KVM: do not treat noslot pfn as a error pfn
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196 shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
204 trace_mark_mmio_spte(sptep, gfn, access);
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206 }
207
208 static bool is_mmio_spte(u64 spte)
209 {
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211 }
212
213 static gfn_t get_mmio_spte_gfn(u64 spte)
214 {
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216 }
217
218 static unsigned get_mmio_spte_access(u64 spte)
219 {
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221 }
222
223 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224 {
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231 }
232
233 static inline u64 rsvd_bits(int s, int e)
234 {
235 return ((1ULL << (e - s + 1)) - 1) << s;
236 }
237
238 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
240 {
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246 }
247 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
249 static int is_cpuid_PSE36(void)
250 {
251 return 1;
252 }
253
254 static int is_nx(struct kvm_vcpu *vcpu)
255 {
256 return vcpu->arch.efer & EFER_NX;
257 }
258
259 static int is_shadow_present_pte(u64 pte)
260 {
261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262 }
263
264 static int is_large_pte(u64 pte)
265 {
266 return pte & PT_PAGE_SIZE_MASK;
267 }
268
269 static int is_dirty_gpte(unsigned long pte)
270 {
271 return pte & PT_DIRTY_MASK;
272 }
273
274 static int is_rmap_spte(u64 pte)
275 {
276 return is_shadow_present_pte(pte);
277 }
278
279 static int is_last_spte(u64 pte, int level)
280 {
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
283 if (is_large_pte(pte))
284 return 1;
285 return 0;
286 }
287
288 static pfn_t spte_to_pfn(u64 pte)
289 {
290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291 }
292
293 static gfn_t pse36_gfn_delta(u32 gpte)
294 {
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298 }
299
300 #ifdef CONFIG_X86_64
301 static void __set_spte(u64 *sptep, u64 spte)
302 {
303 *sptep = spte;
304 }
305
306 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
307 {
308 *sptep = spte;
309 }
310
311 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312 {
313 return xchg(sptep, spte);
314 }
315
316 static u64 __get_spte_lockless(u64 *sptep)
317 {
318 return ACCESS_ONCE(*sptep);
319 }
320
321 static bool __check_direct_spte_mmio_pf(u64 spte)
322 {
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325 }
326 #else
327 union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333 };
334
335 static void count_spte_clear(u64 *sptep, u64 spte)
336 {
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345 }
346
347 static void __set_spte(u64 *sptep, u64 spte)
348 {
349 union split_spte *ssptep, sspte;
350
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
382 count_spte_clear(sptep, spte);
383 }
384
385 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386 {
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
396 count_spte_clear(sptep, spte);
397
398 return orig.spte;
399 }
400
401 /*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408 static u64 __get_spte_lockless(u64 *sptep)
409 {
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414 retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429 }
430
431 static bool __check_direct_spte_mmio_pf(u64 spte)
432 {
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446 }
447 #endif
448
449 static bool spte_is_locklessly_modifiable(u64 spte)
450 {
451 return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452 }
453
454 static bool spte_has_volatile_bits(u64 spte)
455 {
456 /*
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
462 if (spte_is_locklessly_modifiable(spte))
463 return true;
464
465 if (!shadow_accessed_mask)
466 return false;
467
468 if (!is_shadow_present_pte(spte))
469 return false;
470
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
473 return false;
474
475 return true;
476 }
477
478 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479 {
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
481 }
482
483 /* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
487 * the spte.
488 */
489 static void mmu_spte_set(u64 *sptep, u64 new_spte)
490 {
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
493 }
494
495 /* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
497 *
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
502 * case.
503 */
504 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
505 {
506 u64 old_spte = *sptep;
507 bool ret = false;
508
509 WARN_ON(!is_rmap_spte(new_spte));
510
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
513 return ret;
514 }
515
516 if (!spte_has_volatile_bits(old_spte))
517 __update_clear_spte_fast(sptep, new_spte);
518 else
519 old_spte = __update_clear_spte_slow(sptep, new_spte);
520
521 /*
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
525 */
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527 ret = true;
528
529 if (!shadow_accessed_mask)
530 return ret;
531
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
536
537 return ret;
538 }
539
540 /*
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
544 */
545 static int mmu_spte_clear_track_bits(u64 *sptep)
546 {
547 pfn_t pfn;
548 u64 old_spte = *sptep;
549
550 if (!spte_has_volatile_bits(old_spte))
551 __update_clear_spte_fast(sptep, 0ull);
552 else
553 old_spte = __update_clear_spte_slow(sptep, 0ull);
554
555 if (!is_rmap_spte(old_spte))
556 return 0;
557
558 pfn = spte_to_pfn(old_spte);
559
560 /*
561 * KVM does not hold the refcount of the page used by
562 * kvm mmu, before reclaiming the page, we should
563 * unmap it from mmu first.
564 */
565 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
566
567 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
568 kvm_set_pfn_accessed(pfn);
569 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
570 kvm_set_pfn_dirty(pfn);
571 return 1;
572 }
573
574 /*
575 * Rules for using mmu_spte_clear_no_track:
576 * Directly clear spte without caring the state bits of sptep,
577 * it is used to set the upper level spte.
578 */
579 static void mmu_spte_clear_no_track(u64 *sptep)
580 {
581 __update_clear_spte_fast(sptep, 0ull);
582 }
583
584 static u64 mmu_spte_get_lockless(u64 *sptep)
585 {
586 return __get_spte_lockless(sptep);
587 }
588
589 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
590 {
591 /*
592 * Prevent page table teardown by making any free-er wait during
593 * kvm_flush_remote_tlbs() IPI to all active vcpus.
594 */
595 local_irq_disable();
596 vcpu->mode = READING_SHADOW_PAGE_TABLES;
597 /*
598 * Make sure a following spte read is not reordered ahead of the write
599 * to vcpu->mode.
600 */
601 smp_mb();
602 }
603
604 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
605 {
606 /*
607 * Make sure the write to vcpu->mode is not reordered in front of
608 * reads to sptes. If it does, kvm_commit_zap_page() can see us
609 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
610 */
611 smp_mb();
612 vcpu->mode = OUTSIDE_GUEST_MODE;
613 local_irq_enable();
614 }
615
616 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
617 struct kmem_cache *base_cache, int min)
618 {
619 void *obj;
620
621 if (cache->nobjs >= min)
622 return 0;
623 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
624 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
625 if (!obj)
626 return -ENOMEM;
627 cache->objects[cache->nobjs++] = obj;
628 }
629 return 0;
630 }
631
632 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
633 {
634 return cache->nobjs;
635 }
636
637 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
638 struct kmem_cache *cache)
639 {
640 while (mc->nobjs)
641 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
642 }
643
644 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
645 int min)
646 {
647 void *page;
648
649 if (cache->nobjs >= min)
650 return 0;
651 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
652 page = (void *)__get_free_page(GFP_KERNEL);
653 if (!page)
654 return -ENOMEM;
655 cache->objects[cache->nobjs++] = page;
656 }
657 return 0;
658 }
659
660 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
661 {
662 while (mc->nobjs)
663 free_page((unsigned long)mc->objects[--mc->nobjs]);
664 }
665
666 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
667 {
668 int r;
669
670 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
671 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
672 if (r)
673 goto out;
674 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
675 if (r)
676 goto out;
677 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
678 mmu_page_header_cache, 4);
679 out:
680 return r;
681 }
682
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
686 pte_list_desc_cache);
687 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
688 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
689 mmu_page_header_cache);
690 }
691
692 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
693 {
694 void *p;
695
696 BUG_ON(!mc->nobjs);
697 p = mc->objects[--mc->nobjs];
698 return p;
699 }
700
701 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
702 {
703 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
704 }
705
706 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
707 {
708 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
709 }
710
711 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
712 {
713 if (!sp->role.direct)
714 return sp->gfns[index];
715
716 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
717 }
718
719 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
720 {
721 if (sp->role.direct)
722 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
723 else
724 sp->gfns[index] = gfn;
725 }
726
727 /*
728 * Return the pointer to the large page information for a given gfn,
729 * handling slots that are not large page aligned.
730 */
731 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
732 struct kvm_memory_slot *slot,
733 int level)
734 {
735 unsigned long idx;
736
737 idx = gfn_to_index(gfn, slot->base_gfn, level);
738 return &slot->arch.lpage_info[level - 2][idx];
739 }
740
741 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
742 {
743 struct kvm_memory_slot *slot;
744 struct kvm_lpage_info *linfo;
745 int i;
746
747 slot = gfn_to_memslot(kvm, gfn);
748 for (i = PT_DIRECTORY_LEVEL;
749 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
750 linfo = lpage_info_slot(gfn, slot, i);
751 linfo->write_count += 1;
752 }
753 kvm->arch.indirect_shadow_pages++;
754 }
755
756 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
757 {
758 struct kvm_memory_slot *slot;
759 struct kvm_lpage_info *linfo;
760 int i;
761
762 slot = gfn_to_memslot(kvm, gfn);
763 for (i = PT_DIRECTORY_LEVEL;
764 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
765 linfo = lpage_info_slot(gfn, slot, i);
766 linfo->write_count -= 1;
767 WARN_ON(linfo->write_count < 0);
768 }
769 kvm->arch.indirect_shadow_pages--;
770 }
771
772 static int has_wrprotected_page(struct kvm *kvm,
773 gfn_t gfn,
774 int level)
775 {
776 struct kvm_memory_slot *slot;
777 struct kvm_lpage_info *linfo;
778
779 slot = gfn_to_memslot(kvm, gfn);
780 if (slot) {
781 linfo = lpage_info_slot(gfn, slot, level);
782 return linfo->write_count;
783 }
784
785 return 1;
786 }
787
788 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
789 {
790 unsigned long page_size;
791 int i, ret = 0;
792
793 page_size = kvm_host_page_size(kvm, gfn);
794
795 for (i = PT_PAGE_TABLE_LEVEL;
796 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
797 if (page_size >= KVM_HPAGE_SIZE(i))
798 ret = i;
799 else
800 break;
801 }
802
803 return ret;
804 }
805
806 static struct kvm_memory_slot *
807 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
808 bool no_dirty_log)
809 {
810 struct kvm_memory_slot *slot;
811
812 slot = gfn_to_memslot(vcpu->kvm, gfn);
813 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
814 (no_dirty_log && slot->dirty_bitmap))
815 slot = NULL;
816
817 return slot;
818 }
819
820 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
821 {
822 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
823 }
824
825 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
826 {
827 int host_level, level, max_level;
828
829 host_level = host_mapping_level(vcpu->kvm, large_gfn);
830
831 if (host_level == PT_PAGE_TABLE_LEVEL)
832 return host_level;
833
834 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
835 kvm_x86_ops->get_lpage_level() : host_level;
836
837 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
838 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839 break;
840
841 return level - 1;
842 }
843
844 /*
845 * Pte mapping structures:
846 *
847 * If pte_list bit zero is zero, then pte_list point to the spte.
848 *
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
851 *
852 * Returns the number of pte entries before the spte was added or zero if
853 * the spte was not added.
854 *
855 */
856 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857 unsigned long *pte_list)
858 {
859 struct pte_list_desc *desc;
860 int i, count = 0;
861
862 if (!*pte_list) {
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (unsigned long)spte;
865 } else if (!(*pte_list & 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
868 desc->sptes[0] = (u64 *)*pte_list;
869 desc->sptes[1] = spte;
870 *pte_list = (unsigned long)desc | 1;
871 ++count;
872 } else {
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
876 desc = desc->more;
877 count += PTE_LIST_EXT;
878 }
879 if (desc->sptes[PTE_LIST_EXT-1]) {
880 desc->more = mmu_alloc_pte_list_desc(vcpu);
881 desc = desc->more;
882 }
883 for (i = 0; desc->sptes[i]; ++i)
884 ++count;
885 desc->sptes[i] = spte;
886 }
887 return count;
888 }
889
890 static void
891 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892 int i, struct pte_list_desc *prev_desc)
893 {
894 int j;
895
896 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
897 ;
898 desc->sptes[i] = desc->sptes[j];
899 desc->sptes[j] = NULL;
900 if (j != 0)
901 return;
902 if (!prev_desc && !desc->more)
903 *pte_list = (unsigned long)desc->sptes[0];
904 else
905 if (prev_desc)
906 prev_desc->more = desc->more;
907 else
908 *pte_list = (unsigned long)desc->more | 1;
909 mmu_free_pte_list_desc(desc);
910 }
911
912 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
913 {
914 struct pte_list_desc *desc;
915 struct pte_list_desc *prev_desc;
916 int i;
917
918 if (!*pte_list) {
919 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
920 BUG();
921 } else if (!(*pte_list & 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte);
923 if ((u64 *)*pte_list != spte) {
924 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
925 BUG();
926 }
927 *pte_list = 0;
928 } else {
929 rmap_printk("pte_list_remove: %p many->many\n", spte);
930 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
931 prev_desc = NULL;
932 while (desc) {
933 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
934 if (desc->sptes[i] == spte) {
935 pte_list_desc_remove_entry(pte_list,
936 desc, i,
937 prev_desc);
938 return;
939 }
940 prev_desc = desc;
941 desc = desc->more;
942 }
943 pr_err("pte_list_remove: %p many->many\n", spte);
944 BUG();
945 }
946 }
947
948 typedef void (*pte_list_walk_fn) (u64 *spte);
949 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950 {
951 struct pte_list_desc *desc;
952 int i;
953
954 if (!*pte_list)
955 return;
956
957 if (!(*pte_list & 1))
958 return fn((u64 *)*pte_list);
959
960 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961 while (desc) {
962 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963 fn(desc->sptes[i]);
964 desc = desc->more;
965 }
966 }
967
968 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
969 struct kvm_memory_slot *slot)
970 {
971 unsigned long idx;
972
973 idx = gfn_to_index(gfn, slot->base_gfn, level);
974 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
975 }
976
977 /*
978 * Take gfn and return the reverse mapping to it.
