KVM: MMU: Split the main body of rmap_write_protect() off from others
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 9
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define PTE_LIST_EXT 4
139
140 #define ACC_EXEC_MASK 1
141 #define ACC_WRITE_MASK PT_WRITABLE_MASK
142 #define ACC_USER_MASK PT_USER_MASK
143 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
144
145 #include <trace/events/kvm.h>
146
147 #define CREATE_TRACE_POINTS
148 #include "mmutrace.h"
149
150 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
151
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
154 struct pte_list_desc {
155 u64 *sptes[PTE_LIST_EXT];
156 struct pte_list_desc *more;
157 };
158
159 struct kvm_shadow_walk_iterator {
160 u64 addr;
161 hpa_t shadow_addr;
162 u64 *sptep;
163 int level;
164 unsigned index;
165 };
166
167 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
168 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
169 shadow_walk_okay(&(_walker)); \
170 shadow_walk_next(&(_walker)))
171
172 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
173 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
174 shadow_walk_okay(&(_walker)) && \
175 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
176 __shadow_walk_next(&(_walker), spte))
177
178 static struct kmem_cache *pte_list_desc_cache;
179 static struct kmem_cache *mmu_page_header_cache;
180 static struct percpu_counter kvm_total_used_mmu_pages;
181
182 static u64 __read_mostly shadow_nx_mask;
183 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
184 static u64 __read_mostly shadow_user_mask;
185 static u64 __read_mostly shadow_accessed_mask;
186 static u64 __read_mostly shadow_dirty_mask;
187 static u64 __read_mostly shadow_mmio_mask;
188
189 static void mmu_spte_set(u64 *sptep, u64 spte);
190
191 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
192 {
193 shadow_mmio_mask = mmio_mask;
194 }
195 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
196
197 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
198 {
199 access &= ACC_WRITE_MASK | ACC_USER_MASK;
200
201 trace_mark_mmio_spte(sptep, gfn, access);
202 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
203 }
204
205 static bool is_mmio_spte(u64 spte)
206 {
207 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
208 }
209
210 static gfn_t get_mmio_spte_gfn(u64 spte)
211 {
212 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
213 }
214
215 static unsigned get_mmio_spte_access(u64 spte)
216 {
217 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
218 }
219
220 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
221 {
222 if (unlikely(is_noslot_pfn(pfn))) {
223 mark_mmio_spte(sptep, gfn, access);
224 return true;
225 }
226
227 return false;
228 }
229
230 static inline u64 rsvd_bits(int s, int e)
231 {
232 return ((1ULL << (e - s + 1)) - 1) << s;
233 }
234
235 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
236 u64 dirty_mask, u64 nx_mask, u64 x_mask)
237 {
238 shadow_user_mask = user_mask;
239 shadow_accessed_mask = accessed_mask;
240 shadow_dirty_mask = dirty_mask;
241 shadow_nx_mask = nx_mask;
242 shadow_x_mask = x_mask;
243 }
244 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
245
246 static int is_cpuid_PSE36(void)
247 {
248 return 1;
249 }
250
251 static int is_nx(struct kvm_vcpu *vcpu)
252 {
253 return vcpu->arch.efer & EFER_NX;
254 }
255
256 static int is_shadow_present_pte(u64 pte)
257 {
258 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
259 }
260
261 static int is_large_pte(u64 pte)
262 {
263 return pte & PT_PAGE_SIZE_MASK;
264 }
265
266 static int is_dirty_gpte(unsigned long pte)
267 {
268 return pte & PT_DIRTY_MASK;
269 }
270
271 static int is_rmap_spte(u64 pte)
272 {
273 return is_shadow_present_pte(pte);
274 }
275
276 static int is_last_spte(u64 pte, int level)
277 {
278 if (level == PT_PAGE_TABLE_LEVEL)
279 return 1;
280 if (is_large_pte(pte))
281 return 1;
282 return 0;
283 }
284
285 static pfn_t spte_to_pfn(u64 pte)
286 {
287 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
288 }
289
290 static gfn_t pse36_gfn_delta(u32 gpte)
291 {
292 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
293
294 return (gpte & PT32_DIR_PSE36_MASK) << shift;
295 }
296
297 #ifdef CONFIG_X86_64
298 static void __set_spte(u64 *sptep, u64 spte)
299 {
300 *sptep = spte;
301 }
302
303 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
304 {
305 *sptep = spte;
306 }
307
308 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
309 {
310 return xchg(sptep, spte);
311 }
312
313 static u64 __get_spte_lockless(u64 *sptep)
314 {
315 return ACCESS_ONCE(*sptep);
316 }
317
318 static bool __check_direct_spte_mmio_pf(u64 spte)
319 {
320 /* It is valid if the spte is zapped. */
321 return spte == 0ull;
322 }
323 #else
324 union split_spte {
325 struct {
326 u32 spte_low;
327 u32 spte_high;
328 };
329 u64 spte;
330 };
331
332 static void count_spte_clear(u64 *sptep, u64 spte)
333 {
334 struct kvm_mmu_page *sp = page_header(__pa(sptep));
335
336 if (is_shadow_present_pte(spte))
337 return;
338
339 /* Ensure the spte is completely set before we increase the count */
340 smp_wmb();
341 sp->clear_spte_count++;
342 }
343
344 static void __set_spte(u64 *sptep, u64 spte)
345 {
346 union split_spte *ssptep, sspte;
347
348 ssptep = (union split_spte *)sptep;
349 sspte = (union split_spte)spte;
350
351 ssptep->spte_high = sspte.spte_high;
352
353 /*
354 * If we map the spte from nonpresent to present, We should store
355 * the high bits firstly, then set present bit, so cpu can not
356 * fetch this spte while we are setting the spte.
357 */
358 smp_wmb();
359
360 ssptep->spte_low = sspte.spte_low;
361 }
362
363 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
364 {
365 union split_spte *ssptep, sspte;
366
367 ssptep = (union split_spte *)sptep;
368 sspte = (union split_spte)spte;
369
370 ssptep->spte_low = sspte.spte_low;
371
372 /*
373 * If we map the spte from present to nonpresent, we should clear
374 * present bit firstly to avoid vcpu fetch the old high bits.
375 */
376 smp_wmb();
377
378 ssptep->spte_high = sspte.spte_high;
379 count_spte_clear(sptep, spte);
380 }
381
382 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
383 {
384 union split_spte *ssptep, sspte, orig;
385
386 ssptep = (union split_spte *)sptep;
387 sspte = (union split_spte)spte;
388
389 /* xchg acts as a barrier before the setting of the high bits */
390 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
391 orig.spte_high = ssptep->spte_high;
392 ssptep->spte_high = sspte.spte_high;
393 count_spte_clear(sptep, spte);
394
395 return orig.spte;
396 }
397
398 /*
399 * The idea using the light way get the spte on x86_32 guest is from
400 * gup_get_pte(arch/x86/mm/gup.c).
401 * The difference is we can not catch the spte tlb flush if we leave
402 * guest mode, so we emulate it by increase clear_spte_count when spte
403 * is cleared.
404 */
405 static u64 __get_spte_lockless(u64 *sptep)
406 {
407 struct kvm_mmu_page *sp = page_header(__pa(sptep));
408 union split_spte spte, *orig = (union split_spte *)sptep;
409 int count;
410
411 retry:
412 count = sp->clear_spte_count;
413 smp_rmb();
414
415 spte.spte_low = orig->spte_low;
416 smp_rmb();
417
418 spte.spte_high = orig->spte_high;
419 smp_rmb();
420
421 if (unlikely(spte.spte_low != orig->spte_low ||
422 count != sp->clear_spte_count))
423 goto retry;
424
425 return spte.spte;
426 }
427
428 static bool __check_direct_spte_mmio_pf(u64 spte)
429 {
430 union split_spte sspte = (union split_spte)spte;
431 u32 high_mmio_mask = shadow_mmio_mask >> 32;
432
433 /* It is valid if the spte is zapped. */
434 if (spte == 0ull)
435 return true;
436
437 /* It is valid if the spte is being zapped. */
438 if (sspte.spte_low == 0ull &&
439 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
440 return true;
441
442 return false;
443 }
444 #endif
445
446 static bool spte_has_volatile_bits(u64 spte)
447 {
448 if (!shadow_accessed_mask)
449 return false;
450
451 if (!is_shadow_present_pte(spte))
452 return false;
453
454 if ((spte & shadow_accessed_mask) &&
455 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
456 return false;
457
458 return true;
459 }
460
461 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
462 {
463 return (old_spte & bit_mask) && !(new_spte & bit_mask);
464 }
465
466 /* Rules for using mmu_spte_set:
467 * Set the sptep from nonpresent to present.
468 * Note: the sptep being assigned *must* be either not present
469 * or in a state where the hardware will not attempt to update
470 * the spte.
471 */
472 static void mmu_spte_set(u64 *sptep, u64 new_spte)
473 {
474 WARN_ON(is_shadow_present_pte(*sptep));
475 __set_spte(sptep, new_spte);
476 }
477
478 /* Rules for using mmu_spte_update:
479 * Update the state bits, it means the mapped pfn is not changged.
480 */
481 static void mmu_spte_update(u64 *sptep, u64 new_spte)
482 {
483 u64 mask, old_spte = *sptep;
484
485 WARN_ON(!is_rmap_spte(new_spte));
486
487 if (!is_shadow_present_pte(old_spte))
488 return mmu_spte_set(sptep, new_spte);
489
490 new_spte |= old_spte & shadow_dirty_mask;
491
492 mask = shadow_accessed_mask;
493 if (is_writable_pte(old_spte))
494 mask |= shadow_dirty_mask;
495
496 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
497 __update_clear_spte_fast(sptep, new_spte);
498 else
499 old_spte = __update_clear_spte_slow(sptep, new_spte);
500
501 if (!shadow_accessed_mask)
502 return;
503
504 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
505 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
506 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
507 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
508 }
509
510 /*
511 * Rules for using mmu_spte_clear_track_bits:
512 * It sets the sptep from present to nonpresent, and track the
513 * state bits, it is used to clear the last level sptep.
514 */
515 static int mmu_spte_clear_track_bits(u64 *sptep)
516 {
517 pfn_t pfn;
518 u64 old_spte = *sptep;
519
520 if (!spte_has_volatile_bits(old_spte))
521 __update_clear_spte_fast(sptep, 0ull);
522 else
523 old_spte = __update_clear_spte_slow(sptep, 0ull);
524
525 if (!is_rmap_spte(old_spte))
526 return 0;
527
528 pfn = spte_to_pfn(old_spte);
529 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
530 kvm_set_pfn_accessed(pfn);
531 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
532 kvm_set_pfn_dirty(pfn);
533 return 1;
534 }
535
536 /*
537 * Rules for using mmu_spte_clear_no_track:
538 * Directly clear spte without caring the state bits of sptep,
539 * it is used to set the upper level spte.
540 */
541 static void mmu_spte_clear_no_track(u64 *sptep)
542 {
543 __update_clear_spte_fast(sptep, 0ull);
544 }
545
546 static u64 mmu_spte_get_lockless(u64 *sptep)
547 {
548 return __get_spte_lockless(sptep);
549 }
550
551 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
552 {
553 rcu_read_lock();
554 atomic_inc(&vcpu->kvm->arch.reader_counter);
555
556 /* Increase the counter before walking shadow page table */
557 smp_mb__after_atomic_inc();
558 }
559
560 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
561 {
562 /* Decrease the counter after walking shadow page table finished */
563 smp_mb__before_atomic_dec();
564 atomic_dec(&vcpu->kvm->arch.reader_counter);
565 rcu_read_unlock();
566 }
567
568 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
569 struct kmem_cache *base_cache, int min)
570 {
571 void *obj;
572
573 if (cache->nobjs >= min)
574 return 0;
575 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
576 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
577 if (!obj)
578 return -ENOMEM;
579 cache->objects[cache->nobjs++] = obj;
580 }
581 return 0;
582 }
583
584 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
585 {
586 return cache->nobjs;
587 }
588
589 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
590 struct kmem_cache *cache)
591 {
592 while (mc->nobjs)
593 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
594 }
595
596 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
597 int min)
598 {
599 void *page;
600
601 if (cache->nobjs >= min)
602 return 0;
603 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
604 page = (void *)__get_free_page(GFP_KERNEL);
605 if (!page)
606 return -ENOMEM;
607 cache->objects[cache->nobjs++] = page;
608 }
609 return 0;
610 }
611
612 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
613 {
614 while (mc->nobjs)
615 free_page((unsigned long)mc->objects[--mc->nobjs]);
616 }
617
618 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
619 {
620 int r;
621
622 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
623 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
624 if (r)
625 goto out;
626 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
627 if (r)
628 goto out;
629 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
630 mmu_page_header_cache, 4);
631 out:
632 return r;
633 }
634
635 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
636 {
637 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
638 pte_list_desc_cache);
639 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
640 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
641 mmu_page_header_cache);
642 }
643
644 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
645 size_t size)
646 {
647 void *p;
648
649 BUG_ON(!mc->nobjs);
650 p = mc->objects[--mc->nobjs];
651 return p;
652 }
653
654 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
655 {
656 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
657 sizeof(struct pte_list_desc));
658 }
659
660 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
661 {
662 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
663 }
664
665 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
666 {
667 if (!sp->role.direct)
668 return sp->gfns[index];
669
670 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
671 }
672
673 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
674 {
675 if (sp->role.direct)
676 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
677 else
678 sp->gfns[index] = gfn;
679 }
680
681 /*
682 * Return the pointer to the large page information for a given gfn,
683 * handling slots that are not large page aligned.
