Merge branches 'upstream/core', 'upstream/xenfs' and 'upstream/evtchn' into upstream...
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "mmu.h"
22 #include "x86.h"
23 #include "kvm_cache_regs.h"
24
25 #include <linux/kvm_host.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/module.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37
38 #include <asm/page.h>
39 #include <asm/cmpxchg.h>
40 #include <asm/io.h>
41 #include <asm/vmx.h>
42
43 /*
44 * When setting this variable to true it enables Two-Dimensional-Paging
45 * where the hardware walks 2 page tables:
46 * 1. the guest-virtual to guest-physical
47 * 2. while doing 1. it walks guest-physical to host-physical
48 * If the hardware supports that we don't need to do shadow paging.
49 */
50 bool tdp_enabled = false;
51
52 enum {
53 AUDIT_PRE_PAGE_FAULT,
54 AUDIT_POST_PAGE_FAULT,
55 AUDIT_PRE_PTE_WRITE,
56 AUDIT_POST_PTE_WRITE,
57 AUDIT_PRE_SYNC,
58 AUDIT_POST_SYNC
59 };
60
61 char *audit_point_name[] = {
62 "pre page fault",
63 "post page fault",
64 "pre pte write",
65 "post pte write",
66 "pre sync",
67 "post sync"
68 };
69
70 #undef MMU_DEBUG
71
72 #ifdef MMU_DEBUG
73
74 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
75 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
76
77 #else
78
79 #define pgprintk(x...) do { } while (0)
80 #define rmap_printk(x...) do { } while (0)
81
82 #endif
83
84 #ifdef MMU_DEBUG
85 static int dbg = 0;
86 module_param(dbg, bool, 0644);
87 #endif
88
89 static int oos_shadow = 1;
90 module_param(oos_shadow, bool, 0644);
91
92 #ifndef MMU_DEBUG
93 #define ASSERT(x) do { } while (0)
94 #else
95 #define ASSERT(x) \
96 if (!(x)) { \
97 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
98 __FILE__, __LINE__, #x); \
99 }
100 #endif
101
102 #define PTE_PREFETCH_NUM 8
103
104 #define PT_FIRST_AVAIL_BITS_SHIFT 9
105 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
106
107 #define PT64_LEVEL_BITS 9
108
109 #define PT64_LEVEL_SHIFT(level) \
110 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
111
112 #define PT64_LEVEL_MASK(level) \
113 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
114
115 #define PT64_INDEX(address, level)\
116 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
117
118
119 #define PT32_LEVEL_BITS 10
120
121 #define PT32_LEVEL_SHIFT(level) \
122 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
123
124 #define PT32_LEVEL_MASK(level) \
125 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
126 #define PT32_LVL_OFFSET_MASK(level) \
127 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
128 * PT32_LEVEL_BITS))) - 1))
129
130 #define PT32_INDEX(address, level)\
131 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
132
133
134 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
135 #define PT64_DIR_BASE_ADDR_MASK \
136 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
137 #define PT64_LVL_ADDR_MASK(level) \
138 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
139 * PT64_LEVEL_BITS))) - 1))
140 #define PT64_LVL_OFFSET_MASK(level) \
141 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
142 * PT64_LEVEL_BITS))) - 1))
143
144 #define PT32_BASE_ADDR_MASK PAGE_MASK
145 #define PT32_DIR_BASE_ADDR_MASK \
146 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
147 #define PT32_LVL_ADDR_MASK(level) \
148 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
149 * PT32_LEVEL_BITS))) - 1))
150
151 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
152 | PT64_NX_MASK)
153
154 #define RMAP_EXT 4
155
156 #define ACC_EXEC_MASK 1
157 #define ACC_WRITE_MASK PT_WRITABLE_MASK
158 #define ACC_USER_MASK PT_USER_MASK
159 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
160
161 #include <trace/events/kvm.h>
162
163 #define CREATE_TRACE_POINTS
164 #include "mmutrace.h"
165
166 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
167
168 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
169
170 struct kvm_rmap_desc {
171 u64 *sptes[RMAP_EXT];
172 struct kvm_rmap_desc *more;
173 };
174
175 struct kvm_shadow_walk_iterator {
176 u64 addr;
177 hpa_t shadow_addr;
178 int level;
179 u64 *sptep;
180 unsigned index;
181 };
182
183 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
184 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
185 shadow_walk_okay(&(_walker)); \
186 shadow_walk_next(&(_walker)))
187
188 typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
189
190 static struct kmem_cache *pte_chain_cache;
191 static struct kmem_cache *rmap_desc_cache;
192 static struct kmem_cache *mmu_page_header_cache;
193 static struct percpu_counter kvm_total_used_mmu_pages;
194
195 static u64 __read_mostly shadow_trap_nonpresent_pte;
196 static u64 __read_mostly shadow_notrap_nonpresent_pte;
197 static u64 __read_mostly shadow_base_present_pte;
198 static u64 __read_mostly shadow_nx_mask;
199 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
200 static u64 __read_mostly shadow_user_mask;
201 static u64 __read_mostly shadow_accessed_mask;
202 static u64 __read_mostly shadow_dirty_mask;
203
204 static inline u64 rsvd_bits(int s, int e)
205 {
206 return ((1ULL << (e - s + 1)) - 1) << s;
207 }
208
209 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
210 {
211 shadow_trap_nonpresent_pte = trap_pte;
212 shadow_notrap_nonpresent_pte = notrap_pte;
213 }
214 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
215
216 void kvm_mmu_set_base_ptes(u64 base_pte)
217 {
218 shadow_base_present_pte = base_pte;
219 }
220 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
221
222 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
223 u64 dirty_mask, u64 nx_mask, u64 x_mask)
224 {
225 shadow_user_mask = user_mask;
226 shadow_accessed_mask = accessed_mask;
227 shadow_dirty_mask = dirty_mask;
228 shadow_nx_mask = nx_mask;
229 shadow_x_mask = x_mask;
230 }
231 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
232
233 static bool is_write_protection(struct kvm_vcpu *vcpu)
234 {
235 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
236 }
237
238 static int is_cpuid_PSE36(void)
239 {
240 return 1;
241 }
242
243 static int is_nx(struct kvm_vcpu *vcpu)
244 {
245 return vcpu->arch.efer & EFER_NX;
246 }
247
248 static int is_shadow_present_pte(u64 pte)
249 {
250 return pte != shadow_trap_nonpresent_pte
251 && pte != shadow_notrap_nonpresent_pte;
252 }
253
254 static int is_large_pte(u64 pte)
255 {
256 return pte & PT_PAGE_SIZE_MASK;
257 }
258
259 static int is_writable_pte(unsigned long pte)
260 {
261 return pte & PT_WRITABLE_MASK;
262 }
263
264 static int is_dirty_gpte(unsigned long pte)
265 {
266 return pte & PT_DIRTY_MASK;
267 }
268
269 static int is_rmap_spte(u64 pte)
270 {
271 return is_shadow_present_pte(pte);
272 }
273
274 static int is_last_spte(u64 pte, int level)
275 {
276 if (level == PT_PAGE_TABLE_LEVEL)
277 return 1;
278 if (is_large_pte(pte))
279 return 1;
280 return 0;
281 }
282
283 static pfn_t spte_to_pfn(u64 pte)
284 {
285 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
286 }
287
288 static gfn_t pse36_gfn_delta(u32 gpte)
289 {
290 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
291
292 return (gpte & PT32_DIR_PSE36_MASK) << shift;
293 }
294
295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297 set_64bit(sptep, spte);
298 }
299
300 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
301 {
302 #ifdef CONFIG_X86_64
303 return xchg(sptep, new_spte);
304 #else
305 u64 old_spte;
306
307 do {
308 old_spte = *sptep;
309 } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
310
311 return old_spte;
312 #endif
313 }
314
315 static bool spte_has_volatile_bits(u64 spte)
316 {
317 if (!shadow_accessed_mask)
318 return false;
319
320 if (!is_shadow_present_pte(spte))
321 return false;
322
323 if ((spte & shadow_accessed_mask) &&
324 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
325 return false;
326
327 return true;
328 }
329
330 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
331 {
332 return (old_spte & bit_mask) && !(new_spte & bit_mask);
333 }
334
335 static void update_spte(u64 *sptep, u64 new_spte)
336 {
337 u64 mask, old_spte = *sptep;
338
339 WARN_ON(!is_rmap_spte(new_spte));
340
341 new_spte |= old_spte & shadow_dirty_mask;
342
343 mask = shadow_accessed_mask;
344 if (is_writable_pte(old_spte))
345 mask |= shadow_dirty_mask;
346
347 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
348 __set_spte(sptep, new_spte);
349 else
350 old_spte = __xchg_spte(sptep, new_spte);
351
352 if (!shadow_accessed_mask)
353 return;
354
355 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
356 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
357 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
358 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
359 }
360
361 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
362 struct kmem_cache *base_cache, int min)
363 {
364 void *obj;
365
366 if (cache->nobjs >= min)
367 return 0;
368 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
369 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
370 if (!obj)
371 return -ENOMEM;
372 cache->objects[cache->nobjs++] = obj;
373 }
374 return 0;
375 }
376
377 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
378 struct kmem_cache *cache)
379 {
380 while (mc->nobjs)
381 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
382 }
383
384 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
385 int min)
386 {
387 struct page *page;
388
389 if (cache->nobjs >= min)
390 return 0;
391 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
392 page = alloc_page(GFP_KERNEL);
393 if (!page)
394 return -ENOMEM;
395 cache->objects[cache->nobjs++] = page_address(page);
396 }
397 return 0;
398 }
399
400 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
401 {
402 while (mc->nobjs)
403 free_page((unsigned long)mc->objects[--mc->nobjs]);
404 }
405
406 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
407 {
408 int r;
409
410 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
411 pte_chain_cache, 4);
412 if (r)
413 goto out;
414 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
415 rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
416 if (r)
417 goto out;
418 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
419 if (r)
420 goto out;
421 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
422 mmu_page_header_cache, 4);
423 out:
424 return r;
425 }
426
427 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
428 {
429 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
430 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
431 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
432 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
433 mmu_page_header_cache);
434 }
435
436 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
437 size_t size)
438 {
439 void *p;
440
441 BUG_ON(!mc->nobjs);
442 p = mc->objects[--mc->nobjs];
443 return p;
444 }
445
446 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
447 {
448 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
449 sizeof(struct kvm_pte_chain));
450 }
451
452 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
453 {
454 kmem_cache_free(pte_chain_cache, pc);
455 }
456
457 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
458 {
459 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
460 sizeof(struct kvm_rmap_desc));
461 }
462
463 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
464 {
465 kmem_cache_free(rmap_desc_cache, rd);
466 }
467
468 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
469 {
470 if (!sp->role.direct)
471 return sp->gfns[index];
472
473 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
474 }
475
476 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
477 {
478 if (sp->role.direct)
479 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
480 else
481 sp->gfns[index] = gfn;
482 }
483
484 /*
485 * Return the pointer to the largepage write count for a given
486 * gfn, handling slots that are not large page aligned.
487 */
488 static int *slot_largepage_idx(gfn_t gfn,
489 struct kvm_memory_slot *slot,
490 int level)
491 {
492 unsigned long idx;
493
494 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
495 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
496 return &slot->lpage_info[level - 2][idx].write_count;
497 }
498
499 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
500 {
501 struct kvm_memory_slot *slot;
502 int *write_count;
503 int i;
504
505 slot = gfn_to_memslot(kvm, gfn);
506 for (i = PT_DIRECTORY_LEVEL;
507 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
508 write_count = slot_largepage_idx(gfn, slot, i);
509 *write_count += 1;
510 }
511 }
512
513 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
514 {
515 struct kvm_memory_slot *slot;
516 int *write_count;
517 int i;
518
519 slot = gfn_to_memslot(kvm, gfn);
520 for (i = PT_DIRECTORY_LEVEL;
521 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
522 write_count = slot_largepage_idx(gfn, slot, i);
523 *write_count -= 1;
524 WARN_ON(*write_count < 0);
525 }
526 }
527
528 static int has_wrprotected_page(struct kvm *kvm,
529 gfn_t gfn,
530 int level)
531 {
532 struct kvm_memory_slot *slot;
533 int *largepage_idx;
534
535 slot = gfn_to_memslot(kvm, gfn);
536 if (slot) {
537 largepage_idx = slot_largepage_idx(gfn, slot, level);
538 return *largepage_idx;
539 }
540
541 return 1;
542 }
543
544 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
545 {
546 unsigned long page_size;
547 int i, ret = 0;
548
549 page_size = kvm_host_page_size(kvm, gfn);
550
551 for (i = PT_PAGE_TABLE_LEVEL;
552 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
553 if (page_size >= KVM_HPAGE_SIZE(i))
554 ret = i;
555 else
556 break;
557 }
558
559 return ret;
560 }
561
562 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
563 {
564 struct kvm_memory_slot *slot;
565 int host_level, level, max_level;
566
567 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
568 if (slot && slot->dirty_bitmap)
569 return PT_PAGE_TABLE_LEVEL;
570
571 host_level = host_mapping_level(vcpu->kvm, large_gfn);
572
573 if (host_level == PT_PAGE_TABLE_LEVEL)
574 return host_level;
575
576 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
577 kvm_x86_ops->get_lpage_level() : host_level;
578
579 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
580 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
581 break;
582
583 return level - 1;
584 }
585
586 /*
587 * Take gfn and return the reverse mapping to it.