979 */
980 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
981 {
982 struct kvm_memory_slot *slot;
983
984 slot = gfn_to_memslot(kvm, gfn);
985 return __gfn_to_rmap(gfn, level, slot);
986 }
987
988 static bool rmap_can_add(struct kvm_vcpu *vcpu)
989 {
990 struct kvm_mmu_memory_cache *cache;
991
992 cache = &vcpu->arch.mmu_pte_list_desc_cache;
993 return mmu_memory_cache_free_objects(cache);
994 }
995
996 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
997 {
998 struct kvm_mmu_page *sp;
999 unsigned long *rmapp;
1000
1001 sp = page_header(__pa(spte));
1002 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004 return pte_list_add(vcpu, spte, rmapp);
1005 }
1006
1007 static void rmap_remove(struct kvm *kvm, u64 *spte)
1008 {
1009 struct kvm_mmu_page *sp;
1010 gfn_t gfn;
1011 unsigned long *rmapp;
1012
1013 sp = page_header(__pa(spte));
1014 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016 pte_list_remove(spte, rmapp);
1017 }
1018
1019 /*
1020 * Used by the following functions to iterate through the sptes linked by a
1021 * rmap. All fields are private and not assumed to be used outside.
1022 */
1023 struct rmap_iterator {
1024 /* private fields */
1025 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1026 int pos; /* index of the sptep */
1027 };
1028
1029 /*
1030 * Iteration must be started by this function. This should also be used after
1031 * removing/dropping sptes from the rmap link because in such cases the
1032 * information in the itererator may not be valid.
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1037 {
1038 if (!rmap)
1039 return NULL;
1040
1041 if (!(rmap & 1)) {
1042 iter->desc = NULL;
1043 return (u64 *)rmap;
1044 }
1045
1046 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047 iter->pos = 0;
1048 return iter->desc->sptes[iter->pos];
1049 }
1050
1051 /*
1052 * Must be used with a valid iterator: e.g. after rmap_get_first().
1053 *
1054 * Returns sptep if found, NULL otherwise.
1055 */
1056 static u64 *rmap_get_next(struct rmap_iterator *iter)
1057 {
1058 if (iter->desc) {
1059 if (iter->pos < PTE_LIST_EXT - 1) {
1060 u64 *sptep;
1061
1062 ++iter->pos;
1063 sptep = iter->desc->sptes[iter->pos];
1064 if (sptep)
1065 return sptep;
1066 }
1067
1068 iter->desc = iter->desc->more;
1069
1070 if (iter->desc) {
1071 iter->pos = 0;
1072 /* desc->sptes[0] cannot be NULL */
1073 return iter->desc->sptes[iter->pos];
1074 }
1075 }
1076
1077 return NULL;
1078 }
1079
1080 static void drop_spte(struct kvm *kvm, u64 *sptep)
1081 {
1082 if (mmu_spte_clear_track_bits(sptep))
1083 rmap_remove(kvm, sptep);
1084 }
1085
1086
1087 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1088 {
1089 if (is_large_pte(*sptep)) {
1090 WARN_ON(page_header(__pa(sptep))->role.level ==
1091 PT_PAGE_TABLE_LEVEL);
1092 drop_spte(kvm, sptep);
1093 --kvm->stat.lpages;
1094 return true;
1095 }
1096
1097 return false;
1098 }
1099
1100 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1101 {
1102 if (__drop_large_spte(vcpu->kvm, sptep))
1103 kvm_flush_remote_tlbs(vcpu->kvm);
1104 }
1105
1106 /*
1107 * Write-protect on the specified @sptep, @pt_protect indicates whether
1108 * spte writ-protection is caused by protecting shadow page table.
1109 * @flush indicates whether tlb need be flushed.
1110 *
1111 * Note: write protection is difference between drity logging and spte
1112 * protection:
1113 * - for dirty logging, the spte can be set to writable at anytime if
1114 * its dirty bitmap is properly set.
1115 * - for spte protection, the spte can be writable only after unsync-ing
1116 * shadow page.
1117 *
1118 * Return true if the spte is dropped.
1119 */
1120 static bool
1121 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1122 {
1123 u64 spte = *sptep;
1124
1125 if (!is_writable_pte(spte) &&
1126 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1127 return false;
1128
1129 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1130
1131 if (__drop_large_spte(kvm, sptep)) {
1132 *flush |= true;
1133 return true;
1134 }
1135
1136 if (pt_protect)
1137 spte &= ~SPTE_MMU_WRITEABLE;
1138 spte = spte & ~PT_WRITABLE_MASK;
1139
1140 *flush |= mmu_spte_update(sptep, spte);
1141 return false;
1142 }
1143
1144 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1145 int level, bool pt_protect)
1146 {
1147 u64 *sptep;
1148 struct rmap_iterator iter;
1149 bool flush = false;
1150
1151 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1152 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1153 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1154 sptep = rmap_get_first(*rmapp, &iter);
1155 continue;
1156 }
1157
1158 sptep = rmap_get_next(&iter);
1159 }
1160
1161 return flush;
1162 }
1163
1164 /**
1165 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1166 * @kvm: kvm instance
1167 * @slot: slot to protect
1168 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1169 * @mask: indicates which pages we should protect
1170 *
1171 * Used when we do not need to care about huge page mappings: e.g. during dirty
1172 * logging we do not have any such mappings.
1173 */
1174 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1175 struct kvm_memory_slot *slot,
1176 gfn_t gfn_offset, unsigned long mask)
1177 {
1178 unsigned long *rmapp;
1179
1180 while (mask) {
1181 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1182 PT_PAGE_TABLE_LEVEL, slot);
1183 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
1184
1185 /* clear the first set bit */
1186 mask &= mask - 1;
1187 }
1188 }
1189
1190 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1191 {
1192 struct kvm_memory_slot *slot;
1193 unsigned long *rmapp;
1194 int i;
1195 bool write_protected = false;
1196
1197 slot = gfn_to_memslot(kvm, gfn);
1198
1199 for (i = PT_PAGE_TABLE_LEVEL;
1200 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1201 rmapp = __gfn_to_rmap(gfn, i, slot);
1202 write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
1203 }
1204
1205 return write_protected;
1206 }
1207
1208 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1209 struct kvm_memory_slot *slot, unsigned long data)
1210 {
1211 u64 *sptep;
1212 struct rmap_iterator iter;
1213 int need_tlb_flush = 0;
1214
1215 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1216 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1217 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1218
1219 drop_spte(kvm, sptep);
1220 need_tlb_flush = 1;
1221 }
1222
1223 return need_tlb_flush;
1224 }
1225
1226 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1227 struct kvm_memory_slot *slot, unsigned long data)
1228 {
1229 u64 *sptep;
1230 struct rmap_iterator iter;
1231 int need_flush = 0;
1232 u64 new_spte;
1233 pte_t *ptep = (pte_t *)data;
1234 pfn_t new_pfn;
1235
1236 WARN_ON(pte_huge(*ptep));
1237 new_pfn = pte_pfn(*ptep);
1238
1239 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240 BUG_ON(!is_shadow_present_pte(*sptep));
1241 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1242
1243 need_flush = 1;
1244
1245 if (pte_write(*ptep)) {
1246 drop_spte(kvm, sptep);
1247 sptep = rmap_get_first(*rmapp, &iter);
1248 } else {
1249 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1250 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1251
1252 new_spte &= ~PT_WRITABLE_MASK;
1253 new_spte &= ~SPTE_HOST_WRITEABLE;
1254 new_spte &= ~shadow_accessed_mask;
1255
1256 mmu_spte_clear_track_bits(sptep);
1257 mmu_spte_set(sptep, new_spte);
1258 sptep = rmap_get_next(&iter);
1259 }
1260 }
1261
1262 if (need_flush)
1263 kvm_flush_remote_tlbs(kvm);
1264
1265 return 0;
1266 }
1267
1268 static int kvm_handle_hva_range(struct kvm *kvm,
1269 unsigned long start,
1270 unsigned long end,
1271 unsigned long data,
1272 int (*handler)(struct kvm *kvm,
1273 unsigned long *rmapp,
1274 struct kvm_memory_slot *slot,
1275 unsigned long data))
1276 {
1277 int j;
1278 int ret = 0;
1279 struct kvm_memslots *slots;
1280 struct kvm_memory_slot *memslot;
1281
1282 slots = kvm_memslots(kvm);
1283
1284 kvm_for_each_memslot(memslot, slots) {
1285 unsigned long hva_start, hva_end;
1286 gfn_t gfn_start, gfn_end;
1287
1288 hva_start = max(start, memslot->userspace_addr);
1289 hva_end = min(end, memslot->userspace_addr +
1290 (memslot->npages << PAGE_SHIFT));
1291 if (hva_start >= hva_end)
1292 continue;
1293 /*
1294 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1295 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1296 */
1297 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1298 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1299
1300 for (j = PT_PAGE_TABLE_LEVEL;
1301 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1302 unsigned long idx, idx_end;
1303 unsigned long *rmapp;
1304
1305 /*
1306 * {idx(page_j) | page_j intersects with
1307 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1308 */
1309 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1310 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1311
1312 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1313
1314 for (; idx <= idx_end; ++idx)
1315 ret |= handler(kvm, rmapp++, memslot, data);
1316 }
1317 }
1318
1319 return ret;
1320 }
1321
1322 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1323 unsigned long data,
1324 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1325 struct kvm_memory_slot *slot,
1326 unsigned long data))
1327 {
1328 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1329 }
1330
1331 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1332 {
1333 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1334 }
1335
1336 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1337 {
1338 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1339 }
1340
1341 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1342 {
1343 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1344 }
1345
1346 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1347 struct kvm_memory_slot *slot, unsigned long data)
1348 {
1349 u64 *sptep;
1350 struct rmap_iterator uninitialized_var(iter);
1351 int young = 0;
1352
1353 /*
1354 * In case of absence of EPT Access and Dirty Bits supports,
1355 * emulate the accessed bit for EPT, by checking if this page has
1356 * an EPT mapping, and clearing it if it does. On the next access,
1357 * a new EPT mapping will be established.
1358 * This has some overhead, but not as much as the cost of swapping
1359 * out actively used pages or breaking up actively used hugepages.
1360 */
1361 if (!shadow_accessed_mask) {
1362 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1363 goto out;
1364 }
1365
1366 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1367 sptep = rmap_get_next(&iter)) {
1368 BUG_ON(!is_shadow_present_pte(*sptep));
1369
1370 if (*sptep & shadow_accessed_mask) {
1371 young = 1;
1372 clear_bit((ffs(shadow_accessed_mask) - 1),
1373 (unsigned long *)sptep);
1374 }
1375 }
1376 out:
1377 /* @data has hva passed to kvm_age_hva(). */
1378 trace_kvm_age_page(data, slot, young);
1379 return young;
1380 }
1381
1382 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1383 struct kvm_memory_slot *slot, unsigned long data)
1384 {
1385 u64 *sptep;
1386 struct rmap_iterator iter;
1387 int young = 0;
1388
1389 /*
1390 * If there's no access bit in the secondary pte set by the
1391 * hardware it's up to gup-fast/gup to set the access bit in
1392 * the primary pte or in the page structure.
1393 */
1394 if (!shadow_accessed_mask)
1395 goto out;
1396
1397 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1398 sptep = rmap_get_next(&iter)) {
1399 BUG_ON(!is_shadow_present_pte(*sptep));
1400
1401 if (*sptep & shadow_accessed_mask) {
1402 young = 1;
1403 break;
1404 }
1405 }
1406 out:
1407 return young;
1408 }
1409
1410 #define RMAP_RECYCLE_THRESHOLD 1000
1411
1412 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1413 {
1414 unsigned long *rmapp;
1415 struct kvm_mmu_page *sp;
1416
1417 sp = page_header(__pa(spte));
1418
1419 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1420
1421 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1422 kvm_flush_remote_tlbs(vcpu->kvm);
1423 }
1424
1425 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1426 {
1427 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1428 }
1429
1430 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1431 {
1432 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1433 }
1434
1435 #ifdef MMU_DEBUG
1436 static int is_empty_shadow_page(u64 *spt)
1437 {
1438 u64 *pos;
1439 u64 *end;
1440
1441 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1442 if (is_shadow_present_pte(*pos)) {
1443 printk(KERN_ERR "%s: %p %llx\n", __func__,
1444 pos, *pos);
1445 return 0;
1446 }
1447 return 1;
1448 }
1449 #endif
1450
1451 /*
1452 * This value is the sum of all of the kvm instances's
1453 * kvm->arch.n_used_mmu_pages values. We need a global,
1454 * aggregate version in order to make the slab shrinker
1455 * faster
1456 */
1457 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1458 {
1459 kvm->arch.n_used_mmu_pages += nr;
1460 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1461 }
1462
1463 /*
1464 * Remove the sp from shadow page cache, after call it,
1465 * we can not find this sp from the cache, and the shadow
1466 * page table is still valid.
