Merge tag 'for-linus-3.4' of git://git.infradead.org/mtd-2.6
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 9
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define PTE_LIST_EXT 4
139
140 #define ACC_EXEC_MASK 1
141 #define ACC_WRITE_MASK PT_WRITABLE_MASK
142 #define ACC_USER_MASK PT_USER_MASK
143 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
144
145 #include <trace/events/kvm.h>
146
147 #define CREATE_TRACE_POINTS
148 #include "mmutrace.h"
149
150 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
151
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
154 struct pte_list_desc {
155 u64 *sptes[PTE_LIST_EXT];
156 struct pte_list_desc *more;
157 };
158
159 struct kvm_shadow_walk_iterator {
160 u64 addr;
161 hpa_t shadow_addr;
162 u64 *sptep;
163 int level;
164 unsigned index;
165 };
166
167 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
168 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
169 shadow_walk_okay(&(_walker)); \
170 shadow_walk_next(&(_walker)))
171
172 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
173 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
174 shadow_walk_okay(&(_walker)) && \
175 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
176 __shadow_walk_next(&(_walker), spte))
177
178 static struct kmem_cache *pte_list_desc_cache;
179 static struct kmem_cache *mmu_page_header_cache;
180 static struct percpu_counter kvm_total_used_mmu_pages;
181
182 static u64 __read_mostly shadow_nx_mask;
183 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
184 static u64 __read_mostly shadow_user_mask;
185 static u64 __read_mostly shadow_accessed_mask;
186 static u64 __read_mostly shadow_dirty_mask;
187 static u64 __read_mostly shadow_mmio_mask;
188
189 static void mmu_spte_set(u64 *sptep, u64 spte);
190
191 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
192 {
193 shadow_mmio_mask = mmio_mask;
194 }
195 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
196
197 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
198 {
199 access &= ACC_WRITE_MASK | ACC_USER_MASK;
200
201 trace_mark_mmio_spte(sptep, gfn, access);
202 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
203 }
204
205 static bool is_mmio_spte(u64 spte)
206 {
207 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
208 }
209
210 static gfn_t get_mmio_spte_gfn(u64 spte)
211 {
212 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
213 }
214
215 static unsigned get_mmio_spte_access(u64 spte)
216 {
217 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
218 }
219
220 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
221 {
222 if (unlikely(is_noslot_pfn(pfn))) {
223 mark_mmio_spte(sptep, gfn, access);
224 return true;
225 }
226
227 return false;
228 }
229
230 static inline u64 rsvd_bits(int s, int e)
231 {
232 return ((1ULL << (e - s + 1)) - 1) << s;
233 }
234
235 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
236 u64 dirty_mask, u64 nx_mask, u64 x_mask)
237 {
238 shadow_user_mask = user_mask;
239 shadow_accessed_mask = accessed_mask;
240 shadow_dirty_mask = dirty_mask;
241 shadow_nx_mask = nx_mask;
242 shadow_x_mask = x_mask;
243 }
244 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
245
246 static int is_cpuid_PSE36(void)
247 {
248 return 1;
249 }
250
251 static int is_nx(struct kvm_vcpu *vcpu)
252 {
253 return vcpu->arch.efer & EFER_NX;
254 }
255
256 static int is_shadow_present_pte(u64 pte)
257 {
258 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
259 }
260
261 static int is_large_pte(u64 pte)
262 {
263 return pte & PT_PAGE_SIZE_MASK;
264 }
265
266 static int is_dirty_gpte(unsigned long pte)
267 {
268 return pte & PT_DIRTY_MASK;
269 }
270
271 static int is_rmap_spte(u64 pte)
272 {
273 return is_shadow_present_pte(pte);
274 }
275
276 static int is_last_spte(u64 pte, int level)
277 {
278 if (level == PT_PAGE_TABLE_LEVEL)
279 return 1;
280 if (is_large_pte(pte))
281 return 1;
282 return 0;
283 }
284
285 static pfn_t spte_to_pfn(u64 pte)
286 {
287 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
288 }
289
290 static gfn_t pse36_gfn_delta(u32 gpte)
291 {
292 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
293
294 return (gpte & PT32_DIR_PSE36_MASK) << shift;
295 }
296
297 #ifdef CONFIG_X86_64
298 static void __set_spte(u64 *sptep, u64 spte)
299 {
300 *sptep = spte;
301 }
302
303 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
304 {
305 *sptep = spte;
306 }
307
308 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
309 {
310 return xchg(sptep, spte);
311 }
312
313 static u64 __get_spte_lockless(u64 *sptep)
314 {
315 return ACCESS_ONCE(*sptep);
316 }
317
318 static bool __check_direct_spte_mmio_pf(u64 spte)
319 {
320 /* It is valid if the spte is zapped. */
321 return spte == 0ull;
322 }
323 #else
324 union split_spte {
325 struct {
326 u32 spte_low;
327 u32 spte_high;
328 };
329 u64 spte;
330 };
331
332 static void count_spte_clear(u64 *sptep, u64 spte)
333 {
334 struct kvm_mmu_page *sp = page_header(__pa(sptep));
335
336 if (is_shadow_present_pte(spte))
337 return;
338
339 /* Ensure the spte is completely set before we increase the count */
340 smp_wmb();
341 sp->clear_spte_count++;
342 }
343
344 static void __set_spte(u64 *sptep, u64 spte)
345 {
346 union split_spte *ssptep, sspte;
347
348 ssptep = (union split_spte *)sptep;
349 sspte = (union split_spte)spte;
350
351 ssptep->spte_high = sspte.spte_high;
352
353 /*
354 * If we map the spte from nonpresent to present, We should store
355 * the high bits firstly, then set present bit, so cpu can not
356 * fetch this spte while we are setting the spte.
357 */
358 smp_wmb();
359
360 ssptep->spte_low = sspte.spte_low;
361 }
362
363 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
364 {
365 union split_spte *ssptep, sspte;
366
367 ssptep = (union split_spte *)sptep;
368 sspte = (union split_spte)spte;
369
370 ssptep->spte_low = sspte.spte_low;
371
372 /*
373 * If we map the spte from present to nonpresent, we should clear
374 * present bit firstly to avoid vcpu fetch the old high bits.
375 */
376 smp_wmb();
377
378 ssptep->spte_high = sspte.spte_high;
379 count_spte_clear(sptep, spte);
380 }
381
382 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
383 {
384 union split_spte *ssptep, sspte, orig;
385
386 ssptep = (union split_spte *)sptep;
387 sspte = (union split_spte)spte;
388
389 /* xchg acts as a barrier before the setting of the high bits */
390 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
391 orig.spte_high = ssptep->spte_high;
392 ssptep->spte_high = sspte.spte_high;
393 count_spte_clear(sptep, spte);
394
395 return orig.spte;
396 }
397
398 /*
399 * The idea using the light way get the spte on x86_32 guest is from
400 * gup_get_pte(arch/x86/mm/gup.c).
401 * The difference is we can not catch the spte tlb flush if we leave
402 * guest mode, so we emulate it by increase clear_spte_count when spte
403 * is cleared.
404 */
405 static u64 __get_spte_lockless(u64 *sptep)
406 {
407 struct kvm_mmu_page *sp = page_header(__pa(sptep));
408 union split_spte spte, *orig = (union split_spte *)sptep;
409 int count;
410
411 retry:
412 count = sp->clear_spte_count;
413 smp_rmb();
414
415 spte.spte_low = orig->spte_low;
416 smp_rmb();
417
418 spte.spte_high = orig->spte_high;
419 smp_rmb();
420
421 if (unlikely(spte.spte_low != orig->spte_low ||
422 count != sp->clear_spte_count))
423 goto retry;
424
425 return spte.spte;
426 }
427
428 static bool __check_direct_spte_mmio_pf(u64 spte)
429 {
430 union split_spte sspte = (union split_spte)spte;
431 u32 high_mmio_mask = shadow_mmio_mask >> 32;
432
433 /* It is valid if the spte is zapped. */
434 if (spte == 0ull)
435 return true;
436
437 /* It is valid if the spte is being zapped. */
438 if (sspte.spte_low == 0ull &&
439 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
440 return true;
441
442 return false;
443 }
444 #endif
445
446 static bool spte_has_volatile_bits(u64 spte)
447 {
448 if (!shadow_accessed_mask)
449 return false;
450
451 if (!is_shadow_present_pte(spte))
452 return false;
453
454 if ((spte & shadow_accessed_mask) &&
455 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
456 return false;
457
458 return true;
459 }
460
461 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
462 {
463 return (old_spte & bit_mask) && !(new_spte & bit_mask);
464 }
465
466 /* Rules for using mmu_spte_set:
467 * Set the sptep from nonpresent to present.
468 * Note: the sptep being assigned *must* be either not present
469 * or in a state where the hardware will not attempt to update
470 * the spte.
471 */
472 static void mmu_spte_set(u64 *sptep, u64 new_spte)
473 {
474 WARN_ON(is_shadow_present_pte(*sptep));
475 __set_spte(sptep, new_spte);
476 }
477
478 /* Rules for using mmu_spte_update:
479 * Update the state bits, it means the mapped pfn is not changged.
480 */
481 static void mmu_spte_update(u64 *sptep, u64 new_spte)
482 {
483 u64 mask, old_spte = *sptep;
484
485 WARN_ON(!is_rmap_spte(new_spte));
486
487 if (!is_shadow_present_pte(old_spte))
488 return mmu_spte_set(sptep, new_spte);
489
490 new_spte |= old_spte & shadow_dirty_mask;
491
492 mask = shadow_accessed_mask;
493 if (is_writable_pte(old_spte))
494 mask |= shadow_dirty_mask;
495
496 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
497 __update_clear_spte_fast(sptep, new_spte);
498 else
499 old_spte = __update_clear_spte_slow(sptep, new_spte);
500
501 if (!shadow_accessed_mask)
502 return;
503
504 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
505 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
506 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
507 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
508 }
509
510 /*
511 * Rules for using mmu_spte_clear_track_bits:
512 * It sets the sptep from present to nonpresent, and track the
513 * state bits, it is used to clear the last level sptep.
514 */
515 static int mmu_spte_clear_track_bits(u64 *sptep)
516 {
517 pfn_t pfn;
518 u64 old_spte = *sptep;
519
520 if (!spte_has_volatile_bits(old_spte))
521 __update_clear_spte_fast(sptep, 0ull);
522 else
523 old_spte = __update_clear_spte_slow(sptep, 0ull);
524
525 if (!is_rmap_spte(old_spte))
526 return 0;
527
528 pfn = spte_to_pfn(old_spte);
529 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
530 kvm_set_pfn_accessed(pfn);
531 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
532 kvm_set_pfn_dirty(pfn);
533 return 1;
534 }
535
536 /*
537 * Rules for using mmu_spte_clear_no_track:
538 * Directly clear spte without caring the state bits of sptep,
539 * it is used to set the upper level spte.
540 */
541 static void mmu_spte_clear_no_track(u64 *sptep)
542 {
543 __update_clear_spte_fast(sptep, 0ull);
544 }
545
546 static u64 mmu_spte_get_lockless(u64 *sptep)
547 {
548 return __get_spte_lockless(sptep);
549 }
550
551 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
552 {
553 rcu_read_lock();
554 atomic_inc(&vcpu->kvm->arch.reader_counter);
555
556 /* Increase the counter before walking shadow page table */
557 smp_mb__after_atomic_inc();
558 }
559
560 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
561 {
562 /* Decrease the counter after walking shadow page table finished */
563 smp_mb__before_atomic_dec();
564 atomic_dec(&vcpu->kvm->arch.reader_counter);
565 rcu_read_unlock();
566 }
567
568 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
569 struct kmem_cache *base_cache, int min)
570 {
571 void *obj;
572
573 if (cache->nobjs >= min)
574 return 0;
575 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
576 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
577 if (!obj)
578 return -ENOMEM;
579 cache->objects[cache->nobjs++] = obj;
580 }
581 return 0;
582 }
583
584 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
585 {
586 return cache->nobjs;
587 }
588
589 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
590 struct kmem_cache *cache)
591 {
592 while (mc->nobjs)
593 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
594 }
595
596 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
597 int min)
598 {
599 void *page;
600
601 if (cache->nobjs >= min)
602 return 0;
603 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
604 page = (void *)__get_free_page(GFP_KERNEL);
605 if (!page)
606 return -ENOMEM;
607 cache->objects[cache->nobjs++] = page;
608 }
609 return 0;
610 }
611
612 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
613 {
614 while (mc->nobjs)
615 free_page((unsigned long)mc->objects[--mc->nobjs]);
616 }
617
618 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
619 {
620 int r;
621
622 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
623 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
624 if (r)
625 goto out;
626 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
627 if (r)
628 goto out;
629 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
630 mmu_page_header_cache, 4);
631 out:
632 return r;
633 }
634
635 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
636 {
637 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
638 pte_list_desc_cache);
639 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
640 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
641 mmu_page_header_cache);
642 }
643
644 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
645 size_t size)
646 {
647 void *p;
648
649 BUG_ON(!mc->nobjs);
650 p = mc->objects[--mc->nobjs];
651 return p;
652 }
653
654 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
655 {
656 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
657 sizeof(struct pte_list_desc));
658 }
659
660 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
661 {
662 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
663 }
664
665 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
666 {
667 if (!sp->role.direct)
668 return sp->gfns[index];
669
670 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
671 }
672
673 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
674 {
675 if (sp->role.direct)
676 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
677 else
678 sp->gfns[index] = gfn;
679 }
680
681 /*
682 * Return the pointer to the large page information for a given gfn,
683 * handling slots that are not large page aligned.
