Merge tag 'metag-for-v4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan...
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52 bool tdp_enabled = false;
53
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77
78 #define PTE_PREFETCH_NUM 8
79
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
83 #define PT64_LEVEL_BITS 9
84
85 #define PT64_LEVEL_SHIFT(level) \
86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87
88 #define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92 #define PT32_LEVEL_BITS 10
93
94 #define PT32_LEVEL_SHIFT(level) \
95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96
97 #define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
100
101 #define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
121
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
124
125 #define ACC_EXEC_MASK 1
126 #define ACC_WRITE_MASK PT_WRITABLE_MASK
127 #define ACC_USER_MASK PT_USER_MASK
128 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
130 #include <trace/events/kvm.h>
131
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134
135 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
151 u64 *sptep;
152 int level;
153 unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183 shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
187 /*
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
195 */
196 #define MMIO_SPTE_GEN_LOW_SHIFT 2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
199 #define MMIO_GEN_SHIFT 20
200 #define MMIO_GEN_LOW_SHIFT 10
201 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
203
204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206 u64 mask;
207
208 WARN_ON(gen & ~MMIO_GEN_MASK);
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213 }
214
215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224 }
225
226 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
227 {
228 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
229 }
230
231 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
232 unsigned access)
233 {
234 unsigned int gen = kvm_current_mmio_generation(vcpu);
235 u64 mask = generation_mmio_spte_mask(gen);
236
237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239
240 trace_mark_mmio_spte(sptep, gfn, access, gen);
241 mmu_spte_set(sptep, mask);
242 }
243
244 static bool is_mmio_spte(u64 spte)
245 {
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248
249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252 return (spte & ~mask) >> PAGE_SHIFT;
253 }
254
255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258 return (spte & ~mask) & ~PAGE_MASK;
259 }
260
261 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
262 pfn_t pfn, unsigned access)
263 {
264 if (unlikely(is_noslot_pfn(pfn))) {
265 mark_mmio_spte(vcpu, sptep, gfn, access);
266 return true;
267 }
268
269 return false;
270 }
271
272 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
273 {
274 unsigned int kvm_gen, spte_gen;
275
276 kvm_gen = kvm_current_mmio_generation(vcpu);
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
281 }
282
283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
294 static int is_cpuid_PSE36(void)
295 {
296 return 1;
297 }
298
299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301 return vcpu->arch.efer & EFER_NX;
302 }
303
304 static int is_shadow_present_pte(u64 pte)
305 {
306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308
309 static int is_large_pte(u64 pte)
310 {
311 return pte & PT_PAGE_SIZE_MASK;
312 }
313
314 static int is_rmap_spte(u64 pte)
315 {
316 return is_shadow_present_pte(pte);
317 }
318
319 static int is_last_spte(u64 pte, int level)
320 {
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
323 if (is_large_pte(pte))
324 return 1;
325 return 0;
326 }
327
328 static pfn_t spte_to_pfn(u64 pte)
329 {
330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332
333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343 *sptep = spte;
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348 *sptep = spte;
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353 return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358 return ACCESS_ONCE(*sptep);
359 }
360 #else
361 union split_spte {
362 struct {
363 u32 spte_low;
364 u32 spte_high;
365 };
366 u64 spte;
367 };
368
369 static void count_spte_clear(u64 *sptep, u64 spte)
370 {
371 struct kvm_mmu_page *sp = page_header(__pa(sptep));
372
373 if (is_shadow_present_pte(spte))
374 return;
375
376 /* Ensure the spte is completely set before we increase the count */
377 smp_wmb();
378 sp->clear_spte_count++;
379 }
380
381 static void __set_spte(u64 *sptep, u64 spte)
382 {
383 union split_spte *ssptep, sspte;
384
385 ssptep = (union split_spte *)sptep;
386 sspte = (union split_spte)spte;
387
388 ssptep->spte_high = sspte.spte_high;
389
390 /*
391 * If we map the spte from nonpresent to present, We should store
392 * the high bits firstly, then set present bit, so cpu can not
393 * fetch this spte while we are setting the spte.
394 */
395 smp_wmb();
396
397 ssptep->spte_low = sspte.spte_low;
398 }
399
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402 union split_spte *ssptep, sspte;
403
404 ssptep = (union split_spte *)sptep;
405 sspte = (union split_spte)spte;
406
407 ssptep->spte_low = sspte.spte_low;
408
409 /*
410 * If we map the spte from present to nonpresent, we should clear
411 * present bit firstly to avoid vcpu fetch the old high bits.
412 */
413 smp_wmb();
414
415 ssptep->spte_high = sspte.spte_high;
416 count_spte_clear(sptep, spte);
417 }
418
419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420 {
421 union split_spte *ssptep, sspte, orig;
422
423 ssptep = (union split_spte *)sptep;
424 sspte = (union split_spte)spte;
425
426 /* xchg acts as a barrier before the setting of the high bits */
427 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428 orig.spte_high = ssptep->spte_high;
429 ssptep->spte_high = sspte.spte_high;
430 count_spte_clear(sptep, spte);
431
432 return orig.spte;
433 }
434
435 /*
436 * The idea using the light way get the spte on x86_32 guest is from
437 * gup_get_pte(arch/x86/mm/gup.c).
438 *
439 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440 * coalesces them and we are running out of the MMU lock. Therefore
441 * we need to protect against in-progress updates of the spte.
442 *
443 * Reading the spte while an update is in progress may get the old value
444 * for the high part of the spte. The race is fine for a present->non-present
445 * change (because the high part of the spte is ignored for non-present spte),
446 * but for a present->present change we must reread the spte.
447 *
448 * All such changes are done in two steps (present->non-present and
449 * non-present->present), hence it is enough to count the number of
450 * present->non-present updates: if it changed while reading the spte,
451 * we might have hit the race. This is done using clear_spte_count.
452 */
453 static u64 __get_spte_lockless(u64 *sptep)
454 {
455 struct kvm_mmu_page *sp = page_header(__pa(sptep));
456 union split_spte spte, *orig = (union split_spte *)sptep;
457 int count;
458
459 retry:
460 count = sp->clear_spte_count;
461 smp_rmb();
462
463 spte.spte_low = orig->spte_low;
464 smp_rmb();
465
466 spte.spte_high = orig->spte_high;
467 smp_rmb();
468
469 if (unlikely(spte.spte_low != orig->spte_low ||
470 count != sp->clear_spte_count))
471 goto retry;
472
473 return spte.spte;
474 }
475 #endif
476
477 static bool spte_is_locklessly_modifiable(u64 spte)
478 {
479 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
481 }
482
483 static bool spte_has_volatile_bits(u64 spte)
484 {
485 /*
486 * Always atomicly update spte if it can be updated
487 * out of mmu-lock, it can ensure dirty bit is not lost,
488 * also, it can help us to get a stable is_writable_pte()
489 * to ensure tlb flush is not missed.
490 */
491 if (spte_is_locklessly_modifiable(spte))
492 return true;
493
494 if (!shadow_accessed_mask)
495 return false;
496
497 if (!is_shadow_present_pte(spte))
498 return false;
499
500 if ((spte & shadow_accessed_mask) &&
501 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
502 return false;
503
504 return true;
505 }
506
507 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508 {
509 return (old_spte & bit_mask) && !(new_spte & bit_mask);
510 }
511
512 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513 {
514 return (old_spte & bit_mask) != (new_spte & bit_mask);
515 }
516
517 /* Rules for using mmu_spte_set:
518 * Set the sptep from nonpresent to present.
519 * Note: the sptep being assigned *must* be either not present
520 * or in a state where the hardware will not attempt to update
521 * the spte.
522 */
523 static void mmu_spte_set(u64 *sptep, u64 new_spte)
524 {
525 WARN_ON(is_shadow_present_pte(*sptep));
526 __set_spte(sptep, new_spte);
527 }
528
529 /* Rules for using mmu_spte_update:
530 * Update the state bits, it means the mapped pfn is not changged.
531 *
532 * Whenever we overwrite a writable spte with a read-only one we
533 * should flush remote TLBs. Otherwise rmap_write_protect
534 * will find a read-only spte, even though the writable spte
535 * might be cached on a CPU's TLB, the return value indicates this
536 * case.
537 */
538 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
539 {
540 u64 old_spte = *sptep;
541 bool ret = false;
542
543 WARN_ON(!is_rmap_spte(new_spte));
544
545 if (!is_shadow_present_pte(old_spte)) {
546 mmu_spte_set(sptep, new_spte);
547 return ret;
548 }
549
550 if (!spte_has_volatile_bits(old_spte))
551 __update_clear_spte_fast(sptep, new_spte);
552 else
553 old_spte = __update_clear_spte_slow(sptep, new_spte);
554
555 /*
556 * For the spte updated out of mmu-lock is safe, since
557 * we always atomicly update it, see the comments in
558 * spte_has_volatile_bits().
559 */
560 if (spte_is_locklessly_modifiable(old_spte) &&
561 !is_writable_pte(new_spte))
562 ret = true;
563
564 if (!shadow_accessed_mask)
565 return ret;
566
567 /*
568 * Flush TLB when accessed/dirty bits are changed in the page tables,
569 * to guarantee consistency between TLB and page tables.
570 */
571 if (spte_is_bit_changed(old_spte, new_spte,
572 shadow_accessed_mask | shadow_dirty_mask))
573 ret = true;
574
575 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
576 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
577 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
578 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
579
580 return ret;
581 }
582
583 /*
584 * Rules for using mmu_spte_clear_track_bits:
585 * It sets the sptep from present to nonpresent, and track the
586 * state bits, it is used to clear the last level sptep.
587 */
588 static int mmu_spte_clear_track_bits(u64 *sptep)
589 {
590 pfn_t pfn;
591 u64 old_spte = *sptep;
592
593 if (!spte_has_volatile_bits(old_spte))
594 __update_clear_spte_fast(sptep, 0ull);
595 else
596 old_spte = __update_clear_spte_slow(sptep, 0ull);
597
598 if (!is_rmap_spte(old_spte))
599 return 0;
600
601 pfn = spte_to_pfn(old_spte);
602
603 /*
604 * KVM does not hold the refcount of the page used by
605 * kvm mmu, before reclaiming the page, we should
606 * unmap it from mmu first.
607 */
608 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
609
610 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
611 kvm_set_pfn_accessed(pfn);
612 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
613 kvm_set_pfn_dirty(pfn);
614 return 1;
615 }
616
617 /*
618 * Rules for using mmu_spte_clear_no_track:
619 * Directly clear spte without caring the state bits of sptep,
620 * it is used to set the upper level spte.
621 */
622 static void mmu_spte_clear_no_track(u64 *sptep)
623 {
624 __update_clear_spte_fast(sptep, 0ull);
625 }
626
627 static u64 mmu_spte_get_lockless(u64 *sptep)
628 {
629 return __get_spte_lockless(sptep);
630 }
631
632 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
633 {
634 /*
635 * Prevent page table teardown by making any free-er wait during
636 * kvm_flush_remote_tlbs() IPI to all active vcpus.
637 */
638 local_irq_disable();
639 vcpu->mode = READING_SHADOW_PAGE_TABLES;
640 /*
641 * Make sure a following spte read is not reordered ahead of the write
642 * to vcpu->mode.
643 */
644 smp_mb();
645 }
646
647 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
648 {
649 /*
650 * Make sure the write to vcpu->mode is not reordered in front of
651 * reads to sptes. If it does, kvm_commit_zap_page() can see us
652 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
653 */
654 smp_mb();
655 vcpu->mode = OUTSIDE_GUEST_MODE;
656 local_irq_enable();
657 }
658
659 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
660 struct kmem_cache *base_cache, int min)
661 {
662 void *obj;
663
664 if (cache->nobjs >= min)
665 return 0;
666 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
667 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
668 if (!obj)
669 return -ENOMEM;
670 cache->objects[cache->nobjs++] = obj;
671 }
672 return 0;
673 }
674
675 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
676 {
677 return cache->nobjs;
678 }
679
680 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
681 struct kmem_cache *cache)
682 {
683 while (mc->nobjs)
684 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
685 }
686
687 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
688 int min)
689 {
690 void *page;
691
692 if (cache->nobjs >= min)
693 return 0;
694 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
695 page = (void *)__get_free_page(GFP_KERNEL);
696 if (!page)
697 return -ENOMEM;
698 cache->objects[cache->nobjs++] = page;
699 }
700 return 0;
701 }
702
703 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
704 {
705 while (mc->nobjs)
706 free_page((unsigned long)mc->objects[--mc->nobjs]);
707 }
708
709 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
710 {
711 int r;
712
713 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
714 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
715 if (r)
716 goto out;
717 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
718 if (r)
719 goto out;
720 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
721 mmu_page_header_cache, 4);
722 out:
723 return r;
724 }
725
726 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727 {
728 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729 pte_list_desc_cache);
730 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
731 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
732 mmu_page_header_cache);
733 }
734
735 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
736 {
737 void *p;
738
739 BUG_ON(!mc->nobjs);
740 p = mc->objects[--mc->nobjs];
741 return p;
742 }
743
744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745 {
746 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 }
748
749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750 {
751 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 }
753
754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755 {
756 if (!sp->role.direct)
757 return sp->gfns[index];
758
759 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760 }
761
762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763 {
764 if (sp->role.direct)
765 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
766 else
767 sp->gfns[index] = gfn;
768 }
769
770 /*
771 * Return the pointer to the large page information for a given gfn,
772 * handling slots that are not large page aligned.
773 */
774 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
775 struct kvm_memory_slot *slot,
776 int level)
777 {
778 unsigned long idx;
779
780 idx = gfn_to_index(gfn, slot->base_gfn, level);
781 return &slot->arch.lpage_info[level - 2][idx];
782 }
783
784 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
785 {
786 struct kvm_memslots *slots;
787 struct kvm_memory_slot *slot;
788 struct kvm_lpage_info *linfo;
789 gfn_t gfn;
790 int i;
791
792 gfn = sp->gfn;
793 slots = kvm_memslots_for_spte_role(kvm, sp->role);
794 slot = __gfn_to_memslot(slots, gfn);
795 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
796 linfo = lpage_info_slot(gfn, slot, i);
797 linfo->write_count += 1;
798 }
799 kvm->arch.indirect_shadow_pages++;
800 }
801
802 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
803 {
804 struct kvm_memslots *slots;
805 struct kvm_memory_slot *slot;
806 struct kvm_lpage_info *linfo;
807 gfn_t gfn;
808 int i;
809
810 gfn = sp->gfn;
811 slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 slot = __gfn_to_memslot(slots, gfn);
813 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
814 linfo = lpage_info_slot(gfn, slot, i);
815 linfo->write_count -= 1;
816 WARN_ON(linfo->write_count < 0);
817 }
818 kvm->arch.indirect_shadow_pages--;
819 }
820
821 static int has_wrprotected_page(struct kvm_vcpu *vcpu,
822 gfn_t gfn,
823 int level)
824 {
825 struct kvm_memory_slot *slot;
826 struct kvm_lpage_info *linfo;
827
828 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
829 if (slot) {
830 linfo = lpage_info_slot(gfn, slot, level);
831 return linfo->write_count;
832 }
833
834 return 1;
835 }
836
837 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
838 {
839 unsigned long page_size;
840 int i, ret = 0;
841
842 page_size = kvm_host_page_size(kvm, gfn);
843
844 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
845 if (page_size >= KVM_HPAGE_SIZE(i))
846 ret = i;
847 else
848 break;
849 }
850
851 return ret;
852 }
853
854 static struct kvm_memory_slot *
855 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
856 bool no_dirty_log)
857 {
858 struct kvm_memory_slot *slot;
859
860 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
861 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
862 (no_dirty_log && slot->dirty_bitmap))
863 slot = NULL;
864
865 return slot;
866 }
867
868 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
869 {
870 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
871 }
872
873 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
874 {
875 int host_level, level, max_level;
876
877 host_level = host_mapping_level(vcpu->kvm, large_gfn);
878
879 if (host_level == PT_PAGE_TABLE_LEVEL)
880 return host_level;
881
882 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
883
884 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
885 if (has_wrprotected_page(vcpu, large_gfn, level))
886 break;
887
888 return level - 1;
889 }
890
891 /*
892 * Pte mapping structures:
893 *
894 * If pte_list bit zero is zero, then pte_list point to the spte.