1467 * It should be under the protection of mmu lock.
1468 */
1469 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1470 {
1471 ASSERT(is_empty_shadow_page(sp->spt));
1472 hlist_del(&sp->hash_link);
1473 if (!sp->role.direct)
1474 free_page((unsigned long)sp->gfns);
1475 }
1476
1477 /*
1478 * Free the shadow page table and the sp, we can do it
1479 * out of the protection of mmu lock.
1480 */
1481 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1482 {
1483 list_del(&sp->link);
1484 free_page((unsigned long)sp->spt);
1485 kmem_cache_free(mmu_page_header_cache, sp);
1486 }
1487
1488 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1489 {
1490 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1491 }
1492
1493 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1494 struct kvm_mmu_page *sp, u64 *parent_pte)
1495 {
1496 if (!parent_pte)
1497 return;
1498
1499 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1500 }
1501
1502 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1503 u64 *parent_pte)
1504 {
1505 pte_list_remove(parent_pte, &sp->parent_ptes);
1506 }
1507
1508 static void drop_parent_pte(struct kvm_mmu_page *sp,
1509 u64 *parent_pte)
1510 {
1511 mmu_page_remove_parent_pte(sp, parent_pte);
1512 mmu_spte_clear_no_track(parent_pte);
1513 }
1514
1515 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1516 u64 *parent_pte, int direct)
1517 {
1518 struct kvm_mmu_page *sp;
1519 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1520 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1521 if (!direct)
1522 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1523 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1524 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1525 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1526 sp->parent_ptes = 0;
1527 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1528 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1529 return sp;
1530 }
1531
1532 static void mark_unsync(u64 *spte);
1533 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1534 {
1535 pte_list_walk(&sp->parent_ptes, mark_unsync);
1536 }
1537
1538 static void mark_unsync(u64 *spte)
1539 {
1540 struct kvm_mmu_page *sp;
1541 unsigned int index;
1542
1543 sp = page_header(__pa(spte));
1544 index = spte - sp->spt;
1545 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1546 return;
1547 if (sp->unsync_children++)
1548 return;
1549 kvm_mmu_mark_parents_unsync(sp);
1550 }
1551
1552 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1553 struct kvm_mmu_page *sp)
1554 {
1555 return 1;
1556 }
1557
1558 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1559 {
1560 }
1561
1562 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1563 struct kvm_mmu_page *sp, u64 *spte,
1564 const void *pte)
1565 {
1566 WARN_ON(1);
1567 }
1568
1569 #define KVM_PAGE_ARRAY_NR 16
1570
1571 struct kvm_mmu_pages {
1572 struct mmu_page_and_offset {
1573 struct kvm_mmu_page *sp;
1574 unsigned int idx;
1575 } page[KVM_PAGE_ARRAY_NR];
1576 unsigned int nr;
1577 };
1578
1579 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1580 int idx)
1581 {
1582 int i;
1583
1584 if (sp->unsync)
1585 for (i=0; i < pvec->nr; i++)
1586 if (pvec->page[i].sp == sp)
1587 return 0;
1588
1589 pvec->page[pvec->nr].sp = sp;
1590 pvec->page[pvec->nr].idx = idx;
1591 pvec->nr++;
1592 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1593 }
1594
1595 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1596 struct kvm_mmu_pages *pvec)
1597 {
1598 int i, ret, nr_unsync_leaf = 0;
1599
1600 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1601 struct kvm_mmu_page *child;
1602 u64 ent = sp->spt[i];
1603
1604 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1605 goto clear_child_bitmap;
1606
1607 child = page_header(ent & PT64_BASE_ADDR_MASK);
1608
1609 if (child->unsync_children) {
1610 if (mmu_pages_add(pvec, child, i))
1611 return -ENOSPC;
1612
1613 ret = __mmu_unsync_walk(child, pvec);
1614 if (!ret)
1615 goto clear_child_bitmap;
1616 else if (ret > 0)
1617 nr_unsync_leaf += ret;
1618 else
1619 return ret;
1620 } else if (child->unsync) {
1621 nr_unsync_leaf++;
1622 if (mmu_pages_add(pvec, child, i))
1623 return -ENOSPC;
1624 } else
1625 goto clear_child_bitmap;
1626
1627 continue;
1628
1629 clear_child_bitmap:
1630 __clear_bit(i, sp->unsync_child_bitmap);
1631 sp->unsync_children--;
1632 WARN_ON((int)sp->unsync_children < 0);
1633 }
1634
1635
1636 return nr_unsync_leaf;
1637 }
1638
1639 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1640 struct kvm_mmu_pages *pvec)
1641 {
1642 if (!sp->unsync_children)
1643 return 0;
1644
1645 mmu_pages_add(pvec, sp, 0);
1646 return __mmu_unsync_walk(sp, pvec);
1647 }
1648
1649 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1650 {
1651 WARN_ON(!sp->unsync);
1652 trace_kvm_mmu_sync_page(sp);
1653 sp->unsync = 0;
1654 --kvm->stat.mmu_unsync;
1655 }
1656
1657 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1658 struct list_head *invalid_list);
1659 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1660 struct list_head *invalid_list);
1661
1662 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1663 hlist_for_each_entry(sp, pos, \
1664 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1665 if ((sp)->gfn != (gfn)) {} else
1666
1667 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1668 hlist_for_each_entry(sp, pos, \
1669 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1670 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1671 (sp)->role.invalid) {} else
1672
1673 /* @sp->gfn should be write-protected at the call site */
1674 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1675 struct list_head *invalid_list, bool clear_unsync)
1676 {
1677 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1678 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1679 return 1;
1680 }
1681
1682 if (clear_unsync)
1683 kvm_unlink_unsync_page(vcpu->kvm, sp);
1684
1685 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1686 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1687 return 1;
1688 }
1689
1690 kvm_mmu_flush_tlb(vcpu);
1691 return 0;
1692 }
1693
1694 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1695 struct kvm_mmu_page *sp)
1696 {
1697 LIST_HEAD(invalid_list);
1698 int ret;
1699
1700 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1701 if (ret)
1702 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1703
1704 return ret;
1705 }
1706
1707 #ifdef CONFIG_KVM_MMU_AUDIT
1708 #include "mmu_audit.c"
1709 #else
1710 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1711 static void mmu_audit_disable(void) { }
1712 #endif
1713
1714 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1715 struct list_head *invalid_list)
1716 {
1717 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1718 }
1719
1720 /* @gfn should be write-protected at the call site */
1721 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1722 {
1723 struct kvm_mmu_page *s;
1724 struct hlist_node *node;
1725 LIST_HEAD(invalid_list);
1726 bool flush = false;
1727
1728 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1729 if (!s->unsync)
1730 continue;
1731
1732 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1733 kvm_unlink_unsync_page(vcpu->kvm, s);
1734 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1735 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1736 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1737 continue;
1738 }
1739 flush = true;
1740 }
1741
1742 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1743 if (flush)
1744 kvm_mmu_flush_tlb(vcpu);
1745 }
1746
1747 struct mmu_page_path {
1748 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1749 unsigned int idx[PT64_ROOT_LEVEL-1];
1750 };
1751
1752 #define for_each_sp(pvec, sp, parents, i) \
1753 for (i = mmu_pages_next(&pvec, &parents, -1), \
1754 sp = pvec.page[i].sp; \
1755 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1756 i = mmu_pages_next(&pvec, &parents, i))
1757
1758 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1759 struct mmu_page_path *parents,
1760 int i)
1761 {
1762 int n;
1763
1764 for (n = i+1; n < pvec->nr; n++) {
1765 struct kvm_mmu_page *sp = pvec->page[n].sp;
1766
1767 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1768 parents->idx[0] = pvec->page[n].idx;
1769 return n;
1770 }
1771
1772 parents->parent[sp->role.level-2] = sp;
1773 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1774 }
1775
1776 return n;
1777 }
1778
1779 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1780 {
1781 struct kvm_mmu_page *sp;
1782 unsigned int level = 0;
1783
1784 do {
1785 unsigned int idx = parents->idx[level];
1786
1787 sp = parents->parent[level];
1788 if (!sp)
1789 return;
1790
1791 --sp->unsync_children;
1792 WARN_ON((int)sp->unsync_children < 0);
1793 __clear_bit(idx, sp->unsync_child_bitmap);
1794 level++;
1795 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1796 }
1797
1798 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1799 struct mmu_page_path *parents,
1800 struct kvm_mmu_pages *pvec)
1801 {
1802 parents->parent[parent->role.level-1] = NULL;
1803 pvec->nr = 0;
1804 }
1805
1806 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1807 struct kvm_mmu_page *parent)
1808 {
1809 int i;
1810 struct kvm_mmu_page *sp;
1811 struct mmu_page_path parents;
1812 struct kvm_mmu_pages pages;
1813 LIST_HEAD(invalid_list);
1814
1815 kvm_mmu_pages_init(parent, &parents, &pages);
1816 while (mmu_unsync_walk(parent, &pages)) {
1817 bool protected = false;
1818
1819 for_each_sp(pages, sp, parents, i)
1820 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1821
1822 if (protected)
1823 kvm_flush_remote_tlbs(vcpu->kvm);
1824
1825 for_each_sp(pages, sp, parents, i) {
1826 kvm_sync_page(vcpu, sp, &invalid_list);
1827 mmu_pages_clear_parents(&parents);
1828 }
1829 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1830 cond_resched_lock(&vcpu->kvm->mmu_lock);
1831 kvm_mmu_pages_init(parent, &parents, &pages);
1832 }
1833 }
1834
1835 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1836 {
1837 int i;
1838
1839 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1840 sp->spt[i] = 0ull;
1841 }
1842
1843 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1844 {
1845 sp->write_flooding_count = 0;
1846 }
1847
1848 static void clear_sp_write_flooding_count(u64 *spte)
1849 {
1850 struct kvm_mmu_page *sp = page_header(__pa(spte));
1851
1852 __clear_sp_write_flooding_count(sp);
1853 }
1854
1855 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1856 gfn_t gfn,
1857 gva_t gaddr,
1858 unsigned level,
1859 int direct,
1860 unsigned access,
1861 u64 *parent_pte)
1862 {
1863 union kvm_mmu_page_role role;
1864 unsigned quadrant;
1865 struct kvm_mmu_page *sp;
1866 struct hlist_node *node;
1867 bool need_sync = false;
1868
1869 role = vcpu->arch.mmu.base_role;
1870 role.level = level;
1871 role.direct = direct;
1872 if (role.direct)
1873 role.cr4_pae = 0;
1874 role.access = access;
1875 if (!vcpu->arch.mmu.direct_map
1876 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1877 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1878 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1879 role.quadrant = quadrant;
1880 }
1881 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1882 if (!need_sync && sp->unsync)
1883 need_sync = true;
1884
1885 if (sp->role.word != role.word)
1886 continue;
1887
1888 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1889 break;
1890
1891 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1892 if (sp->unsync_children) {
1893 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1894 kvm_mmu_mark_parents_unsync(sp);
1895 } else if (sp->unsync)
1896 kvm_mmu_mark_parents_unsync(sp);
1897
1898 __clear_sp_write_flooding_count(sp);
1899 trace_kvm_mmu_get_page(sp, false);
1900 return sp;
1901 }
1902 ++vcpu->kvm->stat.mmu_cache_miss;
1903 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1904 if (!sp)
1905 return sp;
1906 sp->gfn = gfn;
1907 sp->role = role;
1908 hlist_add_head(&sp->hash_link,
1909 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1910 if (!direct) {
1911 if (rmap_write_protect(vcpu->kvm, gfn))
1912 kvm_flush_remote_tlbs(vcpu->kvm);
1913 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1914 kvm_sync_pages(vcpu, gfn);
1915
1916 account_shadowed(vcpu->kvm, gfn);
1917 }
1918 init_shadow_page_table(sp);
1919 trace_kvm_mmu_get_page(sp, true);
1920 return sp;
1921 }
1922
1923 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1924 struct kvm_vcpu *vcpu, u64 addr)
1925 {
1926 iterator->addr = addr;
1927 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1928 iterator->level = vcpu->arch.mmu.shadow_root_level;
1929
1930 if (iterator->level == PT64_ROOT_LEVEL &&
1931 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1932 !vcpu->arch.mmu.direct_map)
1933 --iterator->level;
1934
1935 if (iterator->level == PT32E_ROOT_LEVEL) {
1936 iterator->shadow_addr
1937 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1938 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1939 --iterator->level;
1940 if (!iterator->shadow_addr)
1941 iterator->level = 0;
1942 }
1943 }
1944
1945 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1946 {
1947 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1948 return false;
1949
1950 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1951 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1952 return true;
1953 }
1954
1955 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1956 u64 spte)
1957 {
1958 if (is_last_spte(spte, iterator->level)) {
1959 iterator->level = 0;
1960 return;
1961 }
1962
1963 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1964 --iterator->level;
1965 }
1966
1967 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1968 {
1969 return __shadow_walk_next(iterator, *iterator->sptep);
1970 }
1971
1972 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1973 {
1974 u64 spte;
1975
1976 spte = __pa(sp->spt)
1977 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1978 | PT_WRITABLE_MASK | PT_USER_MASK;
1979 mmu_spte_set(sptep, spte);
1980 }
1981
1982 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1983 unsigned direct_access)
1984 {
1985 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1986 struct kvm_mmu_page *child;
1987
1988 /*
1989 * For the direct sp, if the guest pte's dirty bit
1990 * changed form clean to dirty, it will corrupt the
1991 * sp's access: allow writable in the read-only sp,
1992 * so we should update the spte at this point to get
1993 * a new sp with the correct access.