684 */
685 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
686 struct kvm_memory_slot *slot,
687 int level)
688 {
689 unsigned long idx;
690
691 idx = gfn_to_index(gfn, slot->base_gfn, level);
692 return &slot->arch.lpage_info[level - 2][idx];
693 }
694
695 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
696 {
697 struct kvm_memory_slot *slot;
698 struct kvm_lpage_info *linfo;
699 int i;
700
701 slot = gfn_to_memslot(kvm, gfn);
702 for (i = PT_DIRECTORY_LEVEL;
703 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
704 linfo = lpage_info_slot(gfn, slot, i);
705 linfo->write_count += 1;
706 }
707 kvm->arch.indirect_shadow_pages++;
708 }
709
710 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
711 {
712 struct kvm_memory_slot *slot;
713 struct kvm_lpage_info *linfo;
714 int i;
715
716 slot = gfn_to_memslot(kvm, gfn);
717 for (i = PT_DIRECTORY_LEVEL;
718 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
719 linfo = lpage_info_slot(gfn, slot, i);
720 linfo->write_count -= 1;
721 WARN_ON(linfo->write_count < 0);
722 }
723 kvm->arch.indirect_shadow_pages--;
724 }
725
726 static int has_wrprotected_page(struct kvm *kvm,
727 gfn_t gfn,
728 int level)
729 {
730 struct kvm_memory_slot *slot;
731 struct kvm_lpage_info *linfo;
732
733 slot = gfn_to_memslot(kvm, gfn);
734 if (slot) {
735 linfo = lpage_info_slot(gfn, slot, level);
736 return linfo->write_count;
737 }
738
739 return 1;
740 }
741
742 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
743 {
744 unsigned long page_size;
745 int i, ret = 0;
746
747 page_size = kvm_host_page_size(kvm, gfn);
748
749 for (i = PT_PAGE_TABLE_LEVEL;
750 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
751 if (page_size >= KVM_HPAGE_SIZE(i))
752 ret = i;
753 else
754 break;
755 }
756
757 return ret;
758 }
759
760 static struct kvm_memory_slot *
761 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
762 bool no_dirty_log)
763 {
764 struct kvm_memory_slot *slot;
765
766 slot = gfn_to_memslot(vcpu->kvm, gfn);
767 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
768 (no_dirty_log && slot->dirty_bitmap))
769 slot = NULL;
770
771 return slot;
772 }
773
774 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
775 {
776 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
777 }
778
779 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
780 {
781 int host_level, level, max_level;
782
783 host_level = host_mapping_level(vcpu->kvm, large_gfn);
784
785 if (host_level == PT_PAGE_TABLE_LEVEL)
786 return host_level;
787
788 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
789 kvm_x86_ops->get_lpage_level() : host_level;
790
791 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
792 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
793 break;
794
795 return level - 1;
796 }
797
798 /*
799 * Pte mapping structures:
800 *
801 * If pte_list bit zero is zero, then pte_list point to the spte.
802 *
803 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
804 * pte_list_desc containing more mappings.
805 *
806 * Returns the number of pte entries before the spte was added or zero if
807 * the spte was not added.
808 *
809 */
810 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
811 unsigned long *pte_list)
812 {
813 struct pte_list_desc *desc;
814 int i, count = 0;
815
816 if (!*pte_list) {
817 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
818 *pte_list = (unsigned long)spte;
819 } else if (!(*pte_list & 1)) {
820 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
821 desc = mmu_alloc_pte_list_desc(vcpu);
822 desc->sptes[0] = (u64 *)*pte_list;
823 desc->sptes[1] = spte;
824 *pte_list = (unsigned long)desc | 1;
825 ++count;
826 } else {
827 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
828 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
829 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
830 desc = desc->more;
831 count += PTE_LIST_EXT;
832 }
833 if (desc->sptes[PTE_LIST_EXT-1]) {
834 desc->more = mmu_alloc_pte_list_desc(vcpu);
835 desc = desc->more;
836 }
837 for (i = 0; desc->sptes[i]; ++i)
838 ++count;
839 desc->sptes[i] = spte;
840 }
841 return count;
842 }
843
844 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
845 {
846 struct pte_list_desc *desc;
847 u64 *prev_spte;
848 int i;
849
850 if (!*pte_list)
851 return NULL;
852 else if (!(*pte_list & 1)) {
853 if (!spte)
854 return (u64 *)*pte_list;
855 return NULL;
856 }
857 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
858 prev_spte = NULL;
859 while (desc) {
860 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
861 if (prev_spte == spte)
862 return desc->sptes[i];
863 prev_spte = desc->sptes[i];
864 }
865 desc = desc->more;
866 }
867 return NULL;
868 }
869
870 static void
871 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
872 int i, struct pte_list_desc *prev_desc)
873 {
874 int j;
875
876 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
877 ;
878 desc->sptes[i] = desc->sptes[j];
879 desc->sptes[j] = NULL;
880 if (j != 0)
881 return;
882 if (!prev_desc && !desc->more)
883 *pte_list = (unsigned long)desc->sptes[0];
884 else
885 if (prev_desc)
886 prev_desc->more = desc->more;
887 else
888 *pte_list = (unsigned long)desc->more | 1;
889 mmu_free_pte_list_desc(desc);
890 }
891
892 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
893 {
894 struct pte_list_desc *desc;
895 struct pte_list_desc *prev_desc;
896 int i;
897
898 if (!*pte_list) {
899 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
900 BUG();
901 } else if (!(*pte_list & 1)) {
902 rmap_printk("pte_list_remove: %p 1->0\n", spte);
903 if ((u64 *)*pte_list != spte) {
904 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
905 BUG();
906 }
907 *pte_list = 0;
908 } else {
909 rmap_printk("pte_list_remove: %p many->many\n", spte);
910 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
911 prev_desc = NULL;
912 while (desc) {
913 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
914 if (desc->sptes[i] == spte) {
915 pte_list_desc_remove_entry(pte_list,
916 desc, i,
917 prev_desc);
918 return;
919 }
920 prev_desc = desc;
921 desc = desc->more;
922 }
923 pr_err("pte_list_remove: %p many->many\n", spte);
924 BUG();
925 }
926 }
927
928 typedef void (*pte_list_walk_fn) (u64 *spte);
929 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
930 {
931 struct pte_list_desc *desc;
932 int i;
933
934 if (!*pte_list)
935 return;
936
937 if (!(*pte_list & 1))
938 return fn((u64 *)*pte_list);
939
940 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
941 while (desc) {
942 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
943 fn(desc->sptes[i]);
944 desc = desc->more;
945 }
946 }
947
948 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
949 struct kvm_memory_slot *slot)
950 {
951 struct kvm_lpage_info *linfo;
952
953 if (likely(level == PT_PAGE_TABLE_LEVEL))
954 return &slot->rmap[gfn - slot->base_gfn];
955
956 linfo = lpage_info_slot(gfn, slot, level);
957 return &linfo->rmap_pde;
958 }
959
960 /*
961 * Take gfn and return the reverse mapping to it.
962 */
963 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
964 {
965 struct kvm_memory_slot *slot;
966
967 slot = gfn_to_memslot(kvm, gfn);
968 return __gfn_to_rmap(gfn, level, slot);
969 }
970
971 static bool rmap_can_add(struct kvm_vcpu *vcpu)
972 {
973 struct kvm_mmu_memory_cache *cache;
974
975 cache = &vcpu->arch.mmu_pte_list_desc_cache;
976 return mmu_memory_cache_free_objects(cache);
977 }
978
979 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
980 {
981 struct kvm_mmu_page *sp;
982 unsigned long *rmapp;
983
984 sp = page_header(__pa(spte));
985 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
986 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
987 return pte_list_add(vcpu, spte, rmapp);
988 }
989
990 static u64 *rmap_next(unsigned long *rmapp, u64 *spte)
991 {
992 return pte_list_next(rmapp, spte);
993 }
994
995 static void rmap_remove(struct kvm *kvm, u64 *spte)
996 {
997 struct kvm_mmu_page *sp;
998 gfn_t gfn;
999 unsigned long *rmapp;
1000
1001 sp = page_header(__pa(spte));
1002 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1003 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1004 pte_list_remove(spte, rmapp);
1005 }
1006
1007 static void drop_spte(struct kvm *kvm, u64 *sptep)
1008 {
1009 if (mmu_spte_clear_track_bits(sptep))
1010 rmap_remove(kvm, sptep);
1011 }
1012
1013 int kvm_mmu_rmap_write_protect(struct kvm *kvm, u64 gfn,
1014 struct kvm_memory_slot *slot)
1015 {
1016 unsigned long *rmapp;
1017 u64 *spte;
1018 int i, write_protected = 0;
1019
1020 rmapp = __gfn_to_rmap(gfn, PT_PAGE_TABLE_LEVEL, slot);
1021 spte = rmap_next(rmapp, NULL);
1022 while (spte) {
1023 BUG_ON(!(*spte & PT_PRESENT_MASK));
1024 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
1025 if (is_writable_pte(*spte)) {
1026 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
1027 write_protected = 1;
1028 }
1029 spte = rmap_next(rmapp, spte);
1030 }
1031
1032 /* check for huge page mappings */
1033 for (i = PT_DIRECTORY_LEVEL;
1034 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1035 rmapp = __gfn_to_rmap(gfn, i, slot);
1036 spte = rmap_next(rmapp, NULL);
1037 while (spte) {
1038 BUG_ON(!(*spte & PT_PRESENT_MASK));
1039 BUG_ON(!is_large_pte(*spte));
1040 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
1041 if (is_writable_pte(*spte)) {
1042 drop_spte(kvm, spte);
1043 --kvm->stat.lpages;
1044 spte = NULL;
1045 write_protected = 1;
1046 }
1047 spte = rmap_next(rmapp, spte);
1048 }
1049 }
1050
1051 return write_protected;
1052 }
1053
1054 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1055 {
1056 struct kvm_memory_slot *slot;
1057
1058 slot = gfn_to_memslot(kvm, gfn);
1059 return kvm_mmu_rmap_write_protect(kvm, gfn, slot);
1060 }
1061
1062 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1063 unsigned long data)
1064 {
1065 u64 *spte;
1066 int need_tlb_flush = 0;
1067
1068 while ((spte = rmap_next(rmapp, NULL))) {
1069 BUG_ON(!(*spte & PT_PRESENT_MASK));
1070 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
1071 drop_spte(kvm, spte);
1072 need_tlb_flush = 1;
1073 }
1074 return need_tlb_flush;
1075 }
1076
1077 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1078 unsigned long data)
1079 {
1080 int need_flush = 0;
1081 u64 *spte, new_spte;
1082 pte_t *ptep = (pte_t *)data;
1083 pfn_t new_pfn;
1084
1085 WARN_ON(pte_huge(*ptep));
1086 new_pfn = pte_pfn(*ptep);
1087 spte = rmap_next(rmapp, NULL);
1088 while (spte) {
1089 BUG_ON(!is_shadow_present_pte(*spte));
1090 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1091 need_flush = 1;
1092 if (pte_write(*ptep)) {
1093 drop_spte(kvm, spte);
1094 spte = rmap_next(rmapp, NULL);
1095 } else {
1096 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1097 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1098
1099 new_spte &= ~PT_WRITABLE_MASK;
1100 new_spte &= ~SPTE_HOST_WRITEABLE;
1101 new_spte &= ~shadow_accessed_mask;
1102 mmu_spte_clear_track_bits(spte);
1103 mmu_spte_set(spte, new_spte);
1104 spte = rmap_next(rmapp, spte);
1105 }
1106 }
1107 if (need_flush)
1108 kvm_flush_remote_tlbs(kvm);
1109
1110 return 0;
1111 }
1112
1113 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1114 unsigned long data,
1115 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1116 unsigned long data))
1117 {
1118 int j;
1119 int ret;
1120 int retval = 0;
1121 struct kvm_memslots *slots;
1122 struct kvm_memory_slot *memslot;
1123
1124 slots = kvm_memslots(kvm);
1125
1126 kvm_for_each_memslot(memslot, slots) {
1127 unsigned long start = memslot->userspace_addr;
1128 unsigned long end;
1129
1130 end = start + (memslot->npages << PAGE_SHIFT);
1131 if (hva >= start && hva < end) {
1132 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1133 gfn_t gfn = memslot->base_gfn + gfn_offset;
1134
1135 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1136
1137 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1138 struct kvm_lpage_info *linfo;
1139
1140 linfo = lpage_info_slot(gfn, memslot,
1141 PT_DIRECTORY_LEVEL + j);
1142 ret |= handler(kvm, &linfo->rmap_pde, data);
1143 }
1144 trace_kvm_age_page(hva, memslot, ret);
1145 retval |= ret;
1146 }
1147 }
1148
1149 return retval;
1150 }
1151
1152 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1153 {
1154 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1155 }
1156
1157 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1158 {
1159 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1160 }
1161
1162 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1163 unsigned long data)
1164 {
1165 u64 *spte;
1166 int young = 0;
1167
1168 /*
1169 * Emulate the accessed bit for EPT, by checking if this page has
1170 * an EPT mapping, and clearing it if it does. On the next access,
1171 * a new EPT mapping will be established.