895 *
896 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
897 * pte_list_desc containing more mappings.
898 *
899 * Returns the number of pte entries before the spte was added or zero if
900 * the spte was not added.
901 *
902 */
903 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
904 unsigned long *pte_list)
905 {
906 struct pte_list_desc *desc;
907 int i, count = 0;
908
909 if (!*pte_list) {
910 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
911 *pte_list = (unsigned long)spte;
912 } else if (!(*pte_list & 1)) {
913 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
914 desc = mmu_alloc_pte_list_desc(vcpu);
915 desc->sptes[0] = (u64 *)*pte_list;
916 desc->sptes[1] = spte;
917 *pte_list = (unsigned long)desc | 1;
918 ++count;
919 } else {
920 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
921 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
922 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
923 desc = desc->more;
924 count += PTE_LIST_EXT;
925 }
926 if (desc->sptes[PTE_LIST_EXT-1]) {
927 desc->more = mmu_alloc_pte_list_desc(vcpu);
928 desc = desc->more;
929 }
930 for (i = 0; desc->sptes[i]; ++i)
931 ++count;
932 desc->sptes[i] = spte;
933 }
934 return count;
935 }
936
937 static void
938 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
939 int i, struct pte_list_desc *prev_desc)
940 {
941 int j;
942
943 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
944 ;
945 desc->sptes[i] = desc->sptes[j];
946 desc->sptes[j] = NULL;
947 if (j != 0)
948 return;
949 if (!prev_desc && !desc->more)
950 *pte_list = (unsigned long)desc->sptes[0];
951 else
952 if (prev_desc)
953 prev_desc->more = desc->more;
954 else
955 *pte_list = (unsigned long)desc->more | 1;
956 mmu_free_pte_list_desc(desc);
957 }
958
959 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
960 {
961 struct pte_list_desc *desc;
962 struct pte_list_desc *prev_desc;
963 int i;
964
965 if (!*pte_list) {
966 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
967 BUG();
968 } else if (!(*pte_list & 1)) {
969 rmap_printk("pte_list_remove: %p 1->0\n", spte);
970 if ((u64 *)*pte_list != spte) {
971 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
972 BUG();
973 }
974 *pte_list = 0;
975 } else {
976 rmap_printk("pte_list_remove: %p many->many\n", spte);
977 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
978 prev_desc = NULL;
979 while (desc) {
980 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
981 if (desc->sptes[i] == spte) {
982 pte_list_desc_remove_entry(pte_list,
983 desc, i,
984 prev_desc);
985 return;
986 }
987 prev_desc = desc;
988 desc = desc->more;
989 }
990 pr_err("pte_list_remove: %p many->many\n", spte);
991 BUG();
992 }
993 }
994
995 typedef void (*pte_list_walk_fn) (u64 *spte);
996 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
997 {
998 struct pte_list_desc *desc;
999 int i;
1000
1001 if (!*pte_list)
1002 return;
1003
1004 if (!(*pte_list & 1))
1005 return fn((u64 *)*pte_list);
1006
1007 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1008 while (desc) {
1009 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1010 fn(desc->sptes[i]);
1011 desc = desc->more;
1012 }
1013 }
1014
1015 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1016 struct kvm_memory_slot *slot)
1017 {
1018 unsigned long idx;
1019
1020 idx = gfn_to_index(gfn, slot->base_gfn, level);
1021 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1022 }
1023
1024 /*
1025 * Take gfn and return the reverse mapping to it.
1026 */
1027 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
1028 {
1029 struct kvm_memslots *slots;
1030 struct kvm_memory_slot *slot;
1031
1032 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1033 slot = __gfn_to_memslot(slots, gfn);
1034 return __gfn_to_rmap(gfn, sp->role.level, slot);
1035 }
1036
1037 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1038 {
1039 struct kvm_mmu_memory_cache *cache;
1040
1041 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1042 return mmu_memory_cache_free_objects(cache);
1043 }
1044
1045 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1046 {
1047 struct kvm_mmu_page *sp;
1048 unsigned long *rmapp;
1049
1050 sp = page_header(__pa(spte));
1051 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1052 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1053 return pte_list_add(vcpu, spte, rmapp);
1054 }
1055
1056 static void rmap_remove(struct kvm *kvm, u64 *spte)
1057 {
1058 struct kvm_mmu_page *sp;
1059 gfn_t gfn;
1060 unsigned long *rmapp;
1061
1062 sp = page_header(__pa(spte));
1063 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1064 rmapp = gfn_to_rmap(kvm, gfn, sp);
1065 pte_list_remove(spte, rmapp);
1066 }
1067
1068 /*
1069 * Used by the following functions to iterate through the sptes linked by a
1070 * rmap. All fields are private and not assumed to be used outside.
1071 */
1072 struct rmap_iterator {
1073 /* private fields */
1074 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1075 int pos; /* index of the sptep */
1076 };
1077
1078 /*
1079 * Iteration must be started by this function. This should also be used after
1080 * removing/dropping sptes from the rmap link because in such cases the
1081 * information in the itererator may not be valid.
1082 *
1083 * Returns sptep if found, NULL otherwise.
1084 */
1085 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1086 {
1087 if (!rmap)
1088 return NULL;
1089
1090 if (!(rmap & 1)) {
1091 iter->desc = NULL;
1092 return (u64 *)rmap;
1093 }
1094
1095 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1096 iter->pos = 0;
1097 return iter->desc->sptes[iter->pos];
1098 }
1099
1100 /*
1101 * Must be used with a valid iterator: e.g. after rmap_get_first().
1102 *
1103 * Returns sptep if found, NULL otherwise.
1104 */
1105 static u64 *rmap_get_next(struct rmap_iterator *iter)
1106 {
1107 if (iter->desc) {
1108 if (iter->pos < PTE_LIST_EXT - 1) {
1109 u64 *sptep;
1110
1111 ++iter->pos;
1112 sptep = iter->desc->sptes[iter->pos];
1113 if (sptep)
1114 return sptep;
1115 }
1116
1117 iter->desc = iter->desc->more;
1118
1119 if (iter->desc) {
1120 iter->pos = 0;
1121 /* desc->sptes[0] cannot be NULL */
1122 return iter->desc->sptes[iter->pos];
1123 }
1124 }
1125
1126 return NULL;
1127 }
1128
1129 #define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
1130 for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
1131 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1132 _spte_ = rmap_get_next(_iter_))
1133
1134 static void drop_spte(struct kvm *kvm, u64 *sptep)
1135 {
1136 if (mmu_spte_clear_track_bits(sptep))
1137 rmap_remove(kvm, sptep);
1138 }
1139
1140
1141 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1142 {
1143 if (is_large_pte(*sptep)) {
1144 WARN_ON(page_header(__pa(sptep))->role.level ==
1145 PT_PAGE_TABLE_LEVEL);
1146 drop_spte(kvm, sptep);
1147 --kvm->stat.lpages;
1148 return true;
1149 }
1150
1151 return false;
1152 }
1153
1154 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1155 {
1156 if (__drop_large_spte(vcpu->kvm, sptep))
1157 kvm_flush_remote_tlbs(vcpu->kvm);
1158 }
1159
1160 /*
1161 * Write-protect on the specified @sptep, @pt_protect indicates whether
1162 * spte write-protection is caused by protecting shadow page table.
1163 *
1164 * Note: write protection is difference between dirty logging and spte
1165 * protection:
1166 * - for dirty logging, the spte can be set to writable at anytime if
1167 * its dirty bitmap is properly set.
1168 * - for spte protection, the spte can be writable only after unsync-ing
1169 * shadow page.
1170 *
1171 * Return true if tlb need be flushed.
1172 */
1173 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1174 {
1175 u64 spte = *sptep;
1176
1177 if (!is_writable_pte(spte) &&
1178 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1179 return false;
1180
1181 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1182
1183 if (pt_protect)
1184 spte &= ~SPTE_MMU_WRITEABLE;
1185 spte = spte & ~PT_WRITABLE_MASK;
1186
1187 return mmu_spte_update(sptep, spte);
1188 }
1189
1190 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1191 bool pt_protect)
1192 {
1193 u64 *sptep;
1194 struct rmap_iterator iter;
1195 bool flush = false;
1196
1197 for_each_rmap_spte(rmapp, &iter, sptep)
1198 flush |= spte_write_protect(kvm, sptep, pt_protect);
1199
1200 return flush;
1201 }
1202
1203 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1204 {
1205 u64 spte = *sptep;
1206
1207 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1208
1209 spte &= ~shadow_dirty_mask;
1210
1211 return mmu_spte_update(sptep, spte);
1212 }
1213
1214 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1215 {
1216 u64 *sptep;
1217 struct rmap_iterator iter;
1218 bool flush = false;
1219
1220 for_each_rmap_spte(rmapp, &iter, sptep)
1221 flush |= spte_clear_dirty(kvm, sptep);
1222
1223 return flush;
1224 }
1225
1226 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1227 {
1228 u64 spte = *sptep;
1229
1230 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1231
1232 spte |= shadow_dirty_mask;
1233
1234 return mmu_spte_update(sptep, spte);
1235 }
1236
1237 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1238 {
1239 u64 *sptep;
1240 struct rmap_iterator iter;
1241 bool flush = false;
1242
1243 for_each_rmap_spte(rmapp, &iter, sptep)
1244 flush |= spte_set_dirty(kvm, sptep);
1245
1246 return flush;
1247 }
1248
1249 /**
1250 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1251 * @kvm: kvm instance
1252 * @slot: slot to protect
1253 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1254 * @mask: indicates which pages we should protect
1255 *
1256 * Used when we do not need to care about huge page mappings: e.g. during dirty
1257 * logging we do not have any such mappings.
1258 */
1259 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1260 struct kvm_memory_slot *slot,
1261 gfn_t gfn_offset, unsigned long mask)
1262 {
1263 unsigned long *rmapp;
1264
1265 while (mask) {
1266 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1267 PT_PAGE_TABLE_LEVEL, slot);
1268 __rmap_write_protect(kvm, rmapp, false);
1269
1270 /* clear the first set bit */
1271 mask &= mask - 1;
1272 }
1273 }
1274
1275 /**
1276 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1277 * @kvm: kvm instance
1278 * @slot: slot to clear D-bit
1279 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1280 * @mask: indicates which pages we should clear D-bit
1281 *
1282 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1283 */
1284 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1285 struct kvm_memory_slot *slot,
1286 gfn_t gfn_offset, unsigned long mask)
1287 {
1288 unsigned long *rmapp;
1289
1290 while (mask) {
1291 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1292 PT_PAGE_TABLE_LEVEL, slot);
1293 __rmap_clear_dirty(kvm, rmapp);
1294
1295 /* clear the first set bit */
1296 mask &= mask - 1;
1297 }
1298 }
1299 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1300
1301 /**
1302 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1303 * PT level pages.
1304 *
1305 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1306 * enable dirty logging for them.
1307 *
1308 * Used when we do not need to care about huge page mappings: e.g. during dirty
1309 * logging we do not have any such mappings.
1310 */
1311 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1312 struct kvm_memory_slot *slot,
1313 gfn_t gfn_offset, unsigned long mask)
1314 {
1315 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1316 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1317 mask);
1318 else
1319 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1320 }
1321
1322 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1323 {
1324 struct kvm_memory_slot *slot;
1325 unsigned long *rmapp;
1326 int i;
1327 bool write_protected = false;
1328
1329 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1330
1331 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1332 rmapp = __gfn_to_rmap(gfn, i, slot);
1333 write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
1334 }
1335
1336 return write_protected;
1337 }
1338
1339 static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1340 {
1341 u64 *sptep;
1342 struct rmap_iterator iter;
1343 bool flush = false;
1344
1345 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1346 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1347 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1348
1349 drop_spte(kvm, sptep);
1350 flush = true;
1351 }
1352
1353 return flush;
1354 }
1355
1356 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1357 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1358 unsigned long data)
1359 {
1360 return kvm_zap_rmapp(kvm, rmapp);
1361 }
1362
1363 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1364 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1365 unsigned long data)
1366 {
1367 u64 *sptep;
1368 struct rmap_iterator iter;
1369 int need_flush = 0;
1370 u64 new_spte;
1371 pte_t *ptep = (pte_t *)data;
1372 pfn_t new_pfn;
1373
1374 WARN_ON(pte_huge(*ptep));
1375 new_pfn = pte_pfn(*ptep);
1376
1377 restart:
1378 for_each_rmap_spte(rmapp, &iter, sptep) {
1379 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1380 sptep, *sptep, gfn, level);
1381
1382 need_flush = 1;
1383
1384 if (pte_write(*ptep)) {
1385 drop_spte(kvm, sptep);
1386 goto restart;
1387 } else {
1388 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1389 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1390
1391 new_spte &= ~PT_WRITABLE_MASK;
1392 new_spte &= ~SPTE_HOST_WRITEABLE;
1393 new_spte &= ~shadow_accessed_mask;
1394
1395 mmu_spte_clear_track_bits(sptep);
1396 mmu_spte_set(sptep, new_spte);
1397 }
1398 }
1399
1400 if (need_flush)
1401 kvm_flush_remote_tlbs(kvm);
1402
1403 return 0;
1404 }
1405
1406 struct slot_rmap_walk_iterator {
1407 /* input fields. */
1408 struct kvm_memory_slot *slot;
1409 gfn_t start_gfn;
1410 gfn_t end_gfn;
1411 int start_level;
1412 int end_level;
1413
1414 /* output fields. */
1415 gfn_t gfn;
1416 unsigned long *rmap;
1417 int level;
1418
1419 /* private field. */
1420 unsigned long *end_rmap;
1421 };
1422
1423 static void
1424 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1425 {
1426 iterator->level = level;
1427 iterator->gfn = iterator->start_gfn;
1428 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1429 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1430 iterator->slot);
1431 }
1432
1433 static void
1434 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1435 struct kvm_memory_slot *slot, int start_level,
1436 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1437 {
1438 iterator->slot = slot;
1439 iterator->start_level = start_level;
1440 iterator->end_level = end_level;
1441 iterator->start_gfn = start_gfn;
1442 iterator->end_gfn = end_gfn;
1443
1444 rmap_walk_init_level(iterator, iterator->start_level);
1445 }
1446
1447 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1448 {
1449 return !!iterator->rmap;
1450 }
1451
1452 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1453 {
1454 if (++iterator->rmap <= iterator->end_rmap) {
1455 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1456 return;
1457 }
1458
1459 if (++iterator->level > iterator->end_level) {
1460 iterator->rmap = NULL;
1461 return;
1462 }
1463
1464 rmap_walk_init_level(iterator, iterator->level);
1465 }
1466
1467 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1468 _start_gfn, _end_gfn, _iter_) \
1469 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1470 _end_level_, _start_gfn, _end_gfn); \
1471 slot_rmap_walk_okay(_iter_); \
1472 slot_rmap_walk_next(_iter_))
1473
1474 static int kvm_handle_hva_range(struct kvm *kvm,
1475 unsigned long start,
1476 unsigned long end,
1477 unsigned long data,
1478 int (*handler)(struct kvm *kvm,
1479 unsigned long *rmapp,
1480 struct kvm_memory_slot *slot,
1481 gfn_t gfn,
1482 int level,
1483 unsigned long data))
1484 {
1485 struct kvm_memslots *slots;
1486 struct kvm_memory_slot *memslot;
1487 struct slot_rmap_walk_iterator iterator;
1488 int ret = 0;
1489 int i;
1490
1491 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1492 slots = __kvm_memslots(kvm, i);
1493 kvm_for_each_memslot(memslot, slots) {
1494 unsigned long hva_start, hva_end;
1495 gfn_t gfn_start, gfn_end;
1496
1497 hva_start = max(start, memslot->userspace_addr);
1498 hva_end = min(end, memslot->userspace_addr +
1499 (memslot->npages << PAGE_SHIFT));
1500 if (hva_start >= hva_end)
1501 continue;
1502 /*
1503 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1504 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1505 */
1506 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1507 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1508
1509 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1510 PT_MAX_HUGEPAGE_LEVEL,
1511 gfn_start, gfn_end - 1,
1512 &iterator)
1513 ret |= handler(kvm, iterator.rmap, memslot,
1514 iterator.gfn, iterator.level, data);
1515 }
1516 }
1517
1518 return ret;
1519 }
1520
1521 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1522 unsigned long data,
1523 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1524 struct kvm_memory_slot *slot,
1525 gfn_t gfn, int level,
1526 unsigned long data))
1527 {
1528 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1529 }
1530
1531 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1532 {
1533 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1534 }
1535
1536 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1537 {
1538 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1539 }
1540
1541 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1542 {
1543 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1544 }
1545
1546 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1547 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1548 unsigned long data)
1549 {
1550 u64 *sptep;
1551 struct rmap_iterator uninitialized_var(iter);
1552 int young = 0;
1553
1554 BUG_ON(!shadow_accessed_mask);
1555
1556 for_each_rmap_spte(rmapp, &iter, sptep)
1557 if (*sptep & shadow_accessed_mask) {
1558 young = 1;
1559 clear_bit((ffs(shadow_accessed_mask) - 1),
1560 (unsigned long *)sptep);
1561 }
1562
1563 trace_kvm_age_page(gfn, level, slot, young);
1564 return young;
1565 }
1566
1567 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1568 struct kvm_memory_slot *slot, gfn_t gfn,
1569 int level, unsigned long data)
1570 {
1571 u64 *sptep;
1572 struct rmap_iterator iter;
1573 int young = 0;
1574
1575 /*
1576 * If there's no access bit in the secondary pte set by the
1577 * hardware it's up to gup-fast/gup to set the access bit in
1578 * the primary pte or in the page structure.