1994 */
1995 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1996 if (child->role.access == direct_access)
1997 return;
1998
1999 drop_parent_pte(child, sptep);
2000 kvm_flush_remote_tlbs(vcpu->kvm);
2001 }
2002 }
2003
2004 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2005 u64 *spte)
2006 {
2007 u64 pte;
2008 struct kvm_mmu_page *child;
2009
2010 pte = *spte;
2011 if (is_shadow_present_pte(pte)) {
2012 if (is_last_spte(pte, sp->role.level)) {
2013 drop_spte(kvm, spte);
2014 if (is_large_pte(pte))
2015 --kvm->stat.lpages;
2016 } else {
2017 child = page_header(pte & PT64_BASE_ADDR_MASK);
2018 drop_parent_pte(child, spte);
2019 }
2020 return true;
2021 }
2022
2023 if (is_mmio_spte(pte))
2024 mmu_spte_clear_no_track(spte);
2025
2026 return false;
2027 }
2028
2029 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2030 struct kvm_mmu_page *sp)
2031 {
2032 unsigned i;
2033
2034 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2035 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2036 }
2037
2038 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2039 {
2040 mmu_page_remove_parent_pte(sp, parent_pte);
2041 }
2042
2043 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2044 {
2045 u64 *sptep;
2046 struct rmap_iterator iter;
2047
2048 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2049 drop_parent_pte(sp, sptep);
2050 }
2051
2052 static int mmu_zap_unsync_children(struct kvm *kvm,
2053 struct kvm_mmu_page *parent,
2054 struct list_head *invalid_list)
2055 {
2056 int i, zapped = 0;
2057 struct mmu_page_path parents;
2058 struct kvm_mmu_pages pages;
2059
2060 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2061 return 0;
2062
2063 kvm_mmu_pages_init(parent, &parents, &pages);
2064 while (mmu_unsync_walk(parent, &pages)) {
2065 struct kvm_mmu_page *sp;
2066
2067 for_each_sp(pages, sp, parents, i) {
2068 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2069 mmu_pages_clear_parents(&parents);
2070 zapped++;
2071 }
2072 kvm_mmu_pages_init(parent, &parents, &pages);
2073 }
2074
2075 return zapped;
2076 }
2077
2078 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2079 struct list_head *invalid_list)
2080 {
2081 int ret;
2082
2083 trace_kvm_mmu_prepare_zap_page(sp);
2084 ++kvm->stat.mmu_shadow_zapped;
2085 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2086 kvm_mmu_page_unlink_children(kvm, sp);
2087 kvm_mmu_unlink_parents(kvm, sp);
2088 if (!sp->role.invalid && !sp->role.direct)
2089 unaccount_shadowed(kvm, sp->gfn);
2090 if (sp->unsync)
2091 kvm_unlink_unsync_page(kvm, sp);
2092 if (!sp->root_count) {
2093 /* Count self */
2094 ret++;
2095 list_move(&sp->link, invalid_list);
2096 kvm_mod_used_mmu_pages(kvm, -1);
2097 } else {
2098 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2099 kvm_reload_remote_mmus(kvm);
2100 }
2101
2102 sp->role.invalid = 1;
2103 return ret;
2104 }
2105
2106 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2107 struct list_head *invalid_list)
2108 {
2109 struct kvm_mmu_page *sp;
2110
2111 if (list_empty(invalid_list))
2112 return;
2113
2114 /*
2115 * wmb: make sure everyone sees our modifications to the page tables
2116 * rmb: make sure we see changes to vcpu->mode
2117 */
2118 smp_mb();
2119
2120 /*
2121 * Wait for all vcpus to exit guest mode and/or lockless shadow
2122 * page table walks.
2123 */
2124 kvm_flush_remote_tlbs(kvm);
2125
2126 do {
2127 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2128 WARN_ON(!sp->role.invalid || sp->root_count);
2129 kvm_mmu_isolate_page(sp);
2130 kvm_mmu_free_page(sp);
2131 } while (!list_empty(invalid_list));
2132 }
2133
2134 /*
2135 * Changing the number of mmu pages allocated to the vm
2136 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2137 */
2138 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2139 {
2140 LIST_HEAD(invalid_list);
2141 /*
2142 * If we set the number of mmu pages to be smaller be than the
2143 * number of actived pages , we must to free some mmu pages before we
2144 * change the value
2145 */
2146
2147 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2148 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2149 !list_empty(&kvm->arch.active_mmu_pages)) {
2150 struct kvm_mmu_page *page;
2151
2152 page = container_of(kvm->arch.active_mmu_pages.prev,
2153 struct kvm_mmu_page, link);
2154 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2155 }
2156 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2157 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2158 }
2159
2160 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2161 }
2162
2163 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2164 {
2165 struct kvm_mmu_page *sp;
2166 struct hlist_node *node;
2167 LIST_HEAD(invalid_list);
2168 int r;
2169
2170 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2171 r = 0;
2172 spin_lock(&kvm->mmu_lock);
2173 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2174 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2175 sp->role.word);
2176 r = 1;
2177 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2178 }
2179 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2180 spin_unlock(&kvm->mmu_lock);
2181
2182 return r;
2183 }
2184 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2185
2186 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2187 {
2188 int slot = memslot_id(kvm, gfn);
2189 struct kvm_mmu_page *sp = page_header(__pa(pte));
2190
2191 __set_bit(slot, sp->slot_bitmap);
2192 }
2193
2194 /*
2195 * The function is based on mtrr_type_lookup() in
2196 * arch/x86/kernel/cpu/mtrr/generic.c
2197 */
2198 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2199 u64 start, u64 end)
2200 {
2201 int i;
2202 u64 base, mask;
2203 u8 prev_match, curr_match;
2204 int num_var_ranges = KVM_NR_VAR_MTRR;
2205
2206 if (!mtrr_state->enabled)
2207 return 0xFF;
2208
2209 /* Make end inclusive end, instead of exclusive */
2210 end--;
2211
2212 /* Look in fixed ranges. Just return the type as per start */
2213 if (mtrr_state->have_fixed && (start < 0x100000)) {
2214 int idx;
2215
2216 if (start < 0x80000) {
2217 idx = 0;
2218 idx += (start >> 16);
2219 return mtrr_state->fixed_ranges[idx];
2220 } else if (start < 0xC0000) {
2221 idx = 1 * 8;
2222 idx += ((start - 0x80000) >> 14);
2223 return mtrr_state->fixed_ranges[idx];
2224 } else if (start < 0x1000000) {
2225 idx = 3 * 8;
2226 idx += ((start - 0xC0000) >> 12);
2227 return mtrr_state->fixed_ranges[idx];
2228 }
2229 }
2230
2231 /*
2232 * Look in variable ranges
2233 * Look of multiple ranges matching this address and pick type
2234 * as per MTRR precedence
2235 */
2236 if (!(mtrr_state->enabled & 2))
2237 return mtrr_state->def_type;
2238
2239 prev_match = 0xFF;
2240 for (i = 0; i < num_var_ranges; ++i) {
2241 unsigned short start_state, end_state;
2242
2243 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2244 continue;
2245
2246 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2247 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2248 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2249 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2250
2251 start_state = ((start & mask) == (base & mask));
2252 end_state = ((end & mask) == (base & mask));
2253 if (start_state != end_state)
2254 return 0xFE;
2255
2256 if ((start & mask) != (base & mask))
2257 continue;
2258
2259 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2260 if (prev_match == 0xFF) {
2261 prev_match = curr_match;
2262 continue;
2263 }
2264
2265 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2266 curr_match == MTRR_TYPE_UNCACHABLE)
2267 return MTRR_TYPE_UNCACHABLE;
2268
2269 if ((prev_match == MTRR_TYPE_WRBACK &&
2270 curr_match == MTRR_TYPE_WRTHROUGH) ||
2271 (prev_match == MTRR_TYPE_WRTHROUGH &&
2272 curr_match == MTRR_TYPE_WRBACK)) {
2273 prev_match = MTRR_TYPE_WRTHROUGH;
2274 curr_match = MTRR_TYPE_WRTHROUGH;
2275 }
2276
2277 if (prev_match != curr_match)
2278 return MTRR_TYPE_UNCACHABLE;
2279 }
2280
2281 if (prev_match != 0xFF)
2282 return prev_match;
2283
2284 return mtrr_state->def_type;
2285 }
2286
2287 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2288 {
2289 u8 mtrr;
2290
2291 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2292 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2293 if (mtrr == 0xfe || mtrr == 0xff)
2294 mtrr = MTRR_TYPE_WRBACK;
2295 return mtrr;
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2298
2299 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2300 {
2301 trace_kvm_mmu_unsync_page(sp);
2302 ++vcpu->kvm->stat.mmu_unsync;
2303 sp->unsync = 1;
2304
2305 kvm_mmu_mark_parents_unsync(sp);
2306 }
2307
2308 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2309 {
2310 struct kvm_mmu_page *s;
2311 struct hlist_node *node;
2312
2313 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2314 if (s->unsync)
2315 continue;
2316 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2317 __kvm_unsync_page(vcpu, s);
2318 }
2319 }
2320
2321 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2322 bool can_unsync)
2323 {
2324 struct kvm_mmu_page *s;
2325 struct hlist_node *node;
2326 bool need_unsync = false;
2327
2328 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2329 if (!can_unsync)
2330 return 1;
2331
2332 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2333 return 1;
2334
2335 if (!need_unsync && !s->unsync) {
2336 need_unsync = true;
2337 }
2338 }
2339 if (need_unsync)
2340 kvm_unsync_pages(vcpu, gfn);
2341 return 0;
2342 }
2343
2344 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2345 unsigned pte_access, int user_fault,
2346 int write_fault, int level,
2347 gfn_t gfn, pfn_t pfn, bool speculative,
2348 bool can_unsync, bool host_writable)
2349 {
2350 u64 spte;
2351 int ret = 0;
2352
2353 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2354 return 0;
2355
2356 spte = PT_PRESENT_MASK;
2357 if (!speculative)
2358 spte |= shadow_accessed_mask;
2359
2360 if (pte_access & ACC_EXEC_MASK)
2361 spte |= shadow_x_mask;
2362 else
2363 spte |= shadow_nx_mask;
2364
2365 if (pte_access & ACC_USER_MASK)
2366 spte |= shadow_user_mask;
2367
2368 if (level > PT_PAGE_TABLE_LEVEL)
2369 spte |= PT_PAGE_SIZE_MASK;
2370 if (tdp_enabled)
2371 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2372 kvm_is_mmio_pfn(pfn));
2373
2374 if (host_writable)
2375 spte |= SPTE_HOST_WRITEABLE;
2376 else
2377 pte_access &= ~ACC_WRITE_MASK;
2378
2379 spte |= (u64)pfn << PAGE_SHIFT;
2380
2381 if ((pte_access & ACC_WRITE_MASK)
2382 || (!vcpu->arch.mmu.direct_map && write_fault
2383 && !is_write_protection(vcpu) && !user_fault)) {
2384
2385 if (level > PT_PAGE_TABLE_LEVEL &&
2386 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2387 ret = 1;
2388 drop_spte(vcpu->kvm, sptep);
2389 goto done;
2390 }
2391
2392 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2393
2394 if (!vcpu->arch.mmu.direct_map
2395 && !(pte_access & ACC_WRITE_MASK)) {
2396 spte &= ~PT_USER_MASK;
2397 /*
2398 * If we converted a user page to a kernel page,
2399 * so that the kernel can write to it when cr0.wp=0,
2400 * then we should prevent the kernel from executing it
2401 * if SMEP is enabled.
2402 */
2403 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2404 spte |= PT64_NX_MASK;
2405 }
2406
2407 /*
2408 * Optimization: for pte sync, if spte was writable the hash
2409 * lookup is unnecessary (and expensive). Write protection
2410 * is responsibility of mmu_get_page / kvm_sync_page.
2411 * Same reasoning can be applied to dirty page accounting.
2412 */
2413 if (!can_unsync && is_writable_pte(*sptep))
2414 goto set_pte;
2415
2416 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2417 pgprintk("%s: found shadow page for %llx, marking ro\n",
2418 __func__, gfn);
2419 ret = 1;
2420 pte_access &= ~ACC_WRITE_MASK;
2421 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2422 }
2423 }
2424
2425 if (pte_access & ACC_WRITE_MASK)
2426 mark_page_dirty(vcpu->kvm, gfn);
2427
2428 set_pte:
2429 if (mmu_spte_update(sptep, spte))
2430 kvm_flush_remote_tlbs(vcpu->kvm);
2431 done:
2432 return ret;
2433 }
2434
2435 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2436 unsigned pt_access, unsigned pte_access,
2437 int user_fault, int write_fault,
2438 int *emulate, int level, gfn_t gfn,
2439 pfn_t pfn, bool speculative,
2440 bool host_writable)
2441 {
2442 int was_rmapped = 0;
2443 int rmap_count;
2444
2445 pgprintk("%s: spte %llx access %x write_fault %d"
2446 " user_fault %d gfn %llx\n",
2447 __func__, *sptep, pt_access,
2448 write_fault, user_fault, gfn);
2449
2450 if (is_rmap_spte(*sptep)) {
2451 /*
2452 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2453 * the parent of the now unreachable PTE.