1172 * This has some overhead, but not as much as the cost of swapping
1173 * out actively used pages or breaking up actively used hugepages.
1174 */
1175 if (!shadow_accessed_mask)
1176 return kvm_unmap_rmapp(kvm, rmapp, data);
1177
1178 spte = rmap_next(rmapp, NULL);
1179 while (spte) {
1180 int _young;
1181 u64 _spte = *spte;
1182 BUG_ON(!(_spte & PT_PRESENT_MASK));
1183 _young = _spte & PT_ACCESSED_MASK;
1184 if (_young) {
1185 young = 1;
1186 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1187 }
1188 spte = rmap_next(rmapp, spte);
1189 }
1190 return young;
1191 }
1192
1193 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1194 unsigned long data)
1195 {
1196 u64 *spte;
1197 int young = 0;
1198
1199 /*
1200 * If there's no access bit in the secondary pte set by the
1201 * hardware it's up to gup-fast/gup to set the access bit in
1202 * the primary pte or in the page structure.
1203 */
1204 if (!shadow_accessed_mask)
1205 goto out;
1206
1207 spte = rmap_next(rmapp, NULL);
1208 while (spte) {
1209 u64 _spte = *spte;
1210 BUG_ON(!(_spte & PT_PRESENT_MASK));
1211 young = _spte & PT_ACCESSED_MASK;
1212 if (young) {
1213 young = 1;
1214 break;
1215 }
1216 spte = rmap_next(rmapp, spte);
1217 }
1218 out:
1219 return young;
1220 }
1221
1222 #define RMAP_RECYCLE_THRESHOLD 1000
1223
1224 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1225 {
1226 unsigned long *rmapp;
1227 struct kvm_mmu_page *sp;
1228
1229 sp = page_header(__pa(spte));
1230
1231 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1232
1233 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1234 kvm_flush_remote_tlbs(vcpu->kvm);
1235 }
1236
1237 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1238 {
1239 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1240 }
1241
1242 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1243 {
1244 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1245 }
1246
1247 #ifdef MMU_DEBUG
1248 static int is_empty_shadow_page(u64 *spt)
1249 {
1250 u64 *pos;
1251 u64 *end;
1252
1253 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1254 if (is_shadow_present_pte(*pos)) {
1255 printk(KERN_ERR "%s: %p %llx\n", __func__,
1256 pos, *pos);
1257 return 0;
1258 }
1259 return 1;
1260 }
1261 #endif
1262
1263 /*
1264 * This value is the sum of all of the kvm instances's
1265 * kvm->arch.n_used_mmu_pages values. We need a global,
1266 * aggregate version in order to make the slab shrinker
1267 * faster
1268 */
1269 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1270 {
1271 kvm->arch.n_used_mmu_pages += nr;
1272 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1273 }
1274
1275 /*
1276 * Remove the sp from shadow page cache, after call it,
1277 * we can not find this sp from the cache, and the shadow
1278 * page table is still valid.
1279 * It should be under the protection of mmu lock.
1280 */
1281 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1282 {
1283 ASSERT(is_empty_shadow_page(sp->spt));
1284 hlist_del(&sp->hash_link);
1285 if (!sp->role.direct)
1286 free_page((unsigned long)sp->gfns);
1287 }
1288
1289 /*
1290 * Free the shadow page table and the sp, we can do it
1291 * out of the protection of mmu lock.
1292 */
1293 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1294 {
1295 list_del(&sp->link);
1296 free_page((unsigned long)sp->spt);
1297 kmem_cache_free(mmu_page_header_cache, sp);
1298 }
1299
1300 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1301 {
1302 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1303 }
1304
1305 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1306 struct kvm_mmu_page *sp, u64 *parent_pte)
1307 {
1308 if (!parent_pte)
1309 return;
1310
1311 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1312 }
1313
1314 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1315 u64 *parent_pte)
1316 {
1317 pte_list_remove(parent_pte, &sp->parent_ptes);
1318 }
1319
1320 static void drop_parent_pte(struct kvm_mmu_page *sp,
1321 u64 *parent_pte)
1322 {
1323 mmu_page_remove_parent_pte(sp, parent_pte);
1324 mmu_spte_clear_no_track(parent_pte);
1325 }
1326
1327 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1328 u64 *parent_pte, int direct)
1329 {
1330 struct kvm_mmu_page *sp;
1331 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1332 sizeof *sp);
1333 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1334 if (!direct)
1335 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1336 PAGE_SIZE);
1337 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1338 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1339 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1340 sp->parent_ptes = 0;
1341 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1342 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1343 return sp;
1344 }
1345
1346 static void mark_unsync(u64 *spte);
1347 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1348 {
1349 pte_list_walk(&sp->parent_ptes, mark_unsync);
1350 }
1351
1352 static void mark_unsync(u64 *spte)
1353 {
1354 struct kvm_mmu_page *sp;
1355 unsigned int index;
1356
1357 sp = page_header(__pa(spte));
1358 index = spte - sp->spt;
1359 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1360 return;
1361 if (sp->unsync_children++)
1362 return;
1363 kvm_mmu_mark_parents_unsync(sp);
1364 }
1365
1366 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1367 struct kvm_mmu_page *sp)
1368 {
1369 return 1;
1370 }
1371
1372 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1373 {
1374 }
1375
1376 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1377 struct kvm_mmu_page *sp, u64 *spte,
1378 const void *pte)
1379 {
1380 WARN_ON(1);
1381 }
1382
1383 #define KVM_PAGE_ARRAY_NR 16
1384
1385 struct kvm_mmu_pages {
1386 struct mmu_page_and_offset {
1387 struct kvm_mmu_page *sp;
1388 unsigned int idx;
1389 } page[KVM_PAGE_ARRAY_NR];
1390 unsigned int nr;
1391 };
1392
1393 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1394 int idx)
1395 {
1396 int i;
1397
1398 if (sp->unsync)
1399 for (i=0; i < pvec->nr; i++)
1400 if (pvec->page[i].sp == sp)
1401 return 0;
1402
1403 pvec->page[pvec->nr].sp = sp;
1404 pvec->page[pvec->nr].idx = idx;
1405 pvec->nr++;
1406 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1407 }
1408
1409 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1410 struct kvm_mmu_pages *pvec)
1411 {
1412 int i, ret, nr_unsync_leaf = 0;
1413
1414 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1415 struct kvm_mmu_page *child;
1416 u64 ent = sp->spt[i];
1417
1418 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1419 goto clear_child_bitmap;
1420
1421 child = page_header(ent & PT64_BASE_ADDR_MASK);
1422
1423 if (child->unsync_children) {
1424 if (mmu_pages_add(pvec, child, i))
1425 return -ENOSPC;
1426
1427 ret = __mmu_unsync_walk(child, pvec);
1428 if (!ret)
1429 goto clear_child_bitmap;
1430 else if (ret > 0)
1431 nr_unsync_leaf += ret;
1432 else
1433 return ret;
1434 } else if (child->unsync) {
1435 nr_unsync_leaf++;
1436 if (mmu_pages_add(pvec, child, i))
1437 return -ENOSPC;
1438 } else
1439 goto clear_child_bitmap;
1440
1441 continue;
1442
1443 clear_child_bitmap:
1444 __clear_bit(i, sp->unsync_child_bitmap);
1445 sp->unsync_children--;
1446 WARN_ON((int)sp->unsync_children < 0);
1447 }
1448
1449
1450 return nr_unsync_leaf;
1451 }
1452
1453 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1454 struct kvm_mmu_pages *pvec)
1455 {
1456 if (!sp->unsync_children)
1457 return 0;
1458
1459 mmu_pages_add(pvec, sp, 0);
1460 return __mmu_unsync_walk(sp, pvec);
1461 }
1462
1463 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1464 {
1465 WARN_ON(!sp->unsync);
1466 trace_kvm_mmu_sync_page(sp);
1467 sp->unsync = 0;
1468 --kvm->stat.mmu_unsync;
1469 }
1470
1471 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1472 struct list_head *invalid_list);
1473 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1474 struct list_head *invalid_list);
1475
1476 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1477 hlist_for_each_entry(sp, pos, \
1478 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1479 if ((sp)->gfn != (gfn)) {} else
1480
1481 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1482 hlist_for_each_entry(sp, pos, \
1483 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1484 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1485 (sp)->role.invalid) {} else
1486
1487 /* @sp->gfn should be write-protected at the call site */
1488 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1489 struct list_head *invalid_list, bool clear_unsync)
1490 {
1491 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1492 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1493 return 1;
1494 }
1495
1496 if (clear_unsync)
1497 kvm_unlink_unsync_page(vcpu->kvm, sp);
1498
1499 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1500 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1501 return 1;
1502 }
1503
1504 kvm_mmu_flush_tlb(vcpu);
1505 return 0;
1506 }
1507
1508 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1509 struct kvm_mmu_page *sp)
1510 {
1511 LIST_HEAD(invalid_list);
1512 int ret;
1513
1514 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1515 if (ret)
1516 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1517
1518 return ret;
1519 }
1520
1521 #ifdef CONFIG_KVM_MMU_AUDIT
1522 #include "mmu_audit.c"
1523 #else
1524 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1525 static void mmu_audit_disable(void) { }
1526 #endif
1527
1528 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1529 struct list_head *invalid_list)
1530 {
1531 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1532 }
1533
1534 /* @gfn should be write-protected at the call site */
1535 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1536 {
1537 struct kvm_mmu_page *s;
1538 struct hlist_node *node;
1539 LIST_HEAD(invalid_list);
1540 bool flush = false;
1541
1542 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1543 if (!s->unsync)
1544 continue;
1545
1546 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1547 kvm_unlink_unsync_page(vcpu->kvm, s);
1548 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1549 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1550 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1551 continue;
1552 }
1553 flush = true;
1554 }
1555
1556 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1557 if (flush)
1558 kvm_mmu_flush_tlb(vcpu);
1559 }
1560
1561 struct mmu_page_path {
1562 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1563 unsigned int idx[PT64_ROOT_LEVEL-1];
1564 };
1565
1566 #define for_each_sp(pvec, sp, parents, i) \
1567 for (i = mmu_pages_next(&pvec, &parents, -1), \
1568 sp = pvec.page[i].sp; \
1569 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1570 i = mmu_pages_next(&pvec, &parents, i))
1571
1572 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1573 struct mmu_page_path *parents,
1574 int i)
1575 {
1576 int n;
1577
1578 for (n = i+1; n < pvec->nr; n++) {
1579 struct kvm_mmu_page *sp = pvec->page[n].sp;
1580
1581 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1582 parents->idx[0] = pvec->page[n].idx;
1583 return n;
1584 }
1585
1586 parents->parent[sp->role.level-2] = sp;
1587 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1588 }
1589
1590 return n;
1591 }
1592
1593 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1594 {
1595 struct kvm_mmu_page *sp;
1596 unsigned int level = 0;
1597
1598 do {
1599 unsigned int idx = parents->idx[level];
1600
1601 sp = parents->parent[level];
1602 if (!sp)
1603 return;
1604
1605 --sp->unsync_children;
1606 WARN_ON((int)sp->unsync_children < 0);
1607 __clear_bit(idx, sp->unsync_child_bitmap);
1608 level++;
1609 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1610 }
1611
1612 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1613 struct mmu_page_path *parents,
1614 struct kvm_mmu_pages *pvec)
1615 {
1616 parents->parent[parent->role.level-1] = NULL;
1617 pvec->nr = 0;
1618 }
1619
1620 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1621 struct kvm_mmu_page *parent)
1622 {
1623 int i;
1624 struct kvm_mmu_page *sp;
1625 struct mmu_page_path parents;
1626 struct kvm_mmu_pages pages;
1627 LIST_HEAD(invalid_list);
1628
1629 kvm_mmu_pages_init(parent, &parents, &pages);
1630 while (mmu_unsync_walk(parent, &pages)) {
1631 int protected = 0;
1632
1633 for_each_sp(pages, sp, parents, i)
1634 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1635
1636 if (protected)
1637 kvm_flush_remote_tlbs(vcpu->kvm);
1638
1639 for_each_sp(pages, sp, parents, i) {
1640 kvm_sync_page(vcpu, sp, &invalid_list);
1641 mmu_pages_clear_parents(&parents);
1642 }
1643 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1644 cond_resched_lock(&vcpu->kvm->mmu_lock);
1645 kvm_mmu_pages_init(parent, &parents, &pages);
1646 }
1647 }
1648
1649 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1650 {
1651 int i;
1652
1653 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1654 sp->spt[i] = 0ull;
1655 }
1656
1657 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1658 {
1659 sp->write_flooding_count = 0;
1660 }
1661
1662 static void clear_sp_write_flooding_count(u64 *spte)
1663 {
1664 struct kvm_mmu_page *sp = page_header(__pa(spte));
1665
1666 __clear_sp_write_flooding_count(sp);
1667 }
1668
1669 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1670 gfn_t gfn,
1671 gva_t gaddr,
1672 unsigned level,
1673 int direct,
1674 unsigned access,
1675 u64 *parent_pte)
1676 {
1677 union kvm_mmu_page_role role;
1678 unsigned quadrant;
1679 struct kvm_mmu_page *sp;
1680 struct hlist_node *node;
1681 bool need_sync = false;
1682
1683 role = vcpu->arch.mmu.base_role;
1684 role.level = level;
1685 role.direct = direct;
1686 if (role.direct)
1687 role.cr4_pae = 0;
1688 role.access = access;
1689 if (!vcpu->arch.mmu.direct_map
1690 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1691 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1692 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1693 role.quadrant = quadrant;
1694 }
1695 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1696 if (!need_sync && sp->unsync)
1697 need_sync = true;
1698
1699 if (sp->role.word != role.word)
1700 continue;
1701
1702 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1703 break;
1704
1705 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1706 if (sp->unsync_children) {
1707 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1708 kvm_mmu_mark_parents_unsync(sp);
1709 } else if (sp->unsync)
1710 kvm_mmu_mark_parents_unsync(sp);
1711
1712 __clear_sp_write_flooding_count(sp);
1713 trace_kvm_mmu_get_page(sp, false);
1714 return sp;
1715 }
