KVM: MMU: Avoid calling gfn_to_page() in mmu_set_spte()
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 #include "vmx.h"
21 #include "mmu.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30
31 #include <asm/page.h>
32 #include <asm/cmpxchg.h>
33 #include <asm/io.h>
34
35 #undef MMU_DEBUG
36
37 #undef AUDIT
38
39 #ifdef AUDIT
40 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
41 #else
42 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
43 #endif
44
45 #ifdef MMU_DEBUG
46
47 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
48 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
49
50 #else
51
52 #define pgprintk(x...) do { } while (0)
53 #define rmap_printk(x...) do { } while (0)
54
55 #endif
56
57 #if defined(MMU_DEBUG) || defined(AUDIT)
58 static int dbg = 1;
59 #endif
60
61 #ifndef MMU_DEBUG
62 #define ASSERT(x) do { } while (0)
63 #else
64 #define ASSERT(x) \
65 if (!(x)) { \
66 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
67 __FILE__, __LINE__, #x); \
68 }
69 #endif
70
71 #define PT64_PT_BITS 9
72 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
73 #define PT32_PT_BITS 10
74 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
75
76 #define PT_WRITABLE_SHIFT 1
77
78 #define PT_PRESENT_MASK (1ULL << 0)
79 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
80 #define PT_USER_MASK (1ULL << 2)
81 #define PT_PWT_MASK (1ULL << 3)
82 #define PT_PCD_MASK (1ULL << 4)
83 #define PT_ACCESSED_MASK (1ULL << 5)
84 #define PT_DIRTY_MASK (1ULL << 6)
85 #define PT_PAGE_SIZE_MASK (1ULL << 7)
86 #define PT_PAT_MASK (1ULL << 7)
87 #define PT_GLOBAL_MASK (1ULL << 8)
88 #define PT64_NX_SHIFT 63
89 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
90
91 #define PT_PAT_SHIFT 7
92 #define PT_DIR_PAT_SHIFT 12
93 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
94
95 #define PT32_DIR_PSE36_SIZE 4
96 #define PT32_DIR_PSE36_SHIFT 13
97 #define PT32_DIR_PSE36_MASK \
98 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
99
100
101 #define PT_FIRST_AVAIL_BITS_SHIFT 9
102 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
103
104 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
105
106 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
107
108 #define PT64_LEVEL_BITS 9
109
110 #define PT64_LEVEL_SHIFT(level) \
111 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
112
113 #define PT64_LEVEL_MASK(level) \
114 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
115
116 #define PT64_INDEX(address, level)\
117 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
118
119
120 #define PT32_LEVEL_BITS 10
121
122 #define PT32_LEVEL_SHIFT(level) \
123 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
124
125 #define PT32_LEVEL_MASK(level) \
126 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
127
128 #define PT32_INDEX(address, level)\
129 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130
131
132 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
133 #define PT64_DIR_BASE_ADDR_MASK \
134 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
135
136 #define PT32_BASE_ADDR_MASK PAGE_MASK
137 #define PT32_DIR_BASE_ADDR_MASK \
138 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
139
140 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
141 | PT64_NX_MASK)
142
143 #define PFERR_PRESENT_MASK (1U << 0)
144 #define PFERR_WRITE_MASK (1U << 1)
145 #define PFERR_USER_MASK (1U << 2)
146 #define PFERR_FETCH_MASK (1U << 4)
147
148 #define PT64_ROOT_LEVEL 4
149 #define PT32_ROOT_LEVEL 2
150 #define PT32E_ROOT_LEVEL 3
151
152 #define PT_DIRECTORY_LEVEL 2
153 #define PT_PAGE_TABLE_LEVEL 1
154
155 #define RMAP_EXT 4
156
157 #define ACC_EXEC_MASK 1
158 #define ACC_WRITE_MASK PT_WRITABLE_MASK
159 #define ACC_USER_MASK PT_USER_MASK
160 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
161
162 struct kvm_rmap_desc {
163 u64 *shadow_ptes[RMAP_EXT];
164 struct kvm_rmap_desc *more;
165 };
166
167 static struct kmem_cache *pte_chain_cache;
168 static struct kmem_cache *rmap_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170
171 static u64 __read_mostly shadow_trap_nonpresent_pte;
172 static u64 __read_mostly shadow_notrap_nonpresent_pte;
173
174 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
175 {
176 shadow_trap_nonpresent_pte = trap_pte;
177 shadow_notrap_nonpresent_pte = notrap_pte;
178 }
179 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
180
181 static int is_write_protection(struct kvm_vcpu *vcpu)
182 {
183 return vcpu->arch.cr0 & X86_CR0_WP;
184 }
185
186 static int is_cpuid_PSE36(void)
187 {
188 return 1;
189 }
190
191 static int is_nx(struct kvm_vcpu *vcpu)
192 {
193 return vcpu->arch.shadow_efer & EFER_NX;
194 }
195
196 static int is_present_pte(unsigned long pte)
197 {
198 return pte & PT_PRESENT_MASK;
199 }
200
201 static int is_shadow_present_pte(u64 pte)
202 {
203 pte &= ~PT_SHADOW_IO_MARK;
204 return pte != shadow_trap_nonpresent_pte
205 && pte != shadow_notrap_nonpresent_pte;
206 }
207
208 static int is_writeble_pte(unsigned long pte)
209 {
210 return pte & PT_WRITABLE_MASK;
211 }
212
213 static int is_dirty_pte(unsigned long pte)
214 {
215 return pte & PT_DIRTY_MASK;
216 }
217
218 static int is_io_pte(unsigned long pte)
219 {
220 return pte & PT_SHADOW_IO_MARK;
221 }
222
223 static int is_rmap_pte(u64 pte)
224 {
225 return pte != shadow_trap_nonpresent_pte
226 && pte != shadow_notrap_nonpresent_pte;
227 }
228
229 static gfn_t pse36_gfn_delta(u32 gpte)
230 {
231 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
232
233 return (gpte & PT32_DIR_PSE36_MASK) << shift;
234 }
235
236 static void set_shadow_pte(u64 *sptep, u64 spte)
237 {
238 #ifdef CONFIG_X86_64
239 set_64bit((unsigned long *)sptep, spte);
240 #else
241 set_64bit((unsigned long long *)sptep, spte);
242 #endif
243 }
244
245 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
246 struct kmem_cache *base_cache, int min)
247 {
248 void *obj;
249
250 if (cache->nobjs >= min)
251 return 0;
252 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
253 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
254 if (!obj)
255 return -ENOMEM;
256 cache->objects[cache->nobjs++] = obj;
257 }
258 return 0;
259 }
260
261 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
262 {
263 while (mc->nobjs)
264 kfree(mc->objects[--mc->nobjs]);
265 }
266
267 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
268 int min)
269 {
270 struct page *page;
271
272 if (cache->nobjs >= min)
273 return 0;
274 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
275 page = alloc_page(GFP_KERNEL);
276 if (!page)
277 return -ENOMEM;
278 set_page_private(page, 0);
279 cache->objects[cache->nobjs++] = page_address(page);
280 }
281 return 0;
282 }
283
284 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
285 {
286 while (mc->nobjs)
287 free_page((unsigned long)mc->objects[--mc->nobjs]);
288 }
289
290 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
291 {
292 int r;
293
294 kvm_mmu_free_some_pages(vcpu);
295 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
296 pte_chain_cache, 4);
297 if (r)
298 goto out;
299 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
300 rmap_desc_cache, 1);
301 if (r)
302 goto out;
303 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
304 if (r)
305 goto out;
306 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
307 mmu_page_header_cache, 4);
308 out:
309 return r;
310 }
311
312 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
313 {
314 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
315 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
316 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
317 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
318 }
319
320 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
321 size_t size)
322 {
323 void *p;
324
325 BUG_ON(!mc->nobjs);
326 p = mc->objects[--mc->nobjs];
327 memset(p, 0, size);
328 return p;
329 }
330
331 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
332 {
333 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
334 sizeof(struct kvm_pte_chain));
335 }
336
337 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
338 {
339 kfree(pc);
340 }
341
342 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
343 {
344 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
345 sizeof(struct kvm_rmap_desc));
346 }
347
348 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
349 {
350 kfree(rd);
351 }
352
353 /*
354 * Take gfn and return the reverse mapping to it.
