KVM: MMU: Remove for_each_unsync_children() macro
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 9
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define PTE_LIST_EXT 4
139
140 #define ACC_EXEC_MASK 1
141 #define ACC_WRITE_MASK PT_WRITABLE_MASK
142 #define ACC_USER_MASK PT_USER_MASK
143 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
144
145 #include <trace/events/kvm.h>
146
147 #define CREATE_TRACE_POINTS
148 #include "mmutrace.h"
149
150 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
151
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
154 struct pte_list_desc {
155 u64 *sptes[PTE_LIST_EXT];
156 struct pte_list_desc *more;
157 };
158
159 struct kvm_shadow_walk_iterator {
160 u64 addr;
161 hpa_t shadow_addr;
162 u64 *sptep;
163 int level;
164 unsigned index;
165 };
166
167 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
168 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
169 shadow_walk_okay(&(_walker)); \
170 shadow_walk_next(&(_walker)))
171
172 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
173 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
174 shadow_walk_okay(&(_walker)) && \
175 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
176 __shadow_walk_next(&(_walker), spte))
177
178 static struct kmem_cache *pte_list_desc_cache;
179 static struct kmem_cache *mmu_page_header_cache;
180 static struct percpu_counter kvm_total_used_mmu_pages;
181
182 static u64 __read_mostly shadow_nx_mask;
183 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
184 static u64 __read_mostly shadow_user_mask;
185 static u64 __read_mostly shadow_accessed_mask;
186 static u64 __read_mostly shadow_dirty_mask;
187 static u64 __read_mostly shadow_mmio_mask;
188
189 static void mmu_spte_set(u64 *sptep, u64 spte);
190
191 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
192 {
193 shadow_mmio_mask = mmio_mask;
194 }
195 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
196
197 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
198 {
199 access &= ACC_WRITE_MASK | ACC_USER_MASK;
200
201 trace_mark_mmio_spte(sptep, gfn, access);
202 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
203 }
204
205 static bool is_mmio_spte(u64 spte)
206 {
207 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
208 }
209
210 static gfn_t get_mmio_spte_gfn(u64 spte)
211 {
212 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
213 }
214
215 static unsigned get_mmio_spte_access(u64 spte)
216 {
217 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
218 }
219
220 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
221 {
222 if (unlikely(is_noslot_pfn(pfn))) {
223 mark_mmio_spte(sptep, gfn, access);
224 return true;
225 }
226
227 return false;
228 }
229
230 static inline u64 rsvd_bits(int s, int e)
231 {
232 return ((1ULL << (e - s + 1)) - 1) << s;
233 }
234
235 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
236 u64 dirty_mask, u64 nx_mask, u64 x_mask)
237 {
238 shadow_user_mask = user_mask;
239 shadow_accessed_mask = accessed_mask;
240 shadow_dirty_mask = dirty_mask;
241 shadow_nx_mask = nx_mask;
242 shadow_x_mask = x_mask;
243 }
244 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
245
246 static int is_cpuid_PSE36(void)
247 {
248 return 1;
249 }
250
251 static int is_nx(struct kvm_vcpu *vcpu)
252 {
253 return vcpu->arch.efer & EFER_NX;
254 }
255
256 static int is_shadow_present_pte(u64 pte)
257 {
258 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
259 }
260
261 static int is_large_pte(u64 pte)
262 {
263 return pte & PT_PAGE_SIZE_MASK;
264 }
265
266 static int is_dirty_gpte(unsigned long pte)
267 {
268 return pte & PT_DIRTY_MASK;
269 }
270
271 static int is_rmap_spte(u64 pte)
272 {
273 return is_shadow_present_pte(pte);
274 }
275
276 static int is_last_spte(u64 pte, int level)
277 {
278 if (level == PT_PAGE_TABLE_LEVEL)
279 return 1;
280 if (is_large_pte(pte))
281 return 1;
282 return 0;
283 }
284
285 static pfn_t spte_to_pfn(u64 pte)
286 {
287 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
288 }
289
290 static gfn_t pse36_gfn_delta(u32 gpte)
291 {
292 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
293
294 return (gpte & PT32_DIR_PSE36_MASK) << shift;
295 }
296
297 #ifdef CONFIG_X86_64
298 static void __set_spte(u64 *sptep, u64 spte)
299 {
300 *sptep = spte;
301 }
302
303 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
304 {
305 *sptep = spte;
306 }
307
308 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
309 {
310 return xchg(sptep, spte);
311 }
312
313 static u64 __get_spte_lockless(u64 *sptep)
314 {
315 return ACCESS_ONCE(*sptep);
316 }
317
318 static bool __check_direct_spte_mmio_pf(u64 spte)
319 {
320 /* It is valid if the spte is zapped. */
321 return spte == 0ull;
322 }
323 #else
324 union split_spte {
325 struct {
326 u32 spte_low;
327 u32 spte_high;
328 };
329 u64 spte;
330 };
331
332 static void count_spte_clear(u64 *sptep, u64 spte)
333 {
334 struct kvm_mmu_page *sp = page_header(__pa(sptep));
335
336 if (is_shadow_present_pte(spte))
337 return;
338
339 /* Ensure the spte is completely set before we increase the count */
340 smp_wmb();
341 sp->clear_spte_count++;
342 }
343
344 static void __set_spte(u64 *sptep, u64 spte)
345 {
346 union split_spte *ssptep, sspte;
347
348 ssptep = (union split_spte *)sptep;
349 sspte = (union split_spte)spte;
350
351 ssptep->spte_high = sspte.spte_high;
352
353 /*
354 * If we map the spte from nonpresent to present, We should store
355 * the high bits firstly, then set present bit, so cpu can not
356 * fetch this spte while we are setting the spte.
357 */
358 smp_wmb();
359
360 ssptep->spte_low = sspte.spte_low;
361 }
362
363 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
364 {
365 union split_spte *ssptep, sspte;
366
367 ssptep = (union split_spte *)sptep;
368 sspte = (union split_spte)spte;
369
370 ssptep->spte_low = sspte.spte_low;
371
372 /*
373 * If we map the spte from present to nonpresent, we should clear
374 * present bit firstly to avoid vcpu fetch the old high bits.
375 */
376 smp_wmb();
377
378 ssptep->spte_high = sspte.spte_high;
379 count_spte_clear(sptep, spte);
380 }
381
382 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
383 {
384 union split_spte *ssptep, sspte, orig;
385
386 ssptep = (union split_spte *)sptep;
387 sspte = (union split_spte)spte;
388
389 /* xchg acts as a barrier before the setting of the high bits */
390 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
391 orig.spte_high = ssptep->spte_high;
392 ssptep->spte_high = sspte.spte_high;
393 count_spte_clear(sptep, spte);
394
395 return orig.spte;
396 }
397
398 /*
399 * The idea using the light way get the spte on x86_32 guest is from
400 * gup_get_pte(arch/x86/mm/gup.c).
401 * The difference is we can not catch the spte tlb flush if we leave
402 * guest mode, so we emulate it by increase clear_spte_count when spte
403 * is cleared.
404 */
405 static u64 __get_spte_lockless(u64 *sptep)
406 {
407 struct kvm_mmu_page *sp = page_header(__pa(sptep));
408 union split_spte spte, *orig = (union split_spte *)sptep;
409 int count;
410
411 retry:
412 count = sp->clear_spte_count;
413 smp_rmb();
414
415 spte.spte_low = orig->spte_low;
416 smp_rmb();
417
418 spte.spte_high = orig->spte_high;
419 smp_rmb();
420
421 if (unlikely(spte.spte_low != orig->spte_low ||
422 count != sp->clear_spte_count))
423 goto retry;
424
425 return spte.spte;
426 }
427
428 static bool __check_direct_spte_mmio_pf(u64 spte)
429 {
430 union split_spte sspte = (union split_spte)spte;
431 u32 high_mmio_mask = shadow_mmio_mask >> 32;
432
433 /* It is valid if the spte is zapped. */
434 if (spte == 0ull)
435 return true;
436
437 /* It is valid if the spte is being zapped. */
438 if (sspte.spte_low == 0ull &&
439 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
440 return true;
441
442 return false;
443 }
444 #endif
445
446 static bool spte_has_volatile_bits(u64 spte)
447 {
448 if (!shadow_accessed_mask)
449 return false;
450
451 if (!is_shadow_present_pte(spte))
452 return false;
453
454 if ((spte & shadow_accessed_mask) &&
455 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
456 return false;
457
458 return true;
459 }
460
461 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
462 {
463 return (old_spte & bit_mask) && !(new_spte & bit_mask);
464 }
465
466 /* Rules for using mmu_spte_set:
467 * Set the sptep from nonpresent to present.
468 * Note: the sptep being assigned *must* be either not present
469 * or in a state where the hardware will not attempt to update
470 * the spte.
471 */
472 static void mmu_spte_set(u64 *sptep, u64 new_spte)
473 {
474 WARN_ON(is_shadow_present_pte(*sptep));
475 __set_spte(sptep, new_spte);
476 }
477
478 /* Rules for using mmu_spte_update:
479 * Update the state bits, it means the mapped pfn is not changged.
480 */
481 static void mmu_spte_update(u64 *sptep, u64 new_spte)
482 {
483 u64 mask, old_spte = *sptep;
484
485 WARN_ON(!is_rmap_spte(new_spte));
486
487 if (!is_shadow_present_pte(old_spte))
488 return mmu_spte_set(sptep, new_spte);
489
490 new_spte |= old_spte & shadow_dirty_mask;
491
492 mask = shadow_accessed_mask;
493 if (is_writable_pte(old_spte))
494 mask |= shadow_dirty_mask;
495
496 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
497 __update_clear_spte_fast(sptep, new_spte);
498 else
499 old_spte = __update_clear_spte_slow(sptep, new_spte);
500
501 if (!shadow_accessed_mask)
502 return;
503
504 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
505 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
506 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
507 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
508 }
509
510 /*
511 * Rules for using mmu_spte_clear_track_bits:
512 * It sets the sptep from present to nonpresent, and track the
513 * state bits, it is used to clear the last level sptep.
514 */
515 static int mmu_spte_clear_track_bits(u64 *sptep)
516 {
517 pfn_t pfn;
518 u64 old_spte = *sptep;
519
520 if (!spte_has_volatile_bits(old_spte))
521 __update_clear_spte_fast(sptep, 0ull);
522 else
523 old_spte = __update_clear_spte_slow(sptep, 0ull);
524
525 if (!is_rmap_spte(old_spte))
526 return 0;
527
528 pfn = spte_to_pfn(old_spte);
529 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
530 kvm_set_pfn_accessed(pfn);
531 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
532 kvm_set_pfn_dirty(pfn);
533 return 1;
534 }
535
536 /*
537 * Rules for using mmu_spte_clear_no_track:
538 * Directly clear spte without caring the state bits of sptep,
539 * it is used to set the upper level spte.
540 */
541 static void mmu_spte_clear_no_track(u64 *sptep)
542 {
543 __update_clear_spte_fast(sptep, 0ull);
544 }
545
546 static u64 mmu_spte_get_lockless(u64 *sptep)
547 {
548 return __get_spte_lockless(sptep);
549 }
550
551 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
552 {
553 rcu_read_lock();
554 atomic_inc(&vcpu->kvm->arch.reader_counter);
555
556 /* Increase the counter before walking shadow page table */
557 smp_mb__after_atomic_inc();
558 }
559
560 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
561 {
562 /* Decrease the counter after walking shadow page table finished */
563 smp_mb__before_atomic_dec();
564 atomic_dec(&vcpu->kvm->arch.reader_counter);
565 rcu_read_unlock();
566 }
567
568 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
569 struct kmem_cache *base_cache, int min)
570 {
571 void *obj;
572
573 if (cache->nobjs >= min)
574 return 0;
575 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
576 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
577 if (!obj)
578 return -ENOMEM;
579 cache->objects[cache->nobjs++] = obj;
580 }
581 return 0;
582 }
583
584 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
585 {
586 return cache->nobjs;
587 }
588
589 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
590 struct kmem_cache *cache)
591 {
592 while (mc->nobjs)
593 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
594 }
595
596 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
597 int min)
598 {
599 void *page;
600
601 if (cache->nobjs >= min)
602 return 0;
603 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
604 page = (void *)__get_free_page(GFP_KERNEL);
605 if (!page)
606 return -ENOMEM;
607 cache->objects[cache->nobjs++] = page;
608 }
609 return 0;
610 }
611
612 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
613 {
614 while (mc->nobjs)
615 free_page((unsigned long)mc->objects[--mc->nobjs]);
616 }
617
618 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
619 {
620 int r;
621
622 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
623 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
624 if (r)
625 goto out;
626 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
627 if (r)
628 goto out;
629 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
630 mmu_page_header_cache, 4);
631 out:
632 return r;
633 }
634
635 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
636 {
637 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
638 pte_list_desc_cache);
639 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
640 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
641 mmu_page_header_cache);
642 }
643
644 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
645 size_t size)
646 {
647 void *p;
648
649 BUG_ON(!mc->nobjs);
650 p = mc->objects[--mc->nobjs];
651 return p;
652 }
653
654 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
655 {
656 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
657 sizeof(struct pte_list_desc));
658 }
659
660 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
661 {
662 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
663 }
664
665 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
666 {
667 if (!sp->role.direct)
668 return sp->gfns[index];
669
670 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
671 }
672
673 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
674 {
675 if (sp->role.direct)
676 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
677 else
678 sp->gfns[index] = gfn;
679 }
680
681 /*
682 * Return the pointer to the large page information for a given gfn,
683 * handling slots that are not large page aligned.