1579 */
1580 if (!shadow_accessed_mask)
1581 goto out;
1582
1583 for_each_rmap_spte(rmapp, &iter, sptep)
1584 if (*sptep & shadow_accessed_mask) {
1585 young = 1;
1586 break;
1587 }
1588 out:
1589 return young;
1590 }
1591
1592 #define RMAP_RECYCLE_THRESHOLD 1000
1593
1594 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1595 {
1596 unsigned long *rmapp;
1597 struct kvm_mmu_page *sp;
1598
1599 sp = page_header(__pa(spte));
1600
1601 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1602
1603 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1604 kvm_flush_remote_tlbs(vcpu->kvm);
1605 }
1606
1607 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1608 {
1609 /*
1610 * In case of absence of EPT Access and Dirty Bits supports,
1611 * emulate the accessed bit for EPT, by checking if this page has
1612 * an EPT mapping, and clearing it if it does. On the next access,
1613 * a new EPT mapping will be established.
1614 * This has some overhead, but not as much as the cost of swapping
1615 * out actively used pages or breaking up actively used hugepages.
1616 */
1617 if (!shadow_accessed_mask) {
1618 /*
1619 * We are holding the kvm->mmu_lock, and we are blowing up
1620 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1621 * This is correct as long as we don't decouple the mmu_lock
1622 * protected regions (like invalidate_range_start|end does).
1623 */
1624 kvm->mmu_notifier_seq++;
1625 return kvm_handle_hva_range(kvm, start, end, 0,
1626 kvm_unmap_rmapp);
1627 }
1628
1629 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1630 }
1631
1632 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1633 {
1634 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1635 }
1636
1637 #ifdef MMU_DEBUG
1638 static int is_empty_shadow_page(u64 *spt)
1639 {
1640 u64 *pos;
1641 u64 *end;
1642
1643 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1644 if (is_shadow_present_pte(*pos)) {
1645 printk(KERN_ERR "%s: %p %llx\n", __func__,
1646 pos, *pos);
1647 return 0;
1648 }
1649 return 1;
1650 }
1651 #endif
1652
1653 /*
1654 * This value is the sum of all of the kvm instances's
1655 * kvm->arch.n_used_mmu_pages values. We need a global,
1656 * aggregate version in order to make the slab shrinker
1657 * faster
1658 */
1659 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1660 {
1661 kvm->arch.n_used_mmu_pages += nr;
1662 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1663 }
1664
1665 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1666 {
1667 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1668 hlist_del(&sp->hash_link);
1669 list_del(&sp->link);
1670 free_page((unsigned long)sp->spt);
1671 if (!sp->role.direct)
1672 free_page((unsigned long)sp->gfns);
1673 kmem_cache_free(mmu_page_header_cache, sp);
1674 }
1675
1676 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1677 {
1678 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1679 }
1680
1681 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1682 struct kvm_mmu_page *sp, u64 *parent_pte)
1683 {
1684 if (!parent_pte)
1685 return;
1686
1687 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1688 }
1689
1690 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1691 u64 *parent_pte)
1692 {
1693 pte_list_remove(parent_pte, &sp->parent_ptes);
1694 }
1695
1696 static void drop_parent_pte(struct kvm_mmu_page *sp,
1697 u64 *parent_pte)
1698 {
1699 mmu_page_remove_parent_pte(sp, parent_pte);
1700 mmu_spte_clear_no_track(parent_pte);
1701 }
1702
1703 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1704 u64 *parent_pte, int direct)
1705 {
1706 struct kvm_mmu_page *sp;
1707
1708 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1709 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1710 if (!direct)
1711 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1712 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1713
1714 /*
1715 * The active_mmu_pages list is the FIFO list, do not move the
1716 * page until it is zapped. kvm_zap_obsolete_pages depends on
1717 * this feature. See the comments in kvm_zap_obsolete_pages().
1718 */
1719 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1720 sp->parent_ptes = 0;
1721 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1722 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1723 return sp;
1724 }
1725
1726 static void mark_unsync(u64 *spte);
1727 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1728 {
1729 pte_list_walk(&sp->parent_ptes, mark_unsync);
1730 }
1731
1732 static void mark_unsync(u64 *spte)
1733 {
1734 struct kvm_mmu_page *sp;
1735 unsigned int index;
1736
1737 sp = page_header(__pa(spte));
1738 index = spte - sp->spt;
1739 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1740 return;
1741 if (sp->unsync_children++)
1742 return;
1743 kvm_mmu_mark_parents_unsync(sp);
1744 }
1745
1746 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1747 struct kvm_mmu_page *sp)
1748 {
1749 return 1;
1750 }
1751
1752 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1753 {
1754 }
1755
1756 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1757 struct kvm_mmu_page *sp, u64 *spte,
1758 const void *pte)
1759 {
1760 WARN_ON(1);
1761 }
1762
1763 #define KVM_PAGE_ARRAY_NR 16
1764
1765 struct kvm_mmu_pages {
1766 struct mmu_page_and_offset {
1767 struct kvm_mmu_page *sp;
1768 unsigned int idx;
1769 } page[KVM_PAGE_ARRAY_NR];
1770 unsigned int nr;
1771 };
1772
1773 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1774 int idx)
1775 {
1776 int i;
1777
1778 if (sp->unsync)
1779 for (i=0; i < pvec->nr; i++)
1780 if (pvec->page[i].sp == sp)
1781 return 0;
1782
1783 pvec->page[pvec->nr].sp = sp;
1784 pvec->page[pvec->nr].idx = idx;
1785 pvec->nr++;
1786 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1787 }
1788
1789 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1790 struct kvm_mmu_pages *pvec)
1791 {
1792 int i, ret, nr_unsync_leaf = 0;
1793
1794 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1795 struct kvm_mmu_page *child;
1796 u64 ent = sp->spt[i];
1797
1798 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1799 goto clear_child_bitmap;
1800
1801 child = page_header(ent & PT64_BASE_ADDR_MASK);
1802
1803 if (child->unsync_children) {
1804 if (mmu_pages_add(pvec, child, i))
1805 return -ENOSPC;
1806
1807 ret = __mmu_unsync_walk(child, pvec);
1808 if (!ret)
1809 goto clear_child_bitmap;
1810 else if (ret > 0)
1811 nr_unsync_leaf += ret;
1812 else
1813 return ret;
1814 } else if (child->unsync) {
1815 nr_unsync_leaf++;
1816 if (mmu_pages_add(pvec, child, i))
1817 return -ENOSPC;
1818 } else
1819 goto clear_child_bitmap;
1820
1821 continue;
1822
1823 clear_child_bitmap:
1824 __clear_bit(i, sp->unsync_child_bitmap);
1825 sp->unsync_children--;
1826 WARN_ON((int)sp->unsync_children < 0);
1827 }
1828
1829
1830 return nr_unsync_leaf;
1831 }
1832
1833 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1834 struct kvm_mmu_pages *pvec)
1835 {
1836 if (!sp->unsync_children)
1837 return 0;
1838
1839 mmu_pages_add(pvec, sp, 0);
1840 return __mmu_unsync_walk(sp, pvec);
1841 }
1842
1843 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1844 {
1845 WARN_ON(!sp->unsync);
1846 trace_kvm_mmu_sync_page(sp);
1847 sp->unsync = 0;
1848 --kvm->stat.mmu_unsync;
1849 }
1850
1851 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1852 struct list_head *invalid_list);
1853 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1854 struct list_head *invalid_list);
1855
1856 /*
1857 * NOTE: we should pay more attention on the zapped-obsolete page
1858 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1859 * since it has been deleted from active_mmu_pages but still can be found
1860 * at hast list.
1861 *
1862 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1863 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1864 * all the obsolete pages.
1865 */
1866 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1867 hlist_for_each_entry(_sp, \
1868 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1869 if ((_sp)->gfn != (_gfn)) {} else
1870
1871 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1872 for_each_gfn_sp(_kvm, _sp, _gfn) \
1873 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1874
1875 /* @sp->gfn should be write-protected at the call site */
1876 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1877 struct list_head *invalid_list, bool clear_unsync)
1878 {
1879 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1880 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1881 return 1;
1882 }
1883
1884 if (clear_unsync)
1885 kvm_unlink_unsync_page(vcpu->kvm, sp);
1886
1887 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1888 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1889 return 1;
1890 }
1891
1892 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1893 return 0;
1894 }
1895
1896 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1897 struct kvm_mmu_page *sp)
1898 {
1899 LIST_HEAD(invalid_list);
1900 int ret;
1901
1902 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1903 if (ret)
1904 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1905
1906 return ret;
1907 }
1908
1909 #ifdef CONFIG_KVM_MMU_AUDIT
1910 #include "mmu_audit.c"
1911 #else
1912 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1913 static void mmu_audit_disable(void) { }
1914 #endif
1915
1916 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1917 struct list_head *invalid_list)
1918 {
1919 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1920 }
1921
1922 /* @gfn should be write-protected at the call site */
1923 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1924 {
1925 struct kvm_mmu_page *s;
1926 LIST_HEAD(invalid_list);
1927 bool flush = false;
1928
1929 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1930 if (!s->unsync)
1931 continue;
1932
1933 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1934 kvm_unlink_unsync_page(vcpu->kvm, s);
1935 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1936 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1937 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1938 continue;
1939 }
1940 flush = true;
1941 }
1942
1943 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1944 if (flush)
1945 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1946 }
1947
1948 struct mmu_page_path {
1949 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1950 unsigned int idx[PT64_ROOT_LEVEL-1];
1951 };
1952
1953 #define for_each_sp(pvec, sp, parents, i) \
1954 for (i = mmu_pages_next(&pvec, &parents, -1), \
1955 sp = pvec.page[i].sp; \
1956 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1957 i = mmu_pages_next(&pvec, &parents, i))
1958
1959 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1960 struct mmu_page_path *parents,
1961 int i)
1962 {
1963 int n;
1964
1965 for (n = i+1; n < pvec->nr; n++) {
1966 struct kvm_mmu_page *sp = pvec->page[n].sp;
1967
1968 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1969 parents->idx[0] = pvec->page[n].idx;
1970 return n;
1971 }
1972
1973 parents->parent[sp->role.level-2] = sp;
1974 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1975 }
1976
1977 return n;
1978 }
1979
1980 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1981 {
1982 struct kvm_mmu_page *sp;
1983 unsigned int level = 0;
1984
1985 do {
1986 unsigned int idx = parents->idx[level];
1987
1988 sp = parents->parent[level];
1989 if (!sp)
1990 return;
1991
1992 --sp->unsync_children;
1993 WARN_ON((int)sp->unsync_children < 0);
1994 __clear_bit(idx, sp->unsync_child_bitmap);
1995 level++;
1996 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1997 }
1998
1999 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2000 struct mmu_page_path *parents,
2001 struct kvm_mmu_pages *pvec)
2002 {
2003 parents->parent[parent->role.level-1] = NULL;
2004 pvec->nr = 0;
2005 }
2006
2007 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2008 struct kvm_mmu_page *parent)
2009 {
2010 int i;
2011 struct kvm_mmu_page *sp;
2012 struct mmu_page_path parents;
2013 struct kvm_mmu_pages pages;
2014 LIST_HEAD(invalid_list);
2015
2016 kvm_mmu_pages_init(parent, &parents, &pages);
2017 while (mmu_unsync_walk(parent, &pages)) {
2018 bool protected = false;
2019
2020 for_each_sp(pages, sp, parents, i)
2021 protected |= rmap_write_protect(vcpu, sp->gfn);
2022
2023 if (protected)
2024 kvm_flush_remote_tlbs(vcpu->kvm);
2025
2026 for_each_sp(pages, sp, parents, i) {
2027 kvm_sync_page(vcpu, sp, &invalid_list);
2028 mmu_pages_clear_parents(&parents);
2029 }
2030 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2031 cond_resched_lock(&vcpu->kvm->mmu_lock);
2032 kvm_mmu_pages_init(parent, &parents, &pages);
2033 }
2034 }
2035
2036 static void init_shadow_page_table(struct kvm_mmu_page *sp)
2037 {
2038 int i;
2039
2040 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2041 sp->spt[i] = 0ull;
2042 }
2043
2044 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2045 {
2046 sp->write_flooding_count = 0;
2047 }
2048
2049 static void clear_sp_write_flooding_count(u64 *spte)
2050 {
2051 struct kvm_mmu_page *sp = page_header(__pa(spte));
2052
2053 __clear_sp_write_flooding_count(sp);
2054 }
2055
2056 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2057 {
2058 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2059 }
2060
2061 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2062 gfn_t gfn,
2063 gva_t gaddr,
2064 unsigned level,
2065 int direct,
2066 unsigned access,
2067 u64 *parent_pte)
2068 {
2069 union kvm_mmu_page_role role;
2070 unsigned quadrant;
2071 struct kvm_mmu_page *sp;
2072 bool need_sync = false;
2073
2074 role = vcpu->arch.mmu.base_role;
2075 role.level = level;
2076 role.direct = direct;
2077 if (role.direct)
2078 role.cr4_pae = 0;
2079 role.access = access;
2080 if (!vcpu->arch.mmu.direct_map
2081 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2082 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2083 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2084 role.quadrant = quadrant;
2085 }
2086 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2087 if (is_obsolete_sp(vcpu->kvm, sp))
2088 continue;
2089
2090 if (!need_sync && sp->unsync)
2091 need_sync = true;
2092
2093 if (sp->role.word != role.word)
2094 continue;
2095
2096 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2097 break;
2098
2099 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2100 if (sp->unsync_children) {
2101 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2102 kvm_mmu_mark_parents_unsync(sp);
2103 } else if (sp->unsync)
2104 kvm_mmu_mark_parents_unsync(sp);
2105
2106 __clear_sp_write_flooding_count(sp);
2107 trace_kvm_mmu_get_page(sp, false);
2108 return sp;
2109 }
2110 ++vcpu->kvm->stat.mmu_cache_miss;
2111 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2112 if (!sp)
2113 return sp;
2114 sp->gfn = gfn;
2115 sp->role = role;
2116 hlist_add_head(&sp->hash_link,
2117 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2118 if (!direct) {
2119 if (rmap_write_protect(vcpu, gfn))
2120 kvm_flush_remote_tlbs(vcpu->kvm);
2121 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2122 kvm_sync_pages(vcpu, gfn);
2123
2124 account_shadowed(vcpu->kvm, sp);
2125 }
2126 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2127 init_shadow_page_table(sp);
2128 trace_kvm_mmu_get_page(sp, true);
2129 return sp;
2130 }
2131
2132 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2133 struct kvm_vcpu *vcpu, u64 addr)
2134 {
2135 iterator->addr = addr;
2136 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2137 iterator->level = vcpu->arch.mmu.shadow_root_level;
2138
2139 if (iterator->level == PT64_ROOT_LEVEL &&
2140 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2141 !vcpu->arch.mmu.direct_map)
2142 --iterator->level;
2143
2144 if (iterator->level == PT32E_ROOT_LEVEL) {
2145 iterator->shadow_addr
2146 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2147 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2148 --iterator->level;
2149 if (!iterator->shadow_addr)
2150 iterator->level = 0;
2151 }
2152 }
2153
2154 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2155 {
2156 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2157 return false;
2158
2159 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2160 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2161 return true;
2162 }
2163
2164 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2165 u64 spte)
2166 {
2167 if (is_last_spte(spte, iterator->level)) {
2168 iterator->level = 0;
2169 return;
2170 }
2171
2172 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2173 --iterator->level;
2174 }
2175
2176 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2177 {
2178 return __shadow_walk_next(iterator, *iterator->sptep);
2179 }
2180
2181 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2182 {
2183 u64 spte;
2184
2185 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2186 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2187
2188 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2189 shadow_user_mask | shadow_x_mask;
2190
2191 if (accessed)
2192 spte |= shadow_accessed_mask;
2193
2194 mmu_spte_set(sptep, spte);
2195 }
2196
2197 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2198 unsigned direct_access)
2199 {
2200 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2201 struct kvm_mmu_page *child;
2202
2203 /*
2204 * For the direct sp, if the guest pte's dirty bit
2205 * changed form clean to dirty, it will corrupt the
2206 * sp's access: allow writable in the read-only sp,
2207 * so we should update the spte at this point to get
2208 * a new sp with the correct access.