355 * Note: gfn must be unaliased before this function get called
356 */
357
358 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
359 {
360 struct kvm_memory_slot *slot;
361
362 slot = gfn_to_memslot(kvm, gfn);
363 return &slot->rmap[gfn - slot->base_gfn];
364 }
365
366 /*
367 * Reverse mapping data structures:
368 *
369 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
370 * that points to page_address(page).
371 *
372 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
373 * containing more mappings.
374 */
375 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
376 {
377 struct kvm_mmu_page *sp;
378 struct kvm_rmap_desc *desc;
379 unsigned long *rmapp;
380 int i;
381
382 if (!is_rmap_pte(*spte))
383 return;
384 gfn = unalias_gfn(vcpu->kvm, gfn);
385 sp = page_header(__pa(spte));
386 sp->gfns[spte - sp->spt] = gfn;
387 rmapp = gfn_to_rmap(vcpu->kvm, gfn);
388 if (!*rmapp) {
389 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
390 *rmapp = (unsigned long)spte;
391 } else if (!(*rmapp & 1)) {
392 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
393 desc = mmu_alloc_rmap_desc(vcpu);
394 desc->shadow_ptes[0] = (u64 *)*rmapp;
395 desc->shadow_ptes[1] = spte;
396 *rmapp = (unsigned long)desc | 1;
397 } else {
398 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
399 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
400 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
401 desc = desc->more;
402 if (desc->shadow_ptes[RMAP_EXT-1]) {
403 desc->more = mmu_alloc_rmap_desc(vcpu);
404 desc = desc->more;
405 }
406 for (i = 0; desc->shadow_ptes[i]; ++i)
407 ;
408 desc->shadow_ptes[i] = spte;
409 }
410 }
411
412 static void rmap_desc_remove_entry(unsigned long *rmapp,
413 struct kvm_rmap_desc *desc,
414 int i,
415 struct kvm_rmap_desc *prev_desc)
416 {
417 int j;
418
419 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
420 ;
421 desc->shadow_ptes[i] = desc->shadow_ptes[j];
422 desc->shadow_ptes[j] = NULL;
423 if (j != 0)
424 return;
425 if (!prev_desc && !desc->more)
426 *rmapp = (unsigned long)desc->shadow_ptes[0];
427 else
428 if (prev_desc)
429 prev_desc->more = desc->more;
430 else
431 *rmapp = (unsigned long)desc->more | 1;
432 mmu_free_rmap_desc(desc);
433 }
434
435 static void rmap_remove(struct kvm *kvm, u64 *spte)
436 {
437 struct kvm_rmap_desc *desc;
438 struct kvm_rmap_desc *prev_desc;
439 struct kvm_mmu_page *sp;
440 struct page *page;
441 unsigned long *rmapp;
442 int i;
443
444 if (!is_rmap_pte(*spte))
445 return;
446 sp = page_header(__pa(spte));
447 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
448 mark_page_accessed(page);
449 if (is_writeble_pte(*spte))
450 kvm_release_page_dirty(page);
451 else
452 kvm_release_page_clean(page);
453 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt]);
454 if (!*rmapp) {
455 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
456 BUG();
457 } else if (!(*rmapp & 1)) {
458 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
459 if ((u64 *)*rmapp != spte) {
460 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
461 spte, *spte);
462 BUG();
463 }
464 *rmapp = 0;
465 } else {
466 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
467 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
468 prev_desc = NULL;
469 while (desc) {
470 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
471 if (desc->shadow_ptes[i] == spte) {
472 rmap_desc_remove_entry(rmapp,
473 desc, i,
474 prev_desc);
475 return;
476 }
477 prev_desc = desc;
478 desc = desc->more;
479 }
480 BUG();
481 }
482 }
483
484 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
485 {
486 struct kvm_rmap_desc *desc;
487 struct kvm_rmap_desc *prev_desc;
488 u64 *prev_spte;
489 int i;
490
491 if (!*rmapp)
492 return NULL;
493 else if (!(*rmapp & 1)) {
494 if (!spte)
495 return (u64 *)*rmapp;
496 return NULL;
497 }
498 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
499 prev_desc = NULL;
500 prev_spte = NULL;
501 while (desc) {
502 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
503 if (prev_spte == spte)
504 return desc->shadow_ptes[i];
505 prev_spte = desc->shadow_ptes[i];
506 }
507 desc = desc->more;
508 }
509 return NULL;
510 }
511
512 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
513 {
514 unsigned long *rmapp;
515 u64 *spte;
516 int write_protected = 0;
517
518 gfn = unalias_gfn(kvm, gfn);
519 rmapp = gfn_to_rmap(kvm, gfn);
520
521 spte = rmap_next(kvm, rmapp, NULL);
522 while (spte) {
523 BUG_ON(!spte);
524 BUG_ON(!(*spte & PT_PRESENT_MASK));
525 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
526 if (is_writeble_pte(*spte)) {
527 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
528 write_protected = 1;
529 }
530 spte = rmap_next(kvm, rmapp, spte);
531 }
532 if (write_protected)
533 kvm_flush_remote_tlbs(kvm);
534 }
535
536 #ifdef MMU_DEBUG
537 static int is_empty_shadow_page(u64 *spt)
538 {
539 u64 *pos;
540 u64 *end;
541
542 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
543 if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
544 printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
545 pos, *pos);
546 return 0;
547 }
548 return 1;
549 }
550 #endif
551
552 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
553 {
554 ASSERT(is_empty_shadow_page(sp->spt));
555 list_del(&sp->link);
556 __free_page(virt_to_page(sp->spt));
557 __free_page(virt_to_page(sp->gfns));
558 kfree(sp);
559 ++kvm->arch.n_free_mmu_pages;
560 }
561
562 static unsigned kvm_page_table_hashfn(gfn_t gfn)
563 {
564 return gfn;
565 }
566
567 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
568 u64 *parent_pte)
569 {
570 struct kvm_mmu_page *sp;
571
572 if (!vcpu->kvm->arch.n_free_mmu_pages)
573 return NULL;
574
575 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
576 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
577 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
578 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
579 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
