vcpu, v, write, level, gfn, pfn);
2077 spin_unlock(&vcpu->kvm->mmu_lock);
2078
2079
2080 return r;
2081
2082 out_unlock:
2083 spin_unlock(&vcpu->kvm->mmu_lock);
2084 kvm_release_pfn_clean(pfn);
2085 return 0;
2086 }
2087
2088
2089 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2090 {
2091 int i;
2092 struct kvm_mmu_page *sp;
2093 LIST_HEAD(invalid_list);
2094
2095 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2096 return;
2097 spin_lock(&vcpu->kvm->mmu_lock);
2098 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2099 hpa_t root = vcpu->arch.mmu.root_hpa;
2100
2101 sp = page_header(root);
2102 --sp->root_count;
2103 if (!sp->root_count && sp->role.invalid) {
2104 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2105 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2106 }
2107 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2108 spin_unlock(&vcpu->kvm->mmu_lock);
2109 return;
2110 }
2111 for (i = 0; i < 4; ++i) {
2112 hpa_t root = vcpu->arch.mmu.pae_root[i];
2113
2114 if (root) {
2115 root &= PT64_BASE_ADDR_MASK;
2116 sp = page_header(root);
2117 --sp->root_count;
2118 if (!sp->root_count && sp->role.invalid)
2119 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2120 &invalid_list);
2121 }
2122 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2123 }
2124 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2125 spin_unlock(&vcpu->kvm->mmu_lock);
2126 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2127 }
2128
2129 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2130 {
2131 int ret = 0;
2132
2133 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2134 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2135 ret = 1;
2136 }
2137
2138 return ret;
2139 }
2140
2141 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2142 {
2143 int i;
2144 gfn_t root_gfn;
2145 struct kvm_mmu_page *sp;
2146 int direct = 0;
2147 u64 pdptr;
2148
2149 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
2150
2151 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2152 hpa_t root = vcpu->arch.mmu.root_hpa;
2153
2154 ASSERT(!VALID_PAGE(root));
2155 if (mmu_check_root(vcpu, root_gfn))
2156 return 1;
2157 if (tdp_enabled) {
2158 direct = 1;
2159 root_gfn = 0;
2160 }
2161 spin_lock(&vcpu->kvm->mmu_lock);
2162 kvm_mmu_free_some_pages(vcpu);
2163 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
2164 PT64_ROOT_LEVEL, direct,
2165 ACC_ALL, NULL);
2166 root = __pa(sp->spt);
2167 ++sp->root_count;
2168 spin_unlock(&vcpu->kvm->mmu_lock);
2169 vcpu->arch.mmu.root_hpa = root;
2170 return 0;
2171 }
2172 direct = !is_paging(vcpu);
2173 for (i = 0; i < 4; ++i) {
2174 hpa_t root = vcpu->arch.mmu.pae_root[i];
2175
2176 ASSERT(!VALID_PAGE(root));
2177 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2178 pdptr = kvm_pdptr_read(vcpu, i);
2179 if (!is_present_gpte(pdptr)) {
2180 vcpu->arch.mmu.pae_root[i] = 0;
2181 continue;
2182 }
2183 root_gfn = pdptr >> PAGE_SHIFT;
2184 } else if (vcpu->arch.mmu.root_level == 0)
2185 root_gfn = 0;
2186 if (mmu_check_root(vcpu, root_gfn))
2187 return 1;
2188 if (tdp_enabled) {
2189 direct = 1;
2190 root_gfn = i << 30;
2191 }
2192 spin_lock(&vcpu->kvm->mmu_lock);
2193 kvm_mmu_free_some_pages(vcpu);
2194 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2195 PT32_ROOT_LEVEL, direct,
2196 ACC_ALL, NULL);
2197 root = __pa(sp->spt);
2198 ++sp->root_count;
2199 spin_unlock(&vcpu->kvm->mmu_lock);
2200
2201 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2202 }
2203 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2204 return 0;
2205 }
2206
2207 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2208 {
2209 int i;
2210 struct kvm_mmu_page *sp;
2211
2212 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2213 return;
2214 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2215 hpa_t root = vcpu->arch.mmu.root_hpa;
2216 sp = page_header(root);
2217 mmu_sync_children(vcpu, sp);
2218 return;
2219 }
2220 for (i = 0; i < 4; ++i) {
2221 hpa_t root = vcpu->arch.mmu.pae_root[i];
2222
2223 if (root && VALID_PAGE(root)) {
2224 root &= PT64_BASE_ADDR_MASK;
2225 sp = page_header(root);
2226 mmu_sync_children(vcpu, sp);
2227 }
2228 }
2229 }
2230
2231 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2232 {
2233 spin_lock(&vcpu->kvm->mmu_lock);
2234 mmu_sync_roots(vcpu);
2235 spin_unlock(&vcpu->kvm->mmu_lock);
2236 }
2237
2238 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2239 u32 access, u32 *error)
2240 {
2241 if (error)
2242 *error = 0;
2243 return vaddr;
2244 }
2245
2246 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2247 u32 error_code)
2248 {
2249 gfn_t gfn;
2250 int r;
2251
2252 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2253 r = mmu_topup_memory_caches(vcpu);
2254 if (r)
2255 return r;
2256
2257 ASSERT(vcpu);
2258 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2259
2260 gfn = gva >> PAGE_SHIFT;
2261
2262 return nonpaging_map(vcpu, gva & PAGE_MASK,
2263 error_code & PFERR_WRITE_MASK, gfn);
