KVM: x86: MMU: Remove mapping_level_dirty_bitmap()
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52 bool tdp_enabled = false;
53
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77
78 #define PTE_PREFETCH_NUM 8
79
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
83 #define PT64_LEVEL_BITS 9
84
85 #define PT64_LEVEL_SHIFT(level) \
86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87
88 #define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92 #define PT32_LEVEL_BITS 10
93
94 #define PT32_LEVEL_SHIFT(level) \
95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96
97 #define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
100
101 #define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
121
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
124
125 #define ACC_EXEC_MASK 1
126 #define ACC_WRITE_MASK PT_WRITABLE_MASK
127 #define ACC_USER_MASK PT_USER_MASK
128 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
130 #include <trace/events/kvm.h>
131
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134
135 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
151 u64 *sptep;
152 int level;
153 unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183 shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
187 /*
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
195 */
196 #define MMIO_SPTE_GEN_LOW_SHIFT 2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
199 #define MMIO_GEN_SHIFT 20
200 #define MMIO_GEN_LOW_SHIFT 10
201 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
203
204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206 u64 mask;
207
208 WARN_ON(gen & ~MMIO_GEN_MASK);
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213 }
214
215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224 }
225
226 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
227 {
228 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
229 }
230
231 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
232 unsigned access)
233 {
234 unsigned int gen = kvm_current_mmio_generation(vcpu);
235 u64 mask = generation_mmio_spte_mask(gen);
236
237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239
240 trace_mark_mmio_spte(sptep, gfn, access, gen);
241 mmu_spte_set(sptep, mask);
242 }
243
244 static bool is_mmio_spte(u64 spte)
245 {
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248
249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252 return (spte & ~mask) >> PAGE_SHIFT;
253 }
254
255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258 return (spte & ~mask) & ~PAGE_MASK;
259 }
260
261 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
262 pfn_t pfn, unsigned access)
263 {
264 if (unlikely(is_noslot_pfn(pfn))) {
265 mark_mmio_spte(vcpu, sptep, gfn, access);
266 return true;
267 }
268
269 return false;
270 }
271
272 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
273 {
274 unsigned int kvm_gen, spte_gen;
275
276 kvm_gen = kvm_current_mmio_generation(vcpu);
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
281 }
282
283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
294 static int is_cpuid_PSE36(void)
295 {
296 return 1;
297 }
298
299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301 return vcpu->arch.efer & EFER_NX;
302 }
303
304 static int is_shadow_present_pte(u64 pte)
305 {
306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308
309 static int is_large_pte(u64 pte)
310 {
311 return pte & PT_PAGE_SIZE_MASK;
312 }
313
314 static int is_rmap_spte(u64 pte)
315 {
316 return is_shadow_present_pte(pte);
317 }
318
319 static int is_last_spte(u64 pte, int level)
320 {
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
323 if (is_large_pte(pte))
324 return 1;
325 return 0;
326 }
327
328 static pfn_t spte_to_pfn(u64 pte)
329 {
330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332
333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343 *sptep = spte;
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348 *sptep = spte;
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353 return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358 return ACCESS_ONCE(*sptep);
359 }
360 #else
361 union split_spte {
362 struct {
363 u32 spte_low;
364 u32 spte_high;
365 };
366 u64 spte;
367 };
368
369 static void count_spte_clear(u64 *sptep, u64 spte)
370 {
371 struct kvm_mmu_page *sp = page_header(__pa(sptep));
372
373 if (is_shadow_present_pte(spte))
374 return;
375
376 /* Ensure the spte is completely set before we increase the count */
377 smp_wmb();
378 sp->clear_spte_count++;
379 }
380
381 static void __set_spte(u64 *sptep, u64 spte)
382 {
383 union split_spte *ssptep, sspte;
384
385 ssptep = (union split_spte *)sptep;
386 sspte = (union split_spte)spte;
387
388 ssptep->spte_high = sspte.spte_high;
389
390 /*
391 * If we map the spte from nonpresent to present, We should store
392 * the high bits firstly, then set present bit, so cpu can not
393 * fetch this spte while we are setting the spte.