684 */
685 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
686 struct kvm_memory_slot *slot,
687 int level)
688 {
689 unsigned long idx;
690
691 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
692 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
693 return &slot->lpage_info[level - 2][idx];
694 }
695
696 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
697 {
698 struct kvm_memory_slot *slot;
699 struct kvm_lpage_info *linfo;
700 int i;
701
702 slot = gfn_to_memslot(kvm, gfn);
703 for (i = PT_DIRECTORY_LEVEL;
704 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
705 linfo = lpage_info_slot(gfn, slot, i);
706 linfo->write_count += 1;
707 }
708 kvm->arch.indirect_shadow_pages++;
709 }
710
711 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
712 {
713 struct kvm_memory_slot *slot;
714 struct kvm_lpage_info *linfo;
715 int i;
716
717 slot = gfn_to_memslot(kvm, gfn);
718 for (i = PT_DIRECTORY_LEVEL;
719 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
720 linfo = lpage_info_slot(gfn, slot, i);
721 linfo->write_count -= 1;
722 WARN_ON(linfo->write_count < 0);
723 }
724 kvm->arch.indirect_shadow_pages--;
725 }
726
727 static int has_wrprotected_page(struct kvm *kvm,
728 gfn_t gfn,
729 int level)
730 {
731 struct kvm_memory_slot *slot;
732 struct kvm_lpage_info *linfo;
733
734 slot = gfn_to_memslot(kvm, gfn);
735 if (slot) {
736 linfo = lpage_info_slot(gfn, slot, level);
737 return linfo->write_count;
738 }
739
740 return 1;
741 }
742
743 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
744 {
745 unsigned long page_size;
746 int i, ret = 0;
747
748 page_size = kvm_host_page_size(kvm, gfn);
749
750 for (i = PT_PAGE_TABLE_LEVEL;
751 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
752 if (page_size >= KVM_HPAGE_SIZE(i))
753 ret = i;
754 else
755 break;
756 }
757
758 return ret;
759 }
760
761 static struct kvm_memory_slot *
762 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
763 bool no_dirty_log)
764 {
765 struct kvm_memory_slot *slot;
766
767 slot = gfn_to_memslot(vcpu->kvm, gfn);
768 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
769 (no_dirty_log && slot->dirty_bitmap))
770 slot = NULL;
771
772 return slot;
773 }
774
775 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
776 {
777 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
778 }
779
780 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
781 {
782 int host_level, level, max_level;
783
784 host_level = host_mapping_level(vcpu->kvm, large_gfn);
785
786 if (host_level == PT_PAGE_TABLE_LEVEL)
787 return host_level;
788
789 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
790 kvm_x86_ops->get_lpage_level() : host_level;
791
792 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
793 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
794 break;
795
796 return level - 1;
797 }
798
799 /*
800 * Pte mapping structures:
801 *
802 * If pte_list bit zero is zero, then pte_list point to the spte.
803 *
804 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
805 * pte_list_desc containing more mappings.
806 *
807 * Returns the number of pte entries before the spte was added or zero if
808 * the spte was not added.
809 *
810 */
811 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
812 unsigned long *pte_list)
813 {
814 struct pte_list_desc *desc;
815 int i, count = 0;
816
817 if (!*pte_list) {
818 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
819 *pte_list = (unsigned long)spte;
820 } else if (!(*pte_list & 1)) {
821 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
822 desc = mmu_alloc_pte_list_desc(vcpu);
823 desc->sptes[0] = (u64 *)*pte_list;
824 desc->sptes[1] = spte;
825 *pte_list = (unsigned long)desc | 1;
826 ++count;
827 } else {
828 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
829 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
830 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
831 desc = desc->more;
832 count += PTE_LIST_EXT;
833 }
834 if (desc->sptes[PTE_LIST_EXT-1]) {
835 desc->more = mmu_alloc_pte_list_desc(vcpu);
836 desc = desc->more;
837 }
838 for (i = 0; desc->sptes[i]; ++i)
839 ++count;
840 desc->sptes[i] = spte;
841 }
842 return count;
843 }
844
845 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
846 {
847 struct pte_list_desc *desc;
848 u64 *prev_spte;
849 int i;
850
851 if (!*pte_list)
852 return NULL;
853 else if (!(*pte_list & 1)) {
854 if (!spte)
855 return (u64 *)*pte_list;
856 return NULL;
857 }
858 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
859 prev_spte = NULL;
860 while (desc) {
861 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
862 if (prev_spte == spte)
863 return desc->sptes[i];
864 prev_spte = desc->sptes[i];
865 }
866 desc = desc->more;
867 }
868 return NULL;
869 }
870
871 static void
872 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
873 int i, struct pte_list_desc *prev_desc)
874 {
875 int j;
876
877 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
878 ;
879 desc->sptes[i] = desc->sptes[j];
880 desc->sptes[j] = NULL;
881 if (j != 0)
882 return;
883 if (!prev_desc && !desc->more)
884 *pte_list = (unsigned long)desc->sptes[0];
885 else
886 if (prev_desc)
887 prev_desc->more = desc->more;
888 else
889 *pte_list = (unsigned long)desc->more | 1;
890 mmu_free_pte_list_desc(desc);
891 }
892
893 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
894 {
895 struct pte_list_desc *desc;
896 struct pte_list_desc *prev_desc;
897 int i;
898
899 if (!*pte_list) {
900 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
901 BUG();
902 } else if (!(*pte_list & 1)) {
903 rmap_printk("pte_list_remove: %p 1->0\n", spte);
904 if ((u64 *)*pte_list != spte) {
905 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
906 BUG();
907 }
908 *pte_list = 0;
909 } else {
910 rmap_printk("pte_list_remove: %p many->many\n", spte);
911 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
912 prev_desc = NULL;
913 while (desc) {
914 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
915 if (desc->sptes[i] == spte) {
916 pte_list_desc_remove_entry(pte_list,
917 desc, i,
918 prev_desc);
919 return;
920 }
921 prev_desc = desc;
922 desc = desc->more;
923 }
924 pr_err("pte_list_remove: %p many->many\n", spte);
925 BUG();
926 }
927 }
928
929 typedef void (*pte_list_walk_fn) (u64 *spte);
930 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
931 {
932 struct pte_list_desc *desc;
933 int i;
934
935 if (!*pte_list)
936 return;
937
938 if (!(*pte_list & 1))
939 return fn((u64 *)*pte_list);
940
941 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942 while (desc) {
943 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
944 fn(desc->sptes[i]);
945 desc = desc->more;
946 }
947 }
948
949 static unsigned long *__gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level,
950 struct kvm_memory_slot *slot)
951 {
952 struct kvm_lpage_info *linfo;
953
954 if (likely(level == PT_PAGE_TABLE_LEVEL))
955 return &slot->rmap[gfn - slot->base_gfn];
956
957 linfo = lpage_info_slot(gfn, slot, level);
958 return &linfo->rmap_pde;
959 }
960
961 /*
962 * Take gfn and return the reverse mapping to it.
963 */
964 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
965 {
966 struct kvm_memory_slot *slot;
967
968 slot = gfn_to_memslot(kvm, gfn);
969 return __gfn_to_rmap(kvm, gfn, level, slot);
970 }
971
972 static bool rmap_can_add(struct kvm_vcpu *vcpu)
973 {
974 struct kvm_mmu_memory_cache *cache;
975
976 cache = &vcpu->arch.mmu_pte_list_desc_cache;
977 return mmu_memory_cache_free_objects(cache);
978 }
979
980 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
981 {
982 struct kvm_mmu_page *sp;
983 unsigned long *rmapp;
984
985 sp = page_header(__pa(spte));
986 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
987 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
988 return pte_list_add(vcpu, spte, rmapp);
989 }
990
991 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
992 {
993 return pte_list_next(rmapp, spte);
994 }
995
996 static void rmap_remove(struct kvm *kvm, u64 *spte)
997 {
998 struct kvm_mmu_page *sp;
999 gfn_t gfn;
1000 unsigned long *rmapp;
1001
1002 sp = page_header(__pa(spte));
1003 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1004 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1005 pte_list_remove(spte, rmapp);
1006 }
1007
1008 static void drop_spte(struct kvm *kvm, u64 *sptep)
1009 {
1010 if (mmu_spte_clear_track_bits(sptep))
1011 rmap_remove(kvm, sptep);
1012 }
1013
1014 int kvm_mmu_rmap_write_protect(struct kvm *kvm, u64 gfn,
1015 struct kvm_memory_slot *slot)
1016 {
1017 unsigned long *rmapp;
1018 u64 *spte;
1019 int i, write_protected = 0;
1020
1021 rmapp = __gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL, slot);
1022 spte = rmap_next(kvm, rmapp, NULL);
1023 while (spte) {
1024 BUG_ON(!(*spte & PT_PRESENT_MASK));
1025 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
1026 if (is_writable_pte(*spte)) {
1027 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
1028 write_protected = 1;
1029 }
1030 spte = rmap_next(kvm, rmapp, spte);
1031 }
1032
1033 /* check for huge page mappings */
1034 for (i = PT_DIRECTORY_LEVEL;
1035 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1036 rmapp = __gfn_to_rmap(kvm, gfn, i, slot);
1037 spte = rmap_next(kvm, rmapp, NULL);
1038 while (spte) {
1039 BUG_ON(!(*spte & PT_PRESENT_MASK));
1040 BUG_ON(!is_large_pte(*spte));
1041 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
1042 if (is_writable_pte(*spte)) {
1043 drop_spte(kvm, spte);
1044 --kvm->stat.lpages;
1045 spte = NULL;
1046 write_protected = 1;
1047 }
1048 spte = rmap_next(kvm, rmapp, spte);
1049 }
1050 }
1051
1052 return write_protected;
1053 }
1054
1055 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1056 {
1057 struct kvm_memory_slot *slot;
1058
1059 slot = gfn_to_memslot(kvm, gfn);
1060 return kvm_mmu_rmap_write_protect(kvm, gfn, slot);
1061 }
1062
1063 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1064 unsigned long data)
1065 {
1066 u64 *spte;
1067 int need_tlb_flush = 0;
1068
1069 while ((spte = rmap_next(kvm, rmapp, NULL))) {
1070 BUG_ON(!(*spte & PT_PRESENT_MASK));
1071 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
1072 drop_spte(kvm, spte);
1073 need_tlb_flush = 1;
1074 }
1075 return need_tlb_flush;
1076 }
1077
1078 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1079 unsigned long data)
1080 {
1081 int need_flush = 0;
1082 u64 *spte, new_spte;
1083 pte_t *ptep = (pte_t *)data;
1084 pfn_t new_pfn;
1085
1086 WARN_ON(pte_huge(*ptep));
1087 new_pfn = pte_pfn(*ptep);
1088 spte = rmap_next(kvm, rmapp, NULL);
1089 while (spte) {
1090 BUG_ON(!is_shadow_present_pte(*spte));
1091 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1092 need_flush = 1;
1093 if (pte_write(*ptep)) {
1094 drop_spte(kvm, spte);
1095 spte = rmap_next(kvm, rmapp, NULL);
1096 } else {
1097 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1098 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1099
1100 new_spte &= ~PT_WRITABLE_MASK;
1101 new_spte &= ~SPTE_HOST_WRITEABLE;
1102 new_spte &= ~shadow_accessed_mask;
1103 mmu_spte_clear_track_bits(spte);
1104 mmu_spte_set(spte, new_spte);
1105 spte = rmap_next(kvm, rmapp, spte);
1106 }
1107 }
1108 if (need_flush)
1109 kvm_flush_remote_tlbs(kvm);
1110
1111 return 0;
1112 }
1113
1114 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1115 unsigned long data,
1116 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1117 unsigned long data))
1118 {
1119 int j;
1120 int ret;
1121 int retval = 0;
1122 struct kvm_memslots *slots;
1123 struct kvm_memory_slot *memslot;
1124
1125 slots = kvm_memslots(kvm);
1126
1127 kvm_for_each_memslot(memslot, slots) {
1128 unsigned long start = memslot->userspace_addr;
1129 unsigned long end;
1130
1131 end = start + (memslot->npages << PAGE_SHIFT);
1132 if (hva >= start && hva < end) {
1133 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1134 gfn_t gfn = memslot->base_gfn + gfn_offset;
1135
1136 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1137
1138 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1139 struct kvm_lpage_info *linfo;
1140
1141 linfo = lpage_info_slot(gfn, memslot,
1142 PT_DIRECTORY_LEVEL + j);
1143 ret |= handler(kvm, &linfo->rmap_pde, data);
1144 }
1145 trace_kvm_age_page(hva, memslot, ret);
1146 retval |= ret;
1147 }
1148 }
1149
1150 return retval;
1151 }
1152
1153 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1154 {
1155 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1156 }
1157
1158 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1159 {
1160 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1161 }
1162
1163 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1164 unsigned long data)
1165 {
1166 u64 *spte;
1167 int young = 0;
1168
1169 /*
1170 * Emulate the accessed bit for EPT, by checking if this page has
1171 * an EPT mapping, and clearing it if it does. On the next access,
1172 * a new EPT mapping will be established.