588 */
589
590 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
591 {
592 struct kvm_memory_slot *slot;
593 unsigned long idx;
594
595 slot = gfn_to_memslot(kvm, gfn);
596 if (likely(level == PT_PAGE_TABLE_LEVEL))
597 return &slot->rmap[gfn - slot->base_gfn];
598
599 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
600 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
601
602 return &slot->lpage_info[level - 2][idx].rmap_pde;
603 }
604
605 /*
606 * Reverse mapping data structures:
607 *
608 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
609 * that points to page_address(page).
610 *
611 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
612 * containing more mappings.
613 *
614 * Returns the number of rmap entries before the spte was added or zero if
615 * the spte was not added.
616 *
617 */
618 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
619 {
620 struct kvm_mmu_page *sp;
621 struct kvm_rmap_desc *desc;
622 unsigned long *rmapp;
623 int i, count = 0;
624
625 if (!is_rmap_spte(*spte))
626 return count;
627 sp = page_header(__pa(spte));
628 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
629 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
630 if (!*rmapp) {
631 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
632 *rmapp = (unsigned long)spte;
633 } else if (!(*rmapp & 1)) {
634 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
635 desc = mmu_alloc_rmap_desc(vcpu);
636 desc->sptes[0] = (u64 *)*rmapp;
637 desc->sptes[1] = spte;
638 *rmapp = (unsigned long)desc | 1;
639 ++count;
640 } else {
641 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
642 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
643 while (desc->sptes[RMAP_EXT-1] && desc->more) {
644 desc = desc->more;
645 count += RMAP_EXT;
646 }
647 if (desc->sptes[RMAP_EXT-1]) {
648 desc->more = mmu_alloc_rmap_desc(vcpu);
649 desc = desc->more;
650 }
651 for (i = 0; desc->sptes[i]; ++i)
652 ++count;
653 desc->sptes[i] = spte;
654 }
655 return count;
656 }
657
658 static void rmap_desc_remove_entry(unsigned long *rmapp,
659 struct kvm_rmap_desc *desc,
660 int i,
661 struct kvm_rmap_desc *prev_desc)
662 {
663 int j;
664
665 for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
666 ;
667 desc->sptes[i] = desc->sptes[j];
668 desc->sptes[j] = NULL;
669 if (j != 0)
670 return;
671 if (!prev_desc && !desc->more)
672 *rmapp = (unsigned long)desc->sptes[0];
673 else
674 if (prev_desc)
675 prev_desc->more = desc->more;
676 else
677 *rmapp = (unsigned long)desc->more | 1;
678 mmu_free_rmap_desc(desc);
679 }
680
681 static void rmap_remove(struct kvm *kvm, u64 *spte)
682 {
683 struct kvm_rmap_desc *desc;
684 struct kvm_rmap_desc *prev_desc;
685 struct kvm_mmu_page *sp;
686 gfn_t gfn;
687 unsigned long *rmapp;
688 int i;
689
690 sp = page_header(__pa(spte));
691 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
692 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
693 if (!*rmapp) {
694 printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
695 BUG();
696 } else if (!(*rmapp & 1)) {
697 rmap_printk("rmap_remove: %p 1->0\n", spte);
698 if ((u64 *)*rmapp != spte) {
699 printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
700 BUG();
701 }
702 *rmapp = 0;
703 } else {
704 rmap_printk("rmap_remove: %p many->many\n", spte);
705 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
706 prev_desc = NULL;
707 while (desc) {
708 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
709 if (desc->sptes[i] == spte) {
710 rmap_desc_remove_entry(rmapp,
711 desc, i,
712 prev_desc);
713 return;
714 }
715 prev_desc = desc;
716 desc = desc->more;
717 }
718 pr_err("rmap_remove: %p many->many\n", spte);
719 BUG();
720 }
721 }
722
723 static int set_spte_track_bits(u64 *sptep, u64 new_spte)
724 {
725 pfn_t pfn;
726 u64 old_spte = *sptep;
727
728 if (!spte_has_volatile_bits(old_spte))
729 __set_spte(sptep, new_spte);
730 else
731 old_spte = __xchg_spte(sptep, new_spte);
732
733 if (!is_rmap_spte(old_spte))
734 return 0;
735
736 pfn = spte_to_pfn(old_spte);
737 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
738 kvm_set_pfn_accessed(pfn);
739 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
740 kvm_set_pfn_dirty(pfn);
741 return 1;
742 }
743
744 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
745 {
746 if (set_spte_track_bits(sptep, new_spte))
747 rmap_remove(kvm, sptep);
748 }
749
750 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
751 {
752 struct kvm_rmap_desc *desc;
753 u64 *prev_spte;
754 int i;
755
756 if (!*rmapp)
757 return NULL;
758 else if (!(*rmapp & 1)) {
759 if (!spte)
760 return (u64 *)*rmapp;
761 return NULL;
762 }
763 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
764 prev_spte = NULL;
765 while (desc) {
766 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
767 if (prev_spte == spte)
768 return desc->sptes[i];
769 prev_spte = desc->sptes[i];
770 }
771 desc = desc->more;
772 }
773 return NULL;
774 }
775
776 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
777 {
778 unsigned long *rmapp;
779 u64 *spte;
780 int i, write_protected = 0;
781
782 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
783
784 spte = rmap_next(kvm, rmapp, NULL);
785 while (spte) {
786 BUG_ON(!spte);
787 BUG_ON(!(*spte & PT_PRESENT_MASK));
788 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
789 if (is_writable_pte(*spte)) {
790 update_spte(spte, *spte & ~PT_WRITABLE_MASK);
791 write_protected = 1;
792 }
793 spte = rmap_next(kvm, rmapp, spte);
794 }
795
796 /* check for huge page mappings */
797 for (i = PT_DIRECTORY_LEVEL;
798 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
799 rmapp = gfn_to_rmap(kvm, gfn, i);
800 spte = rmap_next(kvm, rmapp, NULL);
801 while (spte) {
802 BUG_ON(!spte);
803 BUG_ON(!(*spte & PT_PRESENT_MASK));
804 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
805 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
806 if (is_writable_pte(*spte)) {
807 drop_spte(kvm, spte,
808 shadow_trap_nonpresent_pte);
809 --kvm->stat.lpages;
810 spte = NULL;
811 write_protected = 1;
812 }
813 spte = rmap_next(kvm, rmapp, spte);
814 }
815 }
816
817 return write_protected;
818 }
819
820 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
821 unsigned long data)
822 {
823 u64 *spte;
824 int need_tlb_flush = 0;
825
826 while ((spte = rmap_next(kvm, rmapp, NULL))) {
827 BUG_ON(!(*spte & PT_PRESENT_MASK));
828 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
829 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
830 need_tlb_flush = 1;
831 }
832 return need_tlb_flush;
833 }
834
835 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
836 unsigned long data)
837 {
838 int need_flush = 0;
839 u64 *spte, new_spte;
840 pte_t *ptep = (pte_t *)data;
841 pfn_t new_pfn;
842
843 WARN_ON(pte_huge(*ptep));
844 new_pfn = pte_pfn(*ptep);
845 spte = rmap_next(kvm, rmapp, NULL);
846 while (spte) {
847 BUG_ON(!is_shadow_present_pte(*spte));
848 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
849 need_flush = 1;
850 if (pte_write(*ptep)) {
851 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
852 spte = rmap_next(kvm, rmapp, NULL);
853 } else {
854 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
855 new_spte |= (u64)new_pfn << PAGE_SHIFT;
856
857 new_spte &= ~PT_WRITABLE_MASK;
858 new_spte &= ~SPTE_HOST_WRITEABLE;
859 new_spte &= ~shadow_accessed_mask;
860 set_spte_track_bits(spte, new_spte);
861 spte = rmap_next(kvm, rmapp, spte);
862 }
863 }
864 if (need_flush)
865 kvm_flush_remote_tlbs(kvm);
866
867 return 0;
868 }
869
870 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
871 unsigned long data,
872 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
873 unsigned long data))
874 {
875 int i, j;
876 int ret;
877 int retval = 0;
878 struct kvm_memslots *slots;
879
880 slots = kvm_memslots(kvm);
881
882 for (i = 0; i < slots->nmemslots; i++) {
883 struct kvm_memory_slot *memslot = &slots->memslots[i];
884 unsigned long start = memslot->userspace_addr;
885 unsigned long end;
886
887 end = start + (memslot->npages << PAGE_SHIFT);
888 if (hva >= start && hva < end) {
889 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
890
891 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
892
893 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
894 unsigned long idx;
895 int sh;
896
897 sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
898 idx = ((memslot->base_gfn+gfn_offset) >> sh) -
899 (memslot->base_gfn >> sh);
900 ret |= handler(kvm,
901 &memslot->lpage_info[j][idx].rmap_pde,
902 data);
903 }
904 trace_kvm_age_page(hva, memslot, ret);
905 retval |= ret;
906 }
907 }
908
909 return retval;
910 }
911
912 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
913 {
914 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
915 }
916
917 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
918 {
919 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
920 }
921
922 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
923 unsigned long data)
924 {
925 u64 *spte;
926 int young = 0;
927
928 /*
929 * Emulate the accessed bit for EPT, by checking if this page has
930 * an EPT mapping, and clearing it if it does. On the next access,
931 * a new EPT mapping will be established.
932 * This has some overhead, but not as much as the cost of swapping
933 * out actively used pages or breaking up actively used hugepages.