2209 */
2210 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2211 if (child->role.access == direct_access)
2212 return;
2213
2214 drop_parent_pte(child, sptep);
2215 kvm_flush_remote_tlbs(vcpu->kvm);
2216 }
2217 }
2218
2219 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2220 u64 *spte)
2221 {
2222 u64 pte;
2223 struct kvm_mmu_page *child;
2224
2225 pte = *spte;
2226 if (is_shadow_present_pte(pte)) {
2227 if (is_last_spte(pte, sp->role.level)) {
2228 drop_spte(kvm, spte);
2229 if (is_large_pte(pte))
2230 --kvm->stat.lpages;
2231 } else {
2232 child = page_header(pte & PT64_BASE_ADDR_MASK);
2233 drop_parent_pte(child, spte);
2234 }
2235 return true;
2236 }
2237
2238 if (is_mmio_spte(pte))
2239 mmu_spte_clear_no_track(spte);
2240
2241 return false;
2242 }
2243
2244 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2245 struct kvm_mmu_page *sp)
2246 {
2247 unsigned i;
2248
2249 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2250 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2251 }
2252
2253 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2254 {
2255 mmu_page_remove_parent_pte(sp, parent_pte);
2256 }
2257
2258 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2259 {
2260 u64 *sptep;
2261 struct rmap_iterator iter;
2262
2263 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2264 drop_parent_pte(sp, sptep);
2265 }
2266
2267 static int mmu_zap_unsync_children(struct kvm *kvm,
2268 struct kvm_mmu_page *parent,
2269 struct list_head *invalid_list)
2270 {
2271 int i, zapped = 0;
2272 struct mmu_page_path parents;
2273 struct kvm_mmu_pages pages;
2274
2275 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2276 return 0;
2277
2278 kvm_mmu_pages_init(parent, &parents, &pages);
2279 while (mmu_unsync_walk(parent, &pages)) {
2280 struct kvm_mmu_page *sp;
2281
2282 for_each_sp(pages, sp, parents, i) {
2283 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2284 mmu_pages_clear_parents(&parents);
2285 zapped++;
2286 }
2287 kvm_mmu_pages_init(parent, &parents, &pages);
2288 }
2289
2290 return zapped;
2291 }
2292
2293 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2294 struct list_head *invalid_list)
2295 {
2296 int ret;
2297
2298 trace_kvm_mmu_prepare_zap_page(sp);
2299 ++kvm->stat.mmu_shadow_zapped;
2300 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2301 kvm_mmu_page_unlink_children(kvm, sp);
2302 kvm_mmu_unlink_parents(kvm, sp);
2303
2304 if (!sp->role.invalid && !sp->role.direct)
2305 unaccount_shadowed(kvm, sp);
2306
2307 if (sp->unsync)
2308 kvm_unlink_unsync_page(kvm, sp);
2309 if (!sp->root_count) {
2310 /* Count self */
2311 ret++;
2312 list_move(&sp->link, invalid_list);
2313 kvm_mod_used_mmu_pages(kvm, -1);
2314 } else {
2315 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2316
2317 /*
2318 * The obsolete pages can not be used on any vcpus.
2319 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2320 */
2321 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2322 kvm_reload_remote_mmus(kvm);
2323 }
2324
2325 sp->role.invalid = 1;
2326 return ret;
2327 }
2328
2329 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2330 struct list_head *invalid_list)
2331 {
2332 struct kvm_mmu_page *sp, *nsp;
2333
2334 if (list_empty(invalid_list))
2335 return;
2336
2337 /*
2338 * wmb: make sure everyone sees our modifications to the page tables
2339 * rmb: make sure we see changes to vcpu->mode
2340 */
2341 smp_mb();
2342
2343 /*
2344 * Wait for all vcpus to exit guest mode and/or lockless shadow
2345 * page table walks.
2346 */
2347 kvm_flush_remote_tlbs(kvm);
2348
2349 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2350 WARN_ON(!sp->role.invalid || sp->root_count);
2351 kvm_mmu_free_page(sp);
2352 }
2353 }
2354
2355 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2356 struct list_head *invalid_list)
2357 {
2358 struct kvm_mmu_page *sp;
2359
2360 if (list_empty(&kvm->arch.active_mmu_pages))
2361 return false;
2362
2363 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2364 struct kvm_mmu_page, link);
2365 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2366
2367 return true;
2368 }
2369
2370 /*
2371 * Changing the number of mmu pages allocated to the vm
2372 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2373 */
2374 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2375 {
2376 LIST_HEAD(invalid_list);
2377
2378 spin_lock(&kvm->mmu_lock);
2379
2380 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2381 /* Need to free some mmu pages to achieve the goal. */
2382 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2383 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2384 break;
2385
2386 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2387 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2388 }
2389
2390 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2391
2392 spin_unlock(&kvm->mmu_lock);
2393 }
2394
2395 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2396 {
2397 struct kvm_mmu_page *sp;
2398 LIST_HEAD(invalid_list);
2399 int r;
2400
2401 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2402 r = 0;
2403 spin_lock(&kvm->mmu_lock);
2404 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2405 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2406 sp->role.word);
2407 r = 1;
2408 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2409 }
2410 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2411 spin_unlock(&kvm->mmu_lock);
2412
2413 return r;
2414 }
2415 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2416
2417 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2418 {
2419 trace_kvm_mmu_unsync_page(sp);
2420 ++vcpu->kvm->stat.mmu_unsync;
2421 sp->unsync = 1;
2422
2423 kvm_mmu_mark_parents_unsync(sp);
2424 }
2425
2426 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2427 {
2428 struct kvm_mmu_page *s;
2429
2430 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2431 if (s->unsync)
2432 continue;
2433 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2434 __kvm_unsync_page(vcpu, s);
2435 }
2436 }
2437
2438 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2439 bool can_unsync)
2440 {
2441 struct kvm_mmu_page *s;
2442 bool need_unsync = false;
2443
2444 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2445 if (!can_unsync)
2446 return 1;
2447
2448 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2449 return 1;
2450
2451 if (!s->unsync)
2452 need_unsync = true;
2453 }
2454 if (need_unsync)
2455 kvm_unsync_pages(vcpu, gfn);
2456 return 0;
2457 }
2458
2459 static bool kvm_is_mmio_pfn(pfn_t pfn)
2460 {
2461 if (pfn_valid(pfn))
2462 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2463
2464 return true;
2465 }
2466
2467 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2468 unsigned pte_access, int level,
2469 gfn_t gfn, pfn_t pfn, bool speculative,
2470 bool can_unsync, bool host_writable)
2471 {
2472 u64 spte;
2473 int ret = 0;
2474
2475 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2476 return 0;
2477
2478 spte = PT_PRESENT_MASK;
2479 if (!speculative)
2480 spte |= shadow_accessed_mask;
2481
2482 if (pte_access & ACC_EXEC_MASK)
2483 spte |= shadow_x_mask;
2484 else
2485 spte |= shadow_nx_mask;
2486
2487 if (pte_access & ACC_USER_MASK)
2488 spte |= shadow_user_mask;
2489
2490 if (level > PT_PAGE_TABLE_LEVEL)
2491 spte |= PT_PAGE_SIZE_MASK;
2492 if (tdp_enabled)
2493 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2494 kvm_is_mmio_pfn(pfn));
2495
2496 if (host_writable)
2497 spte |= SPTE_HOST_WRITEABLE;
2498 else
2499 pte_access &= ~ACC_WRITE_MASK;
2500
2501 spte |= (u64)pfn << PAGE_SHIFT;
2502
2503 if (pte_access & ACC_WRITE_MASK) {
2504
2505 /*
2506 * Other vcpu creates new sp in the window between
2507 * mapping_level() and acquiring mmu-lock. We can
2508 * allow guest to retry the access, the mapping can
2509 * be fixed if guest refault.
2510 */
2511 if (level > PT_PAGE_TABLE_LEVEL &&
2512 has_wrprotected_page(vcpu, gfn, level))
2513 goto done;
2514
2515 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2516
2517 /*
2518 * Optimization: for pte sync, if spte was writable the hash
2519 * lookup is unnecessary (and expensive). Write protection
2520 * is responsibility of mmu_get_page / kvm_sync_page.
2521 * Same reasoning can be applied to dirty page accounting.
2522 */
2523 if (!can_unsync && is_writable_pte(*sptep))
2524 goto set_pte;
2525
2526 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2527 pgprintk("%s: found shadow page for %llx, marking ro\n",
2528 __func__, gfn);
2529 ret = 1;
2530 pte_access &= ~ACC_WRITE_MASK;
2531 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2532 }
2533 }
2534
2535 if (pte_access & ACC_WRITE_MASK) {
2536 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2537 spte |= shadow_dirty_mask;
2538 }
2539
2540 set_pte:
2541 if (mmu_spte_update(sptep, spte))
2542 kvm_flush_remote_tlbs(vcpu->kvm);
2543 done:
2544 return ret;
2545 }
2546
2547 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2548 unsigned pte_access, int write_fault, int *emulate,
2549 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2550 bool host_writable)
2551 {
2552 int was_rmapped = 0;
2553 int rmap_count;
2554
2555 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2556 *sptep, write_fault, gfn);
2557
2558 if (is_rmap_spte(*sptep)) {
2559 /*
2560 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2561 * the parent of the now unreachable PTE.
2562 */
2563 if (level > PT_PAGE_TABLE_LEVEL &&
2564 !is_large_pte(*sptep)) {
2565 struct kvm_mmu_page *child;
2566 u64 pte = *sptep;
2567
2568 child = page_header(pte & PT64_BASE_ADDR_MASK);
2569 drop_parent_pte(child, sptep);
2570 kvm_flush_remote_tlbs(vcpu->kvm);
2571 } else if (pfn != spte_to_pfn(*sptep)) {
2572 pgprintk("hfn old %llx new %llx\n",
2573 spte_to_pfn(*sptep), pfn);
2574 drop_spte(vcpu->kvm, sptep);
2575 kvm_flush_remote_tlbs(vcpu->kvm);
2576 } else
2577 was_rmapped = 1;
2578 }
2579
2580 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2581 true, host_writable)) {
2582 if (write_fault)
2583 *emulate = 1;
2584 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2585 }
2586
2587 if (unlikely(is_mmio_spte(*sptep) && emulate))
2588 *emulate = 1;
2589
2590 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2591 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2592 is_large_pte(*sptep)? "2MB" : "4kB",
2593 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2594 *sptep, sptep);
2595 if (!was_rmapped && is_large_pte(*sptep))
2596 ++vcpu->kvm->stat.lpages;
2597
2598 if (is_shadow_present_pte(*sptep)) {
2599 if (!was_rmapped) {
2600 rmap_count = rmap_add(vcpu, sptep, gfn);
2601 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2602 rmap_recycle(vcpu, sptep, gfn);
2603 }
2604 }
2605
2606 kvm_release_pfn_clean(pfn);
2607 }
2608
2609 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2610 bool no_dirty_log)
2611 {
2612 struct kvm_memory_slot *slot;
2613
2614 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2615 if (!slot)
2616 return KVM_PFN_ERR_FAULT;
2617
2618 return gfn_to_pfn_memslot_atomic(slot, gfn);
2619 }
2620
2621 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2622 struct kvm_mmu_page *sp,
2623 u64 *start, u64 *end)
2624 {
2625 struct page *pages[PTE_PREFETCH_NUM];
2626 struct kvm_memory_slot *slot;
2627 unsigned access = sp->role.access;
2628 int i, ret;
2629 gfn_t gfn;
2630
2631 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2632 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2633 if (!slot)
2634 return -1;
2635
2636 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2637 if (ret <= 0)
2638 return -1;
2639
2640 for (i = 0; i < ret; i++, gfn++, start++)
2641 mmu_set_spte(vcpu, start, access, 0, NULL,
2642 sp->role.level, gfn, page_to_pfn(pages[i]),
2643 true, true);
2644
2645 return 0;
2646 }
2647
2648 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2649 struct kvm_mmu_page *sp, u64 *sptep)
2650 {
2651 u64 *spte, *start = NULL;
2652 int i;
2653
2654 WARN_ON(!sp->role.direct);
2655
2656 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2657 spte = sp->spt + i;
2658
2659 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2660 if (is_shadow_present_pte(*spte) || spte == sptep) {
2661 if (!start)
2662 continue;
2663 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2664 break;
2665 start = NULL;
2666 } else if (!start)
2667 start = spte;
2668 }
2669 }
2670
2671 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2672 {
2673 struct kvm_mmu_page *sp;
2674
2675 /*
2676 * Since it's no accessed bit on EPT, it's no way to
2677 * distinguish between actually accessed translations
2678 * and prefetched, so disable pte prefetch if EPT is
2679 * enabled.