2454 */
2455 if (level > PT_PAGE_TABLE_LEVEL &&
2456 !is_large_pte(*sptep)) {
2457 struct kvm_mmu_page *child;
2458 u64 pte = *sptep;
2459
2460 child = page_header(pte & PT64_BASE_ADDR_MASK);
2461 drop_parent_pte(child, sptep);
2462 kvm_flush_remote_tlbs(vcpu->kvm);
2463 } else if (pfn != spte_to_pfn(*sptep)) {
2464 pgprintk("hfn old %llx new %llx\n",
2465 spte_to_pfn(*sptep), pfn);
2466 drop_spte(vcpu->kvm, sptep);
2467 kvm_flush_remote_tlbs(vcpu->kvm);
2468 } else
2469 was_rmapped = 1;
2470 }
2471
2472 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2473 level, gfn, pfn, speculative, true,
2474 host_writable)) {
2475 if (write_fault)
2476 *emulate = 1;
2477 kvm_mmu_flush_tlb(vcpu);
2478 }
2479
2480 if (unlikely(is_mmio_spte(*sptep) && emulate))
2481 *emulate = 1;
2482
2483 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2484 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2485 is_large_pte(*sptep)? "2MB" : "4kB",
2486 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2487 *sptep, sptep);
2488 if (!was_rmapped && is_large_pte(*sptep))
2489 ++vcpu->kvm->stat.lpages;
2490
2491 if (is_shadow_present_pte(*sptep)) {
2492 page_header_update_slot(vcpu->kvm, sptep, gfn);
2493 if (!was_rmapped) {
2494 rmap_count = rmap_add(vcpu, sptep, gfn);
2495 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2496 rmap_recycle(vcpu, sptep, gfn);
2497 }
2498 }
2499
2500 kvm_release_pfn_clean(pfn);
2501 }
2502
2503 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2504 {
2505 mmu_free_roots(vcpu);
2506 }
2507
2508 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2509 {
2510 int bit7;
2511
2512 bit7 = (gpte >> 7) & 1;
2513 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2514 }
2515
2516 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2517 bool no_dirty_log)
2518 {
2519 struct kvm_memory_slot *slot;
2520
2521 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2522 if (!slot)
2523 return KVM_PFN_ERR_FAULT;
2524
2525 return gfn_to_pfn_memslot_atomic(slot, gfn);
2526 }
2527
2528 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2529 struct kvm_mmu_page *sp, u64 *spte,
2530 u64 gpte)
2531 {
2532 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2533 goto no_present;
2534
2535 if (!is_present_gpte(gpte))
2536 goto no_present;
2537
2538 if (!(gpte & PT_ACCESSED_MASK))
2539 goto no_present;
2540
2541 return false;
2542
2543 no_present:
2544 drop_spte(vcpu->kvm, spte);
2545 return true;
2546 }
2547
2548 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2549 struct kvm_mmu_page *sp,
2550 u64 *start, u64 *end)
2551 {
2552 struct page *pages[PTE_PREFETCH_NUM];
2553 unsigned access = sp->role.access;
2554 int i, ret;
2555 gfn_t gfn;
2556
2557 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2558 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2559 return -1;
2560
2561 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2562 if (ret <= 0)
2563 return -1;
2564
2565 for (i = 0; i < ret; i++, gfn++, start++)
2566 mmu_set_spte(vcpu, start, ACC_ALL,
2567 access, 0, 0, NULL,
2568 sp->role.level, gfn,
2569 page_to_pfn(pages[i]), true, true);
2570
2571 return 0;
2572 }
2573
2574 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2575 struct kvm_mmu_page *sp, u64 *sptep)
2576 {
2577 u64 *spte, *start = NULL;
2578 int i;
2579
2580 WARN_ON(!sp->role.direct);
2581
2582 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2583 spte = sp->spt + i;
2584
2585 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2586 if (is_shadow_present_pte(*spte) || spte == sptep) {
2587 if (!start)
2588 continue;
2589 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2590 break;
2591 start = NULL;
2592 } else if (!start)
2593 start = spte;
2594 }
2595 }
2596
2597 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2598 {
2599 struct kvm_mmu_page *sp;
2600
2601 /*
2602 * Since it's no accessed bit on EPT, it's no way to
2603 * distinguish between actually accessed translations
2604 * and prefetched, so disable pte prefetch if EPT is
2605 * enabled.
2606 */
2607 if (!shadow_accessed_mask)
2608 return;
2609
2610 sp = page_header(__pa(sptep));
2611 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2612 return;
2613
2614 __direct_pte_prefetch(vcpu, sp, sptep);
2615 }
2616
2617 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2618 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2619 bool prefault)
2620 {
2621 struct kvm_shadow_walk_iterator iterator;
2622 struct kvm_mmu_page *sp;
2623 int emulate = 0;
2624 gfn_t pseudo_gfn;
2625
2626 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2627 if (iterator.level == level) {
2628 unsigned pte_access = ACC_ALL;
2629
2630 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2631 0, write, &emulate,
2632 level, gfn, pfn, prefault, map_writable);
2633 direct_pte_prefetch(vcpu, iterator.sptep);
2634 ++vcpu->stat.pf_fixed;
2635 break;
2636 }
2637
2638 if (!is_shadow_present_pte(*iterator.sptep)) {
2639 u64 base_addr = iterator.addr;
2640
2641 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2642 pseudo_gfn = base_addr >> PAGE_SHIFT;
2643 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2644 iterator.level - 1,
2645 1, ACC_ALL, iterator.sptep);
2646
2647 mmu_spte_set(iterator.sptep,
2648 __pa(sp->spt)
2649 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2650 | shadow_user_mask | shadow_x_mask
2651 | shadow_accessed_mask);
2652 }
2653 }
2654 return emulate;
2655 }
2656
2657 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2658 {
2659 siginfo_t info;
2660
2661 info.si_signo = SIGBUS;
2662 info.si_errno = 0;
2663 info.si_code = BUS_MCEERR_AR;
2664 info.si_addr = (void __user *)address;
2665 info.si_addr_lsb = PAGE_SHIFT;
2666
2667 send_sig_info(SIGBUS, &info, tsk);
2668 }
2669
2670 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2671 {
2672 /*
2673 * Do not cache the mmio info caused by writing the readonly gfn
2674 * into the spte otherwise read access on readonly gfn also can
2675 * caused mmio page fault and treat it as mmio access.
2676 * Return 1 to tell kvm to emulate it.
2677 */
2678 if (pfn == KVM_PFN_ERR_RO_FAULT)
2679 return 1;
2680
2681 if (pfn == KVM_PFN_ERR_HWPOISON) {
2682 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2683 return 0;
2684 }
2685
2686 return -EFAULT;
2687 }
2688
2689 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2690 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2691 {
2692 pfn_t pfn = *pfnp;
2693 gfn_t gfn = *gfnp;
2694 int level = *levelp;
2695
2696 /*
2697 * Check if it's a transparent hugepage. If this would be an
2698 * hugetlbfs page, level wouldn't be set to
2699 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2700 * here.
2701 */
2702 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2703 level == PT_PAGE_TABLE_LEVEL &&
2704 PageTransCompound(pfn_to_page(pfn)) &&
2705 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2706 unsigned long mask;
2707 /*
2708 * mmu_notifier_retry was successful and we hold the
2709 * mmu_lock here, so the pmd can't become splitting
2710 * from under us, and in turn
2711 * __split_huge_page_refcount() can't run from under
2712 * us and we can safely transfer the refcount from
2713 * PG_tail to PG_head as we switch the pfn to tail to
2714 * head.
2715 */
2716 *levelp = level = PT_DIRECTORY_LEVEL;
2717 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2718 VM_BUG_ON((gfn & mask) != (pfn & mask));
2719 if (pfn & mask) {
2720 gfn &= ~mask;
2721 *gfnp = gfn;
2722 kvm_release_pfn_clean(pfn);
2723 pfn &= ~mask;
2724 kvm_get_pfn(pfn);
2725 *pfnp = pfn;
2726 }
2727 }
2728 }
2729
2730 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2731 pfn_t pfn, unsigned access, int *ret_val)
2732 {
2733 bool ret = true;
2734
2735 /* The pfn is invalid, report the error! */
2736 if (unlikely(is_error_pfn(pfn))) {
2737 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2738 goto exit;
2739 }
2740
2741 if (unlikely(is_noslot_pfn(pfn)))
2742 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2743
2744 ret = false;
2745 exit:
2746 return ret;
2747 }
2748
2749 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2750 {
2751 /*
2752 * #PF can be fast only if the shadow page table is present and it
2753 * is caused by write-protect, that means we just need change the
2754 * W bit of the spte which can be done out of mmu-lock.
2755 */
2756 if (!(error_code & PFERR_PRESENT_MASK) ||
2757 !(error_code & PFERR_WRITE_MASK))
2758 return false;
2759
2760 return true;
2761 }
2762
2763 static bool
2764 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2765 {
2766 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2767 gfn_t gfn;
2768
2769 WARN_ON(!sp->role.direct);
2770
2771 /*
2772 * The gfn of direct spte is stable since it is calculated
2773 * by sp->gfn.
2774 */
2775 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2776
2777 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2778 mark_page_dirty(vcpu->kvm, gfn);
2779
2780 return true;
2781 }
2782
2783 /*
2784 * Return value:
2785 * - true: let the vcpu to access on the same address again.
2786 * - false: let the real page fault path to fix it.
2787 */
2788 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2789 u32 error_code)
2790 {
2791 struct kvm_shadow_walk_iterator iterator;
2792 bool ret = false;
2793 u64 spte = 0ull;
2794
2795 if (!page_fault_can_be_fast(vcpu, error_code))
2796 return false;
2797
2798 walk_shadow_page_lockless_begin(vcpu);
2799 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2800 if (!is_shadow_present_pte(spte) || iterator.level < level)
2801 break;
2802
2803 /*
2804 * If the mapping has been changed, let the vcpu fault on the
2805 * same address again.
2806 */
2807 if (!is_rmap_spte(spte)) {
2808 ret = true;
2809 goto exit;
2810 }
2811
2812 if (!is_last_spte(spte, level))
2813 goto exit;
2814
2815 /*
2816 * Check if it is a spurious fault caused by TLB lazily flushed.
2817 *
2818 * Need not check the access of upper level table entries since
2819 * they are always ACC_ALL.
2820 */
2821 if (is_writable_pte(spte)) {
2822 ret = true;
2823 goto exit;
2824 }
2825
2826 /*
2827 * Currently, to simplify the code, only the spte write-protected
2828 * by dirty-log can be fast fixed.
2829 */
2830 if (!spte_is_locklessly_modifiable(spte))
2831 goto exit;
2832
2833 /*
2834 * Currently, fast page fault only works for direct mapping since
2835 * the gfn is not stable for indirect shadow page.
2836 * See Documentation/virtual/kvm/locking.txt to get more detail.
2837 */
2838 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2839 exit:
2840 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2841 spte, ret);
2842 walk_shadow_page_lockless_end(vcpu);
2843
2844 return ret;
2845 }
2846
2847 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2848 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2849
2850 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2851 gfn_t gfn, bool prefault)
2852 {
2853 int r;
2854 int level;
2855 int force_pt_level;
2856 pfn_t pfn;
2857 unsigned long mmu_seq;
2858 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2859
2860 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2861 if (likely(!force_pt_level)) {
2862 level = mapping_level(vcpu, gfn);
2863 /*
2864 * This path builds a PAE pagetable - so we can map
2865 * 2mb pages at maximum. Therefore check if the level
2866 * is larger than that.