934 */
935 if (!shadow_accessed_mask)
936 return kvm_unmap_rmapp(kvm, rmapp, data);
937
938 spte = rmap_next(kvm, rmapp, NULL);
939 while (spte) {
940 int _young;
941 u64 _spte = *spte;
942 BUG_ON(!(_spte & PT_PRESENT_MASK));
943 _young = _spte & PT_ACCESSED_MASK;
944 if (_young) {
945 young = 1;
946 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
947 }
948 spte = rmap_next(kvm, rmapp, spte);
949 }
950 return young;
951 }
952
953 #define RMAP_RECYCLE_THRESHOLD 1000
954
955 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
956 {
957 unsigned long *rmapp;
958 struct kvm_mmu_page *sp;
959
960 sp = page_header(__pa(spte));
961
962 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
963
964 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
965 kvm_flush_remote_tlbs(vcpu->kvm);
966 }
967
968 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
969 {
970 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
971 }
972
973 #ifdef MMU_DEBUG
974 static int is_empty_shadow_page(u64 *spt)
975 {
976 u64 *pos;
977 u64 *end;
978
979 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
980 if (is_shadow_present_pte(*pos)) {
981 printk(KERN_ERR "%s: %p %llx\n", __func__,
982 pos, *pos);
983 return 0;
984 }
985 return 1;
986 }
987 #endif
988
989 /*
990 * This value is the sum of all of the kvm instances's
991 * kvm->arch.n_used_mmu_pages values. We need a global,
992 * aggregate version in order to make the slab shrinker
993 * faster
994 */
995 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
996 {
997 kvm->arch.n_used_mmu_pages += nr;
998 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
999 }
1000
1001 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1002 {
1003 ASSERT(is_empty_shadow_page(sp->spt));
1004 hlist_del(&sp->hash_link);
1005 list_del(&sp->link);
1006 __free_page(virt_to_page(sp->spt));
1007 if (!sp->role.direct)
1008 __free_page(virt_to_page(sp->gfns));
1009 kmem_cache_free(mmu_page_header_cache, sp);
1010 kvm_mod_used_mmu_pages(kvm, -1);
1011 }
1012
1013 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1014 {
1015 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1016 }
1017
1018 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1019 u64 *parent_pte, int direct)
1020 {
1021 struct kvm_mmu_page *sp;
1022
1023 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
1024 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1025 if (!direct)
1026 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1027 PAGE_SIZE);
1028 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1029 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1030 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1031 sp->multimapped = 0;
1032 sp->parent_pte = parent_pte;
1033 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1034 return sp;
1035 }
1036
1037 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1038 struct kvm_mmu_page *sp, u64 *parent_pte)
1039 {
1040 struct kvm_pte_chain *pte_chain;
1041 struct hlist_node *node;
1042 int i;
1043
1044 if (!parent_pte)
1045 return;
1046 if (!sp->multimapped) {
1047 u64 *old = sp->parent_pte;
1048
1049 if (!old) {
1050 sp->parent_pte = parent_pte;
1051 return;
1052 }
1053 sp->multimapped = 1;
1054 pte_chain = mmu_alloc_pte_chain(vcpu);
1055 INIT_HLIST_HEAD(&sp->parent_ptes);
1056 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1057 pte_chain->parent_ptes[0] = old;
1058 }
1059 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
1060 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
1061 continue;
1062 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
1063 if (!pte_chain->parent_ptes[i]) {
1064 pte_chain->parent_ptes[i] = parent_pte;
1065 return;
1066 }
1067 }
1068 pte_chain = mmu_alloc_pte_chain(vcpu);
1069 BUG_ON(!pte_chain);
1070 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1071 pte_chain->parent_ptes[0] = parent_pte;
1072 }
1073
1074 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1075 u64 *parent_pte)
1076 {
1077 struct kvm_pte_chain *pte_chain;
1078 struct hlist_node *node;
1079 int i;
1080
1081 if (!sp->multimapped) {
1082 BUG_ON(sp->parent_pte != parent_pte);
1083 sp->parent_pte = NULL;
1084 return;
1085 }
1086 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1087 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1088 if (!pte_chain->parent_ptes[i])
1089 break;
1090 if (pte_chain->parent_ptes[i] != parent_pte)
1091 continue;
1092 while (i + 1 < NR_PTE_CHAIN_ENTRIES
1093 && pte_chain->parent_ptes[i + 1]) {
1094 pte_chain->parent_ptes[i]
1095 = pte_chain->parent_ptes[i + 1];
1096 ++i;
1097 }
1098 pte_chain->parent_ptes[i] = NULL;
1099 if (i == 0) {
1100 hlist_del(&pte_chain->link);
1101 mmu_free_pte_chain(pte_chain);
1102 if (hlist_empty(&sp->parent_ptes)) {
1103 sp->multimapped = 0;
1104 sp->parent_pte = NULL;
1105 }
1106 }
1107 return;
1108 }
1109 BUG();
1110 }
1111
1112 static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1113 {
1114 struct kvm_pte_chain *pte_chain;
1115 struct hlist_node *node;
1116 struct kvm_mmu_page *parent_sp;
1117 int i;
1118
1119 if (!sp->multimapped && sp->parent_pte) {
1120 parent_sp = page_header(__pa(sp->parent_pte));
1121 fn(parent_sp, sp->parent_pte);
1122 return;
1123 }
1124
1125 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1126 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1127 u64 *spte = pte_chain->parent_ptes[i];
1128
1129 if (!spte)
1130 break;
1131 parent_sp = page_header(__pa(spte));
1132 fn(parent_sp, spte);
1133 }
1134 }
1135
1136 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
1137 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1138 {
1139 mmu_parent_walk(sp, mark_unsync);
1140 }
1141
1142 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
1143 {
1144 unsigned int index;
1145
1146 index = spte - sp->spt;
1147 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1148 return;
1149 if (sp->unsync_children++)
1150 return;
1151 kvm_mmu_mark_parents_unsync(sp);
1152 }
1153
1154 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1155 struct kvm_mmu_page *sp)
1156 {
1157 int i;
1158
1159 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1160 sp->spt[i] = shadow_trap_nonpresent_pte;
1161 }
1162
1163 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1164 struct kvm_mmu_page *sp, bool clear_unsync)
1165 {
1166 return 1;
1167 }
1168
1169 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1170 {
1171 }
1172
1173 #define KVM_PAGE_ARRAY_NR 16
1174
1175 struct kvm_mmu_pages {
1176 struct mmu_page_and_offset {
1177 struct kvm_mmu_page *sp;
1178 unsigned int idx;
1179 } page[KVM_PAGE_ARRAY_NR];
1180 unsigned int nr;
1181 };
1182
1183 #define for_each_unsync_children(bitmap, idx) \
1184 for (idx = find_first_bit(bitmap, 512); \
1185 idx < 512; \
1186 idx = find_next_bit(bitmap, 512, idx+1))
1187
1188 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1189 int idx)
1190 {
1191 int i;
1192
1193 if (sp->unsync)
1194 for (i=0; i < pvec->nr; i++)
1195 if (pvec->page[i].sp == sp)
1196 return 0;
1197
1198 pvec->page[pvec->nr].sp = sp;
1199 pvec->page[pvec->nr].idx = idx;
1200 pvec->nr++;
1201 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1202 }
1203
1204 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1205 struct kvm_mmu_pages *pvec)
1206 {
1207 int i, ret, nr_unsync_leaf = 0;
1208
1209 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1210 struct kvm_mmu_page *child;
1211 u64 ent = sp->spt[i];
1212
1213 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1214 goto clear_child_bitmap;
1215
1216 child = page_header(ent & PT64_BASE_ADDR_MASK);
1217
1218 if (child->unsync_children) {
1219 if (mmu_pages_add(pvec, child, i))
1220 return -ENOSPC;
1221
1222 ret = __mmu_unsync_walk(child, pvec);
1223 if (!ret)
1224 goto clear_child_bitmap;
1225 else if (ret > 0)
1226 nr_unsync_leaf += ret;
1227 else
1228 return ret;
1229 } else if (child->unsync) {
1230 nr_unsync_leaf++;
1231 if (mmu_pages_add(pvec, child, i))
1232 return -ENOSPC;
1233 } else
1234 goto clear_child_bitmap;
1235
1236 continue;
1237
1238 clear_child_bitmap:
1239 __clear_bit(i, sp->unsync_child_bitmap);
1240 sp->unsync_children--;
1241 WARN_ON((int)sp->unsync_children < 0);
1242 }
1243
1244
1245 return nr_unsync_leaf;
1246 }
1247
1248 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1249 struct kvm_mmu_pages *pvec)
1250 {
1251 if (!sp->unsync_children)
1252 return 0;
1253
1254 mmu_pages_add(pvec, sp, 0);
1255 return __mmu_unsync_walk(sp, pvec);
1256 }
1257
1258 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1259 {
1260 WARN_ON(!sp->unsync);
1261 trace_kvm_mmu_sync_page(sp);
1262 sp->unsync = 0;
1263 --kvm->stat.mmu_unsync;
1264 }
1265
1266 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1267 struct list_head *invalid_list);
1268 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1269 struct list_head *invalid_list);
1270
1271 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1272 hlist_for_each_entry(sp, pos, \
1273 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1274 if ((sp)->gfn != (gfn)) {} else
1275
1276 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1277 hlist_for_each_entry(sp, pos, \
1278 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1279 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1280 (sp)->role.invalid) {} else
1281
1282 /* @sp->gfn should be write-protected at the call site */
1283 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1284 struct list_head *invalid_list, bool clear_unsync)
1285 {
1286 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1287 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1288 return 1;
1289 }
1290
1291 if (clear_unsync)
1292 kvm_unlink_unsync_page(vcpu->kvm, sp);
1293
1294 if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
1295 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1296 return 1;
1297 }
1298
1299 kvm_mmu_flush_tlb(vcpu);
1300 return 0;
1301 }
1302
1303 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1304 struct kvm_mmu_page *sp)
1305 {
1306 LIST_HEAD(invalid_list);
1307 int ret;
1308
1309 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1310 if (ret)
1311 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1312
1313 return ret;
1314 }
1315
1316 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1317 struct list_head *invalid_list)
1318 {
1319 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1320 }
1321
1322 /* @gfn should be write-protected at the call site */
1323 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1324 {
1325 struct kvm_mmu_page *s;
1326 struct hlist_node *node;
1327 LIST_HEAD(invalid_list);
1328 bool flush = false;
1329
1330 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1331 if (!s->unsync)
1332 continue;
1333
1334 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1335 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1336 (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
1337 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1338 continue;
1339 }
1340 kvm_unlink_unsync_page(vcpu->kvm, s);
1341 flush = true;
1342 }
1343
1344 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1345 if (flush)
1346 kvm_mmu_flush_tlb(vcpu);
1347 }
1348
1349 struct mmu_page_path {
1350 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1351 unsigned int idx[PT64_ROOT_LEVEL-1];
1352 };
1353
1354 #define for_each_sp(pvec, sp, parents, i) \
1355 for (i = mmu_pages_next(&pvec, &parents, -1), \
1356 sp = pvec.page[i].sp; \
1357 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1358 i = mmu_pages_next(&pvec, &parents, i))
1359
1360 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1361 struct mmu_page_path *parents,
1362 int i)
1363 {
1364 int n;
1365
1366 for (n = i+1; n < pvec->nr; n++) {
1367 struct kvm_mmu_page *sp = pvec->page[n].sp;
1368
1369 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1370 parents->idx[0] = pvec->page[n].idx;
1371 return n;
1372 }
1373
1374 parents->parent[sp->role.level-2] = sp;
1375 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1376 }
1377
1378 return n;
1379 }
1380
1381 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1382 {
1383 struct kvm_mmu_page *sp;
1384 unsigned int level = 0;
1385
1386 do {
1387 unsigned int idx = parents->idx[level];
1388
1389 sp = parents->parent[level];
1390 if (!sp)
1391 return;
1392
1393 --sp->unsync_children;
1394 WARN_ON((int)sp->unsync_children < 0);
1395 __clear_bit(idx, sp->unsync_child_bitmap);
1396 level++;
1397 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1398 }
1399
1400 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1401 struct mmu_page_path *parents,
1402 struct kvm_mmu_pages *pvec)
1403 {
1404 parents->parent[parent->role.level-1] = NULL;
1405 pvec->nr = 0;
1406 }
1407
1408 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1409 struct kvm_mmu_page *parent)
1410 {
1411 int i;
1412 struct kvm_mmu_page *sp;
1413 struct mmu_page_path parents;
1414 struct kvm_mmu_pages pages;
1415 LIST_HEAD(invalid_list);
1416
1417 kvm_mmu_pages_init(parent, &parents, &pages);
1418 while (mmu_unsync_walk(parent, &pages)) {
1419 int protected = 0;
1420
1421 for_each_sp(pages, sp, parents, i)
1422 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1423
1424 if (protected)
1425 kvm_flush_remote_tlbs(vcpu->kvm);
1426
1427 for_each_sp(pages, sp, parents, i) {
1428 kvm_sync_page(vcpu, sp, &invalid_list);
1429 mmu_pages_clear_parents(&parents);
1430 }
1431 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1432 cond_resched_lock(&vcpu->kvm->mmu_lock);
1433 kvm_mmu_pages_init(parent, &parents, &pages);
1434 }
1435 }
1436
1437 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1438 gfn_t gfn,
1439 gva_t gaddr,
1440 unsigned level,
1441 int direct,
1442 unsigned access,
1443 u64 *parent_pte)
1444 {
1445 union kvm_mmu_page_role role;
1446 unsigned quadrant;
1447 struct kvm_mmu_page *sp;
1448 struct hlist_node *node;
1449 bool need_sync = false;
1450
1451 role = vcpu->arch.mmu.base_role;
1452 role.level = level;
1453 role.direct = direct;
1454 if (role.direct)
1455 role.cr4_pae = 0;
1456 role.access = access;
1457 if (!vcpu->arch.mmu.direct_map
1458 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1459 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1460 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1461 role.quadrant = quadrant;
1462 }
1463 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1464 if (!need_sync && sp->unsync)
1465 need_sync = true;
1466
1467 if (sp->role.word != role.word)
1468 continue;
1469
1470 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1471 break;
1472
1473 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1474 if (sp->unsync_children) {
1475 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1476 kvm_mmu_mark_parents_unsync(sp);
1477 } else if (sp->unsync)
1478 kvm_mmu_mark_parents_unsync(sp);
1479
1480 trace_kvm_mmu_get_page(sp, false);
1481 return sp;
1482 }
1483 ++vcpu->kvm->stat.mmu_cache_miss;
1484 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1485 if (!sp)
1486 return sp;
1487 sp->gfn = gfn;
1488 sp->role = role;
1489 hlist_add_head(&sp->hash_link,
1490 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1491 if (!direct) {
1492 if (rmap_write_protect(vcpu->kvm, gfn))
1493 kvm_flush_remote_tlbs(vcpu->kvm);
1494 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1495 kvm_sync_pages(vcpu, gfn);
1496
1497 account_shadowed(vcpu->kvm, gfn);
1498 }
1499 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1500 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1501 else
1502 nonpaging_prefetch_page(vcpu, sp);
1503 trace_kvm_mmu_get_page(sp, true);
1504 return sp;
1505 }
1506
1507 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1508 struct kvm_vcpu *vcpu, u64 addr)
1509 {
1510 iterator->addr = addr;
1511 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1512 iterator->level = vcpu->arch.mmu.shadow_root_level;
1513
1514 if (iterator->level == PT64_ROOT_LEVEL &&
1515 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1516 !vcpu->arch.mmu.direct_map)
1517 --iterator->level;
1518
1519 if (iterator->level == PT32E_ROOT_LEVEL) {
1520 iterator->shadow_addr
1521 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1522 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1523 --iterator->level;
1524 if (!iterator->shadow_addr)
1525 iterator->level = 0;
1526 }
1527 }
1528
1529 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1530 {
1531 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1532 return false;
1533
1534 if (iterator->level == PT_PAGE_TABLE_LEVEL)
1535 if (is_large_pte(*iterator->sptep))
1536 return false;
1537
1538 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1539 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1540 return true;
1541 }
1542
1543 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1544 {
1545 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1546 --iterator->level;
1547 }
1548
1549 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1550 {
1551 u64 spte;
1552
1553 spte = __pa(sp->spt)
1554 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1555 | PT_WRITABLE_MASK | PT_USER_MASK;
1556 __set_spte(sptep, spte);
1557 }
1558
1559 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1560 {
1561 if (is_large_pte(*sptep)) {
1562 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1563 kvm_flush_remote_tlbs(vcpu->kvm);
1564 }
1565 }
1566
1567 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1568 unsigned direct_access)
1569 {
1570 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1571 struct kvm_mmu_page *child;
1572
1573 /*
1574 * For the direct sp, if the guest pte's dirty bit
1575 * changed form clean to dirty, it will corrupt the
1576 * sp's access: allow writable in the read-only sp,
1577 * so we should update the spte at this point to get
1578 * a new sp with the correct access.