2264 }
2265
2266 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2267 u32 error_code)
2268 {
2269 pfn_t pfn;
2270 int r;
2271 int level;
2272 gfn_t gfn = gpa >> PAGE_SHIFT;
2273 unsigned long mmu_seq;
2274
2275 ASSERT(vcpu);
2276 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2277
2278 r = mmu_topup_memory_caches(vcpu);
2279 if (r)
2280 return r;
2281
2282 level = mapping_level(vcpu, gfn);
2283
2284 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2285
2286 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2287 smp_rmb();
2288 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2289 if (is_error_pfn(pfn))
2290 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2291 spin_lock(&vcpu->kvm->mmu_lock);
2292 if (mmu_notifier_retry(vcpu, mmu_seq))
2293 goto out_unlock;
2294 kvm_mmu_free_some_pages(vcpu);
2295 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2296 level, gfn, pfn);
2297 spin_unlock(&vcpu->kvm->mmu_lock);
2298
2299 return r;
2300
2301 out_unlock:
2302 spin_unlock(&vcpu->kvm->mmu_lock);
2303 kvm_release_pfn_clean(pfn);
2304 return 0;
2305 }
2306
2307 static void nonpaging_free(struct kvm_vcpu *vcpu)
2308 {
2309 mmu_free_roots(vcpu);
2310 }
2311
2312 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
2313 {
2314 struct kvm_mmu *context = &vcpu->arch.mmu;
2315
2316 context->new_cr3 = nonpaging_new_cr3;
2317 context->page_fault = nonpaging_page_fault;
2318 context->gva_to_gpa = nonpaging_gva_to_gpa;
2319 context->free = nonpaging_free;
2320 context->prefetch_page = nonpaging_prefetch_page;
2321 context->sync_page = nonpaging_sync_page;
2322 context->invlpg = nonpaging_invlpg;
2323 context->root_level = 0;
2324 context->shadow_root_level = PT32E_ROOT_LEVEL;
2325 context->root_hpa = INVALID_PAGE;
2326 return 0;
2327 }
2328
2329 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2330 {
2331 ++vcpu->stat.tlb_flush;
2332 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
2333 }
2334
2335 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2336 {
2337 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2338 mmu_free_roots(vcpu);
2339 }
2340
2341 static void inject_page_fault(struct kvm_vcpu *vcpu,
2342 u64 addr,
2343 u32 err_code)
2344 {
2345 kvm_inject_page_fault(vcpu, addr, err_code);
2346 }
2347
2348 static void paging_free(struct kvm_vcpu *vcpu)
2349 {
2350 nonpaging_free(vcpu);
2351 }
2352
2353 static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
2354 {
2355 int bit7;
2356
2357 bit7 = (gpte >> 7) & 1;
2358 return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
2359 }
2360
2361 #define PTTYPE 64
2362 #include "paging_tmpl.h"
2363 #undef PTTYPE
2364
2365 #define PTTYPE 32
2366 #include "paging_tmpl.h"
2367 #undef PTTYPE
2368
2369 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
2370 {
2371 struct kvm_mmu *context = &vcpu->arch.mmu;
2372 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2373 u64 exb_bit_rsvd = 0;
2374
2375 if (!is_nx(vcpu))
2376 exb_bit_rsvd = rsvd_bits(63, 63);
2377 switch (level) {
2378 case PT32_ROOT_LEVEL:
2379 /* no rsvd bits for 2 level 4K page table entries */
2380 context->rsvd_bits_mask[0][1] = 0;
2381 context->rsvd_bits_mask[0][0] = 0;
2382 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2383
2384 if (!is_pse(vcpu)) {
2385 context->rsvd_bits_mask[1][1] = 0;
2386 break;
2387 }
2388
2389 if (is_cpuid_PSE36())
2390 /* 36bits PSE 4MB page */
2391 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2392 else
2393 /* 32 bits PSE 4MB page */
2394 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2395 break;
2396 case PT32E_ROOT_LEVEL:
2397 context->rsvd_bits_mask[0][2] =
2398 rsvd_bits(maxphyaddr, 63) |
2399 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2400 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2401 rsvd_bits(maxphyaddr, 62); /* PDE */
2402 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2403 rsvd_bits(maxphyaddr, 62); /* PTE */
2404 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2405 rsvd_bits(maxphyaddr, 62) |
2406 rsvd_bits(13, 20); /* large page */
2407 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2408 break;
2409 case PT64_ROOT_LEVEL:
2410 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2411 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2412 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2413 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2414 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2415 rsvd_bits(maxphyaddr, 51);
2416 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2417 rsvd_bits(maxphyaddr, 51);
2418 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2419 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2420 rsvd_bits(maxphyaddr, 51) |
2421 rsvd_bits(13, 29);
2422 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2423 rsvd_bits(maxphyaddr, 51) |
2424 rsvd_bits(13, 20); /* large page */
2425 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2426 break;
2427 }
2428 }
2429