1173 * This has some overhead, but not as much as the cost of swapping
1174 * out actively used pages or breaking up actively used hugepages.
1175 */
1176 if (!shadow_accessed_mask)
1177 return kvm_unmap_rmapp(kvm, rmapp, data);
1178
1179 spte = rmap_next(kvm, rmapp, NULL);
1180 while (spte) {
1181 int _young;
1182 u64 _spte = *spte;
1183 BUG_ON(!(_spte & PT_PRESENT_MASK));
1184 _young = _spte & PT_ACCESSED_MASK;
1185 if (_young) {
1186 young = 1;
1187 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1188 }
1189 spte = rmap_next(kvm, rmapp, spte);
1190 }
1191 return young;
1192 }
1193
1194 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1195 unsigned long data)
1196 {
1197 u64 *spte;
1198 int young = 0;
1199
1200 /*
1201 * If there's no access bit in the secondary pte set by the
1202 * hardware it's up to gup-fast/gup to set the access bit in
1203 * the primary pte or in the page structure.
1204 */
1205 if (!shadow_accessed_mask)
1206 goto out;
1207
1208 spte = rmap_next(kvm, rmapp, NULL);
1209 while (spte) {
1210 u64 _spte = *spte;
1211 BUG_ON(!(_spte & PT_PRESENT_MASK));
1212 young = _spte & PT_ACCESSED_MASK;
1213 if (young) {
1214 young = 1;
1215 break;
1216 }
1217 spte = rmap_next(kvm, rmapp, spte);
1218 }
1219 out:
1220 return young;
1221 }
1222
1223 #define RMAP_RECYCLE_THRESHOLD 1000
1224
1225 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1226 {
1227 unsigned long *rmapp;
1228 struct kvm_mmu_page *sp;
1229
1230 sp = page_header(__pa(spte));
1231
1232 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1233
1234 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1235 kvm_flush_remote_tlbs(vcpu->kvm);
1236 }
1237
1238 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1239 {
1240 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1241 }
1242
1243 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1244 {
1245 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1246 }
1247
1248 #ifdef MMU_DEBUG
1249 static int is_empty_shadow_page(u64 *spt)
1250 {
1251 u64 *pos;
1252 u64 *end;
1253
1254 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1255 if (is_shadow_present_pte(*pos)) {
1256 printk(KERN_ERR "%s: %p %llx\n", __func__,
1257 pos, *pos);
1258 return 0;
1259 }
1260 return 1;
1261 }
1262 #endif
1263
1264 /*
1265 * This value is the sum of all of the kvm instances's
1266 * kvm->arch.n_used_mmu_pages values. We need a global,
1267 * aggregate version in order to make the slab shrinker
1268 * faster
1269 */
1270 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1271 {
1272 kvm->arch.n_used_mmu_pages += nr;
1273 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1274 }
1275
1276 /*
1277 * Remove the sp from shadow page cache, after call it,
1278 * we can not find this sp from the cache, and the shadow
1279 * page table is still valid.
1280 * It should be under the protection of mmu lock.
1281 */
1282 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1283 {
1284 ASSERT(is_empty_shadow_page(sp->spt));
1285 hlist_del(&sp->hash_link);
1286 if (!sp->role.direct)
1287 free_page((unsigned long)sp->gfns);
1288 }
1289
1290 /*
1291 * Free the shadow page table and the sp, we can do it
1292 * out of the protection of mmu lock.
1293 */
1294 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1295 {
1296 list_del(&sp->link);
1297 free_page((unsigned long)sp->spt);
1298 kmem_cache_free(mmu_page_header_cache, sp);
1299 }
1300
1301 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1302 {
1303 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1304 }
1305
1306 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1307 struct kvm_mmu_page *sp, u64 *parent_pte)
1308 {
1309 if (!parent_pte)
1310 return;
1311
1312 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1313 }
1314
1315 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1316 u64 *parent_pte)
1317 {
1318 pte_list_remove(parent_pte, &sp->parent_ptes);
1319 }
1320
1321 static void drop_parent_pte(struct kvm_mmu_page *sp,
1322 u64 *parent_pte)
1323 {
1324 mmu_page_remove_parent_pte(sp, parent_pte);
1325 mmu_spte_clear_no_track(parent_pte);
1326 }
1327
1328 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1329 u64 *parent_pte, int direct)
1330 {
1331 struct kvm_mmu_page *sp;
1332 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1333 sizeof *sp);
1334 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1335 if (!direct)
1336 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1337 PAGE_SIZE);
1338 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1339 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1340 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1341 sp->parent_ptes = 0;
1342 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1343 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1344 return sp;
1345 }
1346
1347 static void mark_unsync(u64 *spte);
1348 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1349 {
1350 pte_list_walk(&sp->parent_ptes, mark_unsync);
1351 }
1352
1353 static void mark_unsync(u64 *spte)
1354 {
1355 struct kvm_mmu_page *sp;
1356 unsigned int index;
1357
1358 sp = page_header(__pa(spte));
1359 index = spte - sp->spt;
1360 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1361 return;
1362 if (sp->unsync_children++)
1363 return;
1364 kvm_mmu_mark_parents_unsync(sp);
1365 }
1366
1367 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1368 struct kvm_mmu_page *sp)
1369 {
1370 return 1;
1371 }
1372
1373 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1374 {
1375 }
1376
1377 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1378 struct kvm_mmu_page *sp, u64 *spte,
1379 const void *pte)
1380 {
1381 WARN_ON(1);
1382 }
1383
1384 #define KVM_PAGE_ARRAY_NR 16
1385
1386 struct kvm_mmu_pages {
1387 struct mmu_page_and_offset {
1388 struct kvm_mmu_page *sp;
1389 unsigned int idx;
1390 } page[KVM_PAGE_ARRAY_NR];
1391 unsigned int nr;
1392 };
1393
1394 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1395 int idx)
1396 {
1397 int i;
1398
1399 if (sp->unsync)
1400 for (i=0; i < pvec->nr; i++)
1401 if (pvec->page[i].sp == sp)
1402 return 0;
1403
1404 pvec->page[pvec->nr].sp = sp;
1405 pvec->page[pvec->nr].idx = idx;
1406 pvec->nr++;
1407 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1408 }
1409
1410 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1411 struct kvm_mmu_pages *pvec)
1412 {
1413 int i, ret, nr_unsync_leaf = 0;
1414
1415 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1416 struct kvm_mmu_page *child;
1417 u64 ent = sp->spt[i];
1418
1419 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1420 goto clear_child_bitmap;
1421
1422 child = page_header(ent & PT64_BASE_ADDR_MASK);
1423
1424 if (child->unsync_children) {
1425 if (mmu_pages_add(pvec, child, i))
1426 return -ENOSPC;
1427
1428 ret = __mmu_unsync_walk(child, pvec);
1429 if (!ret)
1430 goto clear_child_bitmap;
1431 else if (ret > 0)
1432 nr_unsync_leaf += ret;
1433 else
1434 return ret;
1435 } else if (child->unsync) {
1436 nr_unsync_leaf++;
1437 if (mmu_pages_add(pvec, child, i))
1438 return -ENOSPC;
1439 } else
1440 goto clear_child_bitmap;
1441
1442 continue;
1443
1444 clear_child_bitmap:
1445 __clear_bit(i, sp->unsync_child_bitmap);
1446 sp->unsync_children--;
1447 WARN_ON((int)sp->unsync_children < 0);
1448 }
1449
1450
1451 return nr_unsync_leaf;
1452 }
1453
1454 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1455 struct kvm_mmu_pages *pvec)
1456 {
1457 if (!sp->unsync_children)
1458 return 0;
1459
1460 mmu_pages_add(pvec, sp, 0);
1461 return __mmu_unsync_walk(sp, pvec);
1462 }
1463
1464 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1465 {
1466 WARN_ON(!sp->unsync);
1467 trace_kvm_mmu_sync_page(sp);
1468 sp->unsync = 0;
1469 --kvm->stat.mmu_unsync;
1470 }
1471
1472 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1473 struct list_head *invalid_list);
1474 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1475 struct list_head *invalid_list);
1476
1477 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1478 hlist_for_each_entry(sp, pos, \
1479 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1480 if ((sp)->gfn != (gfn)) {} else
1481
1482 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1483 hlist_for_each_entry(sp, pos, \
1484 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1485 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1486 (sp)->role.invalid) {} else
1487
1488 /* @sp->gfn should be write-protected at the call site */
1489 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1490 struct list_head *invalid_list, bool clear_unsync)
1491 {
1492 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1493 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1494 return 1;
1495 }
1496
1497 if (clear_unsync)
1498 kvm_unlink_unsync_page(vcpu->kvm, sp);
1499
1500 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1501 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1502 return 1;
1503 }
1504
1505 kvm_mmu_flush_tlb(vcpu);
1506 return 0;
1507 }
1508
1509 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1510 struct kvm_mmu_page *sp)
1511 {
1512 LIST_HEAD(invalid_list);
1513 int ret;
1514
1515 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1516 if (ret)
1517 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1518
1519 return ret;
1520 }
1521
1522 #ifdef CONFIG_KVM_MMU_AUDIT
1523 #include "mmu_audit.c"
1524 #else
1525 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1526 static void mmu_audit_disable(void) { }
1527 #endif
1528
1529 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1530 struct list_head *invalid_list)
1531 {
1532 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1533 }
1534
1535 /* @gfn should be write-protected at the call site */
1536 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1537 {
1538 struct kvm_mmu_page *s;
1539 struct hlist_node *node;
1540 LIST_HEAD(invalid_list);
1541 bool flush = false;
1542
1543 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1544 if (!s->unsync)
1545 continue;
1546
1547 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1548 kvm_unlink_unsync_page(vcpu->kvm, s);
1549 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1550 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1551 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1552 continue;
1553 }
1554 flush = true;
1555 }
1556
1557 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1558 if (flush)
1559 kvm_mmu_flush_tlb(vcpu);
1560 }
1561
1562 struct mmu_page_path {
1563 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1564 unsigned int idx[PT64_ROOT_LEVEL-1];
1565 };
1566
1567 #define for_each_sp(pvec, sp, parents, i) \
1568 for (i = mmu_pages_next(&pvec, &parents, -1), \
1569 sp = pvec.page[i].sp; \
1570 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1571 i = mmu_pages_next(&pvec, &parents, i))
1572
1573 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1574 struct mmu_page_path *parents,
1575 int i)
1576 {
1577 int n;
1578
1579 for (n = i+1; n < pvec->nr; n++) {
1580 struct kvm_mmu_page *sp = pvec->page[n].sp;
1581
1582 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1583 parents->idx[0] = pvec->page[n].idx;
1584 return n;
1585 }
1586
1587 parents->parent[sp->role.level-2] = sp;
1588 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1589 }
1590
1591 return n;
1592 }
1593
1594 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1595 {
1596 struct kvm_mmu_page *sp;
1597 unsigned int level = 0;
1598
1599 do {
1600 unsigned int idx = parents->idx[level];
1601
1602 sp = parents->parent[level];
1603 if (!sp)
1604 return;
1605
1606 --sp->unsync_children;
1607 WARN_ON((int)sp->unsync_children < 0);
1608 __clear_bit(idx, sp->unsync_child_bitmap);
1609 level++;
1610 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1611 }
1612
1613 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1614 struct mmu_page_path *parents,
1615 struct kvm_mmu_pages *pvec)
1616 {
1617 parents->parent[parent->role.level-1] = NULL;
1618 pvec->nr = 0;
1619 }
1620
1621 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1622 struct kvm_mmu_page *parent)
1623 {
1624 int i;
1625 struct kvm_mmu_page *sp;
1626 struct mmu_page_path parents;
1627 struct kvm_mmu_pages pages;
1628 LIST_HEAD(invalid_list);
1629
1630 kvm_mmu_pages_init(parent, &parents, &pages);
1631 while (mmu_unsync_walk(parent, &pages)) {
1632 int protected = 0;
1633
1634 for_each_sp(pages, sp, parents, i)
1635 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1636
1637 if (protected)
1638 kvm_flush_remote_tlbs(vcpu->kvm);
1639
1640 for_each_sp(pages, sp, parents, i) {
1641 kvm_sync_page(vcpu, sp, &invalid_list);
1642 mmu_pages_clear_parents(&parents);
1643 }
1644 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1645 cond_resched_lock(&vcpu->kvm->mmu_lock);
1646 kvm_mmu_pages_init(parent, &parents, &pages);
1647 }
1648 }
1649
1650 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1651 {
1652 int i;
1653
1654 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1655 sp->spt[i] = 0ull;
1656 }
1657
1658 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1659 {
1660 sp->write_flooding_count = 0;
1661 }
1662
1663 static void clear_sp_write_flooding_count(u64 *spte)
1664 {
1665 struct kvm_mmu_page *sp = page_header(__pa(spte));
1666
1667 __clear_sp_write_flooding_count(sp);
1668 }
1669
1670 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1671 gfn_t gfn,
1672 gva_t gaddr,
1673 unsigned level,
1674 int direct,
1675 unsigned access,
1676 u64 *parent_pte)
1677 {
1678 union kvm_mmu_page_role role;
1679 unsigned quadrant;
1680 struct kvm_mmu_page *sp;
1681 struct hlist_node *node;
1682 bool need_sync = false;
1683
1684 role = vcpu->arch.mmu.base_role;
1685 role.level = level;
1686 role.direct = direct;
1687 if (role.direct)
1688 role.cr4_pae = 0;
1689 role.access = access;
1690 if (!vcpu->arch.mmu.direct_map
1691 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1692 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1693 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1694 role.quadrant = quadrant;
1695 }
1696 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1697 if (!need_sync && sp->unsync)
1698 need_sync = true;
1699
1700 if (sp->role.word != role.word)
1701 continue;
1702
1703 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1704 break;
1705
1706 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1707 if (sp->unsync_children) {
1708 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1709 kvm_mmu_mark_parents_unsync(sp);
1710 } else if (sp->unsync)
1711 kvm_mmu_mark_parents_unsync(sp);
1712
1713 __clear_sp_write_flooding_count(sp);
1714 trace_kvm_mmu_get_page(sp, false);