684 */
685 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
686 struct kvm_memory_slot *slot,
687 int level)
688 {
689 unsigned long idx;
690
691 idx = gfn_to_index(gfn, slot->base_gfn, level);
692 return &slot->arch.lpage_info[level - 2][idx];
693 }
694
695 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
696 {
697 struct kvm_memory_slot *slot;
698 struct kvm_lpage_info *linfo;
699 int i;
700
701 slot = gfn_to_memslot(kvm, gfn);
702 for (i = PT_DIRECTORY_LEVEL;
703 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
704 linfo = lpage_info_slot(gfn, slot, i);
705 linfo->write_count += 1;
706 }
707 kvm->arch.indirect_shadow_pages++;
708 }
709
710 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
711 {
712 struct kvm_memory_slot *slot;
713 struct kvm_lpage_info *linfo;
714 int i;
715
716 slot = gfn_to_memslot(kvm, gfn);
717 for (i = PT_DIRECTORY_LEVEL;
718 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
719 linfo = lpage_info_slot(gfn, slot, i);
720 linfo->write_count -= 1;
721 WARN_ON(linfo->write_count < 0);
722 }
723 kvm->arch.indirect_shadow_pages--;
724 }
725
726 static int has_wrprotected_page(struct kvm *kvm,
727 gfn_t gfn,
728 int level)
729 {
730 struct kvm_memory_slot *slot;
731 struct kvm_lpage_info *linfo;
732
733 slot = gfn_to_memslot(kvm, gfn);
734 if (slot) {
735 linfo = lpage_info_slot(gfn, slot, level);
736 return linfo->write_count;
737 }
738
739 return 1;
740 }
741
742 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
743 {
744 unsigned long page_size;
745 int i, ret = 0;
746
747 page_size = kvm_host_page_size(kvm, gfn);
748
749 for (i = PT_PAGE_TABLE_LEVEL;
750 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
751 if (page_size >= KVM_HPAGE_SIZE(i))
752 ret = i;
753 else
754 break;
755 }
756
757 return ret;
758 }
759
760 static struct kvm_memory_slot *
761 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
762 bool no_dirty_log)
763 {
764 struct kvm_memory_slot *slot;
765
766 slot = gfn_to_memslot(vcpu->kvm, gfn);
767 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
768 (no_dirty_log && slot->dirty_bitmap))
769 slot = NULL;
770
771 return slot;
772 }
773
774 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
775 {
776 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
777 }
778
779 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
780 {
781 int host_level, level, max_level;
782
783 host_level = host_mapping_level(vcpu->kvm, large_gfn);
784
785 if (host_level == PT_PAGE_TABLE_LEVEL)
786 return host_level;
787
788 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
789 kvm_x86_ops->get_lpage_level() : host_level;
790
791 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
792 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
793 break;
794
795 return level - 1;
796 }
797
798 /*
799 * Pte mapping structures:
800 *
801 * If pte_list bit zero is zero, then pte_list point to the spte.
802 *
803 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
804 * pte_list_desc containing more mappings.
805 *
806 * Returns the number of pte entries before the spte was added or zero if
807 * the spte was not added.
808 *
809 */
810 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
811 unsigned long *pte_list)
812 {
813 struct pte_list_desc *desc;
814 int i, count = 0;
815
816 if (!*pte_list) {
817 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
818 *pte_list = (unsigned long)spte;
819 } else if (!(*pte_list & 1)) {
820 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
821 desc = mmu_alloc_pte_list_desc(vcpu);
822 desc->sptes[0] = (u64 *)*pte_list;
823 desc->sptes[1] = spte;
824 *pte_list = (unsigned long)desc | 1;
825 ++count;
826 } else {
827 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
828 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
829 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
830 desc = desc->more;
831 count += PTE_LIST_EXT;
832 }
833 if (desc->sptes[PTE_LIST_EXT-1]) {
834 desc->more = mmu_alloc_pte_list_desc(vcpu);
835 desc = desc->more;
836 }
837 for (i = 0; desc->sptes[i]; ++i)
838 ++count;
839 desc->sptes[i] = spte;
840 }
841 return count;
842 }
843
844 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
845 {
846 struct pte_list_desc *desc;
847 u64 *prev_spte;
848 int i;
849
850 if (!*pte_list)
851 return NULL;
852 else if (!(*pte_list & 1)) {
853 if (!spte)
854 return (u64 *)*pte_list;
855 return NULL;
856 }
857 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
858 prev_spte = NULL;
859 while (desc) {
860 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
861 if (prev_spte == spte)
862 return desc->sptes[i];
863 prev_spte = desc->sptes[i];
864 }
865 desc = desc->more;
866 }
867 return NULL;
868 }
869
870 static void
871 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
872 int i, struct pte_list_desc *prev_desc)
873 {
874 int j;
875
876 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
877 ;
878 desc->sptes[i] = desc->sptes[j];
879 desc->sptes[j] = NULL;
880 if (j != 0)
881 return;
882 if (!prev_desc && !desc->more)
883 *pte_list = (unsigned long)desc->sptes[0];
884 else
885 if (prev_desc)
886 prev_desc->more = desc->more;
887 else
888 *pte_list = (unsigned long)desc->more | 1;
889 mmu_free_pte_list_desc(desc);
890 }
891
892 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
893 {
894 struct pte_list_desc *desc;
895 struct pte_list_desc *prev_desc;
896 int i;
897
898 if (!*pte_list) {
899 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
900 BUG();
901 } else if (!(*pte_list & 1)) {
902 rmap_printk("pte_list_remove: %p 1->0\n", spte);
903 if ((u64 *)*pte_list != spte) {
904 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
905 BUG();
906 }
907 *pte_list = 0;
908 } else {
909 rmap_printk("pte_list_remove: %p many->many\n", spte);
910 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
911 prev_desc = NULL;
912 while (desc) {
913 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
914 if (desc->sptes[i] == spte) {
915 pte_list_desc_remove_entry(pte_list,
916 desc, i,
917 prev_desc);
918 return;
919 }
920 prev_desc = desc;
921 desc = desc->more;
922 }
923 pr_err("pte_list_remove: %p many->many\n", spte);
924 BUG();
925 }
926 }
927
928 typedef void (*pte_list_walk_fn) (u64 *spte);
929 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
930 {
931 struct pte_list_desc *desc;
932 int i;
933
934 if (!*pte_list)
935 return;
936
937 if (!(*pte_list & 1))
938 return fn((u64 *)*pte_list);
939
940 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
941 while (desc) {
942 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
943 fn(desc->sptes[i]);
944 desc = desc->more;
945 }
946 }
947
948 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
949 struct kvm_memory_slot *slot)
950 {
951 struct kvm_lpage_info *linfo;
952
953 if (likely(level == PT_PAGE_TABLE_LEVEL))
954 return &slot->rmap[gfn - slot->base_gfn];
955
956 linfo = lpage_info_slot(gfn, slot, level);
957 return &linfo->rmap_pde;
958 }
959
960 /*
961 * Take gfn and return the reverse mapping to it.
962 */
963 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
964 {
965 struct kvm_memory_slot *slot;
966
967 slot = gfn_to_memslot(kvm, gfn);
968 return __gfn_to_rmap(gfn, level, slot);
969 }
970
971 static bool rmap_can_add(struct kvm_vcpu *vcpu)
972 {
973 struct kvm_mmu_memory_cache *cache;
974
975 cache = &vcpu->arch.mmu_pte_list_desc_cache;
976 return mmu_memory_cache_free_objects(cache);
977 }
978
979 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
980 {
981 struct kvm_mmu_page *sp;
982 unsigned long *rmapp;
983
984 sp = page_header(__pa(spte));
985 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
986 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
987 return pte_list_add(vcpu, spte, rmapp);
988 }
989
990 static u64 *rmap_next(unsigned long *rmapp, u64 *spte)
991 {
992 return pte_list_next(rmapp, spte);
993 }
994
995 static void rmap_remove(struct kvm *kvm, u64 *spte)
996 {
997 struct kvm_mmu_page *sp;
998 gfn_t gfn;
999 unsigned long *rmapp;
1000
1001 sp = page_header(__pa(spte));
1002 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1003 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1004 pte_list_remove(spte, rmapp);
1005 }
1006
1007 static void drop_spte(struct kvm *kvm, u64 *sptep)
1008 {
1009 if (mmu_spte_clear_track_bits(sptep))
1010 rmap_remove(kvm, sptep);
1011 }
1012
1013 static int __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
1014 {
1015 u64 *spte = NULL;
1016 int write_protected = 0;
1017
1018 while ((spte = rmap_next(rmapp, spte))) {
1019 BUG_ON(!(*spte & PT_PRESENT_MASK));
1020 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
1021
1022 if (!is_writable_pte(*spte))
1023 continue;
1024
1025 if (level == PT_PAGE_TABLE_LEVEL) {
1026 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
1027 } else {
1028 BUG_ON(!is_large_pte(*spte));
1029 drop_spte(kvm, spte);
1030 --kvm->stat.lpages;
1031 spte = NULL;
1032 }
1033
1034 write_protected = 1;
1035 }
1036
1037 return write_protected;
1038 }
1039
1040 int kvm_mmu_rmap_write_protect(struct kvm *kvm, u64 gfn,
1041 struct kvm_memory_slot *slot)
1042 {
1043 unsigned long *rmapp;
1044 int i, write_protected = 0;
1045
1046 for (i = PT_PAGE_TABLE_LEVEL;
1047 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1048 rmapp = __gfn_to_rmap(gfn, i, slot);
1049 write_protected |= __rmap_write_protect(kvm, rmapp, i);
1050 }
1051
1052 return write_protected;
1053 }
1054
1055 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1056 {
1057 struct kvm_memory_slot *slot;
1058
1059 slot = gfn_to_memslot(kvm, gfn);
1060 return kvm_mmu_rmap_write_protect(kvm, gfn, slot);
1061 }
1062
1063 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1064 unsigned long data)
1065 {
1066 u64 *spte;
1067 int need_tlb_flush = 0;
1068
1069 while ((spte = rmap_next(rmapp, NULL))) {
1070 BUG_ON(!(*spte & PT_PRESENT_MASK));
1071 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
1072 drop_spte(kvm, spte);
1073 need_tlb_flush = 1;
1074 }
1075 return need_tlb_flush;
1076 }
1077
1078 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1079 unsigned long data)
1080 {
1081 int need_flush = 0;
1082 u64 *spte, new_spte;
1083 pte_t *ptep = (pte_t *)data;
1084 pfn_t new_pfn;
1085
1086 WARN_ON(pte_huge(*ptep));
1087 new_pfn = pte_pfn(*ptep);
1088 spte = rmap_next(rmapp, NULL);
1089 while (spte) {
1090 BUG_ON(!is_shadow_present_pte(*spte));
1091 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1092 need_flush = 1;
1093 if (pte_write(*ptep)) {
1094 drop_spte(kvm, spte);
1095 spte = rmap_next(rmapp, NULL);
1096 } else {
1097 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1098 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1099
1100 new_spte &= ~PT_WRITABLE_MASK;
1101 new_spte &= ~SPTE_HOST_WRITEABLE;
1102 new_spte &= ~shadow_accessed_mask;
1103 mmu_spte_clear_track_bits(spte);
1104 mmu_spte_set(spte, new_spte);
1105 spte = rmap_next(rmapp, spte);
1106 }
1107 }
1108 if (need_flush)
1109 kvm_flush_remote_tlbs(kvm);
1110
1111 return 0;
1112 }
1113
1114 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1115 unsigned long data,
1116 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1117 unsigned long data))
1118 {
1119 int j;
1120 int ret;
1121 int retval = 0;
1122 struct kvm_memslots *slots;
1123 struct kvm_memory_slot *memslot;
1124
1125 slots = kvm_memslots(kvm);
1126
1127 kvm_for_each_memslot(memslot, slots) {
1128 unsigned long start = memslot->userspace_addr;
1129 unsigned long end;
1130
1131 end = start + (memslot->npages << PAGE_SHIFT);
1132 if (hva >= start && hva < end) {
1133 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1134 gfn_t gfn = memslot->base_gfn + gfn_offset;
1135
1136 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1137
1138 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1139 struct kvm_lpage_info *linfo;
1140
1141 linfo = lpage_info_slot(gfn, memslot,
1142 PT_DIRECTORY_LEVEL + j);
1143 ret |= handler(kvm, &linfo->rmap_pde, data);
1144 }
1145 trace_kvm_age_page(hva, memslot, ret);
1146 retval |= ret;
1147 }
1148 }
1149
1150 return retval;
1151 }
1152
1153 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1154 {
1155 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1156 }
1157
1158 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1159 {
1160 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1161 }
1162
1163 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1164 unsigned long data)
1165 {
1166 u64 *spte;
1167 int young = 0;
1168
1169 /*
1170 * Emulate the accessed bit for EPT, by checking if this page has
1171 * an EPT mapping, and clearing it if it does. On the next access,
1172 * a new EPT mapping will be established.