2430 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
2431 {
2432 struct kvm_mmu *context = &vcpu->arch.mmu;
2433
2434 ASSERT(is_pae(vcpu));
2435 context->new_cr3 = paging_new_cr3;
2436 context->page_fault = paging64_page_fault;
2437 context->gva_to_gpa = paging64_gva_to_gpa;
2438 context->prefetch_page = paging64_prefetch_page;
2439 context->sync_page = paging64_sync_page;
2440 context->invlpg = paging64_invlpg;
2441 context->free = paging_free;
2442 context->root_level = level;
2443 context->shadow_root_level = level;
2444 context->root_hpa = INVALID_PAGE;
2445 return 0;
2446 }
2447
2448 static int paging64_init_context(struct kvm_vcpu *vcpu)
2449 {
2450 reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
2451 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
2452 }
2453
2454 static int paging32_init_context(struct kvm_vcpu *vcpu)
2455 {
2456 struct kvm_mmu *context = &vcpu->arch.mmu;
2457
2458 reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
2459 context->new_cr3 = paging_new_cr3;
2460 context->page_fault = paging32_page_fault;
2461 context->gva_to_gpa = paging32_gva_to_gpa;
2462 context->free = paging_free;
2463 context->prefetch_page = paging32_prefetch_page;
2464 context->sync_page = paging32_sync_page;
2465 context->invlpg = paging32_invlpg;
2466 context->root_level = PT32_ROOT_LEVEL;
2467 context->shadow_root_level = PT32E_ROOT_LEVEL;
2468 context->root_hpa = INVALID_PAGE;
2469 return 0;
2470 }
2471
2472 static int paging32E_init_context(struct kvm_vcpu *vcpu)
2473 {
2474 reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
2475 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
2476 }
2477
2478 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2479 {
2480 struct kvm_mmu *context = &vcpu->arch.mmu;
2481
2482 context->new_cr3 = nonpaging_new_cr3;
2483 context->page_fault = tdp_page_fault;
2484 context->free = nonpaging_free;
2485 context->prefetch_page = nonpaging_prefetch_page;
2486 context->sync_page = nonpaging_sync_page;
2487 context->invlpg = nonpaging_invlpg;
2488 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2489 context->root_hpa = INVALID_PAGE;
2490
2491 if (!is_paging(vcpu)) {
2492 context->gva_to_gpa = nonpaging_gva_to_gpa;
2493 context->root_level = 0;
2494 } else if (is_long_mode(vcpu)) {
2495 reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
2496 context->gva_to_gpa = paging64_gva_to_gpa;
2497 context->root_level = PT64_ROOT_LEVEL;
2498 } else if (is_pae(vcpu)) {
2499 reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
2500 context->gva_to_gpa = paging64_gva_to_gpa;
2501 context->root_level = PT32E_ROOT_LEVEL;
2502 } else {
2503 reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
2504 context->gva_to_gpa = paging32_gva_to_gpa;
2505 context->root_level = PT32_ROOT_LEVEL;
2506 }
2507
2508 return 0;
2509 }
2510
2511 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2512 {
2513 int r;
2514
2515 ASSERT(vcpu);
2516 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2517
2518 if (!is_paging(vcpu))
2519 r = nonpaging_init_context(vcpu);
2520 else if (is_long_mode(vcpu))
2521 r = paging64_init_context(vcpu);
2522 else if (is_pae(vcpu))
2523 r = paging32E_init_context(vcpu);
2524 else
2525 r = paging32_init_context(vcpu);
2526
2527 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2528 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
2529
2530 return r;
2531 }
2532
2533 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2534 {
2535 vcpu->arch.update_pte.pfn = bad_pfn;
2536
2537 if (tdp_enabled)
2538 return init_kvm_tdp_mmu(vcpu);
2539 else
2540 return init_kvm_softmmu(vcpu);
2541 }
2542
2543 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2544 {
2545 ASSERT(vcpu);
2546 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
2547 /* mmu.free() should set root_hpa = INVALID_PAGE */
2548 vcpu->arch.mmu.free(vcpu);
2549 }
2550
2551 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2552 {
2553 destroy_kvm_mmu(vcpu);
2554 return init_kvm_mmu(vcpu);
2555 }
2556 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2557
2558 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2559 {
2560 int r;
2561
2562 r = mmu_topup_memory_caches(vcpu);
2563 if (r)
2564 goto out;
2565 r = mmu_alloc_roots(vcpu);
2566 spin_lock(&vcpu->kvm->mmu_lock);
2567 mmu_sync_roots(vcpu);
2568 spin_unlock(&vcpu->kvm->mmu_lock);
2569 if (r)
2570 goto out;
2571 /* set_cr3() should ensure TLB has been flushed */
2572 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2573 out:
2574 return r;
2575 }
2576 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2577
2578 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2579 {
2580 mmu_free_roots(vcpu);
2581 }
2582
2583 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2584 struct kvm_mmu_page *sp,
2585 u64 *spte)
2586 {
2587 u64 pte;
2588 struct kvm_mmu_page *child;
2589
2590 pte = *spte;
2591 if (is_shadow_present_pte(pte)) {
2592 if (is_last_spte(pte, sp->role.level))
2593 rmap_remove(vcpu->kvm, spte);
