KVM: VMX: Enable MSR Bitmap feature
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 #include "vmx.h"
21 #include "mmu.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
32
33 #include <asm/page.h>
34 #include <asm/cmpxchg.h>
35 #include <asm/io.h>
36
37 /*
38 * When setting this variable to true it enables Two-Dimensional-Paging
39 * where the hardware walks 2 page tables:
40 * 1. the guest-virtual to guest-physical
41 * 2. while doing 1. it walks guest-physical to host-physical
42 * If the hardware supports that we don't need to do shadow paging.
43 */
44 bool tdp_enabled = false;
45
46 #undef MMU_DEBUG
47
48 #undef AUDIT
49
50 #ifdef AUDIT
51 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
52 #else
53 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
54 #endif
55
56 #ifdef MMU_DEBUG
57
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
60
61 #else
62
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
65
66 #endif
67
68 #if defined(MMU_DEBUG) || defined(AUDIT)
69 static int dbg = 1;
70 #endif
71
72 #ifndef MMU_DEBUG
73 #define ASSERT(x) do { } while (0)
74 #else
75 #define ASSERT(x) \
76 if (!(x)) { \
77 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
78 __FILE__, __LINE__, #x); \
79 }
80 #endif
81
82 #define PT64_PT_BITS 9
83 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
84 #define PT32_PT_BITS 10
85 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
86
87 #define PT_WRITABLE_SHIFT 1
88
89 #define PT_PRESENT_MASK (1ULL << 0)
90 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
91 #define PT_USER_MASK (1ULL << 2)
92 #define PT_PWT_MASK (1ULL << 3)
93 #define PT_PCD_MASK (1ULL << 4)
94 #define PT_ACCESSED_MASK (1ULL << 5)
95 #define PT_DIRTY_MASK (1ULL << 6)
96 #define PT_PAGE_SIZE_MASK (1ULL << 7)
97 #define PT_PAT_MASK (1ULL << 7)
98 #define PT_GLOBAL_MASK (1ULL << 8)
99 #define PT64_NX_SHIFT 63
100 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
101
102 #define PT_PAT_SHIFT 7
103 #define PT_DIR_PAT_SHIFT 12
104 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
105
106 #define PT32_DIR_PSE36_SIZE 4
107 #define PT32_DIR_PSE36_SHIFT 13
108 #define PT32_DIR_PSE36_MASK \
109 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
110
111
112 #define PT_FIRST_AVAIL_BITS_SHIFT 9
113 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
114
115 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
116
117 #define PT64_LEVEL_BITS 9
118
119 #define PT64_LEVEL_SHIFT(level) \
120 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
121
122 #define PT64_LEVEL_MASK(level) \
123 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
124
125 #define PT64_INDEX(address, level)\
126 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
127
128
129 #define PT32_LEVEL_BITS 10
130
131 #define PT32_LEVEL_SHIFT(level) \
132 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
133
134 #define PT32_LEVEL_MASK(level) \
135 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
136
137 #define PT32_INDEX(address, level)\
138 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
139
140
141 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
142 #define PT64_DIR_BASE_ADDR_MASK \
143 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
144
145 #define PT32_BASE_ADDR_MASK PAGE_MASK
146 #define PT32_DIR_BASE_ADDR_MASK \
147 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
148
149 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
150 | PT64_NX_MASK)
151
152 #define PFERR_PRESENT_MASK (1U << 0)
153 #define PFERR_WRITE_MASK (1U << 1)
154 #define PFERR_USER_MASK (1U << 2)
155 #define PFERR_FETCH_MASK (1U << 4)
156
157 #define PT64_ROOT_LEVEL 4
158 #define PT32_ROOT_LEVEL 2
159 #define PT32E_ROOT_LEVEL 3
160
161 #define PT_DIRECTORY_LEVEL 2
162 #define PT_PAGE_TABLE_LEVEL 1
163
164 #define RMAP_EXT 4
165
166 #define ACC_EXEC_MASK 1
167 #define ACC_WRITE_MASK PT_WRITABLE_MASK
168 #define ACC_USER_MASK PT_USER_MASK
169 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
170
171 struct kvm_pv_mmu_op_buffer {
172 void *ptr;
173 unsigned len;
174 unsigned processed;
175 char buf[512] __aligned(sizeof(long));
176 };
177
178 struct kvm_rmap_desc {
179 u64 *shadow_ptes[RMAP_EXT];
180 struct kvm_rmap_desc *more;
181 };
182
183 static struct kmem_cache *pte_chain_cache;
184 static struct kmem_cache *rmap_desc_cache;
185 static struct kmem_cache *mmu_page_header_cache;
186
187 static u64 __read_mostly shadow_trap_nonpresent_pte;
188 static u64 __read_mostly shadow_notrap_nonpresent_pte;
189
190 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
191 {
192 shadow_trap_nonpresent_pte = trap_pte;
193 shadow_notrap_nonpresent_pte = notrap_pte;
194 }
195 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
196
197 static int is_write_protection(struct kvm_vcpu *vcpu)
198 {
199 return vcpu->arch.cr0 & X86_CR0_WP;
200 }
201
202 static int is_cpuid_PSE36(void)
203 {
204 return 1;
205 }
206
207 static int is_nx(struct kvm_vcpu *vcpu)
208 {
209 return vcpu->arch.shadow_efer & EFER_NX;
210 }
211
212 static int is_present_pte(unsigned long pte)
213 {
214 return pte & PT_PRESENT_MASK;
215 }
216
217 static int is_shadow_present_pte(u64 pte)
218 {
219 return pte != shadow_trap_nonpresent_pte
220 && pte != shadow_notrap_nonpresent_pte;
221 }
222
223 static int is_large_pte(u64 pte)
224 {
225 return pte & PT_PAGE_SIZE_MASK;
226 }
227
228 static int is_writeble_pte(unsigned long pte)
229 {
230 return pte & PT_WRITABLE_MASK;
231 }
232
233 static int is_dirty_pte(unsigned long pte)
234 {
235 return pte & PT_DIRTY_MASK;
236 }
237
238 static int is_rmap_pte(u64 pte)
239 {
240 return is_shadow_present_pte(pte);
241 }
242
243 static struct page *spte_to_page(u64 pte)
244 {
245 hfn_t hfn = (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
246
247 return pfn_to_page(hfn);
248 }
249
250 static gfn_t pse36_gfn_delta(u32 gpte)
251 {
252 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
253
254 return (gpte & PT32_DIR_PSE36_MASK) << shift;
255 }
256
257 static void set_shadow_pte(u64 *sptep, u64 spte)
258 {
259 #ifdef CONFIG_X86_64
260 set_64bit((unsigned long *)sptep, spte);
261 #else
262 set_64bit((unsigned long long *)sptep, spte);
263 #endif
264 }
265
266 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
267 struct kmem_cache *base_cache, int min)
268 {
269 void *obj;
270
271 if (cache->nobjs >= min)
272 return 0;
273 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
274 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
275 if (!obj)
276 return -ENOMEM;
277 cache->objects[cache->nobjs++] = obj;
278 }
279 return 0;
280 }
281
282 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
283 {
284 while (mc->nobjs)
285 kfree(mc->objects[--mc->nobjs]);
286 }
287
288 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
289 int min)
290 {
291 struct page *page;
292
293 if (cache->nobjs >= min)
294 return 0;
295 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
296 page = alloc_page(GFP_KERNEL);
297 if (!page)
298 return -ENOMEM;
299 set_page_private(page, 0);
300 cache->objects[cache->nobjs++] = page_address(page);
301 }
302 return 0;
303 }
304
305 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
306 {
307 while (mc->nobjs)
308 free_page((unsigned long)mc->objects[--mc->nobjs]);
309 }
310
311 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
312 {
313 int r;
314
315 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
316 pte_chain_cache, 4);
317 if (r)
318 goto out;
319 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
320 rmap_desc_cache, 1);
321 if (r)
322 goto out;
323 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
324 if (r)
325 goto out;
326 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
327 mmu_page_header_cache, 4);
328 out:
329 return r;
330 }
331
332 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
333 {
334 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
335 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
336 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
337 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
338 }
339
340 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
341 size_t size)
342 {
343 void *p;
344
345 BUG_ON(!mc->nobjs);
346 p = mc->objects[--mc->nobjs];
347 memset(p, 0, size);
348 return p;
349 }
350
351 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
352 {
353 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
354 sizeof(struct kvm_pte_chain));
355 }
356
357 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
358 {
359 kfree(pc);
360 }
361
362 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
363 {
364 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
365 sizeof(struct kvm_rmap_desc));
366 }
367
368 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
369 {
370 kfree(rd);
371 }
372
373 /*
374 * Return the pointer to the largepage write count for a given
375 * gfn, handling slots that are not large page aligned.