1579 */
1580 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1581 if (child->role.access == direct_access)
1582 return;
1583
1584 mmu_page_remove_parent_pte(child, sptep);
1585 __set_spte(sptep, shadow_trap_nonpresent_pte);
1586 kvm_flush_remote_tlbs(vcpu->kvm);
1587 }
1588 }
1589
1590 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1591 struct kvm_mmu_page *sp)
1592 {
1593 unsigned i;
1594 u64 *pt;
1595 u64 ent;
1596
1597 pt = sp->spt;
1598
1599 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1600 ent = pt[i];
1601
1602 if (is_shadow_present_pte(ent)) {
1603 if (!is_last_spte(ent, sp->role.level)) {
1604 ent &= PT64_BASE_ADDR_MASK;
1605 mmu_page_remove_parent_pte(page_header(ent),
1606 &pt[i]);
1607 } else {
1608 if (is_large_pte(ent))
1609 --kvm->stat.lpages;
1610 drop_spte(kvm, &pt[i],
1611 shadow_trap_nonpresent_pte);
1612 }
1613 }
1614 pt[i] = shadow_trap_nonpresent_pte;
1615 }
1616 }
1617
1618 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1619 {
1620 mmu_page_remove_parent_pte(sp, parent_pte);
1621 }
1622
1623 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1624 {
1625 int i;
1626 struct kvm_vcpu *vcpu;
1627
1628 kvm_for_each_vcpu(i, vcpu, kvm)
1629 vcpu->arch.last_pte_updated = NULL;
1630 }
1631
1632 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1633 {
1634 u64 *parent_pte;
1635
1636 while (sp->multimapped || sp->parent_pte) {
1637 if (!sp->multimapped)
1638 parent_pte = sp->parent_pte;
1639 else {
1640 struct kvm_pte_chain *chain;
1641
1642 chain = container_of(sp->parent_ptes.first,
1643 struct kvm_pte_chain, link);
1644 parent_pte = chain->parent_ptes[0];
1645 }
1646 BUG_ON(!parent_pte);
1647 kvm_mmu_put_page(sp, parent_pte);
1648 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1649 }
1650 }
1651
1652 static int mmu_zap_unsync_children(struct kvm *kvm,
1653 struct kvm_mmu_page *parent,
1654 struct list_head *invalid_list)
1655 {
1656 int i, zapped = 0;
1657 struct mmu_page_path parents;
1658 struct kvm_mmu_pages pages;
1659
1660 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1661 return 0;
1662
1663 kvm_mmu_pages_init(parent, &parents, &pages);
1664 while (mmu_unsync_walk(parent, &pages)) {
1665 struct kvm_mmu_page *sp;
1666
1667 for_each_sp(pages, sp, parents, i) {
1668 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1669 mmu_pages_clear_parents(&parents);
1670 zapped++;
1671 }
1672 kvm_mmu_pages_init(parent, &parents, &pages);
1673 }
1674
1675 return zapped;
1676 }
1677
1678 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1679 struct list_head *invalid_list)
1680 {
1681 int ret;
1682
1683 trace_kvm_mmu_prepare_zap_page(sp);
1684 ++kvm->stat.mmu_shadow_zapped;
1685 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1686 kvm_mmu_page_unlink_children(kvm, sp);
1687 kvm_mmu_unlink_parents(kvm, sp);
1688 if (!sp->role.invalid && !sp->role.direct)
1689 unaccount_shadowed(kvm, sp->gfn);
1690 if (sp->unsync)
1691 kvm_unlink_unsync_page(kvm, sp);
1692 if (!sp->root_count) {
1693 /* Count self */
1694 ret++;
1695 list_move(&sp->link, invalid_list);
1696 } else {
1697 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1698 kvm_reload_remote_mmus(kvm);
1699 }
1700
1701 sp->role.invalid = 1;
1702 kvm_mmu_reset_last_pte_updated(kvm);
1703 return ret;
1704 }
1705
1706 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1707 struct list_head *invalid_list)
1708 {
1709 struct kvm_mmu_page *sp;
1710
1711 if (list_empty(invalid_list))
1712 return;
1713
1714 kvm_flush_remote_tlbs(kvm);
1715
1716 do {
1717 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1718 WARN_ON(!sp->role.invalid || sp->root_count);
1719 kvm_mmu_free_page(kvm, sp);
1720 } while (!list_empty(invalid_list));
1721
1722 }
1723
1724 /*
1725 * Changing the number of mmu pages allocated to the vm
1726 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1727 */
1728 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1729 {
1730 LIST_HEAD(invalid_list);
1731 /*
1732 * If we set the number of mmu pages to be smaller be than the
1733 * number of actived pages , we must to free some mmu pages before we
1734 * change the value
1735 */
1736
1737 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1738 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1739 !list_empty(&kvm->arch.active_mmu_pages)) {
1740 struct kvm_mmu_page *page;
1741
1742 page = container_of(kvm->arch.active_mmu_pages.prev,
1743 struct kvm_mmu_page, link);
1744 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1745 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1746 }
1747 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1748 }
1749
1750 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1751 }
1752
1753 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1754 {
1755 struct kvm_mmu_page *sp;
1756 struct hlist_node *node;
1757 LIST_HEAD(invalid_list);
1758 int r;
1759
1760 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1761 r = 0;
1762
1763 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1764 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1765 sp->role.word);
1766 r = 1;
1767 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1768 }
1769 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1770 return r;
1771 }
1772
1773 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1774 {
1775 struct kvm_mmu_page *sp;
1776 struct hlist_node *node;
1777 LIST_HEAD(invalid_list);
1778
1779 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1780 pgprintk("%s: zap %llx %x\n",
1781 __func__, gfn, sp->role.word);
1782 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1783 }
1784 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1785 }
1786
1787 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1788 {
1789 int slot = memslot_id(kvm, gfn);
1790 struct kvm_mmu_page *sp = page_header(__pa(pte));
1791
1792 __set_bit(slot, sp->slot_bitmap);
1793 }
1794
1795 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1796 {
1797 int i;
1798 u64 *pt = sp->spt;
1799
1800 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1801 return;
1802
1803 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1804 if (pt[i] == shadow_notrap_nonpresent_pte)
1805 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1806 }
1807 }
1808
1809 /*
1810 * The function is based on mtrr_type_lookup() in
1811 * arch/x86/kernel/cpu/mtrr/generic.c
1812 */
1813 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1814 u64 start, u64 end)
1815 {
1816 int i;
1817 u64 base, mask;
1818 u8 prev_match, curr_match;
1819 int num_var_ranges = KVM_NR_VAR_MTRR;
1820
1821 if (!mtrr_state->enabled)
1822 return 0xFF;
1823
1824 /* Make end inclusive end, instead of exclusive */
1825 end--;
1826
1827 /* Look in fixed ranges. Just return the type as per start */
1828 if (mtrr_state->have_fixed && (start < 0x100000)) {
1829 int idx;
1830
1831 if (start < 0x80000) {
1832 idx = 0;
1833 idx += (start >> 16);
1834 return mtrr_state->fixed_ranges[idx];
1835 } else if (start < 0xC0000) {
1836 idx = 1 * 8;
1837 idx += ((start - 0x80000) >> 14);
1838 return mtrr_state->fixed_ranges[idx];
1839 } else if (start < 0x1000000) {
1840 idx = 3 * 8;
1841 idx += ((start - 0xC0000) >> 12);
1842 return mtrr_state->fixed_ranges[idx];
1843 }
1844 }
1845
1846 /*
1847 * Look in variable ranges
1848 * Look of multiple ranges matching this address and pick type
1849 * as per MTRR precedence
1850 */
1851 if (!(mtrr_state->enabled & 2))
1852 return mtrr_state->def_type;
1853
1854 prev_match = 0xFF;
1855 for (i = 0; i < num_var_ranges; ++i) {
1856 unsigned short start_state, end_state;
1857
1858 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1859 continue;
1860
1861 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1862 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1863 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1864 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1865
1866 start_state = ((start & mask) == (base & mask));
1867 end_state = ((end & mask) == (base & mask));
1868 if (start_state != end_state)
1869 return 0xFE;
1870
1871 if ((start & mask) != (base & mask))
1872 continue;
1873
1874 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1875 if (prev_match == 0xFF) {
1876 prev_match = curr_match;
1877 continue;
1878 }
1879
1880 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1881 curr_match == MTRR_TYPE_UNCACHABLE)
1882 return MTRR_TYPE_UNCACHABLE;
1883
1884 if ((prev_match == MTRR_TYPE_WRBACK &&
1885 curr_match == MTRR_TYPE_WRTHROUGH) ||
1886 (prev_match == MTRR_TYPE_WRTHROUGH &&
1887 curr_match == MTRR_TYPE_WRBACK)) {
1888 prev_match = MTRR_TYPE_WRTHROUGH;
1889 curr_match = MTRR_TYPE_WRTHROUGH;
1890 }
1891
1892 if (prev_match != curr_match)
1893 return MTRR_TYPE_UNCACHABLE;
1894 }
1895
1896 if (prev_match != 0xFF)
1897 return prev_match;
1898
1899 return mtrr_state->def_type;
1900 }
1901
1902 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1903 {
1904 u8 mtrr;
1905
1906 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1907 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1908 if (mtrr == 0xfe || mtrr == 0xff)
1909 mtrr = MTRR_TYPE_WRBACK;
1910 return mtrr;
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1913
1914 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1915 {
1916 trace_kvm_mmu_unsync_page(sp);
1917 ++vcpu->kvm->stat.mmu_unsync;
1918 sp->unsync = 1;
1919
1920 kvm_mmu_mark_parents_unsync(sp);
1921 mmu_convert_notrap(sp);
1922 }
1923
1924 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1925 {
1926 struct kvm_mmu_page *s;
1927 struct hlist_node *node;
1928
1929 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1930 if (s->unsync)
1931 continue;
1932 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1933 __kvm_unsync_page(vcpu, s);
1934 }
1935 }
1936
1937 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1938 bool can_unsync)
1939 {
1940 struct kvm_mmu_page *s;
1941 struct hlist_node *node;
1942 bool need_unsync = false;
1943
1944 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1945 if (!can_unsync)
1946 return 1;
1947
1948 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1949 return 1;
1950
1951 if (!need_unsync && !s->unsync) {
1952 if (!oos_shadow)
1953 return 1;
1954 need_unsync = true;
1955 }
1956 }
1957 if (need_unsync)
1958 kvm_unsync_pages(vcpu, gfn);
1959 return 0;
1960 }
1961
1962 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1963 unsigned pte_access, int user_fault,
1964 int write_fault, int dirty, int level,
1965 gfn_t gfn, pfn_t pfn, bool speculative,
1966 bool can_unsync, bool reset_host_protection)
1967 {
1968 u64 spte;
1969 int ret = 0;
1970
1971 /*
1972 * We don't set the accessed bit, since we sometimes want to see
1973 * whether the guest actually used the pte (in order to detect
1974 * demand paging).