2594 else {
2595 child = page_header(pte & PT64_BASE_ADDR_MASK);
2596 mmu_page_remove_parent_pte(child, spte);
2597 }
2598 }
2599 __set_spte(spte, shadow_trap_nonpresent_pte);
2600 if (is_large_pte(pte))
2601 --vcpu->kvm->stat.lpages;
2602 }
2603
2604 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
2605 struct kvm_mmu_page *sp,
2606 u64 *spte,
2607 const void *new)
2608 {
2609 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
2610 ++vcpu->kvm->stat.mmu_pde_zapped;
2611 return;
2612 }
2613
2614 ++vcpu->kvm->stat.mmu_pte_updated;
2615 if (!sp->role.cr4_pae)
2616 paging32_update_pte(vcpu, sp, spte, new);
2617 else
2618 paging64_update_pte(vcpu, sp, spte, new);
2619 }
2620
2621 static bool need_remote_flush(u64 old, u64 new)
2622 {
2623 if (!is_shadow_present_pte(old))
2624 return false;
2625 if (!is_shadow_present_pte(new))
2626 return true;
2627 if ((old ^ new) & PT64_BASE_ADDR_MASK)
2628 return true;
2629 old ^= PT64_NX_MASK;
2630 new ^= PT64_NX_MASK;
2631 return (old & ~new & PT64_PERM_MASK) != 0;
2632 }
2633
2634 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
2635 bool remote_flush, bool local_flush)
2636 {
2637 if (zap_page)
2638 return;
2639
2640 if (remote_flush)
2641 kvm_flush_remote_tlbs(vcpu->kvm);
2642 else if (local_flush)
2643 kvm_mmu_flush_tlb(vcpu);
2644 }
2645
2646 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
2647 {
2648 u64 *spte = vcpu->arch.last_pte_updated;
2649
2650 return !!(spte && (*spte & shadow_accessed_mask));
2651 }
2652
2653 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2654 u64 gpte)
2655 {
2656 gfn_t gfn;
2657 pfn_t pfn;
2658
2659 if (!is_present_gpte(gpte))
2660 return;
2661 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
2662
2663 vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
2664 smp_rmb();
2665 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2666
2667 if (is_error_pfn(pfn)) {
2668 kvm_release_pfn_clean(pfn);
2669 return;
2670 }
2671 vcpu->arch.update_pte.gfn = gfn;
2672 vcpu->arch.update_pte.pfn = pfn;
2673 }
2674
2675 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2676 {
2677 u64 *spte = vcpu->arch.last_pte_updated;
2678
2679 if (spte
2680 && vcpu->arch.last_pte_gfn == gfn
2681 && shadow_accessed_mask
2682 && !(*spte & shadow_accessed_mask)
2683 && is_shadow_present_pte(*spte))
2684 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
2685 }
2686
2687 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2688 const u8 *new, int bytes,
2689 bool guest_initiated)
2690 {
2691 gfn_t gfn = gpa >> PAGE_SHIFT;
2692 struct kvm_mmu_page *sp;
2693 struct hlist_node *node;
2694 LIST_HEAD(invalid_list);
2695 u64 entry, gentry;
2696 u64 *spte;
2697 unsigned offset = offset_in_page(gpa);
2698 unsigned pte_size;
2699 unsigned page_offset;
2700 unsigned misaligned;
2701 unsigned quadrant;
2702 int level;
2703 int flooded = 0;
2704 int npte;
2705 int r;
2706 int invlpg_counter;
2707 bool remote_flush, local_flush, zap_page;
2708
2709 zap_page = remote_flush = local_flush = false;
2710
2711 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
2712
2713 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
2714
2715 /*
2716 * Assume that the pte write on a page table of the same type
2717 * as the current vcpu paging mode. This is nearly always true
2718 * (might be false while changing modes). Note it is verified later
2719 * by update_pte().
2720 */
2721 if ((is_pae(vcpu) && bytes == 4) || !new) {
2722 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2723 if (is_pae(vcpu)) {
2724 gpa &= ~(gpa_t)7;
2725 bytes = 8;
2726 }
2727 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
2728 if (r)
2729 gentry = 0;
2730 new = (const u8 *)&gentry;
2731 }
2732
2733 switch (bytes) {
2734 case 4:
2735 gentry = *(const u32 *)new;
2736 break;
2737 case 8:
2738 gentry = *(const u64 *)new;
2739 break;
2740 default:
2741 gentry = 0;
2742 break;
2743 }
2744
2745 mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
2746 spin_lock(&vcpu->kvm->mmu_lock);
2747 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
2748 gentry = 0;
2749 kvm_mmu_access_page(vcpu, gfn);
2750 kvm_mmu_free_some_pages(vcpu);
2751 ++vcpu->kvm->stat.mmu_pte_write;
2752 kvm_mmu_audit(vcpu, "pre pte write");
2753 if (guest_initiated) {
2754 if (gfn == vcpu->arch.last_pt_write_gfn
2755 && !last_updated_pte_accessed(vcpu)) {
2756 ++vcpu->arch.last_pt_write_count;
2757 if (vcpu->arch.last_pt_write_count >= 3)
2758 flooded = 1;
2759 } else {
2760 vcpu->arch.last_pt_write_gfn = gfn;
2761 vcpu->arch.last_pt_write_count = 1;
2762 vcpu->arch.last_pte_updated = NULL;
2763 }
2764 }
2765
2766 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
2767 pte_size = sp->role.cr4_pae ? 8 : 4;
2768 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
2769 misaligned |= bytes < 4;
2770 if (misaligned || flooded) {
2771 /*
2772 * Misaligned accesses are too much trouble to fix
2773 * up; also, they usually indicate a page is not used
2774 * as a page table.