1173 * This has some overhead, but not as much as the cost of swapping
1174 * out actively used pages or breaking up actively used hugepages.
1175 */
1176 if (!shadow_accessed_mask)
1177 return kvm_unmap_rmapp(kvm, rmapp, data);
1178
1179 spte = rmap_next(rmapp, NULL);
1180 while (spte) {
1181 int _young;
1182 u64 _spte = *spte;
1183 BUG_ON(!(_spte & PT_PRESENT_MASK));
1184 _young = _spte & PT_ACCESSED_MASK;
1185 if (_young) {
1186 young = 1;
1187 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1188 }
1189 spte = rmap_next(rmapp, spte);
1190 }
1191 return young;
1192 }
1193
1194 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1195 unsigned long data)
1196 {
1197 u64 *spte;
1198 int young = 0;
1199
1200 /*
1201 * If there's no access bit in the secondary pte set by the
1202 * hardware it's up to gup-fast/gup to set the access bit in
1203 * the primary pte or in the page structure.
1204 */
1205 if (!shadow_accessed_mask)
1206 goto out;
1207
1208 spte = rmap_next(rmapp, NULL);
1209 while (spte) {
1210 u64 _spte = *spte;
1211 BUG_ON(!(_spte & PT_PRESENT_MASK));
1212 young = _spte & PT_ACCESSED_MASK;
1213 if (young) {
1214 young = 1;
1215 break;
1216 }
1217 spte = rmap_next(rmapp, spte);
1218 }
1219 out:
1220 return young;
1221 }
1222
1223 #define RMAP_RECYCLE_THRESHOLD 1000
1224
1225 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1226 {
1227 unsigned long *rmapp;
1228 struct kvm_mmu_page *sp;
1229
1230 sp = page_header(__pa(spte));
1231
1232 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1233
1234 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1235 kvm_flush_remote_tlbs(vcpu->kvm);
1236 }
1237
1238 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1239 {
1240 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1241 }
1242
1243 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1244 {
1245 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1246 }
1247
1248 #ifdef MMU_DEBUG
1249 static int is_empty_shadow_page(u64 *spt)
1250 {
1251 u64 *pos;
1252 u64 *end;
1253
1254 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1255 if (is_shadow_present_pte(*pos)) {
1256 printk(KERN_ERR "%s: %p %llx\n", __func__,
1257 pos, *pos);
1258 return 0;
1259 }
1260 return 1;
1261 }
1262 #endif
1263
1264 /*
1265 * This value is the sum of all of the kvm instances's
1266 * kvm->arch.n_used_mmu_pages values. We need a global,
1267 * aggregate version in order to make the slab shrinker
1268 * faster
1269 */
1270 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1271 {
1272 kvm->arch.n_used_mmu_pages += nr;
1273 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1274 }
1275
1276 /*
1277 * Remove the sp from shadow page cache, after call it,
1278 * we can not find this sp from the cache, and the shadow
1279 * page table is still valid.
1280 * It should be under the protection of mmu lock.
1281 */
1282 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1283 {
1284 ASSERT(is_empty_shadow_page(sp->spt));
1285 hlist_del(&sp->hash_link);
1286 if (!sp->role.direct)
1287 free_page((unsigned long)sp->gfns);
1288 }
1289
1290 /*
1291 * Free the shadow page table and the sp, we can do it
1292 * out of the protection of mmu lock.
1293 */
1294 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1295 {
1296 list_del(&sp->link);
1297 free_page((unsigned long)sp->spt);
1298 kmem_cache_free(mmu_page_header_cache, sp);
1299 }
1300
1301 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1302 {
1303 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1304 }
1305
1306 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1307 struct kvm_mmu_page *sp, u64 *parent_pte)
1308 {
1309 if (!parent_pte)
1310 return;
1311
1312 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1313 }
1314
1315 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1316 u64 *parent_pte)
1317 {
1318 pte_list_remove(parent_pte, &sp->parent_ptes);
1319 }
1320
1321 static void drop_parent_pte(struct kvm_mmu_page *sp,
1322 u64 *parent_pte)
1323 {
1324 mmu_page_remove_parent_pte(sp, parent_pte);
1325 mmu_spte_clear_no_track(parent_pte);
1326 }
1327
1328 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1329 u64 *parent_pte, int direct)
1330 {
1331 struct kvm_mmu_page *sp;
1332 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1333 sizeof *sp);
1334 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1335 if (!direct)
1336 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1337 PAGE_SIZE);
1338 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1339 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1340 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1341 sp->parent_ptes = 0;
1342 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1343 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1344 return sp;
1345 }
1346
1347 static void mark_unsync(u64 *spte);
1348 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1349 {
1350 pte_list_walk(&sp->parent_ptes, mark_unsync);
1351 }
1352
1353 static void mark_unsync(u64 *spte)
1354 {
1355 struct kvm_mmu_page *sp;
1356 unsigned int index;
1357
1358 sp = page_header(__pa(spte));
1359 index = spte - sp->spt;
1360 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1361 return;
1362 if (sp->unsync_children++)
1363 return;
1364 kvm_mmu_mark_parents_unsync(sp);
1365 }
1366
1367 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1368 struct kvm_mmu_page *sp)
1369 {
1370 return 1;
1371 }
1372
1373 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1374 {
1375 }
1376
1377 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1378 struct kvm_mmu_page *sp, u64 *spte,
1379 const void *pte)
1380 {
1381 WARN_ON(1);
1382 }
1383
1384 #define KVM_PAGE_ARRAY_NR 16
1385
1386 struct kvm_mmu_pages {
1387 struct mmu_page_and_offset {
1388 struct kvm_mmu_page *sp;
1389 unsigned int idx;
1390 } page[KVM_PAGE_ARRAY_NR];
1391 unsigned int nr;
1392 };
1393
1394 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1395 int idx)
1396 {
1397 int i;
1398
1399 if (sp->unsync)
1400 for (i=0; i < pvec->nr; i++)
1401 if (pvec->page[i].sp == sp)
1402 return 0;
1403
1404 pvec->page[pvec->nr].sp = sp;
1405 pvec->page[pvec->nr].idx = idx;
1406 pvec->nr++;
1407 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1408 }
1409
1410 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1411 struct kvm_mmu_pages *pvec)
1412 {
1413 int i, ret, nr_unsync_leaf = 0;
1414
1415 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1416 struct kvm_mmu_page *child;
1417 u64 ent = sp->spt[i];
1418
1419 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1420 goto clear_child_bitmap;
1421
1422 child = page_header(ent & PT64_BASE_ADDR_MASK);
1423
1424 if (child->unsync_children) {
1425 if (mmu_pages_add(pvec, child, i))
1426 return -ENOSPC;
1427
1428 ret = __mmu_unsync_walk(child, pvec);
1429 if (!ret)
1430 goto clear_child_bitmap;
1431 else if (ret > 0)
1432 nr_unsync_leaf += ret;
1433 else
1434 return ret;
1435 } else if (child->unsync) {
1436 nr_unsync_leaf++;
1437 if (mmu_pages_add(pvec, child, i))
1438 return -ENOSPC;
1439 } else
1440 goto clear_child_bitmap;
1441
1442 continue;
1443
1444 clear_child_bitmap:
1445 __clear_bit(i, sp->unsync_child_bitmap);
1446 sp->unsync_children--;
1447 WARN_ON((int)sp->unsync_children < 0);
1448 }
1449
1450
1451 return nr_unsync_leaf;
1452 }
1453
1454 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1455 struct kvm_mmu_pages *pvec)
1456 {
1457 if (!sp->unsync_children)
1458 return 0;
1459
1460 mmu_pages_add(pvec, sp, 0);
1461 return __mmu_unsync_walk(sp, pvec);
1462 }
1463
1464 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1465 {
1466 WARN_ON(!sp->unsync);
1467 trace_kvm_mmu_sync_page(sp);
1468 sp->unsync = 0;
1469 --kvm->stat.mmu_unsync;
1470 }
1471
1472 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1473 struct list_head *invalid_list);
1474 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1475 struct list_head *invalid_list);
1476
1477 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1478 hlist_for_each_entry(sp, pos, \
1479 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1480 if ((sp)->gfn != (gfn)) {} else
1481
1482 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1483 hlist_for_each_entry(sp, pos, \
1484 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1485 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1486 (sp)->role.invalid) {} else
1487
1488 /* @sp->gfn should be write-protected at the call site */
1489 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1490 struct list_head *invalid_list, bool clear_unsync)
1491 {
1492 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1493 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1494 return 1;
1495 }
1496
1497 if (clear_unsync)
1498 kvm_unlink_unsync_page(vcpu->kvm, sp);
1499
1500 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1501 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1502 return 1;
1503 }
1504
1505 kvm_mmu_flush_tlb(vcpu);
1506 return 0;
1507 }
1508
1509 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1510 struct kvm_mmu_page *sp)
1511 {
1512 LIST_HEAD(invalid_list);
1513 int ret;
1514
1515 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1516 if (ret)
1517 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1518
1519 return ret;
1520 }
1521
1522 #ifdef CONFIG_KVM_MMU_AUDIT
1523 #include "mmu_audit.c"
1524 #else
1525 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1526 static void mmu_audit_disable(void) { }
1527 #endif
1528
1529 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1530 struct list_head *invalid_list)
1531 {
1532 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1533 }
1534
1535 /* @gfn should be write-protected at the call site */
1536 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1537 {
1538 struct kvm_mmu_page *s;
1539 struct hlist_node *node;
1540 LIST_HEAD(invalid_list);
1541 bool flush = false;
1542
1543 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1544 if (!s->unsync)
1545 continue;
1546
1547 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1548 kvm_unlink_unsync_page(vcpu->kvm, s);
1549 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1550 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1551 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1552 continue;
1553 }
1554 flush = true;
1555 }
1556
1557 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1558 if (flush)
1559 kvm_mmu_flush_tlb(vcpu);
1560 }
1561
1562 struct mmu_page_path {
1563 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1564 unsigned int idx[PT64_ROOT_LEVEL-1];
1565 };
1566
1567 #define for_each_sp(pvec, sp, parents, i) \
1568 for (i = mmu_pages_next(&pvec, &parents, -1), \
1569 sp = pvec.page[i].sp; \
1570 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1571 i = mmu_pages_next(&pvec, &parents, i))
1572
1573 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1574 struct mmu_page_path *parents,
1575 int i)
1576 {
1577 int n;
1578
1579 for (n = i+1; n < pvec->nr; n++) {
1580 struct kvm_mmu_page *sp = pvec->page[n].sp;
1581
1582 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1583 parents->idx[0] = pvec->page[n].idx;
1584 return n;
1585 }
1586
1587 parents->parent[sp->role.level-2] = sp;
1588 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1589 }
1590
1591 return n;
1592 }
1593
1594 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1595 {
1596 struct kvm_mmu_page *sp;
1597 unsigned int level = 0;
1598
1599 do {
1600 unsigned int idx = parents->idx[level];
1601
1602 sp = parents->parent[level];
1603 if (!sp)
1604 return;
1605
1606 --sp->unsync_children;
1607 WARN_ON((int)sp->unsync_children < 0);
1608 __clear_bit(idx, sp->unsync_child_bitmap);
1609 level++;
1610 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1611 }
1612
1613 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1614 struct mmu_page_path *parents,
1615 struct kvm_mmu_pages *pvec)
1616 {
1617 parents->parent[parent->role.level-1] = NULL;
1618 pvec->nr = 0;
1619 }
1620
1621 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1622 struct kvm_mmu_page *parent)
1623 {
1624 int i;
1625 struct kvm_mmu_page *sp;
1626 struct mmu_page_path parents;
1627 struct kvm_mmu_pages pages;
1628 LIST_HEAD(invalid_list);
1629
1630 kvm_mmu_pages_init(parent, &parents, &pages);
1631 while (mmu_unsync_walk(parent, &pages)) {
1632 int protected = 0;
1633
1634 for_each_sp(pages, sp, parents, i)
1635 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1636
1637 if (protected)
1638 kvm_flush_remote_tlbs(vcpu->kvm);
1639
1640 for_each_sp(pages, sp, parents, i) {
1641 kvm_sync_page(vcpu, sp, &invalid_list);
1642 mmu_pages_clear_parents(&parents);
1643 }
1644 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1645 cond_resched_lock(&vcpu->kvm->mmu_lock);
1646 kvm_mmu_pages_init(parent, &parents, &pages);
1647 }
1648 }
1649
1650 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1651 {
1652 int i;
1653
1654 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1655 sp->spt[i] = 0ull;
1656 }
1657
1658 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1659 {
1660 sp->write_flooding_count = 0;
1661 }
1662
1663 static void clear_sp_write_flooding_count(u64 *spte)
1664 {
1665 struct kvm_mmu_page *sp = page_header(__pa(spte));
1666
1667 __clear_sp_write_flooding_count(sp);
1668 }
1669
1670 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1671 gfn_t gfn,
1672 gva_t gaddr,
1673 unsigned level,
1674 int direct,
1675 unsigned access,
1676 u64 *parent_pte)
1677 {
1678 union kvm_mmu_page_role role;
1679 unsigned quadrant;
1680 struct kvm_mmu_page *sp;
1681 struct hlist_node *node;
1682 bool need_sync = false;
1683
1684 role = vcpu->arch.mmu.base_role;
1685 role.level = level;
1686 role.direct = direct;
1687 if (role.direct)
1688 role.cr4_pae = 0;
1689 role.access = access;
1690 if (!vcpu->arch.mmu.direct_map
1691 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1692 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1693 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1694 role.quadrant = quadrant;
1695 }
1696 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1697 if (!need_sync && sp->unsync)
1698 need_sync = true;
1699
1700 if (sp->role.word != role.word)
1701 continue;
1702
1703 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1704 break;
1705
1706 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1707 if (sp->unsync_children) {
1708 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1709 kvm_mmu_mark_parents_unsync(sp);
1710 } else if (sp->unsync)
1711 kvm_mmu_mark_parents_unsync(sp);
1712
1713 __clear_sp_write_flooding_count(sp);
1714 trace_kvm_mmu_get_page(sp, false);
1715 return sp;
1716 }
1717 ++vcpu->kvm->stat.mmu_cache_miss;
1718 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1719 if (!sp)
1720 return sp;
1721 sp->gfn = gfn;
1722 sp->role = role;
1723 hlist_add_head(&sp->hash_link,
1724 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1725 if (!direct) {
1726 if (rmap_write_protect(vcpu->kvm, gfn))
1727 kvm_flush_remote_tlbs(vcpu->kvm);
1728 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1729 kvm_sync_pages(vcpu, gfn);
1730
1731 account_shadowed(vcpu->kvm, gfn);
1732 }
1733 init_shadow_page_table(sp);
1734 trace_kvm_mmu_get_page(sp, true);
1735 return sp;
1736 }
1737
1738 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1739 struct kvm_vcpu *vcpu, u64 addr)
1740 {
1741 iterator->addr = addr;
1742 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1743 iterator->level = vcpu->arch.mmu.shadow_root_level;
1744
1745 if (iterator->level == PT64_ROOT_LEVEL &&
1746 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1747 !vcpu->arch.mmu.direct_map)
1748 --iterator->level;
1749
1750 if (iterator->level == PT32E_ROOT_LEVEL) {
1751 iterator->shadow_addr
1752 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1753 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1754 --iterator->level;
1755 if (!iterator->shadow_addr)
1756 iterator->level = 0;
1757 }
1758 }
1759
1760 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1761 {
1762 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1763 return false;
1764
1765 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1766 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1767 return true;
1768 }
1769
1770 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1771 u64 spte)
1772 {
1773 if (is_last_spte(spte, iterator->level)) {
1774 iterator->level = 0;
1775 return;
1776 }
1777
1778 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1779 --iterator->level;
1780 }
1781
1782 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1783 {
1784 return __shadow_walk_next(iterator, *iterator->sptep);
1785 }
1786
1787 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1788 {
1789 u64 spte;
1790
1791 spte = __pa(sp->spt)
1792 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1793 | PT_WRITABLE_MASK | PT_USER_MASK;
1794 mmu_spte_set(sptep, spte);
1795 }
1796
1797 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1798 {
1799 if (is_large_pte(*sptep)) {
1800 drop_spte(vcpu->kvm, sptep);
1801 --vcpu->kvm->stat.lpages;
1802 kvm_flush_remote_tlbs(vcpu->kvm);
1803 }
1804 }
1805
1806 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1807 unsigned direct_access)
1808 {
1809 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1810 struct kvm_mmu_page *child;
1811
1812 /*
1813 * For the direct sp, if the guest pte's dirty bit
1814 * changed form clean to dirty, it will corrupt the
1815 * sp's access: allow writable in the read-only sp,
1816 * so we should update the spte at this point to get
1817 * a new sp with the correct access.