2867 */
2868 if (level > PT_DIRECTORY_LEVEL)
2869 level = PT_DIRECTORY_LEVEL;
2870
2871 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2872 } else
2873 level = PT_PAGE_TABLE_LEVEL;
2874
2875 if (fast_page_fault(vcpu, v, level, error_code))
2876 return 0;
2877
2878 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2879 smp_rmb();
2880
2881 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2882 return 0;
2883
2884 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2885 return r;
2886
2887 spin_lock(&vcpu->kvm->mmu_lock);
2888 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2889 goto out_unlock;
2890 kvm_mmu_free_some_pages(vcpu);
2891 if (likely(!force_pt_level))
2892 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2893 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2894 prefault);
2895 spin_unlock(&vcpu->kvm->mmu_lock);
2896
2897
2898 return r;
2899
2900 out_unlock:
2901 spin_unlock(&vcpu->kvm->mmu_lock);
2902 kvm_release_pfn_clean(pfn);
2903 return 0;
2904 }
2905
2906
2907 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2908 {
2909 int i;
2910 struct kvm_mmu_page *sp;
2911 LIST_HEAD(invalid_list);
2912
2913 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2914 return;
2915 spin_lock(&vcpu->kvm->mmu_lock);
2916 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2917 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2918 vcpu->arch.mmu.direct_map)) {
2919 hpa_t root = vcpu->arch.mmu.root_hpa;
2920
2921 sp = page_header(root);
2922 --sp->root_count;
2923 if (!sp->root_count && sp->role.invalid) {
2924 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2925 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2926 }
2927 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2928 spin_unlock(&vcpu->kvm->mmu_lock);
2929 return;
2930 }
2931 for (i = 0; i < 4; ++i) {
2932 hpa_t root = vcpu->arch.mmu.pae_root[i];
2933
2934 if (root) {
2935 root &= PT64_BASE_ADDR_MASK;
2936 sp = page_header(root);
2937 --sp->root_count;
2938 if (!sp->root_count && sp->role.invalid)
2939 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2940 &invalid_list);
2941 }
2942 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2943 }
2944 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2945 spin_unlock(&vcpu->kvm->mmu_lock);
2946 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2947 }
2948
2949 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2950 {
2951 int ret = 0;
2952
2953 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2954 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2955 ret = 1;
2956 }
2957
2958 return ret;
2959 }
2960
2961 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2962 {
2963 struct kvm_mmu_page *sp;
2964 unsigned i;
2965
2966 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2967 spin_lock(&vcpu->kvm->mmu_lock);
2968 kvm_mmu_free_some_pages(vcpu);
2969 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2970 1, ACC_ALL, NULL);
2971 ++sp->root_count;
2972 spin_unlock(&vcpu->kvm->mmu_lock);
2973 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2974 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2975 for (i = 0; i < 4; ++i) {
2976 hpa_t root = vcpu->arch.mmu.pae_root[i];
2977
2978 ASSERT(!VALID_PAGE(root));
2979 spin_lock(&vcpu->kvm->mmu_lock);
2980 kvm_mmu_free_some_pages(vcpu);
2981 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2982 i << 30,
2983 PT32_ROOT_LEVEL, 1, ACC_ALL,
2984 NULL);
2985 root = __pa(sp->spt);
2986 ++sp->root_count;
2987 spin_unlock(&vcpu->kvm->mmu_lock);
2988 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2989 }
2990 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2991 } else
2992 BUG();
2993
2994 return 0;
2995 }
2996
2997 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2998 {
2999 struct kvm_mmu_page *sp;
3000 u64 pdptr, pm_mask;
3001 gfn_t root_gfn;
3002 int i;
3003
3004 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3005
3006 if (mmu_check_root(vcpu, root_gfn))
3007 return 1;
3008
3009 /*
3010 * Do we shadow a long mode page table? If so we need to
3011 * write-protect the guests page table root.
3012 */
3013 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3014 hpa_t root = vcpu->arch.mmu.root_hpa;
3015
3016 ASSERT(!VALID_PAGE(root));
3017
3018 spin_lock(&vcpu->kvm->mmu_lock);
3019 kvm_mmu_free_some_pages(vcpu);
3020 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3021 0, ACC_ALL, NULL);
3022 root = __pa(sp->spt);
3023 ++sp->root_count;
3024 spin_unlock(&vcpu->kvm->mmu_lock);
3025 vcpu->arch.mmu.root_hpa = root;
3026 return 0;
3027 }
3028
3029 /*
3030 * We shadow a 32 bit page table. This may be a legacy 2-level
3031 * or a PAE 3-level page table. In either case we need to be aware that
3032 * the shadow page table may be a PAE or a long mode page table.
3033 */
3034 pm_mask = PT_PRESENT_MASK;
3035 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3036 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3037
3038 for (i = 0; i < 4; ++i) {
3039 hpa_t root = vcpu->arch.mmu.pae_root[i];
3040
3041 ASSERT(!VALID_PAGE(root));
3042 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3043 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3044 if (!is_present_gpte(pdptr)) {
3045 vcpu->arch.mmu.pae_root[i] = 0;
3046 continue;
3047 }
3048 root_gfn = pdptr >> PAGE_SHIFT;
3049 if (mmu_check_root(vcpu, root_gfn))
3050 return 1;
3051 }
3052 spin_lock(&vcpu->kvm->mmu_lock);
3053 kvm_mmu_free_some_pages(vcpu);
3054 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3055 PT32_ROOT_LEVEL, 0,
3056 ACC_ALL, NULL);
3057 root = __pa(sp->spt);
3058 ++sp->root_count;
3059 spin_unlock(&vcpu->kvm->mmu_lock);
3060
3061 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3062 }
3063 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3064
3065 /*
3066 * If we shadow a 32 bit page table with a long mode page
3067 * table we enter this path.
3068 */
3069 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3070 if (vcpu->arch.mmu.lm_root == NULL) {
3071 /*
3072 * The additional page necessary for this is only
3073 * allocated on demand.
3074 */
3075
3076 u64 *lm_root;
3077
3078 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3079 if (lm_root == NULL)
3080 return 1;
3081
3082 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3083
3084 vcpu->arch.mmu.lm_root = lm_root;
3085 }
3086
3087 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3088 }
3089
3090 return 0;
3091 }
3092
3093 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3094 {
3095 if (vcpu->arch.mmu.direct_map)
3096 return mmu_alloc_direct_roots(vcpu);
3097 else
3098 return mmu_alloc_shadow_roots(vcpu);
3099 }
3100
3101 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3102 {
3103 int i;
3104 struct kvm_mmu_page *sp;
3105
3106 if (vcpu->arch.mmu.direct_map)
3107 return;
3108
3109 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3110 return;
3111
3112 vcpu_clear_mmio_info(vcpu, ~0ul);
3113 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3114 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3115 hpa_t root = vcpu->arch.mmu.root_hpa;
3116 sp = page_header(root);
3117 mmu_sync_children(vcpu, sp);
3118 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3119 return;
3120 }
3121 for (i = 0; i < 4; ++i) {
3122 hpa_t root = vcpu->arch.mmu.pae_root[i];
3123
3124 if (root && VALID_PAGE(root)) {
3125 root &= PT64_BASE_ADDR_MASK;
3126 sp = page_header(root);
3127 mmu_sync_children(vcpu, sp);
3128 }
3129 }
3130 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3131 }
3132
3133 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3134 {
3135 spin_lock(&vcpu->kvm->mmu_lock);
3136 mmu_sync_roots(vcpu);
3137 spin_unlock(&vcpu->kvm->mmu_lock);
3138 }
3139
3140 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3141 u32 access, struct x86_exception *exception)
3142 {
3143 if (exception)
3144 exception->error_code = 0;
3145 return vaddr;
3146 }
3147
3148 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3149 u32 access,
3150 struct x86_exception *exception)
3151 {
3152 if (exception)
3153 exception->error_code = 0;
3154 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3155 }
3156
3157 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3158 {
3159 if (direct)
3160 return vcpu_match_mmio_gpa(vcpu, addr);
3161
3162 return vcpu_match_mmio_gva(vcpu, addr);
3163 }
3164
3165
3166 /*
3167 * On direct hosts, the last spte is only allows two states
3168 * for mmio page fault:
3169 * - It is the mmio spte
3170 * - It is zapped or it is being zapped.
3171 *
3172 * This function completely checks the spte when the last spte
3173 * is not the mmio spte.
3174 */
3175 static bool check_direct_spte_mmio_pf(u64 spte)
3176 {
3177 return __check_direct_spte_mmio_pf(spte);
3178 }
3179
3180 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3181 {
3182 struct kvm_shadow_walk_iterator iterator;
3183 u64 spte = 0ull;
3184
3185 walk_shadow_page_lockless_begin(vcpu);
3186 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3187 if (!is_shadow_present_pte(spte))
3188 break;
3189 walk_shadow_page_lockless_end(vcpu);
3190
3191 return spte;
3192 }
3193
3194 /*
3195 * If it is a real mmio page fault, return 1 and emulat the instruction
3196 * directly, return 0 to let CPU fault again on the address, -1 is
3197 * returned if bug is detected.
3198 */
3199 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3200 {
3201 u64 spte;
3202
3203 if (quickly_check_mmio_pf(vcpu, addr, direct))
3204 return 1;
3205
3206 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3207
3208 if (is_mmio_spte(spte)) {
3209 gfn_t gfn = get_mmio_spte_gfn(spte);
3210 unsigned access = get_mmio_spte_access(spte);
3211
3212 if (direct)
3213 addr = 0;
3214
3215 trace_handle_mmio_page_fault(addr, gfn, access);
3216 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3217 return 1;
3218 }
3219
3220 /*
3221 * It's ok if the gva is remapped by other cpus on shadow guest,
3222 * it's a BUG if the gfn is not a mmio page.
3223 */
3224 if (direct && !check_direct_spte_mmio_pf(spte))
3225 return -1;
3226
3227 /*
3228 * If the page table is zapped by other cpus, let CPU fault again on
3229 * the address.
3230 */
3231 return 0;
3232 }
3233 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3234
3235 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3236 u32 error_code, bool direct)
3237 {
3238 int ret;
3239
3240 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3241 WARN_ON(ret < 0);
3242 return ret;
3243 }
3244
3245 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3246 u32 error_code, bool prefault)
3247 {
3248 gfn_t gfn;
3249 int r;
3250
3251 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3252
3253 if (unlikely(error_code & PFERR_RSVD_MASK))
3254 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3255
3256 r = mmu_topup_memory_caches(vcpu);
3257 if (r)
3258 return r;
3259
3260 ASSERT(vcpu);
3261 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3262
3263 gfn = gva >> PAGE_SHIFT;
3264
3265 return nonpaging_map(vcpu, gva & PAGE_MASK,
3266 error_code, gfn, prefault);
3267 }
3268
3269 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3270 {
3271 struct kvm_arch_async_pf arch;
3272
3273 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3274 arch.gfn = gfn;
3275 arch.direct_map = vcpu->arch.mmu.direct_map;
3276 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3277
3278 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3279 }
3280
3281 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3282 {
3283 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3284 kvm_event_needs_reinjection(vcpu)))
3285 return false;
3286
3287 return kvm_x86_ops->interrupt_allowed(vcpu);
3288 }
3289
3290 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3291 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3292 {
3293 bool async;
3294
3295 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3296
3297 if (!async)
3298 return false; /* *pfn has correct page already */
3299
3300 if (!prefault && can_do_async_pf(vcpu)) {
3301 trace_kvm_try_async_get_page(gva, gfn);
3302 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3303 trace_kvm_async_pf_doublefault(gva, gfn);
3304 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3305 return true;
3306 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3307 return true;
3308 }
3309
3310 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3311
3312 return false;
3313 }
3314
3315 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3316 bool prefault)
3317 {
3318 pfn_t pfn;
3319 int r;
3320 int level;
3321 int force_pt_level;
3322 gfn_t gfn = gpa >> PAGE_SHIFT;
3323 unsigned long mmu_seq;
3324 int write = error_code & PFERR_WRITE_MASK;
3325 bool map_writable;
3326
3327 ASSERT(vcpu);
3328 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3329
3330 if (unlikely(error_code & PFERR_RSVD_MASK))
3331 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3332
3333 r = mmu_topup_memory_caches(vcpu);
3334 if (r)
3335 return r;
3336
3337 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3338 if (likely(!force_pt_level)) {
3339 level = mapping_level(vcpu, gfn);
3340 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3341 } else
3342 level = PT_PAGE_TABLE_LEVEL;
3343
3344 if (fast_page_fault(vcpu, gpa, level, error_code))
3345 return 0;
3346
3347 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3348 smp_rmb();
3349
3350 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3351 return 0;
3352
3353 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3354 return r;
3355
3356 spin_lock(&vcpu->kvm->mmu_lock);
3357 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3358 goto out_unlock;
3359 kvm_mmu_free_some_pages(vcpu);
3360 if (likely(!force_pt_level))
3361 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3362 r = __direct_map(vcpu, gpa, write, map_writable,
3363 level, gfn, pfn, prefault);
3364 spin_unlock(&vcpu->kvm->mmu_lock);
3365
3366 return r;
3367
3368 out_unlock:
3369 spin_unlock(&vcpu->kvm->mmu_lock);
3370 kvm_release_pfn_clean(pfn);
3371 return 0;
3372 }
3373
3374 static void nonpaging_free(struct kvm_vcpu *vcpu)
3375 {
3376 mmu_free_roots(vcpu);
3377 }
3378
3379 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3380 struct kvm_mmu *context)
3381 {
3382 context->new_cr3 = nonpaging_new_cr3;
3383 context->page_fault = nonpaging_page_fault;
3384 context->gva_to_gpa = nonpaging_gva_to_gpa;
3385 context->free = nonpaging_free;
3386 context->sync_page = nonpaging_sync_page;
3387 context->invlpg = nonpaging_invlpg;
3388 context->update_pte = nonpaging_update_pte;
3389 context->root_level = 0;
3390 context->shadow_root_level = PT32E_ROOT_LEVEL;
3391 context->root_hpa = INVALID_PAGE;