2680 */
2681 if (!shadow_accessed_mask)
2682 return;
2683
2684 sp = page_header(__pa(sptep));
2685 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2686 return;
2687
2688 __direct_pte_prefetch(vcpu, sp, sptep);
2689 }
2690
2691 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2692 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2693 bool prefault)
2694 {
2695 struct kvm_shadow_walk_iterator iterator;
2696 struct kvm_mmu_page *sp;
2697 int emulate = 0;
2698 gfn_t pseudo_gfn;
2699
2700 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2701 return 0;
2702
2703 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2704 if (iterator.level == level) {
2705 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2706 write, &emulate, level, gfn, pfn,
2707 prefault, map_writable);
2708 direct_pte_prefetch(vcpu, iterator.sptep);
2709 ++vcpu->stat.pf_fixed;
2710 break;
2711 }
2712
2713 drop_large_spte(vcpu, iterator.sptep);
2714 if (!is_shadow_present_pte(*iterator.sptep)) {
2715 u64 base_addr = iterator.addr;
2716
2717 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2718 pseudo_gfn = base_addr >> PAGE_SHIFT;
2719 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2720 iterator.level - 1,
2721 1, ACC_ALL, iterator.sptep);
2722
2723 link_shadow_page(iterator.sptep, sp, true);
2724 }
2725 }
2726 return emulate;
2727 }
2728
2729 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2730 {
2731 siginfo_t info;
2732
2733 info.si_signo = SIGBUS;
2734 info.si_errno = 0;
2735 info.si_code = BUS_MCEERR_AR;
2736 info.si_addr = (void __user *)address;
2737 info.si_addr_lsb = PAGE_SHIFT;
2738
2739 send_sig_info(SIGBUS, &info, tsk);
2740 }
2741
2742 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2743 {
2744 /*
2745 * Do not cache the mmio info caused by writing the readonly gfn
2746 * into the spte otherwise read access on readonly gfn also can
2747 * caused mmio page fault and treat it as mmio access.
2748 * Return 1 to tell kvm to emulate it.
2749 */
2750 if (pfn == KVM_PFN_ERR_RO_FAULT)
2751 return 1;
2752
2753 if (pfn == KVM_PFN_ERR_HWPOISON) {
2754 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2755 return 0;
2756 }
2757
2758 return -EFAULT;
2759 }
2760
2761 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2762 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2763 {
2764 pfn_t pfn = *pfnp;
2765 gfn_t gfn = *gfnp;
2766 int level = *levelp;
2767
2768 /*
2769 * Check if it's a transparent hugepage. If this would be an
2770 * hugetlbfs page, level wouldn't be set to
2771 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2772 * here.
2773 */
2774 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2775 level == PT_PAGE_TABLE_LEVEL &&
2776 PageTransCompound(pfn_to_page(pfn)) &&
2777 !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2778 unsigned long mask;
2779 /*
2780 * mmu_notifier_retry was successful and we hold the
2781 * mmu_lock here, so the pmd can't become splitting
2782 * from under us, and in turn
2783 * __split_huge_page_refcount() can't run from under
2784 * us and we can safely transfer the refcount from
2785 * PG_tail to PG_head as we switch the pfn to tail to
2786 * head.
2787 */
2788 *levelp = level = PT_DIRECTORY_LEVEL;
2789 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2790 VM_BUG_ON((gfn & mask) != (pfn & mask));
2791 if (pfn & mask) {
2792 gfn &= ~mask;
2793 *gfnp = gfn;
2794 kvm_release_pfn_clean(pfn);
2795 pfn &= ~mask;
2796 kvm_get_pfn(pfn);
2797 *pfnp = pfn;
2798 }
2799 }
2800 }
2801
2802 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2803 pfn_t pfn, unsigned access, int *ret_val)
2804 {
2805 bool ret = true;
2806
2807 /* The pfn is invalid, report the error! */
2808 if (unlikely(is_error_pfn(pfn))) {
2809 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2810 goto exit;
2811 }
2812
2813 if (unlikely(is_noslot_pfn(pfn)))
2814 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2815
2816 ret = false;
2817 exit:
2818 return ret;
2819 }
2820
2821 static bool page_fault_can_be_fast(u32 error_code)
2822 {
2823 /*
2824 * Do not fix the mmio spte with invalid generation number which
2825 * need to be updated by slow page fault path.
2826 */
2827 if (unlikely(error_code & PFERR_RSVD_MASK))
2828 return false;
2829
2830 /*
2831 * #PF can be fast only if the shadow page table is present and it
2832 * is caused by write-protect, that means we just need change the
2833 * W bit of the spte which can be done out of mmu-lock.
2834 */
2835 if (!(error_code & PFERR_PRESENT_MASK) ||
2836 !(error_code & PFERR_WRITE_MASK))
2837 return false;
2838
2839 return true;
2840 }
2841
2842 static bool
2843 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2844 u64 *sptep, u64 spte)
2845 {
2846 gfn_t gfn;
2847
2848 WARN_ON(!sp->role.direct);
2849
2850 /*
2851 * The gfn of direct spte is stable since it is calculated
2852 * by sp->gfn.
2853 */
2854 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2855
2856 /*
2857 * Theoretically we could also set dirty bit (and flush TLB) here in
2858 * order to eliminate unnecessary PML logging. See comments in
2859 * set_spte. But fast_page_fault is very unlikely to happen with PML
2860 * enabled, so we do not do this. This might result in the same GPA
2861 * to be logged in PML buffer again when the write really happens, and
2862 * eventually to be called by mark_page_dirty twice. But it's also no
2863 * harm. This also avoids the TLB flush needed after setting dirty bit
2864 * so non-PML cases won't be impacted.
2865 *
2866 * Compare with set_spte where instead shadow_dirty_mask is set.
2867 */
2868 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2869 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2870
2871 return true;
2872 }
2873
2874 /*
2875 * Return value:
2876 * - true: let the vcpu to access on the same address again.
2877 * - false: let the real page fault path to fix it.
2878 */
2879 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2880 u32 error_code)
2881 {
2882 struct kvm_shadow_walk_iterator iterator;
2883 struct kvm_mmu_page *sp;
2884 bool ret = false;
2885 u64 spte = 0ull;
2886
2887 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2888 return false;
2889
2890 if (!page_fault_can_be_fast(error_code))
2891 return false;
2892
2893 walk_shadow_page_lockless_begin(vcpu);
2894 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2895 if (!is_shadow_present_pte(spte) || iterator.level < level)
2896 break;
2897
2898 /*
2899 * If the mapping has been changed, let the vcpu fault on the
2900 * same address again.
2901 */
2902 if (!is_rmap_spte(spte)) {
2903 ret = true;
2904 goto exit;
2905 }
2906
2907 sp = page_header(__pa(iterator.sptep));
2908 if (!is_last_spte(spte, sp->role.level))
2909 goto exit;
2910
2911 /*
2912 * Check if it is a spurious fault caused by TLB lazily flushed.
2913 *
2914 * Need not check the access of upper level table entries since
2915 * they are always ACC_ALL.
2916 */
2917 if (is_writable_pte(spte)) {
2918 ret = true;
2919 goto exit;
2920 }
2921
2922 /*
2923 * Currently, to simplify the code, only the spte write-protected
2924 * by dirty-log can be fast fixed.
2925 */
2926 if (!spte_is_locklessly_modifiable(spte))
2927 goto exit;
2928
2929 /*
2930 * Do not fix write-permission on the large spte since we only dirty
2931 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2932 * that means other pages are missed if its slot is dirty-logged.
2933 *
2934 * Instead, we let the slow page fault path create a normal spte to
2935 * fix the access.
2936 *
2937 * See the comments in kvm_arch_commit_memory_region().
2938 */
2939 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2940 goto exit;
2941
2942 /*
2943 * Currently, fast page fault only works for direct mapping since
2944 * the gfn is not stable for indirect shadow page.
2945 * See Documentation/virtual/kvm/locking.txt to get more detail.
2946 */
2947 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2948 exit:
2949 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2950 spte, ret);
2951 walk_shadow_page_lockless_end(vcpu);
2952
2953 return ret;
2954 }
2955
2956 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2957 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2958 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2959
2960 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2961 gfn_t gfn, bool prefault)
2962 {
2963 int r;
2964 int level;
2965 int force_pt_level;
2966 pfn_t pfn;
2967 unsigned long mmu_seq;
2968 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2969
2970 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2971 if (likely(!force_pt_level)) {
2972 level = mapping_level(vcpu, gfn);
2973 /*
2974 * This path builds a PAE pagetable - so we can map
2975 * 2mb pages at maximum. Therefore check if the level
2976 * is larger than that.
2977 */
2978 if (level > PT_DIRECTORY_LEVEL)
2979 level = PT_DIRECTORY_LEVEL;
2980
2981 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2982 } else
2983 level = PT_PAGE_TABLE_LEVEL;
2984
2985 if (fast_page_fault(vcpu, v, level, error_code))
2986 return 0;
2987
2988 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2989 smp_rmb();
2990
2991 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2992 return 0;
2993
2994 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2995 return r;
2996
2997 spin_lock(&vcpu->kvm->mmu_lock);
2998 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2999 goto out_unlock;
3000 make_mmu_pages_available(vcpu);
3001 if (likely(!force_pt_level))
3002 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3003 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3004 prefault);
3005 spin_unlock(&vcpu->kvm->mmu_lock);
3006
3007
3008 return r;
3009
3010 out_unlock:
3011 spin_unlock(&vcpu->kvm->mmu_lock);
3012 kvm_release_pfn_clean(pfn);
3013 return 0;
3014 }
3015
3016
3017 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3018 {
3019 int i;
3020 struct kvm_mmu_page *sp;
3021 LIST_HEAD(invalid_list);
3022
3023 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3024 return;
3025
3026 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3027 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3028 vcpu->arch.mmu.direct_map)) {
3029 hpa_t root = vcpu->arch.mmu.root_hpa;
3030
3031 spin_lock(&vcpu->kvm->mmu_lock);
3032 sp = page_header(root);
3033 --sp->root_count;
3034 if (!sp->root_count && sp->role.invalid) {
3035 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3036 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3037 }
3038 spin_unlock(&vcpu->kvm->mmu_lock);
3039 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3040 return;
3041 }
3042
3043 spin_lock(&vcpu->kvm->mmu_lock);
3044 for (i = 0; i < 4; ++i) {
3045 hpa_t root = vcpu->arch.mmu.pae_root[i];
3046
3047 if (root) {
3048 root &= PT64_BASE_ADDR_MASK;
3049 sp = page_header(root);
3050 --sp->root_count;
3051 if (!sp->root_count && sp->role.invalid)
3052 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3053 &invalid_list);
3054 }
3055 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3056 }
3057 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3058 spin_unlock(&vcpu->kvm->mmu_lock);
3059 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3060 }
3061
3062 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3063 {
3064 int ret = 0;
3065
3066 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3067 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3068 ret = 1;
3069 }
3070
3071 return ret;
3072 }
3073
3074 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3075 {
3076 struct kvm_mmu_page *sp;
3077 unsigned i;
3078
3079 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3080 spin_lock(&vcpu->kvm->mmu_lock);
3081 make_mmu_pages_available(vcpu);
3082 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3083 1, ACC_ALL, NULL);
3084 ++sp->root_count;
3085 spin_unlock(&vcpu->kvm->mmu_lock);
3086 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3087 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3088 for (i = 0; i < 4; ++i) {
3089 hpa_t root = vcpu->arch.mmu.pae_root[i];
3090
3091 MMU_WARN_ON(VALID_PAGE(root));
3092 spin_lock(&vcpu->kvm->mmu_lock);
3093 make_mmu_pages_available(vcpu);
3094 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3095 i << 30,
3096 PT32_ROOT_LEVEL, 1, ACC_ALL,
3097 NULL);
3098 root = __pa(sp->spt);
3099 ++sp->root_count;
3100 spin_unlock(&vcpu->kvm->mmu_lock);
3101 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3102 }
3103 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3104 } else
3105 BUG();
3106
3107 return 0;
3108 }
3109
3110 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3111 {
3112 struct kvm_mmu_page *sp;
3113 u64 pdptr, pm_mask;
3114 gfn_t root_gfn;
3115 int i;
3116
3117 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3118
3119 if (mmu_check_root(vcpu, root_gfn))
3120 return 1;
3121
3122 /*
3123 * Do we shadow a long mode page table? If so we need to
3124 * write-protect the guests page table root.
3125 */
3126 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3127 hpa_t root = vcpu->arch.mmu.root_hpa;
3128
3129 MMU_WARN_ON(VALID_PAGE(root));
3130
3131 spin_lock(&vcpu->kvm->mmu_lock);
3132 make_mmu_pages_available(vcpu);
3133 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3134 0, ACC_ALL, NULL);
3135 root = __pa(sp->spt);
3136 ++sp->root_count;
3137 spin_unlock(&vcpu->kvm->mmu_lock);
3138 vcpu->arch.mmu.root_hpa = root;
3139 return 0;
3140 }
3141
3142 /*
3143 * We shadow a 32 bit page table. This may be a legacy 2-level
3144 * or a PAE 3-level page table. In either case we need to be aware that
3145 * the shadow page table may be a PAE or a long mode page table.
3146 */
3147 pm_mask = PT_PRESENT_MASK;
3148 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3149 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3150
3151 for (i = 0; i < 4; ++i) {
3152 hpa_t root = vcpu->arch.mmu.pae_root[i];
3153
3154 MMU_WARN_ON(VALID_PAGE(root));
3155 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3156 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3157 if (!is_present_gpte(pdptr)) {
3158 vcpu->arch.mmu.pae_root[i] = 0;
3159 continue;
3160 }
3161 root_gfn = pdptr >> PAGE_SHIFT;
3162 if (mmu_check_root(vcpu, root_gfn))
3163 return 1;
3164 }
3165 spin_lock(&vcpu->kvm->mmu_lock);
3166 make_mmu_pages_available(vcpu);
3167 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3168 PT32_ROOT_LEVEL, 0,
3169 ACC_ALL, NULL);
3170 root = __pa(sp->spt);
3171 ++sp->root_count;
3172 spin_unlock(&vcpu->kvm->mmu_lock);
3173
3174 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3175 }
3176 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3177
3178 /*
3179 * If we shadow a 32 bit page table with a long mode page
3180 * table we enter this path.
3181 */
3182 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3183 if (vcpu->arch.mmu.lm_root == NULL) {
3184 /*
3185 * The additional page necessary for this is only
3186 * allocated on demand.