376 */
377 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
378 {
379 unsigned long idx;
380
381 idx = (gfn / KVM_PAGES_PER_HPAGE) -
382 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
383 return &slot->lpage_info[idx].write_count;
384 }
385
386 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
387 {
388 int *write_count;
389
390 write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
391 *write_count += 1;
392 WARN_ON(*write_count > KVM_PAGES_PER_HPAGE);
393 }
394
395 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
396 {
397 int *write_count;
398
399 write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
400 *write_count -= 1;
401 WARN_ON(*write_count < 0);
402 }
403
404 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
405 {
406 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
407 int *largepage_idx;
408
409 if (slot) {
410 largepage_idx = slot_largepage_idx(gfn, slot);
411 return *largepage_idx;
412 }
413
414 return 1;
415 }
416
417 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
418 {
419 struct vm_area_struct *vma;
420 unsigned long addr;
421
422 addr = gfn_to_hva(kvm, gfn);
423 if (kvm_is_error_hva(addr))
424 return 0;
425
426 vma = find_vma(current->mm, addr);
427 if (vma && is_vm_hugetlb_page(vma))
428 return 1;
429
430 return 0;
431 }
432
433 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
434 {
435 struct kvm_memory_slot *slot;
436
437 if (has_wrprotected_page(vcpu->kvm, large_gfn))
438 return 0;
439
440 if (!host_largepage_backed(vcpu->kvm, large_gfn))
441 return 0;
442
443 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
444 if (slot && slot->dirty_bitmap)
445 return 0;
446
447 return 1;
448 }
449
450 /*
451 * Take gfn and return the reverse mapping to it.
452 * Note: gfn must be unaliased before this function get called
453 */
454
455 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
456 {
457 struct kvm_memory_slot *slot;
458 unsigned long idx;
459
460 slot = gfn_to_memslot(kvm, gfn);
461 if (!lpage)
462 return &slot->rmap[gfn - slot->base_gfn];
463
464 idx = (gfn / KVM_PAGES_PER_HPAGE) -
465 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
466
467 return &slot->lpage_info[idx].rmap_pde;
468 }
469
470 /*
471 * Reverse mapping data structures:
472 *
473 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
474 * that points to page_address(page).
475 *
476 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
477 * containing more mappings.
478 */
479 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
480 {
481 struct kvm_mmu_page *sp;
482 struct kvm_rmap_desc *desc;
483 unsigned long *rmapp;
484 int i;
485
486 if (!is_rmap_pte(*spte))
487 return;
488 gfn = unalias_gfn(vcpu->kvm, gfn);
489 sp = page_header(__pa(spte));
490 sp->gfns[spte - sp->spt] = gfn;
491 rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
492 if (!*rmapp) {
493 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
494 *rmapp = (unsigned long)spte;
495 } else if (!(*rmapp & 1)) {
496 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
497 desc = mmu_alloc_rmap_desc(vcpu);
498 desc->shadow_ptes[0] = (u64 *)*rmapp;
499 desc->shadow_ptes[1] = spte;
500 *rmapp = (unsigned long)desc | 1;
501 } else {
502 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
503 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
504 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
505 desc = desc->more;
506 if (desc->shadow_ptes[RMAP_EXT-1]) {
507 desc->more = mmu_alloc_rmap_desc(vcpu);
508 desc = desc->more;
509 }
510 for (i = 0; desc->shadow_ptes[i]; ++i)
511 ;
512 desc->shadow_ptes[i] = spte;
513 }
514 }
515
516 static void rmap_desc_remove_entry(unsigned long *rmapp,
517 struct kvm_rmap_desc *desc,
518 int i,
519 struct kvm_rmap_desc *prev_desc)
520 {
521 int j;
522
523 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
524 ;
525 desc->shadow_ptes[i] = desc->shadow_ptes[j];
526 desc->shadow_ptes[j] = NULL;
527 if (j != 0)
528 return;
529 if (!prev_desc && !desc->more)
530 *rmapp = (unsigned long)desc->shadow_ptes[0];
531 else
532 if (prev_desc)
533 prev_desc->more = desc->more;
534 else
535 *rmapp = (unsigned long)desc->more | 1;
536 mmu_free_rmap_desc(desc);
537 }
538
539 static void rmap_remove(struct kvm *kvm, u64 *spte)
540 {
541 struct kvm_rmap_desc *desc;
542 struct kvm_rmap_desc *prev_desc;
543 struct kvm_mmu_page *sp;
544 struct page *page;
545 unsigned long *rmapp;
546 int i;
547
548 if (!is_rmap_pte(*spte))
549 return;
550 sp = page_header(__pa(spte));
551 page = spte_to_page(*spte);
552 mark_page_accessed(page);
553 if (is_writeble_pte(*spte))
554 kvm_release_page_dirty(page);
555 else
556 kvm_release_page_clean(page);
557 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
558 if (!*rmapp) {
559 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
560 BUG();
561 } else if (!(*rmapp & 1)) {
562 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
563 if ((u64 *)*rmapp != spte) {
564 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
565 spte, *spte);
566 BUG();
567 }
568 *rmapp = 0;
569 } else {
570 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
571 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
572 prev_desc = NULL;
573 while (desc) {
574 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
575 if (desc->shadow_ptes[i] == spte) {
576 rmap_desc_remove_entry(rmapp,
577 desc, i,
578 prev_desc);
579 return;
580 }
581 prev_desc = desc;
582 desc = desc->more;
583 }
584 BUG();
585 }
586 }
587
588 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
589 {
590 struct kvm_rmap_desc *desc;
591 struct kvm_rmap_desc *prev_desc;
592 u64 *prev_spte;
593 int i;
594
595 if (!*rmapp)
596 return NULL;
597 else if (!(*rmapp & 1)) {
598 if (!spte)
599 return (u64 *)*rmapp;
600 return NULL;
601 }
602 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
603 prev_desc = NULL;
604 prev_spte = NULL;
605 while (desc) {
606 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
607 if (prev_spte == spte)
608 return desc->shadow_ptes[i];
609 prev_spte = desc->shadow_ptes[i];
610 }
611 desc = desc->more;
612 }
613 return NULL;
614 }
615
616 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
617 {
618 unsigned long *rmapp;
619 u64 *spte;
620 int write_protected = 0;
621
622 gfn = unalias_gfn(kvm, gfn);
623 rmapp = gfn_to_rmap(kvm, gfn, 0);
624
625 spte = rmap_next(kvm, rmapp, NULL);
626 while (spte) {
627 BUG_ON(!spte);
628 BUG_ON(!(*spte & PT_PRESENT_MASK));
629 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
630 if (is_writeble_pte(*spte)) {
631 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
632 write_protected = 1;
633 }
634 spte = rmap_next(kvm, rmapp, spte);
635 }
636 if (write_protected) {
637 struct page *page;
638
639 spte = rmap_next(kvm, rmapp, NULL);
640 page = spte_to_page(*spte);
641 SetPageDirty(page);
642 }
643
644 /* check for huge page mappings */
645 rmapp = gfn_to_rmap(kvm, gfn, 1);
646 spte = rmap_next(kvm, rmapp, NULL);
647 while (spte) {
648 BUG_ON(!spte);
649 BUG_ON(!(*spte & PT_PRESENT_MASK));
650 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
651 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
652 if (is_writeble_pte(*spte)) {
653 rmap_remove(kvm, spte);
654 --kvm->stat.lpages;
655 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
656 write_protected = 1;
657 }
658 spte = rmap_next(kvm, rmapp, spte);
659 }
660
661 if (write_protected)
662 kvm_flush_remote_tlbs(kvm);
663
664 account_shadowed(kvm, gfn);
665 }
666
667 #ifdef MMU_DEBUG
668 static int is_empty_shadow_page(u64 *spt)
669 {
670 u64 *pos;
671 u64 *end;
672