1818 */
1819 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1820 if (child->role.access == direct_access)
1821 return;
1822
1823 drop_parent_pte(child, sptep);
1824 kvm_flush_remote_tlbs(vcpu->kvm);
1825 }
1826 }
1827
1828 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1829 u64 *spte)
1830 {
1831 u64 pte;
1832 struct kvm_mmu_page *child;
1833
1834 pte = *spte;
1835 if (is_shadow_present_pte(pte)) {
1836 if (is_last_spte(pte, sp->role.level)) {
1837 drop_spte(kvm, spte);
1838 if (is_large_pte(pte))
1839 --kvm->stat.lpages;
1840 } else {
1841 child = page_header(pte & PT64_BASE_ADDR_MASK);
1842 drop_parent_pte(child, spte);
1843 }
1844 return true;
1845 }
1846
1847 if (is_mmio_spte(pte))
1848 mmu_spte_clear_no_track(spte);
1849
1850 return false;
1851 }
1852
1853 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1854 struct kvm_mmu_page *sp)
1855 {
1856 unsigned i;
1857
1858 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1859 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1860 }
1861
1862 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1863 {
1864 mmu_page_remove_parent_pte(sp, parent_pte);
1865 }
1866
1867 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1868 {
1869 u64 *parent_pte;
1870
1871 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1872 drop_parent_pte(sp, parent_pte);
1873 }
1874
1875 static int mmu_zap_unsync_children(struct kvm *kvm,
1876 struct kvm_mmu_page *parent,
1877 struct list_head *invalid_list)
1878 {
1879 int i, zapped = 0;
1880 struct mmu_page_path parents;
1881 struct kvm_mmu_pages pages;
1882
1883 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1884 return 0;
1885
1886 kvm_mmu_pages_init(parent, &parents, &pages);
1887 while (mmu_unsync_walk(parent, &pages)) {
1888 struct kvm_mmu_page *sp;
1889
1890 for_each_sp(pages, sp, parents, i) {
1891 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1892 mmu_pages_clear_parents(&parents);
1893 zapped++;
1894 }
1895 kvm_mmu_pages_init(parent, &parents, &pages);
1896 }
1897
1898 return zapped;
1899 }
1900
1901 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1902 struct list_head *invalid_list)
1903 {
1904 int ret;
1905
1906 trace_kvm_mmu_prepare_zap_page(sp);
1907 ++kvm->stat.mmu_shadow_zapped;
1908 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1909 kvm_mmu_page_unlink_children(kvm, sp);
1910 kvm_mmu_unlink_parents(kvm, sp);
1911 if (!sp->role.invalid && !sp->role.direct)
1912 unaccount_shadowed(kvm, sp->gfn);
1913 if (sp->unsync)
1914 kvm_unlink_unsync_page(kvm, sp);
1915 if (!sp->root_count) {
1916 /* Count self */
1917 ret++;
1918 list_move(&sp->link, invalid_list);
1919 kvm_mod_used_mmu_pages(kvm, -1);
1920 } else {
1921 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1922 kvm_reload_remote_mmus(kvm);
1923 }
1924
1925 sp->role.invalid = 1;
1926 return ret;
1927 }
1928
1929 static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1930 {
1931 struct kvm_mmu_page *sp;
1932
1933 list_for_each_entry(sp, invalid_list, link)
1934 kvm_mmu_isolate_page(sp);
1935 }
1936
1937 static void free_pages_rcu(struct rcu_head *head)
1938 {
1939 struct kvm_mmu_page *next, *sp;
1940
1941 sp = container_of(head, struct kvm_mmu_page, rcu);
1942 while (sp) {
1943 if (!list_empty(&sp->link))
1944 next = list_first_entry(&sp->link,
1945 struct kvm_mmu_page, link);
1946 else
1947 next = NULL;
1948 kvm_mmu_free_page(sp);
1949 sp = next;
1950 }
1951 }
1952
1953 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1954 struct list_head *invalid_list)
1955 {
1956 struct kvm_mmu_page *sp;
1957
1958 if (list_empty(invalid_list))
1959 return;
1960
1961 kvm_flush_remote_tlbs(kvm);
1962
1963 if (atomic_read(&kvm->arch.reader_counter)) {
1964 kvm_mmu_isolate_pages(invalid_list);
1965 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1966 list_del_init(invalid_list);
1967
1968 trace_kvm_mmu_delay_free_pages(sp);
1969 call_rcu(&sp->rcu, free_pages_rcu);
1970 return;
1971 }
1972
1973 do {
1974 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1975 WARN_ON(!sp->role.invalid || sp->root_count);
1976 kvm_mmu_isolate_page(sp);
1977 kvm_mmu_free_page(sp);
1978 } while (!list_empty(invalid_list));
1979
1980 }
1981
1982 /*
1983 * Changing the number of mmu pages allocated to the vm
1984 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1985 */
1986 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1987 {
1988 LIST_HEAD(invalid_list);
1989 /*
1990 * If we set the number of mmu pages to be smaller be than the
1991 * number of actived pages , we must to free some mmu pages before we
1992 * change the value
1993 */
1994
1995 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1996 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1997 !list_empty(&kvm->arch.active_mmu_pages)) {
1998 struct kvm_mmu_page *page;
1999
2000 page = container_of(kvm->arch.active_mmu_pages.prev,
2001 struct kvm_mmu_page, link);
2002 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2003 }
2004 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2005 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2006 }
2007
2008 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2009 }
2010
2011 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2012 {
2013 struct kvm_mmu_page *sp;
2014 struct hlist_node *node;
2015 LIST_HEAD(invalid_list);
2016 int r;
2017
2018 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2019 r = 0;
2020 spin_lock(&kvm->mmu_lock);
2021 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2022 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2023 sp->role.word);
2024 r = 1;
2025 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2026 }
2027 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2028 spin_unlock(&kvm->mmu_lock);
2029
2030 return r;
2031 }
2032 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2033
2034 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2035 {
2036 int slot = memslot_id(kvm, gfn);
2037 struct kvm_mmu_page *sp = page_header(__pa(pte));
2038
2039 __set_bit(slot, sp->slot_bitmap);
2040 }
2041
2042 /*
2043 * The function is based on mtrr_type_lookup() in
2044 * arch/x86/kernel/cpu/mtrr/generic.c
2045 */
2046 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2047 u64 start, u64 end)
2048 {
2049 int i;
2050 u64 base, mask;
2051 u8 prev_match, curr_match;
2052 int num_var_ranges = KVM_NR_VAR_MTRR;
2053
2054 if (!mtrr_state->enabled)
2055 return 0xFF;
2056
2057 /* Make end inclusive end, instead of exclusive */
2058 end--;
2059
2060 /* Look in fixed ranges. Just return the type as per start */
2061 if (mtrr_state->have_fixed && (start < 0x100000)) {
2062 int idx;
2063
2064 if (start < 0x80000) {
2065 idx = 0;
2066 idx += (start >> 16);
2067 return mtrr_state->fixed_ranges[idx];
2068 } else if (start < 0xC0000) {
2069 idx = 1 * 8;
2070 idx += ((start - 0x80000) >> 14);
2071 return mtrr_state->fixed_ranges[idx];
2072 } else if (start < 0x1000000) {
2073 idx = 3 * 8;
2074 idx += ((start - 0xC0000) >> 12);
2075 return mtrr_state->fixed_ranges[idx];
2076 }
2077 }
2078
2079 /*
2080 * Look in variable ranges
2081 * Look of multiple ranges matching this address and pick type
2082 * as per MTRR precedence
2083 */
2084 if (!(mtrr_state->enabled & 2))
2085 return mtrr_state->def_type;
2086
2087 prev_match = 0xFF;
2088 for (i = 0; i < num_var_ranges; ++i) {
2089 unsigned short start_state, end_state;
2090
2091 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2092 continue;
2093
2094 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2095 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2096 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2097 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2098
2099 start_state = ((start & mask) == (base & mask));
2100 end_state = ((end & mask) == (base & mask));
2101 if (start_state != end_state)
2102 return 0xFE;
2103
2104 if ((start & mask) != (base & mask))
2105 continue;
2106
2107 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2108 if (prev_match == 0xFF) {
2109 prev_match = curr_match;
2110 continue;
2111 }
2112
2113 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2114 curr_match == MTRR_TYPE_UNCACHABLE)
2115 return MTRR_TYPE_UNCACHABLE;
2116
2117 if ((prev_match == MTRR_TYPE_WRBACK &&
2118 curr_match == MTRR_TYPE_WRTHROUGH) ||
2119 (prev_match == MTRR_TYPE_WRTHROUGH &&
2120 curr_match == MTRR_TYPE_WRBACK)) {
2121 prev_match = MTRR_TYPE_WRTHROUGH;
2122 curr_match = MTRR_TYPE_WRTHROUGH;
2123 }
2124
2125 if (prev_match != curr_match)
2126 return MTRR_TYPE_UNCACHABLE;
2127 }
2128
2129 if (prev_match != 0xFF)
2130 return prev_match;
2131
2132 return mtrr_state->def_type;
2133 }
2134
2135 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2136 {
2137 u8 mtrr;
2138
2139 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2140 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2141 if (mtrr == 0xfe || mtrr == 0xff)
2142 mtrr = MTRR_TYPE_WRBACK;
2143 return mtrr;
2144 }
2145 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2146
2147 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2148 {
2149 trace_kvm_mmu_unsync_page(sp);
2150 ++vcpu->kvm->stat.mmu_unsync;
2151 sp->unsync = 1;
2152
2153 kvm_mmu_mark_parents_unsync(sp);
2154 }
2155
2156 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2157 {
2158 struct kvm_mmu_page *s;
2159 struct hlist_node *node;
2160
2161 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2162 if (s->unsync)
2163 continue;
2164 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2165 __kvm_unsync_page(vcpu, s);
2166 }
2167 }
2168
2169 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2170 bool can_unsync)
2171 {
2172 struct kvm_mmu_page *s;
2173 struct hlist_node *node;
2174 bool need_unsync = false;
2175
2176 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2177 if (!can_unsync)
2178 return 1;
2179
2180 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2181 return 1;
2182
2183 if (!need_unsync && !s->unsync) {
2184 need_unsync = true;
2185 }
2186 }
2187 if (need_unsync)
2188 kvm_unsync_pages(vcpu, gfn);
2189 return 0;
2190 }
2191
2192 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2193 unsigned pte_access, int user_fault,
2194 int write_fault, int level,
2195 gfn_t gfn, pfn_t pfn, bool speculative,
2196 bool can_unsync, bool host_writable)
2197 {
2198 u64 spte, entry = *sptep;
2199 int ret = 0;
2200
2201 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2202 return 0;
2203
2204 spte = PT_PRESENT_MASK;
2205 if (!speculative)
2206 spte |= shadow_accessed_mask;
2207
2208 if (pte_access & ACC_EXEC_MASK)
2209 spte |= shadow_x_mask;
2210 else
2211 spte |= shadow_nx_mask;
2212 if (pte_access & ACC_USER_MASK)
2213 spte |= shadow_user_mask;
2214 if (level > PT_PAGE_TABLE_LEVEL)
2215 spte |= PT_PAGE_SIZE_MASK;
2216 if (tdp_enabled)
2217 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2218 kvm_is_mmio_pfn(pfn));
2219
2220 if (host_writable)
2221 spte |= SPTE_HOST_WRITEABLE;
2222 else
2223 pte_access &= ~ACC_WRITE_MASK;
2224
2225 spte |= (u64)pfn << PAGE_SHIFT;
2226
2227 if ((pte_access & ACC_WRITE_MASK)
2228 || (!vcpu->arch.mmu.direct_map && write_fault
2229 && !is_write_protection(vcpu) && !user_fault)) {
2230
2231 if (level > PT_PAGE_TABLE_LEVEL &&
2232 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2233 ret = 1;
2234 drop_spte(vcpu->kvm, sptep);
2235 goto done;
2236 }
2237
2238 spte |= PT_WRITABLE_MASK;
2239
2240 if (!vcpu->arch.mmu.direct_map
2241 && !(pte_access & ACC_WRITE_MASK)) {
2242 spte &= ~PT_USER_MASK;
2243 /*
2244 * If we converted a user page to a kernel page,
2245 * so that the kernel can write to it when cr0.wp=0,
2246 * then we should prevent the kernel from executing it
2247 * if SMEP is enabled.