1716 ++vcpu->kvm->stat.mmu_cache_miss;
1717 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1718 if (!sp)
1719 return sp;
1720 sp->gfn = gfn;
1721 sp->role = role;
1722 hlist_add_head(&sp->hash_link,
1723 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1724 if (!direct) {
1725 if (rmap_write_protect(vcpu->kvm, gfn))
1726 kvm_flush_remote_tlbs(vcpu->kvm);
1727 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1728 kvm_sync_pages(vcpu, gfn);
1729
1730 account_shadowed(vcpu->kvm, gfn);
1731 }
1732 init_shadow_page_table(sp);
1733 trace_kvm_mmu_get_page(sp, true);
1734 return sp;
1735 }
1736
1737 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1738 struct kvm_vcpu *vcpu, u64 addr)
1739 {
1740 iterator->addr = addr;
1741 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1742 iterator->level = vcpu->arch.mmu.shadow_root_level;
1743
1744 if (iterator->level == PT64_ROOT_LEVEL &&
1745 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1746 !vcpu->arch.mmu.direct_map)
1747 --iterator->level;
1748
1749 if (iterator->level == PT32E_ROOT_LEVEL) {
1750 iterator->shadow_addr
1751 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1752 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1753 --iterator->level;
1754 if (!iterator->shadow_addr)
1755 iterator->level = 0;
1756 }
1757 }
1758
1759 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1760 {
1761 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1762 return false;
1763
1764 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1765 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1766 return true;
1767 }
1768
1769 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1770 u64 spte)
1771 {
1772 if (is_last_spte(spte, iterator->level)) {
1773 iterator->level = 0;
1774 return;
1775 }
1776
1777 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1778 --iterator->level;
1779 }
1780
1781 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1782 {
1783 return __shadow_walk_next(iterator, *iterator->sptep);
1784 }
1785
1786 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1787 {
1788 u64 spte;
1789
1790 spte = __pa(sp->spt)
1791 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1792 | PT_WRITABLE_MASK | PT_USER_MASK;
1793 mmu_spte_set(sptep, spte);
1794 }
1795
1796 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1797 {
1798 if (is_large_pte(*sptep)) {
1799 drop_spte(vcpu->kvm, sptep);
1800 --vcpu->kvm->stat.lpages;
1801 kvm_flush_remote_tlbs(vcpu->kvm);
1802 }
1803 }
1804
1805 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1806 unsigned direct_access)
1807 {
1808 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1809 struct kvm_mmu_page *child;
1810
1811 /*
1812 * For the direct sp, if the guest pte's dirty bit
1813 * changed form clean to dirty, it will corrupt the
1814 * sp's access: allow writable in the read-only sp,
1815 * so we should update the spte at this point to get
1816 * a new sp with the correct access.
1817 */
1818 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1819 if (child->role.access == direct_access)
1820 return;
1821
1822 drop_parent_pte(child, sptep);
1823 kvm_flush_remote_tlbs(vcpu->kvm);
1824 }
1825 }
1826
1827 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1828 u64 *spte)
1829 {
1830 u64 pte;
1831 struct kvm_mmu_page *child;
1832
1833 pte = *spte;
1834 if (is_shadow_present_pte(pte)) {
1835 if (is_last_spte(pte, sp->role.level)) {
1836 drop_spte(kvm, spte);
1837 if (is_large_pte(pte))
1838 --kvm->stat.lpages;
1839 } else {
1840 child = page_header(pte & PT64_BASE_ADDR_MASK);
1841 drop_parent_pte(child, spte);
1842 }
1843 return true;
1844 }
1845
1846 if (is_mmio_spte(pte))
1847 mmu_spte_clear_no_track(spte);
1848
1849 return false;
1850 }
1851
1852 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1853 struct kvm_mmu_page *sp)
1854 {
1855 unsigned i;
1856
1857 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1858 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1859 }
1860
1861 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1862 {
1863 mmu_page_remove_parent_pte(sp, parent_pte);
1864 }
1865
1866 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1867 {
1868 u64 *parent_pte;
1869
1870 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1871 drop_parent_pte(sp, parent_pte);
1872 }
1873
1874 static int mmu_zap_unsync_children(struct kvm *kvm,
1875 struct kvm_mmu_page *parent,
1876 struct list_head *invalid_list)
1877 {
1878 int i, zapped = 0;
1879 struct mmu_page_path parents;
1880 struct kvm_mmu_pages pages;
1881
1882 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1883 return 0;
1884
1885 kvm_mmu_pages_init(parent, &parents, &pages);
1886 while (mmu_unsync_walk(parent, &pages)) {
1887 struct kvm_mmu_page *sp;
1888
1889 for_each_sp(pages, sp, parents, i) {
1890 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1891 mmu_pages_clear_parents(&parents);
1892 zapped++;
1893 }
1894 kvm_mmu_pages_init(parent, &parents, &pages);
1895 }
1896
1897 return zapped;
1898 }
1899
1900 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1901 struct list_head *invalid_list)
1902 {
1903 int ret;
1904
1905 trace_kvm_mmu_prepare_zap_page(sp);
1906 ++kvm->stat.mmu_shadow_zapped;
1907 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1908 kvm_mmu_page_unlink_children(kvm, sp);
1909 kvm_mmu_unlink_parents(kvm, sp);
1910 if (!sp->role.invalid && !sp->role.direct)
1911 unaccount_shadowed(kvm, sp->gfn);
1912 if (sp->unsync)
1913 kvm_unlink_unsync_page(kvm, sp);
1914 if (!sp->root_count) {
1915 /* Count self */
1916 ret++;
1917 list_move(&sp->link, invalid_list);
1918 kvm_mod_used_mmu_pages(kvm, -1);
1919 } else {
1920 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1921 kvm_reload_remote_mmus(kvm);
1922 }
1923
1924 sp->role.invalid = 1;
1925 return ret;
1926 }
1927
1928 static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1929 {
1930 struct kvm_mmu_page *sp;
1931
1932 list_for_each_entry(sp, invalid_list, link)
1933 kvm_mmu_isolate_page(sp);
1934 }
1935
1936 static void free_pages_rcu(struct rcu_head *head)
1937 {
1938 struct kvm_mmu_page *next, *sp;
1939
1940 sp = container_of(head, struct kvm_mmu_page, rcu);
1941 while (sp) {
1942 if (!list_empty(&sp->link))
1943 next = list_first_entry(&sp->link,
1944 struct kvm_mmu_page, link);
1945 else
1946 next = NULL;
1947 kvm_mmu_free_page(sp);
1948 sp = next;
1949 }
1950 }
1951
1952 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1953 struct list_head *invalid_list)
1954 {
1955 struct kvm_mmu_page *sp;
1956
1957 if (list_empty(invalid_list))
1958 return;
1959
1960 kvm_flush_remote_tlbs(kvm);
1961
1962 if (atomic_read(&kvm->arch.reader_counter)) {
1963 kvm_mmu_isolate_pages(invalid_list);
1964 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1965 list_del_init(invalid_list);
1966
1967 trace_kvm_mmu_delay_free_pages(sp);
1968 call_rcu(&sp->rcu, free_pages_rcu);
1969 return;
1970 }
1971
1972 do {
1973 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1974 WARN_ON(!sp->role.invalid || sp->root_count);
1975 kvm_mmu_isolate_page(sp);
1976 kvm_mmu_free_page(sp);
1977 } while (!list_empty(invalid_list));
1978
1979 }
1980
1981 /*
1982 * Changing the number of mmu pages allocated to the vm
1983 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1984 */
1985 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1986 {
1987 LIST_HEAD(invalid_list);
1988 /*
1989 * If we set the number of mmu pages to be smaller be than the
1990 * number of actived pages , we must to free some mmu pages before we
1991 * change the value
1992 */
1993
1994 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1995 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1996 !list_empty(&kvm->arch.active_mmu_pages)) {
1997 struct kvm_mmu_page *page;
1998
1999 page = container_of(kvm->arch.active_mmu_pages.prev,
2000 struct kvm_mmu_page, link);
2001 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2002 }
2003 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2004 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2005 }
2006
2007 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2008 }
2009
2010 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2011 {
2012 struct kvm_mmu_page *sp;
2013 struct hlist_node *node;
2014 LIST_HEAD(invalid_list);
2015 int r;
2016
2017 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2018 r = 0;
2019 spin_lock(&kvm->mmu_lock);
2020 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2021 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2022 sp->role.word);
2023 r = 1;
2024 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2025 }
2026 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2027 spin_unlock(&kvm->mmu_lock);
2028
2029 return r;
2030 }
2031 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2032
2033 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2034 {
2035 int slot = memslot_id(kvm, gfn);
2036 struct kvm_mmu_page *sp = page_header(__pa(pte));
2037
2038 __set_bit(slot, sp->slot_bitmap);
2039 }
2040
2041 /*
2042 * The function is based on mtrr_type_lookup() in
2043 * arch/x86/kernel/cpu/mtrr/generic.c
2044 */
2045 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2046 u64 start, u64 end)
2047 {
2048 int i;
2049 u64 base, mask;
2050 u8 prev_match, curr_match;
2051 int num_var_ranges = KVM_NR_VAR_MTRR;
2052
2053 if (!mtrr_state->enabled)
2054 return 0xFF;
2055
2056 /* Make end inclusive end, instead of exclusive */
2057 end--;
2058
2059 /* Look in fixed ranges. Just return the type as per start */
2060 if (mtrr_state->have_fixed && (start < 0x100000)) {
2061 int idx;
2062
2063 if (start < 0x80000) {
2064 idx = 0;
2065 idx += (start >> 16);
2066 return mtrr_state->fixed_ranges[idx];
2067 } else if (start < 0xC0000) {
2068 idx = 1 * 8;
2069 idx += ((start - 0x80000) >> 14);
2070 return mtrr_state->fixed_ranges[idx];
2071 } else if (start < 0x1000000) {
2072 idx = 3 * 8;
2073 idx += ((start - 0xC0000) >> 12);
2074 return mtrr_state->fixed_ranges[idx];
2075 }
2076 }
2077
2078 /*
2079 * Look in variable ranges
2080 * Look of multiple ranges matching this address and pick type
2081 * as per MTRR precedence
2082 */
2083 if (!(mtrr_state->enabled & 2))
2084 return mtrr_state->def_type;
2085
2086 prev_match = 0xFF;
2087 for (i = 0; i < num_var_ranges; ++i) {
2088 unsigned short start_state, end_state;
2089
2090 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2091 continue;
2092
2093 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2094 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2095 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2096 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2097
2098 start_state = ((start & mask) == (base & mask));
2099 end_state = ((end & mask) == (base & mask));
2100 if (start_state != end_state)
2101 return 0xFE;
2102
2103 if ((start & mask) != (base & mask))
2104 continue;
2105
2106 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2107 if (prev_match == 0xFF) {
2108 prev_match = curr_match;
2109 continue;
2110 }
2111
2112 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2113 curr_match == MTRR_TYPE_UNCACHABLE)
2114 return MTRR_TYPE_UNCACHABLE;
2115
2116 if ((prev_match == MTRR_TYPE_WRBACK &&
2117 curr_match == MTRR_TYPE_WRTHROUGH) ||
2118 (prev_match == MTRR_TYPE_WRTHROUGH &&
2119 curr_match == MTRR_TYPE_WRBACK)) {
2120 prev_match = MTRR_TYPE_WRTHROUGH;
2121 curr_match = MTRR_TYPE_WRTHROUGH;
2122 }
2123
2124 if (prev_match != curr_match)
2125 return MTRR_TYPE_UNCACHABLE;
2126 }
2127
2128 if (prev_match != 0xFF)
2129 return prev_match;
2130
2131 return mtrr_state->def_type;
2132 }
2133
2134 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2135 {
2136 u8 mtrr;
2137
2138 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2139 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2140 if (mtrr == 0xfe || mtrr == 0xff)
2141 mtrr = MTRR_TYPE_WRBACK;
2142 return mtrr;
2143 }
2144 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2145
2146 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2147 {
2148 trace_kvm_mmu_unsync_page(sp);
2149 ++vcpu->kvm->stat.mmu_unsync;
2150 sp->unsync = 1;
2151
2152 kvm_mmu_mark_parents_unsync(sp);
2153 }
2154
2155 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2156 {
2157 struct kvm_mmu_page *s;
2158 struct hlist_node *node;
2159
2160 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2161 if (s->unsync)
2162 continue;
2163 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2164 __kvm_unsync_page(vcpu, s);
2165 }
2166 }
2167
2168 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2169 bool can_unsync)
2170 {
2171 struct kvm_mmu_page *s;
2172 struct hlist_node *node;
2173 bool need_unsync = false;
2174
2175 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2176 if (!can_unsync)
2177 return 1;
2178
2179 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2180 return 1;
2181
2182 if (!need_unsync && !s->unsync) {
2183 need_unsync = true;
2184 }
2185 }
2186 if (need_unsync)
2187 kvm_unsync_pages(vcpu, gfn);
2188 return 0;
2189 }
2190
2191 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2192 unsigned pte_access, int user_fault,
2193 int write_fault, int level,
2194 gfn_t gfn, pfn_t pfn, bool speculative,
2195 bool can_unsync, bool host_writable)
2196 {
2197 u64 spte, entry = *sptep;
2198 int ret = 0;
2199
2200 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2201 return 0;
2202
2203 spte = PT_PRESENT_MASK;
2204 if (!speculative)
2205 spte |= shadow_accessed_mask;
2206
2207 if (pte_access & ACC_EXEC_MASK)
2208 spte |= shadow_x_mask;
2209 else
2210 spte |= shadow_nx_mask;
2211 if (pte_access & ACC_USER_MASK)
2212 spte |= shadow_user_mask;
2213 if (level > PT_PAGE_TABLE_LEVEL)
2214 spte |= PT_PAGE_SIZE_MASK;
2215 if (tdp_enabled)
2216 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2217 kvm_is_mmio_pfn(pfn));
2218
2219 if (host_writable)
2220 spte |= SPTE_HOST_WRITEABLE;
2221 else
2222 pte_access &= ~ACC_WRITE_MASK;
2223
2224 spte |= (u64)pfn << PAGE_SHIFT;
2225
2226 if ((pte_access & ACC_WRITE_MASK)
2227 || (!vcpu->arch.mmu.direct_map && write_fault
2228 && !is_write_protection(vcpu) && !user_fault)) {
2229
2230 if (level > PT_PAGE_TABLE_LEVEL &&
2231 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2232 ret = 1;
2233 drop_spte(vcpu->kvm, sptep);
2234 goto done;
2235 }
2236
2237 spte |= PT_WRITABLE_MASK;
2238
2239 if (!vcpu->arch.mmu.direct_map
2240 && !(pte_access & ACC_WRITE_MASK)) {
2241 spte &= ~PT_USER_MASK;
2242 /*
2243 * If we converted a user page to a kernel page,
2244 * so that the kernel can write to it when cr0.wp=0,
2245 * then we should prevent the kernel from executing it
2246 * if SMEP is enabled.