580 ASSERT(is_empty_shadow_page(sp->spt));
581 sp->slot_bitmap = 0;
582 sp->multimapped = 0;
583 sp->parent_pte = parent_pte;
584 --vcpu->kvm->arch.n_free_mmu_pages;
585 return sp;
586 }
587
588 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
589 struct kvm_mmu_page *sp, u64 *parent_pte)
590 {
591 struct kvm_pte_chain *pte_chain;
592 struct hlist_node *node;
593 int i;
594
595 if (!parent_pte)
596 return;
597 if (!sp->multimapped) {
598 u64 *old = sp->parent_pte;
599
600 if (!old) {
601 sp->parent_pte = parent_pte;
602 return;
603 }
604 sp->multimapped = 1;
605 pte_chain = mmu_alloc_pte_chain(vcpu);
606 INIT_HLIST_HEAD(&sp->parent_ptes);
607 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
608 pte_chain->parent_ptes[0] = old;
609 }
610 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
611 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
612 continue;
613 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
614 if (!pte_chain->parent_ptes[i]) {
615 pte_chain->parent_ptes[i] = parent_pte;
616 return;
617 }
618 }
619 pte_chain = mmu_alloc_pte_chain(vcpu);
620 BUG_ON(!pte_chain);
621 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
622 pte_chain->parent_ptes[0] = parent_pte;
623 }
624
625 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
626 u64 *parent_pte)
627 {
628 struct kvm_pte_chain *pte_chain;
629 struct hlist_node *node;
630 int i;
631
632 if (!sp->multimapped) {
633 BUG_ON(sp->parent_pte != parent_pte);
634 sp->parent_pte = NULL;
635 return;
636 }
637 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
638 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
639 if (!pte_chain->parent_ptes[i])
640 break;
641 if (pte_chain->parent_ptes[i] != parent_pte)
642 continue;
643 while (i + 1 < NR_PTE_CHAIN_ENTRIES
644 && pte_chain->parent_ptes[i + 1]) {
645 pte_chain->parent_ptes[i]
646 = pte_chain->parent_ptes[i + 1];
647 ++i;
648 }
649 pte_chain->parent_ptes[i] = NULL;
650 if (i == 0) {
651 hlist_del(&pte_chain->link);
652 mmu_free_pte_chain(pte_chain);
653 if (hlist_empty(&sp->parent_ptes)) {
654 sp->multimapped = 0;
655 sp->parent_pte = NULL;
656 }
657 }
658 return;
659 }
660 BUG();
661 }
662
663 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
664 {
665 unsigned index;
666 struct hlist_head *bucket;
667 struct kvm_mmu_page *sp;
668 struct hlist_node *node;
669
670 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
671 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
672 bucket = &kvm->arch.mmu_page_hash[index];
673 hlist_for_each_entry(sp, node, bucket, hash_link)
674 if (sp->gfn == gfn && !sp->role.metaphysical) {
675 pgprintk("%s: found role %x\n",
676 __FUNCTION__, sp->role.word);
677 return sp;
678 }
679 return NULL;
680 }
681
682 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
683 gfn_t gfn,
684 gva_t gaddr,
685 unsigned level,
686 int metaphysical,
687 unsigned access,
688 u64 *parent_pte,
689 bool *new_page)
690 {
691 union kvm_mmu_page_role role;
692 unsigned index;
693 unsigned quadrant;
694 struct hlist_head *bucket;
695 struct kvm_mmu_page *sp;
696 struct hlist_node *node;
697
698 role.word = 0;
699 role.glevels = vcpu->arch.mmu.root_level;
700 role.level = level;
701 role.metaphysical = metaphysical;
702 role.access = access;
703 if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
704 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
705 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
706 role.quadrant = quadrant;
707 }
708 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
709 gfn, role.word);
710 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
711 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
712 hlist_for_each_entry(sp, node, bucket, hash_link)
713 if (sp->gfn == gfn && sp->role.word == role.word) {
714 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
715 pgprintk("%s: found\n", __FUNCTION__);
716 return sp;
717 }
718 ++vcpu->kvm->stat.mmu_cache_miss;
719 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
720 if (!sp)
721 return sp;
722 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
723 sp->gfn = gfn;
724 sp->role = role;
725 hlist_add_head(&sp->hash_link, bucket);
726 vcpu->arch.mmu.prefetch_page(vcpu, sp);
727 if (!metaphysical)
728 rmap_write_protect(vcpu->kvm, gfn);
729 if (new_page)
730 *new_page = 1;
731 return sp;
732 }
733
734 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
735 struct kvm_mmu_page *sp)
736 {
737 unsigned i;
738 u64 *pt;
739 u64 ent;
740
741 pt = sp->spt;
742
743 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
744 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
745 if (is_shadow_present_pte(pt[i]))
746 rmap_remove(kvm, &pt[i]);
747 pt[i] = shadow_trap_nonpresent_pte;
748 }
749 kvm_flush_remote_tlbs(kvm);
750 return;
751 }
752
753 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
754 ent = pt[i];
755
756 pt[i] = shadow_trap_nonpresent_pte;
757 if (!is_shadow_present_pte(ent))
758 continue;
759 ent &= PT64_BASE_ADDR_MASK;
760 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
761 }
762 kvm_flush_remote_tlbs(kvm);
763 }
764
765 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
766 {
767 mmu_page_remove_parent_pte(sp, parent_pte);
768 }
769
770 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
771 {
772 int i;
773
774 for (i = 0; i < KVM_MAX_VCPUS; ++i)
775 if (kvm->vcpus[i])
776 kvm->vcpus[i]->arch.last_pte_updated = NULL;
777 }
778
779 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781 u64 *parent_pte;
782
783 ++kvm->stat.mmu_shadow_zapped;
784 while (sp->multimapped || sp->parent_pte) {
785 if (!sp->multimapped)
786 parent_pte = sp->parent_pte;
787 else {
788 struct kvm_pte_chain *chain;
789
790 chain = container_of(sp->parent_ptes.first,
791 struct kvm_pte_chain, link);
792 parent_pte = chain->parent_ptes[0];
793 }
794 BUG_ON(!parent_pte);
795 kvm_mmu_put_page(sp, parent_pte);
796 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
797 }
798 kvm_mmu_page_unlink_children(kvm, sp);