1715 return sp;
1716 }
1717 ++vcpu->kvm->stat.mmu_cache_miss;
1718 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1719 if (!sp)
1720 return sp;
1721 sp->gfn = gfn;
1722 sp->role = role;
1723 hlist_add_head(&sp->hash_link,
1724 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1725 if (!direct) {
1726 if (rmap_write_protect(vcpu->kvm, gfn))
1727 kvm_flush_remote_tlbs(vcpu->kvm);
1728 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1729 kvm_sync_pages(vcpu, gfn);
1730
1731 account_shadowed(vcpu->kvm, gfn);
1732 }
1733 init_shadow_page_table(sp);
1734 trace_kvm_mmu_get_page(sp, true);
1735 return sp;
1736 }
1737
1738 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1739 struct kvm_vcpu *vcpu, u64 addr)
1740 {
1741 iterator->addr = addr;
1742 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1743 iterator->level = vcpu->arch.mmu.shadow_root_level;
1744
1745 if (iterator->level == PT64_ROOT_LEVEL &&
1746 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1747 !vcpu->arch.mmu.direct_map)
1748 --iterator->level;
1749
1750 if (iterator->level == PT32E_ROOT_LEVEL) {
1751 iterator->shadow_addr
1752 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1753 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1754 --iterator->level;
1755 if (!iterator->shadow_addr)
1756 iterator->level = 0;
1757 }
1758 }
1759
1760 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1761 {
1762 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1763 return false;
1764
1765 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1766 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1767 return true;
1768 }
1769
1770 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1771 u64 spte)
1772 {
1773 if (is_last_spte(spte, iterator->level)) {
1774 iterator->level = 0;
1775 return;
1776 }
1777
1778 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1779 --iterator->level;
1780 }
1781
1782 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1783 {
1784 return __shadow_walk_next(iterator, *iterator->sptep);
1785 }
1786
1787 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1788 {
1789 u64 spte;
1790
1791 spte = __pa(sp->spt)
1792 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1793 | PT_WRITABLE_MASK | PT_USER_MASK;
1794 mmu_spte_set(sptep, spte);
1795 }
1796
1797 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1798 {
1799 if (is_large_pte(*sptep)) {
1800 drop_spte(vcpu->kvm, sptep);
1801 kvm_flush_remote_tlbs(vcpu->kvm);
1802 }
1803 }
1804
1805 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1806 unsigned direct_access)
1807 {
1808 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1809 struct kvm_mmu_page *child;
1810
1811 /*
1812 * For the direct sp, if the guest pte's dirty bit
1813 * changed form clean to dirty, it will corrupt the
1814 * sp's access: allow writable in the read-only sp,
1815 * so we should update the spte at this point to get
1816 * a new sp with the correct access.
1817 */
1818 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1819 if (child->role.access == direct_access)
1820 return;
1821
1822 drop_parent_pte(child, sptep);
1823 kvm_flush_remote_tlbs(vcpu->kvm);
1824 }
1825 }
1826
1827 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1828 u64 *spte)
1829 {
1830 u64 pte;
1831 struct kvm_mmu_page *child;
1832
1833 pte = *spte;
1834 if (is_shadow_present_pte(pte)) {
1835 if (is_last_spte(pte, sp->role.level)) {
1836 drop_spte(kvm, spte);
1837 if (is_large_pte(pte))
1838 --kvm->stat.lpages;
1839 } else {
1840 child = page_header(pte & PT64_BASE_ADDR_MASK);
1841 drop_parent_pte(child, spte);
1842 }
1843 return true;
1844 }
1845
1846 if (is_mmio_spte(pte))
1847 mmu_spte_clear_no_track(spte);
1848
1849 return false;
1850 }
1851
1852 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1853 struct kvm_mmu_page *sp)
1854 {
1855 unsigned i;
1856
1857 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1858 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1859 }
1860
1861 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1862 {
1863 mmu_page_remove_parent_pte(sp, parent_pte);
1864 }
1865
1866 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1867 {
1868 u64 *parent_pte;
1869
1870 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1871 drop_parent_pte(sp, parent_pte);
1872 }
1873
1874 static int mmu_zap_unsync_children(struct kvm *kvm,
1875 struct kvm_mmu_page *parent,
1876 struct list_head *invalid_list)
1877 {
1878 int i, zapped = 0;
1879 struct mmu_page_path parents;
1880 struct kvm_mmu_pages pages;
1881
1882 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1883 return 0;
1884
1885 kvm_mmu_pages_init(parent, &parents, &pages);
1886 while (mmu_unsync_walk(parent, &pages)) {
1887 struct kvm_mmu_page *sp;
1888
1889 for_each_sp(pages, sp, parents, i) {
1890 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1891 mmu_pages_clear_parents(&parents);
1892 zapped++;
1893 }
1894 kvm_mmu_pages_init(parent, &parents, &pages);
1895 }
1896
1897 return zapped;
1898 }
1899
1900 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1901 struct list_head *invalid_list)
1902 {
1903 int ret;
1904
1905 trace_kvm_mmu_prepare_zap_page(sp);
1906 ++kvm->stat.mmu_shadow_zapped;
1907 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1908 kvm_mmu_page_unlink_children(kvm, sp);
1909 kvm_mmu_unlink_parents(kvm, sp);
1910 if (!sp->role.invalid && !sp->role.direct)
1911 unaccount_shadowed(kvm, sp->gfn);
1912 if (sp->unsync)
1913 kvm_unlink_unsync_page(kvm, sp);
1914 if (!sp->root_count) {
1915 /* Count self */
1916 ret++;
1917 list_move(&sp->link, invalid_list);
1918 kvm_mod_used_mmu_pages(kvm, -1);
1919 } else {
1920 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1921 kvm_reload_remote_mmus(kvm);
1922 }
1923
1924 sp->role.invalid = 1;
1925 return ret;
1926 }
1927
1928 static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1929 {
1930 struct kvm_mmu_page *sp;
1931
1932 list_for_each_entry(sp, invalid_list, link)
1933 kvm_mmu_isolate_page(sp);
1934 }
1935
1936 static void free_pages_rcu(struct rcu_head *head)
1937 {
1938 struct kvm_mmu_page *next, *sp;
1939
1940 sp = container_of(head, struct kvm_mmu_page, rcu);
1941 while (sp) {
1942 if (!list_empty(&sp->link))
1943 next = list_first_entry(&sp->link,
1944 struct kvm_mmu_page, link);
1945 else
1946 next = NULL;
1947 kvm_mmu_free_page(sp);
1948 sp = next;
1949 }
1950 }
1951
1952 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1953 struct list_head *invalid_list)
1954 {
1955 struct kvm_mmu_page *sp;
1956
1957 if (list_empty(invalid_list))
1958 return;
1959
1960 kvm_flush_remote_tlbs(kvm);
1961
1962 if (atomic_read(&kvm->arch.reader_counter)) {
1963 kvm_mmu_isolate_pages(invalid_list);
1964 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1965 list_del_init(invalid_list);
1966
1967 trace_kvm_mmu_delay_free_pages(sp);
1968 call_rcu(&sp->rcu, free_pages_rcu);
1969 return;
1970 }
1971
1972 do {
1973 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1974 WARN_ON(!sp->role.invalid || sp->root_count);
1975 kvm_mmu_isolate_page(sp);
1976 kvm_mmu_free_page(sp);
1977 } while (!list_empty(invalid_list));
1978
1979 }
1980
1981 /*
1982 * Changing the number of mmu pages allocated to the vm
1983 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1984 */
1985 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1986 {
1987 LIST_HEAD(invalid_list);
1988 /*
1989 * If we set the number of mmu pages to be smaller be than the
1990 * number of actived pages , we must to free some mmu pages before we
1991 * change the value
1992 */
1993
1994 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1995 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1996 !list_empty(&kvm->arch.active_mmu_pages)) {
1997 struct kvm_mmu_page *page;
1998
1999 page = container_of(kvm->arch.active_mmu_pages.prev,
2000 struct kvm_mmu_page, link);
2001 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2002 }
2003 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2004 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2005 }
2006
2007 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2008 }
2009
2010 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2011 {
2012 struct kvm_mmu_page *sp;
2013 struct hlist_node *node;
2014 LIST_HEAD(invalid_list);
2015 int r;
2016
2017 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2018 r = 0;
2019 spin_lock(&kvm->mmu_lock);
2020 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2021 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2022 sp->role.word);
2023 r = 1;
2024 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2025 }
2026 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2027 spin_unlock(&kvm->mmu_lock);
2028
2029 return r;
2030 }
2031 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2032
2033 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2034 {
2035 int slot = memslot_id(kvm, gfn);
2036 struct kvm_mmu_page *sp = page_header(__pa(pte));
2037
2038 __set_bit(slot, sp->slot_bitmap);
2039 }
2040
2041 /*
2042 * The function is based on mtrr_type_lookup() in
2043 * arch/x86/kernel/cpu/mtrr/generic.c
2044 */
2045 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2046 u64 start, u64 end)
2047 {
2048 int i;
2049 u64 base, mask;
2050 u8 prev_match, curr_match;
2051 int num_var_ranges = KVM_NR_VAR_MTRR;
2052
2053 if (!mtrr_state->enabled)
2054 return 0xFF;
2055
2056 /* Make end inclusive end, instead of exclusive */
2057 end--;
2058
2059 /* Look in fixed ranges. Just return the type as per start */
2060 if (mtrr_state->have_fixed && (start < 0x100000)) {
2061 int idx;
2062
2063 if (start < 0x80000) {
2064 idx = 0;
2065 idx += (start >> 16);
2066 return mtrr_state->fixed_ranges[idx];
2067 } else if (start < 0xC0000) {
2068 idx = 1 * 8;
2069 idx += ((start - 0x80000) >> 14);
2070 return mtrr_state->fixed_ranges[idx];
2071 } else if (start < 0x1000000) {
2072 idx = 3 * 8;
2073 idx += ((start - 0xC0000) >> 12);
2074 return mtrr_state->fixed_ranges[idx];
2075 }
2076 }
2077
2078 /*
2079 * Look in variable ranges
2080 * Look of multiple ranges matching this address and pick type
2081 * as per MTRR precedence
2082 */
2083 if (!(mtrr_state->enabled & 2))
2084 return mtrr_state->def_type;
2085
2086 prev_match = 0xFF;
2087 for (i = 0; i < num_var_ranges; ++i) {
2088 unsigned short start_state, end_state;
2089
2090 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2091 continue;
2092
2093 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2094 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2095 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2096 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2097
2098 start_state = ((start & mask) == (base & mask));
2099 end_state = ((end & mask) == (base & mask));
2100 if (start_state != end_state)
2101 return 0xFE;
2102
2103 if ((start & mask) != (base & mask))
2104 continue;
2105
2106 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2107 if (prev_match == 0xFF) {
2108 prev_match = curr_match;
2109 continue;
2110 }
2111
2112 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2113 curr_match == MTRR_TYPE_UNCACHABLE)
2114 return MTRR_TYPE_UNCACHABLE;
2115
2116 if ((prev_match == MTRR_TYPE_WRBACK &&
2117 curr_match == MTRR_TYPE_WRTHROUGH) ||
2118 (prev_match == MTRR_TYPE_WRTHROUGH &&
2119 curr_match == MTRR_TYPE_WRBACK)) {
2120 prev_match = MTRR_TYPE_WRTHROUGH;
2121 curr_match = MTRR_TYPE_WRTHROUGH;
2122 }
2123
2124 if (prev_match != curr_match)
2125 return MTRR_TYPE_UNCACHABLE;
2126 }
2127
2128 if (prev_match != 0xFF)
2129 return prev_match;
2130
2131 return mtrr_state->def_type;
2132 }
2133
2134 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2135 {
2136 u8 mtrr;
2137
2138 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2139 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2140 if (mtrr == 0xfe || mtrr == 0xff)
2141 mtrr = MTRR_TYPE_WRBACK;
2142 return mtrr;
2143 }
2144 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2145
2146 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2147 {
2148 trace_kvm_mmu_unsync_page(sp);
2149 ++vcpu->kvm->stat.mmu_unsync;
2150 sp->unsync = 1;
2151
2152 kvm_mmu_mark_parents_unsync(sp);
2153 }
2154
2155 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2156 {
2157 struct kvm_mmu_page *s;
2158 struct hlist_node *node;
2159
2160 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2161 if (s->unsync)
2162 continue;
2163 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2164 __kvm_unsync_page(vcpu, s);
2165 }
2166 }
2167
2168 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2169 bool can_unsync)
2170 {
2171 struct kvm_mmu_page *s;
2172 struct hlist_node *node;
2173 bool need_unsync = false;
2174
2175 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2176 if (!can_unsync)
2177 return 1;
2178
2179 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2180 return 1;
2181
2182 if (!need_unsync && !s->unsync) {
2183 need_unsync = true;
2184 }
2185 }
2186 if (need_unsync)
2187 kvm_unsync_pages(vcpu, gfn);
2188 return 0;
2189 }
2190
2191 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2192 unsigned pte_access, int user_fault,
2193 int write_fault, int level,
2194 gfn_t gfn, pfn_t pfn, bool speculative,
2195 bool can_unsync, bool host_writable)
2196 {
2197 u64 spte, entry = *sptep;
2198 int ret = 0;
2199
2200 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2201 return 0;
2202
2203 spte = PT_PRESENT_MASK;
2204 if (!speculative)
2205 spte |= shadow_accessed_mask;
2206
2207 if (pte_access & ACC_EXEC_MASK)
2208 spte |= shadow_x_mask;
2209 else
2210 spte |= shadow_nx_mask;
2211 if (pte_access & ACC_USER_MASK)
2212 spte |= shadow_user_mask;
2213 if (level > PT_PAGE_TABLE_LEVEL)
2214 spte |= PT_PAGE_SIZE_MASK;
2215 if (tdp_enabled)
2216 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2217 kvm_is_mmio_pfn(pfn));
2218
2219 if (host_writable)
2220 spte |= SPTE_HOST_WRITEABLE;
2221 else
2222 pte_access &= ~ACC_WRITE_MASK;
2223
2224 spte |= (u64)pfn << PAGE_SHIFT;
2225
2226 if ((pte_access & ACC_WRITE_MASK)
2227 || (!vcpu->arch.mmu.direct_map && write_fault
2228 && !is_write_protection(vcpu) && !user_fault)) {
2229
2230 if (level > PT_PAGE_TABLE_LEVEL &&
2231 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2232 ret = 1;
2233 drop_spte(vcpu->kvm, sptep);
2234 goto done;
2235 }
2236
2237 spte |= PT_WRITABLE_MASK;
2238
2239 if (!vcpu->arch.mmu.direct_map
2240 && !(pte_access & ACC_WRITE_MASK)) {
2241 spte &= ~PT_USER_MASK;
2242 /*
2243 * If we converted a user page to a kernel page,
2244 * so that the kernel can write to it when cr0.wp=0,
2245 * then we should prevent the kernel from executing it
2246 * if SMEP is enabled.