3392 context->direct_map = true;
3393 context->nx = false;
3394 return 0;
3395 }
3396
3397 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3398 {
3399 ++vcpu->stat.tlb_flush;
3400 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3401 }
3402
3403 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3404 {
3405 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3406 mmu_free_roots(vcpu);
3407 }
3408
3409 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3410 {
3411 return kvm_read_cr3(vcpu);
3412 }
3413
3414 static void inject_page_fault(struct kvm_vcpu *vcpu,
3415 struct x86_exception *fault)
3416 {
3417 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3418 }
3419
3420 static void paging_free(struct kvm_vcpu *vcpu)
3421 {
3422 nonpaging_free(vcpu);
3423 }
3424
3425 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3426 {
3427 unsigned mask;
3428
3429 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3430
3431 mask = (unsigned)~ACC_WRITE_MASK;
3432 /* Allow write access to dirty gptes */
3433 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3434 *access &= mask;
3435 }
3436
3437 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3438 int *nr_present)
3439 {
3440 if (unlikely(is_mmio_spte(*sptep))) {
3441 if (gfn != get_mmio_spte_gfn(*sptep)) {
3442 mmu_spte_clear_no_track(sptep);
3443 return true;
3444 }
3445
3446 (*nr_present)++;
3447 mark_mmio_spte(sptep, gfn, access);
3448 return true;
3449 }
3450
3451 return false;
3452 }
3453
3454 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3455 {
3456 unsigned access;
3457
3458 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3459 access &= ~(gpte >> PT64_NX_SHIFT);
3460
3461 return access;
3462 }
3463
3464 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3465 {
3466 unsigned index;
3467
3468 index = level - 1;
3469 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3470 return mmu->last_pte_bitmap & (1 << index);
3471 }
3472
3473 #define PTTYPE 64
3474 #include "paging_tmpl.h"
3475 #undef PTTYPE
3476
3477 #define PTTYPE 32
3478 #include "paging_tmpl.h"
3479 #undef PTTYPE
3480
3481 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3482 struct kvm_mmu *context)
3483 {
3484 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3485 u64 exb_bit_rsvd = 0;
3486
3487 if (!context->nx)
3488 exb_bit_rsvd = rsvd_bits(63, 63);
3489 switch (context->root_level) {
3490 case PT32_ROOT_LEVEL:
3491 /* no rsvd bits for 2 level 4K page table entries */
3492 context->rsvd_bits_mask[0][1] = 0;
3493 context->rsvd_bits_mask[0][0] = 0;
3494 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3495
3496 if (!is_pse(vcpu)) {
3497 context->rsvd_bits_mask[1][1] = 0;
3498 break;
3499 }
3500
3501 if (is_cpuid_PSE36())
3502 /* 36bits PSE 4MB page */
3503 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3504 else
3505 /* 32 bits PSE 4MB page */
3506 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3507 break;
3508 case PT32E_ROOT_LEVEL:
3509 context->rsvd_bits_mask[0][2] =
3510 rsvd_bits(maxphyaddr, 63) |
3511 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3512 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3513 rsvd_bits(maxphyaddr, 62); /* PDE */
3514 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3515 rsvd_bits(maxphyaddr, 62); /* PTE */
3516 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3517 rsvd_bits(maxphyaddr, 62) |
3518 rsvd_bits(13, 20); /* large page */
3519 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3520 break;
3521 case PT64_ROOT_LEVEL:
3522 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3523 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3524 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3525 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3526 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3527 rsvd_bits(maxphyaddr, 51);
3528 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3529 rsvd_bits(maxphyaddr, 51);
3530 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3531 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3532 rsvd_bits(maxphyaddr, 51) |
3533 rsvd_bits(13, 29);
3534 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3535 rsvd_bits(maxphyaddr, 51) |
3536 rsvd_bits(13, 20); /* large page */
3537 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3538 break;
3539 }
3540 }
3541
3542 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3543 {
3544 unsigned bit, byte, pfec;
3545 u8 map;
3546 bool fault, x, w, u, wf, uf, ff, smep;
3547
3548 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3549 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3550 pfec = byte << 1;
3551 map = 0;
3552 wf = pfec & PFERR_WRITE_MASK;
3553 uf = pfec & PFERR_USER_MASK;
3554 ff = pfec & PFERR_FETCH_MASK;
3555 for (bit = 0; bit < 8; ++bit) {
3556 x = bit & ACC_EXEC_MASK;
3557 w = bit & ACC_WRITE_MASK;
3558 u = bit & ACC_USER_MASK;
3559
3560 /* Not really needed: !nx will cause pte.nx to fault */
3561 x |= !mmu->nx;
3562 /* Allow supervisor writes if !cr0.wp */
3563 w |= !is_write_protection(vcpu) && !uf;
3564 /* Disallow supervisor fetches of user code if cr4.smep */
3565 x &= !(smep && u && !uf);
3566
3567 fault = (ff && !x) || (uf && !u) || (wf && !w);
3568 map |= fault << bit;
3569 }
3570 mmu->permissions[byte] = map;
3571 }
3572 }
3573
3574 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3575 {
3576 u8 map;
3577 unsigned level, root_level = mmu->root_level;
3578 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3579
3580 if (root_level == PT32E_ROOT_LEVEL)
3581 --root_level;
3582 /* PT_PAGE_TABLE_LEVEL always terminates */
3583 map = 1 | (1 << ps_set_index);
3584 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3585 if (level <= PT_PDPE_LEVEL
3586 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3587 map |= 1 << (ps_set_index | (level - 1));
3588 }
3589 mmu->last_pte_bitmap = map;
3590 }
3591
3592 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3593 struct kvm_mmu *context,
3594 int level)
3595 {
3596 context->nx = is_nx(vcpu);
3597 context->root_level = level;
3598
3599 reset_rsvds_bits_mask(vcpu, context);
3600 update_permission_bitmask(vcpu, context);
3601 update_last_pte_bitmap(vcpu, context);
3602
3603 ASSERT(is_pae(vcpu));
3604 context->new_cr3 = paging_new_cr3;
3605 context->page_fault = paging64_page_fault;
3606 context->gva_to_gpa = paging64_gva_to_gpa;
3607 context->sync_page = paging64_sync_page;
3608 context->invlpg = paging64_invlpg;
3609 context->update_pte = paging64_update_pte;
3610 context->free = paging_free;
3611 context->shadow_root_level = level;
3612 context->root_hpa = INVALID_PAGE;
3613 context->direct_map = false;
3614 return 0;
3615 }
3616
3617 static int paging64_init_context(struct kvm_vcpu *vcpu,
3618 struct kvm_mmu *context)
3619 {
3620 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3621 }
3622
3623 static int paging32_init_context(struct kvm_vcpu *vcpu,
3624 struct kvm_mmu *context)
3625 {
3626 context->nx = false;
3627 context->root_level = PT32_ROOT_LEVEL;
3628
3629 reset_rsvds_bits_mask(vcpu, context);
3630 update_permission_bitmask(vcpu, context);
3631 update_last_pte_bitmap(vcpu, context);
3632
3633 context->new_cr3 = paging_new_cr3;
3634 context->page_fault = paging32_page_fault;
3635 context->gva_to_gpa = paging32_gva_to_gpa;
3636 context->free = paging_free;
3637 context->sync_page = paging32_sync_page;
3638 context->invlpg = paging32_invlpg;
3639 context->update_pte = paging32_update_pte;
3640 context->shadow_root_level = PT32E_ROOT_LEVEL;
3641 context->root_hpa = INVALID_PAGE;
3642 context->direct_map = false;
3643 return 0;
3644 }
3645
3646 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3647 struct kvm_mmu *context)
3648 {
3649 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3650 }
3651
3652 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3653 {
3654 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3655
3656 context->base_role.word = 0;
3657 context->new_cr3 = nonpaging_new_cr3;
3658 context->page_fault = tdp_page_fault;
3659 context->free = nonpaging_free;
3660 context->sync_page = nonpaging_sync_page;
3661 context->invlpg = nonpaging_invlpg;
3662 context->update_pte = nonpaging_update_pte;
3663 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3664 context->root_hpa = INVALID_PAGE;
3665 context->direct_map = true;
3666 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3667 context->get_cr3 = get_cr3;
3668 context->get_pdptr = kvm_pdptr_read;
3669 context->inject_page_fault = kvm_inject_page_fault;
3670
3671 if (!is_paging(vcpu)) {
3672 context->nx = false;
3673 context->gva_to_gpa = nonpaging_gva_to_gpa;
3674 context->root_level = 0;
3675 } else if (is_long_mode(vcpu)) {
3676 context->nx = is_nx(vcpu);
3677 context->root_level = PT64_ROOT_LEVEL;
3678 reset_rsvds_bits_mask(vcpu, context);
3679 context->gva_to_gpa = paging64_gva_to_gpa;
3680 } else if (is_pae(vcpu)) {
3681 context->nx = is_nx(vcpu);
3682 context->root_level = PT32E_ROOT_LEVEL;
3683 reset_rsvds_bits_mask(vcpu, context);
3684 context->gva_to_gpa = paging64_gva_to_gpa;
3685 } else {
3686 context->nx = false;
3687 context->root_level = PT32_ROOT_LEVEL;
3688 reset_rsvds_bits_mask(vcpu, context);
3689 context->gva_to_gpa = paging32_gva_to_gpa;
3690 }
3691
3692 update_permission_bitmask(vcpu, context);
3693 update_last_pte_bitmap(vcpu, context);
3694
3695 return 0;
3696 }
3697
3698 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3699 {
3700 int r;
3701 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3702 ASSERT(vcpu);
3703 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3704
3705 if (!is_paging(vcpu))
3706 r = nonpaging_init_context(vcpu, context);
3707 else if (is_long_mode(vcpu))
3708 r = paging64_init_context(vcpu, context);
3709 else if (is_pae(vcpu))
3710 r = paging32E_init_context(vcpu, context);
3711 else
3712 r = paging32_init_context(vcpu, context);
3713
3714 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3715 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3716 vcpu->arch.mmu.base_role.smep_andnot_wp
3717 = smep && !is_write_protection(vcpu);
3718
3719 return r;
3720 }
3721 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3722
3723 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3724 {
3725 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3726
3727 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3728 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3729 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3730 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3731
3732 return r;
3733 }
3734
3735 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3736 {
3737 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3738
3739 g_context->get_cr3 = get_cr3;
3740 g_context->get_pdptr = kvm_pdptr_read;
3741 g_context->inject_page_fault = kvm_inject_page_fault;
3742
3743 /*
3744 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3745 * translation of l2_gpa to l1_gpa addresses is done using the
3746 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3747 * functions between mmu and nested_mmu are swapped.
3748 */
3749 if (!is_paging(vcpu)) {
3750 g_context->nx = false;
3751 g_context->root_level = 0;
3752 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3753 } else if (is_long_mode(vcpu)) {
3754 g_context->nx = is_nx(vcpu);
3755 g_context->root_level = PT64_ROOT_LEVEL;
3756 reset_rsvds_bits_mask(vcpu, g_context);
3757 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3758 } else if (is_pae(vcpu)) {
3759 g_context->nx = is_nx(vcpu);
3760 g_context->root_level = PT32E_ROOT_LEVEL;
3761 reset_rsvds_bits_mask(vcpu, g_context);
3762 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3763 } else {
3764 g_context->nx = false;
3765 g_context->root_level = PT32_ROOT_LEVEL;
3766 reset_rsvds_bits_mask(vcpu, g_context);
3767 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3768 }
3769
3770 update_permission_bitmask(vcpu, g_context);
3771 update_last_pte_bitmap(vcpu, g_context);
3772
3773 return 0;
3774 }
3775
3776 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3777 {
3778 if (mmu_is_nested(vcpu))
3779 return init_kvm_nested_mmu(vcpu);
3780 else if (tdp_enabled)
3781 return init_kvm_tdp_mmu(vcpu);
3782 else
3783 return init_kvm_softmmu(vcpu);
3784 }
3785
3786 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3787 {
3788 ASSERT(vcpu);
3789 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3790 /* mmu.free() should set root_hpa = INVALID_PAGE */
3791 vcpu->arch.mmu.free(vcpu);
3792 }
3793
3794 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3795 {
3796 destroy_kvm_mmu(vcpu);
3797 return init_kvm_mmu(vcpu);
3798 }
3799 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3800
3801 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3802 {
3803 int r;
3804
3805 r = mmu_topup_memory_caches(vcpu);
3806 if (r)
3807 goto out;
3808 r = mmu_alloc_roots(vcpu);
3809 spin_lock(&vcpu->kvm->mmu_lock);
3810 mmu_sync_roots(vcpu);
3811 spin_unlock(&vcpu->kvm->mmu_lock);
3812 if (r)
3813 goto out;
3814 /* set_cr3() should ensure TLB has been flushed */
3815 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3816 out:
3817 return r;
3818 }
3819 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3820
3821 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3822 {
3823 mmu_free_roots(vcpu);
3824 }
3825 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3826
3827 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3828 struct kvm_mmu_page *sp, u64 *spte,
3829 const void *new)
3830 {
3831 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3832 ++vcpu->kvm->stat.mmu_pde_zapped;
3833 return;
3834 }
3835
3836 ++vcpu->kvm->stat.mmu_pte_updated;
3837 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3838 }
3839
3840 static bool need_remote_flush(u64 old, u64 new)
3841 {
3842 if (!is_shadow_present_pte(old))
3843 return false;
3844 if (!is_shadow_present_pte(new))
3845 return true;
3846 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3847 return true;
3848 old ^= PT64_NX_MASK;
3849 new ^= PT64_NX_MASK;
3850 return (old & ~new & PT64_PERM_MASK) != 0;
3851 }
3852
3853 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3854 bool remote_flush, bool local_flush)
3855 {
3856 if (zap_page)
3857 return;
3858
3859 if (remote_flush)
3860 kvm_flush_remote_tlbs(vcpu->kvm);
3861 else if (local_flush)
3862 kvm_mmu_flush_tlb(vcpu);
3863 }
3864
3865 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3866 const u8 *new, int *bytes)
3867 {
3868 u64 gentry;
3869 int r;
3870
3871 /*
3872 * Assume that the pte write on a page table of the same type
3873 * as the current vcpu paging mode since we update the sptes only
3874 * when they have the same mode.