799 if (!sp->root_count) {
800 hlist_del(&sp->hash_link);
801 kvm_mmu_free_page(kvm, sp);
802 } else
803 list_move(&sp->link, &kvm->arch.active_mmu_pages);
804 kvm_mmu_reset_last_pte_updated(kvm);
805 }
806
807 /*
808 * Changing the number of mmu pages allocated to the vm
809 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
810 */
811 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
812 {
813 /*
814 * If we set the number of mmu pages to be smaller be than the
815 * number of actived pages , we must to free some mmu pages before we
816 * change the value
817 */
818
819 if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
820 kvm_nr_mmu_pages) {
821 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
822 - kvm->arch.n_free_mmu_pages;
823
824 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
825 struct kvm_mmu_page *page;
826
827 page = container_of(kvm->arch.active_mmu_pages.prev,
828 struct kvm_mmu_page, link);
829 kvm_mmu_zap_page(kvm, page);
830 n_used_mmu_pages--;
831 }
832 kvm->arch.n_free_mmu_pages = 0;
833 }
834 else
835 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
836 - kvm->arch.n_alloc_mmu_pages;
837
838 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
839 }
840
841 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
842 {
843 unsigned index;
844 struct hlist_head *bucket;
845 struct kvm_mmu_page *sp;
846 struct hlist_node *node, *n;
847 int r;
848
849 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
850 r = 0;
851 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
852 bucket = &kvm->arch.mmu_page_hash[index];
853 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
854 if (sp->gfn == gfn && !sp->role.metaphysical) {
855 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
856 sp->role.word);
857 kvm_mmu_zap_page(kvm, sp);
858 r = 1;
859 }
860 return r;
861 }
862
863 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
864 {
865 struct kvm_mmu_page *sp;
866
867 while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
868 pgprintk("%s: zap %lx %x\n", __FUNCTION__, gfn, sp->role.word);
869 kvm_mmu_zap_page(kvm, sp);
870 }
871 }
872
873 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
874 {
875 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
876 struct kvm_mmu_page *sp = page_header(__pa(pte));
877
878 __set_bit(slot, &sp->slot_bitmap);
879 }
880
881 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
882 {
883 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
884
885 if (gpa == UNMAPPED_GVA)
886 return NULL;
887 return gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
888 }
889
890 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
891 unsigned pt_access, unsigned pte_access,
892 int user_fault, int write_fault, int dirty,
893 int *ptwrite, gfn_t gfn, struct page *page)
894 {
895 u64 spte;
896 int was_rmapped = is_rmap_pte(*shadow_pte);
897
898 pgprintk("%s: spte %llx access %x write_fault %d"
899 " user_fault %d gfn %lx\n",
900 __FUNCTION__, *shadow_pte, pt_access,
901 write_fault, user_fault, gfn);
902
903 /*
904 * We don't set the accessed bit, since we sometimes want to see
905 * whether the guest actually used the pte (in order to detect
906 * demand paging).
907 */
908 spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
909 if (!dirty)
910 pte_access &= ~ACC_WRITE_MASK;
911 if (!(pte_access & ACC_EXEC_MASK))
912 spte |= PT64_NX_MASK;
913
914 spte |= PT_PRESENT_MASK;
915 if (pte_access & ACC_USER_MASK)
916 spte |= PT_USER_MASK;
917
918 if (is_error_page(page)) {
919 set_shadow_pte(shadow_pte,
920 shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
921 kvm_release_page_clean(page);
922 return;
923 }
924
925 spte |= page_to_phys(page);
926
927 if ((pte_access & ACC_WRITE_MASK)
928 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
929 struct kvm_mmu_page *shadow;
930
931 spte |= PT_WRITABLE_MASK;
932 if (user_fault) {
933 mmu_unshadow(vcpu->kvm, gfn);
934 goto unshadowed;
935 }
936
937 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
938 if (shadow) {
939 pgprintk("%s: found shadow page for %lx, marking ro\n",
940 __FUNCTION__, gfn);
941 pte_access &= ~ACC_WRITE_MASK;
942 if (is_writeble_pte(spte)) {
943 spte &= ~PT_WRITABLE_MASK;
944 kvm_x86_ops->tlb_flush(vcpu);
945 }
946 if (write_fault)
947 *ptwrite = 1;
948 }
949 }
950
951 unshadowed:
952
953 if (pte_access & ACC_WRITE_MASK)
954 mark_page_dirty(vcpu->kvm, gfn);
955
956 pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
957 set_shadow_pte(shadow_pte, spte);
958 page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
959 if (!was_rmapped) {
960 rmap_add(vcpu, shadow_pte, gfn);
961 if (!is_rmap_pte(*shadow_pte))
962 kvm_release_page_clean(page);
963 }
964 else
965 kvm_release_page_clean(page);
966 if (!ptwrite || !*ptwrite)
967 vcpu->arch.last_pte_updated = shadow_pte;
968 }
969
970 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
971 {
972 }
973
974 static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
975 {
976 int level = PT32E_ROOT_LEVEL;
977 hpa_t table_addr = vcpu->arch.mmu.root_hpa;
978 int pt_write = 0;
979 struct page *page;
980
981 down_read(&current->mm->mmap_sem);
982 page = gfn_to_page(vcpu->kvm, gfn);
983 up_read(&current->mm->mmap_sem);
984
985 for (; ; level--) {
986 u32 index = PT64_INDEX(v, level);
987 u64 *table;
988
989 ASSERT(VALID_PAGE(table_addr));
990 table = __va(table_addr);
991
992 if (level == 1) {
993 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
994 0, write, 1, &pt_write, gfn, page);
995 return pt_write || is_io_pte(table[index]);
996 }
997
998 if (table[index] == shadow_trap_nonpresent_pte) {
999 struct kvm_mmu_page *new_table;
1000 gfn_t pseudo_gfn;
1001
1002 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1003 >> PAGE_SHIFT;
1004 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1005 v, level - 1,
1006 1, ACC_ALL, &table[index],
1007 NULL);
1008 if (!new_table) {
1009 pgprintk("nonpaging_map: ENOMEM\n");
1010 kvm_release_page_clean(page);
1011 return -ENOMEM;