2247 */
2248 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2249 spte |= PT64_NX_MASK;
2250 }
2251
2252 /*
2253 * Optimization: for pte sync, if spte was writable the hash
2254 * lookup is unnecessary (and expensive). Write protection
2255 * is responsibility of mmu_get_page / kvm_sync_page.
2256 * Same reasoning can be applied to dirty page accounting.
2257 */
2258 if (!can_unsync && is_writable_pte(*sptep))
2259 goto set_pte;
2260
2261 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2262 pgprintk("%s: found shadow page for %llx, marking ro\n",
2263 __func__, gfn);
2264 ret = 1;
2265 pte_access &= ~ACC_WRITE_MASK;
2266 if (is_writable_pte(spte))
2267 spte &= ~PT_WRITABLE_MASK;
2268 }
2269 }
2270
2271 if (pte_access & ACC_WRITE_MASK)
2272 mark_page_dirty(vcpu->kvm, gfn);
2273
2274 set_pte:
2275 mmu_spte_update(sptep, spte);
2276 /*
2277 * If we overwrite a writable spte with a read-only one we
2278 * should flush remote TLBs. Otherwise rmap_write_protect
2279 * will find a read-only spte, even though the writable spte
2280 * might be cached on a CPU's TLB.
2281 */
2282 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2283 kvm_flush_remote_tlbs(vcpu->kvm);
2284 done:
2285 return ret;
2286 }
2287
2288 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2289 unsigned pt_access, unsigned pte_access,
2290 int user_fault, int write_fault,
2291 int *emulate, int level, gfn_t gfn,
2292 pfn_t pfn, bool speculative,
2293 bool host_writable)
2294 {
2295 int was_rmapped = 0;
2296 int rmap_count;
2297
2298 pgprintk("%s: spte %llx access %x write_fault %d"
2299 " user_fault %d gfn %llx\n",
2300 __func__, *sptep, pt_access,
2301 write_fault, user_fault, gfn);
2302
2303 if (is_rmap_spte(*sptep)) {
2304 /*
2305 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2306 * the parent of the now unreachable PTE.
2307 */
2308 if (level > PT_PAGE_TABLE_LEVEL &&
2309 !is_large_pte(*sptep)) {
2310 struct kvm_mmu_page *child;
2311 u64 pte = *sptep;
2312
2313 child = page_header(pte & PT64_BASE_ADDR_MASK);
2314 drop_parent_pte(child, sptep);
2315 kvm_flush_remote_tlbs(vcpu->kvm);
2316 } else if (pfn != spte_to_pfn(*sptep)) {
2317 pgprintk("hfn old %llx new %llx\n",
2318 spte_to_pfn(*sptep), pfn);
2319 drop_spte(vcpu->kvm, sptep);
2320 kvm_flush_remote_tlbs(vcpu->kvm);
2321 } else
2322 was_rmapped = 1;
2323 }
2324
2325 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2326 level, gfn, pfn, speculative, true,
2327 host_writable)) {
2328 if (write_fault)
2329 *emulate = 1;
2330 kvm_mmu_flush_tlb(vcpu);
2331 }
2332
2333 if (unlikely(is_mmio_spte(*sptep) && emulate))
2334 *emulate = 1;
2335
2336 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2337 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2338 is_large_pte(*sptep)? "2MB" : "4kB",
2339 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2340 *sptep, sptep);
2341 if (!was_rmapped && is_large_pte(*sptep))
2342 ++vcpu->kvm->stat.lpages;
2343
2344 if (is_shadow_present_pte(*sptep)) {
2345 page_header_update_slot(vcpu->kvm, sptep, gfn);
2346 if (!was_rmapped) {
2347 rmap_count = rmap_add(vcpu, sptep, gfn);
2348 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2349 rmap_recycle(vcpu, sptep, gfn);
2350 }
2351 }
2352 kvm_release_pfn_clean(pfn);
2353 }
2354
2355 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2356 {
2357 }
2358
2359 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2360 bool no_dirty_log)
2361 {
2362 struct kvm_memory_slot *slot;
2363 unsigned long hva;
2364
2365 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2366 if (!slot) {
2367 get_page(fault_page);
2368 return page_to_pfn(fault_page);
2369 }
2370
2371 hva = gfn_to_hva_memslot(slot, gfn);
2372
2373 return hva_to_pfn_atomic(vcpu->kvm, hva);
2374 }
2375
2376 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2377 struct kvm_mmu_page *sp,
2378 u64 *start, u64 *end)
2379 {
2380 struct page *pages[PTE_PREFETCH_NUM];
2381 unsigned access = sp->role.access;
2382 int i, ret;
2383 gfn_t gfn;
2384
2385 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2386 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2387 return -1;
2388
2389 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2390 if (ret <= 0)
2391 return -1;
2392
2393 for (i = 0; i < ret; i++, gfn++, start++)
2394 mmu_set_spte(vcpu, start, ACC_ALL,
2395 access, 0, 0, NULL,
2396 sp->role.level, gfn,
2397 page_to_pfn(pages[i]), true, true);
2398
2399 return 0;
2400 }
2401
2402 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2403 struct kvm_mmu_page *sp, u64 *sptep)
2404 {
2405 u64 *spte, *start = NULL;
2406 int i;
2407
2408 WARN_ON(!sp->role.direct);
2409
2410 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2411 spte = sp->spt + i;
2412
2413 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2414 if (is_shadow_present_pte(*spte) || spte == sptep) {
2415 if (!start)
2416 continue;
2417 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2418 break;
2419 start = NULL;
2420 } else if (!start)
2421 start = spte;
2422 }
2423 }
2424
2425 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2426 {
2427 struct kvm_mmu_page *sp;
2428
2429 /*
2430 * Since it's no accessed bit on EPT, it's no way to
2431 * distinguish between actually accessed translations
2432 * and prefetched, so disable pte prefetch if EPT is
2433 * enabled.
2434 */
2435 if (!shadow_accessed_mask)
2436 return;
2437
2438 sp = page_header(__pa(sptep));
2439 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2440 return;
2441
2442 __direct_pte_prefetch(vcpu, sp, sptep);
2443 }
2444
2445 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2446 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2447 bool prefault)
2448 {
2449 struct kvm_shadow_walk_iterator iterator;
2450 struct kvm_mmu_page *sp;
2451 int emulate = 0;
2452 gfn_t pseudo_gfn;
2453
2454 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2455 if (iterator.level == level) {
2456 unsigned pte_access = ACC_ALL;
2457
2458 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2459 0, write, &emulate,
2460 level, gfn, pfn, prefault, map_writable);
2461 direct_pte_prefetch(vcpu, iterator.sptep);
2462 ++vcpu->stat.pf_fixed;
2463 break;
2464 }
2465
2466 if (!is_shadow_present_pte(*iterator.sptep)) {
2467 u64 base_addr = iterator.addr;
2468
2469 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2470 pseudo_gfn = base_addr >> PAGE_SHIFT;
2471 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2472 iterator.level - 1,
2473 1, ACC_ALL, iterator.sptep);
2474 if (!sp) {
2475 pgprintk("nonpaging_map: ENOMEM\n");
2476 kvm_release_pfn_clean(pfn);
2477 return -ENOMEM;
2478 }
2479
2480 mmu_spte_set(iterator.sptep,
2481 __pa(sp->spt)
2482 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2483 | shadow_user_mask | shadow_x_mask
2484 | shadow_accessed_mask);
2485 }
2486 }
2487 return emulate;
2488 }
2489
2490 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2491 {
2492 siginfo_t info;
2493
2494 info.si_signo = SIGBUS;
2495 info.si_errno = 0;
2496 info.si_code = BUS_MCEERR_AR;
2497 info.si_addr = (void __user *)address;
2498 info.si_addr_lsb = PAGE_SHIFT;
2499
2500 send_sig_info(SIGBUS, &info, tsk);
2501 }
2502
2503 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2504 {
2505 kvm_release_pfn_clean(pfn);
2506 if (is_hwpoison_pfn(pfn)) {
2507 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2508 return 0;
2509 }
2510
2511 return -EFAULT;
2512 }
2513
2514 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2515 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2516 {
2517 pfn_t pfn = *pfnp;
2518 gfn_t gfn = *gfnp;
2519 int level = *levelp;
2520
2521 /*
2522 * Check if it's a transparent hugepage. If this would be an
2523 * hugetlbfs page, level wouldn't be set to
2524 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2525 * here.
2526 */
2527 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2528 level == PT_PAGE_TABLE_LEVEL &&
2529 PageTransCompound(pfn_to_page(pfn)) &&
2530 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2531 unsigned long mask;
2532 /*
2533 * mmu_notifier_retry was successful and we hold the
2534 * mmu_lock here, so the pmd can't become splitting
2535 * from under us, and in turn
2536 * __split_huge_page_refcount() can't run from under
2537 * us and we can safely transfer the refcount from
2538 * PG_tail to PG_head as we switch the pfn to tail to
2539 * head.
2540 */
2541 *levelp = level = PT_DIRECTORY_LEVEL;
2542 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2543 VM_BUG_ON((gfn & mask) != (pfn & mask));
2544 if (pfn & mask) {
2545 gfn &= ~mask;
2546 *gfnp = gfn;
2547 kvm_release_pfn_clean(pfn);
2548 pfn &= ~mask;
2549 if (!get_page_unless_zero(pfn_to_page(pfn)))
2550 BUG();
2551 *pfnp = pfn;
2552 }
2553 }
2554 }
2555
2556 static bool mmu_invalid_pfn(pfn_t pfn)
2557 {
2558 return unlikely(is_invalid_pfn(pfn));
2559 }
2560
2561 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2562 pfn_t pfn, unsigned access, int *ret_val)
2563 {
2564 bool ret = true;
2565
2566 /* The pfn is invalid, report the error! */
2567 if (unlikely(is_invalid_pfn(pfn))) {
2568 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2569 goto exit;
2570 }
2571
2572 if (unlikely(is_noslot_pfn(pfn)))
2573 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2574
2575 ret = false;
2576 exit:
2577 return ret;
2578 }
2579
2580 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2581 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2582
2583 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2584 bool prefault)
2585 {
2586 int r;
2587 int level;
2588 int force_pt_level;
2589 pfn_t pfn;
2590 unsigned long mmu_seq;
2591 bool map_writable;
2592
2593 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2594 if (likely(!force_pt_level)) {
2595 level = mapping_level(vcpu, gfn);
2596 /*
2597 * This path builds a PAE pagetable - so we can map
2598 * 2mb pages at maximum. Therefore check if the level
2599 * is larger than that.