673 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
674 if (*pos != shadow_trap_nonpresent_pte) {
675 printk(KERN_ERR "%s: %p %llx\n", __func__,
676 pos, *pos);
677 return 0;
678 }
679 return 1;
680 }
681 #endif
682
683 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
684 {
685 ASSERT(is_empty_shadow_page(sp->spt));
686 list_del(&sp->link);
687 __free_page(virt_to_page(sp->spt));
688 __free_page(virt_to_page(sp->gfns));
689 kfree(sp);
690 ++kvm->arch.n_free_mmu_pages;
691 }
692
693 static unsigned kvm_page_table_hashfn(gfn_t gfn)
694 {
695 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
696 }
697
698 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
699 u64 *parent_pte)
700 {
701 struct kvm_mmu_page *sp;
702
703 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
704 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
705 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
706 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
707 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
708 ASSERT(is_empty_shadow_page(sp->spt));
709 sp->slot_bitmap = 0;
710 sp->multimapped = 0;
711 sp->parent_pte = parent_pte;
712 --vcpu->kvm->arch.n_free_mmu_pages;
713 return sp;
714 }
715
716 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
717 struct kvm_mmu_page *sp, u64 *parent_pte)
718 {
719 struct kvm_pte_chain *pte_chain;
720 struct hlist_node *node;
721 int i;
722
723 if (!parent_pte)
724 return;
725 if (!sp->multimapped) {
726 u64 *old = sp->parent_pte;
727
728 if (!old) {
729 sp->parent_pte = parent_pte;
730 return;
731 }
732 sp->multimapped = 1;
733 pte_chain = mmu_alloc_pte_chain(vcpu);
734 INIT_HLIST_HEAD(&sp->parent_ptes);
735 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
736 pte_chain->parent_ptes[0] = old;
737 }
738 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
739 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
740 continue;
741 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
742 if (!pte_chain->parent_ptes[i]) {
743 pte_chain->parent_ptes[i] = parent_pte;
744 return;
745 }
746 }
747 pte_chain = mmu_alloc_pte_chain(vcpu);
748 BUG_ON(!pte_chain);
749 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
750 pte_chain->parent_ptes[0] = parent_pte;
751 }
752
753 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
754 u64 *parent_pte)
755 {
756 struct kvm_pte_chain *pte_chain;
757 struct hlist_node *node;
758 int i;
759
760 if (!sp->multimapped) {
761 BUG_ON(sp->parent_pte != parent_pte);
762 sp->parent_pte = NULL;
763 return;
764 }
765 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
766 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
767 if (!pte_chain->parent_ptes[i])
768 break;
769 if (pte_chain->parent_ptes[i] != parent_pte)
770 continue;
771 while (i + 1 < NR_PTE_CHAIN_ENTRIES
772 && pte_chain->parent_ptes[i + 1]) {
773 pte_chain->parent_ptes[i]
774 = pte_chain->parent_ptes[i + 1];
775 ++i;
776 }
777 pte_chain->parent_ptes[i] = NULL;
778 if (i == 0) {
779 hlist_del(&pte_chain->link);
780 mmu_free_pte_chain(pte_chain);
781 if (hlist_empty(&sp->parent_ptes)) {
782 sp->multimapped = 0;
783 sp->parent_pte = NULL;
784 }
785 }
786 return;
787 }
788 BUG();
789 }
790
791 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
792 {
793 unsigned index;
794 struct hlist_head *bucket;
795 struct kvm_mmu_page *sp;
796 struct hlist_node *node;
797
798 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
799 index = kvm_page_table_hashfn(gfn);
800 bucket = &kvm->arch.mmu_page_hash[index];
801 hlist_for_each_entry(sp, node, bucket, hash_link)
802 if (sp->gfn == gfn && !sp->role.metaphysical
803 && !sp->role.invalid) {
804 pgprintk("%s: found role %x\n",
805 __func__, sp->role.word);
806 return sp;
807 }
808 return NULL;
809 }
810
811 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
812 gfn_t gfn,
813 gva_t gaddr,
814 unsigned level,
815 int metaphysical,
816 unsigned access,
817 u64 *parent_pte)
818 {
819 union kvm_mmu_page_role role;
820 unsigned index;
821 unsigned quadrant;
822 struct hlist_head *bucket;
823 struct kvm_mmu_page *sp;
824 struct hlist_node *node;
825
826 role.word = 0;
827 role.glevels = vcpu->arch.mmu.root_level;
828 role.level = level;
829 role.metaphysical = metaphysical;
830 role.access = access;
831 if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
832 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
833 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
834 role.quadrant = quadrant;
835 }
836 pgprintk("%s: looking gfn %lx role %x\n", __func__,
837 gfn, role.word);
838 index = kvm_page_table_hashfn(gfn);
839 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
840 hlist_for_each_entry(sp, node, bucket, hash_link)
841 if (sp->gfn == gfn && sp->role.word == role.word) {
842 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
843 pgprintk("%s: found\n", __func__);
844 return sp;
845 }
846 ++vcpu->kvm->stat.mmu_cache_miss;
847 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
848 if (!sp)
849 return sp;
850 pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
851 sp->gfn = gfn;
852 sp->role = role;
853 hlist_add_head(&sp->hash_link, bucket);
854 vcpu->arch.mmu.prefetch_page(vcpu, sp);
855 if (!metaphysical)
856 rmap_write_protect(vcpu->kvm, gfn);
857 return sp;
858 }
859
860 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
861 struct kvm_mmu_page *sp)
862 {
863 unsigned i;
864 u64 *pt;
865 u64 ent;
866
867 pt = sp->spt;
868
869 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
870 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
871 if (is_shadow_present_pte(pt[i]))
872 rmap_remove(kvm, &pt[i]);
873 pt[i] = shadow_trap_nonpresent_pte;
874 }
875 kvm_flush_remote_tlbs(kvm);
876 return;
877 }
878
879 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
880 ent = pt[i];
881
882 if (is_shadow_present_pte(ent)) {
883 if (!is_large_pte(ent)) {
884 ent &= PT64_BASE_ADDR_MASK;
885 mmu_page_remove_parent_pte(page_header(ent),
886 &pt[i]);
887 } else {
888 --kvm->stat.lpages;
889 rmap_remove(kvm, &pt[i]);
890 }
891 }
892 pt[i] = shadow_trap_nonpresent_pte;
893 }
894 kvm_flush_remote_tlbs(kvm);
895 }
896
897 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
898 {
899 mmu_page_remove_parent_pte(sp, parent_pte);
900 }
901
902 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
903 {
904 int i;
905
906 for (i = 0; i < KVM_MAX_VCPUS; ++i)
907 if (kvm->vcpus[i])
908 kvm->vcpus[i]->arch.last_pte_updated = NULL;
909 }
910
911 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
912 {
913 u64 *parent_pte;
914
915 ++kvm->stat.mmu_shadow_zapped;
916 while (sp->multimapped || sp->parent_pte) {
917 if (!sp->multimapped)
918 parent_pte = sp->parent_pte;
919 else {
920 struct kvm_pte_chain *chain;
921
922 chain = container_of(sp->parent_ptes.first,
923 struct kvm_pte_chain, link);
924 parent_pte = chain->parent_ptes[0];
925 }
926 BUG_ON(!parent_pte);
927 kvm_mmu_put_page(sp, parent_pte);
928 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
929 }
930 kvm_mmu_page_unlink_children(kvm, sp);
931 if (!sp->root_count) {
932 if (!sp->role.metaphysical)
933 unaccount_shadowed(kvm, sp->gfn);
934 hlist_del(&sp->hash_link);
935 kvm_mmu_free_page(kvm, sp);
936 } else {
937 list_move(&sp->link, &kvm->arch.active_mmu_pages);
938 sp->role.invalid = 1;
939 kvm_reload_remote_mmus(kvm);
940 }
941 kvm_mmu_reset_last_pte_updated(kvm);
942 }
943
944 /*
945 * Changing the number of mmu pages allocated to the vm
946 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
947 */
948 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
949 {
950 /*