1975 */
1976 spte = shadow_base_present_pte;
1977 if (!speculative)
1978 spte |= shadow_accessed_mask;
1979 if (!dirty)
1980 pte_access &= ~ACC_WRITE_MASK;
1981 if (pte_access & ACC_EXEC_MASK)
1982 spte |= shadow_x_mask;
1983 else
1984 spte |= shadow_nx_mask;
1985 if (pte_access & ACC_USER_MASK)
1986 spte |= shadow_user_mask;
1987 if (level > PT_PAGE_TABLE_LEVEL)
1988 spte |= PT_PAGE_SIZE_MASK;
1989 if (tdp_enabled)
1990 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1991 kvm_is_mmio_pfn(pfn));
1992
1993 if (reset_host_protection)
1994 spte |= SPTE_HOST_WRITEABLE;
1995
1996 spte |= (u64)pfn << PAGE_SHIFT;
1997
1998 if ((pte_access & ACC_WRITE_MASK)
1999 || (!vcpu->arch.mmu.direct_map && write_fault
2000 && !is_write_protection(vcpu) && !user_fault)) {
2001
2002 if (level > PT_PAGE_TABLE_LEVEL &&
2003 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2004 ret = 1;
2005 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2006 goto done;
2007 }
2008
2009 spte |= PT_WRITABLE_MASK;
2010
2011 if (!vcpu->arch.mmu.direct_map
2012 && !(pte_access & ACC_WRITE_MASK))
2013 spte &= ~PT_USER_MASK;
2014
2015 /*
2016 * Optimization: for pte sync, if spte was writable the hash
2017 * lookup is unnecessary (and expensive). Write protection
2018 * is responsibility of mmu_get_page / kvm_sync_page.
2019 * Same reasoning can be applied to dirty page accounting.
2020 */
2021 if (!can_unsync && is_writable_pte(*sptep))
2022 goto set_pte;
2023
2024 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2025 pgprintk("%s: found shadow page for %llx, marking ro\n",
2026 __func__, gfn);
2027 ret = 1;
2028 pte_access &= ~ACC_WRITE_MASK;
2029 if (is_writable_pte(spte))
2030 spte &= ~PT_WRITABLE_MASK;
2031 }
2032 }
2033
2034 if (pte_access & ACC_WRITE_MASK)
2035 mark_page_dirty(vcpu->kvm, gfn);
2036
2037 set_pte:
2038 update_spte(sptep, spte);
2039 done:
2040 return ret;
2041 }
2042
2043 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2044 unsigned pt_access, unsigned pte_access,
2045 int user_fault, int write_fault, int dirty,
2046 int *ptwrite, int level, gfn_t gfn,
2047 pfn_t pfn, bool speculative,
2048 bool reset_host_protection)
2049 {
2050 int was_rmapped = 0;
2051 int rmap_count;
2052
2053 pgprintk("%s: spte %llx access %x write_fault %d"
2054 " user_fault %d gfn %llx\n",
2055 __func__, *sptep, pt_access,
2056 write_fault, user_fault, gfn);
2057
2058 if (is_rmap_spte(*sptep)) {
2059 /*
2060 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2061 * the parent of the now unreachable PTE.
2062 */
2063 if (level > PT_PAGE_TABLE_LEVEL &&
2064 !is_large_pte(*sptep)) {
2065 struct kvm_mmu_page *child;
2066 u64 pte = *sptep;
2067
2068 child = page_header(pte & PT64_BASE_ADDR_MASK);
2069 mmu_page_remove_parent_pte(child, sptep);
2070 __set_spte(sptep, shadow_trap_nonpresent_pte);
2071 kvm_flush_remote_tlbs(vcpu->kvm);
2072 } else if (pfn != spte_to_pfn(*sptep)) {
2073 pgprintk("hfn old %llx new %llx\n",
2074 spte_to_pfn(*sptep), pfn);
2075 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2076 kvm_flush_remote_tlbs(vcpu->kvm);
2077 } else
2078 was_rmapped = 1;
2079 }
2080
2081 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2082 dirty, level, gfn, pfn, speculative, true,
2083 reset_host_protection)) {
2084 if (write_fault)
2085 *ptwrite = 1;
2086 kvm_mmu_flush_tlb(vcpu);
2087 }
2088
2089 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2090 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2091 is_large_pte(*sptep)? "2MB" : "4kB",
2092 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2093 *sptep, sptep);
2094 if (!was_rmapped && is_large_pte(*sptep))
2095 ++vcpu->kvm->stat.lpages;
2096
2097 page_header_update_slot(vcpu->kvm, sptep, gfn);
2098 if (!was_rmapped) {
2099 rmap_count = rmap_add(vcpu, sptep, gfn);
2100 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2101 rmap_recycle(vcpu, sptep, gfn);
2102 }
2103 kvm_release_pfn_clean(pfn);
2104 if (speculative) {
2105 vcpu->arch.last_pte_updated = sptep;
2106 vcpu->arch.last_pte_gfn = gfn;
2107 }
2108 }
2109
2110 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2111 {
2112 }
2113
2114 static struct kvm_memory_slot *
2115 pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log)
2116 {
2117 struct kvm_memory_slot *slot;
2118
2119 slot = gfn_to_memslot(vcpu->kvm, gfn);
2120 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
2121 (no_dirty_log && slot->dirty_bitmap))
2122 slot = NULL;
2123
2124 return slot;
2125 }
2126
2127 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2128 bool no_dirty_log)
2129 {
2130 struct kvm_memory_slot *slot;
2131 unsigned long hva;
2132
2133 slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log);
2134 if (!slot) {
2135 get_page(bad_page);
2136 return page_to_pfn(bad_page);
2137 }
2138
2139 hva = gfn_to_hva_memslot(slot, gfn);
2140
2141 return hva_to_pfn_atomic(vcpu->kvm, hva);
2142 }
2143
2144 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2145 struct kvm_mmu_page *sp,
2146 u64 *start, u64 *end)
2147 {
2148 struct page *pages[PTE_PREFETCH_NUM];
2149 unsigned access = sp->role.access;
2150 int i, ret;
2151 gfn_t gfn;
2152
2153 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2154 if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK))
2155 return -1;
2156
2157 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2158 if (ret <= 0)
2159 return -1;
2160
2161 for (i = 0; i < ret; i++, gfn++, start++)
2162 mmu_set_spte(vcpu, start, ACC_ALL,
2163 access, 0, 0, 1, NULL,
2164 sp->role.level, gfn,
2165 page_to_pfn(pages[i]), true, true);
2166
2167 return 0;
2168 }
2169
2170 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2171 struct kvm_mmu_page *sp, u64 *sptep)
2172 {
2173 u64 *spte, *start = NULL;
2174 int i;
2175
2176 WARN_ON(!sp->role.direct);
2177
2178 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2179 spte = sp->spt + i;
2180
2181 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2182 if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2183 if (!start)
2184 continue;
2185 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2186 break;
2187 start = NULL;
2188 } else if (!start)
2189 start = spte;
2190 }
2191 }
2192
2193 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2194 {
2195 struct kvm_mmu_page *sp;
2196
2197 /*
2198 * Since it's no accessed bit on EPT, it's no way to
2199 * distinguish between actually accessed translations
2200 * and prefetched, so disable pte prefetch if EPT is
2201 * enabled.
2202 */
2203 if (!shadow_accessed_mask)
2204 return;
2205
2206 sp = page_header(__pa(sptep));
2207 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2208 return;
2209
2210 __direct_pte_prefetch(vcpu, sp, sptep);
2211 }
2212
2213 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2214 int level, gfn_t gfn, pfn_t pfn)
2215 {
2216 struct kvm_shadow_walk_iterator iterator;
2217 struct kvm_mmu_page *sp;
2218 int pt_write = 0;
2219 gfn_t pseudo_gfn;
2220
2221 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2222 if (iterator.level == level) {
2223 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
2224 0, write, 1, &pt_write,
2225 level, gfn, pfn, false, true);
2226 direct_pte_prefetch(vcpu, iterator.sptep);
2227 ++vcpu->stat.pf_fixed;
2228 break;
2229 }
2230
2231 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2232 u64 base_addr = iterator.addr;
2233
2234 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2235 pseudo_gfn = base_addr >> PAGE_SHIFT;
2236 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2237 iterator.level - 1,
2238 1, ACC_ALL, iterator.sptep);
2239 if (!sp) {
2240 pgprintk("nonpaging_map: ENOMEM\n");
2241 kvm_release_pfn_clean(pfn);
2242 return -ENOMEM;
2243 }
2244
2245 __set_spte(iterator.sptep,
2246 __pa(sp->spt)
2247 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2248 | shadow_user_mask | shadow_x_mask
2249 | shadow_accessed_mask);
2250 }
2251 }
2252 return pt_write;
2253 }
2254
2255 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2256 {
2257 siginfo_t info;
2258
2259 info.si_signo = SIGBUS;
2260 info.si_errno = 0;
2261 info.si_code = BUS_MCEERR_AR;
2262 info.si_addr = (void __user *)address;
2263 info.si_addr_lsb = PAGE_SHIFT;
2264
2265 send_sig_info(SIGBUS, &info, tsk);
2266 }
2267
2268 static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2269 {
2270 kvm_release_pfn_clean(pfn);
2271 if (is_hwpoison_pfn(pfn)) {
2272 kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
2273 return 0;
2274 } else if (is_fault_pfn(pfn))
2275 return -EFAULT;
2276
2277 return 1;
2278 }
2279
2280 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
2281 {
2282 int r;
2283 int level;
2284 pfn_t pfn;
2285 unsigned long mmu_seq;
2286
2287 level = mapping_level(vcpu, gfn);
2288
2289 /*
2290 * This path builds a PAE pagetable - so we can map 2mb pages at
2291 * maximum. Therefore check if the level is larger than that.