2600 */
2601 if (level > PT_DIRECTORY_LEVEL)
2602 level = PT_DIRECTORY_LEVEL;
2603
2604 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2605 } else
2606 level = PT_PAGE_TABLE_LEVEL;
2607
2608 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2609 smp_rmb();
2610
2611 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2612 return 0;
2613
2614 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2615 return r;
2616
2617 spin_lock(&vcpu->kvm->mmu_lock);
2618 if (mmu_notifier_retry(vcpu, mmu_seq))
2619 goto out_unlock;
2620 kvm_mmu_free_some_pages(vcpu);
2621 if (likely(!force_pt_level))
2622 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2623 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2624 prefault);
2625 spin_unlock(&vcpu->kvm->mmu_lock);
2626
2627
2628 return r;
2629
2630 out_unlock:
2631 spin_unlock(&vcpu->kvm->mmu_lock);
2632 kvm_release_pfn_clean(pfn);
2633 return 0;
2634 }
2635
2636
2637 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2638 {
2639 int i;
2640 struct kvm_mmu_page *sp;
2641 LIST_HEAD(invalid_list);
2642
2643 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2644 return;
2645 spin_lock(&vcpu->kvm->mmu_lock);
2646 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2647 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2648 vcpu->arch.mmu.direct_map)) {
2649 hpa_t root = vcpu->arch.mmu.root_hpa;
2650
2651 sp = page_header(root);
2652 --sp->root_count;
2653 if (!sp->root_count && sp->role.invalid) {
2654 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2655 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2656 }
2657 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2658 spin_unlock(&vcpu->kvm->mmu_lock);
2659 return;
2660 }
2661 for (i = 0; i < 4; ++i) {
2662 hpa_t root = vcpu->arch.mmu.pae_root[i];
2663
2664 if (root) {
2665 root &= PT64_BASE_ADDR_MASK;
2666 sp = page_header(root);
2667 --sp->root_count;
2668 if (!sp->root_count && sp->role.invalid)
2669 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2670 &invalid_list);
2671 }
2672 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2673 }
2674 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2675 spin_unlock(&vcpu->kvm->mmu_lock);
2676 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2677 }
2678
2679 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2680 {
2681 int ret = 0;
2682
2683 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2684 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2685 ret = 1;
2686 }
2687
2688 return ret;
2689 }
2690
2691 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2692 {
2693 struct kvm_mmu_page *sp;
2694 unsigned i;
2695
2696 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2697 spin_lock(&vcpu->kvm->mmu_lock);
2698 kvm_mmu_free_some_pages(vcpu);
2699 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2700 1, ACC_ALL, NULL);
2701 ++sp->root_count;
2702 spin_unlock(&vcpu->kvm->mmu_lock);
2703 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2704 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2705 for (i = 0; i < 4; ++i) {
2706 hpa_t root = vcpu->arch.mmu.pae_root[i];
2707
2708 ASSERT(!VALID_PAGE(root));
2709 spin_lock(&vcpu->kvm->mmu_lock);
2710 kvm_mmu_free_some_pages(vcpu);
2711 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2712 i << 30,
2713 PT32_ROOT_LEVEL, 1, ACC_ALL,
2714 NULL);
2715 root = __pa(sp->spt);
2716 ++sp->root_count;
2717 spin_unlock(&vcpu->kvm->mmu_lock);
2718 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2719 }
2720 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2721 } else
2722 BUG();
2723
2724 return 0;
2725 }
2726
2727 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2728 {
2729 struct kvm_mmu_page *sp;
2730 u64 pdptr, pm_mask;
2731 gfn_t root_gfn;
2732 int i;
2733
2734 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2735
2736 if (mmu_check_root(vcpu, root_gfn))
2737 return 1;
2738
2739 /*
2740 * Do we shadow a long mode page table? If so we need to
2741 * write-protect the guests page table root.
2742 */
2743 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2744 hpa_t root = vcpu->arch.mmu.root_hpa;
2745
2746 ASSERT(!VALID_PAGE(root));
2747
2748 spin_lock(&vcpu->kvm->mmu_lock);
2749 kvm_mmu_free_some_pages(vcpu);
2750 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2751 0, ACC_ALL, NULL);
2752 root = __pa(sp->spt);
2753 ++sp->root_count;
2754 spin_unlock(&vcpu->kvm->mmu_lock);
2755 vcpu->arch.mmu.root_hpa = root;
2756 return 0;
2757 }
2758
2759 /*
2760 * We shadow a 32 bit page table. This may be a legacy 2-level
2761 * or a PAE 3-level page table. In either case we need to be aware that
2762 * the shadow page table may be a PAE or a long mode page table.
2763 */
2764 pm_mask = PT_PRESENT_MASK;
2765 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2766 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2767
2768 for (i = 0; i < 4; ++i) {
2769 hpa_t root = vcpu->arch.mmu.pae_root[i];
2770
2771 ASSERT(!VALID_PAGE(root));
2772 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2773 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2774 if (!is_present_gpte(pdptr)) {
2775 vcpu->arch.mmu.pae_root[i] = 0;
2776 continue;
2777 }
2778 root_gfn = pdptr >> PAGE_SHIFT;
2779 if (mmu_check_root(vcpu, root_gfn))
2780 return 1;
2781 }
2782 spin_lock(&vcpu->kvm->mmu_lock);
2783 kvm_mmu_free_some_pages(vcpu);
2784 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2785 PT32_ROOT_LEVEL, 0,
2786 ACC_ALL, NULL);
2787 root = __pa(sp->spt);
2788 ++sp->root_count;
2789 spin_unlock(&vcpu->kvm->mmu_lock);
2790
2791 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2792 }
2793 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2794
2795 /*
2796 * If we shadow a 32 bit page table with a long mode page
2797 * table we enter this path.
2798 */
2799 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2800 if (vcpu->arch.mmu.lm_root == NULL) {
2801 /*
2802 * The additional page necessary for this is only
2803 * allocated on demand.
2804 */
2805
2806 u64 *lm_root;
2807
2808 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2809 if (lm_root == NULL)
2810 return 1;
2811
2812 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2813
2814 vcpu->arch.mmu.lm_root = lm_root;
2815 }
2816
2817 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2818 }
2819
2820 return 0;
2821 }
2822
2823 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2824 {
2825 if (vcpu->arch.mmu.direct_map)
2826 return mmu_alloc_direct_roots(vcpu);
2827 else
2828 return mmu_alloc_shadow_roots(vcpu);
2829 }
2830
2831 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2832 {
2833 int i;
2834 struct kvm_mmu_page *sp;
2835
2836 if (vcpu->arch.mmu.direct_map)
2837 return;
2838
2839 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2840 return;
2841
2842 vcpu_clear_mmio_info(vcpu, ~0ul);
2843 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2844 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2845 hpa_t root = vcpu->arch.mmu.root_hpa;
2846 sp = page_header(root);
2847 mmu_sync_children(vcpu, sp);
2848 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2849 return;
2850 }
2851 for (i = 0; i < 4; ++i) {
2852 hpa_t root = vcpu->arch.mmu.pae_root[i];
2853
2854 if (root && VALID_PAGE(root)) {
2855 root &= PT64_BASE_ADDR_MASK;
2856 sp = page_header(root);
2857 mmu_sync_children(vcpu, sp);
2858 }
2859 }
2860 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2861 }
2862
2863 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2864 {
2865 spin_lock(&vcpu->kvm->mmu_lock);
2866 mmu_sync_roots(vcpu);
2867 spin_unlock(&vcpu->kvm->mmu_lock);
2868 }
2869
2870 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2871 u32 access, struct x86_exception *exception)
2872 {
2873 if (exception)
2874 exception->error_code = 0;
2875 return vaddr;
2876 }
2877
2878 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2879 u32 access,
2880 struct x86_exception *exception)
2881 {
2882 if (exception)
2883 exception->error_code = 0;
2884 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2885 }
2886
2887 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2888 {
2889 if (direct)
2890 return vcpu_match_mmio_gpa(vcpu, addr);
2891
2892 return vcpu_match_mmio_gva(vcpu, addr);
2893 }
2894
2895
2896 /*
2897 * On direct hosts, the last spte is only allows two states
2898 * for mmio page fault:
2899 * - It is the mmio spte
2900 * - It is zapped or it is being zapped.
2901 *
2902 * This function completely checks the spte when the last spte
2903 * is not the mmio spte.
2904 */
2905 static bool check_direct_spte_mmio_pf(u64 spte)
2906 {
2907 return __check_direct_spte_mmio_pf(spte);
2908 }
2909
2910 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2911 {
2912 struct kvm_shadow_walk_iterator iterator;
2913 u64 spte = 0ull;
2914
2915 walk_shadow_page_lockless_begin(vcpu);
2916 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2917 if (!is_shadow_present_pte(spte))
2918 break;
2919 walk_shadow_page_lockless_end(vcpu);
2920
2921 return spte;
2922 }
2923
2924 /*
2925 * If it is a real mmio page fault, return 1 and emulat the instruction
2926 * directly, return 0 to let CPU fault again on the address, -1 is
2927 * returned if bug is detected.
2928 */
2929 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2930 {
2931 u64 spte;
2932
2933 if (quickly_check_mmio_pf(vcpu, addr, direct))
2934 return 1;
2935
2936 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2937
2938 if (is_mmio_spte(spte)) {
2939 gfn_t gfn = get_mmio_spte_gfn(spte);
2940 unsigned access = get_mmio_spte_access(spte);
2941
2942 if (direct)
2943 addr = 0;
2944
2945 trace_handle_mmio_page_fault(addr, gfn, access);
2946 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2947 return 1;
2948 }
2949
2950 /*
2951 * It's ok if the gva is remapped by other cpus on shadow guest,
2952 * it's a BUG if the gfn is not a mmio page.
2953 */
2954 if (direct && !check_direct_spte_mmio_pf(spte))
2955 return -1;
2956
2957 /*
2958 * If the page table is zapped by other cpus, let CPU fault again on
2959 * the address.