2775 *
2776 * If we're seeing too many writes to a page,
2777 * it may no longer be a page table, or we may be
2778 * forking, in which case it is better to unmap the
2779 * page.
2780 */
2781 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2782 gpa, bytes, sp->role.word);
2783 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2784 &invalid_list);
2785 ++vcpu->kvm->stat.mmu_flooded;
2786 continue;
2787 }
2788 page_offset = offset;
2789 level = sp->role.level;
2790 npte = 1;
2791 if (!sp->role.cr4_pae) {
2792 page_offset <<= 1; /* 32->64 */
2793 /*
2794 * A 32-bit pde maps 4MB while the shadow pdes map
2795 * only 2MB. So we need to double the offset again
2796 * and zap two pdes instead of one.
2797 */
2798 if (level == PT32_ROOT_LEVEL) {
2799 page_offset &= ~7; /* kill rounding error */
2800 page_offset <<= 1;
2801 npte = 2;
2802 }
2803 quadrant = page_offset >> PAGE_SHIFT;
2804 page_offset &= ~PAGE_MASK;
2805 if (quadrant != sp->role.quadrant)
2806 continue;
2807 }
2808 local_flush = true;
2809 spte = &sp->spt[page_offset / sizeof(*spte)];
2810 while (npte--) {
2811 entry = *spte;
2812 mmu_pte_write_zap_pte(vcpu, sp, spte);
2813 if (gentry)
2814 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
2815 if (!remote_flush && need_remote_flush(entry, *spte))
2816 remote_flush = true;
2817 ++spte;
2818 }
2819 }
2820 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
2821 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2822 kvm_mmu_audit(vcpu, "post pte write");
2823 spin_unlock(&vcpu->kvm->mmu_lock);
2824 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
2825 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
2826 vcpu->arch.update_pte.pfn = bad_pfn;
2827 }
2828 }
2829
2830 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2831 {
2832 gpa_t gpa;
2833 int r;
2834
2835 if (tdp_enabled)
2836 return 0;
2837
2838 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2839
2840 spin_lock(&vcpu->kvm->mmu_lock);
2841 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2842 spin_unlock(&vcpu->kvm->mmu_lock);
2843 return r;
2844 }
2845 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
2846
2847 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
2848 {
2849 int free_pages;
2850 LIST_HEAD(invalid_list);
2851
2852 free_pages = vcpu->kvm->arch.n_free_mmu_pages;
2853 while (free_pages < KVM_REFILL_PAGES &&
2854 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
2855 struct kvm_mmu_page *sp;
2856
2857 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
2858 struct kvm_mmu_page, link);
2859 free_pages += kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2860 &invalid_list);
2861 ++vcpu->kvm->stat.mmu_recycled;
2862 }
2863 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2864 }
2865
2866 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
2867 {
2868 int r;
2869 enum emulation_result er;
2870
2871 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
2872 if (r < 0)
2873 goto out;
2874
2875 if (!r) {
2876 r = 1;
2877 goto out;
2878 }
2879
2880 r = mmu_topup_memory_caches(vcpu);
2881 if (r)
2882 goto out;
2883
2884 er = emulate_instruction(vcpu, cr2, error_code, 0);
2885
2886 switch (er) {
2887 case EMULATE_DONE:
2888 return 1;
2889 case EMULATE_DO_MMIO:
2890 ++vcpu->stat.mmio_exits;
2891 /* fall through */
2892 case EMULATE_FAIL:
2893 return 0;
2894 default:
2895 BUG();
2896 }
2897 out:
2898 return r;
2899 }
2900 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
2901
2902 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
2903 {
2904 vcpu->arch.mmu.invlpg(vcpu, gva);
2905 kvm_mmu_flush_tlb(vcpu);
2906 ++vcpu->stat.invlpg;
2907 }
2908 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
2909
2910 void kvm_enable_tdp(void)
2911 {
2912 tdp_enabled = true;
2913 }
2914 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
2915
2916 void kvm_disable_tdp(void)
2917 {
2918 tdp_enabled = false;
2919 }
2920 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
2921
2922 static void free_mmu_pages(struct kvm_vcpu *vcpu)
2923 {
2924 free_page((unsigned long)vcpu->arch.mmu.pae_root);
2925 }
2926
2927 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
2928 {
2929 struct page *page;
2930 int i;
2931
2932 ASSERT(vcpu);
2933
2934 /*
2935 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2936 * Therefore we need to allocate shadow page tables in the first
2937 * 4GB of memory, which happens to fit the DMA32 zone.