2292 */
2293 if (level > PT_DIRECTORY_LEVEL)
2294 level = PT_DIRECTORY_LEVEL;
2295
2296 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2297
2298 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2299 smp_rmb();
2300 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2301
2302 /* mmio */
2303 if (is_error_pfn(pfn))
2304 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2305
2306 spin_lock(&vcpu->kvm->mmu_lock);
2307 if (mmu_notifier_retry(vcpu, mmu_seq))
2308 goto out_unlock;
2309 kvm_mmu_free_some_pages(vcpu);
2310 r = __direct_map(vcpu, v, write, level, gfn, pfn);
2311 spin_unlock(&vcpu->kvm->mmu_lock);
2312
2313
2314 return r;
2315
2316 out_unlock:
2317 spin_unlock(&vcpu->kvm->mmu_lock);
2318 kvm_release_pfn_clean(pfn);
2319 return 0;
2320 }
2321
2322
2323 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2324 {
2325 int i;
2326 struct kvm_mmu_page *sp;
2327 LIST_HEAD(invalid_list);
2328
2329 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2330 return;
2331 spin_lock(&vcpu->kvm->mmu_lock);
2332 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2333 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2334 vcpu->arch.mmu.direct_map)) {
2335 hpa_t root = vcpu->arch.mmu.root_hpa;
2336
2337 sp = page_header(root);
2338 --sp->root_count;
2339 if (!sp->root_count && sp->role.invalid) {
2340 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2341 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2342 }
2343 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2344 spin_unlock(&vcpu->kvm->mmu_lock);
2345 return;
2346 }
2347 for (i = 0; i < 4; ++i) {
2348 hpa_t root = vcpu->arch.mmu.pae_root[i];
2349
2350 if (root) {
2351 root &= PT64_BASE_ADDR_MASK;
2352 sp = page_header(root);
2353 --sp->root_count;
2354 if (!sp->root_count && sp->role.invalid)
2355 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2356 &invalid_list);
2357 }
2358 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2359 }
2360 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2361 spin_unlock(&vcpu->kvm->mmu_lock);
2362 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2363 }
2364
2365 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2366 {
2367 int ret = 0;
2368
2369 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2370 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2371 ret = 1;
2372 }
2373
2374 return ret;
2375 }
2376
2377 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2378 {
2379 struct kvm_mmu_page *sp;
2380 unsigned i;
2381
2382 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2383 spin_lock(&vcpu->kvm->mmu_lock);
2384 kvm_mmu_free_some_pages(vcpu);
2385 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2386 1, ACC_ALL, NULL);
2387 ++sp->root_count;
2388 spin_unlock(&vcpu->kvm->mmu_lock);
2389 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2390 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2391 for (i = 0; i < 4; ++i) {
2392 hpa_t root = vcpu->arch.mmu.pae_root[i];
2393
2394 ASSERT(!VALID_PAGE(root));
2395 spin_lock(&vcpu->kvm->mmu_lock);
2396 kvm_mmu_free_some_pages(vcpu);
2397 sp = kvm_mmu_get_page(vcpu, i << 30, i << 30,
2398 PT32_ROOT_LEVEL, 1, ACC_ALL,
2399 NULL);
2400 root = __pa(sp->spt);
2401 ++sp->root_count;
2402 spin_unlock(&vcpu->kvm->mmu_lock);
2403 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2404 }
2405 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2406 } else
2407 BUG();
2408
2409 return 0;
2410 }
2411
2412 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2413 {
2414 struct kvm_mmu_page *sp;
2415 u64 pdptr, pm_mask;
2416 gfn_t root_gfn;
2417 int i;
2418
2419 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2420
2421 if (mmu_check_root(vcpu, root_gfn))
2422 return 1;
2423
2424 /*
2425 * Do we shadow a long mode page table? If so we need to
2426 * write-protect the guests page table root.
2427 */
2428 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2429 hpa_t root = vcpu->arch.mmu.root_hpa;
2430
2431 ASSERT(!VALID_PAGE(root));
2432
2433 spin_lock(&vcpu->kvm->mmu_lock);
2434 kvm_mmu_free_some_pages(vcpu);
2435 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2436 0, ACC_ALL, NULL);
2437 root = __pa(sp->spt);
2438 ++sp->root_count;
2439 spin_unlock(&vcpu->kvm->mmu_lock);
2440 vcpu->arch.mmu.root_hpa = root;
2441 return 0;
2442 }
2443
2444 /*
2445 * We shadow a 32 bit page table. This may be a legacy 2-level
2446 * or a PAE 3-level page table. In either case we need to be aware that
2447 * the shadow page table may be a PAE or a long mode page table.
2448 */
2449 pm_mask = PT_PRESENT_MASK;
2450 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2451 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2452
2453 for (i = 0; i < 4; ++i) {
2454 hpa_t root = vcpu->arch.mmu.pae_root[i];
2455
2456 ASSERT(!VALID_PAGE(root));
2457 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2458 pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2459 if (!is_present_gpte(pdptr)) {
2460 vcpu->arch.mmu.pae_root[i] = 0;
2461 continue;
2462 }
2463 root_gfn = pdptr >> PAGE_SHIFT;
2464 if (mmu_check_root(vcpu, root_gfn))
2465 return 1;
2466 }
2467 spin_lock(&vcpu->kvm->mmu_lock);
2468 kvm_mmu_free_some_pages(vcpu);
2469 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2470 PT32_ROOT_LEVEL, 0,
2471 ACC_ALL, NULL);
2472 root = __pa(sp->spt);
2473 ++sp->root_count;
2474 spin_unlock(&vcpu->kvm->mmu_lock);
2475
2476 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2477 }
2478 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2479
2480 /*
2481 * If we shadow a 32 bit page table with a long mode page
2482 * table we enter this path.
2483 */
2484 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2485 if (vcpu->arch.mmu.lm_root == NULL) {
2486 /*
2487 * The additional page necessary for this is only
2488 * allocated on demand.
2489 */
2490
2491 u64 *lm_root;
2492
2493 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2494 if (lm_root == NULL)
2495 return 1;
2496
2497 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2498
2499 vcpu->arch.mmu.lm_root = lm_root;
2500 }
2501
2502 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2503 }
2504
2505 return 0;
2506 }
2507
2508 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2509 {
2510 if (vcpu->arch.mmu.direct_map)
2511 return mmu_alloc_direct_roots(vcpu);
2512 else
2513 return mmu_alloc_shadow_roots(vcpu);
2514 }
2515
2516 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2517 {
2518 int i;
2519 struct kvm_mmu_page *sp;
2520
2521 if (vcpu->arch.mmu.direct_map)
2522 return;
2523
2524 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2525 return;
2526
2527 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2528 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2529 hpa_t root = vcpu->arch.mmu.root_hpa;
2530 sp = page_header(root);
2531 mmu_sync_children(vcpu, sp);
2532 return;
2533 }
2534 for (i = 0; i < 4; ++i) {
2535 hpa_t root = vcpu->arch.mmu.pae_root[i];
2536
2537 if (root && VALID_PAGE(root)) {
2538 root &= PT64_BASE_ADDR_MASK;
2539 sp = page_header(root);
2540 mmu_sync_children(vcpu, sp);
2541 }
2542 }
2543 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2544 }
2545
2546 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2547 {
2548 spin_lock(&vcpu->kvm->mmu_lock);
2549 mmu_sync_roots(vcpu);
2550 spin_unlock(&vcpu->kvm->mmu_lock);
2551 }
2552
2553 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2554 u32 access, u32 *error)
2555 {
2556 if (error)
2557 *error = 0;
2558 return vaddr;
2559 }
2560
2561 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2562 u32 access, u32 *error)
2563 {
2564 if (error)
2565 *error = 0;
2566 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2567 }
2568
2569 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2570 u32 error_code)
2571 {
2572 gfn_t gfn;
2573 int r;
2574
2575 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2576 r = mmu_topup_memory_caches(vcpu);
2577 if (r)
2578 return r;
2579
2580 ASSERT(vcpu);
2581 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2582
2583 gfn = gva >> PAGE_SHIFT;
2584
2585 return nonpaging_map(vcpu, gva & PAGE_MASK,
2586 error_code & PFERR_WRITE_MASK, gfn);
2587 }
2588
2589 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2590 u32 error_code)
2591 {
2592 pfn_t pfn;
2593 int r;
2594 int level;
2595 gfn_t gfn = gpa >> PAGE_SHIFT;
2596 unsigned long mmu_seq;
2597
2598 ASSERT(vcpu);
2599 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2600
2601 r = mmu_topup_memory_caches(vcpu);
2602 if (r)
2603 return r;
2604
2605 level = mapping_level(vcpu, gfn);
2606
2607 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2608
2609 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2610 smp_rmb();
2611 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2612 if (is_error_pfn(pfn))
2613 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2614 spin_lock(&vcpu->kvm->mmu_lock);
2615 if (mmu_notifier_retry(vcpu, mmu_seq))
2616 goto out_unlock;
2617 kvm_mmu_free_some_pages(vcpu);
2618 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2619 level, gfn, pfn);
2620 spin_unlock(&vcpu->kvm->mmu_lock);
2621
2622 return r;
2623
2624 out_unlock:
2625 spin_unlock(&vcpu->kvm->mmu_lock);
2626 kvm_release_pfn_clean(pfn);
2627 return 0;
2628 }
2629
2630 static void nonpaging_free(struct kvm_vcpu *vcpu)
2631 {
2632 mmu_free_roots(vcpu);
2633 }
2634
2635 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2636 struct kvm_mmu *context)
2637 {
2638 context->new_cr3 = nonpaging_new_cr3;
2639 context->page_fault = nonpaging_page_fault;
2640 context->gva_to_gpa = nonpaging_gva_to_gpa;
2641 context->free = nonpaging_free;
2642 context->prefetch_page = nonpaging_prefetch_page;
2643 context->sync_page = nonpaging_sync_page;
2644 context->invlpg = nonpaging_invlpg;
2645 context->root_level = 0;
2646 context->shadow_root_level = PT32E_ROOT_LEVEL;
2647 context->root_hpa = INVALID_PAGE;
2648 context->direct_map = true;
2649 context->nx = false;
2650 return 0;
2651 }
2652
2653 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2654 {
2655 ++vcpu->stat.tlb_flush;
2656 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2657 }
2658
2659 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2660 {
2661 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2662 mmu_free_roots(vcpu);
2663 }
2664
2665 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2666 {
2667 return vcpu->arch.cr3;
2668 }
2669
2670 static void inject_page_fault(struct kvm_vcpu *vcpu)
2671 {
2672 vcpu->arch.mmu.inject_page_fault(vcpu);
2673 }
2674
2675 static void paging_free(struct kvm_vcpu *vcpu)
2676 {
2677 nonpaging_free(vcpu);
2678 }
2679
2680 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2681 {
2682 int bit7;
2683
2684 bit7 = (gpte >> 7) & 1;
2685 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2686 }
2687
2688 #define PTTYPE 64
2689 #include "paging_tmpl.h"
2690 #undef PTTYPE
2691
2692 #define PTTYPE 32
2693 #include "paging_tmpl.h"
2694 #undef PTTYPE
2695
2696 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2697 struct kvm_mmu *context,
2698 int level)
2699 {
2700 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2701 u64 exb_bit_rsvd = 0;
2702
2703 if (!context->nx)
2704 exb_bit_rsvd = rsvd_bits(63, 63);
2705 switch (level) {
2706 case PT32_ROOT_LEVEL:
2707 /* no rsvd bits for 2 level 4K page table entries */
2708 context->rsvd_bits_mask[0][1] = 0;
2709 context->rsvd_bits_mask[0][0] = 0;
2710 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2711
2712 if (!is_pse(vcpu)) {
2713 context->rsvd_bits_mask[1][1] = 0;
2714 break;
2715 }
2716
2717 if (is_cpuid_PSE36())
2718 /* 36bits PSE 4MB page */
2719 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2720 else
2721 /* 32 bits PSE 4MB page */
2722 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2723 break;
2724 case PT32E_ROOT_LEVEL:
2725 context->rsvd_bits_mask[0][2] =
2726 rsvd_bits(maxphyaddr, 63) |
2727 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2728 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2729 rsvd_bits(maxphyaddr, 62); /* PDE */
2730 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2731 rsvd_bits(maxphyaddr, 62); /* PTE */
2732 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2733 rsvd_bits(maxphyaddr, 62) |
2734 rsvd_bits(13, 20); /* large page */
2735 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2736 break;
2737 case PT64_ROOT_LEVEL:
2738 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2739 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2740 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2741 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2742 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2743 rsvd_bits(maxphyaddr, 51);
2744 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2745 rsvd_bits(maxphyaddr, 51);
2746 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2747 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2748 rsvd_bits(maxphyaddr, 51) |
2749 rsvd_bits(13, 29);
2750 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2751 rsvd_bits(maxphyaddr, 51) |
2752 rsvd_bits(13, 20); /* large page */
2753 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2754 break;
2755 }
2756 }
2757
2758 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2759 struct kvm_mmu *context,
2760 int level)
2761 {
2762 context->nx = is_nx(vcpu);
2763
2764 reset_rsvds_bits_mask(vcpu, context, level);
2765
2766 ASSERT(is_pae(vcpu));
2767 context->new_cr3 = paging_new_cr3;
2768 context->page_fault = paging64_page_fault;
2769 context->gva_to_gpa = paging64_gva_to_gpa;
2770 context->prefetch_page = paging64_prefetch_page;
2771 context->sync_page = paging64_sync_page;
2772 context->invlpg = paging64_invlpg;
2773 context->free = paging_free;
2774 context->root_level = level;
2775 context->shadow_root_level = level;
2776 context->root_hpa = INVALID_PAGE;
2777 context->direct_map = false;
2778 return 0;
2779 }
2780
2781 static int paging64_init_context(struct kvm_vcpu *vcpu,
2782 struct kvm_mmu *context)
2783 {
2784 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2785 }
2786
2787 static int paging32_init_context(struct kvm_vcpu *vcpu,
2788 struct kvm_mmu *context)
2789 {
2790 context->nx = false;
2791
2792 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2793
2794 context->new_cr3 = paging_new_cr3;
2795 context->page_fault = paging32_page_fault;
2796 context->gva_to_gpa = paging32_gva_to_gpa;
2797 context->free = paging_free;
2798 context->prefetch_page = paging32_prefetch_page;
2799 context->sync_page = paging32_sync_page;
2800 context->invlpg = paging32_invlpg;
2801 context->root_level = PT32_ROOT_LEVEL;
2802 context->shadow_root_level = PT32E_ROOT_LEVEL;
2803 context->root_hpa = INVALID_PAGE;
2804 context->direct_map = false;
2805 return 0;
2806 }
2807
2808 static int paging32E_init_context(struct kvm_vcpu *vcpu,
2809 struct kvm_mmu *context)
2810 {
2811 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2812 }
2813
2814 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2815 {
2816 struct kvm_mmu *context = vcpu->arch.walk_mmu;
2817
2818 context->new_cr3 = nonpaging_new_cr3;
2819 context->page_fault = tdp_page_fault;
2820 context->free = nonpaging_free;
2821 context->prefetch_page = nonpaging_prefetch_page;
2822 context->sync_page = nonpaging_sync_page;
2823 context->invlpg = nonpaging_invlpg;
2824 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2825 context->root_hpa = INVALID_PAGE;
2826 context->direct_map = true;
2827 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2828 context->get_cr3 = get_cr3;
2829 context->inject_page_fault = kvm_inject_page_fault;
2830 context->nx = is_nx(vcpu);
2831
2832 if (!is_paging(vcpu)) {
2833 context->nx = false;
2834 context->gva_to_gpa = nonpaging_gva_to_gpa;
2835 context->root_level = 0;
2836 } else if (is_long_mode(vcpu)) {
2837 context->nx = is_nx(vcpu);
2838 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
2839 context->gva_to_gpa = paging64_gva_to_gpa;
2840 context->root_level = PT64_ROOT_LEVEL;
2841 } else if (is_pae(vcpu)) {
2842 context->nx = is_nx(vcpu);
2843 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
2844 context->gva_to_gpa = paging64_gva_to_gpa;
2845 context->root_level = PT32E_ROOT_LEVEL;
2846 } else {
2847 context->nx = false;
2848 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2849 context->gva_to_gpa = paging32_gva_to_gpa;
2850 context->root_level = PT32_ROOT_LEVEL;
2851 }
2852
2853 return 0;
2854 }
2855
2856 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
2857 {
2858 int r;
2859 ASSERT(vcpu);
2860 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2861
2862 if (!is_paging(vcpu))
2863 r = nonpaging_init_context(vcpu, context);
2864 else if (is_long_mode(vcpu))
2865 r = paging64_init_context(vcpu, context);
2866 else if (is_pae(vcpu))
2867 r = paging32E_init_context(vcpu, context);
2868 else
2869 r = paging32_init_context(vcpu, context);
2870
2871 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2872 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
2873
2874 return r;
2875 }
2876 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
2877
2878 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2879 {
2880 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
2881
2882 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
2883 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
2884 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
2885
2886 return r;
2887 }
2888
2889 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
2890 {
2891 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
2892
2893 g_context->get_cr3 = get_cr3;
2894 g_context->inject_page_fault = kvm_inject_page_fault;
2895
2896 /*
2897 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
2898 * translation of l2_gpa to l1_gpa addresses is done using the
2899 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
2900 * functions between mmu and nested_mmu are swapped.