1012 }
1013
1014 table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
1015 | PT_WRITABLE_MASK | PT_USER_MASK;
1016 }
1017 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1018 }
1019 }
1020
1021 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1022 {
1023 int r;
1024
1025 mutex_lock(&vcpu->kvm->lock);
1026 r = __nonpaging_map(vcpu, v, write, gfn);
1027 mutex_unlock(&vcpu->kvm->lock);
1028 return r;
1029 }
1030
1031
1032 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1033 struct kvm_mmu_page *sp)
1034 {
1035 int i;
1036
1037 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1038 sp->spt[i] = shadow_trap_nonpresent_pte;
1039 }
1040
1041 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1042 {
1043 int i;
1044 struct kvm_mmu_page *sp;
1045
1046 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1047 return;
1048 mutex_lock(&vcpu->kvm->lock);
1049 #ifdef CONFIG_X86_64
1050 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1051 hpa_t root = vcpu->arch.mmu.root_hpa;
1052
1053 sp = page_header(root);
1054 --sp->root_count;
1055 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1056 mutex_unlock(&vcpu->kvm->lock);
1057 return;
1058 }
1059 #endif
1060 for (i = 0; i < 4; ++i) {
1061 hpa_t root = vcpu->arch.mmu.pae_root[i];
1062
1063 if (root) {
1064 root &= PT64_BASE_ADDR_MASK;
1065 sp = page_header(root);
1066 --sp->root_count;
1067 }
1068 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1069 }
1070 mutex_unlock(&vcpu->kvm->lock);
1071 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1072 }
1073
1074 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1075 {
1076 int i;
1077 gfn_t root_gfn;
1078 struct kvm_mmu_page *sp;
1079
1080 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1081
1082 #ifdef CONFIG_X86_64
1083 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1084 hpa_t root = vcpu->arch.mmu.root_hpa;
1085
1086 ASSERT(!VALID_PAGE(root));
1087 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1088 PT64_ROOT_LEVEL, 0, ACC_ALL, NULL, NULL);
1089 root = __pa(sp->spt);
1090 ++sp->root_count;
1091 vcpu->arch.mmu.root_hpa = root;
1092 return;
1093 }
1094 #endif
1095 for (i = 0; i < 4; ++i) {
1096 hpa_t root = vcpu->arch.mmu.pae_root[i];
1097
1098 ASSERT(!VALID_PAGE(root));
1099 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1100 if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1101 vcpu->arch.mmu.pae_root[i] = 0;
1102 continue;
1103 }
1104 root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1105 } else if (vcpu->arch.mmu.root_level == 0)
1106 root_gfn = 0;
1107 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1108 PT32_ROOT_LEVEL, !is_paging(vcpu),
1109 ACC_ALL, NULL, NULL);
1110 root = __pa(sp->spt);
1111 ++sp->root_count;
1112 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1113 }
1114 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1115 }
1116
1117 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1118 {
1119 return vaddr;
1120 }
1121
1122 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1123 u32 error_code)
1124 {
1125 gfn_t gfn;
1126 int r;
1127
1128 pgprintk("%s: gva %lx error %x\n", __FUNCTION__, gva, error_code);
1129 r = mmu_topup_memory_caches(vcpu);
1130 if (r)
1131 return r;
1132
1133 ASSERT(vcpu);
1134 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1135
1136 gfn = gva >> PAGE_SHIFT;
1137
1138 return nonpaging_map(vcpu, gva & PAGE_MASK,
1139 error_code & PFERR_WRITE_MASK, gfn);
1140 }
1141
1142 static void nonpaging_free(struct kvm_vcpu *vcpu)
1143 {
1144 mmu_free_roots(vcpu);
1145 }
1146
1147 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1148 {
1149 struct kvm_mmu *context = &vcpu->arch.mmu;
1150
1151 context->new_cr3 = nonpaging_new_cr3;
1152 context->page_fault = nonpaging_page_fault;
1153 context->gva_to_gpa = nonpaging_gva_to_gpa;
1154 context->free = nonpaging_free;
1155 context->prefetch_page = nonpaging_prefetch_page;
1156 context->root_level = 0;
1157 context->shadow_root_level = PT32E_ROOT_LEVEL;
1158 context->root_hpa = INVALID_PAGE;
1159 return 0;
1160 }
1161
1162 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1163 {
1164 ++vcpu->stat.tlb_flush;
1165 kvm_x86_ops->tlb_flush(vcpu);
1166 }
1167
1168 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1169 {
1170 pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
1171 mmu_free_roots(vcpu);
1172 }
1173
1174 static void inject_page_fault(struct kvm_vcpu *vcpu,
1175 u64 addr,
1176 u32 err_code)
1177 {
1178 kvm_inject_page_fault(vcpu, addr, err_code);
1179 }
1180
1181 static void paging_free(struct kvm_vcpu *vcpu)
1182 {
1183 nonpaging_free(vcpu);
1184 }
1185
1186 #define PTTYPE 64
1187 #include "paging_tmpl.h"
1188 #undef PTTYPE
1189
1190 #define PTTYPE 32
1191 #include "paging_tmpl.h"
1192 #undef PTTYPE
1193
1194 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1195 {
1196 struct kvm_mmu *context = &vcpu->arch.mmu;
1197
1198 ASSERT(is_pae(vcpu));
1199 context->new_cr3 = paging_new_cr3;
1200 context->page_fault = paging64_page_fault;
1201 context->gva_to_gpa = paging64_gva_to_gpa;
1202 context->prefetch_page = paging64_prefetch_page;
1203 context->free = paging_free;
1204 context->root_level = level;
1205 context->shadow_root_level = level;
1206 context->root_hpa = INVALID_PAGE;
1207 return 0;
1208 }
1209
1210 static int paging64_init_context(struct kvm_vcpu *vcpu)
1211 {
1212 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1213 }
1214
1215 static int paging32_init_context(struct kvm_vcpu *vcpu)
1216 {
1217 struct kvm_mmu *context = &vcpu->arch.mmu;
1218
1219 context->new_cr3 = paging_new_cr3;
1220 context->page_fault = paging32_page_fault;
1221 context->gva_to_gpa = paging32_gva_to_gpa;
1222 context->free = paging_free;
1223 context->prefetch_page = paging32_prefetch_page;
1224 context->root_level = PT32_ROOT_LEVEL;
1225 context->shadow_root_level = PT32E_ROOT_LEVEL;
1226 context->root_hpa = INVALID_PAGE;
1227 return 0;
1228 }
1229
1230 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1231 {