2960 */
2961 return 0;
2962 }
2963 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2964
2965 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2966 u32 error_code, bool direct)
2967 {
2968 int ret;
2969
2970 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2971 WARN_ON(ret < 0);
2972 return ret;
2973 }
2974
2975 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2976 u32 error_code, bool prefault)
2977 {
2978 gfn_t gfn;
2979 int r;
2980
2981 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2982
2983 if (unlikely(error_code & PFERR_RSVD_MASK))
2984 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2985
2986 r = mmu_topup_memory_caches(vcpu);
2987 if (r)
2988 return r;
2989
2990 ASSERT(vcpu);
2991 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2992
2993 gfn = gva >> PAGE_SHIFT;
2994
2995 return nonpaging_map(vcpu, gva & PAGE_MASK,
2996 error_code & PFERR_WRITE_MASK, gfn, prefault);
2997 }
2998
2999 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3000 {
3001 struct kvm_arch_async_pf arch;
3002
3003 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3004 arch.gfn = gfn;
3005 arch.direct_map = vcpu->arch.mmu.direct_map;
3006 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3007
3008 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3009 }
3010
3011 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3012 {
3013 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3014 kvm_event_needs_reinjection(vcpu)))
3015 return false;
3016
3017 return kvm_x86_ops->interrupt_allowed(vcpu);
3018 }
3019
3020 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3021 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3022 {
3023 bool async;
3024
3025 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3026
3027 if (!async)
3028 return false; /* *pfn has correct page already */
3029
3030 put_page(pfn_to_page(*pfn));
3031
3032 if (!prefault && can_do_async_pf(vcpu)) {
3033 trace_kvm_try_async_get_page(gva, gfn);
3034 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3035 trace_kvm_async_pf_doublefault(gva, gfn);
3036 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3037 return true;
3038 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3039 return true;
3040 }
3041
3042 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3043
3044 return false;
3045 }
3046
3047 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3048 bool prefault)
3049 {
3050 pfn_t pfn;
3051 int r;
3052 int level;
3053 int force_pt_level;
3054 gfn_t gfn = gpa >> PAGE_SHIFT;
3055 unsigned long mmu_seq;
3056 int write = error_code & PFERR_WRITE_MASK;
3057 bool map_writable;
3058
3059 ASSERT(vcpu);
3060 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3061
3062 if (unlikely(error_code & PFERR_RSVD_MASK))
3063 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3064
3065 r = mmu_topup_memory_caches(vcpu);
3066 if (r)
3067 return r;
3068
3069 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3070 if (likely(!force_pt_level)) {
3071 level = mapping_level(vcpu, gfn);
3072 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3073 } else
3074 level = PT_PAGE_TABLE_LEVEL;
3075
3076 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3077 smp_rmb();
3078
3079 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3080 return 0;
3081
3082 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3083 return r;
3084
3085 spin_lock(&vcpu->kvm->mmu_lock);
3086 if (mmu_notifier_retry(vcpu, mmu_seq))
3087 goto out_unlock;
3088 kvm_mmu_free_some_pages(vcpu);
3089 if (likely(!force_pt_level))
3090 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3091 r = __direct_map(vcpu, gpa, write, map_writable,
3092 level, gfn, pfn, prefault);
3093 spin_unlock(&vcpu->kvm->mmu_lock);
3094
3095 return r;
3096
3097 out_unlock:
3098 spin_unlock(&vcpu->kvm->mmu_lock);
3099 kvm_release_pfn_clean(pfn);
3100 return 0;
3101 }
3102
3103 static void nonpaging_free(struct kvm_vcpu *vcpu)
3104 {
3105 mmu_free_roots(vcpu);
3106 }
3107
3108 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3109 struct kvm_mmu *context)
3110 {
3111 context->new_cr3 = nonpaging_new_cr3;
3112 context->page_fault = nonpaging_page_fault;
3113 context->gva_to_gpa = nonpaging_gva_to_gpa;
3114 context->free = nonpaging_free;
3115 context->sync_page = nonpaging_sync_page;
3116 context->invlpg = nonpaging_invlpg;
3117 context->update_pte = nonpaging_update_pte;
3118 context->root_level = 0;
3119 context->shadow_root_level = PT32E_ROOT_LEVEL;
3120 context->root_hpa = INVALID_PAGE;
3121 context->direct_map = true;
3122 context->nx = false;
3123 return 0;
3124 }
3125
3126 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3127 {
3128 ++vcpu->stat.tlb_flush;
3129 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3130 }
3131
3132 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3133 {
3134 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3135 mmu_free_roots(vcpu);
3136 }
3137
3138 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3139 {
3140 return kvm_read_cr3(vcpu);
3141 }
3142
3143 static void inject_page_fault(struct kvm_vcpu *vcpu,
3144 struct x86_exception *fault)
3145 {
3146 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3147 }
3148
3149 static void paging_free(struct kvm_vcpu *vcpu)
3150 {
3151 nonpaging_free(vcpu);
3152 }
3153
3154 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3155 {
3156 int bit7;
3157
3158 bit7 = (gpte >> 7) & 1;
3159 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3160 }
3161
3162 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3163 int *nr_present)
3164 {
3165 if (unlikely(is_mmio_spte(*sptep))) {
3166 if (gfn != get_mmio_spte_gfn(*sptep)) {
3167 mmu_spte_clear_no_track(sptep);
3168 return true;
3169 }
3170
3171 (*nr_present)++;
3172 mark_mmio_spte(sptep, gfn, access);
3173 return true;
3174 }
3175
3176 return false;
3177 }
3178
3179 #define PTTYPE 64
3180 #include "paging_tmpl.h"
3181 #undef PTTYPE
3182
3183 #define PTTYPE 32
3184 #include "paging_tmpl.h"
3185 #undef PTTYPE
3186
3187 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3188 struct kvm_mmu *context,
3189 int level)
3190 {
3191 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3192 u64 exb_bit_rsvd = 0;
3193
3194 if (!context->nx)
3195 exb_bit_rsvd = rsvd_bits(63, 63);
3196 switch (level) {
3197 case PT32_ROOT_LEVEL:
3198 /* no rsvd bits for 2 level 4K page table entries */
3199 context->rsvd_bits_mask[0][1] = 0;
3200 context->rsvd_bits_mask[0][0] = 0;
3201 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3202
3203 if (!is_pse(vcpu)) {
3204 context->rsvd_bits_mask[1][1] = 0;
3205 break;
3206 }
3207
3208 if (is_cpuid_PSE36())
3209 /* 36bits PSE 4MB page */
3210 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3211 else
3212 /* 32 bits PSE 4MB page */
3213 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3214 break;
3215 case PT32E_ROOT_LEVEL:
3216 context->rsvd_bits_mask[0][2] =
3217 rsvd_bits(maxphyaddr, 63) |
3218 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3219 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3220 rsvd_bits(maxphyaddr, 62); /* PDE */
3221 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3222 rsvd_bits(maxphyaddr, 62); /* PTE */
3223 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3224 rsvd_bits(maxphyaddr, 62) |
3225 rsvd_bits(13, 20); /* large page */
3226 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3227 break;
3228 case PT64_ROOT_LEVEL:
3229 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3230 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3231 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3232 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3233 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3234 rsvd_bits(maxphyaddr, 51);
3235 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3236 rsvd_bits(maxphyaddr, 51);
3237 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3238 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3239 rsvd_bits(maxphyaddr, 51) |
3240 rsvd_bits(13, 29);
3241 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3242 rsvd_bits(maxphyaddr, 51) |
3243 rsvd_bits(13, 20); /* large page */
3244 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3245 break;
3246 }
3247 }
3248
3249 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3250 struct kvm_mmu *context,
3251 int level)
3252 {
3253 context->nx = is_nx(vcpu);
3254
3255 reset_rsvds_bits_mask(vcpu, context, level);
3256
3257 ASSERT(is_pae(vcpu));
3258 context->new_cr3 = paging_new_cr3;
3259 context->page_fault = paging64_page_fault;
3260 context->gva_to_gpa = paging64_gva_to_gpa;
3261 context->sync_page = paging64_sync_page;
3262 context->invlpg = paging64_invlpg;
3263 context->update_pte = paging64_update_pte;
3264 context->free = paging_free;
3265 context->root_level = level;
3266 context->shadow_root_level = level;
3267 context->root_hpa = INVALID_PAGE;
3268 context->direct_map = false;
3269 return 0;
3270 }
3271
3272 static int paging64_init_context(struct kvm_vcpu *vcpu,
3273 struct kvm_mmu *context)
3274 {
3275 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3276 }
3277
3278 static int paging32_init_context(struct kvm_vcpu *vcpu,
3279 struct kvm_mmu *context)
3280 {
3281 context->nx = false;
3282
3283 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3284
3285 context->new_cr3 = paging_new_cr3;
3286 context->page_fault = paging32_page_fault;
3287 context->gva_to_gpa = paging32_gva_to_gpa;
3288 context->free = paging_free;
3289 context->sync_page = paging32_sync_page;
3290 context->invlpg = paging32_invlpg;
3291 context->update_pte = paging32_update_pte;
3292 context->root_level = PT32_ROOT_LEVEL;
3293 context->shadow_root_level = PT32E_ROOT_LEVEL;
3294 context->root_hpa = INVALID_PAGE;
3295 context->direct_map = false;
3296 return 0;
3297 }
3298
3299 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3300 struct kvm_mmu *context)
3301 {
3302 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3303 }
3304
3305 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3306 {
3307 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3308
3309 context->base_role.word = 0;
3310 context->new_cr3 = nonpaging_new_cr3;
3311 context->page_fault = tdp_page_fault;
3312 context->free = nonpaging_free;
3313 context->sync_page = nonpaging_sync_page;
3314 context->invlpg = nonpaging_invlpg;
3315 context->update_pte = nonpaging_update_pte;
3316 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3317 context->root_hpa = INVALID_PAGE;
3318 context->direct_map = true;
3319 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3320 context->get_cr3 = get_cr3;
3321 context->get_pdptr = kvm_pdptr_read;
3322 context->inject_page_fault = kvm_inject_page_fault;
3323 context->nx = is_nx(vcpu);
3324
3325 if (!is_paging(vcpu)) {
3326 context->nx = false;
3327 context->gva_to_gpa = nonpaging_gva_to_gpa;
3328 context->root_level = 0;
3329 } else if (is_long_mode(vcpu)) {
3330 context->nx = is_nx(vcpu);
3331 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
3332 context->gva_to_gpa = paging64_gva_to_gpa;
3333 context->root_level = PT64_ROOT_LEVEL;
3334 } else if (is_pae(vcpu)) {
3335 context->nx = is_nx(vcpu);
3336 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
3337 context->gva_to_gpa = paging64_gva_to_gpa;
3338 context->root_level = PT32E_ROOT_LEVEL;
3339 } else {
3340 context->nx = false;
3341 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3342 context->gva_to_gpa = paging32_gva_to_gpa;
3343 context->root_level = PT32_ROOT_LEVEL;
3344 }
3345
3346 return 0;
3347 }
3348
3349 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3350 {
3351 int r;
3352 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3353 ASSERT(vcpu);
3354 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3355
3356 if (!is_paging(vcpu))
3357 r = nonpaging_init_context(vcpu, context);
3358 else if (is_long_mode(vcpu))
3359 r = paging64_init_context(vcpu, context);
3360 else if (is_pae(vcpu))
3361 r = paging32E_init_context(vcpu, context);
3362 else
3363 r = paging32_init_context(vcpu, context);
3364
3365 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3366 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3367 vcpu->arch.mmu.base_role.smep_andnot_wp
3368 = smep && !is_write_protection(vcpu);
3369
3370 return r;
3371 }
3372 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3373
3374 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3375 {
3376 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3377
3378 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3379 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3380 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3381 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3382
3383 return r;
3384 }
3385
3386 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3387 {
3388 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3389
3390 g_context->get_cr3 = get_cr3;
3391 g_context->get_pdptr = kvm_pdptr_read;
3392 g_context->inject_page_fault = kvm_inject_page_fault;
3393
3394 /*
3395 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3396 * translation of l2_gpa to l1_gpa addresses is done using the
3397 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3398 * functions between mmu and nested_mmu are swapped.
3399 */
3400 if (!is_paging(vcpu)) {
3401 g_context->nx = false;
3402 g_context->root_level = 0;
3403 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3404 } else if (is_long_mode(vcpu)) {
3405 g_context->nx = is_nx(vcpu);
3406 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3407 g_context->root_level = PT64_ROOT_LEVEL;
3408 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3409 } else if (is_pae(vcpu)) {
3410 g_context->nx = is_nx(vcpu);
3411 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3412 g_context->root_level = PT32E_ROOT_LEVEL;
3413 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3414 } else {
3415 g_context->nx = false;
3416 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3417 g_context->root_level = PT32_ROOT_LEVEL;
3418 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3419 }
3420
3421 return 0;
3422 }
3423
3424 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3425 {
3426 if (mmu_is_nested(vcpu))
3427 return init_kvm_nested_mmu(vcpu);
3428 else if (tdp_enabled)
3429 return init_kvm_tdp_mmu(vcpu);
3430 else
3431 return init_kvm_softmmu(vcpu);
3432 }
3433
3434 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3435 {
3436 ASSERT(vcpu);
3437 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3438 /* mmu.free() should set root_hpa = INVALID_PAGE */
3439 vcpu->arch.mmu.free(vcpu);
3440 }
3441
3442 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3443 {
3444 destroy_kvm_mmu(vcpu);
3445 return init_kvm_mmu(vcpu);
3446 }
3447 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3448
3449 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3450 {
3451 int r;
3452
3453 r = mmu_topup_memory_caches(vcpu);
3454 if (r)
3455 goto out;
3456 r = mmu_alloc_roots(vcpu);
3457 spin_lock(&vcpu->kvm->mmu_lock);
3458 mmu_sync_roots(vcpu);
3459 spin_unlock(&vcpu->kvm->mmu_lock);
3460 if (r)
3461 goto out;
3462 /* set_cr3() should ensure TLB has been flushed */
3463 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3464 out:
3465 return r;
3466 }
3467 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3468
3469 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3470 {
3471 mmu_free_roots(vcpu);
3472 }
3473 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3474
3475 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3476 struct kvm_mmu_page *sp, u64 *spte,
3477 const void *new)
3478 {
3479 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3480 ++vcpu->kvm->stat.mmu_pde_zapped;
3481 return;
3482 }
3483
3484 ++vcpu->kvm->stat.mmu_pte_updated;
3485 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3486 }
3487
3488 static bool need_remote_flush(u64 old, u64 new)
3489 {
3490 if (!is_shadow_present_pte(old))
3491 return false;
3492 if (!is_shadow_present_pte(new))
3493 return true;
3494 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3495 return true;
3496 old ^= PT64_NX_MASK;
3497 new ^= PT64_NX_MASK;
3498 return (old & ~new & PT64_PERM_MASK) != 0;
3499 }
3500
3501 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3502 bool remote_flush, bool local_flush)
3503 {
3504 if (zap_page)
3505 return;
3506
3507 if (remote_flush)
3508 kvm_flush_remote_tlbs(vcpu->kvm);
3509 else if (local_flush)
3510 kvm_mmu_flush_tlb(vcpu);
3511 }
3512
3513 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3514 const u8 *new, int *bytes)
3515 {
3516 u64 gentry;
3517 int r;
3518
3519 /*
3520 * Assume that the pte write on a page table of the same type
3521 * as the current vcpu paging mode since we update the sptes only
3522 * when they have the same mode.