2938 */
2939 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
2940 if (!page)
2941 return -ENOMEM;
2942
2943 vcpu->arch.mmu.pae_root = page_address(page);
2944 for (i = 0; i < 4; ++i)
2945 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2946
2947 return 0;
2948 }
2949
2950 int kvm_mmu_create(struct kvm_vcpu *vcpu)
2951 {
2952 ASSERT(vcpu);
2953 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2954
2955 return alloc_mmu_pages(vcpu);
2956 }
2957
2958 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
2959 {
2960 ASSERT(vcpu);
2961 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2962
2963 return init_kvm_mmu(vcpu);
2964 }
2965
2966 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
2967 {
2968 ASSERT(vcpu);
2969
2970 destroy_kvm_mmu(vcpu);
2971 free_mmu_pages(vcpu);
2972 mmu_free_memory_caches(vcpu);
2973 }
2974
2975 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
2976 {
2977 struct kvm_mmu_page *sp;
2978
2979 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
2980 int i;
2981 u64 *pt;
2982
2983 if (!test_bit(slot, sp->slot_bitmap))
2984 continue;
2985
2986 pt = sp->spt;
2987 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2988 /* avoid RMW */
2989 if (is_writable_pte(pt[i]))
2990 pt[i] &= ~PT_WRITABLE_MASK;
2991 }
2992 kvm_flush_remote_tlbs(kvm);
2993 }
2994
2995 void kvm_mmu_zap_all(struct kvm *kvm)
2996 {
2997 struct kvm_mmu_page *sp, *node;
2998 LIST_HEAD(invalid_list);
2999
3000 spin_lock(&kvm->mmu_lock);
3001 restart:
3002 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3003 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3004 goto restart;
3005
3006 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3007 spin_unlock(&kvm->mmu_lock);
3008 }
3009
3010 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3011 struct list_head *invalid_list)
3012 {
3013 struct kvm_mmu_page *page;
3014
3015 page = container_of(kvm->arch.active_mmu_pages.prev,
3016 struct kvm_mmu_page, link);
3017 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3018 }
3019
3020 static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
3021 {
3022 struct kvm *kvm;
3023 struct kvm *kvm_freed = NULL;
3024 int cache_count = 0;
3025
3026 spin_lock(&kvm_lock);
3027
3028 list_for_each_entry(kvm, &vm_list, vm_list) {
3029 int npages, idx, freed_pages;
3030 LIST_HEAD(invalid_list);
3031
3032 idx = srcu_read_lock(&kvm->srcu);
3033 spin_lock(&kvm->mmu_lock);
3034 npages = kvm->arch.n_alloc_mmu_pages -
3035 kvm->arch.n_free_mmu_pages;
3036 cache_count += npages;
3037 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
3038 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3039 &invalid_list);
3040 cache_count -= freed_pages;
3041 kvm_freed = kvm;
3042 }
3043 nr_to_scan--;
3044
3045 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3046 spin_unlock(&kvm->mmu_lock);
3047 srcu_read_unlock(&kvm->srcu, idx);
3048 }
3049 if (kvm_freed)
3050 list_move_tail(&kvm_freed->vm_list, &vm_list);
3051
3052 spin_unlock(&kvm_lock);
3053
3054 return cache_count;
3055 }
3056
3057 static struct shrinker mmu_shrinker = {
3058 .shrink = mmu_shrink,
3059 .seeks = DEFAULT_SEEKS * 10,
3060 };
3061
3062 static void mmu_destroy_caches(void)
3063 {
3064 if (pte_chain_cache)
3065 kmem_cache_destroy(pte_chain_cache);
3066 if (rmap_desc_cache)
3067 kmem_cache_destroy(rmap_desc_cache);
3068 if (mmu_page_header_cache)
3069 kmem_cache_destroy(mmu_page_header_cache);
3070 }
3071
3072 void kvm_mmu_module_exit(void)
3073 {
3074 mmu_destroy_caches();
3075 unregister_shrinker(&mmu_shrinker);
3076 }
3077
3078 int kvm_mmu_module_init(void)
3079 {
3080 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
3081 sizeof(struct kvm_pte_chain),
3082 0, 0, NULL);
3083 if (!pte_chain_cache)
3084 goto nomem;
3085 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
3086 sizeof(struct kvm_rmap_desc),
3087 0, 0, NULL);
3088 if (!rmap_desc_cache)
3089 goto nomem;
3090
3091 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3092 sizeof(struct kvm_mmu_page),
3093 0, 0, NULL);
3094 if (!mmu_page_header_cache)
3095 goto nomem;
3096
3097 register_shrinker(&mmu_shrinker);
3098
3099 return 0;
3100
3101 nomem:
3102 mmu_destroy_caches();
3103 return -ENOMEM;
3104 }
3105
3106 /*
3107 * Caculate mmu pages needed for kvm.