1232 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1233 }
1234
1235 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1236 {
1237 ASSERT(vcpu);
1238 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1239
1240 if (!is_paging(vcpu))
1241 return nonpaging_init_context(vcpu);
1242 else if (is_long_mode(vcpu))
1243 return paging64_init_context(vcpu);
1244 else if (is_pae(vcpu))
1245 return paging32E_init_context(vcpu);
1246 else
1247 return paging32_init_context(vcpu);
1248 }
1249
1250 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1251 {
1252 ASSERT(vcpu);
1253 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1254 vcpu->arch.mmu.free(vcpu);
1255 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1256 }
1257 }
1258
1259 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1260 {
1261 destroy_kvm_mmu(vcpu);
1262 return init_kvm_mmu(vcpu);
1263 }
1264 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1265
1266 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1267 {
1268 int r;
1269
1270 r = mmu_topup_memory_caches(vcpu);
1271 if (r)
1272 goto out;
1273 mutex_lock(&vcpu->kvm->lock);
1274 mmu_alloc_roots(vcpu);
1275 mutex_unlock(&vcpu->kvm->lock);
1276 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1277 kvm_mmu_flush_tlb(vcpu);
1278 out:
1279 return r;
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1282
1283 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1284 {
1285 mmu_free_roots(vcpu);
1286 }
1287
1288 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1289 struct kvm_mmu_page *sp,
1290 u64 *spte)
1291 {
1292 u64 pte;
1293 struct kvm_mmu_page *child;
1294
1295 pte = *spte;
1296 if (is_shadow_present_pte(pte)) {
1297 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
1298 rmap_remove(vcpu->kvm, spte);
1299 else {
1300 child = page_header(pte & PT64_BASE_ADDR_MASK);
1301 mmu_page_remove_parent_pte(child, spte);
1302 }
1303 }
1304 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1305 }
1306
1307 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1308 struct kvm_mmu_page *sp,
1309 u64 *spte,
1310 const void *new, int bytes,
1311 int offset_in_pte)
1312 {
1313 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
1314 ++vcpu->kvm->stat.mmu_pde_zapped;
1315 return;
1316 }
1317
1318 ++vcpu->kvm->stat.mmu_pte_updated;
1319 if (sp->role.glevels == PT32_ROOT_LEVEL)
1320 paging32_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1321 else
1322 paging64_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1323 }
1324
1325 static bool need_remote_flush(u64 old, u64 new)
1326 {
1327 if (!is_shadow_present_pte(old))
1328 return false;
1329 if (!is_shadow_present_pte(new))
1330 return true;
1331 if ((old ^ new) & PT64_BASE_ADDR_MASK)
1332 return true;
1333 old ^= PT64_NX_MASK;
1334 new ^= PT64_NX_MASK;
1335 return (old & ~new & PT64_PERM_MASK) != 0;
1336 }
1337
1338 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1339 {
1340 if (need_remote_flush(old, new))
1341 kvm_flush_remote_tlbs(vcpu->kvm);
1342 else
1343 kvm_mmu_flush_tlb(vcpu);
1344 }
1345
1346 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1347 {
1348 u64 *spte = vcpu->arch.last_pte_updated;
1349
1350 return !!(spte && (*spte & PT_ACCESSED_MASK));
1351 }
1352
1353 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1354 const u8 *new, int bytes)
1355 {
1356 gfn_t gfn;
1357 int r;
1358 u64 gpte = 0;
1359
1360 if (bytes != 4 && bytes != 8)
1361 return;
1362
1363 /*
1364 * Assume that the pte write on a page table of the same type
1365 * as the current vcpu paging mode. This is nearly always true
1366 * (might be false while changing modes). Note it is verified later
1367 * by update_pte().
1368 */
1369 if (is_pae(vcpu)) {
1370 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1371 if ((bytes == 4) && (gpa % 4 == 0)) {
1372 r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1373 if (r)
1374 return;
1375 memcpy((void *)&gpte + (gpa % 8), new, 4);
1376 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1377 memcpy((void *)&gpte, new, 8);
1378 }
1379 } else {
1380 if ((bytes == 4) && (gpa % 4 == 0))
1381 memcpy((void *)&gpte, new, 4);
1382 }
1383 if (!is_present_pte(gpte))
1384 return;
1385 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1386 vcpu->arch.update_pte.gfn = gfn;
1387 vcpu->arch.update_pte.page = gfn_to_page(vcpu->kvm, gfn);
1388 }
1389
1390 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1391 const u8 *new, int bytes)
1392 {
1393 gfn_t gfn = gpa >> PAGE_SHIFT;
1394 struct kvm_mmu_page *sp;
1395 struct hlist_node *node, *n;
1396 struct hlist_head *bucket;
1397 unsigned index;
1398 u64 entry;
1399 u64 *spte;
1400 unsigned offset = offset_in_page(gpa);
1401 unsigned pte_size;
1402 unsigned page_offset;
1403 unsigned misaligned;
1404 unsigned quadrant;
1405 int level;
1406 int flooded = 0;
1407 int npte;
1408
1409 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1410 mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1411 mutex_lock(&vcpu->kvm->lock);
1412 ++vcpu->kvm->stat.mmu_pte_write;
1413 kvm_mmu_audit(vcpu, "pre pte write");
1414 if (gfn == vcpu->arch.last_pt_write_gfn
1415 && !last_updated_pte_accessed(vcpu)) {
1416 ++vcpu->arch.last_pt_write_count;
1417 if (vcpu->arch.last_pt_write_count >= 3)
1418 flooded = 1;
1419 } else {
1420 vcpu->arch.last_pt_write_gfn = gfn;
1421 vcpu->arch.last_pt_write_count = 1;
1422 vcpu->arch.last_pte_updated = NULL;
1423 }
1424 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1425 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1426 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1427 if (sp->gfn != gfn || sp->role.metaphysical)
1428 continue;
1429 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1430 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1431 misaligned |= bytes < 4;
1432 if (misaligned || flooded) {
1433 /*
1434 * Misaligned accesses are too much trouble to fix
1435 * up; also, they usually indicate a page is not used
1436 * as a page table.