2248 */
2249 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2250 spte |= PT64_NX_MASK;
2251 }
2252
2253 /*
2254 * Optimization: for pte sync, if spte was writable the hash
2255 * lookup is unnecessary (and expensive). Write protection
2256 * is responsibility of mmu_get_page / kvm_sync_page.
2257 * Same reasoning can be applied to dirty page accounting.
2258 */
2259 if (!can_unsync && is_writable_pte(*sptep))
2260 goto set_pte;
2261
2262 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2263 pgprintk("%s: found shadow page for %llx, marking ro\n",
2264 __func__, gfn);
2265 ret = 1;
2266 pte_access &= ~ACC_WRITE_MASK;
2267 if (is_writable_pte(spte))
2268 spte &= ~PT_WRITABLE_MASK;
2269 }
2270 }
2271
2272 if (pte_access & ACC_WRITE_MASK)
2273 mark_page_dirty(vcpu->kvm, gfn);
2274
2275 set_pte:
2276 mmu_spte_update(sptep, spte);
2277 /*
2278 * If we overwrite a writable spte with a read-only one we
2279 * should flush remote TLBs. Otherwise rmap_write_protect
2280 * will find a read-only spte, even though the writable spte
2281 * might be cached on a CPU's TLB.
2282 */
2283 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2284 kvm_flush_remote_tlbs(vcpu->kvm);
2285 done:
2286 return ret;
2287 }
2288
2289 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2290 unsigned pt_access, unsigned pte_access,
2291 int user_fault, int write_fault,
2292 int *emulate, int level, gfn_t gfn,
2293 pfn_t pfn, bool speculative,
2294 bool host_writable)
2295 {
2296 int was_rmapped = 0;
2297 int rmap_count;
2298
2299 pgprintk("%s: spte %llx access %x write_fault %d"
2300 " user_fault %d gfn %llx\n",
2301 __func__, *sptep, pt_access,
2302 write_fault, user_fault, gfn);
2303
2304 if (is_rmap_spte(*sptep)) {
2305 /*
2306 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2307 * the parent of the now unreachable PTE.
2308 */
2309 if (level > PT_PAGE_TABLE_LEVEL &&
2310 !is_large_pte(*sptep)) {
2311 struct kvm_mmu_page *child;
2312 u64 pte = *sptep;
2313
2314 child = page_header(pte & PT64_BASE_ADDR_MASK);
2315 drop_parent_pte(child, sptep);
2316 kvm_flush_remote_tlbs(vcpu->kvm);
2317 } else if (pfn != spte_to_pfn(*sptep)) {
2318 pgprintk("hfn old %llx new %llx\n",
2319 spte_to_pfn(*sptep), pfn);
2320 drop_spte(vcpu->kvm, sptep);
2321 kvm_flush_remote_tlbs(vcpu->kvm);
2322 } else
2323 was_rmapped = 1;
2324 }
2325
2326 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2327 level, gfn, pfn, speculative, true,
2328 host_writable)) {
2329 if (write_fault)
2330 *emulate = 1;
2331 kvm_mmu_flush_tlb(vcpu);
2332 }
2333
2334 if (unlikely(is_mmio_spte(*sptep) && emulate))
2335 *emulate = 1;
2336
2337 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2338 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2339 is_large_pte(*sptep)? "2MB" : "4kB",
2340 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2341 *sptep, sptep);
2342 if (!was_rmapped && is_large_pte(*sptep))
2343 ++vcpu->kvm->stat.lpages;
2344
2345 if (is_shadow_present_pte(*sptep)) {
2346 page_header_update_slot(vcpu->kvm, sptep, gfn);
2347 if (!was_rmapped) {
2348 rmap_count = rmap_add(vcpu, sptep, gfn);
2349 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2350 rmap_recycle(vcpu, sptep, gfn);
2351 }
2352 }
2353 kvm_release_pfn_clean(pfn);
2354 }
2355
2356 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2357 {
2358 }
2359
2360 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2361 bool no_dirty_log)
2362 {
2363 struct kvm_memory_slot *slot;
2364 unsigned long hva;
2365
2366 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2367 if (!slot) {
2368 get_page(fault_page);
2369 return page_to_pfn(fault_page);
2370 }
2371
2372 hva = gfn_to_hva_memslot(slot, gfn);
2373
2374 return hva_to_pfn_atomic(vcpu->kvm, hva);
2375 }
2376
2377 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2378 struct kvm_mmu_page *sp,
2379 u64 *start, u64 *end)
2380 {
2381 struct page *pages[PTE_PREFETCH_NUM];
2382 unsigned access = sp->role.access;
2383 int i, ret;
2384 gfn_t gfn;
2385
2386 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2387 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2388 return -1;
2389
2390 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2391 if (ret <= 0)
2392 return -1;
2393
2394 for (i = 0; i < ret; i++, gfn++, start++)
2395 mmu_set_spte(vcpu, start, ACC_ALL,
2396 access, 0, 0, NULL,
2397 sp->role.level, gfn,
2398 page_to_pfn(pages[i]), true, true);
2399
2400 return 0;
2401 }
2402
2403 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2404 struct kvm_mmu_page *sp, u64 *sptep)
2405 {
2406 u64 *spte, *start = NULL;
2407 int i;
2408
2409 WARN_ON(!sp->role.direct);
2410
2411 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2412 spte = sp->spt + i;
2413
2414 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2415 if (is_shadow_present_pte(*spte) || spte == sptep) {
2416 if (!start)
2417 continue;
2418 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2419 break;
2420 start = NULL;
2421 } else if (!start)
2422 start = spte;
2423 }
2424 }
2425
2426 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2427 {
2428 struct kvm_mmu_page *sp;
2429
2430 /*
2431 * Since it's no accessed bit on EPT, it's no way to
2432 * distinguish between actually accessed translations
2433 * and prefetched, so disable pte prefetch if EPT is
2434 * enabled.
2435 */
2436 if (!shadow_accessed_mask)
2437 return;
2438
2439 sp = page_header(__pa(sptep));
2440 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2441 return;
2442
2443 __direct_pte_prefetch(vcpu, sp, sptep);
2444 }
2445
2446 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2447 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2448 bool prefault)
2449 {
2450 struct kvm_shadow_walk_iterator iterator;
2451 struct kvm_mmu_page *sp;
2452 int emulate = 0;
2453 gfn_t pseudo_gfn;
2454
2455 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2456 if (iterator.level == level) {
2457 unsigned pte_access = ACC_ALL;
2458
2459 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2460 0, write, &emulate,
2461 level, gfn, pfn, prefault, map_writable);
2462 direct_pte_prefetch(vcpu, iterator.sptep);
2463 ++vcpu->stat.pf_fixed;
2464 break;
2465 }
2466
2467 if (!is_shadow_present_pte(*iterator.sptep)) {
2468 u64 base_addr = iterator.addr;
2469
2470 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2471 pseudo_gfn = base_addr >> PAGE_SHIFT;
2472 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2473 iterator.level - 1,
2474 1, ACC_ALL, iterator.sptep);
2475 if (!sp) {
2476 pgprintk("nonpaging_map: ENOMEM\n");
2477 kvm_release_pfn_clean(pfn);
2478 return -ENOMEM;
2479 }
2480
2481 mmu_spte_set(iterator.sptep,
2482 __pa(sp->spt)
2483 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2484 | shadow_user_mask | shadow_x_mask
2485 | shadow_accessed_mask);
2486 }
2487 }
2488 return emulate;
2489 }
2490
2491 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2492 {
2493 siginfo_t info;
2494
2495 info.si_signo = SIGBUS;
2496 info.si_errno = 0;
2497 info.si_code = BUS_MCEERR_AR;
2498 info.si_addr = (void __user *)address;
2499 info.si_addr_lsb = PAGE_SHIFT;
2500
2501 send_sig_info(SIGBUS, &info, tsk);
2502 }
2503
2504 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2505 {
2506 kvm_release_pfn_clean(pfn);
2507 if (is_hwpoison_pfn(pfn)) {
2508 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2509 return 0;
2510 }
2511
2512 return -EFAULT;
2513 }
2514
2515 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2516 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2517 {
2518 pfn_t pfn = *pfnp;
2519 gfn_t gfn = *gfnp;
2520 int level = *levelp;
2521
2522 /*
2523 * Check if it's a transparent hugepage. If this would be an
2524 * hugetlbfs page, level wouldn't be set to
2525 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2526 * here.
2527 */
2528 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2529 level == PT_PAGE_TABLE_LEVEL &&
2530 PageTransCompound(pfn_to_page(pfn)) &&
2531 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2532 unsigned long mask;
2533 /*
2534 * mmu_notifier_retry was successful and we hold the
2535 * mmu_lock here, so the pmd can't become splitting
2536 * from under us, and in turn
2537 * __split_huge_page_refcount() can't run from under
2538 * us and we can safely transfer the refcount from
2539 * PG_tail to PG_head as we switch the pfn to tail to
2540 * head.
2541 */
2542 *levelp = level = PT_DIRECTORY_LEVEL;
2543 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2544 VM_BUG_ON((gfn & mask) != (pfn & mask));
2545 if (pfn & mask) {
2546 gfn &= ~mask;
2547 *gfnp = gfn;
2548 kvm_release_pfn_clean(pfn);
2549 pfn &= ~mask;
2550 if (!get_page_unless_zero(pfn_to_page(pfn)))
2551 BUG();
2552 *pfnp = pfn;
2553 }
2554 }
2555 }
2556
2557 static bool mmu_invalid_pfn(pfn_t pfn)
2558 {
2559 return unlikely(is_invalid_pfn(pfn));
2560 }
2561
2562 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2563 pfn_t pfn, unsigned access, int *ret_val)
2564 {
2565 bool ret = true;
2566
2567 /* The pfn is invalid, report the error! */
2568 if (unlikely(is_invalid_pfn(pfn))) {
2569 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2570 goto exit;
2571 }
2572
2573 if (unlikely(is_noslot_pfn(pfn)))
2574 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2575
2576 ret = false;
2577 exit:
2578 return ret;
2579 }
2580
2581 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2582 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2583
2584 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2585 bool prefault)
2586 {
2587 int r;
2588 int level;
2589 int force_pt_level;
2590 pfn_t pfn;
2591 unsigned long mmu_seq;
2592 bool map_writable;
2593
2594 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2595 if (likely(!force_pt_level)) {
2596 level = mapping_level(vcpu, gfn);
2597 /*
2598 * This path builds a PAE pagetable - so we can map
2599 * 2mb pages at maximum. Therefore check if the level
2600 * is larger than that.