951 * If we set the number of mmu pages to be smaller be than the
952 * number of actived pages , we must to free some mmu pages before we
953 * change the value
954 */
955
956 if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
957 kvm_nr_mmu_pages) {
958 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
959 - kvm->arch.n_free_mmu_pages;
960
961 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
962 struct kvm_mmu_page *page;
963
964 page = container_of(kvm->arch.active_mmu_pages.prev,
965 struct kvm_mmu_page, link);
966 kvm_mmu_zap_page(kvm, page);
967 n_used_mmu_pages--;
968 }
969 kvm->arch.n_free_mmu_pages = 0;
970 }
971 else
972 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
973 - kvm->arch.n_alloc_mmu_pages;
974
975 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
976 }
977
978 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
979 {
980 unsigned index;
981 struct hlist_head *bucket;
982 struct kvm_mmu_page *sp;
983 struct hlist_node *node, *n;
984 int r;
985
986 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
987 r = 0;
988 index = kvm_page_table_hashfn(gfn);
989 bucket = &kvm->arch.mmu_page_hash[index];
990 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
991 if (sp->gfn == gfn && !sp->role.metaphysical) {
992 pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
993 sp->role.word);
994 kvm_mmu_zap_page(kvm, sp);
995 r = 1;
996 }
997 return r;
998 }
999
1000 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1001 {
1002 struct kvm_mmu_page *sp;
1003
1004 while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
1005 pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
1006 kvm_mmu_zap_page(kvm, sp);
1007 }
1008 }
1009
1010 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1011 {
1012 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
1013 struct kvm_mmu_page *sp = page_header(__pa(pte));
1014
1015 __set_bit(slot, &sp->slot_bitmap);
1016 }
1017
1018 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1019 {
1020 struct page *page;
1021
1022 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1023
1024 if (gpa == UNMAPPED_GVA)
1025 return NULL;
1026
1027 down_read(&current->mm->mmap_sem);
1028 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1029 up_read(&current->mm->mmap_sem);
1030
1031 return page;
1032 }
1033
1034 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1035 unsigned pt_access, unsigned pte_access,
1036 int user_fault, int write_fault, int dirty,
1037 int *ptwrite, int largepage, gfn_t gfn,
1038 struct page *page, bool speculative)
1039 {
1040 u64 spte;
1041 int was_rmapped = 0;
1042 int was_writeble = is_writeble_pte(*shadow_pte);
1043
1044 pgprintk("%s: spte %llx access %x write_fault %d"
1045 " user_fault %d gfn %lx\n",
1046 __func__, *shadow_pte, pt_access,
1047 write_fault, user_fault, gfn);
1048
1049 if (is_rmap_pte(*shadow_pte)) {
1050 /*
1051 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1052 * the parent of the now unreachable PTE.
1053 */
1054 if (largepage && !is_large_pte(*shadow_pte)) {
1055 struct kvm_mmu_page *child;
1056 u64 pte = *shadow_pte;
1057
1058 child = page_header(pte & PT64_BASE_ADDR_MASK);
1059 mmu_page_remove_parent_pte(child, shadow_pte);
1060 } else if (page != spte_to_page(*shadow_pte)) {
1061 pgprintk("hfn old %lx new %lx\n",
1062 page_to_pfn(spte_to_page(*shadow_pte)),
1063 page_to_pfn(page));
1064 rmap_remove(vcpu->kvm, shadow_pte);
1065 } else {
1066 if (largepage)
1067 was_rmapped = is_large_pte(*shadow_pte);
1068 else
1069 was_rmapped = 1;
1070 }
1071 }
1072
1073 /*
1074 * We don't set the accessed bit, since we sometimes want to see
1075 * whether the guest actually used the pte (in order to detect
1076 * demand paging).
1077 */
1078 spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
1079 if (!speculative)
1080 pte_access |= PT_ACCESSED_MASK;
1081 if (!dirty)
1082 pte_access &= ~ACC_WRITE_MASK;
1083 if (!(pte_access & ACC_EXEC_MASK))
1084 spte |= PT64_NX_MASK;
1085
1086 spte |= PT_PRESENT_MASK;
1087 if (pte_access & ACC_USER_MASK)
1088 spte |= PT_USER_MASK;
1089 if (largepage)
1090 spte |= PT_PAGE_SIZE_MASK;
1091
1092 spte |= page_to_phys(page);
1093
1094 if ((pte_access & ACC_WRITE_MASK)
1095 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1096 struct kvm_mmu_page *shadow;
1097
1098 spte |= PT_WRITABLE_MASK;
1099 if (user_fault) {
1100 mmu_unshadow(vcpu->kvm, gfn);
1101 goto unshadowed;
1102 }
1103
1104 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1105 if (shadow ||
1106 (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
1107 pgprintk("%s: found shadow page for %lx, marking ro\n",
1108 __func__, gfn);
1109 pte_access &= ~ACC_WRITE_MASK;
1110 if (is_writeble_pte(spte)) {
1111 spte &= ~PT_WRITABLE_MASK;
1112 kvm_x86_ops->tlb_flush(vcpu);
1113 }
1114 if (write_fault)
1115 *ptwrite = 1;
1116 }
1117 }
1118
1119 unshadowed:
1120
1121 if (pte_access & ACC_WRITE_MASK)
1122 mark_page_dirty(vcpu->kvm, gfn);
1123
1124 pgprintk("%s: setting spte %llx\n", __func__, spte);
1125 pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
1126 (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
1127 (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
1128 set_shadow_pte(shadow_pte, spte);
1129 if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
1130 && (spte & PT_PRESENT_MASK))
1131 ++vcpu->kvm->stat.lpages;
1132
1133 page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1134 if (!was_rmapped) {
1135 rmap_add(vcpu, shadow_pte, gfn, largepage);
1136 if (!is_rmap_pte(*shadow_pte))
1137 kvm_release_page_clean(page);
1138 } else {
1139 if (was_writeble)
1140 kvm_release_page_dirty(page);
1141 else
1142 kvm_release_page_clean(page);
1143 }
1144 if (!ptwrite || !*ptwrite)
1145 vcpu->arch.last_pte_updated = shadow_pte;
1146 }
1147
1148 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1149 {
1150 }
1151
1152 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1153 int largepage, gfn_t gfn, struct page *page,
1154 int level)
1155 {
1156 hpa_t table_addr = vcpu->arch.mmu.root_hpa;
1157 int pt_write = 0;
1158
1159 for (; ; level--) {
1160 u32 index = PT64_INDEX(v, level);
1161 u64 *table;
1162
1163 ASSERT(VALID_PAGE(table_addr));
1164 table = __va(table_addr);
1165
1166 if (level == 1) {
1167 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1168 0, write, 1, &pt_write, 0, gfn, page, false);
1169 return pt_write;
1170 }
1171
1172 if (largepage && level == 2) {
1173 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1174 0, write, 1, &pt_write, 1, gfn, page, false);
1175 return pt_write;
1176 }
1177
1178 if (table[index] == shadow_trap_nonpresent_pte) {
1179 struct kvm_mmu_page *new_table;
1180 gfn_t pseudo_gfn;
1181
1182 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1183 >> PAGE_SHIFT;
1184 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1185 v, level - 1,
1186 1, ACC_ALL, &table[index]);
1187 if (!new_table) {
1188 pgprintk("nonpaging_map: ENOMEM\n");
1189 kvm_release_page_clean(page);
1190 return -ENOMEM;
1191 }
1192
1193 table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
1194 | PT_WRITABLE_MASK | PT_USER_MASK;
1195 }
1196 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1197 }
1198 }
1199
1200 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1201 {
1202 int r;
1203 int largepage = 0;
1204
1205 struct page *page;
1206
1207 down_read(&vcpu->kvm->slots_lock);
1208
1209 down_read(&current->mm->mmap_sem);
1210 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1211 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1212 largepage = 1;
1213 }
1214