3187 */
3188
3189 u64 *lm_root;
3190
3191 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3192 if (lm_root == NULL)
3193 return 1;
3194
3195 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3196
3197 vcpu->arch.mmu.lm_root = lm_root;
3198 }
3199
3200 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3201 }
3202
3203 return 0;
3204 }
3205
3206 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3207 {
3208 if (vcpu->arch.mmu.direct_map)
3209 return mmu_alloc_direct_roots(vcpu);
3210 else
3211 return mmu_alloc_shadow_roots(vcpu);
3212 }
3213
3214 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3215 {
3216 int i;
3217 struct kvm_mmu_page *sp;
3218
3219 if (vcpu->arch.mmu.direct_map)
3220 return;
3221
3222 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3223 return;
3224
3225 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3226 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3227 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3228 hpa_t root = vcpu->arch.mmu.root_hpa;
3229 sp = page_header(root);
3230 mmu_sync_children(vcpu, sp);
3231 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3232 return;
3233 }
3234 for (i = 0; i < 4; ++i) {
3235 hpa_t root = vcpu->arch.mmu.pae_root[i];
3236
3237 if (root && VALID_PAGE(root)) {
3238 root &= PT64_BASE_ADDR_MASK;
3239 sp = page_header(root);
3240 mmu_sync_children(vcpu, sp);
3241 }
3242 }
3243 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3244 }
3245
3246 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3247 {
3248 spin_lock(&vcpu->kvm->mmu_lock);
3249 mmu_sync_roots(vcpu);
3250 spin_unlock(&vcpu->kvm->mmu_lock);
3251 }
3252 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3253
3254 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3255 u32 access, struct x86_exception *exception)
3256 {
3257 if (exception)
3258 exception->error_code = 0;
3259 return vaddr;
3260 }
3261
3262 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3263 u32 access,
3264 struct x86_exception *exception)
3265 {
3266 if (exception)
3267 exception->error_code = 0;
3268 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3269 }
3270
3271 static bool
3272 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3273 {
3274 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3275
3276 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3277 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3278 }
3279
3280 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3281 {
3282 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3283 }
3284
3285 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3286 {
3287 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3288 }
3289
3290 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3291 {
3292 if (direct)
3293 return vcpu_match_mmio_gpa(vcpu, addr);
3294
3295 return vcpu_match_mmio_gva(vcpu, addr);
3296 }
3297
3298 /* return true if reserved bit is detected on spte. */
3299 static bool
3300 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3301 {
3302 struct kvm_shadow_walk_iterator iterator;
3303 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3304 int root, leaf;
3305 bool reserved = false;
3306
3307 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3308 goto exit;
3309
3310 walk_shadow_page_lockless_begin(vcpu);
3311
3312 for (shadow_walk_init(&iterator, vcpu, addr), root = iterator.level;
3313 shadow_walk_okay(&iterator);
3314 __shadow_walk_next(&iterator, spte)) {
3315 leaf = iterator.level;
3316 spte = mmu_spte_get_lockless(iterator.sptep);
3317
3318 sptes[leaf - 1] = spte;
3319
3320 if (!is_shadow_present_pte(spte))
3321 break;
3322
3323 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3324 leaf);
3325 }
3326
3327 walk_shadow_page_lockless_end(vcpu);
3328
3329 if (reserved) {
3330 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3331 __func__, addr);
3332 while (root >= leaf) {
3333 pr_err("------ spte 0x%llx level %d.\n",
3334 sptes[root - 1], root);
3335 root--;
3336 }
3337 }
3338 exit:
3339 *sptep = spte;
3340 return reserved;
3341 }
3342
3343 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3344 {
3345 u64 spte;
3346 bool reserved;
3347
3348 if (quickly_check_mmio_pf(vcpu, addr, direct))
3349 return RET_MMIO_PF_EMULATE;
3350
3351 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3352 if (unlikely(reserved))
3353 return RET_MMIO_PF_BUG;
3354
3355 if (is_mmio_spte(spte)) {
3356 gfn_t gfn = get_mmio_spte_gfn(spte);
3357 unsigned access = get_mmio_spte_access(spte);
3358
3359 if (!check_mmio_spte(vcpu, spte))
3360 return RET_MMIO_PF_INVALID;
3361
3362 if (direct)
3363 addr = 0;
3364
3365 trace_handle_mmio_page_fault(addr, gfn, access);
3366 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3367 return RET_MMIO_PF_EMULATE;
3368 }
3369
3370 /*
3371 * If the page table is zapped by other cpus, let CPU fault again on
3372 * the address.
3373 */
3374 return RET_MMIO_PF_RETRY;
3375 }
3376 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3377
3378 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3379 u32 error_code, bool direct)
3380 {
3381 int ret;
3382
3383 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3384 WARN_ON(ret == RET_MMIO_PF_BUG);
3385 return ret;
3386 }
3387
3388 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3389 u32 error_code, bool prefault)
3390 {
3391 gfn_t gfn;
3392 int r;
3393
3394 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3395
3396 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3397 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3398
3399 if (likely(r != RET_MMIO_PF_INVALID))
3400 return r;
3401 }
3402
3403 r = mmu_topup_memory_caches(vcpu);
3404 if (r)
3405 return r;
3406
3407 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3408
3409 gfn = gva >> PAGE_SHIFT;
3410
3411 return nonpaging_map(vcpu, gva & PAGE_MASK,
3412 error_code, gfn, prefault);
3413 }
3414
3415 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3416 {
3417 struct kvm_arch_async_pf arch;
3418
3419 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3420 arch.gfn = gfn;
3421 arch.direct_map = vcpu->arch.mmu.direct_map;
3422 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3423
3424 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3425 }
3426
3427 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3428 {
3429 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3430 kvm_event_needs_reinjection(vcpu)))
3431 return false;
3432
3433 return kvm_x86_ops->interrupt_allowed(vcpu);
3434 }
3435
3436 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3437 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3438 {
3439 struct kvm_memory_slot *slot;
3440 bool async;
3441
3442 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3443 async = false;
3444 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3445 if (!async)
3446 return false; /* *pfn has correct page already */
3447
3448 if (!prefault && can_do_async_pf(vcpu)) {
3449 trace_kvm_try_async_get_page(gva, gfn);
3450 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3451 trace_kvm_async_pf_doublefault(gva, gfn);
3452 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3453 return true;
3454 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3455 return true;
3456 }
3457
3458 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3459 return false;
3460 }
3461
3462 static bool
3463 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3464 {
3465 int page_num = KVM_PAGES_PER_HPAGE(level);
3466
3467 gfn &= ~(page_num - 1);
3468
3469 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3470 }
3471
3472 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3473 bool prefault)
3474 {
3475 pfn_t pfn;
3476 int r;
3477 int level;
3478 int force_pt_level;
3479 gfn_t gfn = gpa >> PAGE_SHIFT;
3480 unsigned long mmu_seq;
3481 int write = error_code & PFERR_WRITE_MASK;
3482 bool map_writable;
3483
3484 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3485
3486 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3487 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3488
3489 if (likely(r != RET_MMIO_PF_INVALID))
3490 return r;
3491 }
3492
3493 r = mmu_topup_memory_caches(vcpu);
3494 if (r)
3495 return r;
3496
3497 if (mapping_level_dirty_bitmap(vcpu, gfn) ||
3498 !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL))
3499 force_pt_level = 1;
3500 else
3501 force_pt_level = 0;
3502
3503 if (likely(!force_pt_level)) {
3504 level = mapping_level(vcpu, gfn);
3505 if (level > PT_DIRECTORY_LEVEL &&
3506 !check_hugepage_cache_consistency(vcpu, gfn, level))
3507 level = PT_DIRECTORY_LEVEL;
3508 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3509 } else
3510 level = PT_PAGE_TABLE_LEVEL;
3511
3512 if (fast_page_fault(vcpu, gpa, level, error_code))
3513 return 0;
3514
3515 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3516 smp_rmb();
3517
3518 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3519 return 0;
3520
3521 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3522 return r;
3523
3524 spin_lock(&vcpu->kvm->mmu_lock);
3525 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3526 goto out_unlock;
3527 make_mmu_pages_available(vcpu);
3528 if (likely(!force_pt_level))
3529 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3530 r = __direct_map(vcpu, gpa, write, map_writable,
3531 level, gfn, pfn, prefault);
3532 spin_unlock(&vcpu->kvm->mmu_lock);
3533
3534 return r;
3535
3536 out_unlock:
3537 spin_unlock(&vcpu->kvm->mmu_lock);
3538 kvm_release_pfn_clean(pfn);
3539 return 0;
3540 }
3541
3542 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3543 struct kvm_mmu *context)
3544 {
3545 context->page_fault = nonpaging_page_fault;
3546 context->gva_to_gpa = nonpaging_gva_to_gpa;
3547 context->sync_page = nonpaging_sync_page;
3548 context->invlpg = nonpaging_invlpg;
3549 context->update_pte = nonpaging_update_pte;
3550 context->root_level = 0;
3551 context->shadow_root_level = PT32E_ROOT_LEVEL;
3552 context->root_hpa = INVALID_PAGE;
3553 context->direct_map = true;
3554 context->nx = false;
3555 }
3556
3557 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3558 {
3559 mmu_free_roots(vcpu);
3560 }
3561
3562 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3563 {
3564 return kvm_read_cr3(vcpu);
3565 }
3566
3567 static void inject_page_fault(struct kvm_vcpu *vcpu,
3568 struct x86_exception *fault)
3569 {
3570 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3571 }
3572
3573 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3574 unsigned access, int *nr_present)
3575 {
3576 if (unlikely(is_mmio_spte(*sptep))) {
3577 if (gfn != get_mmio_spte_gfn(*sptep)) {
3578 mmu_spte_clear_no_track(sptep);
3579 return true;
3580 }
3581
3582 (*nr_present)++;
3583 mark_mmio_spte(vcpu, sptep, gfn, access);
3584 return true;
3585 }
3586
3587 return false;
3588 }
3589
3590 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3591 {
3592 unsigned index;
3593
3594 index = level - 1;
3595 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3596 return mmu->last_pte_bitmap & (1 << index);
3597 }
3598
3599 #define PTTYPE_EPT 18 /* arbitrary */
3600 #define PTTYPE PTTYPE_EPT
3601 #include "paging_tmpl.h"
3602 #undef PTTYPE
3603
3604 #define PTTYPE 64
3605 #include "paging_tmpl.h"
3606 #undef PTTYPE
3607
3608 #define PTTYPE 32
3609 #include "paging_tmpl.h"
3610 #undef PTTYPE
3611
3612 static void
3613 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3614 struct rsvd_bits_validate *rsvd_check,
3615 int maxphyaddr, int level, bool nx, bool gbpages,
3616 bool pse)
3617 {
3618 u64 exb_bit_rsvd = 0;
3619 u64 gbpages_bit_rsvd = 0;
3620 u64 nonleaf_bit8_rsvd = 0;
3621
3622 rsvd_check->bad_mt_xwr = 0;
3623
3624 if (!nx)
3625 exb_bit_rsvd = rsvd_bits(63, 63);
3626 if (!gbpages)
3627 gbpages_bit_rsvd = rsvd_bits(7, 7);
3628
3629 /*
3630 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3631 * leaf entries) on AMD CPUs only.
3632 */
3633 if (guest_cpuid_is_amd(vcpu))
3634 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3635
3636 switch (level) {
3637 case PT32_ROOT_LEVEL:
3638 /* no rsvd bits for 2 level 4K page table entries */
3639 rsvd_check->rsvd_bits_mask[0][1] = 0;
3640 rsvd_check->rsvd_bits_mask[0][0] = 0;
3641 rsvd_check->rsvd_bits_mask[1][0] =
3642 rsvd_check->rsvd_bits_mask[0][0];
3643
3644 if (!pse) {
3645 rsvd_check->rsvd_bits_mask[1][1] = 0;
3646 break;
3647 }
3648
3649 if (is_cpuid_PSE36())
3650 /* 36bits PSE 4MB page */
3651 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3652 else
3653 /* 32 bits PSE 4MB page */
3654 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3655 break;
3656 case PT32E_ROOT_LEVEL:
3657 rsvd_check->rsvd_bits_mask[0][2] =
3658 rsvd_bits(maxphyaddr, 63) |
3659 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3660 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3661 rsvd_bits(maxphyaddr, 62); /* PDE */
3662 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3663 rsvd_bits(maxphyaddr, 62); /* PTE */
3664 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3665 rsvd_bits(maxphyaddr, 62) |
3666 rsvd_bits(13, 20); /* large page */
3667 rsvd_check->rsvd_bits_mask[1][0] =
3668 rsvd_check->rsvd_bits_mask[0][0];
3669 break;
3670 case PT64_ROOT_LEVEL:
3671 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3672 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3673 rsvd_bits(maxphyaddr, 51);
3674 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3675 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3676 rsvd_bits(maxphyaddr, 51);
3677 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3678 rsvd_bits(maxphyaddr, 51);
3679 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3680 rsvd_bits(maxphyaddr, 51);
3681 rsvd_check->rsvd_bits_mask[1][3] =
3682 rsvd_check->rsvd_bits_mask[0][3];
3683 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3684 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3685 rsvd_bits(13, 29);
3686 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3687 rsvd_bits(maxphyaddr, 51) |
3688 rsvd_bits(13, 20); /* large page */
3689 rsvd_check->rsvd_bits_mask[1][0] =
3690 rsvd_check->rsvd_bits_mask[0][0];
3691 break;
3692 }
3693 }
3694
3695 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3696 struct kvm_mmu *context)
3697 {
3698 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3699 cpuid_maxphyaddr(vcpu), context->root_level,
3700 context->nx, guest_cpuid_has_gbpages(vcpu),
3701 is_pse(vcpu));
3702 }
3703
3704 static void
3705 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3706 int maxphyaddr, bool execonly)
3707 {
3708 int pte;
3709
3710 rsvd_check->rsvd_bits_mask[0][3] =
3711 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3712 rsvd_check->rsvd_bits_mask[0][2] =
3713 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3714 rsvd_check->rsvd_bits_mask[0][1] =
3715 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3716 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3717
3718 /* large page */
3719 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3720 rsvd_check->rsvd_bits_mask[1][2] =
3721 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3722 rsvd_check->rsvd_bits_mask[1][1] =
3723 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3724 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3725
3726 for (pte = 0; pte < 64; pte++) {
3727 int rwx_bits = pte & 7;
3728 int mt = pte >> 3;
3729 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3730 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3731 (rwx_bits == 0x4 && !execonly))
3732 rsvd_check->bad_mt_xwr |= (1ull << pte);
3733 }
3734 }
3735
3736 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3737 struct kvm_mmu *context, bool execonly)
3738 {
3739 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3740 cpuid_maxphyaddr(vcpu), execonly);
3741 }
3742
3743 /*
3744 * the page table on host is the shadow page table for the page
3745 * table in guest or amd nested guest, its mmu features completely
3746 * follow the features in guest.
3747 */
3748 void
3749 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3750 {
3751 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3752 boot_cpu_data.x86_phys_bits,
3753 context->shadow_root_level, context->nx,
3754 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu));
3755 }
3756 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3757
3758 /*
3759 * the direct page table on host, use as much mmu features as
3760 * possible, however, kvm currently does not do execution-protection.
3761 */
3762 static void
3763 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3764 struct kvm_mmu *context)
3765 {
3766 if (guest_cpuid_is_amd(vcpu))
3767 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3768 boot_cpu_data.x86_phys_bits,
3769 context->shadow_root_level, false,
3770 cpu_has_gbpages, true);
3771 else
3772 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3773 boot_cpu_data.x86_phys_bits,
3774 false);
3775
3776 }
3777
3778 /*
3779 * as the comments in reset_shadow_zero_bits_mask() except it
3780 * is the shadow page table for intel nested guest.
3781 */
3782 static void
3783 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3784 struct kvm_mmu *context, bool execonly)
3785 {
3786 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3787 boot_cpu_data.x86_phys_bits, execonly);
3788 }
3789
3790 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3791 struct kvm_mmu *mmu, bool ept)
3792 {
3793 unsigned bit, byte, pfec;
3794 u8 map;
3795 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3796
3797 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3798 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3799 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3800 pfec = byte << 1;
3801 map = 0;
3802 wf = pfec & PFERR_WRITE_MASK;
3803 uf = pfec & PFERR_USER_MASK;
3804 ff = pfec & PFERR_FETCH_MASK;
3805 /*
3806 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3807 * subject to SMAP restrictions, and cleared otherwise. The
3808 * bit is only meaningful if the SMAP bit is set in CR4.
3809 */
3810 smapf = !(pfec & PFERR_RSVD_MASK);
3811 for (bit = 0; bit < 8; ++bit) {
3812 x = bit & ACC_EXEC_MASK;
3813 w = bit & ACC_WRITE_MASK;
3814 u = bit & ACC_USER_MASK;
3815
3816 if (!ept) {
3817 /* Not really needed: !nx will cause pte.nx to fault */
3818 x |= !mmu->nx;
3819 /* Allow supervisor writes if !cr0.wp */
3820 w |= !is_write_protection(vcpu) && !uf;
3821 /* Disallow supervisor fetches of user code if cr4.smep */
3822 x &= !(cr4_smep && u && !uf);
3823
3824 /*
3825 * SMAP:kernel-mode data accesses from user-mode
3826 * mappings should fault. A fault is considered
3827 * as a SMAP violation if all of the following
3828 * conditions are ture:
3829 * - X86_CR4_SMAP is set in CR4
3830 * - An user page is accessed
3831 * - Page fault in kernel mode
3832 * - if CPL = 3 or X86_EFLAGS_AC is clear
3833 *
3834 * Here, we cover the first three conditions.
3835 * The fourth is computed dynamically in
3836 * permission_fault() and is in smapf.