394 */
395 smp_wmb();
396
397 ssptep->spte_low = sspte.spte_low;
398 }
399
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402 union split_spte *ssptep, sspte;
403
404 ssptep = (union split_spte *)sptep;
405 sspte = (union split_spte)spte;
406
407 ssptep->spte_low = sspte.spte_low;
408
409 /*
410 * If we map the spte from present to nonpresent, we should clear
411 * present bit firstly to avoid vcpu fetch the old high bits.
412 */
413 smp_wmb();
414
415 ssptep->spte_high = sspte.spte_high;
416 count_spte_clear(sptep, spte);
417 }
418
419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420 {
421 union split_spte *ssptep, sspte, orig;
422
423 ssptep = (union split_spte *)sptep;
424 sspte = (union split_spte)spte;
425
426 /* xchg acts as a barrier before the setting of the high bits */
427 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428 orig.spte_high = ssptep->spte_high;
429 ssptep->spte_high = sspte.spte_high;
430 count_spte_clear(sptep, spte);
431
432 return orig.spte;
433 }
434
435 /*
436 * The idea using the light way get the spte on x86_32 guest is from
437 * gup_get_pte(arch/x86/mm/gup.c).
438 *
439 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440 * coalesces them and we are running out of the MMU lock. Therefore
441 * we need to protect against in-progress updates of the spte.
442 *
443 * Reading the spte while an update is in progress may get the old value
444 * for the high part of the spte. The race is fine for a present->non-present
445 * change (because the high part of the spte is ignored for non-present spte),
446 * but for a present->present change we must reread the spte.
447 *
448 * All such changes are done in two steps (present->non-present and
449 * non-present->present), hence it is enough to count the number of
450 * present->non-present updates: if it changed while reading the spte,
451 * we might have hit the race. This is done using clear_spte_count.
452 */
453 static u64 __get_spte_lockless(u64 *sptep)
454 {
455 struct kvm_mmu_page *sp = page_header(__pa(sptep));
456 union split_spte spte, *orig = (union split_spte *)sptep;
457 int count;
458
459 retry:
460 count = sp->clear_spte_count;
461 smp_rmb();
462
463 spte.spte_low = orig->spte_low;
464 smp_rmb();
465
466 spte.spte_high = orig->spte_high;
467 smp_rmb();
468
469 if (unlikely(spte.spte_low != orig->spte_low ||
470 count != sp->clear_spte_count))
471 goto retry;
472
473 return spte.spte;
474 }
475 #endif
476
477 static bool spte_is_locklessly_modifiable(u64 spte)
478 {
479 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
481 }
482
483 static bool spte_has_volatile_bits(u64 spte)
484 {
485 /*
486 * Always atomicly update spte if it can be updated
487 * out of mmu-lock, it can ensure dirty bit is not lost,
488 * also, it can help us to get a stable is_writable_pte()
489 * to ensure tlb flush is not missed.
490 */
491 if (spte_is_locklessly_modifiable(spte))
492 return true;
493
494 if (!shadow_accessed_mask)
495 return false;
496
497 if (!is_shadow_present_pte(spte))
498 return false;
499
500 if ((spte & shadow_accessed_mask) &&
501 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
502 return false;
503
504 return true;
505 }
506
507 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508 {
509 return (old_spte & bit_mask) && !(new_spte & bit_mask);
510 }
511
512 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513 {
514 return (old_spte & bit_mask) != (new_spte & bit_mask);
515 }
516
517 /* Rules for using mmu_spte_set:
518 * Set the sptep from nonpresent to present.
519 * Note: the sptep being assigned *must* be either not present
520 * or in a state where the hardware will not attempt to update
521 * the spte.
522 */
523 static void mmu_spte_set(u64 *sptep, u64 new_spte)
524 {
525 WARN_ON(is_shadow_present_pte(*sptep));
526 __set_spte(sptep, new_spte);
527 }
528
529 /* Rules for using mmu_spte_update:
530 * Update the state bits, it means the mapped pfn is not changged.
531 *
532 * Whenever we overwrite a writable spte with a read-only one we
533 * should flush remote TLBs. Otherwise rmap_write_protect
534 * will find a read-only spte, even though the writable spte
535 * might be cached on a CPU's TLB, the return value indicates this
536 * case.