1215 page = gfn_to_page(vcpu->kvm, gfn);
1216 up_read(&current->mm->mmap_sem);
1217
1218 /* mmio */
1219 if (is_error_page(page)) {
1220 kvm_release_page_clean(page);
1221 up_read(&vcpu->kvm->slots_lock);
1222 return 1;
1223 }
1224
1225 spin_lock(&vcpu->kvm->mmu_lock);
1226 kvm_mmu_free_some_pages(vcpu);
1227 r = __direct_map(vcpu, v, write, largepage, gfn, page,
1228 PT32E_ROOT_LEVEL);
1229 spin_unlock(&vcpu->kvm->mmu_lock);
1230
1231 up_read(&vcpu->kvm->slots_lock);
1232
1233 return r;
1234 }
1235
1236
1237 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1238 struct kvm_mmu_page *sp)
1239 {
1240 int i;
1241
1242 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1243 sp->spt[i] = shadow_trap_nonpresent_pte;
1244 }
1245
1246 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1247 {
1248 int i;
1249 struct kvm_mmu_page *sp;
1250
1251 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1252 return;
1253 spin_lock(&vcpu->kvm->mmu_lock);
1254 #ifdef CONFIG_X86_64
1255 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1256 hpa_t root = vcpu->arch.mmu.root_hpa;
1257
1258 sp = page_header(root);
1259 --sp->root_count;
1260 if (!sp->root_count && sp->role.invalid)
1261 kvm_mmu_zap_page(vcpu->kvm, sp);
1262 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1263 spin_unlock(&vcpu->kvm->mmu_lock);
1264 return;
1265 }
1266 #endif
1267 for (i = 0; i < 4; ++i) {
1268 hpa_t root = vcpu->arch.mmu.pae_root[i];
1269
1270 if (root) {
1271 root &= PT64_BASE_ADDR_MASK;
1272 sp = page_header(root);
1273 --sp->root_count;
1274 if (!sp->root_count && sp->role.invalid)
1275 kvm_mmu_zap_page(vcpu->kvm, sp);
1276 }
1277 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1278 }
1279 spin_unlock(&vcpu->kvm->mmu_lock);
1280 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1281 }
1282
1283 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1284 {
1285 int i;
1286 gfn_t root_gfn;
1287 struct kvm_mmu_page *sp;
1288 int metaphysical = 0;
1289
1290 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1291
1292 #ifdef CONFIG_X86_64
1293 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1294 hpa_t root = vcpu->arch.mmu.root_hpa;
1295
1296 ASSERT(!VALID_PAGE(root));
1297 if (tdp_enabled)
1298 metaphysical = 1;
1299 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1300 PT64_ROOT_LEVEL, metaphysical,
1301 ACC_ALL, NULL);
1302 root = __pa(sp->spt);
1303 ++sp->root_count;
1304 vcpu->arch.mmu.root_hpa = root;
1305 return;
1306 }
1307 #endif
1308 metaphysical = !is_paging(vcpu);
1309 if (tdp_enabled)
1310 metaphysical = 1;
1311 for (i = 0; i < 4; ++i) {
1312 hpa_t root = vcpu->arch.mmu.pae_root[i];
1313
1314 ASSERT(!VALID_PAGE(root));
1315 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1316 if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1317 vcpu->arch.mmu.pae_root[i] = 0;
1318 continue;
1319 }
1320 root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1321 } else if (vcpu->arch.mmu.root_level == 0)
1322 root_gfn = 0;
1323 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1324 PT32_ROOT_LEVEL, metaphysical,
1325 ACC_ALL, NULL);
1326 root = __pa(sp->spt);
1327 ++sp->root_count;
1328 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1329 }
1330 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1331 }
1332
1333 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1334 {
1335 return vaddr;
1336 }
1337
1338 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1339 u32 error_code)
1340 {
1341 gfn_t gfn;
1342 int r;
1343
1344 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
1345 r = mmu_topup_memory_caches(vcpu);
1346 if (r)
1347 return r;
1348
1349 ASSERT(vcpu);
1350 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1351
1352 gfn = gva >> PAGE_SHIFT;
1353
1354 return nonpaging_map(vcpu, gva & PAGE_MASK,
1355 error_code & PFERR_WRITE_MASK, gfn);
1356 }
1357
1358 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
1359 u32 error_code)
1360 {
1361 struct page *page;
1362 int r;
1363 int largepage = 0;
1364 gfn_t gfn = gpa >> PAGE_SHIFT;
1365
1366 ASSERT(vcpu);
1367 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1368
1369 r = mmu_topup_memory_caches(vcpu);
1370 if (r)
1371 return r;
1372
1373 down_read(&current->mm->mmap_sem);
1374 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1375 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1376 largepage = 1;
1377 }
1378 page = gfn_to_page(vcpu->kvm, gfn);
1379 if (is_error_page(page)) {
1380 kvm_release_page_clean(page);
1381 up_read(&current->mm->mmap_sem);
1382 return 1;
1383 }
1384 spin_lock(&vcpu->kvm->mmu_lock);
1385 kvm_mmu_free_some_pages(vcpu);
1386 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
1387 largepage, gfn, page, TDP_ROOT_LEVEL);
1388 spin_unlock(&vcpu->kvm->mmu_lock);
1389 up_read(&current->mm->mmap_sem);
1390
1391 return r;
1392 }
1393
1394 static void nonpaging_free(struct kvm_vcpu *vcpu)
1395 {
1396 mmu_free_roots(vcpu);
1397 }
1398
1399 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1400 {
1401 struct kvm_mmu *context = &vcpu->arch.mmu;
1402
1403 context->new_cr3 = nonpaging_new_cr3;
1404 context->page_fault = nonpaging_page_fault;
1405 context->gva_to_gpa = nonpaging_gva_to_gpa;
1406 context->free = nonpaging_free;
1407 context->prefetch_page = nonpaging_prefetch_page;
1408 context->root_level = 0;
1409 context->shadow_root_level = PT32E_ROOT_LEVEL;
1410 context->root_hpa = INVALID_PAGE;
1411 return 0;
1412 }
1413
1414 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1415 {
1416 ++vcpu->stat.tlb_flush;
1417 kvm_x86_ops->tlb_flush(vcpu);
1418 }
1419
1420 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1421 {
1422 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
1423 mmu_free_roots(vcpu);
1424 }
1425
1426 static void inject_page_fault(struct kvm_vcpu *vcpu,
1427 u64 addr,
1428 u32 err_code)
1429 {
1430 kvm_inject_page_fault(vcpu, addr, err_code);
1431 }
1432
1433 static void paging_free(struct kvm_vcpu *vcpu)
1434 {
1435 nonpaging_free(vcpu);
1436 }
1437
1438 #define PTTYPE 64
1439 #include "paging_tmpl.h"
1440 #undef PTTYPE
1441
1442 #define PTTYPE 32
1443 #include "paging_tmpl.h"
1444 #undef PTTYPE
1445
1446 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1447 {
1448 struct kvm_mmu *context = &vcpu->arch.mmu;
1449
1450 ASSERT(is_pae(vcpu));
1451 context->new_cr3 = paging_new_cr3;
1452 context->page_fault = paging64_page_fault;
1453 context->gva_to_gpa = paging64_gva_to_gpa;
1454 context->prefetch_page = paging64_prefetch_page;
1455 context->free = paging_free;
1456 context->root_level = level;
1457 context->shadow_root_level = level;
1458 context->root_hpa = INVALID_PAGE;
1459 return 0;
1460 }
1461
1462 static int paging64_init_context(struct kvm_vcpu *vcpu)
1463 {
1464 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1465 }
1466
1467 static int paging32_init_context(struct kvm_vcpu *vcpu)
1468 {
1469 struct kvm_mmu *context = &vcpu->arch.mmu;
1470
1471 context->new_cr3 = paging_new_cr3;
1472 context->page_fault = paging32_page_fault;
1473 context->gva_to_gpa = paging32_gva_to_gpa;
1474 context->free = paging_free;
1475 context->prefetch_page = paging32_prefetch_page;
1476 context->root_level = PT32_ROOT_LEVEL;
1477 context->shadow_root_level = PT32E_ROOT_LEVEL;
1478 context->root_hpa = INVALID_PAGE;
1479 return 0;
1480 }
1481
1482 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1483 {
1484 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1485 }
1486
1487 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
1488 {
1489 struct kvm_mmu *context = &vcpu->arch.mmu;
1490
1491 context->new_cr3 = nonpaging_new_cr3;