2247 */
2248 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2249 spte |= PT64_NX_MASK;
2250 }
2251
2252 /*
2253 * Optimization: for pte sync, if spte was writable the hash
2254 * lookup is unnecessary (and expensive). Write protection
2255 * is responsibility of mmu_get_page / kvm_sync_page.
2256 * Same reasoning can be applied to dirty page accounting.
2257 */
2258 if (!can_unsync && is_writable_pte(*sptep))
2259 goto set_pte;
2260
2261 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2262 pgprintk("%s: found shadow page for %llx, marking ro\n",
2263 __func__, gfn);
2264 ret = 1;
2265 pte_access &= ~ACC_WRITE_MASK;
2266 if (is_writable_pte(spte))
2267 spte &= ~PT_WRITABLE_MASK;
2268 }
2269 }
2270
2271 if (pte_access & ACC_WRITE_MASK)
2272 mark_page_dirty(vcpu->kvm, gfn);
2273
2274 set_pte:
2275 mmu_spte_update(sptep, spte);
2276 /*
2277 * If we overwrite a writable spte with a read-only one we
2278 * should flush remote TLBs. Otherwise rmap_write_protect
2279 * will find a read-only spte, even though the writable spte
2280 * might be cached on a CPU's TLB.
2281 */
2282 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2283 kvm_flush_remote_tlbs(vcpu->kvm);
2284 done:
2285 return ret;
2286 }
2287
2288 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2289 unsigned pt_access, unsigned pte_access,
2290 int user_fault, int write_fault,
2291 int *emulate, int level, gfn_t gfn,
2292 pfn_t pfn, bool speculative,
2293 bool host_writable)
2294 {
2295 int was_rmapped = 0;
2296 int rmap_count;
2297
2298 pgprintk("%s: spte %llx access %x write_fault %d"
2299 " user_fault %d gfn %llx\n",
2300 __func__, *sptep, pt_access,
2301 write_fault, user_fault, gfn);
2302
2303 if (is_rmap_spte(*sptep)) {
2304 /*
2305 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2306 * the parent of the now unreachable PTE.
2307 */
2308 if (level > PT_PAGE_TABLE_LEVEL &&
2309 !is_large_pte(*sptep)) {
2310 struct kvm_mmu_page *child;
2311 u64 pte = *sptep;
2312
2313 child = page_header(pte & PT64_BASE_ADDR_MASK);
2314 drop_parent_pte(child, sptep);
2315 kvm_flush_remote_tlbs(vcpu->kvm);
2316 } else if (pfn != spte_to_pfn(*sptep)) {
2317 pgprintk("hfn old %llx new %llx\n",
2318 spte_to_pfn(*sptep), pfn);
2319 drop_spte(vcpu->kvm, sptep);
2320 kvm_flush_remote_tlbs(vcpu->kvm);
2321 } else
2322 was_rmapped = 1;
2323 }
2324
2325 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2326 level, gfn, pfn, speculative, true,
2327 host_writable)) {
2328 if (write_fault)
2329 *emulate = 1;
2330 kvm_mmu_flush_tlb(vcpu);
2331 }
2332
2333 if (unlikely(is_mmio_spte(*sptep) && emulate))
2334 *emulate = 1;
2335
2336 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2337 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2338 is_large_pte(*sptep)? "2MB" : "4kB",
2339 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2340 *sptep, sptep);
2341 if (!was_rmapped && is_large_pte(*sptep))
2342 ++vcpu->kvm->stat.lpages;
2343
2344 if (is_shadow_present_pte(*sptep)) {
2345 page_header_update_slot(vcpu->kvm, sptep, gfn);
2346 if (!was_rmapped) {
2347 rmap_count = rmap_add(vcpu, sptep, gfn);
2348 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2349 rmap_recycle(vcpu, sptep, gfn);
2350 }
2351 }
2352 kvm_release_pfn_clean(pfn);
2353 }
2354
2355 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2356 {
2357 }
2358
2359 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2360 bool no_dirty_log)
2361 {
2362 struct kvm_memory_slot *slot;
2363 unsigned long hva;
2364
2365 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2366 if (!slot) {
2367 get_page(fault_page);
2368 return page_to_pfn(fault_page);
2369 }
2370
2371 hva = gfn_to_hva_memslot(slot, gfn);
2372
2373 return hva_to_pfn_atomic(vcpu->kvm, hva);
2374 }
2375
2376 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2377 struct kvm_mmu_page *sp,
2378 u64 *start, u64 *end)
2379 {
2380 struct page *pages[PTE_PREFETCH_NUM];
2381 unsigned access = sp->role.access;
2382 int i, ret;
2383 gfn_t gfn;
2384
2385 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2386 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2387 return -1;
2388
2389 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2390 if (ret <= 0)
2391 return -1;
2392
2393 for (i = 0; i < ret; i++, gfn++, start++)
2394 mmu_set_spte(vcpu, start, ACC_ALL,
2395 access, 0, 0, NULL,
2396 sp->role.level, gfn,
2397 page_to_pfn(pages[i]), true, true);
2398
2399 return 0;
2400 }
2401
2402 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2403 struct kvm_mmu_page *sp, u64 *sptep)
2404 {
2405 u64 *spte, *start = NULL;
2406 int i;
2407
2408 WARN_ON(!sp->role.direct);
2409
2410 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2411 spte = sp->spt + i;
2412
2413 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2414 if (is_shadow_present_pte(*spte) || spte == sptep) {
2415 if (!start)
2416 continue;
2417 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2418 break;
2419 start = NULL;
2420 } else if (!start)
2421 start = spte;
2422 }
2423 }
2424
2425 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2426 {
2427 struct kvm_mmu_page *sp;
2428
2429 /*
2430 * Since it's no accessed bit on EPT, it's no way to
2431 * distinguish between actually accessed translations
2432 * and prefetched, so disable pte prefetch if EPT is
2433 * enabled.
2434 */
2435 if (!shadow_accessed_mask)
2436 return;
2437
2438 sp = page_header(__pa(sptep));
2439 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2440 return;
2441
2442 __direct_pte_prefetch(vcpu, sp, sptep);
2443 }
2444
2445 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2446 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2447 bool prefault)
2448 {
2449 struct kvm_shadow_walk_iterator iterator;
2450 struct kvm_mmu_page *sp;
2451 int emulate = 0;
2452 gfn_t pseudo_gfn;
2453
2454 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2455 if (iterator.level == level) {
2456 unsigned pte_access = ACC_ALL;
2457
2458 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2459 0, write, &emulate,
2460 level, gfn, pfn, prefault, map_writable);
2461 direct_pte_prefetch(vcpu, iterator.sptep);
2462 ++vcpu->stat.pf_fixed;
2463 break;
2464 }
2465
2466 if (!is_shadow_present_pte(*iterator.sptep)) {
2467 u64 base_addr = iterator.addr;
2468
2469 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2470 pseudo_gfn = base_addr >> PAGE_SHIFT;
2471 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2472 iterator.level - 1,
2473 1, ACC_ALL, iterator.sptep);
2474 if (!sp) {
2475 pgprintk("nonpaging_map: ENOMEM\n");
2476 kvm_release_pfn_clean(pfn);
2477 return -ENOMEM;
2478 }
2479
2480 mmu_spte_set(iterator.sptep,
2481 __pa(sp->spt)
2482 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2483 | shadow_user_mask | shadow_x_mask
2484 | shadow_accessed_mask);
2485 }
2486 }
2487 return emulate;
2488 }
2489
2490 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2491 {
2492 siginfo_t info;
2493
2494 info.si_signo = SIGBUS;
2495 info.si_errno = 0;
2496 info.si_code = BUS_MCEERR_AR;
2497 info.si_addr = (void __user *)address;
2498 info.si_addr_lsb = PAGE_SHIFT;
2499
2500 send_sig_info(SIGBUS, &info, tsk);
2501 }
2502
2503 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2504 {
2505 kvm_release_pfn_clean(pfn);
2506 if (is_hwpoison_pfn(pfn)) {
2507 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2508 return 0;
2509 }
2510
2511 return -EFAULT;
2512 }
2513
2514 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2515 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2516 {
2517 pfn_t pfn = *pfnp;
2518 gfn_t gfn = *gfnp;
2519 int level = *levelp;
2520
2521 /*
2522 * Check if it's a transparent hugepage. If this would be an
2523 * hugetlbfs page, level wouldn't be set to
2524 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2525 * here.
2526 */
2527 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2528 level == PT_PAGE_TABLE_LEVEL &&
2529 PageTransCompound(pfn_to_page(pfn)) &&
2530 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2531 unsigned long mask;
2532 /*
2533 * mmu_notifier_retry was successful and we hold the
2534 * mmu_lock here, so the pmd can't become splitting
2535 * from under us, and in turn
2536 * __split_huge_page_refcount() can't run from under
2537 * us and we can safely transfer the refcount from
2538 * PG_tail to PG_head as we switch the pfn to tail to
2539 * head.
2540 */
2541 *levelp = level = PT_DIRECTORY_LEVEL;
2542 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2543 VM_BUG_ON((gfn & mask) != (pfn & mask));
2544 if (pfn & mask) {
2545 gfn &= ~mask;
2546 *gfnp = gfn;
2547 kvm_release_pfn_clean(pfn);
2548 pfn &= ~mask;
2549 if (!get_page_unless_zero(pfn_to_page(pfn)))
2550 BUG();
2551 *pfnp = pfn;
2552 }
2553 }
2554 }
2555
2556 static bool mmu_invalid_pfn(pfn_t pfn)
2557 {
2558 return unlikely(is_invalid_pfn(pfn));
2559 }
2560
2561 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2562 pfn_t pfn, unsigned access, int *ret_val)
2563 {
2564 bool ret = true;
2565
2566 /* The pfn is invalid, report the error! */
2567 if (unlikely(is_invalid_pfn(pfn))) {
2568 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2569 goto exit;
2570 }
2571
2572 if (unlikely(is_noslot_pfn(pfn)))
2573 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2574
2575 ret = false;
2576 exit:
2577 return ret;
2578 }
2579
2580 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2581 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2582
2583 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2584 bool prefault)
2585 {
2586 int r;
2587 int level;
2588 int force_pt_level;
2589 pfn_t pfn;
2590 unsigned long mmu_seq;
2591 bool map_writable;
2592
2593 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2594 if (likely(!force_pt_level)) {
2595 level = mapping_level(vcpu, gfn);
2596 /*
2597 * This path builds a PAE pagetable - so we can map
2598 * 2mb pages at maximum. Therefore check if the level
2599 * is larger than that.