2901 */
2902 if (!is_paging(vcpu)) {
2903 g_context->nx = false;
2904 g_context->root_level = 0;
2905 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
2906 } else if (is_long_mode(vcpu)) {
2907 g_context->nx = is_nx(vcpu);
2908 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
2909 g_context->root_level = PT64_ROOT_LEVEL;
2910 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
2911 } else if (is_pae(vcpu)) {
2912 g_context->nx = is_nx(vcpu);
2913 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
2914 g_context->root_level = PT32E_ROOT_LEVEL;
2915 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
2916 } else {
2917 g_context->nx = false;
2918 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
2919 g_context->root_level = PT32_ROOT_LEVEL;
2920 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
2921 }
2922
2923 return 0;
2924 }
2925
2926 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2927 {
2928 vcpu->arch.update_pte.pfn = bad_pfn;
2929
2930 if (mmu_is_nested(vcpu))
2931 return init_kvm_nested_mmu(vcpu);
2932 else if (tdp_enabled)
2933 return init_kvm_tdp_mmu(vcpu);
2934 else
2935 return init_kvm_softmmu(vcpu);
2936 }
2937
2938 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2939 {
2940 ASSERT(vcpu);
2941 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
2942 /* mmu.free() should set root_hpa = INVALID_PAGE */
2943 vcpu->arch.mmu.free(vcpu);
2944 }
2945
2946 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2947 {
2948 destroy_kvm_mmu(vcpu);
2949 return init_kvm_mmu(vcpu);
2950 }
2951 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2952
2953 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2954 {
2955 int r;
2956
2957 r = mmu_topup_memory_caches(vcpu);
2958 if (r)
2959 goto out;
2960 r = mmu_alloc_roots(vcpu);
2961 spin_lock(&vcpu->kvm->mmu_lock);
2962 mmu_sync_roots(vcpu);
2963 spin_unlock(&vcpu->kvm->mmu_lock);
2964 if (r)
2965 goto out;
2966 /* set_cr3() should ensure TLB has been flushed */
2967 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2968 out:
2969 return r;
2970 }
2971 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2972
2973 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2974 {
2975 mmu_free_roots(vcpu);
2976 }
2977 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
2978
2979 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2980 struct kvm_mmu_page *sp,
2981 u64 *spte)
2982 {
2983 u64 pte;
2984 struct kvm_mmu_page *child;
2985
2986 pte = *spte;
2987 if (is_shadow_present_pte(pte)) {
2988 if (is_last_spte(pte, sp->role.level))
2989 drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
2990 else {
2991 child = page_header(pte & PT64_BASE_ADDR_MASK);
2992 mmu_page_remove_parent_pte(child, spte);
2993 }
2994 }
2995 __set_spte(spte, shadow_trap_nonpresent_pte);
2996 if (is_large_pte(pte))
2997 --vcpu->kvm->stat.lpages;
2998 }
2999
3000 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3001 struct kvm_mmu_page *sp,
3002 u64 *spte,
3003 const void *new)
3004 {
3005 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3006 ++vcpu->kvm->stat.mmu_pde_zapped;
3007 return;
3008 }
3009
3010 if (is_rsvd_bits_set(&vcpu->arch.mmu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
3011 return;
3012
3013 ++vcpu->kvm->stat.mmu_pte_updated;
3014 if (!sp->role.cr4_pae)
3015 paging32_update_pte(vcpu, sp, spte, new);
3016 else
3017 paging64_update_pte(vcpu, sp, spte, new);
3018 }
3019
3020 static bool need_remote_flush(u64 old, u64 new)
3021 {
3022 if (!is_shadow_present_pte(old))
3023 return false;
3024 if (!is_shadow_present_pte(new))
3025 return true;
3026 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3027 return true;
3028 old ^= PT64_NX_MASK;
3029 new ^= PT64_NX_MASK;
3030 return (old & ~new & PT64_PERM_MASK) != 0;
3031 }
3032
3033 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3034 bool remote_flush, bool local_flush)
3035 {
3036 if (zap_page)
3037 return;
3038
3039 if (remote_flush)
3040 kvm_flush_remote_tlbs(vcpu->kvm);
3041 else if (local_flush)
3042 kvm_mmu_flush_tlb(vcpu);
3043 }
3044
3045 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3046 {
3047 u64 *spte = vcpu->arch.last_pte_updated;
3048
3049 return !!(spte && (*spte & shadow_accessed_mask));
3050 }
3051
3052 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3053 u64 gpte)
3054 {
3055 gfn_t gfn;
3056 pfn_t pfn;
3057
3058 if (!is_present_gpte(gpte))
3059 return;
3060 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
3061
3062 vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
3063 smp_rmb();
3064 pfn = gfn_to_pfn(vcpu->kvm, gfn);
3065
3066 if (is_error_pfn(pfn)) {
3067 kvm_release_pfn_clean(pfn);
3068 return;
3069 }
3070 vcpu->arch.update_pte.gfn = gfn;
3071 vcpu->arch.update_pte.pfn = pfn;
3072 }
3073
3074 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3075 {
3076 u64 *spte = vcpu->arch.last_pte_updated;
3077
3078 if (spte
3079 && vcpu->arch.last_pte_gfn == gfn
3080 && shadow_accessed_mask
3081 && !(*spte & shadow_accessed_mask)
3082 && is_shadow_present_pte(*spte))
3083 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3084 }
3085
3086 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3087 const u8 *new, int bytes,
3088 bool guest_initiated)
3089 {
3090 gfn_t gfn = gpa >> PAGE_SHIFT;
3091 union kvm_mmu_page_role mask = { .word = 0 };
3092 struct kvm_mmu_page *sp;
3093 struct hlist_node *node;
3094 LIST_HEAD(invalid_list);
3095 u64 entry, gentry;
3096 u64 *spte;
3097 unsigned offset = offset_in_page(gpa);
3098 unsigned pte_size;
3099 unsigned page_offset;
3100 unsigned misaligned;
3101 unsigned quadrant;
3102 int level;
3103 int flooded = 0;
3104 int npte;
3105 int r;
3106 int invlpg_counter;
3107 bool remote_flush, local_flush, zap_page;
3108
3109 zap_page = remote_flush = local_flush = false;
3110
3111 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3112
3113 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3114
3115 /*
3116 * Assume that the pte write on a page table of the same type
3117 * as the current vcpu paging mode. This is nearly always true
3118 * (might be false while changing modes). Note it is verified later
3119 * by update_pte().
3120 */
3121 if ((is_pae(vcpu) && bytes == 4) || !new) {
3122 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3123 if (is_pae(vcpu)) {
3124 gpa &= ~(gpa_t)7;
3125 bytes = 8;
3126 }
3127 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3128 if (r)
3129 gentry = 0;
3130 new = (const u8 *)&gentry;
3131 }
3132
3133 switch (bytes) {
3134 case 4:
3135 gentry = *(const u32 *)new;
3136 break;
3137 case 8:
3138 gentry = *(const u64 *)new;
3139 break;
3140 default:
3141 gentry = 0;
3142 break;
3143 }
3144
3145 mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
3146 spin_lock(&vcpu->kvm->mmu_lock);
3147 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3148 gentry = 0;
3149 kvm_mmu_access_page(vcpu, gfn);
3150 kvm_mmu_free_some_pages(vcpu);
3151 ++vcpu->kvm->stat.mmu_pte_write;
3152 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3153 if (guest_initiated) {
3154 if (gfn == vcpu->arch.last_pt_write_gfn
3155 && !last_updated_pte_accessed(vcpu)) {
3156 ++vcpu->arch.last_pt_write_count;
3157 if (vcpu->arch.last_pt_write_count >= 3)
3158 flooded = 1;
3159 } else {
3160 vcpu->arch.last_pt_write_gfn = gfn;
3161 vcpu->arch.last_pt_write_count = 1;
3162 vcpu->arch.last_pte_updated = NULL;
3163 }
3164 }
3165
3166 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3167 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3168 pte_size = sp->role.cr4_pae ? 8 : 4;
3169 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3170 misaligned |= bytes < 4;
3171 if (misaligned || flooded) {
3172 /*
3173 * Misaligned accesses are too much trouble to fix
3174 * up; also, they usually indicate a page is not used
3175 * as a page table.
3176 *
3177 * If we're seeing too many writes to a page,
3178 * it may no longer be a page table, or we may be
3179 * forking, in which case it is better to unmap the
3180 * page.
3181 */
3182 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3183 gpa, bytes, sp->role.word);
3184 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3185 &invalid_list);
3186 ++vcpu->kvm->stat.mmu_flooded;
3187 continue;
3188 }
3189 page_offset = offset;
3190 level = sp->role.level;
3191 npte = 1;
3192 if (!sp->role.cr4_pae) {
3193 page_offset <<= 1; /* 32->64 */
3194 /*
3195 * A 32-bit pde maps 4MB while the shadow pdes map
3196 * only 2MB. So we need to double the offset again
3197 * and zap two pdes instead of one.