1492 context->page_fault = tdp_page_fault;
1493 context->free = nonpaging_free;
1494 context->prefetch_page = nonpaging_prefetch_page;
1495 context->shadow_root_level = TDP_ROOT_LEVEL;
1496 context->root_hpa = INVALID_PAGE;
1497
1498 if (!is_paging(vcpu)) {
1499 context->gva_to_gpa = nonpaging_gva_to_gpa;
1500 context->root_level = 0;
1501 } else if (is_long_mode(vcpu)) {
1502 context->gva_to_gpa = paging64_gva_to_gpa;
1503 context->root_level = PT64_ROOT_LEVEL;
1504 } else if (is_pae(vcpu)) {
1505 context->gva_to_gpa = paging64_gva_to_gpa;
1506 context->root_level = PT32E_ROOT_LEVEL;
1507 } else {
1508 context->gva_to_gpa = paging32_gva_to_gpa;
1509 context->root_level = PT32_ROOT_LEVEL;
1510 }
1511
1512 return 0;
1513 }
1514
1515 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
1516 {
1517 ASSERT(vcpu);
1518 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1519
1520 if (!is_paging(vcpu))
1521 return nonpaging_init_context(vcpu);
1522 else if (is_long_mode(vcpu))
1523 return paging64_init_context(vcpu);
1524 else if (is_pae(vcpu))
1525 return paging32E_init_context(vcpu);
1526 else
1527 return paging32_init_context(vcpu);
1528 }
1529
1530 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1531 {
1532 if (tdp_enabled)
1533 return init_kvm_tdp_mmu(vcpu);
1534 else
1535 return init_kvm_softmmu(vcpu);
1536 }
1537
1538 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1539 {
1540 ASSERT(vcpu);
1541 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1542 vcpu->arch.mmu.free(vcpu);
1543 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1544 }
1545 }
1546
1547 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1548 {
1549 destroy_kvm_mmu(vcpu);
1550 return init_kvm_mmu(vcpu);
1551 }
1552 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1553
1554 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1555 {
1556 int r;
1557
1558 r = mmu_topup_memory_caches(vcpu);
1559 if (r)
1560 goto out;
1561 spin_lock(&vcpu->kvm->mmu_lock);
1562 kvm_mmu_free_some_pages(vcpu);
1563 mmu_alloc_roots(vcpu);
1564 spin_unlock(&vcpu->kvm->mmu_lock);
1565 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1566 kvm_mmu_flush_tlb(vcpu);
1567 out:
1568 return r;
1569 }
1570 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1571
1572 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1573 {
1574 mmu_free_roots(vcpu);
1575 }
1576
1577 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1578 struct kvm_mmu_page *sp,
1579 u64 *spte)
1580 {
1581 u64 pte;
1582 struct kvm_mmu_page *child;
1583
1584 pte = *spte;
1585 if (is_shadow_present_pte(pte)) {
1586 if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
1587 is_large_pte(pte))
1588 rmap_remove(vcpu->kvm, spte);
1589 else {
1590 child = page_header(pte & PT64_BASE_ADDR_MASK);
1591 mmu_page_remove_parent_pte(child, spte);
1592 }
1593 }
1594 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1595 if (is_large_pte(pte))
1596 --vcpu->kvm->stat.lpages;
1597 }
1598
1599 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1600 struct kvm_mmu_page *sp,
1601 u64 *spte,
1602 const void *new)
1603 {
1604 if ((sp->role.level != PT_PAGE_TABLE_LEVEL)
1605 && !vcpu->arch.update_pte.largepage) {
1606 ++vcpu->kvm->stat.mmu_pde_zapped;
1607 return;
1608 }
1609
1610 ++vcpu->kvm->stat.mmu_pte_updated;
1611 if (sp->role.glevels == PT32_ROOT_LEVEL)
1612 paging32_update_pte(vcpu, sp, spte, new);
1613 else
1614 paging64_update_pte(vcpu, sp, spte, new);
1615 }
1616
1617 static bool need_remote_flush(u64 old, u64 new)
1618 {
1619 if (!is_shadow_present_pte(old))
1620 return false;
1621 if (!is_shadow_present_pte(new))
1622 return true;
1623 if ((old ^ new) & PT64_BASE_ADDR_MASK)
1624 return true;
1625 old ^= PT64_NX_MASK;
1626 new ^= PT64_NX_MASK;
1627 return (old & ~new & PT64_PERM_MASK) != 0;
1628 }
1629
1630 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1631 {
1632 if (need_remote_flush(old, new))
1633 kvm_flush_remote_tlbs(vcpu->kvm);
1634 else
1635 kvm_mmu_flush_tlb(vcpu);
1636 }
1637
1638 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1639 {
1640 u64 *spte = vcpu->arch.last_pte_updated;
1641
1642 return !!(spte && (*spte & PT_ACCESSED_MASK));
1643 }
1644
1645 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1646 const u8 *new, int bytes)
1647 {
1648 gfn_t gfn;
1649 int r;
1650 u64 gpte = 0;
1651 struct page *page;
1652
1653 vcpu->arch.update_pte.largepage = 0;
1654
1655 if (bytes != 4 && bytes != 8)
1656 return;
1657
1658 /*
1659 * Assume that the pte write on a page table of the same type
1660 * as the current vcpu paging mode. This is nearly always true
1661 * (might be false while changing modes). Note it is verified later
1662 * by update_pte().
1663 */
1664 if (is_pae(vcpu)) {
1665 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1666 if ((bytes == 4) && (gpa % 4 == 0)) {
1667 r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1668 if (r)
1669 return;
1670 memcpy((void *)&gpte + (gpa % 8), new, 4);
1671 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1672 memcpy((void *)&gpte, new, 8);
1673 }
1674 } else {
1675 if ((bytes == 4) && (gpa % 4 == 0))
1676 memcpy((void *)&gpte, new, 4);
1677 }
1678 if (!is_present_pte(gpte))
1679 return;
1680 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1681
1682 down_read(&current->mm->mmap_sem);
1683 if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
1684 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1685 vcpu->arch.update_pte.largepage = 1;
1686 }
1687 page = gfn_to_page(vcpu->kvm, gfn);
1688 up_read(&current->mm->mmap_sem);
1689
1690 if (is_error_page(page)) {
1691 kvm_release_page_clean(page);
1692 return;
1693 }
1694 vcpu->arch.update_pte.gfn = gfn;
1695 vcpu->arch.update_pte.page = page;
1696 }
1697
1698 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1699 const u8 *new, int bytes)
1700 {
1701 gfn_t gfn = gpa >> PAGE_SHIFT;
1702 struct kvm_mmu_page *sp;
1703 struct hlist_node *node, *n;
1704 struct hlist_head *bucket;
1705 unsigned index;
1706 u64 entry, gentry;
1707 u64 *spte;
1708 unsigned offset = offset_in_page(gpa);
1709 unsigned pte_size;
1710 unsigned page_offset;
1711 unsigned misaligned;
1712 unsigned quadrant;
1713 int level;
1714 int flooded = 0;
1715 int npte;
1716 int r;
1717
1718 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
1719 mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1720 spin_lock(&vcpu->kvm->mmu_lock);
1721 kvm_mmu_free_some_pages(vcpu);
1722 ++vcpu->kvm->stat.mmu_pte_write;
1723 kvm_mmu_audit(vcpu, "pre pte write");
1724 if (gfn == vcpu->arch.last_pt_write_gfn
1725 && !last_updated_pte_accessed(vcpu)) {
1726 ++vcpu->arch.last_pt_write_count;
1727 if (vcpu->arch.last_pt_write_count >= 3)
1728 flooded = 1;
1729 } else {
1730 vcpu->arch.last_pt_write_gfn = gfn;
1731 vcpu->arch.last_pt_write_count = 1;
1732 vcpu->arch.last_pte_updated = NULL;
1733 }
1734 index = kvm_page_table_hashfn(gfn);
1735 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1736 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1737 if (sp->gfn != gfn || sp->role.metaphysical)
1738 continue;
1739 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1740 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1741 misaligned |= bytes < 4;
1742 if (misaligned || flooded) {
1743 /*
1744 * Misaligned accesses are too much trouble to fix
1745 * up; also, they usually indicate a page is not used
1746 * as a page table.
1747 *
1748 * If we're seeing too many writes to a page,
1749 * it may no longer be a page table, or we may be
1750 * forking, in which case it is better to unmap the
1751 * page.