2600 */
2601 if (level > PT_DIRECTORY_LEVEL)
2602 level = PT_DIRECTORY_LEVEL;
2603
2604 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2605 } else
2606 level = PT_PAGE_TABLE_LEVEL;
2607
2608 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2609 smp_rmb();
2610
2611 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2612 return 0;
2613
2614 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2615 return r;
2616
2617 spin_lock(&vcpu->kvm->mmu_lock);
2618 if (mmu_notifier_retry(vcpu, mmu_seq))
2619 goto out_unlock;
2620 kvm_mmu_free_some_pages(vcpu);
2621 if (likely(!force_pt_level))
2622 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2623 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2624 prefault);
2625 spin_unlock(&vcpu->kvm->mmu_lock);
2626
2627
2628 return r;
2629
2630 out_unlock:
2631 spin_unlock(&vcpu->kvm->mmu_lock);
2632 kvm_release_pfn_clean(pfn);
2633 return 0;
2634 }
2635
2636
2637 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2638 {
2639 int i;
2640 struct kvm_mmu_page *sp;
2641 LIST_HEAD(invalid_list);
2642
2643 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2644 return;
2645 spin_lock(&vcpu->kvm->mmu_lock);
2646 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2647 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2648 vcpu->arch.mmu.direct_map)) {
2649 hpa_t root = vcpu->arch.mmu.root_hpa;
2650
2651 sp = page_header(root);
2652 --sp->root_count;
2653 if (!sp->root_count && sp->role.invalid) {
2654 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2655 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2656 }
2657 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2658 spin_unlock(&vcpu->kvm->mmu_lock);
2659 return;
2660 }
2661 for (i = 0; i < 4; ++i) {
2662 hpa_t root = vcpu->arch.mmu.pae_root[i];
2663
2664 if (root) {
2665 root &= PT64_BASE_ADDR_MASK;
2666 sp = page_header(root);
2667 --sp->root_count;
2668 if (!sp->root_count && sp->role.invalid)
2669 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2670 &invalid_list);
2671 }
2672 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2673 }
2674 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2675 spin_unlock(&vcpu->kvm->mmu_lock);
2676 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2677 }
2678
2679 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2680 {
2681 int ret = 0;
2682
2683 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2684 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2685 ret = 1;
2686 }
2687
2688 return ret;
2689 }
2690
2691 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2692 {
2693 struct kvm_mmu_page *sp;
2694 unsigned i;
2695
2696 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2697 spin_lock(&vcpu->kvm->mmu_lock);
2698 kvm_mmu_free_some_pages(vcpu);
2699 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2700 1, ACC_ALL, NULL);
2701 ++sp->root_count;
2702 spin_unlock(&vcpu->kvm->mmu_lock);
2703 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2704 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2705 for (i = 0; i < 4; ++i) {
2706 hpa_t root = vcpu->arch.mmu.pae_root[i];
2707
2708 ASSERT(!VALID_PAGE(root));
2709 spin_lock(&vcpu->kvm->mmu_lock);
2710 kvm_mmu_free_some_pages(vcpu);
2711 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2712 i << 30,
2713 PT32_ROOT_LEVEL, 1, ACC_ALL,
2714 NULL);
2715 root = __pa(sp->spt);
2716 ++sp->root_count;
2717 spin_unlock(&vcpu->kvm->mmu_lock);
2718 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2719 }
2720 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2721 } else
2722 BUG();
2723
2724 return 0;
2725 }
2726
2727 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2728 {
2729 struct kvm_mmu_page *sp;
2730 u64 pdptr, pm_mask;
2731 gfn_t root_gfn;
2732 int i;
2733
2734 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2735
2736 if (mmu_check_root(vcpu, root_gfn))
2737 return 1;
2738
2739 /*
2740 * Do we shadow a long mode page table? If so we need to
2741 * write-protect the guests page table root.
2742 */
2743 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2744 hpa_t root = vcpu->arch.mmu.root_hpa;
2745
2746 ASSERT(!VALID_PAGE(root));
2747
2748 spin_lock(&vcpu->kvm->mmu_lock);
2749 kvm_mmu_free_some_pages(vcpu);
2750 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2751 0, ACC_ALL, NULL);
2752 root = __pa(sp->spt);
2753 ++sp->root_count;
2754 spin_unlock(&vcpu->kvm->mmu_lock);
2755 vcpu->arch.mmu.root_hpa = root;
2756 return 0;
2757 }
2758
2759 /*
2760 * We shadow a 32 bit page table. This may be a legacy 2-level
2761 * or a PAE 3-level page table. In either case we need to be aware that
2762 * the shadow page table may be a PAE or a long mode page table.
2763 */
2764 pm_mask = PT_PRESENT_MASK;
2765 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2766 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2767
2768 for (i = 0; i < 4; ++i) {
2769 hpa_t root = vcpu->arch.mmu.pae_root[i];
2770
2771 ASSERT(!VALID_PAGE(root));
2772 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2773 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2774 if (!is_present_gpte(pdptr)) {
2775 vcpu->arch.mmu.pae_root[i] = 0;
2776 continue;
2777 }
2778 root_gfn = pdptr >> PAGE_SHIFT;
2779 if (mmu_check_root(vcpu, root_gfn))
2780 return 1;
2781 }
2782 spin_lock(&vcpu->kvm->mmu_lock);
2783 kvm_mmu_free_some_pages(vcpu);
2784 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2785 PT32_ROOT_LEVEL, 0,
2786 ACC_ALL, NULL);
2787 root = __pa(sp->spt);
2788 ++sp->root_count;
2789 spin_unlock(&vcpu->kvm->mmu_lock);
2790
2791 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2792 }
2793 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2794
2795 /*
2796 * If we shadow a 32 bit page table with a long mode page
2797 * table we enter this path.
2798 */
2799 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2800 if (vcpu->arch.mmu.lm_root == NULL) {
2801 /*
2802 * The additional page necessary for this is only
2803 * allocated on demand.
2804 */
2805
2806 u64 *lm_root;
2807
2808 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2809 if (lm_root == NULL)
2810 return 1;
2811
2812 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2813
2814 vcpu->arch.mmu.lm_root = lm_root;
2815 }
2816
2817 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2818 }
2819
2820 return 0;
2821 }
2822
2823 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2824 {
2825 if (vcpu->arch.mmu.direct_map)
2826 return mmu_alloc_direct_roots(vcpu);
2827 else
2828 return mmu_alloc_shadow_roots(vcpu);
2829 }
2830
2831 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2832 {
2833 int i;
2834 struct kvm_mmu_page *sp;
2835
2836 if (vcpu->arch.mmu.direct_map)
2837 return;
2838
2839 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2840 return;
2841
2842 vcpu_clear_mmio_info(vcpu, ~0ul);
2843 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2844 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2845 hpa_t root = vcpu->arch.mmu.root_hpa;
2846 sp = page_header(root);
2847 mmu_sync_children(vcpu, sp);
2848 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2849 return;
2850 }
2851 for (i = 0; i < 4; ++i) {
2852 hpa_t root = vcpu->arch.mmu.pae_root[i];
2853
2854 if (root && VALID_PAGE(root)) {
2855 root &= PT64_BASE_ADDR_MASK;
2856 sp = page_header(root);
2857 mmu_sync_children(vcpu, sp);
2858 }
2859 }
2860 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2861 }
2862
2863 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2864 {
2865 spin_lock(&vcpu->kvm->mmu_lock);
2866 mmu_sync_roots(vcpu);
2867 spin_unlock(&vcpu->kvm->mmu_lock);
2868 }
2869
2870 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2871 u32 access, struct x86_exception *exception)
2872 {
2873 if (exception)
2874 exception->error_code = 0;
2875 return vaddr;
2876 }
2877
2878 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2879 u32 access,
2880 struct x86_exception *exception)
2881 {
2882 if (exception)
2883 exception->error_code = 0;
2884 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2885 }
2886
2887 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2888 {
2889 if (direct)
2890 return vcpu_match_mmio_gpa(vcpu, addr);
2891
2892 return vcpu_match_mmio_gva(vcpu, addr);
2893 }
2894
2895
2896 /*
2897 * On direct hosts, the last spte is only allows two states
2898 * for mmio page fault:
2899 * - It is the mmio spte
2900 * - It is zapped or it is being zapped.
2901 *
2902 * This function completely checks the spte when the last spte
2903 * is not the mmio spte.
2904 */
2905 static bool check_direct_spte_mmio_pf(u64 spte)
2906 {
2907 return __check_direct_spte_mmio_pf(spte);
2908 }
2909
2910 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2911 {
2912 struct kvm_shadow_walk_iterator iterator;
2913 u64 spte = 0ull;
2914
2915 walk_shadow_page_lockless_begin(vcpu);
2916 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2917 if (!is_shadow_present_pte(spte))
2918 break;
2919 walk_shadow_page_lockless_end(vcpu);
2920
2921 return spte;
2922 }
2923
2924 /*
2925 * If it is a real mmio page fault, return 1 and emulat the instruction
2926 * directly, return 0 to let CPU fault again on the address, -1 is
2927 * returned if bug is detected.
2928 */
2929 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2930 {
2931 u64 spte;
2932
2933 if (quickly_check_mmio_pf(vcpu, addr, direct))
2934 return 1;
2935
2936 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2937
2938 if (is_mmio_spte(spte)) {
2939 gfn_t gfn = get_mmio_spte_gfn(spte);
2940 unsigned access = get_mmio_spte_access(spte);
2941
2942 if (direct)
2943 addr = 0;
2944
2945 trace_handle_mmio_page_fault(addr, gfn, access);
2946 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2947 return 1;
2948 }
2949
2950 /*
2951 * It's ok if the gva is remapped by other cpus on shadow guest,
2952 * it's a BUG if the gfn is not a mmio page.
2953 */
2954 if (direct && !check_direct_spte_mmio_pf(spte))
2955 return -1;
2956
2957 /*
2958 * If the page table is zapped by other cpus, let CPU fault again on
2959 * the address.