3523 */
3524 if (is_pae(vcpu) && *bytes == 4) {
3525 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3526 *gpa &= ~(gpa_t)7;
3527 *bytes = 8;
3528 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3529 if (r)
3530 gentry = 0;
3531 new = (const u8 *)&gentry;
3532 }
3533
3534 switch (*bytes) {
3535 case 4:
3536 gentry = *(const u32 *)new;
3537 break;
3538 case 8:
3539 gentry = *(const u64 *)new;
3540 break;
3541 default:
3542 gentry = 0;
3543 break;
3544 }
3545
3546 return gentry;
3547 }
3548
3549 /*
3550 * If we're seeing too many writes to a page, it may no longer be a page table,
3551 * or we may be forking, in which case it is better to unmap the page.
3552 */
3553 static bool detect_write_flooding(struct kvm_mmu_page *sp, u64 *spte)
3554 {
3555 /*
3556 * Skip write-flooding detected for the sp whose level is 1, because
3557 * it can become unsync, then the guest page is not write-protected.
3558 */
3559 if (sp->role.level == 1)
3560 return false;
3561
3562 return ++sp->write_flooding_count >= 3;
3563 }
3564
3565 /*
3566 * Misaligned accesses are too much trouble to fix up; also, they usually
3567 * indicate a page is not used as a page table.
3568 */
3569 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3570 int bytes)
3571 {
3572 unsigned offset, pte_size, misaligned;
3573
3574 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3575 gpa, bytes, sp->role.word);
3576
3577 offset = offset_in_page(gpa);
3578 pte_size = sp->role.cr4_pae ? 8 : 4;
3579
3580 /*
3581 * Sometimes, the OS only writes the last one bytes to update status
3582 * bits, for example, in linux, andb instruction is used in clear_bit().
3583 */
3584 if (!(offset & (pte_size - 1)) && bytes == 1)
3585 return false;
3586
3587 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3588 misaligned |= bytes < 4;
3589
3590 return misaligned;
3591 }
3592
3593 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3594 {
3595 unsigned page_offset, quadrant;
3596 u64 *spte;
3597 int level;
3598
3599 page_offset = offset_in_page(gpa);
3600 level = sp->role.level;
3601 *nspte = 1;
3602 if (!sp->role.cr4_pae) {
3603 page_offset <<= 1; /* 32->64 */
3604 /*
3605 * A 32-bit pde maps 4MB while the shadow pdes map
3606 * only 2MB. So we need to double the offset again
3607 * and zap two pdes instead of one.
3608 */
3609 if (level == PT32_ROOT_LEVEL) {
3610 page_offset &= ~7; /* kill rounding error */
3611 page_offset <<= 1;
3612 *nspte = 2;
3613 }
3614 quadrant = page_offset >> PAGE_SHIFT;
3615 page_offset &= ~PAGE_MASK;
3616 if (quadrant != sp->role.quadrant)
3617 return NULL;
3618 }
3619
3620 spte = &sp->spt[page_offset / sizeof(*spte)];
3621 return spte;
3622 }
3623
3624 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3625 const u8 *new, int bytes)
3626 {
3627 gfn_t gfn = gpa >> PAGE_SHIFT;
3628 union kvm_mmu_page_role mask = { .word = 0 };
3629 struct kvm_mmu_page *sp;
3630 struct hlist_node *node;
3631 LIST_HEAD(invalid_list);
3632 u64 entry, gentry, *spte;
3633 int npte;
3634 bool remote_flush, local_flush, zap_page;
3635
3636 /*
3637 * If we don't have indirect shadow pages, it means no page is
3638 * write-protected, so we can exit simply.
3639 */
3640 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3641 return;
3642
3643 zap_page = remote_flush = local_flush = false;
3644
3645 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3646
3647 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3648
3649 /*
3650 * No need to care whether allocation memory is successful
3651 * or not since pte prefetch is skiped if it does not have
3652 * enough objects in the cache.
3653 */
3654 mmu_topup_memory_caches(vcpu);
3655
3656 spin_lock(&vcpu->kvm->mmu_lock);
3657 ++vcpu->kvm->stat.mmu_pte_write;
3658 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3659
3660 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3661 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3662 spte = get_written_sptes(sp, gpa, &npte);
3663
3664 if (detect_write_misaligned(sp, gpa, bytes) ||
3665 detect_write_flooding(sp, spte)) {
3666 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3667 &invalid_list);
3668 ++vcpu->kvm->stat.mmu_flooded;
3669 continue;
3670 }
3671
3672 spte = get_written_sptes(sp, gpa, &npte);
3673 if (!spte)
3674 continue;
3675
3676 local_flush = true;
3677 while (npte--) {
3678 entry = *spte;
3679 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3680 if (gentry &&
3681 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3682 & mask.word) && rmap_can_add(vcpu))
3683 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3684 if (!remote_flush && need_remote_flush(entry, *spte))
3685 remote_flush = true;
3686 ++spte;
3687 }
3688 }
3689 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3690 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3691 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3692 spin_unlock(&vcpu->kvm->mmu_lock);
3693 }
3694
3695 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3696 {
3697 gpa_t gpa;
3698 int r;
3699
3700 if (vcpu->arch.mmu.direct_map)
3701 return 0;
3702
3703 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3704
3705 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3706
3707 return r;
3708 }
3709 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3710
3711 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3712 {
3713 LIST_HEAD(invalid_list);
3714
3715 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3716 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3717 struct kvm_mmu_page *sp;
3718
3719 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3720 struct kvm_mmu_page, link);
3721 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3722 ++vcpu->kvm->stat.mmu_recycled;
3723 }
3724 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3725 }
3726
3727 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3728 {
3729 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3730 return vcpu_match_mmio_gpa(vcpu, addr);
3731
3732 return vcpu_match_mmio_gva(vcpu, addr);
3733 }
3734
3735 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3736 void *insn, int insn_len)
3737 {
3738 int r, emulation_type = EMULTYPE_RETRY;
3739 enum emulation_result er;
3740
3741 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3742 if (r < 0)
3743 goto out;
3744
3745 if (!r) {
3746 r = 1;
3747 goto out;
3748 }
3749
3750 if (is_mmio_page_fault(vcpu, cr2))
3751 emulation_type = 0;
3752
3753 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3754
3755 switch (er) {
3756 case EMULATE_DONE:
3757 return 1;
3758 case EMULATE_DO_MMIO:
3759 ++vcpu->stat.mmio_exits;
3760 /* fall through */
3761 case EMULATE_FAIL:
3762 return 0;
3763 default:
3764 BUG();
3765 }
3766 out:
3767 return r;
3768 }
3769 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3770
3771 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3772 {
3773 vcpu->arch.mmu.invlpg(vcpu, gva);
3774 kvm_mmu_flush_tlb(vcpu);
3775 ++vcpu->stat.invlpg;
3776 }
3777 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3778
3779 void kvm_enable_tdp(void)
3780 {
3781 tdp_enabled = true;
3782 }
3783 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3784
3785 void kvm_disable_tdp(void)
3786 {
3787 tdp_enabled = false;
3788 }
3789 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3790
3791 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3792 {
3793 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3794 if (vcpu->arch.mmu.lm_root != NULL)
3795 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3796 }
3797
3798 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3799 {
3800 struct page *page;
3801 int i;
3802
3803 ASSERT(vcpu);
3804
3805 /*
3806 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3807 * Therefore we need to allocate shadow page tables in the first
3808 * 4GB of memory, which happens to fit the DMA32 zone.
3809 */
3810 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3811 if (!page)
3812 return -ENOMEM;
3813
3814 vcpu->arch.mmu.pae_root = page_address(page);
3815 for (i = 0; i < 4; ++i)
3816 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3817
3818 return 0;
3819 }
3820
3821 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3822 {
3823 ASSERT(vcpu);
3824
3825 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3826 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3827 vcpu->arch.mmu.translate_gpa = translate_gpa;
3828 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
3829
3830 return alloc_mmu_pages(vcpu);
3831 }
3832
3833 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3834 {
3835 ASSERT(vcpu);
3836 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3837
3838 return init_kvm_mmu(vcpu);
3839 }
3840
3841 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3842 {
3843 struct kvm_mmu_page *sp;
3844
3845 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3846 int i;
3847 u64 *pt;
3848
3849 if (!test_bit(slot, sp->slot_bitmap))
3850 continue;
3851
3852 pt = sp->spt;
3853 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3854 if (!is_shadow_present_pte(pt[i]) ||
3855 !is_last_spte(pt[i], sp->role.level))
3856 continue;
3857
3858 if (is_large_pte(pt[i])) {
3859 drop_spte(kvm, &pt[i]);
3860 --kvm->stat.lpages;
3861 continue;
3862 }
3863
3864 /* avoid RMW */
3865 if (is_writable_pte(pt[i]))
3866 mmu_spte_update(&pt[i],
3867 pt[i] & ~PT_WRITABLE_MASK);
3868 }
3869 }
3870 kvm_flush_remote_tlbs(kvm);
3871 }
3872
3873 void kvm_mmu_zap_all(struct kvm *kvm)
3874 {
3875 struct kvm_mmu_page *sp, *node;
3876 LIST_HEAD(invalid_list);
3877
3878 spin_lock(&kvm->mmu_lock);
3879 restart:
3880 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3881 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3882 goto restart;
3883
3884 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3885 spin_unlock(&kvm->mmu_lock);
3886 }
3887
3888 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3889 struct list_head *invalid_list)
3890 {
3891 struct kvm_mmu_page *page;
3892
3893 page = container_of(kvm->arch.active_mmu_pages.prev,
3894 struct kvm_mmu_page, link);
3895 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3896 }
3897
3898 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3899 {
3900 struct kvm *kvm;
3901 struct kvm *kvm_freed = NULL;
3902 int nr_to_scan = sc->nr_to_scan;
3903
3904 if (nr_to_scan == 0)
3905 goto out;
3906
3907 raw_spin_lock(&kvm_lock);
3908
3909 list_for_each_entry(kvm, &vm_list, vm_list) {
3910 int idx;
3911 LIST_HEAD(invalid_list);
3912
3913 idx = srcu_read_lock(&kvm->srcu);
3914 spin_lock(&kvm->mmu_lock);
3915 if (!kvm_freed && nr_to_scan > 0 &&
3916 kvm->arch.n_used_mmu_pages > 0) {
3917 kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3918 &invalid_list);
3919 kvm_freed = kvm;
3920 }
3921 nr_to_scan--;
3922
3923 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3924 spin_unlock(&kvm->mmu_lock);
3925 srcu_read_unlock(&kvm->srcu, idx);
3926 }
3927 if (kvm_freed)
3928 list_move_tail(&kvm_freed->vm_list, &vm_list);
3929
3930 raw_spin_unlock(&kvm_lock);
3931
3932 out:
3933 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3934 }
3935
3936 static struct shrinker mmu_shrinker = {
3937 .shrink = mmu_shrink,
3938 .seeks = DEFAULT_SEEKS * 10,
3939 };
3940
3941 static void mmu_destroy_caches(void)
3942 {
3943 if (pte_list_desc_cache)
3944 kmem_cache_destroy(pte_list_desc_cache);
3945 if (mmu_page_header_cache)
3946 kmem_cache_destroy(mmu_page_header_cache);
3947 }
3948
3949 int kvm_mmu_module_init(void)
3950 {
3951 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3952 sizeof(struct pte_list_desc),
3953 0, 0, NULL);
3954 if (!pte_list_desc_cache)
3955 goto nomem;
3956
3957 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3958 sizeof(struct kvm_mmu_page),
3959 0, 0, NULL);
3960 if (!mmu_page_header_cache)
3961 goto nomem;
3962
3963 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3964 goto nomem;
3965
3966 register_shrinker(&mmu_shrinker);
3967
3968 return 0;
3969
3970 nomem:
3971 mmu_destroy_caches();
3972 return -ENOMEM;
3973 }
3974
3975 /*
3976 * Caculate mmu pages needed for kvm.
3977 */
3978 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3979 {
3980 unsigned int nr_mmu_pages;
3981 unsigned int nr_pages = 0;
3982 struct kvm_memslots *slots;
3983 struct kvm_memory_slot *memslot;
3984
3985 slots = kvm_memslots(kvm);
3986
3987 kvm_for_each_memslot(memslot, slots)
3988 nr_pages += memslot->npages;
3989
3990 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3991 nr_mmu_pages = max(nr_mmu_pages,
3992 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3993
3994 return nr_mmu_pages;
3995 }
3996
3997 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3998 {
3999 struct kvm_shadow_walk_iterator iterator;
4000 u64 spte;
4001 int nr_sptes = 0;
4002
4003 walk_shadow_page_lockless_begin(vcpu);
4004 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4005 sptes[iterator.level-1] = spte;
4006 nr_sptes++;
4007 if (!is_shadow_present_pte(spte))
4008 break;
4009 }
4010 walk_shadow_page_lockless_end(vcpu);
4011
4012 return nr_sptes;
4013 }
4014 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4015
4016 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4017 {
4018 ASSERT(vcpu);
4019
4020 destroy_kvm_mmu(vcpu);
4021 free_mmu_pages(vcpu);
4022 mmu_free_memory_caches(vcpu);
4023 }
4024
4025 void kvm_mmu_module_exit(void)
4026 {
4027 mmu_destroy_caches();
4028 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4029 unregister_shrinker(&mmu_shrinker);
4030 mmu_audit_disable();
4031 }
This page took 0.1927 seconds and 6 git commands to generate.