3108 */
3109 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3110 {
3111 int i;
3112 unsigned int nr_mmu_pages;
3113 unsigned int nr_pages = 0;
3114 struct kvm_memslots *slots;
3115
3116 slots = kvm_memslots(kvm);
3117
3118 for (i = 0; i < slots->nmemslots; i++)
3119 nr_pages += slots->memslots[i].npages;
3120
3121 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3122 nr_mmu_pages = max(nr_mmu_pages,
3123 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3124
3125 return nr_mmu_pages;
3126 }
3127
3128 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3129 unsigned len)
3130 {
3131 if (len > buffer->len)
3132 return NULL;
3133 return buffer->ptr;
3134 }
3135
3136 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3137 unsigned len)
3138 {
3139 void *ret;
3140
3141 ret = pv_mmu_peek_buffer(buffer, len);
3142 if (!ret)
3143 return ret;
3144 buffer->ptr += len;
3145 buffer->len -= len;
3146 buffer->processed += len;
3147 return ret;
3148 }
3149
3150 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3151 gpa_t addr, gpa_t value)
3152 {
3153 int bytes = 8;
3154 int r;
3155
3156 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3157 bytes = 4;
3158
3159 r = mmu_topup_memory_caches(vcpu);
3160 if (r)
3161 return r;
3162
3163 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3164 return -EFAULT;
3165
3166 return 1;
3167 }
3168
3169 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3170 {
3171 (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
3172 return 1;
3173 }
3174
3175 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3176 {
3177 spin_lock(&vcpu->kvm->mmu_lock);
3178 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3179 spin_unlock(&vcpu->kvm->mmu_lock);
3180 return 1;
3181 }
3182
3183 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3184 struct kvm_pv_mmu_op_buffer *buffer)
3185 {
3186 struct kvm_mmu_op_header *header;
3187
3188 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3189 if (!header)
3190 return 0;
3191 switch (header->op) {
3192 case KVM_MMU_OP_WRITE_PTE: {
3193 struct kvm_mmu_op_write_pte *wpte;
3194
3195 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3196 if (!wpte)
3197 return 0;
3198 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3199 wpte->pte_val);
3200 }
3201 case KVM_MMU_OP_FLUSH_TLB: {
3202 struct kvm_mmu_op_flush_tlb *ftlb;
3203
3204 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3205 if (!ftlb)
3206 return 0;
3207 return kvm_pv_mmu_flush_tlb(vcpu);
3208 }
3209 case KVM_MMU_OP_RELEASE_PT: {
3210 struct kvm_mmu_op_release_pt *rpt;
3211
3212 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3213 if (!rpt)
3214 return 0;
3215 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3216 }
3217 default: return 0;
3218 }
3219 }
3220
3221 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3222 gpa_t addr, unsigned long *ret)
3223 {
3224 int r;
3225 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3226
3227 buffer->ptr = buffer->buf;
3228 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3229 buffer->processed = 0;
3230
3231 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3232 if (r)
3233 goto out;
3234
3235 while (buffer->len) {
3236 r = kvm_pv_mmu_op_one(vcpu, buffer);
3237 if (r < 0)
3238 goto out;
3239 if (r == 0)
3240 break;
3241 }
3242
3243 r = 1;
3244 out:
3245 *ret = buffer->processed;
3246 return r;
3247 }
3248
3249 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3250 {
3251 struct kvm_shadow_walk_iterator iterator;
3252 int nr_sptes = 0;
3253
3254 spin_lock(&vcpu->kvm->mmu_lock);
3255 for_each_shadow_entry(vcpu, addr, iterator) {
3256 sptes[iterator.level-1] = *iterator.sptep;
3257 nr_sptes++;
3258 if (!is_shadow_present_pte(*iterator.sptep))
3259 break;
3260 }
3261 spin_unlock(&vcpu->kvm->mmu_lock);
3262
3263 return nr_sptes;
3264 }
3265 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3266
3267 #ifdef AUDIT
3268
3269 static const char *audit_msg;
3270
3271 static gva_t canonicalize(gva_t gva)
3272 {
3273 #ifdef CONFIG_X86_64
3274 gva = (long long)(gva << 16) >> 16;
3275 #endif
3276 return gva;
3277 }
3278
3279
3280 typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
3281
3282 static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
3283 inspect_spte_fn fn)
3284 {
3285 int i;
3286
3287 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3288 u64 ent = sp->spt[i];
3289
3290 if (is_shadow_present_pte(ent)) {
3291 if (!is_last_spte(ent, sp->role.level)) {
3292 struct kvm_mmu_page *child;
3293 child = page_header(ent & PT64_BASE_ADDR_MASK);
3294 __mmu_spte_walk(kvm, child, fn);
3295 } else
3296 fn(kvm, &sp->spt[i]);
3297 }
3298 }
3299 }
3300
3301 static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
3302 {
3303 int i;
3304 struct kvm_mmu_page *sp;
3305
3306 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3307 return;
3308 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3309 hpa_t root = vcpu->arch.mmu.root_hpa;
3310 sp = page_header(root);
3311 __mmu_spte_walk(vcpu->kvm, sp, fn);
3312 return;
3313 }
3314 for (i = 0; i < 4; ++i) {
3315 hpa_t root = vcpu->arch.mmu.pae_root[i];
3316
3317 if (root && VALID_PAGE(root)) {
3318 root &= PT64_BASE_ADDR_MASK;
3319 sp = page_header(root);
3320 __mmu_spte_walk(vcpu->kvm, sp, fn);
3321 }
3322 }
3323 return;
3324 }
3325
3326 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
3327 gva_t va, int level)
3328 {