537 */
538 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
539 {
540 u64 old_spte = *sptep;
541 bool ret = false;
542
543 WARN_ON(!is_rmap_spte(new_spte));
544
545 if (!is_shadow_present_pte(old_spte)) {
546 mmu_spte_set(sptep, new_spte);
547 return ret;
548 }
549
550 if (!spte_has_volatile_bits(old_spte))
551 __update_clear_spte_fast(sptep, new_spte);
552 else
553 old_spte = __update_clear_spte_slow(sptep, new_spte);
554
555 /*
556 * For the spte updated out of mmu-lock is safe, since
557 * we always atomicly update it, see the comments in
558 * spte_has_volatile_bits().
559 */
560 if (spte_is_locklessly_modifiable(old_spte) &&
561 !is_writable_pte(new_spte))
562 ret = true;
563
564 if (!shadow_accessed_mask)
565 return ret;
566
567 /*
568 * Flush TLB when accessed/dirty bits are changed in the page tables,
569 * to guarantee consistency between TLB and page tables.
570 */
571 if (spte_is_bit_changed(old_spte, new_spte,
572 shadow_accessed_mask | shadow_dirty_mask))
573 ret = true;
574
575 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
576 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
577 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
578 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
579
580 return ret;
581 }
582
583 /*
584 * Rules for using mmu_spte_clear_track_bits:
585 * It sets the sptep from present to nonpresent, and track the
586 * state bits, it is used to clear the last level sptep.
587 */
588 static int mmu_spte_clear_track_bits(u64 *sptep)
589 {
590 pfn_t pfn;
591 u64 old_spte = *sptep;
592
593 if (!spte_has_volatile_bits(old_spte))
594 __update_clear_spte_fast(sptep, 0ull);
595 else
596 old_spte = __update_clear_spte_slow(sptep, 0ull);
597
598 if (!is_rmap_spte(old_spte))
599 return 0;
600
601 pfn = spte_to_pfn(old_spte);
602
603 /*
604 * KVM does not hold the refcount of the page used by
605 * kvm mmu, before reclaiming the page, we should
606 * unmap it from mmu first.
607 */
608 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
609
610 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
611 kvm_set_pfn_accessed(pfn);
612 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
613 kvm_set_pfn_dirty(pfn);
614 return 1;
615 }
616
617 /*
618 * Rules for using mmu_spte_clear_no_track:
619 * Directly clear spte without caring the state bits of sptep,
620 * it is used to set the upper level spte.
621 */
622 static void mmu_spte_clear_no_track(u64 *sptep)
623 {
624 __update_clear_spte_fast(sptep, 0ull);
625 }
626
627 static u64 mmu_spte_get_lockless(u64 *sptep)
628 {
629 return __get_spte_lockless(sptep);
630 }
631
632 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
633 {
634 /*
635 * Prevent page table teardown by making any free-er wait during
636 * kvm_flush_remote_tlbs() IPI to all active vcpus.
637 */
638 local_irq_disable();
639 vcpu->mode = READING_SHADOW_PAGE_TABLES;
640 /*
641 * Make sure a following spte read is not reordered ahead of the write
642 * to vcpu->mode.