2960 */
2961 return 0;
2962 }
2963 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2964
2965 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2966 u32 error_code, bool direct)
2967 {
2968 int ret;
2969
2970 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2971 WARN_ON(ret < 0);
2972 return ret;
2973 }
2974
2975 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2976 u32 error_code, bool prefault)
2977 {
2978 gfn_t gfn;
2979 int r;
2980
2981 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2982
2983 if (unlikely(error_code & PFERR_RSVD_MASK))
2984 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2985
2986 r = mmu_topup_memory_caches(vcpu);
2987 if (r)
2988 return r;
2989
2990 ASSERT(vcpu);
2991 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2992
2993 gfn = gva >> PAGE_SHIFT;
2994
2995 return nonpaging_map(vcpu, gva & PAGE_MASK,
2996 error_code & PFERR_WRITE_MASK, gfn, prefault);
2997 }
2998
2999 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3000 {
3001 struct kvm_arch_async_pf arch;
3002
3003 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3004 arch.gfn = gfn;
3005 arch.direct_map = vcpu->arch.mmu.direct_map;
3006 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3007
3008 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3009 }
3010
3011 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3012 {
3013 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3014 kvm_event_needs_reinjection(vcpu)))
3015 return false;
3016
3017 return kvm_x86_ops->interrupt_allowed(vcpu);
3018 }
3019
3020 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3021 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3022 {
3023 bool async;
3024
3025 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3026
3027 if (!async)
3028 return false; /* *pfn has correct page already */
3029
3030 put_page(pfn_to_page(*pfn));
3031
3032 if (!prefault && can_do_async_pf(vcpu)) {
3033 trace_kvm_try_async_get_page(gva, gfn);
3034 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3035 trace_kvm_async_pf_doublefault(gva, gfn);
3036 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3037 return true;
3038 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3039 return true;
3040 }
3041
3042 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3043
3044 return false;
3045 }
3046
3047 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3048 bool prefault)
3049 {
3050 pfn_t pfn;
3051 int r;
3052 int level;
3053 int force_pt_level;
3054 gfn_t gfn = gpa >> PAGE_SHIFT;
3055 unsigned long mmu_seq;
3056 int write = error_code & PFERR_WRITE_MASK;
3057 bool map_writable;
3058
3059 ASSERT(vcpu);
3060 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3061
3062 if (unlikely(error_code & PFERR_RSVD_MASK))
3063 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3064
3065 r = mmu_topup_memory_caches(vcpu);
3066 if (r)
3067 return r;
3068
3069 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3070 if (likely(!force_pt_level)) {
3071 level = mapping_level(vcpu, gfn);
3072 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3073 } else
3074 level = PT_PAGE_TABLE_LEVEL;
3075
3076 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3077 smp_rmb();
3078
3079 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3080 return 0;
3081
3082 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3083 return r;
3084
3085 spin_lock(&vcpu->kvm->mmu_lock);
3086 if (mmu_notifier_retry(vcpu, mmu_seq))
3087 goto out_unlock;
3088 kvm_mmu_free_some_pages(vcpu);
3089 if (likely(!force_pt_level))
3090 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3091 r = __direct_map(vcpu, gpa, write, map_writable,
3092 level, gfn, pfn, prefault);
3093 spin_unlock(&vcpu->kvm->mmu_lock);
3094
3095 return r;
3096
3097 out_unlock:
3098 spin_unlock(&vcpu->kvm->mmu_lock);
3099 kvm_release_pfn_clean(pfn);
3100 return 0;
3101 }
3102
3103 static void nonpaging_free(struct kvm_vcpu *vcpu)
3104 {
3105 mmu_free_roots(vcpu);
3106 }
3107
3108 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3109 struct kvm_mmu *context)
3110 {
3111 context->new_cr3 = nonpaging_new_cr3;
3112 context->page_fault = nonpaging_page_fault;
3113 context->gva_to_gpa = nonpaging_gva_to_gpa;
3114 context->free = nonpaging_free;
3115 context->sync_page = nonpaging_sync_page;
3116 context->invlpg = nonpaging_invlpg;
3117 context->update_pte = nonpaging_update_pte;
3118 context->root_level = 0;
3119 context->shadow_root_level = PT32E_ROOT_LEVEL;
3120 context->root_hpa = INVALID_PAGE;
3121 context->direct_map = true;
3122 context->nx = false;
3123 return 0;
3124 }
3125
3126 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3127 {
3128 ++vcpu->stat.tlb_flush;
3129 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3130 }
3131
3132 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3133 {
3134 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3135 mmu_free_roots(vcpu);
3136 }
3137
3138 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3139 {
3140 return kvm_read_cr3(vcpu);
3141 }
3142
3143 static void inject_page_fault(struct kvm_vcpu *vcpu,
3144 struct x86_exception *fault)
3145 {
3146 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3147 }
3148
3149 static void paging_free(struct kvm_vcpu *vcpu)
3150 {
3151 nonpaging_free(vcpu);
3152 }
3153
3154 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3155 {
3156 int bit7;
3157
3158 bit7 = (gpte >> 7) & 1;
3159 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3160 }
3161
3162 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3163 int *nr_present)
3164 {
3165 if (unlikely(is_mmio_spte(*sptep))) {
3166 if (gfn != get_mmio_spte_gfn(*sptep)) {
3167 mmu_spte_clear_no_track(sptep);
3168 return true;
3169 }
3170
3171 (*nr_present)++;
3172 mark_mmio_spte(sptep, gfn, access);
3173 return true;
3174 }
3175
3176 return false;
3177 }
3178
3179 #define PTTYPE 64
3180 #include "paging_tmpl.h"
3181 #undef PTTYPE
3182
3183 #define PTTYPE 32
3184 #include "paging_tmpl.h"
3185 #undef PTTYPE
3186
3187 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3188 struct kvm_mmu *context)
3189 {
3190 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3191 u64 exb_bit_rsvd = 0;
3192
3193 if (!context->nx)
3194 exb_bit_rsvd = rsvd_bits(63, 63);
3195 switch (context->root_level) {
3196 case PT32_ROOT_LEVEL:
3197 /* no rsvd bits for 2 level 4K page table entries */
3198 context->rsvd_bits_mask[0][1] = 0;
3199 context->rsvd_bits_mask[0][0] = 0;
3200 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3201
3202 if (!is_pse(vcpu)) {
3203 context->rsvd_bits_mask[1][1] = 0;
3204 break;
3205 }
3206
3207 if (is_cpuid_PSE36())
3208 /* 36bits PSE 4MB page */
3209 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3210 else
3211 /* 32 bits PSE 4MB page */
3212 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3213 break;
3214 case PT32E_ROOT_LEVEL:
3215 context->rsvd_bits_mask[0][2] =
3216 rsvd_bits(maxphyaddr, 63) |
3217 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3218 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3219 rsvd_bits(maxphyaddr, 62); /* PDE */
3220 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3221 rsvd_bits(maxphyaddr, 62); /* PTE */
3222 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3223 rsvd_bits(maxphyaddr, 62) |
3224 rsvd_bits(13, 20); /* large page */
3225 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3226 break;
3227 case PT64_ROOT_LEVEL:
3228 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3229 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3230 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3231 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3232 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3233 rsvd_bits(maxphyaddr, 51);
3234 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3235 rsvd_bits(maxphyaddr, 51);
3236 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3237 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3238 rsvd_bits(maxphyaddr, 51) |
3239 rsvd_bits(13, 29);
3240 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3241 rsvd_bits(maxphyaddr, 51) |
3242 rsvd_bits(13, 20); /* large page */
3243 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3244 break;
3245 }
3246 }
3247
3248 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3249 struct kvm_mmu *context,
3250 int level)
3251 {
3252 context->nx = is_nx(vcpu);
3253 context->root_level = level;
3254
3255 reset_rsvds_bits_mask(vcpu, context);
3256
3257 ASSERT(is_pae(vcpu));
3258 context->new_cr3 = paging_new_cr3;
3259 context->page_fault = paging64_page_fault;
3260 context->gva_to_gpa = paging64_gva_to_gpa;
3261 context->sync_page = paging64_sync_page;
3262 context->invlpg = paging64_invlpg;
3263 context->update_pte = paging64_update_pte;
3264 context->free = paging_free;
3265 context->shadow_root_level = level;
3266 context->root_hpa = INVALID_PAGE;
3267 context->direct_map = false;
3268 return 0;
3269 }
3270
3271 static int paging64_init_context(struct kvm_vcpu *vcpu,
3272 struct kvm_mmu *context)
3273 {
3274 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3275 }
3276
3277 static int paging32_init_context(struct kvm_vcpu *vcpu,
3278 struct kvm_mmu *context)
3279 {
3280 context->nx = false;
3281 context->root_level = PT32_ROOT_LEVEL;
3282
3283 reset_rsvds_bits_mask(vcpu, context);
3284
3285 context->new_cr3 = paging_new_cr3;
3286 context->page_fault = paging32_page_fault;
3287 context->gva_to_gpa = paging32_gva_to_gpa;
3288 context->free = paging_free;
3289 context->sync_page = paging32_sync_page;
3290 context->invlpg = paging32_invlpg;
3291 context->update_pte = paging32_update_pte;
3292 context->shadow_root_level = PT32E_ROOT_LEVEL;
3293 context->root_hpa = INVALID_PAGE;
3294 context->direct_map = false;
3295 return 0;
3296 }
3297
3298 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3299 struct kvm_mmu *context)
3300 {
3301 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3302 }
3303
3304 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3305 {
3306 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3307
3308 context->base_role.word = 0;
3309 context->new_cr3 = nonpaging_new_cr3;
3310 context->page_fault = tdp_page_fault;
3311 context->free = nonpaging_free;
3312 context->sync_page = nonpaging_sync_page;
3313 context->invlpg = nonpaging_invlpg;
3314 context->update_pte = nonpaging_update_pte;
3315 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3316 context->root_hpa = INVALID_PAGE;
3317 context->direct_map = true;
3318 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3319 context->get_cr3 = get_cr3;
3320 context->get_pdptr = kvm_pdptr_read;
3321 context->inject_page_fault = kvm_inject_page_fault;
3322
3323 if (!is_paging(vcpu)) {
3324 context->nx = false;
3325 context->gva_to_gpa = nonpaging_gva_to_gpa;
3326 context->root_level = 0;
3327 } else if (is_long_mode(vcpu)) {
3328 context->nx = is_nx(vcpu);
3329 context->root_level = PT64_ROOT_LEVEL;
3330 reset_rsvds_bits_mask(vcpu, context);
3331 context->gva_to_gpa = paging64_gva_to_gpa;
3332 } else if (is_pae(vcpu)) {
3333 context->nx = is_nx(vcpu);
3334 context->root_level = PT32E_ROOT_LEVEL;
3335 reset_rsvds_bits_mask(vcpu, context);
3336 context->gva_to_gpa = paging64_gva_to_gpa;
3337 } else {
3338 context->nx = false;
3339 context->root_level = PT32_ROOT_LEVEL;
3340 reset_rsvds_bits_mask(vcpu, context);
3341 context->gva_to_gpa = paging32_gva_to_gpa;
3342 }
3343
3344 return 0;
3345 }
3346
3347 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3348 {
3349 int r;
3350 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3351 ASSERT(vcpu);
3352 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3353
3354 if (!is_paging(vcpu))
3355 r = nonpaging_init_context(vcpu, context);
3356 else if (is_long_mode(vcpu))
3357 r = paging64_init_context(vcpu, context);
3358 else if (is_pae(vcpu))
3359 r = paging32E_init_context(vcpu, context);
3360 else
3361 r = paging32_init_context(vcpu, context);
3362
3363 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3364 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3365 vcpu->arch.mmu.base_role.smep_andnot_wp
3366 = smep && !is_write_protection(vcpu);
3367
3368 return r;
3369 }
3370 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3371
3372 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3373 {
3374 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3375
3376 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3377 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3378 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3379 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3380
3381 return r;
3382 }
3383
3384 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3385 {
3386 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3387
3388 g_context->get_cr3 = get_cr3;
3389 g_context->get_pdptr = kvm_pdptr_read;
3390 g_context->inject_page_fault = kvm_inject_page_fault;
3391
3392 /*
3393 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3394 * translation of l2_gpa to l1_gpa addresses is done using the
3395 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3396 * functions between mmu and nested_mmu are swapped.
3397 */
3398 if (!is_paging(vcpu)) {
3399 g_context->nx = false;
3400 g_context->root_level = 0;
3401 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3402 } else if (is_long_mode(vcpu)) {
3403 g_context->nx = is_nx(vcpu);
3404 g_context->root_level = PT64_ROOT_LEVEL;
3405 reset_rsvds_bits_mask(vcpu, g_context);
3406 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3407 } else if (is_pae(vcpu)) {
3408 g_context->nx = is_nx(vcpu);
3409 g_context->root_level = PT32E_ROOT_LEVEL;
3410 reset_rsvds_bits_mask(vcpu, g_context);
3411 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3412 } else {
3413 g_context->nx = false;
3414 g_context->root_level = PT32_ROOT_LEVEL;
3415 reset_rsvds_bits_mask(vcpu, g_context);
3416 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3417 }
3418
3419 return 0;
3420 }
3421
3422 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3423 {
3424 if (mmu_is_nested(vcpu))
3425 return init_kvm_nested_mmu(vcpu);
3426 else if (tdp_enabled)
3427 return init_kvm_tdp_mmu(vcpu);
3428 else
3429 return init_kvm_softmmu(vcpu);
3430 }
3431
3432 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3433 {
3434 ASSERT(vcpu);
3435 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3436 /* mmu.free() should set root_hpa = INVALID_PAGE */
3437 vcpu->arch.mmu.free(vcpu);
3438 }
3439
3440 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3441 {
3442 destroy_kvm_mmu(vcpu);
3443 return init_kvm_mmu(vcpu);
3444 }
3445 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3446
3447 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3448 {
3449 int r;
3450
3451 r = mmu_topup_memory_caches(vcpu);
3452 if (r)
3453 goto out;
3454 r = mmu_alloc_roots(vcpu);
3455 spin_lock(&vcpu->kvm->mmu_lock);
3456 mmu_sync_roots(vcpu);
3457 spin_unlock(&vcpu->kvm->mmu_lock);
3458 if (r)
3459 goto out;
3460 /* set_cr3() should ensure TLB has been flushed */
3461 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3462 out:
3463 return r;
3464 }
3465 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3466
3467 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3468 {
3469 mmu_free_roots(vcpu);
3470 }
3471 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3472
3473 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3474 struct kvm_mmu_page *sp, u64 *spte,
3475 const void *new)
3476 {
3477 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3478 ++vcpu->kvm->stat.mmu_pde_zapped;
3479 return;
3480 }
3481
3482 ++vcpu->kvm->stat.mmu_pte_updated;
3483 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3484 }
3485
3486 static bool need_remote_flush(u64 old, u64 new)
3487 {
3488 if (!is_shadow_present_pte(old))
3489 return false;
3490 if (!is_shadow_present_pte(new))
3491 return true;
3492 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3493 return true;
3494 old ^= PT64_NX_MASK;
3495 new ^= PT64_NX_MASK;
3496 return (old & ~new & PT64_PERM_MASK) != 0;
3497 }
3498
3499 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3500 bool remote_flush, bool local_flush)
3501 {
3502 if (zap_page)
3503 return;
3504
3505 if (remote_flush)
3506 kvm_flush_remote_tlbs(vcpu->kvm);
3507 else if (local_flush)
3508 kvm_mmu_flush_tlb(vcpu);
3509 }
3510
3511 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3512 const u8 *new, int *bytes)
3513 {
3514 u64 gentry;
3515 int r;
3516
3517 /*
3518 * Assume that the pte write on a page table of the same type
3519 * as the current vcpu paging mode since we update the sptes only
3520 * when they have the same mode.