1437 *
1438 * If we're seeing too many writes to a page,
1439 * it may no longer be a page table, or we may be
1440 * forking, in which case it is better to unmap the
1441 * page.
1442 */
1443 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1444 gpa, bytes, sp->role.word);
1445 kvm_mmu_zap_page(vcpu->kvm, sp);
1446 ++vcpu->kvm->stat.mmu_flooded;
1447 continue;
1448 }
1449 page_offset = offset;
1450 level = sp->role.level;
1451 npte = 1;
1452 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1453 page_offset <<= 1; /* 32->64 */
1454 /*
1455 * A 32-bit pde maps 4MB while the shadow pdes map
1456 * only 2MB. So we need to double the offset again
1457 * and zap two pdes instead of one.
1458 */
1459 if (level == PT32_ROOT_LEVEL) {
1460 page_offset &= ~7; /* kill rounding error */
1461 page_offset <<= 1;
1462 npte = 2;
1463 }
1464 quadrant = page_offset >> PAGE_SHIFT;
1465 page_offset &= ~PAGE_MASK;
1466 if (quadrant != sp->role.quadrant)
1467 continue;
1468 }
1469 spte = &sp->spt[page_offset / sizeof(*spte)];
1470 while (npte--) {
1471 entry = *spte;
1472 mmu_pte_write_zap_pte(vcpu, sp, spte);
1473 mmu_pte_write_new_pte(vcpu, sp, spte, new, bytes,
1474 page_offset & (pte_size - 1));
1475 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1476 ++spte;
1477 }
1478 }
1479 kvm_mmu_audit(vcpu, "post pte write");
1480 mutex_unlock(&vcpu->kvm->lock);
1481 if (vcpu->arch.update_pte.page) {
1482 kvm_release_page_clean(vcpu->arch.update_pte.page);
1483 vcpu->arch.update_pte.page = NULL;
1484 }
1485 }
1486
1487 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1488 {
1489 gpa_t gpa;
1490 int r;
1491
1492 down_read(&current->mm->mmap_sem);
1493 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1494 up_read(&current->mm->mmap_sem);
1495
1496 mutex_lock(&vcpu->kvm->lock);
1497 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1498 mutex_unlock(&vcpu->kvm->lock);
1499 return r;
1500 }
1501
1502 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1503 {
1504 mutex_lock(&vcpu->kvm->lock);
1505 while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1506 struct kvm_mmu_page *sp;
1507
1508 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1509 struct kvm_mmu_page, link);
1510 kvm_mmu_zap_page(vcpu->kvm, sp);
1511 ++vcpu->kvm->stat.mmu_recycled;
1512 }
1513 mutex_unlock(&vcpu->kvm->lock);
1514 }
1515
1516 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1517 {
1518 int r;
1519 enum emulation_result er;
1520
1521 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1522 if (r < 0)
1523 goto out;
1524
1525 if (!r) {
1526 r = 1;
1527 goto out;
1528 }
1529
1530 r = mmu_topup_memory_caches(vcpu);
1531 if (r)
1532 goto out;
1533
1534 er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1535
1536 switch (er) {
1537 case EMULATE_DONE:
1538 return 1;
1539 case EMULATE_DO_MMIO:
1540 ++vcpu->stat.mmio_exits;
1541 return 0;
1542 case EMULATE_FAIL:
1543 kvm_report_emulation_failure(vcpu, "pagetable");
1544 return 1;
1545 default:
1546 BUG();
1547 }
1548 out:
1549 return r;
1550 }
1551 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1552
1553 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1554 {
1555 struct kvm_mmu_page *sp;
1556
1557 while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1558 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1559 struct kvm_mmu_page, link);
1560 kvm_mmu_zap_page(vcpu->kvm, sp);
1561 }
1562 free_page((unsigned long)vcpu->arch.mmu.pae_root);
1563 }
1564
1565 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1566 {
1567 struct page *page;
1568 int i;
1569
1570 ASSERT(vcpu);
1571
1572 if (vcpu->kvm->arch.n_requested_mmu_pages)
1573 vcpu->kvm->arch.n_free_mmu_pages =
1574 vcpu->kvm->arch.n_requested_mmu_pages;
1575 else
1576 vcpu->kvm->arch.n_free_mmu_pages =
1577 vcpu->kvm->arch.n_alloc_mmu_pages;
1578 /*
1579 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1580 * Therefore we need to allocate shadow page tables in the first
1581 * 4GB of memory, which happens to fit the DMA32 zone.
1582 */
1583 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1584 if (!page)
1585 goto error_1;
1586 vcpu->arch.mmu.pae_root = page_address(page);
1587 for (i = 0; i < 4; ++i)
1588 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1589
1590 return 0;
1591
1592 error_1:
1593 free_mmu_pages(vcpu);
1594 return -ENOMEM;
1595 }
1596
1597 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1598 {
1599 ASSERT(vcpu);
1600 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1601
1602 return alloc_mmu_pages(vcpu);
1603 }
1604
1605 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1606 {
1607 ASSERT(vcpu);
1608 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1609
1610 return init_kvm_mmu(vcpu);
1611 }
1612
1613 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1614 {
1615 ASSERT(vcpu);
1616
1617 destroy_kvm_mmu(vcpu);
1618 free_mmu_pages(vcpu);
1619 mmu_free_memory_caches(vcpu);
1620 }
1621
1622 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1623 {
1624 struct kvm_mmu_page *sp;
1625
1626 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
1627 int i;
1628 u64 *pt;
1629
1630 if (!test_bit(slot, &sp->slot_bitmap))
1631 continue;
1632
1633 pt = sp->spt;
1634 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1635 /* avoid RMW */
1636 if (pt[i] & PT_WRITABLE_MASK)
1637 pt[i] &= ~PT_WRITABLE_MASK;
1638 }
1639 }
1640
1641 void kvm_mmu_zap_all(struct kvm *kvm)
1642 {
1643 struct kvm_mmu_page *sp, *node;
1644
1645 mutex_lock(&kvm->lock);
1646 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
1647 kvm_mmu_zap_page(kvm, sp);
1648 mutex_unlock(&kvm->lock);
1649
1650 kvm_flush_remote_tlbs(kvm);
1651 }
1652
1653 void kvm_mmu_module_exit(void)
1654 {
1655 if (pte_chain_cache)
1656 kmem_cache_destroy(pte_chain_cache);
1657 if (rmap_desc_cache)
1658 kmem_cache_destroy(rmap_desc_cache);
1659 if (mmu_page_header_cache)
1660 kmem_cache_destroy(mmu_page_header_cache);
1661 }
1662
1663 int kvm_mmu_module_init(void)
1664 {
1665 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1666 sizeof(struct kvm_pte_chain),
1667 0, 0, NULL);
1668 if (!pte_chain_cache)
1669 goto nomem;
1670 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1671 sizeof(struct kvm_rmap_desc),
1672 0, 0, NULL);
1673 if (!rmap_desc_cache)
1674 goto nomem;
1675
1676 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1677 sizeof(struct kvm_mmu_page),
1678 0, 0, NULL);
1679 if (!mmu_page_header_cache)
1680 goto nomem;
1681
1682 return 0;
1683
1684 nomem:
1685 kvm_mmu_module_exit();
1686 return -ENOMEM;
1687 }
1688
1689 /*
1690 * Caculate mmu pages needed for kvm.