3329 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
3330 int i;
3331 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
3332
3333 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
3334 u64 ent = pt[i];
3335
3336 if (ent == shadow_trap_nonpresent_pte)
3337 continue;
3338
3339 va = canonicalize(va);
3340 if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
3341 audit_mappings_page(vcpu, ent, va, level - 1);
3342 else {
3343 gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
3344 gfn_t gfn = gpa >> PAGE_SHIFT;
3345 pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
3346 hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
3347
3348 if (is_error_pfn(pfn)) {
3349 kvm_release_pfn_clean(pfn);
3350 continue;
3351 }
3352
3353 if (is_shadow_present_pte(ent)
3354 && (ent & PT64_BASE_ADDR_MASK) != hpa)
3355 printk(KERN_ERR "xx audit error: (%s) levels %d"
3356 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3357 audit_msg, vcpu->arch.mmu.root_level,
3358 va, gpa, hpa, ent,
3359 is_shadow_present_pte(ent));
3360 else if (ent == shadow_notrap_nonpresent_pte
3361 && !is_error_hpa(hpa))
3362 printk(KERN_ERR "audit: (%s) notrap shadow,"
3363 " valid guest gva %lx\n", audit_msg, va);
3364 kvm_release_pfn_clean(pfn);
3365
3366 }
3367 }
3368 }
3369
3370 static void audit_mappings(struct kvm_vcpu *vcpu)
3371 {
3372 unsigned i;
3373
3374 if (vcpu->arch.mmu.root_level == 4)
3375 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
3376 else
3377 for (i = 0; i < 4; ++i)
3378 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
3379 audit_mappings_page(vcpu,
3380 vcpu->arch.mmu.pae_root[i],
3381 i << 30,
3382 2);
3383 }
3384
3385 static int count_rmaps(struct kvm_vcpu *vcpu)
3386 {
3387 struct kvm *kvm = vcpu->kvm;
3388 struct kvm_memslots *slots;
3389 int nmaps = 0;
3390 int i, j, k, idx;
3391
3392 idx = srcu_read_lock(&kvm->srcu);
3393 slots = kvm_memslots(kvm);
3394 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
3395 struct kvm_memory_slot *m = &slots->memslots[i];
3396 struct kvm_rmap_desc *d;
3397
3398 for (j = 0; j < m->npages; ++j) {
3399 unsigned long *rmapp = &m->rmap[j];
3400
3401 if (!*rmapp)
3402 continue;
3403 if (!(*rmapp & 1)) {
3404 ++nmaps;
3405 continue;
3406 }
3407 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
3408 while (d) {
3409 for (k = 0; k < RMAP_EXT; ++k)
3410 if (d->sptes[k])
3411 ++nmaps;
3412 else
3413 break;
3414 d = d->more;
3415 }
3416 }
3417 }
3418 srcu_read_unlock(&kvm->srcu, idx);
3419 return nmaps;
3420 }
3421
3422 void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
3423 {
3424 unsigned long *rmapp;
3425 struct kvm_mmu_page *rev_sp;
3426 gfn_t gfn;
3427
3428 if (is_writable_pte(*sptep)) {
3429 rev_sp = page_header(__pa(sptep));
3430 gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
3431
3432 if (!gfn_to_memslot(kvm, gfn)) {
3433 if (!printk_ratelimit())
3434 return;
3435 printk(KERN_ERR "%s: no memslot for gfn %ld\n",
3436 audit_msg, gfn);
3437 printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
3438 audit_msg, (long int)(sptep - rev_sp->spt),
3439 rev_sp->gfn);
3440 dump_stack();
3441 return;
3442 }
3443
3444 rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
3445 if (!*rmapp) {
3446 if (!printk_ratelimit())
3447 return;
3448 printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
3449 audit_msg, *sptep);
3450 dump_stack();
3451 }
3452 }
3453
3454 }
3455
3456 void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
3457 {
3458 mmu_spte_walk(vcpu, inspect_spte_has_rmap);
3459 }
3460
3461 static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
3462 {
3463 struct kvm_mmu_page *sp;
3464 int i;
3465
3466 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3467 u64 *pt = sp->spt;
3468
3469 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
3470 continue;
3471
3472 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3473 u64 ent = pt[i];
3474
3475 if (!(ent & PT_PRESENT_MASK))
3476 continue;
3477 if (!is_writable_pte(ent))
3478 continue;
3479 inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
3480 }
3481 }
3482 return;
3483 }
3484
3485 static void audit_rmap(struct kvm_vcpu *vcpu)
3486 {
3487 check_writable_mappings_rmap(vcpu);
3488 count_rmaps(vcpu);
3489 }
3490
3491 static void audit_write_protection(struct kvm_vcpu *vcpu)
3492 {
3493 struct kvm_mmu_page *sp;
3494 struct kvm_memory_slot *slot;
3495 unsigned long *rmapp;
3496 u64 *spte;
3497 gfn_t gfn;
3498
3499 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3500 if (sp->role.direct)
3501 continue;
3502 if (sp->unsync)
3503 continue;
3504
3505 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
3506 rmapp = &slot->rmap[gfn - slot->base_gfn];
3507
3508 spte = rmap_next(vcpu->kvm, rmapp, NULL);
3509 while (spte) {
3510 if (is_writable_pte(*spte))
3511 printk(KERN_ERR "%s: (%s) shadow page has "
3512 "writable mappings: gfn %lx role %x\n",
3513 __func__, audit_msg, sp->gfn,
3514 sp->role.word);
3515 spte = rmap_next(vcpu->kvm, rmapp, spte);
3516 }
3517 }
3518 }
3519
3520 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
3521 {
3522 int olddbg = dbg;
3523
3524 dbg = 0;
3525 audit_msg = msg;
3526 audit_rmap(vcpu);
3527 audit_write_protection(vcpu);
3528 if (strcmp("pre pte write", audit_msg) != 0)
3529 audit_mappings(vcpu);
3530 audit_writable_sptes_have_rmaps(vcpu);
3531 dbg = olddbg;
3532 }
3533
3534 #endif
This page took 0.104488 seconds and 5 git commands to generate.