3875 */
3876 if (is_pae(vcpu) && *bytes == 4) {
3877 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3878 *gpa &= ~(gpa_t)7;
3879 *bytes = 8;
3880 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3881 if (r)
3882 gentry = 0;
3883 new = (const u8 *)&gentry;
3884 }
3885
3886 switch (*bytes) {
3887 case 4:
3888 gentry = *(const u32 *)new;
3889 break;
3890 case 8:
3891 gentry = *(const u64 *)new;
3892 break;
3893 default:
3894 gentry = 0;
3895 break;
3896 }
3897
3898 return gentry;
3899 }
3900
3901 /*
3902 * If we're seeing too many writes to a page, it may no longer be a page table,
3903 * or we may be forking, in which case it is better to unmap the page.
3904 */
3905 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3906 {
3907 /*
3908 * Skip write-flooding detected for the sp whose level is 1, because
3909 * it can become unsync, then the guest page is not write-protected.
3910 */
3911 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3912 return false;
3913
3914 return ++sp->write_flooding_count >= 3;
3915 }
3916
3917 /*
3918 * Misaligned accesses are too much trouble to fix up; also, they usually
3919 * indicate a page is not used as a page table.
3920 */
3921 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3922 int bytes)
3923 {
3924 unsigned offset, pte_size, misaligned;
3925
3926 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3927 gpa, bytes, sp->role.word);
3928
3929 offset = offset_in_page(gpa);
3930 pte_size = sp->role.cr4_pae ? 8 : 4;
3931
3932 /*
3933 * Sometimes, the OS only writes the last one bytes to update status
3934 * bits, for example, in linux, andb instruction is used in clear_bit().
3935 */
3936 if (!(offset & (pte_size - 1)) && bytes == 1)
3937 return false;
3938
3939 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3940 misaligned |= bytes < 4;
3941
3942 return misaligned;
3943 }
3944
3945 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3946 {
3947 unsigned page_offset, quadrant;
3948 u64 *spte;
3949 int level;
3950
3951 page_offset = offset_in_page(gpa);
3952 level = sp->role.level;
3953 *nspte = 1;
3954 if (!sp->role.cr4_pae) {
3955 page_offset <<= 1; /* 32->64 */
3956 /*
3957 * A 32-bit pde maps 4MB while the shadow pdes map
3958 * only 2MB. So we need to double the offset again
3959 * and zap two pdes instead of one.
3960 */
3961 if (level == PT32_ROOT_LEVEL) {
3962 page_offset &= ~7; /* kill rounding error */
3963 page_offset <<= 1;
3964 *nspte = 2;
3965 }
3966 quadrant = page_offset >> PAGE_SHIFT;
3967 page_offset &= ~PAGE_MASK;
3968 if (quadrant != sp->role.quadrant)
3969 return NULL;
3970 }
3971
3972 spte = &sp->spt[page_offset / sizeof(*spte)];
3973 return spte;
3974 }
3975
3976 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3977 const u8 *new, int bytes)
3978 {
3979 gfn_t gfn = gpa >> PAGE_SHIFT;
3980 union kvm_mmu_page_role mask = { .word = 0 };
3981 struct kvm_mmu_page *sp;
3982 struct hlist_node *node;
3983 LIST_HEAD(invalid_list);
3984 u64 entry, gentry, *spte;
3985 int npte;
3986 bool remote_flush, local_flush, zap_page;
3987
3988 /*
3989 * If we don't have indirect shadow pages, it means no page is
3990 * write-protected, so we can exit simply.
3991 */
3992 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3993 return;
3994
3995 zap_page = remote_flush = local_flush = false;
3996
3997 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3998
3999 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4000
4001 /*
4002 * No need to care whether allocation memory is successful
4003 * or not since pte prefetch is skiped if it does not have
4004 * enough objects in the cache.
4005 */
4006 mmu_topup_memory_caches(vcpu);
4007
4008 spin_lock(&vcpu->kvm->mmu_lock);
4009 ++vcpu->kvm->stat.mmu_pte_write;
4010 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4011
4012 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4013 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
4014 if (detect_write_misaligned(sp, gpa, bytes) ||
4015 detect_write_flooding(sp)) {
4016 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4017 &invalid_list);
4018 ++vcpu->kvm->stat.mmu_flooded;
4019 continue;
4020 }
4021
4022 spte = get_written_sptes(sp, gpa, &npte);
4023 if (!spte)
4024 continue;
4025
4026 local_flush = true;
4027 while (npte--) {
4028 entry = *spte;
4029 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4030 if (gentry &&
4031 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4032 & mask.word) && rmap_can_add(vcpu))
4033 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4034 if (!remote_flush && need_remote_flush(entry, *spte))
4035 remote_flush = true;
4036 ++spte;
4037 }
4038 }
4039 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4040 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4041 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4042 spin_unlock(&vcpu->kvm->mmu_lock);
4043 }
4044
4045 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4046 {
4047 gpa_t gpa;
4048 int r;
4049
4050 if (vcpu->arch.mmu.direct_map)
4051 return 0;
4052
4053 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4054
4055 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4056
4057 return r;
4058 }
4059 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4060
4061 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
4062 {
4063 LIST_HEAD(invalid_list);
4064
4065 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
4066 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4067 struct kvm_mmu_page *sp;
4068
4069 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4070 struct kvm_mmu_page, link);
4071 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4072 ++vcpu->kvm->stat.mmu_recycled;
4073 }
4074 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4075 }
4076
4077 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4078 {
4079 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4080 return vcpu_match_mmio_gpa(vcpu, addr);
4081
4082 return vcpu_match_mmio_gva(vcpu, addr);
4083 }
4084
4085 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4086 void *insn, int insn_len)
4087 {
4088 int r, emulation_type = EMULTYPE_RETRY;
4089 enum emulation_result er;
4090
4091 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4092 if (r < 0)
4093 goto out;
4094
4095 if (!r) {
4096 r = 1;
4097 goto out;
4098 }
4099
4100 if (is_mmio_page_fault(vcpu, cr2))
4101 emulation_type = 0;
4102
4103 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4104
4105 switch (er) {
4106 case EMULATE_DONE:
4107 return 1;
4108 case EMULATE_DO_MMIO:
4109 ++vcpu->stat.mmio_exits;
4110 /* fall through */
4111 case EMULATE_FAIL:
4112 return 0;
4113 default:
4114 BUG();
4115 }
4116 out:
4117 return r;
4118 }
4119 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4120
4121 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4122 {
4123 vcpu->arch.mmu.invlpg(vcpu, gva);
4124 kvm_mmu_flush_tlb(vcpu);
4125 ++vcpu->stat.invlpg;
4126 }
4127 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4128
4129 void kvm_enable_tdp(void)
4130 {
4131 tdp_enabled = true;
4132 }
4133 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4134
4135 void kvm_disable_tdp(void)
4136 {
4137 tdp_enabled = false;
4138 }
4139 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4140
4141 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4142 {
4143 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4144 if (vcpu->arch.mmu.lm_root != NULL)
4145 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4146 }
4147
4148 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4149 {
4150 struct page *page;
4151 int i;
4152
4153 ASSERT(vcpu);
4154
4155 /*
4156 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4157 * Therefore we need to allocate shadow page tables in the first
4158 * 4GB of memory, which happens to fit the DMA32 zone.
4159 */
4160 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4161 if (!page)
4162 return -ENOMEM;
4163
4164 vcpu->arch.mmu.pae_root = page_address(page);
4165 for (i = 0; i < 4; ++i)
4166 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4167
4168 return 0;
4169 }
4170
4171 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4172 {
4173 ASSERT(vcpu);
4174
4175 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4176 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4177 vcpu->arch.mmu.translate_gpa = translate_gpa;
4178 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4179
4180 return alloc_mmu_pages(vcpu);
4181 }
4182
4183 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4184 {
4185 ASSERT(vcpu);
4186 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4187
4188 return init_kvm_mmu(vcpu);
4189 }
4190
4191 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4192 {
4193 struct kvm_mmu_page *sp;
4194 bool flush = false;
4195
4196 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
4197 int i;
4198 u64 *pt;
4199
4200 if (!test_bit(slot, sp->slot_bitmap))
4201 continue;
4202
4203 pt = sp->spt;
4204 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
4205 if (!is_shadow_present_pte(pt[i]) ||
4206 !is_last_spte(pt[i], sp->role.level))
4207 continue;
4208
4209 spte_write_protect(kvm, &pt[i], &flush, false);
4210 }
4211 }
4212 kvm_flush_remote_tlbs(kvm);
4213 }
4214
4215 void kvm_mmu_zap_all(struct kvm *kvm)
4216 {
4217 struct kvm_mmu_page *sp, *node;
4218 LIST_HEAD(invalid_list);
4219
4220 spin_lock(&kvm->mmu_lock);
4221 restart:
4222 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4223 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4224 goto restart;
4225
4226 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4227 spin_unlock(&kvm->mmu_lock);
4228 }
4229
4230 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4231 struct list_head *invalid_list)
4232 {
4233 struct kvm_mmu_page *page;
4234
4235 if (list_empty(&kvm->arch.active_mmu_pages))
4236 return;
4237
4238 page = container_of(kvm->arch.active_mmu_pages.prev,
4239 struct kvm_mmu_page, link);
4240 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4241 }
4242
4243 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4244 {
4245 struct kvm *kvm;
4246 int nr_to_scan = sc->nr_to_scan;
4247
4248 if (nr_to_scan == 0)
4249 goto out;
4250
4251 raw_spin_lock(&kvm_lock);
4252
4253 list_for_each_entry(kvm, &vm_list, vm_list) {
4254 int idx;
4255 LIST_HEAD(invalid_list);
4256
4257 /*
4258 * Never scan more than sc->nr_to_scan VM instances.
4259 * Will not hit this condition practically since we do not try
4260 * to shrink more than one VM and it is very unlikely to see
4261 * !n_used_mmu_pages so many times.
4262 */
4263 if (!nr_to_scan--)
4264 break;
4265 /*
4266 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4267 * here. We may skip a VM instance errorneosly, but we do not
4268 * want to shrink a VM that only started to populate its MMU
4269 * anyway.
4270 */
4271 if (!kvm->arch.n_used_mmu_pages)
4272 continue;
4273
4274 idx = srcu_read_lock(&kvm->srcu);
4275 spin_lock(&kvm->mmu_lock);
4276
4277 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4278 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4279
4280 spin_unlock(&kvm->mmu_lock);
4281 srcu_read_unlock(&kvm->srcu, idx);
4282
4283 list_move_tail(&kvm->vm_list, &vm_list);
4284 break;
4285 }
4286
4287 raw_spin_unlock(&kvm_lock);
4288
4289 out:
4290 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4291 }
4292
4293 static struct shrinker mmu_shrinker = {
4294 .shrink = mmu_shrink,
4295 .seeks = DEFAULT_SEEKS * 10,
4296 };
4297
4298 static void mmu_destroy_caches(void)
4299 {
4300 if (pte_list_desc_cache)
4301 kmem_cache_destroy(pte_list_desc_cache);
4302 if (mmu_page_header_cache)
4303 kmem_cache_destroy(mmu_page_header_cache);
4304 }
4305
4306 int kvm_mmu_module_init(void)
4307 {
4308 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4309 sizeof(struct pte_list_desc),
4310 0, 0, NULL);
4311 if (!pte_list_desc_cache)
4312 goto nomem;
4313
4314 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4315 sizeof(struct kvm_mmu_page),
4316 0, 0, NULL);
4317 if (!mmu_page_header_cache)
4318 goto nomem;
4319
4320 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4321 goto nomem;
4322
4323 register_shrinker(&mmu_shrinker);
4324
4325 return 0;
4326
4327 nomem:
4328 mmu_destroy_caches();
4329 return -ENOMEM;
4330 }
4331
4332 /*
4333 * Caculate mmu pages needed for kvm.
4334 */
4335 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4336 {
4337 unsigned int nr_mmu_pages;
4338 unsigned int nr_pages = 0;
4339 struct kvm_memslots *slots;
4340 struct kvm_memory_slot *memslot;
4341
4342 slots = kvm_memslots(kvm);
4343
4344 kvm_for_each_memslot(memslot, slots)
4345 nr_pages += memslot->npages;
4346
4347 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4348 nr_mmu_pages = max(nr_mmu_pages,
4349 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4350
4351 return nr_mmu_pages;
4352 }
4353
4354 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4355 {
4356 struct kvm_shadow_walk_iterator iterator;
4357 u64 spte;
4358 int nr_sptes = 0;
4359
4360 walk_shadow_page_lockless_begin(vcpu);
4361 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4362 sptes[iterator.level-1] = spte;
4363 nr_sptes++;
4364 if (!is_shadow_present_pte(spte))
4365 break;
4366 }
4367 walk_shadow_page_lockless_end(vcpu);
4368
4369 return nr_sptes;
4370 }
4371 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4372
4373 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4374 {
4375 ASSERT(vcpu);
4376
4377 destroy_kvm_mmu(vcpu);
4378 free_mmu_pages(vcpu);
4379 mmu_free_memory_caches(vcpu);
4380 }
4381
4382 void kvm_mmu_module_exit(void)
4383 {
4384 mmu_destroy_caches();
4385 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4386 unregister_shrinker(&mmu_shrinker);
4387 mmu_audit_disable();
4388 }
This page took 0.116561 seconds and 6 git commands to generate.