3521 */
3522 if (is_pae(vcpu) && *bytes == 4) {
3523 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3524 *gpa &= ~(gpa_t)7;
3525 *bytes = 8;
3526 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3527 if (r)
3528 gentry = 0;
3529 new = (const u8 *)&gentry;
3530 }
3531
3532 switch (*bytes) {
3533 case 4:
3534 gentry = *(const u32 *)new;
3535 break;
3536 case 8:
3537 gentry = *(const u64 *)new;
3538 break;
3539 default:
3540 gentry = 0;
3541 break;
3542 }
3543
3544 return gentry;
3545 }
3546
3547 /*
3548 * If we're seeing too many writes to a page, it may no longer be a page table,
3549 * or we may be forking, in which case it is better to unmap the page.
3550 */
3551 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3552 {
3553 /*
3554 * Skip write-flooding detected for the sp whose level is 1, because
3555 * it can become unsync, then the guest page is not write-protected.
3556 */
3557 if (sp->role.level == 1)
3558 return false;
3559
3560 return ++sp->write_flooding_count >= 3;
3561 }
3562
3563 /*
3564 * Misaligned accesses are too much trouble to fix up; also, they usually
3565 * indicate a page is not used as a page table.
3566 */
3567 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3568 int bytes)
3569 {
3570 unsigned offset, pte_size, misaligned;
3571
3572 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3573 gpa, bytes, sp->role.word);
3574
3575 offset = offset_in_page(gpa);
3576 pte_size = sp->role.cr4_pae ? 8 : 4;
3577
3578 /*
3579 * Sometimes, the OS only writes the last one bytes to update status
3580 * bits, for example, in linux, andb instruction is used in clear_bit().
3581 */
3582 if (!(offset & (pte_size - 1)) && bytes == 1)
3583 return false;
3584
3585 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3586 misaligned |= bytes < 4;
3587
3588 return misaligned;
3589 }
3590
3591 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3592 {
3593 unsigned page_offset, quadrant;
3594 u64 *spte;
3595 int level;
3596
3597 page_offset = offset_in_page(gpa);
3598 level = sp->role.level;
3599 *nspte = 1;
3600 if (!sp->role.cr4_pae) {
3601 page_offset <<= 1; /* 32->64 */
3602 /*
3603 * A 32-bit pde maps 4MB while the shadow pdes map
3604 * only 2MB. So we need to double the offset again
3605 * and zap two pdes instead of one.
3606 */
3607 if (level == PT32_ROOT_LEVEL) {
3608 page_offset &= ~7; /* kill rounding error */
3609 page_offset <<= 1;
3610 *nspte = 2;
3611 }
3612 quadrant = page_offset >> PAGE_SHIFT;
3613 page_offset &= ~PAGE_MASK;
3614 if (quadrant != sp->role.quadrant)
3615 return NULL;
3616 }
3617
3618 spte = &sp->spt[page_offset / sizeof(*spte)];
3619 return spte;
3620 }
3621
3622 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3623 const u8 *new, int bytes)
3624 {
3625 gfn_t gfn = gpa >> PAGE_SHIFT;
3626 union kvm_mmu_page_role mask = { .word = 0 };
3627 struct kvm_mmu_page *sp;
3628 struct hlist_node *node;
3629 LIST_HEAD(invalid_list);
3630 u64 entry, gentry, *spte;
3631 int npte;
3632 bool remote_flush, local_flush, zap_page;
3633
3634 /*
3635 * If we don't have indirect shadow pages, it means no page is
3636 * write-protected, so we can exit simply.
3637 */
3638 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3639 return;
3640
3641 zap_page = remote_flush = local_flush = false;
3642
3643 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3644
3645 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3646
3647 /*
3648 * No need to care whether allocation memory is successful
3649 * or not since pte prefetch is skiped if it does not have
3650 * enough objects in the cache.
3651 */
3652 mmu_topup_memory_caches(vcpu);
3653
3654 spin_lock(&vcpu->kvm->mmu_lock);
3655 ++vcpu->kvm->stat.mmu_pte_write;
3656 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3657
3658 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3659 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3660 if (detect_write_misaligned(sp, gpa, bytes) ||
3661 detect_write_flooding(sp)) {
3662 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3663 &invalid_list);
3664 ++vcpu->kvm->stat.mmu_flooded;
3665 continue;
3666 }
3667
3668 spte = get_written_sptes(sp, gpa, &npte);
3669 if (!spte)
3670 continue;
3671
3672 local_flush = true;
3673 while (npte--) {
3674 entry = *spte;
3675 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3676 if (gentry &&
3677 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3678 & mask.word) && rmap_can_add(vcpu))
3679 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3680 if (!remote_flush && need_remote_flush(entry, *spte))
3681 remote_flush = true;
3682 ++spte;
3683 }
3684 }
3685 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3686 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3687 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3688 spin_unlock(&vcpu->kvm->mmu_lock);
3689 }
3690
3691 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3692 {
3693 gpa_t gpa;
3694 int r;
3695
3696 if (vcpu->arch.mmu.direct_map)
3697 return 0;
3698
3699 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3700
3701 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3702
3703 return r;
3704 }
3705 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3706
3707 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3708 {
3709 LIST_HEAD(invalid_list);
3710
3711 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3712 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3713 struct kvm_mmu_page *sp;
3714
3715 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3716 struct kvm_mmu_page, link);
3717 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3718 ++vcpu->kvm->stat.mmu_recycled;
3719 }
3720 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3721 }
3722
3723 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3724 {
3725 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3726 return vcpu_match_mmio_gpa(vcpu, addr);
3727
3728 return vcpu_match_mmio_gva(vcpu, addr);
3729 }
3730
3731 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3732 void *insn, int insn_len)
3733 {
3734 int r, emulation_type = EMULTYPE_RETRY;
3735 enum emulation_result er;
3736
3737 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3738 if (r < 0)
3739 goto out;
3740
3741 if (!r) {
3742 r = 1;
3743 goto out;
3744 }
3745
3746 if (is_mmio_page_fault(vcpu, cr2))
3747 emulation_type = 0;
3748
3749 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3750
3751 switch (er) {
3752 case EMULATE_DONE:
3753 return 1;
3754 case EMULATE_DO_MMIO:
3755 ++vcpu->stat.mmio_exits;
3756 /* fall through */
3757 case EMULATE_FAIL:
3758 return 0;
3759 default:
3760 BUG();
3761 }
3762 out:
3763 return r;
3764 }
3765 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3766
3767 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3768 {
3769 vcpu->arch.mmu.invlpg(vcpu, gva);
3770 kvm_mmu_flush_tlb(vcpu);
3771 ++vcpu->stat.invlpg;
3772 }
3773 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3774
3775 void kvm_enable_tdp(void)
3776 {
3777 tdp_enabled = true;
3778 }
3779 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3780
3781 void kvm_disable_tdp(void)
3782 {
3783 tdp_enabled = false;
3784 }
3785 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3786
3787 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3788 {
3789 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3790 if (vcpu->arch.mmu.lm_root != NULL)
3791 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3792 }
3793
3794 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3795 {
3796 struct page *page;
3797 int i;
3798
3799 ASSERT(vcpu);
3800
3801 /*
3802 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3803 * Therefore we need to allocate shadow page tables in the first
3804 * 4GB of memory, which happens to fit the DMA32 zone.
3805 */
3806 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3807 if (!page)
3808 return -ENOMEM;
3809
3810 vcpu->arch.mmu.pae_root = page_address(page);
3811 for (i = 0; i < 4; ++i)
3812 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3813
3814 return 0;
3815 }
3816
3817 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3818 {
3819 ASSERT(vcpu);
3820
3821 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3822 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3823 vcpu->arch.mmu.translate_gpa = translate_gpa;
3824 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
3825
3826 return alloc_mmu_pages(vcpu);
3827 }
3828
3829 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3830 {
3831 ASSERT(vcpu);
3832 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3833
3834 return init_kvm_mmu(vcpu);
3835 }
3836
3837 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3838 {
3839 struct kvm_mmu_page *sp;
3840
3841 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3842 int i;
3843 u64 *pt;
3844
3845 if (!test_bit(slot, sp->slot_bitmap))
3846 continue;
3847
3848 pt = sp->spt;
3849 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3850 if (!is_shadow_present_pte(pt[i]) ||
3851 !is_last_spte(pt[i], sp->role.level))
3852 continue;
3853
3854 if (is_large_pte(pt[i])) {
3855 drop_spte(kvm, &pt[i]);
3856 --kvm->stat.lpages;
3857 continue;
3858 }
3859
3860 /* avoid RMW */
3861 if (is_writable_pte(pt[i]))
3862 mmu_spte_update(&pt[i],
3863 pt[i] & ~PT_WRITABLE_MASK);
3864 }
3865 }
3866 kvm_flush_remote_tlbs(kvm);
3867 }
3868
3869 void kvm_mmu_zap_all(struct kvm *kvm)
3870 {
3871 struct kvm_mmu_page *sp, *node;
3872 LIST_HEAD(invalid_list);
3873
3874 spin_lock(&kvm->mmu_lock);
3875 restart:
3876 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3877 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3878 goto restart;
3879
3880 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3881 spin_unlock(&kvm->mmu_lock);
3882 }
3883
3884 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3885 struct list_head *invalid_list)
3886 {
3887 struct kvm_mmu_page *page;
3888
3889 page = container_of(kvm->arch.active_mmu_pages.prev,
3890 struct kvm_mmu_page, link);
3891 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3892 }
3893
3894 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3895 {
3896 struct kvm *kvm;
3897 struct kvm *kvm_freed = NULL;
3898 int nr_to_scan = sc->nr_to_scan;
3899
3900 if (nr_to_scan == 0)
3901 goto out;
3902
3903 raw_spin_lock(&kvm_lock);
3904
3905 list_for_each_entry(kvm, &vm_list, vm_list) {
3906 int idx;
3907 LIST_HEAD(invalid_list);
3908
3909 idx = srcu_read_lock(&kvm->srcu);
3910 spin_lock(&kvm->mmu_lock);
3911 if (!kvm_freed && nr_to_scan > 0 &&
3912 kvm->arch.n_used_mmu_pages > 0) {
3913 kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3914 &invalid_list);
3915 kvm_freed = kvm;
3916 }
3917 nr_to_scan--;
3918
3919 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3920 spin_unlock(&kvm->mmu_lock);
3921 srcu_read_unlock(&kvm->srcu, idx);
3922 }
3923 if (kvm_freed)
3924 list_move_tail(&kvm_freed->vm_list, &vm_list);
3925
3926 raw_spin_unlock(&kvm_lock);
3927
3928 out:
3929 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3930 }
3931
3932 static struct shrinker mmu_shrinker = {
3933 .shrink = mmu_shrink,
3934 .seeks = DEFAULT_SEEKS * 10,
3935 };
3936
3937 static void mmu_destroy_caches(void)
3938 {
3939 if (pte_list_desc_cache)
3940 kmem_cache_destroy(pte_list_desc_cache);
3941 if (mmu_page_header_cache)
3942 kmem_cache_destroy(mmu_page_header_cache);
3943 }
3944
3945 int kvm_mmu_module_init(void)
3946 {
3947 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3948 sizeof(struct pte_list_desc),
3949 0, 0, NULL);
3950 if (!pte_list_desc_cache)
3951 goto nomem;
3952
3953 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3954 sizeof(struct kvm_mmu_page),
3955 0, 0, NULL);
3956 if (!mmu_page_header_cache)
3957 goto nomem;
3958
3959 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3960 goto nomem;
3961
3962 register_shrinker(&mmu_shrinker);
3963
3964 return 0;
3965
3966 nomem:
3967 mmu_destroy_caches();
3968 return -ENOMEM;
3969 }
3970
3971 /*
3972 * Caculate mmu pages needed for kvm.
3973 */
3974 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3975 {
3976 unsigned int nr_mmu_pages;
3977 unsigned int nr_pages = 0;
3978 struct kvm_memslots *slots;
3979 struct kvm_memory_slot *memslot;
3980
3981 slots = kvm_memslots(kvm);
3982
3983 kvm_for_each_memslot(memslot, slots)
3984 nr_pages += memslot->npages;
3985
3986 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3987 nr_mmu_pages = max(nr_mmu_pages,
3988 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3989
3990 return nr_mmu_pages;
3991 }
3992
3993 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3994 {
3995 struct kvm_shadow_walk_iterator iterator;
3996 u64 spte;
3997 int nr_sptes = 0;
3998
3999 walk_shadow_page_lockless_begin(vcpu);
4000 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4001 sptes[iterator.level-1] = spte;
4002 nr_sptes++;
4003 if (!is_shadow_present_pte(spte))
4004 break;
4005 }
4006 walk_shadow_page_lockless_end(vcpu);
4007
4008 return nr_sptes;
4009 }
4010 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4011
4012 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4013 {
4014 ASSERT(vcpu);
4015
4016 destroy_kvm_mmu(vcpu);
4017 free_mmu_pages(vcpu);
4018 mmu_free_memory_caches(vcpu);
4019 }
4020
4021 void kvm_mmu_module_exit(void)
4022 {
4023 mmu_destroy_caches();
4024 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4025 unregister_shrinker(&mmu_shrinker);
4026 mmu_audit_disable();
4027 }
This page took 0.108549 seconds and 6 git commands to generate.