2601 */
2602 if (level > PT_DIRECTORY_LEVEL)
2603 level = PT_DIRECTORY_LEVEL;
2604
2605 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2606 } else
2607 level = PT_PAGE_TABLE_LEVEL;
2608
2609 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2610 smp_rmb();
2611
2612 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2613 return 0;
2614
2615 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2616 return r;
2617
2618 spin_lock(&vcpu->kvm->mmu_lock);
2619 if (mmu_notifier_retry(vcpu, mmu_seq))
2620 goto out_unlock;
2621 kvm_mmu_free_some_pages(vcpu);
2622 if (likely(!force_pt_level))
2623 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2624 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2625 prefault);
2626 spin_unlock(&vcpu->kvm->mmu_lock);
2627
2628
2629 return r;
2630
2631 out_unlock:
2632 spin_unlock(&vcpu->kvm->mmu_lock);
2633 kvm_release_pfn_clean(pfn);
2634 return 0;
2635 }
2636
2637
2638 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2639 {
2640 int i;
2641 struct kvm_mmu_page *sp;
2642 LIST_HEAD(invalid_list);
2643
2644 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2645 return;
2646 spin_lock(&vcpu->kvm->mmu_lock);
2647 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2648 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2649 vcpu->arch.mmu.direct_map)) {
2650 hpa_t root = vcpu->arch.mmu.root_hpa;
2651
2652 sp = page_header(root);
2653 --sp->root_count;
2654 if (!sp->root_count && sp->role.invalid) {
2655 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2656 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2657 }
2658 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2659 spin_unlock(&vcpu->kvm->mmu_lock);
2660 return;
2661 }
2662 for (i = 0; i < 4; ++i) {
2663 hpa_t root = vcpu->arch.mmu.pae_root[i];
2664
2665 if (root) {
2666 root &= PT64_BASE_ADDR_MASK;
2667 sp = page_header(root);
2668 --sp->root_count;
2669 if (!sp->root_count && sp->role.invalid)
2670 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2671 &invalid_list);
2672 }
2673 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2674 }
2675 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2676 spin_unlock(&vcpu->kvm->mmu_lock);
2677 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2678 }
2679
2680 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2681 {
2682 int ret = 0;
2683
2684 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2685 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2686 ret = 1;
2687 }
2688
2689 return ret;
2690 }
2691
2692 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2693 {
2694 struct kvm_mmu_page *sp;
2695 unsigned i;
2696
2697 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2698 spin_lock(&vcpu->kvm->mmu_lock);
2699 kvm_mmu_free_some_pages(vcpu);
2700 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2701 1, ACC_ALL, NULL);
2702 ++sp->root_count;
2703 spin_unlock(&vcpu->kvm->mmu_lock);
2704 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2705 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2706 for (i = 0; i < 4; ++i) {
2707 hpa_t root = vcpu->arch.mmu.pae_root[i];
2708
2709 ASSERT(!VALID_PAGE(root));
2710 spin_lock(&vcpu->kvm->mmu_lock);
2711 kvm_mmu_free_some_pages(vcpu);
2712 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2713 i << 30,
2714 PT32_ROOT_LEVEL, 1, ACC_ALL,
2715 NULL);
2716 root = __pa(sp->spt);
2717 ++sp->root_count;
2718 spin_unlock(&vcpu->kvm->mmu_lock);
2719 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2720 }
2721 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2722 } else
2723 BUG();
2724
2725 return 0;
2726 }
2727
2728 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2729 {
2730 struct kvm_mmu_page *sp;
2731 u64 pdptr, pm_mask;
2732 gfn_t root_gfn;
2733 int i;
2734
2735 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2736
2737 if (mmu_check_root(vcpu, root_gfn))
2738 return 1;
2739
2740 /*
2741 * Do we shadow a long mode page table? If so we need to
2742 * write-protect the guests page table root.
2743 */
2744 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2745 hpa_t root = vcpu->arch.mmu.root_hpa;
2746
2747 ASSERT(!VALID_PAGE(root));
2748
2749 spin_lock(&vcpu->kvm->mmu_lock);
2750 kvm_mmu_free_some_pages(vcpu);
2751 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2752 0, ACC_ALL, NULL);
2753 root = __pa(sp->spt);
2754 ++sp->root_count;
2755 spin_unlock(&vcpu->kvm->mmu_lock);
2756 vcpu->arch.mmu.root_hpa = root;
2757 return 0;
2758 }
2759
2760 /*
2761 * We shadow a 32 bit page table. This may be a legacy 2-level
2762 * or a PAE 3-level page table. In either case we need to be aware that
2763 * the shadow page table may be a PAE or a long mode page table.
2764 */
2765 pm_mask = PT_PRESENT_MASK;
2766 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2767 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2768
2769 for (i = 0; i < 4; ++i) {
2770 hpa_t root = vcpu->arch.mmu.pae_root[i];
2771
2772 ASSERT(!VALID_PAGE(root));
2773 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2774 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2775 if (!is_present_gpte(pdptr)) {
2776 vcpu->arch.mmu.pae_root[i] = 0;
2777 continue;
2778 }
2779 root_gfn = pdptr >> PAGE_SHIFT;
2780 if (mmu_check_root(vcpu, root_gfn))
2781 return 1;
2782 }
2783 spin_lock(&vcpu->kvm->mmu_lock);
2784 kvm_mmu_free_some_pages(vcpu);
2785 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2786 PT32_ROOT_LEVEL, 0,
2787 ACC_ALL, NULL);
2788 root = __pa(sp->spt);
2789 ++sp->root_count;
2790 spin_unlock(&vcpu->kvm->mmu_lock);
2791
2792 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2793 }
2794 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2795
2796 /*
2797 * If we shadow a 32 bit page table with a long mode page
2798 * table we enter this path.
2799 */
2800 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2801 if (vcpu->arch.mmu.lm_root == NULL) {
2802 /*
2803 * The additional page necessary for this is only
2804 * allocated on demand.
2805 */
2806
2807 u64 *lm_root;
2808
2809 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2810 if (lm_root == NULL)
2811 return 1;
2812
2813 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2814
2815 vcpu->arch.mmu.lm_root = lm_root;
2816 }
2817
2818 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2819 }
2820
2821 return 0;
2822 }
2823
2824 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2825 {
2826 if (vcpu->arch.mmu.direct_map)
2827 return mmu_alloc_direct_roots(vcpu);
2828 else
2829 return mmu_alloc_shadow_roots(vcpu);
2830 }
2831
2832 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2833 {
2834 int i;
2835 struct kvm_mmu_page *sp;
2836
2837 if (vcpu->arch.mmu.direct_map)
2838 return;
2839
2840 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2841 return;
2842
2843 vcpu_clear_mmio_info(vcpu, ~0ul);
2844 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2845 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2846 hpa_t root = vcpu->arch.mmu.root_hpa;
2847 sp = page_header(root);
2848 mmu_sync_children(vcpu, sp);
2849 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2850 return;
2851 }
2852 for (i = 0; i < 4; ++i) {
2853 hpa_t root = vcpu->arch.mmu.pae_root[i];
2854
2855 if (root && VALID_PAGE(root)) {
2856 root &= PT64_BASE_ADDR_MASK;
2857 sp = page_header(root);
2858 mmu_sync_children(vcpu, sp);
2859 }
2860 }
2861 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2862 }
2863
2864 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2865 {
2866 spin_lock(&vcpu->kvm->mmu_lock);
2867 mmu_sync_roots(vcpu);
2868 spin_unlock(&vcpu->kvm->mmu_lock);
2869 }
2870
2871 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2872 u32 access, struct x86_exception *exception)
2873 {
2874 if (exception)
2875 exception->error_code = 0;
2876 return vaddr;
2877 }
2878
2879 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2880 u32 access,
2881 struct x86_exception *exception)
2882 {
2883 if (exception)
2884 exception->error_code = 0;
2885 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2886 }
2887
2888 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2889 {
2890 if (direct)
2891 return vcpu_match_mmio_gpa(vcpu, addr);
2892
2893 return vcpu_match_mmio_gva(vcpu, addr);
2894 }
2895
2896
2897 /*
2898 * On direct hosts, the last spte is only allows two states
2899 * for mmio page fault:
2900 * - It is the mmio spte
2901 * - It is zapped or it is being zapped.
2902 *
2903 * This function completely checks the spte when the last spte
2904 * is not the mmio spte.
2905 */
2906 static bool check_direct_spte_mmio_pf(u64 spte)
2907 {
2908 return __check_direct_spte_mmio_pf(spte);
2909 }
2910
2911 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2912 {
2913 struct kvm_shadow_walk_iterator iterator;
2914 u64 spte = 0ull;
2915
2916 walk_shadow_page_lockless_begin(vcpu);
2917 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2918 if (!is_shadow_present_pte(spte))
2919 break;
2920 walk_shadow_page_lockless_end(vcpu);
2921
2922 return spte;
2923 }
2924
2925 /*
2926 * If it is a real mmio page fault, return 1 and emulat the instruction
2927 * directly, return 0 to let CPU fault again on the address, -1 is
2928 * returned if bug is detected.
2929 */
2930 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2931 {
2932 u64 spte;
2933
2934 if (quickly_check_mmio_pf(vcpu, addr, direct))
2935 return 1;
2936
2937 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2938
2939 if (is_mmio_spte(spte)) {
2940 gfn_t gfn = get_mmio_spte_gfn(spte);
2941 unsigned access = get_mmio_spte_access(spte);
2942
2943 if (direct)
2944 addr = 0;
2945
2946 trace_handle_mmio_page_fault(addr, gfn, access);
2947 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2948 return 1;
2949 }
2950
2951 /*
2952 * It's ok if the gva is remapped by other cpus on shadow guest,
2953 * it's a BUG if the gfn is not a mmio page.
2954 */
2955 if (direct && !check_direct_spte_mmio_pf(spte))
2956 return -1;
2957
2958 /*
2959 * If the page table is zapped by other cpus, let CPU fault again on
2960 * the address.