3837 *
3838 * Also, SMAP does not affect instruction
3839 * fetches, add the !ff check here to make it
3840 * clearer.
3841 */
3842 smap = cr4_smap && u && !uf && !ff;
3843 } else
3844 /* Not really needed: no U/S accesses on ept */
3845 u = 1;
3846
3847 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3848 (smapf && smap);
3849 map |= fault << bit;
3850 }
3851 mmu->permissions[byte] = map;
3852 }
3853 }
3854
3855 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3856 {
3857 u8 map;
3858 unsigned level, root_level = mmu->root_level;
3859 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3860
3861 if (root_level == PT32E_ROOT_LEVEL)
3862 --root_level;
3863 /* PT_PAGE_TABLE_LEVEL always terminates */
3864 map = 1 | (1 << ps_set_index);
3865 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3866 if (level <= PT_PDPE_LEVEL
3867 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3868 map |= 1 << (ps_set_index | (level - 1));
3869 }
3870 mmu->last_pte_bitmap = map;
3871 }
3872
3873 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3874 struct kvm_mmu *context,
3875 int level)
3876 {
3877 context->nx = is_nx(vcpu);
3878 context->root_level = level;
3879
3880 reset_rsvds_bits_mask(vcpu, context);
3881 update_permission_bitmask(vcpu, context, false);
3882 update_last_pte_bitmap(vcpu, context);
3883
3884 MMU_WARN_ON(!is_pae(vcpu));
3885 context->page_fault = paging64_page_fault;
3886 context->gva_to_gpa = paging64_gva_to_gpa;
3887 context->sync_page = paging64_sync_page;
3888 context->invlpg = paging64_invlpg;
3889 context->update_pte = paging64_update_pte;
3890 context->shadow_root_level = level;
3891 context->root_hpa = INVALID_PAGE;
3892 context->direct_map = false;
3893 }
3894
3895 static void paging64_init_context(struct kvm_vcpu *vcpu,
3896 struct kvm_mmu *context)
3897 {
3898 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3899 }
3900
3901 static void paging32_init_context(struct kvm_vcpu *vcpu,
3902 struct kvm_mmu *context)
3903 {
3904 context->nx = false;
3905 context->root_level = PT32_ROOT_LEVEL;
3906
3907 reset_rsvds_bits_mask(vcpu, context);
3908 update_permission_bitmask(vcpu, context, false);
3909 update_last_pte_bitmap(vcpu, context);
3910
3911 context->page_fault = paging32_page_fault;
3912 context->gva_to_gpa = paging32_gva_to_gpa;
3913 context->sync_page = paging32_sync_page;
3914 context->invlpg = paging32_invlpg;
3915 context->update_pte = paging32_update_pte;
3916 context->shadow_root_level = PT32E_ROOT_LEVEL;
3917 context->root_hpa = INVALID_PAGE;
3918 context->direct_map = false;
3919 }
3920
3921 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3922 struct kvm_mmu *context)
3923 {
3924 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3925 }
3926
3927 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3928 {
3929 struct kvm_mmu *context = &vcpu->arch.mmu;
3930
3931 context->base_role.word = 0;
3932 context->base_role.smm = is_smm(vcpu);
3933 context->page_fault = tdp_page_fault;
3934 context->sync_page = nonpaging_sync_page;
3935 context->invlpg = nonpaging_invlpg;
3936 context->update_pte = nonpaging_update_pte;
3937 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3938 context->root_hpa = INVALID_PAGE;
3939 context->direct_map = true;
3940 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3941 context->get_cr3 = get_cr3;
3942 context->get_pdptr = kvm_pdptr_read;
3943 context->inject_page_fault = kvm_inject_page_fault;
3944
3945 if (!is_paging(vcpu)) {
3946 context->nx = false;
3947 context->gva_to_gpa = nonpaging_gva_to_gpa;
3948 context->root_level = 0;
3949 } else if (is_long_mode(vcpu)) {
3950 context->nx = is_nx(vcpu);
3951 context->root_level = PT64_ROOT_LEVEL;
3952 reset_rsvds_bits_mask(vcpu, context);
3953 context->gva_to_gpa = paging64_gva_to_gpa;
3954 } else if (is_pae(vcpu)) {
3955 context->nx = is_nx(vcpu);
3956 context->root_level = PT32E_ROOT_LEVEL;
3957 reset_rsvds_bits_mask(vcpu, context);
3958 context->gva_to_gpa = paging64_gva_to_gpa;
3959 } else {
3960 context->nx = false;
3961 context->root_level = PT32_ROOT_LEVEL;
3962 reset_rsvds_bits_mask(vcpu, context);
3963 context->gva_to_gpa = paging32_gva_to_gpa;
3964 }
3965
3966 update_permission_bitmask(vcpu, context, false);
3967 update_last_pte_bitmap(vcpu, context);
3968 reset_tdp_shadow_zero_bits_mask(vcpu, context);
3969 }
3970
3971 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3972 {
3973 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3974 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3975 struct kvm_mmu *context = &vcpu->arch.mmu;
3976
3977 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3978
3979 if (!is_paging(vcpu))
3980 nonpaging_init_context(vcpu, context);
3981 else if (is_long_mode(vcpu))
3982 paging64_init_context(vcpu, context);
3983 else if (is_pae(vcpu))
3984 paging32E_init_context(vcpu, context);
3985 else
3986 paging32_init_context(vcpu, context);
3987
3988 context->base_role.nxe = is_nx(vcpu);
3989 context->base_role.cr4_pae = !!is_pae(vcpu);
3990 context->base_role.cr0_wp = is_write_protection(vcpu);
3991 context->base_role.smep_andnot_wp
3992 = smep && !is_write_protection(vcpu);
3993 context->base_role.smap_andnot_wp
3994 = smap && !is_write_protection(vcpu);
3995 context->base_role.smm = is_smm(vcpu);
3996 reset_shadow_zero_bits_mask(vcpu, context);
3997 }
3998 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3999
4000 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4001 {
4002 struct kvm_mmu *context = &vcpu->arch.mmu;
4003
4004 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4005
4006 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4007
4008 context->nx = true;
4009 context->page_fault = ept_page_fault;
4010 context->gva_to_gpa = ept_gva_to_gpa;
4011 context->sync_page = ept_sync_page;
4012 context->invlpg = ept_invlpg;
4013 context->update_pte = ept_update_pte;
4014 context->root_level = context->shadow_root_level;
4015 context->root_hpa = INVALID_PAGE;
4016 context->direct_map = false;
4017
4018 update_permission_bitmask(vcpu, context, true);
4019 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4020 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4021 }
4022 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4023
4024 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4025 {
4026 struct kvm_mmu *context = &vcpu->arch.mmu;
4027
4028 kvm_init_shadow_mmu(vcpu);
4029 context->set_cr3 = kvm_x86_ops->set_cr3;
4030 context->get_cr3 = get_cr3;
4031 context->get_pdptr = kvm_pdptr_read;
4032 context->inject_page_fault = kvm_inject_page_fault;
4033 }
4034
4035 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4036 {
4037 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4038
4039 g_context->get_cr3 = get_cr3;
4040 g_context->get_pdptr = kvm_pdptr_read;
4041 g_context->inject_page_fault = kvm_inject_page_fault;
4042
4043 /*
4044 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4045 * translation of l2_gpa to l1_gpa addresses is done using the
4046 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4047 * functions between mmu and nested_mmu are swapped.
4048 */
4049 if (!is_paging(vcpu)) {
4050 g_context->nx = false;
4051 g_context->root_level = 0;
4052 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4053 } else if (is_long_mode(vcpu)) {
4054 g_context->nx = is_nx(vcpu);
4055 g_context->root_level = PT64_ROOT_LEVEL;
4056 reset_rsvds_bits_mask(vcpu, g_context);
4057 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4058 } else if (is_pae(vcpu)) {
4059 g_context->nx = is_nx(vcpu);
4060 g_context->root_level = PT32E_ROOT_LEVEL;
4061 reset_rsvds_bits_mask(vcpu, g_context);
4062 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4063 } else {
4064 g_context->nx = false;
4065 g_context->root_level = PT32_ROOT_LEVEL;
4066 reset_rsvds_bits_mask(vcpu, g_context);
4067 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4068 }
4069
4070 update_permission_bitmask(vcpu, g_context, false);
4071 update_last_pte_bitmap(vcpu, g_context);
4072 }
4073
4074 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4075 {
4076 if (mmu_is_nested(vcpu))
4077 init_kvm_nested_mmu(vcpu);
4078 else if (tdp_enabled)
4079 init_kvm_tdp_mmu(vcpu);
4080 else
4081 init_kvm_softmmu(vcpu);
4082 }
4083
4084 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4085 {
4086 kvm_mmu_unload(vcpu);
4087 init_kvm_mmu(vcpu);
4088 }
4089 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4090
4091 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4092 {
4093 int r;
4094
4095 r = mmu_topup_memory_caches(vcpu);
4096 if (r)
4097 goto out;
4098 r = mmu_alloc_roots(vcpu);
4099 kvm_mmu_sync_roots(vcpu);
4100 if (r)
4101 goto out;
4102 /* set_cr3() should ensure TLB has been flushed */
4103 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4104 out:
4105 return r;
4106 }
4107 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4108
4109 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4110 {
4111 mmu_free_roots(vcpu);
4112 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4113 }
4114 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4115
4116 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4117 struct kvm_mmu_page *sp, u64 *spte,
4118 const void *new)
4119 {
4120 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4121 ++vcpu->kvm->stat.mmu_pde_zapped;
4122 return;
4123 }
4124
4125 ++vcpu->kvm->stat.mmu_pte_updated;
4126 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4127 }
4128
4129 static bool need_remote_flush(u64 old, u64 new)
4130 {
4131 if (!is_shadow_present_pte(old))
4132 return false;
4133 if (!is_shadow_present_pte(new))
4134 return true;
4135 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4136 return true;
4137 old ^= shadow_nx_mask;
4138 new ^= shadow_nx_mask;
4139 return (old & ~new & PT64_PERM_MASK) != 0;
4140 }
4141
4142 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4143 bool remote_flush, bool local_flush)
4144 {
4145 if (zap_page)
4146 return;
4147
4148 if (remote_flush)
4149 kvm_flush_remote_tlbs(vcpu->kvm);
4150 else if (local_flush)
4151 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4152 }
4153
4154 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4155 const u8 *new, int *bytes)
4156 {
4157 u64 gentry;
4158 int r;
4159
4160 /*
4161 * Assume that the pte write on a page table of the same type
4162 * as the current vcpu paging mode since we update the sptes only
4163 * when they have the same mode.
4164 */
4165 if (is_pae(vcpu) && *bytes == 4) {
4166 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4167 *gpa &= ~(gpa_t)7;
4168 *bytes = 8;
4169 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4170 if (r)
4171 gentry = 0;
4172 new = (const u8 *)&gentry;
4173 }
4174
4175 switch (*bytes) {
4176 case 4:
4177 gentry = *(const u32 *)new;
4178 break;
4179 case 8:
4180 gentry = *(const u64 *)new;
4181 break;
4182 default:
4183 gentry = 0;
4184 break;
4185 }
4186
4187 return gentry;
4188 }
4189
4190 /*
4191 * If we're seeing too many writes to a page, it may no longer be a page table,
4192 * or we may be forking, in which case it is better to unmap the page.
4193 */
4194 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4195 {
4196 /*
4197 * Skip write-flooding detected for the sp whose level is 1, because
4198 * it can become unsync, then the guest page is not write-protected.
4199 */
4200 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4201 return false;
4202
4203 return ++sp->write_flooding_count >= 3;
4204 }
4205
4206 /*
4207 * Misaligned accesses are too much trouble to fix up; also, they usually
4208 * indicate a page is not used as a page table.
4209 */
4210 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4211 int bytes)
4212 {
4213 unsigned offset, pte_size, misaligned;
4214
4215 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4216 gpa, bytes, sp->role.word);
4217
4218 offset = offset_in_page(gpa);
4219 pte_size = sp->role.cr4_pae ? 8 : 4;
4220
4221 /*
4222 * Sometimes, the OS only writes the last one bytes to update status
4223 * bits, for example, in linux, andb instruction is used in clear_bit().
4224 */
4225 if (!(offset & (pte_size - 1)) && bytes == 1)
4226 return false;
4227
4228 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4229 misaligned |= bytes < 4;
4230
4231 return misaligned;
4232 }
4233
4234 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4235 {
4236 unsigned page_offset, quadrant;
4237 u64 *spte;
4238 int level;
4239
4240 page_offset = offset_in_page(gpa);
4241 level = sp->role.level;
4242 *nspte = 1;
4243 if (!sp->role.cr4_pae) {
4244 page_offset <<= 1; /* 32->64 */
4245 /*
4246 * A 32-bit pde maps 4MB while the shadow pdes map
4247 * only 2MB. So we need to double the offset again
4248 * and zap two pdes instead of one.
4249 */
4250 if (level == PT32_ROOT_LEVEL) {
4251 page_offset &= ~7; /* kill rounding error */
4252 page_offset <<= 1;
4253 *nspte = 2;
4254 }
4255 quadrant = page_offset >> PAGE_SHIFT;
4256 page_offset &= ~PAGE_MASK;
4257 if (quadrant != sp->role.quadrant)
4258 return NULL;
4259 }
4260
4261 spte = &sp->spt[page_offset / sizeof(*spte)];
4262 return spte;
4263 }
4264
4265 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4266 const u8 *new, int bytes)
4267 {
4268 gfn_t gfn = gpa >> PAGE_SHIFT;
4269 struct kvm_mmu_page *sp;
4270 LIST_HEAD(invalid_list);
4271 u64 entry, gentry, *spte;
4272 int npte;
4273 bool remote_flush, local_flush, zap_page;
4274 union kvm_mmu_page_role mask = { };
4275
4276 mask.cr0_wp = 1;
4277 mask.cr4_pae = 1;
4278 mask.nxe = 1;
4279 mask.smep_andnot_wp = 1;
4280 mask.smap_andnot_wp = 1;
4281 mask.smm = 1;
4282
4283 /*
4284 * If we don't have indirect shadow pages, it means no page is
4285 * write-protected, so we can exit simply.
4286 */
4287 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4288 return;
4289
4290 zap_page = remote_flush = local_flush = false;
4291
4292 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4293
4294 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4295
4296 /*
4297 * No need to care whether allocation memory is successful
4298 * or not since pte prefetch is skiped if it does not have
4299 * enough objects in the cache.