3198 */
3199 if (level == PT32_ROOT_LEVEL) {
3200 page_offset &= ~7; /* kill rounding error */
3201 page_offset <<= 1;
3202 npte = 2;
3203 }
3204 quadrant = page_offset >> PAGE_SHIFT;
3205 page_offset &= ~PAGE_MASK;
3206 if (quadrant != sp->role.quadrant)
3207 continue;
3208 }
3209 local_flush = true;
3210 spte = &sp->spt[page_offset / sizeof(*spte)];
3211 while (npte--) {
3212 entry = *spte;
3213 mmu_pte_write_zap_pte(vcpu, sp, spte);
3214 if (gentry &&
3215 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3216 & mask.word))
3217 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3218 if (!remote_flush && need_remote_flush(entry, *spte))
3219 remote_flush = true;
3220 ++spte;
3221 }
3222 }
3223 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3224 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3225 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3226 spin_unlock(&vcpu->kvm->mmu_lock);
3227 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
3228 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
3229 vcpu->arch.update_pte.pfn = bad_pfn;
3230 }
3231 }
3232
3233 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3234 {
3235 gpa_t gpa;
3236 int r;
3237
3238 if (vcpu->arch.mmu.direct_map)
3239 return 0;
3240
3241 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3242
3243 spin_lock(&vcpu->kvm->mmu_lock);
3244 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3245 spin_unlock(&vcpu->kvm->mmu_lock);
3246 return r;
3247 }
3248 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3249
3250 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3251 {
3252 LIST_HEAD(invalid_list);
3253
3254 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3255 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3256 struct kvm_mmu_page *sp;
3257
3258 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3259 struct kvm_mmu_page, link);
3260 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3261 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3262 ++vcpu->kvm->stat.mmu_recycled;
3263 }
3264 }
3265
3266 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
3267 {
3268 int r;
3269 enum emulation_result er;
3270
3271 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
3272 if (r < 0)
3273 goto out;
3274
3275 if (!r) {
3276 r = 1;
3277 goto out;
3278 }
3279
3280 r = mmu_topup_memory_caches(vcpu);
3281 if (r)
3282 goto out;
3283
3284 er = emulate_instruction(vcpu, cr2, error_code, 0);
3285
3286 switch (er) {
3287 case EMULATE_DONE:
3288 return 1;
3289 case EMULATE_DO_MMIO:
3290 ++vcpu->stat.mmio_exits;
3291 /* fall through */
3292 case EMULATE_FAIL:
3293 return 0;
3294 default:
3295 BUG();
3296 }
3297 out:
3298 return r;
3299 }
3300 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3301
3302 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3303 {
3304 vcpu->arch.mmu.invlpg(vcpu, gva);
3305 kvm_mmu_flush_tlb(vcpu);
3306 ++vcpu->stat.invlpg;
3307 }
3308 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3309
3310 void kvm_enable_tdp(void)
3311 {
3312 tdp_enabled = true;
3313 }
3314 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3315
3316 void kvm_disable_tdp(void)
3317 {
3318 tdp_enabled = false;
3319 }
3320 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3321
3322 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3323 {
3324 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3325 if (vcpu->arch.mmu.lm_root != NULL)
3326 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3327 }
3328
3329 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3330 {
3331 struct page *page;
3332 int i;
3333
3334 ASSERT(vcpu);
3335
3336 /*
3337 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3338 * Therefore we need to allocate shadow page tables in the first
3339 * 4GB of memory, which happens to fit the DMA32 zone.
3340 */
3341 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3342 if (!page)
3343 return -ENOMEM;
3344
3345 vcpu->arch.mmu.pae_root = page_address(page);
3346 for (i = 0; i < 4; ++i)
3347 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3348
3349 return 0;
3350 }
3351
3352 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3353 {
3354 ASSERT(vcpu);
3355 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3356
3357 return alloc_mmu_pages(vcpu);
3358 }
3359
3360 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3361 {
3362 ASSERT(vcpu);
3363 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3364
3365 return init_kvm_mmu(vcpu);
3366 }
3367
3368 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3369 {
3370 struct kvm_mmu_page *sp;
3371
3372 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3373 int i;
3374 u64 *pt;
3375
3376 if (!test_bit(slot, sp->slot_bitmap))
3377 continue;
3378
3379 pt = sp->spt;
3380 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
3381 /* avoid RMW */
3382 if (is_writable_pte(pt[i]))
3383 pt[i] &= ~PT_WRITABLE_MASK;
3384 }
3385 kvm_flush_remote_tlbs(kvm);
3386 }
3387
3388 void kvm_mmu_zap_all(struct kvm *kvm)
3389 {
3390 struct kvm_mmu_page *sp, *node;
3391 LIST_HEAD(invalid_list);
3392
3393 spin_lock(&kvm->mmu_lock);
3394 restart:
3395 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3396 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3397 goto restart;
3398
3399 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3400 spin_unlock(&kvm->mmu_lock);
3401 }
3402
3403 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3404 struct list_head *invalid_list)
3405 {
3406 struct kvm_mmu_page *page;
3407
3408 page = container_of(kvm->arch.active_mmu_pages.prev,
3409 struct kvm_mmu_page, link);
3410 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3411 }
3412
3413 static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
3414 {
3415 struct kvm *kvm;
3416 struct kvm *kvm_freed = NULL;
3417
3418 if (nr_to_scan == 0)
3419 goto out;
3420
3421 spin_lock(&kvm_lock);
3422
3423 list_for_each_entry(kvm, &vm_list, vm_list) {
3424 int idx, freed_pages;
3425 LIST_HEAD(invalid_list);
3426
3427 idx = srcu_read_lock(&kvm->srcu);
3428 spin_lock(&kvm->mmu_lock);
3429 if (!kvm_freed && nr_to_scan > 0 &&
3430 kvm->arch.n_used_mmu_pages > 0) {
3431 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3432 &invalid_list);
3433 kvm_freed = kvm;
3434 }
3435 nr_to_scan--;
3436
3437 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3438 spin_unlock(&kvm->mmu_lock);
3439 srcu_read_unlock(&kvm->srcu, idx);
3440 }
3441 if (kvm_freed)
3442 list_move_tail(&kvm_freed->vm_list, &vm_list);
3443
3444 spin_unlock(&kvm_lock);
3445
3446 out:
3447 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3448 }
3449
3450 static struct shrinker mmu_shrinker = {
3451 .shrink = mmu_shrink,
3452 .seeks = DEFAULT_SEEKS * 10,
3453 };
3454
3455 static void mmu_destroy_caches(void)
3456 {
3457 if (pte_chain_cache)
3458 kmem_cache_destroy(pte_chain_cache);
3459 if (rmap_desc_cache)
3460 kmem_cache_destroy(rmap_desc_cache);
3461 if (mmu_page_header_cache)
3462 kmem_cache_destroy(mmu_page_header_cache);
3463 }
3464
3465 void kvm_mmu_module_exit(void)
3466 {
3467 mmu_destroy_caches();
3468 percpu_counter_destroy(&kvm_total_used_mmu_pages);
3469 unregister_shrinker(&mmu_shrinker);
3470 }
3471
3472 int kvm_mmu_module_init(void)
3473 {
3474 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
3475 sizeof(struct kvm_pte_chain),
3476 0, 0, NULL);
3477 if (!pte_chain_cache)
3478 goto nomem;
3479 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
3480 sizeof(struct kvm_rmap_desc),
3481 0, 0, NULL);
3482 if (!rmap_desc_cache)
3483 goto nomem;
3484
3485 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3486 sizeof(struct kvm_mmu_page),
3487 0, 0, NULL);
3488 if (!mmu_page_header_cache)
3489 goto nomem;
3490
3491 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3492 goto nomem;
3493
3494 register_shrinker(&mmu_shrinker);
3495
3496 return 0;
3497
3498 nomem:
3499 mmu_destroy_caches();
3500 return -ENOMEM;
3501 }
3502
3503 /*
3504 * Caculate mmu pages needed for kvm.
3505 */
3506 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3507 {
3508 int i;
3509 unsigned int nr_mmu_pages;
3510 unsigned int nr_pages = 0;
3511 struct kvm_memslots *slots;
3512
3513 slots = kvm_memslots(kvm);
3514
3515 for (i = 0; i < slots->nmemslots; i++)
3516 nr_pages += slots->memslots[i].npages;
3517
3518 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3519 nr_mmu_pages = max(nr_mmu_pages,
3520 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3521
3522 return nr_mmu_pages;
3523 }
3524
3525 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3526 unsigned len)
3527 {
3528 if (len > buffer->len)
3529 return NULL;
3530 return buffer->ptr;
3531 }
3532
3533 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3534 unsigned len)
3535 {
3536 void *ret;
3537
3538 ret = pv_mmu_peek_buffer(buffer, len);
3539 if (!ret)
3540 return ret;
3541 buffer->ptr += len;
3542 buffer->len -= len;
3543 buffer->processed += len;
3544 return ret;
3545 }
3546
3547 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3548 gpa_t addr, gpa_t value)
3549 {
3550 int bytes = 8;
3551 int r;
3552
3553 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3554 bytes = 4;
3555
3556 r = mmu_topup_memory_caches(vcpu);
3557 if (r)
3558 return r;
3559
3560 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3561 return -EFAULT;
3562
3563 return 1;
3564 }
3565
3566 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3567 {
3568 (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
3569 return 1;
3570 }
3571
3572 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3573 {
3574 spin_lock(&vcpu->kvm->mmu_lock);
3575 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3576 spin_unlock(&vcpu->kvm->mmu_lock);
3577 return 1;
3578 }
3579
3580 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3581 struct kvm_pv_mmu_op_buffer *buffer)
3582 {
3583 struct kvm_mmu_op_header *header;
3584
3585 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3586 if (!header)
3587 return 0;
3588 switch (header->op) {
3589 case KVM_MMU_OP_WRITE_PTE: {
3590 struct kvm_mmu_op_write_pte *wpte;
3591
3592 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3593 if (!wpte)
3594 return 0;
3595 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3596 wpte->pte_val);
3597 }
3598 case KVM_MMU_OP_FLUSH_TLB: {
3599 struct kvm_mmu_op_flush_tlb *ftlb;
3600
3601 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3602 if (!ftlb)
3603 return 0;
3604 return kvm_pv_mmu_flush_tlb(vcpu);
3605 }
3606 case KVM_MMU_OP_RELEASE_PT: {
3607 struct kvm_mmu_op_release_pt *rpt;
3608
3609 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3610 if (!rpt)
3611 return 0;
3612 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3613 }
3614 default: return 0;
3615 }
3616 }
3617
3618 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3619 gpa_t addr, unsigned long *ret)
3620 {
3621 int r;
3622 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3623
3624 buffer->ptr = buffer->buf;
3625 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3626 buffer->processed = 0;
3627
3628 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3629 if (r)
3630 goto out;
3631
3632 while (buffer->len) {
3633 r = kvm_pv_mmu_op_one(vcpu, buffer);
3634 if (r < 0)
3635 goto out;
3636 if (r == 0)
3637 break;
3638 }
3639
3640 r = 1;
3641 out:
3642 *ret = buffer->processed;
3643 return r;
3644 }
3645
3646 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3647 {
3648 struct kvm_shadow_walk_iterator iterator;
3649 int nr_sptes = 0;
3650
3651 spin_lock(&vcpu->kvm->mmu_lock);
3652 for_each_shadow_entry(vcpu, addr, iterator) {
3653 sptes[iterator.level-1] = *iterator.sptep;
3654 nr_sptes++;
3655 if (!is_shadow_present_pte(*iterator.sptep))
3656 break;
3657 }
3658 spin_unlock(&vcpu->kvm->mmu_lock);
3659
3660 return nr_sptes;
3661 }
3662 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3663
3664 #ifdef CONFIG_KVM_MMU_AUDIT
3665 #include "mmu_audit.c"
3666 #else
3667 static void mmu_audit_disable(void) { }
3668 #endif
3669
3670 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3671 {
3672 ASSERT(vcpu);
3673
3674 destroy_kvm_mmu(vcpu);
3675 free_mmu_pages(vcpu);
3676 mmu_free_memory_caches(vcpu);
3677 mmu_audit_disable();
3678 }
This page took 0.111378 seconds and 6 git commands to generate.