2961 */
2962 return 0;
2963 }
2964 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2965
2966 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2967 u32 error_code, bool direct)
2968 {
2969 int ret;
2970
2971 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2972 WARN_ON(ret < 0);
2973 return ret;
2974 }
2975
2976 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2977 u32 error_code, bool prefault)
2978 {
2979 gfn_t gfn;
2980 int r;
2981
2982 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2983
2984 if (unlikely(error_code & PFERR_RSVD_MASK))
2985 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2986
2987 r = mmu_topup_memory_caches(vcpu);
2988 if (r)
2989 return r;
2990
2991 ASSERT(vcpu);
2992 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2993
2994 gfn = gva >> PAGE_SHIFT;
2995
2996 return nonpaging_map(vcpu, gva & PAGE_MASK,
2997 error_code & PFERR_WRITE_MASK, gfn, prefault);
2998 }
2999
3000 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3001 {
3002 struct kvm_arch_async_pf arch;
3003
3004 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3005 arch.gfn = gfn;
3006 arch.direct_map = vcpu->arch.mmu.direct_map;
3007 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3008
3009 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3010 }
3011
3012 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3013 {
3014 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3015 kvm_event_needs_reinjection(vcpu)))
3016 return false;
3017
3018 return kvm_x86_ops->interrupt_allowed(vcpu);
3019 }
3020
3021 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3022 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3023 {
3024 bool async;
3025
3026 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3027
3028 if (!async)
3029 return false; /* *pfn has correct page already */
3030
3031 put_page(pfn_to_page(*pfn));
3032
3033 if (!prefault && can_do_async_pf(vcpu)) {
3034 trace_kvm_try_async_get_page(gva, gfn);
3035 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3036 trace_kvm_async_pf_doublefault(gva, gfn);
3037 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3038 return true;
3039 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3040 return true;
3041 }
3042
3043 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3044
3045 return false;
3046 }
3047
3048 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3049 bool prefault)
3050 {
3051 pfn_t pfn;
3052 int r;
3053 int level;
3054 int force_pt_level;
3055 gfn_t gfn = gpa >> PAGE_SHIFT;
3056 unsigned long mmu_seq;
3057 int write = error_code & PFERR_WRITE_MASK;
3058 bool map_writable;
3059
3060 ASSERT(vcpu);
3061 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3062
3063 if (unlikely(error_code & PFERR_RSVD_MASK))
3064 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3065
3066 r = mmu_topup_memory_caches(vcpu);
3067 if (r)
3068 return r;
3069
3070 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3071 if (likely(!force_pt_level)) {
3072 level = mapping_level(vcpu, gfn);
3073 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3074 } else
3075 level = PT_PAGE_TABLE_LEVEL;
3076
3077 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3078 smp_rmb();
3079
3080 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3081 return 0;
3082
3083 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3084 return r;
3085
3086 spin_lock(&vcpu->kvm->mmu_lock);
3087 if (mmu_notifier_retry(vcpu, mmu_seq))
3088 goto out_unlock;
3089 kvm_mmu_free_some_pages(vcpu);
3090 if (likely(!force_pt_level))
3091 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3092 r = __direct_map(vcpu, gpa, write, map_writable,
3093 level, gfn, pfn, prefault);
3094 spin_unlock(&vcpu->kvm->mmu_lock);
3095
3096 return r;
3097
3098 out_unlock:
3099 spin_unlock(&vcpu->kvm->mmu_lock);
3100 kvm_release_pfn_clean(pfn);
3101 return 0;
3102 }
3103
3104 static void nonpaging_free(struct kvm_vcpu *vcpu)
3105 {
3106 mmu_free_roots(vcpu);
3107 }
3108
3109 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3110 struct kvm_mmu *context)
3111 {
3112 context->new_cr3 = nonpaging_new_cr3;
3113 context->page_fault = nonpaging_page_fault;
3114 context->gva_to_gpa = nonpaging_gva_to_gpa;
3115 context->free = nonpaging_free;
3116 context->sync_page = nonpaging_sync_page;
3117 context->invlpg = nonpaging_invlpg;
3118 context->update_pte = nonpaging_update_pte;
3119 context->root_level = 0;
3120 context->shadow_root_level = PT32E_ROOT_LEVEL;
3121 context->root_hpa = INVALID_PAGE;
3122 context->direct_map = true;
3123 context->nx = false;
3124 return 0;
3125 }
3126
3127 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3128 {
3129 ++vcpu->stat.tlb_flush;
3130 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3131 }
3132
3133 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3134 {
3135 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3136 mmu_free_roots(vcpu);
3137 }
3138
3139 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3140 {
3141 return kvm_read_cr3(vcpu);
3142 }
3143
3144 static void inject_page_fault(struct kvm_vcpu *vcpu,
3145 struct x86_exception *fault)
3146 {
3147 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3148 }
3149
3150 static void paging_free(struct kvm_vcpu *vcpu)
3151 {
3152 nonpaging_free(vcpu);
3153 }
3154
3155 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3156 {
3157 int bit7;
3158
3159 bit7 = (gpte >> 7) & 1;
3160 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3161 }
3162
3163 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3164 int *nr_present)
3165 {
3166 if (unlikely(is_mmio_spte(*sptep))) {
3167 if (gfn != get_mmio_spte_gfn(*sptep)) {
3168 mmu_spte_clear_no_track(sptep);
3169 return true;
3170 }
3171
3172 (*nr_present)++;
3173 mark_mmio_spte(sptep, gfn, access);
3174 return true;
3175 }
3176
3177 return false;
3178 }
3179
3180 #define PTTYPE 64
3181 #include "paging_tmpl.h"
3182 #undef PTTYPE
3183
3184 #define PTTYPE 32
3185 #include "paging_tmpl.h"
3186 #undef PTTYPE
3187
3188 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3189 struct kvm_mmu *context)
3190 {
3191 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3192 u64 exb_bit_rsvd = 0;
3193
3194 if (!context->nx)
3195 exb_bit_rsvd = rsvd_bits(63, 63);
3196 switch (context->root_level) {
3197 case PT32_ROOT_LEVEL:
3198 /* no rsvd bits for 2 level 4K page table entries */
3199 context->rsvd_bits_mask[0][1] = 0;
3200 context->rsvd_bits_mask[0][0] = 0;
3201 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3202
3203 if (!is_pse(vcpu)) {
3204 context->rsvd_bits_mask[1][1] = 0;
3205 break;
3206 }
3207
3208 if (is_cpuid_PSE36())
3209 /* 36bits PSE 4MB page */
3210 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3211 else
3212 /* 32 bits PSE 4MB page */
3213 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3214 break;
3215 case PT32E_ROOT_LEVEL:
3216 context->rsvd_bits_mask[0][2] =
3217 rsvd_bits(maxphyaddr, 63) |
3218 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3219 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3220 rsvd_bits(maxphyaddr, 62); /* PDE */
3221 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3222 rsvd_bits(maxphyaddr, 62); /* PTE */
3223 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3224 rsvd_bits(maxphyaddr, 62) |
3225 rsvd_bits(13, 20); /* large page */
3226 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3227 break;
3228 case PT64_ROOT_LEVEL:
3229 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3230 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3231 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3232 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3233 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3234 rsvd_bits(maxphyaddr, 51);
3235 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3236 rsvd_bits(maxphyaddr, 51);
3237 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3238 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3239 rsvd_bits(maxphyaddr, 51) |
3240 rsvd_bits(13, 29);
3241 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3242 rsvd_bits(maxphyaddr, 51) |
3243 rsvd_bits(13, 20); /* large page */
3244 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3245 break;
3246 }
3247 }
3248
3249 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3250 struct kvm_mmu *context,
3251 int level)
3252 {
3253 context->nx = is_nx(vcpu);
3254 context->root_level = level;
3255
3256 reset_rsvds_bits_mask(vcpu, context);
3257
3258 ASSERT(is_pae(vcpu));
3259 context->new_cr3 = paging_new_cr3;
3260 context->page_fault = paging64_page_fault;
3261 context->gva_to_gpa = paging64_gva_to_gpa;
3262 context->sync_page = paging64_sync_page;
3263 context->invlpg = paging64_invlpg;
3264 context->update_pte = paging64_update_pte;
3265 context->free = paging_free;
3266 context->shadow_root_level = level;
3267 context->root_hpa = INVALID_PAGE;
3268 context->direct_map = false;
3269 return 0;
3270 }
3271
3272 static int paging64_init_context(struct kvm_vcpu *vcpu,
3273 struct kvm_mmu *context)
3274 {
3275 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3276 }
3277
3278 static int paging32_init_context(struct kvm_vcpu *vcpu,
3279 struct kvm_mmu *context)
3280 {
3281 context->nx = false;
3282 context->root_level = PT32_ROOT_LEVEL;
3283
3284 reset_rsvds_bits_mask(vcpu, context);
3285
3286 context->new_cr3 = paging_new_cr3;
3287 context->page_fault = paging32_page_fault;
3288 context->gva_to_gpa = paging32_gva_to_gpa;
3289 context->free = paging_free;
3290 context->sync_page = paging32_sync_page;
3291 context->invlpg = paging32_invlpg;
3292 context->update_pte = paging32_update_pte;
3293 context->shadow_root_level = PT32E_ROOT_LEVEL;
3294 context->root_hpa = INVALID_PAGE;
3295 context->direct_map = false;
3296 return 0;
3297 }
3298
3299 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3300 struct kvm_mmu *context)
3301 {
3302 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3303 }
3304
3305 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3306 {
3307 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3308
3309 context->base_role.word = 0;
3310 context->new_cr3 = nonpaging_new_cr3;
3311 context->page_fault = tdp_page_fault;
3312 context->free = nonpaging_free;
3313 context->sync_page = nonpaging_sync_page;
3314 context->invlpg = nonpaging_invlpg;
3315 context->update_pte = nonpaging_update_pte;
3316 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3317 context->root_hpa = INVALID_PAGE;
3318 context->direct_map = true;
3319 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3320 context->get_cr3 = get_cr3;
3321 context->get_pdptr = kvm_pdptr_read;
3322 context->inject_page_fault = kvm_inject_page_fault;
3323
3324 if (!is_paging(vcpu)) {
3325 context->nx = false;
3326 context->gva_to_gpa = nonpaging_gva_to_gpa;
3327 context->root_level = 0;
3328 } else if (is_long_mode(vcpu)) {
3329 context->nx = is_nx(vcpu);
3330 context->root_level = PT64_ROOT_LEVEL;
3331 reset_rsvds_bits_mask(vcpu, context);
3332 context->gva_to_gpa = paging64_gva_to_gpa;
3333 } else if (is_pae(vcpu)) {
3334 context->nx = is_nx(vcpu);
3335 context->root_level = PT32E_ROOT_LEVEL;
3336 reset_rsvds_bits_mask(vcpu, context);
3337 context->gva_to_gpa = paging64_gva_to_gpa;
3338 } else {
3339 context->nx = false;
3340 context->root_level = PT32_ROOT_LEVEL;
3341 reset_rsvds_bits_mask(vcpu, context);
3342 context->gva_to_gpa = paging32_gva_to_gpa;
3343 }
3344
3345 return 0;
3346 }
3347
3348 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3349 {
3350 int r;
3351 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3352 ASSERT(vcpu);
3353 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3354
3355 if (!is_paging(vcpu))
3356 r = nonpaging_init_context(vcpu, context);
3357 else if (is_long_mode(vcpu))
3358 r = paging64_init_context(vcpu, context);
3359 else if (is_pae(vcpu))
3360 r = paging32E_init_context(vcpu, context);
3361 else
3362 r = paging32_init_context(vcpu, context);
3363
3364 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3365 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3366 vcpu->arch.mmu.base_role.smep_andnot_wp
3367 = smep && !is_write_protection(vcpu);
3368
3369 return r;
3370 }
3371 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3372
3373 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3374 {
3375 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3376
3377 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3378 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3379 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3380 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3381
3382 return r;
3383 }
3384
3385 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3386 {
3387 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3388
3389 g_context->get_cr3 = get_cr3;
3390 g_context->get_pdptr = kvm_pdptr_read;
3391 g_context->inject_page_fault = kvm_inject_page_fault;
3392
3393 /*
3394 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3395 * translation of l2_gpa to l1_gpa addresses is done using the
3396 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3397 * functions between mmu and nested_mmu are swapped.
3398 */
3399 if (!is_paging(vcpu)) {
3400 g_context->nx = false;
3401 g_context->root_level = 0;
3402 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3403 } else if (is_long_mode(vcpu)) {
3404 g_context->nx = is_nx(vcpu);
3405 g_context->root_level = PT64_ROOT_LEVEL;
3406 reset_rsvds_bits_mask(vcpu, g_context);
3407 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3408 } else if (is_pae(vcpu)) {
3409 g_context->nx = is_nx(vcpu);
3410 g_context->root_level = PT32E_ROOT_LEVEL;
3411 reset_rsvds_bits_mask(vcpu, g_context);
3412 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3413 } else {
3414 g_context->nx = false;
3415 g_context->root_level = PT32_ROOT_LEVEL;
3416 reset_rsvds_bits_mask(vcpu, g_context);
3417 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3418 }
3419
3420 return 0;
3421 }
3422
3423 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3424 {
3425 if (mmu_is_nested(vcpu))
3426 return init_kvm_nested_mmu(vcpu);
3427 else if (tdp_enabled)
3428 return init_kvm_tdp_mmu(vcpu);
3429 else
3430 return init_kvm_softmmu(vcpu);
3431 }
3432
3433 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3434 {
3435 ASSERT(vcpu);
3436 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3437 /* mmu.free() should set root_hpa = INVALID_PAGE */
3438 vcpu->arch.mmu.free(vcpu);
3439 }
3440
3441 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3442 {
3443 destroy_kvm_mmu(vcpu);
3444 return init_kvm_mmu(vcpu);
3445 }
3446 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3447
3448 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3449 {
3450 int r;
3451
3452 r = mmu_topup_memory_caches(vcpu);
3453 if (r)
3454 goto out;
3455 r = mmu_alloc_roots(vcpu);
3456 spin_lock(&vcpu->kvm->mmu_lock);
3457 mmu_sync_roots(vcpu);
3458 spin_unlock(&vcpu->kvm->mmu_lock);
3459 if (r)
3460 goto out;
3461 /* set_cr3() should ensure TLB has been flushed */
3462 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3463 out:
3464 return r;
3465 }
3466 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3467
3468 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3469 {
3470 mmu_free_roots(vcpu);
3471 }
3472 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3473
3474 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3475 struct kvm_mmu_page *sp, u64 *spte,
3476 const void *new)
3477 {
3478 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3479 ++vcpu->kvm->stat.mmu_pde_zapped;
3480 return;
3481 }
3482
3483 ++vcpu->kvm->stat.mmu_pte_updated;
3484 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3485 }
3486
3487 static bool need_remote_flush(u64 old, u64 new)
3488 {
3489 if (!is_shadow_present_pte(old))
3490 return false;
3491 if (!is_shadow_present_pte(new))
3492 return true;
3493 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3494 return true;
3495 old ^= PT64_NX_MASK;
3496 new ^= PT64_NX_MASK;
3497 return (old & ~new & PT64_PERM_MASK) != 0;
3498 }
3499
3500 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3501 bool remote_flush, bool local_flush)
3502 {
3503 if (zap_page)
3504 return;
3505
3506 if (remote_flush)
3507 kvm_flush_remote_tlbs(vcpu->kvm);
3508 else if (local_flush)
3509 kvm_mmu_flush_tlb(vcpu);
3510 }
3511
3512 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3513 const u8 *new, int *bytes)
3514 {
3515 u64 gentry;
3516 int r;
3517
3518 /*
3519 * Assume that the pte write on a page table of the same type
3520 * as the current vcpu paging mode since we update the sptes only
3521 * when they have the same mode.