4300 */
4301 mmu_topup_memory_caches(vcpu);
4302
4303 spin_lock(&vcpu->kvm->mmu_lock);
4304 ++vcpu->kvm->stat.mmu_pte_write;
4305 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4306
4307 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4308 if (detect_write_misaligned(sp, gpa, bytes) ||
4309 detect_write_flooding(sp)) {
4310 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4311 &invalid_list);
4312 ++vcpu->kvm->stat.mmu_flooded;
4313 continue;
4314 }
4315
4316 spte = get_written_sptes(sp, gpa, &npte);
4317 if (!spte)
4318 continue;
4319
4320 local_flush = true;
4321 while (npte--) {
4322 entry = *spte;
4323 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4324 if (gentry &&
4325 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4326 & mask.word) && rmap_can_add(vcpu))
4327 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4328 if (need_remote_flush(entry, *spte))
4329 remote_flush = true;
4330 ++spte;
4331 }
4332 }
4333 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4334 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4335 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4336 spin_unlock(&vcpu->kvm->mmu_lock);
4337 }
4338
4339 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4340 {
4341 gpa_t gpa;
4342 int r;
4343
4344 if (vcpu->arch.mmu.direct_map)
4345 return 0;
4346
4347 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4348
4349 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4350
4351 return r;
4352 }
4353 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4354
4355 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4356 {
4357 LIST_HEAD(invalid_list);
4358
4359 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4360 return;
4361
4362 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4363 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4364 break;
4365
4366 ++vcpu->kvm->stat.mmu_recycled;
4367 }
4368 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4369 }
4370
4371 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4372 {
4373 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4374 return vcpu_match_mmio_gpa(vcpu, addr);
4375
4376 return vcpu_match_mmio_gva(vcpu, addr);
4377 }
4378
4379 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4380 void *insn, int insn_len)
4381 {
4382 int r, emulation_type = EMULTYPE_RETRY;
4383 enum emulation_result er;
4384
4385 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4386 if (r < 0)
4387 goto out;
4388
4389 if (!r) {
4390 r = 1;
4391 goto out;
4392 }
4393
4394 if (is_mmio_page_fault(vcpu, cr2))
4395 emulation_type = 0;
4396
4397 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4398
4399 switch (er) {
4400 case EMULATE_DONE:
4401 return 1;
4402 case EMULATE_USER_EXIT:
4403 ++vcpu->stat.mmio_exits;
4404 /* fall through */
4405 case EMULATE_FAIL:
4406 return 0;
4407 default:
4408 BUG();
4409 }
4410 out:
4411 return r;
4412 }
4413 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4414
4415 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4416 {
4417 vcpu->arch.mmu.invlpg(vcpu, gva);
4418 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4419 ++vcpu->stat.invlpg;
4420 }
4421 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4422
4423 void kvm_enable_tdp(void)
4424 {
4425 tdp_enabled = true;
4426 }
4427 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4428
4429 void kvm_disable_tdp(void)
4430 {
4431 tdp_enabled = false;
4432 }
4433 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4434
4435 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4436 {
4437 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4438 if (vcpu->arch.mmu.lm_root != NULL)
4439 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4440 }
4441
4442 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4443 {
4444 struct page *page;
4445 int i;
4446
4447 /*
4448 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4449 * Therefore we need to allocate shadow page tables in the first
4450 * 4GB of memory, which happens to fit the DMA32 zone.
4451 */
4452 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4453 if (!page)
4454 return -ENOMEM;
4455
4456 vcpu->arch.mmu.pae_root = page_address(page);
4457 for (i = 0; i < 4; ++i)
4458 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4459
4460 return 0;
4461 }
4462
4463 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4464 {
4465 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4466 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4467 vcpu->arch.mmu.translate_gpa = translate_gpa;
4468 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4469
4470 return alloc_mmu_pages(vcpu);
4471 }
4472
4473 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4474 {
4475 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4476
4477 init_kvm_mmu(vcpu);
4478 }
4479
4480 /* The return value indicates if tlb flush on all vcpus is needed. */
4481 typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4482
4483 /* The caller should hold mmu-lock before calling this function. */
4484 static bool
4485 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4486 slot_level_handler fn, int start_level, int end_level,
4487 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4488 {
4489 struct slot_rmap_walk_iterator iterator;
4490 bool flush = false;
4491
4492 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4493 end_gfn, &iterator) {
4494 if (iterator.rmap)
4495 flush |= fn(kvm, iterator.rmap);
4496
4497 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4498 if (flush && lock_flush_tlb) {
4499 kvm_flush_remote_tlbs(kvm);
4500 flush = false;
4501 }
4502 cond_resched_lock(&kvm->mmu_lock);
4503 }
4504 }
4505
4506 if (flush && lock_flush_tlb) {
4507 kvm_flush_remote_tlbs(kvm);
4508 flush = false;
4509 }
4510
4511 return flush;
4512 }
4513
4514 static bool
4515 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4516 slot_level_handler fn, int start_level, int end_level,
4517 bool lock_flush_tlb)
4518 {
4519 return slot_handle_level_range(kvm, memslot, fn, start_level,
4520 end_level, memslot->base_gfn,
4521 memslot->base_gfn + memslot->npages - 1,
4522 lock_flush_tlb);
4523 }
4524
4525 static bool
4526 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4527 slot_level_handler fn, bool lock_flush_tlb)
4528 {
4529 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4530 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4531 }
4532
4533 static bool
4534 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4535 slot_level_handler fn, bool lock_flush_tlb)
4536 {
4537 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4538 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4539 }
4540
4541 static bool
4542 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4543 slot_level_handler fn, bool lock_flush_tlb)
4544 {
4545 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4546 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4547 }
4548
4549 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4550 {
4551 struct kvm_memslots *slots;
4552 struct kvm_memory_slot *memslot;
4553 int i;
4554
4555 spin_lock(&kvm->mmu_lock);
4556 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4557 slots = __kvm_memslots(kvm, i);
4558 kvm_for_each_memslot(memslot, slots) {
4559 gfn_t start, end;
4560
4561 start = max(gfn_start, memslot->base_gfn);
4562 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4563 if (start >= end)
4564 continue;
4565
4566 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4567 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4568 start, end - 1, true);
4569 }
4570 }
4571
4572 spin_unlock(&kvm->mmu_lock);
4573 }
4574
4575 static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4576 {
4577 return __rmap_write_protect(kvm, rmapp, false);
4578 }
4579
4580 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4581 struct kvm_memory_slot *memslot)
4582 {
4583 bool flush;
4584
4585 spin_lock(&kvm->mmu_lock);
4586 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4587 false);
4588 spin_unlock(&kvm->mmu_lock);
4589
4590 /*
4591 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4592 * which do tlb flush out of mmu-lock should be serialized by
4593 * kvm->slots_lock otherwise tlb flush would be missed.
4594 */
4595 lockdep_assert_held(&kvm->slots_lock);
4596
4597 /*
4598 * We can flush all the TLBs out of the mmu lock without TLB
4599 * corruption since we just change the spte from writable to
4600 * readonly so that we only need to care the case of changing
4601 * spte from present to present (changing the spte from present
4602 * to nonpresent will flush all the TLBs immediately), in other
4603 * words, the only case we care is mmu_spte_update() where we
4604 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4605 * instead of PT_WRITABLE_MASK, that means it does not depend
4606 * on PT_WRITABLE_MASK anymore.
4607 */
4608 if (flush)
4609 kvm_flush_remote_tlbs(kvm);
4610 }
4611
4612 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4613 unsigned long *rmapp)
4614 {
4615 u64 *sptep;
4616 struct rmap_iterator iter;
4617 int need_tlb_flush = 0;
4618 pfn_t pfn;
4619 struct kvm_mmu_page *sp;
4620
4621 restart:
4622 for_each_rmap_spte(rmapp, &iter, sptep) {
4623 sp = page_header(__pa(sptep));
4624 pfn = spte_to_pfn(*sptep);
4625
4626 /*
4627 * We cannot do huge page mapping for indirect shadow pages,
4628 * which are found on the last rmap (level = 1) when not using
4629 * tdp; such shadow pages are synced with the page table in
4630 * the guest, and the guest page table is using 4K page size
4631 * mapping if the indirect sp has level = 1.
4632 */
4633 if (sp->role.direct &&
4634 !kvm_is_reserved_pfn(pfn) &&
4635 PageTransCompound(pfn_to_page(pfn))) {
4636 drop_spte(kvm, sptep);
4637 need_tlb_flush = 1;
4638 goto restart;
4639 }
4640 }
4641
4642 return need_tlb_flush;
4643 }
4644
4645 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4646 const struct kvm_memory_slot *memslot)
4647 {
4648 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
4649 spin_lock(&kvm->mmu_lock);
4650 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4651 kvm_mmu_zap_collapsible_spte, true);
4652 spin_unlock(&kvm->mmu_lock);
4653 }
4654
4655 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4656 struct kvm_memory_slot *memslot)
4657 {
4658 bool flush;
4659
4660 spin_lock(&kvm->mmu_lock);
4661 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4662 spin_unlock(&kvm->mmu_lock);
4663
4664 lockdep_assert_held(&kvm->slots_lock);
4665
4666 /*
4667 * It's also safe to flush TLBs out of mmu lock here as currently this
4668 * function is only used for dirty logging, in which case flushing TLB
4669 * out of mmu lock also guarantees no dirty pages will be lost in
4670 * dirty_bitmap.
4671 */
4672 if (flush)
4673 kvm_flush_remote_tlbs(kvm);
4674 }
4675 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4676
4677 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4678 struct kvm_memory_slot *memslot)
4679 {
4680 bool flush;
4681
4682 spin_lock(&kvm->mmu_lock);
4683 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4684 false);
4685 spin_unlock(&kvm->mmu_lock);
4686
4687 /* see kvm_mmu_slot_remove_write_access */
4688 lockdep_assert_held(&kvm->slots_lock);
4689
4690 if (flush)
4691 kvm_flush_remote_tlbs(kvm);
4692 }
4693 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4694
4695 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4696 struct kvm_memory_slot *memslot)
4697 {
4698 bool flush;
4699
4700 spin_lock(&kvm->mmu_lock);
4701 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4702 spin_unlock(&kvm->mmu_lock);
4703
4704 lockdep_assert_held(&kvm->slots_lock);
4705
4706 /* see kvm_mmu_slot_leaf_clear_dirty */
4707 if (flush)
4708 kvm_flush_remote_tlbs(kvm);
4709 }
4710 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4711
4712 #define BATCH_ZAP_PAGES 10
4713 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4714 {
4715 struct kvm_mmu_page *sp, *node;
4716 int batch = 0;
4717
4718 restart:
4719 list_for_each_entry_safe_reverse(sp, node,
4720 &kvm->arch.active_mmu_pages, link) {
4721 int ret;
4722
4723 /*
4724 * No obsolete page exists before new created page since
4725 * active_mmu_pages is the FIFO list.
4726 */
4727 if (!is_obsolete_sp(kvm, sp))
4728 break;
4729
4730 /*
4731 * Since we are reversely walking the list and the invalid
4732 * list will be moved to the head, skip the invalid page
4733 * can help us to avoid the infinity list walking.
4734 */
4735 if (sp->role.invalid)
4736 continue;
4737
4738 /*
4739 * Need not flush tlb since we only zap the sp with invalid
4740 * generation number.
4741 */
4742 if (batch >= BATCH_ZAP_PAGES &&
4743 cond_resched_lock(&kvm->mmu_lock)) {
4744 batch = 0;
4745 goto restart;
4746 }
4747
4748 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4749 &kvm->arch.zapped_obsolete_pages);
4750 batch += ret;
4751
4752 if (ret)
4753 goto restart;
4754 }
4755
4756 /*
4757 * Should flush tlb before free page tables since lockless-walking
4758 * may use the pages.
4759 */
4760 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4761 }
4762
4763 /*
4764 * Fast invalidate all shadow pages and use lock-break technique
4765 * to zap obsolete pages.
4766 *
4767 * It's required when memslot is being deleted or VM is being
4768 * destroyed, in these cases, we should ensure that KVM MMU does
4769 * not use any resource of the being-deleted slot or all slots
4770 * after calling the function.
4771 */
4772 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4773 {
4774 spin_lock(&kvm->mmu_lock);
4775 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4776 kvm->arch.mmu_valid_gen++;
4777
4778 /*
4779 * Notify all vcpus to reload its shadow page table
4780 * and flush TLB. Then all vcpus will switch to new
4781 * shadow page table with the new mmu_valid_gen.
4782 *
4783 * Note: we should do this under the protection of
4784 * mmu-lock, otherwise, vcpu would purge shadow page
4785 * but miss tlb flush.
4786 */
4787 kvm_reload_remote_mmus(kvm);
4788
4789 kvm_zap_obsolete_pages(kvm);
4790 spin_unlock(&kvm->mmu_lock);
4791 }
4792
4793 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4794 {
4795 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4796 }
4797
4798 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4799 {
4800 /*
4801 * The very rare case: if the generation-number is round,
4802 * zap all shadow pages.
4803 */
4804 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4805 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4806 kvm_mmu_invalidate_zap_all_pages(kvm);
4807 }
4808 }
4809
4810 static unsigned long
4811 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4812 {
4813 struct kvm *kvm;
4814 int nr_to_scan = sc->nr_to_scan;
4815 unsigned long freed = 0;
4816
4817 spin_lock(&kvm_lock);
4818
4819 list_for_each_entry(kvm, &vm_list, vm_list) {
4820 int idx;
4821 LIST_HEAD(invalid_list);
4822
4823 /*
4824 * Never scan more than sc->nr_to_scan VM instances.
4825 * Will not hit this condition practically since we do not try
4826 * to shrink more than one VM and it is very unlikely to see
4827 * !n_used_mmu_pages so many times.
4828 */
4829 if (!nr_to_scan--)
4830 break;
4831 /*
4832 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4833 * here. We may skip a VM instance errorneosly, but we do not
4834 * want to shrink a VM that only started to populate its MMU
4835 * anyway.
4836 */
4837 if (!kvm->arch.n_used_mmu_pages &&
4838 !kvm_has_zapped_obsolete_pages(kvm))
4839 continue;
4840
4841 idx = srcu_read_lock(&kvm->srcu);
4842 spin_lock(&kvm->mmu_lock);
4843
4844 if (kvm_has_zapped_obsolete_pages(kvm)) {
4845 kvm_mmu_commit_zap_page(kvm,
4846 &kvm->arch.zapped_obsolete_pages);
4847 goto unlock;
4848 }
4849
4850 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4851 freed++;
4852 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4853
4854 unlock:
4855 spin_unlock(&kvm->mmu_lock);
4856 srcu_read_unlock(&kvm->srcu, idx);
4857
4858 /*
4859 * unfair on small ones
4860 * per-vm shrinkers cry out
4861 * sadness comes quickly
4862 */
4863 list_move_tail(&kvm->vm_list, &vm_list);
4864 break;
4865 }
4866
4867 spin_unlock(&kvm_lock);
4868 return freed;
4869 }
4870
4871 static unsigned long
4872 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4873 {
4874 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4875 }
4876
4877 static struct shrinker mmu_shrinker = {
4878 .count_objects = mmu_shrink_count,
4879 .scan_objects = mmu_shrink_scan,
4880 .seeks = DEFAULT_SEEKS * 10,
4881 };
4882
4883 static void mmu_destroy_caches(void)
4884 {
4885 if (pte_list_desc_cache)
4886 kmem_cache_destroy(pte_list_desc_cache);
4887 if (mmu_page_header_cache)
4888 kmem_cache_destroy(mmu_page_header_cache);
4889 }
4890
4891 int kvm_mmu_module_init(void)
4892 {
4893 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4894 sizeof(struct pte_list_desc),
4895 0, 0, NULL);
4896 if (!pte_list_desc_cache)
4897 goto nomem;
4898
4899 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4900 sizeof(struct kvm_mmu_page),
4901 0, 0, NULL);
4902 if (!mmu_page_header_cache)
4903 goto nomem;
4904
4905 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4906 goto nomem;
4907
4908 register_shrinker(&mmu_shrinker);
4909
4910 return 0;
4911
4912 nomem:
4913 mmu_destroy_caches();
4914 return -ENOMEM;
4915 }
4916
4917 /*
4918 * Caculate mmu pages needed for kvm.
4919 */
4920 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4921 {
4922 unsigned int nr_mmu_pages;
4923 unsigned int nr_pages = 0;
4924 struct kvm_memslots *slots;
4925 struct kvm_memory_slot *memslot;
4926 int i;
4927
4928 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4929 slots = __kvm_memslots(kvm, i);
4930
4931 kvm_for_each_memslot(memslot, slots)
4932 nr_pages += memslot->npages;
4933 }
4934
4935 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4936 nr_mmu_pages = max(nr_mmu_pages,
4937 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4938
4939 return nr_mmu_pages;
4940 }
4941
4942 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4943 {
4944 kvm_mmu_unload(vcpu);
4945 free_mmu_pages(vcpu);
4946 mmu_free_memory_caches(vcpu);
4947 }
4948
4949 void kvm_mmu_module_exit(void)
4950 {
4951 mmu_destroy_caches();
4952 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4953 unregister_shrinker(&mmu_shrinker);
4954 mmu_audit_disable();
4955 }
This page took 0.139132 seconds and 6 git commands to generate.