1691 */
1692 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
1693 {
1694 int i;
1695 unsigned int nr_mmu_pages;
1696 unsigned int nr_pages = 0;
1697
1698 for (i = 0; i < kvm->nmemslots; i++)
1699 nr_pages += kvm->memslots[i].npages;
1700
1701 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
1702 nr_mmu_pages = max(nr_mmu_pages,
1703 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
1704
1705 return nr_mmu_pages;
1706 }
1707
1708 #ifdef AUDIT
1709
1710 static const char *audit_msg;
1711
1712 static gva_t canonicalize(gva_t gva)
1713 {
1714 #ifdef CONFIG_X86_64
1715 gva = (long long)(gva << 16) >> 16;
1716 #endif
1717 return gva;
1718 }
1719
1720 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1721 gva_t va, int level)
1722 {
1723 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1724 int i;
1725 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1726
1727 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1728 u64 ent = pt[i];
1729
1730 if (ent == shadow_trap_nonpresent_pte)
1731 continue;
1732
1733 va = canonicalize(va);
1734 if (level > 1) {
1735 if (ent == shadow_notrap_nonpresent_pte)
1736 printk(KERN_ERR "audit: (%s) nontrapping pte"
1737 " in nonleaf level: levels %d gva %lx"
1738 " level %d pte %llx\n", audit_msg,
1739 vcpu->arch.mmu.root_level, va, level, ent);
1740
1741 audit_mappings_page(vcpu, ent, va, level - 1);
1742 } else {
1743 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
1744 struct page *page = gpa_to_page(vcpu, gpa);
1745 hpa_t hpa = page_to_phys(page);
1746
1747 if (is_shadow_present_pte(ent)
1748 && (ent & PT64_BASE_ADDR_MASK) != hpa)
1749 printk(KERN_ERR "xx audit error: (%s) levels %d"
1750 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
1751 audit_msg, vcpu->arch.mmu.root_level,
1752 va, gpa, hpa, ent,
1753 is_shadow_present_pte(ent));
1754 else if (ent == shadow_notrap_nonpresent_pte
1755 && !is_error_hpa(hpa))
1756 printk(KERN_ERR "audit: (%s) notrap shadow,"
1757 " valid guest gva %lx\n", audit_msg, va);
1758 kvm_release_page_clean(page);
1759
1760 }
1761 }
1762 }
1763
1764 static void audit_mappings(struct kvm_vcpu *vcpu)
1765 {
1766 unsigned i;
1767
1768 if (vcpu->arch.mmu.root_level == 4)
1769 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
1770 else
1771 for (i = 0; i < 4; ++i)
1772 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
1773 audit_mappings_page(vcpu,
1774 vcpu->arch.mmu.pae_root[i],
1775 i << 30,
1776 2);
1777 }
1778
1779 static int count_rmaps(struct kvm_vcpu *vcpu)
1780 {
1781 int nmaps = 0;
1782 int i, j, k;
1783
1784 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1785 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1786 struct kvm_rmap_desc *d;
1787
1788 for (j = 0; j < m->npages; ++j) {
1789 unsigned long *rmapp = &m->rmap[j];
1790
1791 if (!*rmapp)
1792 continue;
1793 if (!(*rmapp & 1)) {
1794 ++nmaps;
1795 continue;
1796 }
1797 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
1798 while (d) {
1799 for (k = 0; k < RMAP_EXT; ++k)
1800 if (d->shadow_ptes[k])
1801 ++nmaps;
1802 else
1803 break;
1804 d = d->more;
1805 }
1806 }
1807 }
1808 return nmaps;
1809 }
1810
1811 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1812 {
1813 int nmaps = 0;
1814 struct kvm_mmu_page *sp;
1815 int i;
1816
1817 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
1818 u64 *pt = sp->spt;
1819
1820 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
1821 continue;
1822
1823 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1824 u64 ent = pt[i];
1825
1826 if (!(ent & PT_PRESENT_MASK))
1827 continue;
1828 if (!(ent & PT_WRITABLE_MASK))
1829 continue;
1830 ++nmaps;
1831 }
1832 }
1833 return nmaps;
1834 }
1835
1836 static void audit_rmap(struct kvm_vcpu *vcpu)
1837 {
1838 int n_rmap = count_rmaps(vcpu);
1839 int n_actual = count_writable_mappings(vcpu);
1840
1841 if (n_rmap != n_actual)
1842 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1843 __FUNCTION__, audit_msg, n_rmap, n_actual);
1844 }
1845
1846 static void audit_write_protection(struct kvm_vcpu *vcpu)
1847 {
1848 struct kvm_mmu_page *sp;
1849 struct kvm_memory_slot *slot;
1850 unsigned long *rmapp;
1851 gfn_t gfn;
1852
1853 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
1854 if (sp->role.metaphysical)
1855 continue;
1856
1857 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
1858 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
1859 rmapp = &slot->rmap[gfn - slot->base_gfn];
1860 if (*rmapp)
1861 printk(KERN_ERR "%s: (%s) shadow page has writable"
1862 " mappings: gfn %lx role %x\n",
1863 __FUNCTION__, audit_msg, sp->gfn,
1864 sp->role.word);
1865 }
1866 }
1867
1868 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1869 {
1870 int olddbg = dbg;
1871
1872 dbg = 0;
1873 audit_msg = msg;
1874 audit_rmap(vcpu);
1875 audit_write_protection(vcpu);
1876 audit_mappings(vcpu);
1877 dbg = olddbg;
1878 }
1879
1880 #endif
This page took 0.067294 seconds and 6 git commands to generate.