3522 */
3523 if (is_pae(vcpu) && *bytes == 4) {
3524 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3525 *gpa &= ~(gpa_t)7;
3526 *bytes = 8;
3527 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3528 if (r)
3529 gentry = 0;
3530 new = (const u8 *)&gentry;
3531 }
3532
3533 switch (*bytes) {
3534 case 4:
3535 gentry = *(const u32 *)new;
3536 break;
3537 case 8:
3538 gentry = *(const u64 *)new;
3539 break;
3540 default:
3541 gentry = 0;
3542 break;
3543 }
3544
3545 return gentry;
3546 }
3547
3548 /*
3549 * If we're seeing too many writes to a page, it may no longer be a page table,
3550 * or we may be forking, in which case it is better to unmap the page.
3551 */
3552 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3553 {
3554 /*
3555 * Skip write-flooding detected for the sp whose level is 1, because
3556 * it can become unsync, then the guest page is not write-protected.
3557 */
3558 if (sp->role.level == 1)
3559 return false;
3560
3561 return ++sp->write_flooding_count >= 3;
3562 }
3563
3564 /*
3565 * Misaligned accesses are too much trouble to fix up; also, they usually
3566 * indicate a page is not used as a page table.
3567 */
3568 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3569 int bytes)
3570 {
3571 unsigned offset, pte_size, misaligned;
3572
3573 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3574 gpa, bytes, sp->role.word);
3575
3576 offset = offset_in_page(gpa);
3577 pte_size = sp->role.cr4_pae ? 8 : 4;
3578
3579 /*
3580 * Sometimes, the OS only writes the last one bytes to update status
3581 * bits, for example, in linux, andb instruction is used in clear_bit().
3582 */
3583 if (!(offset & (pte_size - 1)) && bytes == 1)
3584 return false;
3585
3586 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3587 misaligned |= bytes < 4;
3588
3589 return misaligned;
3590 }
3591
3592 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3593 {
3594 unsigned page_offset, quadrant;
3595 u64 *spte;
3596 int level;
3597
3598 page_offset = offset_in_page(gpa);
3599 level = sp->role.level;
3600 *nspte = 1;
3601 if (!sp->role.cr4_pae) {
3602 page_offset <<= 1; /* 32->64 */
3603 /*
3604 * A 32-bit pde maps 4MB while the shadow pdes map
3605 * only 2MB. So we need to double the offset again
3606 * and zap two pdes instead of one.
3607 */
3608 if (level == PT32_ROOT_LEVEL) {
3609 page_offset &= ~7; /* kill rounding error */
3610 page_offset <<= 1;
3611 *nspte = 2;
3612 }
3613 quadrant = page_offset >> PAGE_SHIFT;
3614 page_offset &= ~PAGE_MASK;
3615 if (quadrant != sp->role.quadrant)
3616 return NULL;
3617 }
3618
3619 spte = &sp->spt[page_offset / sizeof(*spte)];
3620 return spte;
3621 }
3622
3623 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3624 const u8 *new, int bytes)
3625 {
3626 gfn_t gfn = gpa >> PAGE_SHIFT;
3627 union kvm_mmu_page_role mask = { .word = 0 };
3628 struct kvm_mmu_page *sp;
3629 struct hlist_node *node;
3630 LIST_HEAD(invalid_list);
3631 u64 entry, gentry, *spte;
3632 int npte;
3633 bool remote_flush, local_flush, zap_page;
3634
3635 /*
3636 * If we don't have indirect shadow pages, it means no page is
3637 * write-protected, so we can exit simply.
3638 */
3639 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3640 return;
3641
3642 zap_page = remote_flush = local_flush = false;
3643
3644 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3645
3646 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3647
3648 /*
3649 * No need to care whether allocation memory is successful
3650 * or not since pte prefetch is skiped if it does not have
3651 * enough objects in the cache.
3652 */
3653 mmu_topup_memory_caches(vcpu);
3654
3655 spin_lock(&vcpu->kvm->mmu_lock);
3656 ++vcpu->kvm->stat.mmu_pte_write;
3657 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3658
3659 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3660 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3661 if (detect_write_misaligned(sp, gpa, bytes) ||
3662 detect_write_flooding(sp)) {
3663 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3664 &invalid_list);
3665 ++vcpu->kvm->stat.mmu_flooded;
3666 continue;
3667 }
3668
3669 spte = get_written_sptes(sp, gpa, &npte);
3670 if (!spte)
3671 continue;
3672
3673 local_flush = true;
3674 while (npte--) {
3675 entry = *spte;
3676 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3677 if (gentry &&
3678 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3679 & mask.word) && rmap_can_add(vcpu))
3680 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3681 if (!remote_flush && need_remote_flush(entry, *spte))
3682 remote_flush = true;
3683 ++spte;
3684 }
3685 }
3686 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3687 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3688 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3689 spin_unlock(&vcpu->kvm->mmu_lock);
3690 }
3691
3692 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3693 {
3694 gpa_t gpa;
3695 int r;
3696
3697 if (vcpu->arch.mmu.direct_map)
3698 return 0;
3699
3700 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3701
3702 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3703
3704 return r;
3705 }
3706 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3707
3708 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3709 {
3710 LIST_HEAD(invalid_list);
3711
3712 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3713 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3714 struct kvm_mmu_page *sp;
3715
3716 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3717 struct kvm_mmu_page, link);
3718 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3719 ++vcpu->kvm->stat.mmu_recycled;
3720 }
3721 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3722 }
3723
3724 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3725 {
3726 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3727 return vcpu_match_mmio_gpa(vcpu, addr);
3728
3729 return vcpu_match_mmio_gva(vcpu, addr);
3730 }
3731
3732 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3733 void *insn, int insn_len)
3734 {
3735 int r, emulation_type = EMULTYPE_RETRY;
3736 enum emulation_result er;
3737
3738 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3739 if (r < 0)
3740 goto out;
3741
3742 if (!r) {
3743 r = 1;
3744 goto out;
3745 }
3746
3747 if (is_mmio_page_fault(vcpu, cr2))
3748 emulation_type = 0;
3749
3750 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3751
3752 switch (er) {
3753 case EMULATE_DONE:
3754 return 1;
3755 case EMULATE_DO_MMIO:
3756 ++vcpu->stat.mmio_exits;
3757 /* fall through */
3758 case EMULATE_FAIL:
3759 return 0;
3760 default:
3761 BUG();
3762 }
3763 out:
3764 return r;
3765 }
3766 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3767
3768 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3769 {
3770 vcpu->arch.mmu.invlpg(vcpu, gva);
3771 kvm_mmu_flush_tlb(vcpu);
3772 ++vcpu->stat.invlpg;
3773 }
3774 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3775
3776 void kvm_enable_tdp(void)
3777 {
3778 tdp_enabled = true;
3779 }
3780 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3781
3782 void kvm_disable_tdp(void)
3783 {
3784 tdp_enabled = false;
3785 }
3786 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3787
3788 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3789 {
3790 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3791 if (vcpu->arch.mmu.lm_root != NULL)
3792 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3793 }
3794
3795 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3796 {
3797 struct page *page;
3798 int i;
3799
3800 ASSERT(vcpu);
3801
3802 /*
3803 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3804 * Therefore we need to allocate shadow page tables in the first
3805 * 4GB of memory, which happens to fit the DMA32 zone.
3806 */
3807 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3808 if (!page)
3809 return -ENOMEM;
3810
3811 vcpu->arch.mmu.pae_root = page_address(page);
3812 for (i = 0; i < 4; ++i)
3813 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3814
3815 return 0;
3816 }
3817
3818 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3819 {
3820 ASSERT(vcpu);
3821
3822 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3823 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3824 vcpu->arch.mmu.translate_gpa = translate_gpa;
3825 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
3826
3827 return alloc_mmu_pages(vcpu);
3828 }
3829
3830 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3831 {
3832 ASSERT(vcpu);
3833 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3834
3835 return init_kvm_mmu(vcpu);
3836 }
3837
3838 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3839 {
3840 struct kvm_mmu_page *sp;
3841
3842 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3843 int i;
3844 u64 *pt;
3845
3846 if (!test_bit(slot, sp->slot_bitmap))
3847 continue;
3848
3849 pt = sp->spt;
3850 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3851 if (!is_shadow_present_pte(pt[i]) ||
3852 !is_last_spte(pt[i], sp->role.level))
3853 continue;
3854
3855 if (is_large_pte(pt[i])) {
3856 drop_spte(kvm, &pt[i]);
3857 --kvm->stat.lpages;
3858 continue;
3859 }
3860
3861 /* avoid RMW */
3862 if (is_writable_pte(pt[i]))
3863 mmu_spte_update(&pt[i],
3864 pt[i] & ~PT_WRITABLE_MASK);
3865 }
3866 }
3867 kvm_flush_remote_tlbs(kvm);
3868 }
3869
3870 void kvm_mmu_zap_all(struct kvm *kvm)
3871 {
3872 struct kvm_mmu_page *sp, *node;
3873 LIST_HEAD(invalid_list);
3874
3875 spin_lock(&kvm->mmu_lock);
3876 restart:
3877 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3878 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3879 goto restart;
3880
3881 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3882 spin_unlock(&kvm->mmu_lock);
3883 }
3884
3885 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3886 struct list_head *invalid_list)
3887 {
3888 struct kvm_mmu_page *page;
3889
3890 page = container_of(kvm->arch.active_mmu_pages.prev,
3891 struct kvm_mmu_page, link);
3892 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3893 }
3894
3895 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3896 {
3897 struct kvm *kvm;
3898 struct kvm *kvm_freed = NULL;
3899 int nr_to_scan = sc->nr_to_scan;
3900
3901 if (nr_to_scan == 0)
3902 goto out;
3903
3904 raw_spin_lock(&kvm_lock);
3905
3906 list_for_each_entry(kvm, &vm_list, vm_list) {
3907 int idx;
3908 LIST_HEAD(invalid_list);
3909
3910 idx = srcu_read_lock(&kvm->srcu);
3911 spin_lock(&kvm->mmu_lock);
3912 if (!kvm_freed && nr_to_scan > 0 &&
3913 kvm->arch.n_used_mmu_pages > 0) {
3914 kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3915 &invalid_list);
3916 kvm_freed = kvm;
3917 }
3918 nr_to_scan--;
3919
3920 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3921 spin_unlock(&kvm->mmu_lock);
3922 srcu_read_unlock(&kvm->srcu, idx);
3923 }
3924 if (kvm_freed)
3925 list_move_tail(&kvm_freed->vm_list, &vm_list);
3926
3927 raw_spin_unlock(&kvm_lock);
3928
3929 out:
3930 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3931 }
3932
3933 static struct shrinker mmu_shrinker = {
3934 .shrink = mmu_shrink,
3935 .seeks = DEFAULT_SEEKS * 10,
3936 };
3937
3938 static void mmu_destroy_caches(void)
3939 {
3940 if (pte_list_desc_cache)
3941 kmem_cache_destroy(pte_list_desc_cache);
3942 if (mmu_page_header_cache)
3943 kmem_cache_destroy(mmu_page_header_cache);
3944 }
3945
3946 int kvm_mmu_module_init(void)
3947 {
3948 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3949 sizeof(struct pte_list_desc),
3950 0, 0, NULL);
3951 if (!pte_list_desc_cache)
3952 goto nomem;
3953
3954 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3955 sizeof(struct kvm_mmu_page),
3956 0, 0, NULL);
3957 if (!mmu_page_header_cache)
3958 goto nomem;
3959
3960 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3961 goto nomem;
3962
3963 register_shrinker(&mmu_shrinker);
3964
3965 return 0;
3966
3967 nomem:
3968 mmu_destroy_caches();
3969 return -ENOMEM;
3970 }
3971
3972 /*
3973 * Caculate mmu pages needed for kvm.
3974 */
3975 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3976 {
3977 unsigned int nr_mmu_pages;
3978 unsigned int nr_pages = 0;
3979 struct kvm_memslots *slots;
3980 struct kvm_memory_slot *memslot;
3981
3982 slots = kvm_memslots(kvm);
3983
3984 kvm_for_each_memslot(memslot, slots)
3985 nr_pages += memslot->npages;
3986
3987 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3988 nr_mmu_pages = max(nr_mmu_pages,
3989 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3990
3991 return nr_mmu_pages;
3992 }
3993
3994 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3995 {
3996 struct kvm_shadow_walk_iterator iterator;
3997 u64 spte;
3998 int nr_sptes = 0;
3999
4000 walk_shadow_page_lockless_begin(vcpu);
4001 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4002 sptes[iterator.level-1] = spte;
4003 nr_sptes++;
4004 if (!is_shadow_present_pte(spte))
4005 break;
4006 }
4007 walk_shadow_page_lockless_end(vcpu);
4008
4009 return nr_sptes;
4010 }
4011 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4012
4013 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4014 {
4015 ASSERT(vcpu);
4016
4017 destroy_kvm_mmu(vcpu);
4018 free_mmu_pages(vcpu);
4019 mmu_free_memory_caches(vcpu);
4020 }
4021
4022 void kvm_mmu_module_exit(void)
4023 {
4024 mmu_destroy_caches();
4025 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4026 unregister_shrinker(&mmu_shrinker);
4027 mmu_audit_disable();
4028 }
This page took 0.275612 seconds and 6 git commands to generate.