1752 */
1753 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1754 gpa, bytes, sp->role.word);
1755 kvm_mmu_zap_page(vcpu->kvm, sp);
1756 ++vcpu->kvm->stat.mmu_flooded;
1757 continue;
1758 }
1759 page_offset = offset;
1760 level = sp->role.level;
1761 npte = 1;
1762 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1763 page_offset <<= 1; /* 32->64 */
1764 /*
1765 * A 32-bit pde maps 4MB while the shadow pdes map
1766 * only 2MB. So we need to double the offset again
1767 * and zap two pdes instead of one.
1768 */
1769 if (level == PT32_ROOT_LEVEL) {
1770 page_offset &= ~7; /* kill rounding error */
1771 page_offset <<= 1;
1772 npte = 2;
1773 }
1774 quadrant = page_offset >> PAGE_SHIFT;
1775 page_offset &= ~PAGE_MASK;
1776 if (quadrant != sp->role.quadrant)
1777 continue;
1778 }
1779 spte = &sp->spt[page_offset / sizeof(*spte)];
1780 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
1781 gentry = 0;
1782 r = kvm_read_guest_atomic(vcpu->kvm,
1783 gpa & ~(u64)(pte_size - 1),
1784 &gentry, pte_size);
1785 new = (const void *)&gentry;
1786 if (r < 0)
1787 new = NULL;
1788 }
1789 while (npte--) {
1790 entry = *spte;
1791 mmu_pte_write_zap_pte(vcpu, sp, spte);
1792 if (new)
1793 mmu_pte_write_new_pte(vcpu, sp, spte, new);
1794 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1795 ++spte;
1796 }
1797 }
1798 kvm_mmu_audit(vcpu, "post pte write");
1799 spin_unlock(&vcpu->kvm->mmu_lock);
1800 if (vcpu->arch.update_pte.page) {
1801 kvm_release_page_clean(vcpu->arch.update_pte.page);
1802 vcpu->arch.update_pte.page = NULL;
1803 }
1804 }
1805
1806 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1807 {
1808 gpa_t gpa;
1809 int r;
1810
1811 down_read(&vcpu->kvm->slots_lock);
1812 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1813 up_read(&vcpu->kvm->slots_lock);
1814
1815 spin_lock(&vcpu->kvm->mmu_lock);
1816 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1817 spin_unlock(&vcpu->kvm->mmu_lock);
1818 return r;
1819 }
1820
1821 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1822 {
1823 while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1824 struct kvm_mmu_page *sp;
1825
1826 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1827 struct kvm_mmu_page, link);
1828 kvm_mmu_zap_page(vcpu->kvm, sp);
1829 ++vcpu->kvm->stat.mmu_recycled;
1830 }
1831 }
1832
1833 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1834 {
1835 int r;
1836 enum emulation_result er;
1837
1838 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1839 if (r < 0)
1840 goto out;
1841
1842 if (!r) {
1843 r = 1;
1844 goto out;
1845 }
1846
1847 r = mmu_topup_memory_caches(vcpu);
1848 if (r)
1849 goto out;
1850
1851 er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1852
1853 switch (er) {
1854 case EMULATE_DONE:
1855 return 1;
1856 case EMULATE_DO_MMIO:
1857 ++vcpu->stat.mmio_exits;
1858 return 0;
1859 case EMULATE_FAIL:
1860 kvm_report_emulation_failure(vcpu, "pagetable");
1861 return 1;
1862 default:
1863 BUG();
1864 }
1865 out:
1866 return r;
1867 }
1868 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1869
1870 void kvm_enable_tdp(void)
1871 {
1872 tdp_enabled = true;
1873 }
1874 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
1875
1876 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1877 {
1878 struct kvm_mmu_page *sp;
1879
1880 while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1881 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1882 struct kvm_mmu_page, link);
1883 kvm_mmu_zap_page(vcpu->kvm, sp);
1884 }
1885 free_page((unsigned long)vcpu->arch.mmu.pae_root);
1886 }
1887
1888 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1889 {
1890 struct page *page;
1891 int i;
1892
1893 ASSERT(vcpu);
1894
1895 if (vcpu->kvm->arch.n_requested_mmu_pages)
1896 vcpu->kvm->arch.n_free_mmu_pages =
1897 vcpu->kvm->arch.n_requested_mmu_pages;
1898 else
1899 vcpu->kvm->arch.n_free_mmu_pages =
1900 vcpu->kvm->arch.n_alloc_mmu_pages;
1901 /*
1902 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1903 * Therefore we need to allocate shadow page tables in the first
1904 * 4GB of memory, which happens to fit the DMA32 zone.
1905 */
1906 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1907 if (!page)
1908 goto error_1;
1909 vcpu->arch.mmu.pae_root = page_address(page);
1910 for (i = 0; i < 4; ++i)
1911 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1912
1913 return 0;
1914
1915 error_1:
1916 free_mmu_pages(vcpu);
1917 return -ENOMEM;
1918 }
1919
1920 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1921 {
1922 ASSERT(vcpu);
1923 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1924
1925 return alloc_mmu_pages(vcpu);
1926 }
1927
1928 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1929 {
1930 ASSERT(vcpu);
1931 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1932
1933 return init_kvm_mmu(vcpu);
1934 }
1935
1936 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1937 {
1938 ASSERT(vcpu);
1939
1940 destroy_kvm_mmu(vcpu);
1941 free_mmu_pages(vcpu);
1942 mmu_free_memory_caches(vcpu);
1943 }
1944
1945 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1946 {
1947 struct kvm_mmu_page *sp;
1948
1949 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
1950 int i;
1951 u64 *pt;
1952
1953 if (!test_bit(slot, &sp->slot_bitmap))
1954 continue;
1955
1956 pt = sp->spt;
1957 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1958 /* avoid RMW */
1959 if (pt[i] & PT_WRITABLE_MASK)
1960 pt[i] &= ~PT_WRITABLE_MASK;
1961 }
1962 }
1963
1964 void kvm_mmu_zap_all(struct kvm *kvm)
1965 {
1966 struct kvm_mmu_page *sp, *node;
1967
1968 spin_lock(&kvm->mmu_lock);
1969 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
1970 kvm_mmu_zap_page(kvm, sp);
1971 spin_unlock(&kvm->mmu_lock);
1972
1973 kvm_flush_remote_tlbs(kvm);
1974 }
1975
1976 void kvm_mmu_module_exit(void)
1977 {
1978 if (pte_chain_cache)
1979 kmem_cache_destroy(pte_chain_cache);
1980 if (rmap_desc_cache)
1981 kmem_cache_destroy(rmap_desc_cache);
1982 if (mmu_page_header_cache)
1983 kmem_cache_destroy(mmu_page_header_cache);
1984 }
1985
1986 int kvm_mmu_module_init(void)
1987 {
1988 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1989 sizeof(struct kvm_pte_chain),
1990 0, 0, NULL);
1991 if (!pte_chain_cache)
1992 goto nomem;
1993 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1994 sizeof(struct kvm_rmap_desc),
1995 0, 0, NULL);
1996 if (!rmap_desc_cache)
1997 goto nomem;
1998
1999 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2000 sizeof(struct kvm_mmu_page),
2001 0, 0, NULL);
2002 if (!mmu_page_header_cache)
2003 goto nomem;
2004
2005 return 0;
2006
2007 nomem:
2008 kvm_mmu_module_exit();
2009 return -ENOMEM;
2010 }
2011
2012 /*
2013 * Caculate mmu pages needed for kvm.
2014 */
2015 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2016 {
2017 int i;
2018 unsigned int nr_mmu_pages;
2019 unsigned int nr_pages = 0;
2020
2021 for (i = 0; i < kvm->nmemslots; i++)
2022 nr_pages += kvm->memslots[i].npages;
2023
2024 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2025 nr_mmu_pages = max(nr_mmu_pages,
2026 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2027
2028 return nr_mmu_pages;
2029 }
2030
2031 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2032 unsigned len)
2033 {
2034 if (len > buffer->len)
2035 return NULL;
2036 return buffer->ptr;
2037 }
2038
2039 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2040 unsigned len)
2041 {
2042 void *ret;
2043
2044 ret = pv_mmu_peek_buffer(buffer, len);
2045 if (!ret)
2046 return ret;
2047 buffer->ptr += len;
2048 buffer->len -= len;
2049 buffer->processed += len;
2050 return ret;
2051 }
2052
2053 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2054 gpa_t addr, gpa_t value)
2055 {
2056 int bytes = 8;
2057 int r;
2058
2059 if (!is_long_mode(vcpu) && !is_pae(vcpu))
2060 bytes = 4;
2061
2062 r = mmu_topup_memory_caches(vcpu);
2063 if (r)
2064 return r;
2065
2066 if (!__emulator_write_phys(vcpu, addr, &value, bytes))
2067 return -EFAULT;
2068
2069 return 1;
2070 }
2071
2072 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2073 {
2074 kvm_x86_ops->tlb_flush(vcpu);
2075 return 1;
2076 }
2077
2078 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2079 {
2080 spin_lock(&vcpu->kvm->mmu_lock);
2081 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2082 spin_unlock(&vcpu->kvm->mmu_lock);
2083 return 1;
2084 }
2085
2086 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2087 struct kvm_pv_mmu_op_buffer *buffer)
2088 {
2089 struct kvm_mmu_op_header *header;
2090
2091 header = pv_mmu_peek_buffer(buffer, sizeof *header);
2092 if (!header)
2093 return 0;
2094 switch (header->op) {
2095 case KVM_MMU_OP_WRITE_PTE: {
2096 struct kvm_mmu_op_write_pte *wpte;
2097
2098 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2099 if (!wpte)
2100 return 0;
2101 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2102 wpte->pte_val);
2103 }
2104 case KVM_MMU_OP_FLUSH_TLB: {
2105 struct kvm_mmu_op_flush_tlb *ftlb;
2106
2107 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2108 if (!ftlb)
2109 return 0;
2110 return kvm_pv_mmu_flush_tlb(vcpu);
2111 }
2112 case KVM_MMU_OP_RELEASE_PT: {
2113 struct kvm_mmu_op_release_pt *rpt;
2114
2115 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
2116 if (!rpt)
2117 return 0;
2118 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
2119 }
2120 default: return 0;
2121 }
2122 }
2123
2124 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
2125 gpa_t addr, unsigned long *ret)
2126 {
2127 int r;
2128 struct kvm_pv_mmu_op_buffer buffer;
2129
2130 down_read(&vcpu->kvm->slots_lock);
2131 down_read(&current->mm->mmap_sem);
2132
2133 buffer.ptr = buffer.buf;
2134 buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
2135 buffer.processed = 0;
2136
2137 r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
2138 if (r)
2139 goto out;
2140
2141 while (buffer.len) {
2142 r = kvm_pv_mmu_op_one(vcpu, &buffer);
2143 if (r < 0)
2144 goto out;
2145 if (r == 0)
2146 break;
2147 }
2148
2149 r = 1;
2150 out:
2151 *ret = buffer.processed;
2152 up_read(&current->mm->mmap_sem);
2153 up_read(&vcpu->kvm->slots_lock);
2154 return r;
2155 }
2156
2157 #ifdef AUDIT
2158
2159 static const char *audit_msg;
2160
2161 static gva_t canonicalize(gva_t gva)
2162 {
2163 #ifdef CONFIG_X86_64
2164 gva = (long long)(gva << 16) >> 16;
2165 #endif
2166 return gva;
2167 }
2168
2169 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
2170 gva_t va, int level)
2171 {
2172 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
2173 int i;
2174 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
2175
2176 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
2177 u64 ent = pt[i];
2178
2179 if (ent == shadow_trap_nonpresent_pte)
2180 continue;
2181
2182 va = canonicalize(va);
2183 if (level > 1) {
2184 if (ent == shadow_notrap_nonpresent_pte)
2185 printk(KERN_ERR "audit: (%s) nontrapping pte"
2186 " in nonleaf level: levels %d gva %lx"
2187 " level %d pte %llx\n", audit_msg,
2188 vcpu->arch.mmu.root_level, va, level, ent);
2189
2190 audit_mappings_page(vcpu, ent, va, level - 1);
2191 } else {
2192 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
2193 struct page *page = gpa_to_page(vcpu, gpa);
2194 hpa_t hpa = page_to_phys(page);
2195
2196 if (is_shadow_present_pte(ent)
2197 && (ent & PT64_BASE_ADDR_MASK) != hpa)
2198 printk(KERN_ERR "xx audit error: (%s) levels %d"
2199 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
2200 audit_msg, vcpu->arch.mmu.root_level,
2201 va, gpa, hpa, ent,
2202 is_shadow_present_pte(ent));
2203 else if (ent == shadow_notrap_nonpresent_pte
2204 && !is_error_hpa(hpa))
2205 printk(KERN_ERR "audit: (%s) notrap shadow,"
2206 " valid guest gva %lx\n", audit_msg, va);
2207 kvm_release_page_clean(page);
2208
2209 }
2210 }
2211 }
2212
2213 static void audit_mappings(struct kvm_vcpu *vcpu)
2214 {
2215 unsigned i;
2216
2217 if (vcpu->arch.mmu.root_level == 4)
2218 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
2219 else
2220 for (i = 0; i < 4; ++i)
2221 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
2222 audit_mappings_page(vcpu,
2223 vcpu->arch.mmu.pae_root[i],
2224 i << 30,
2225 2);
2226 }
2227
2228 static int count_rmaps(struct kvm_vcpu *vcpu)
2229 {
2230 int nmaps = 0;
2231 int i, j, k;
2232
2233 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
2234 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
2235 struct kvm_rmap_desc *d;
2236
2237 for (j = 0; j < m->npages; ++j) {
2238 unsigned long *rmapp = &m->rmap[j];
2239
2240 if (!*rmapp)
2241 continue;
2242 if (!(*rmapp & 1)) {
2243 ++nmaps;
2244 continue;
2245 }
2246 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
2247 while (d) {
2248 for (k = 0; k < RMAP_EXT; ++k)
2249 if (d->shadow_ptes[k])
2250 ++nmaps;
2251 else
2252 break;
2253 d = d->more;
2254 }
2255 }
2256 }
2257 return nmaps;
2258 }
2259
2260 static int count_writable_mappings(struct kvm_vcpu *vcpu)
2261 {
2262 int nmaps = 0;
2263 struct kvm_mmu_page *sp;
2264 int i;
2265
2266 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2267 u64 *pt = sp->spt;
2268
2269 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
2270 continue;
2271
2272 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
2273 u64 ent = pt[i];
2274
2275 if (!(ent & PT_PRESENT_MASK))
2276 continue;
2277 if (!(ent & PT_WRITABLE_MASK))
2278 continue;
2279 ++nmaps;
2280 }
2281 }
2282 return nmaps;
2283 }
2284
2285 static void audit_rmap(struct kvm_vcpu *vcpu)
2286 {
2287 int n_rmap = count_rmaps(vcpu);
2288 int n_actual = count_writable_mappings(vcpu);
2289
2290 if (n_rmap != n_actual)
2291 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
2292 __func__, audit_msg, n_rmap, n_actual);
2293 }
2294
2295 static void audit_write_protection(struct kvm_vcpu *vcpu)
2296 {
2297 struct kvm_mmu_page *sp;
2298 struct kvm_memory_slot *slot;
2299 unsigned long *rmapp;
2300 gfn_t gfn;
2301
2302 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2303 if (sp->role.metaphysical)
2304 continue;
2305
2306 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
2307 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
2308 rmapp = &slot->rmap[gfn - slot->base_gfn];
2309 if (*rmapp)
2310 printk(KERN_ERR "%s: (%s) shadow page has writable"
2311 " mappings: gfn %lx role %x\n",
2312 __func__, audit_msg, sp->gfn,
2313 sp->role.word);
2314 }
2315 }
2316
2317 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
2318 {
2319 int olddbg = dbg;
2320
2321 dbg = 0;
2322 audit_msg = msg;
2323 audit_rmap(vcpu);
2324 audit_write_protection(vcpu);
2325 audit_mappings(vcpu);
2326 dbg = olddbg;
2327 }
2328
2329 #endif
This page took 0.074947 seconds and 6 git commands to generate.