643 */
644 smp_mb();
645 }
646
647 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
648 {
649 /*
650 * Make sure the write to vcpu->mode is not reordered in front of
651 * reads to sptes. If it does, kvm_commit_zap_page() can see us
652 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
653 */
654 smp_mb();
655 vcpu->mode = OUTSIDE_GUEST_MODE;
656 local_irq_enable();
657 }
658
659 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
660 struct kmem_cache *base_cache, int min)
661 {
662 void *obj;
663
664 if (cache->nobjs >= min)
665 return 0;
666 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
667 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
668 if (!obj)
669 return -ENOMEM;
670 cache->objects[cache->nobjs++] = obj;
671 }
672 return 0;
673 }
674
675 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
676 {
677 return cache->nobjs;
678 }
679
680 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
681 struct kmem_cache *cache)
682 {
683 while (mc->nobjs)
684 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
685 }
686
687 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
688 int min)
689 {
690 void *page;
691
692 if (cache->nobjs >= min)
693 return 0;
694 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
695 page = (void *)__get_free_page(GFP_KERNEL);
696 if (!page)
697 return -ENOMEM;
698 cache->objects[cache->nobjs++] = page;
699 }
700 return 0;
701 }
702
703 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
704 {
705 while (mc->nobjs)
706 free_page((unsigned long)mc->objects[--mc->nobjs]);
707 }
708
709 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
710 {
711 int r;
712
713 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
714 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
715 if (r)
716 goto out;
717 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
718 if (r)
719 goto out;
720 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
721 mmu_page_header_cache, 4);
722 out:
723 return r;
724 }
725
726 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727 {
728 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729 pte_list_desc_cache);
730 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
731 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
732 mmu_page_header_cache);
733 }
734
735 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
736 {
737 void *p;
738
739 BUG_ON(!mc->nobjs);
740 p = mc->objects[--mc->nobjs];
741 return p;
742 }
743
744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745 {
746 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 }
748
749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750 {
751 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 }
753
754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755 {
756 if (!sp->role.direct)
757 return sp->gfns[index];
758
759 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760 }
761
762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763 {
764 if (sp->role.direct)
765 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
766 else
767 sp->gfns[index] = gfn;
768 }
769
770 /*
771 * Return the pointer to the large page information for a given gfn,
772 * handling slots that are not large page aligned.
773 */
774 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
775 struct kvm_memory_slot *slot,
776 int level)
777 {
778 unsigned long idx;
779
780 idx = gfn_to_index(gfn, slot->base_gfn, level);
781 return &slot->arch.lpage_info[level - 2][idx];
782 }
783
784 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
785 {
786 struct kvm_memslots *slots;
787 struct kvm_memory_slot *slot;
788 struct kvm_lpage_info *linfo;
789 gfn_t gfn;
790 int i;
791
792 gfn = sp->gfn;
793 slots = kvm_memslots_for_spte_role(kvm, sp->role);
794 slot = __gfn_to_memslot(slots, gfn);
795 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
796 linfo = lpage_info_slot(gfn, slot, i);
797 linfo->write_count += 1;
798 }
799 kvm->arch.indirect_shadow_pages++;
800 }
801
802 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
803 {
804 struct kvm_memslots *slots;
805 struct kvm_memory_slot *slot;
806 struct kvm_lpage_info *linfo;
807 gfn_t gfn;
808 int i;
809
810 gfn = sp->gfn;
811 slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 slot = __gfn_to_memslot(slots, gfn);
813 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
814 linfo = lpage_info_slot(gfn, slot, i);
815 linfo->write_count -= 1;
816 WARN_ON(linfo->write_count < 0);
817 }
818 kvm->arch.indirect_shadow_pages--;
819 }
820
821 static int has_wrprotected_page(struct kvm_vcpu *vcpu,
822 gfn_t gfn,
823 int level)
824 {
825 struct kvm_memory_slot *slot;
826 struct kvm_lpage_info *linfo;
827
828 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
829 if (slot) {
830 linfo = lpage_info_slot(gfn, slot, level);
831 return linfo->write_count;
832 }
833
834 return 1;
835 }
836
837 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
838 {
839 unsigned long page_size;
840 int i, ret = 0;
841
842 page_size = kvm_host_page_size(kvm, gfn);
843
844 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
845 if (page_size >= KVM_HPAGE_SIZE(i))
846 ret = i;
847 else
848 break;
849 }
850
851 return ret;
852 }
853
854 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
855 bool no_dirty_log)
856 {
857 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
858 return false;
859 if (no_dirty_log && slot->dirty_bitmap)
860 return false;
861
862 return true;
863 }
864
865 static struct kvm_memory_slot *
866 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
867 bool no_dirty_log)
868 {
869 struct kvm_memory_slot *slot;
870
871 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
872 if (!memslot_valid_for_gpte(slot, no_dirty_log))
873 slot = NULL;
874
875 return slot;
876 }
877
878 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
879 bool *force_pt_level)
880 {
881 int host_level, level, max_level;
882 struct kvm_memory_slot *slot;
883
884 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
885
886 if (likely(!*force_pt_level))
887 *force_pt_level = !memslot_valid_for_gpte(slot, true);
888 if (unlikely(*force_pt_level))
889 return PT_PAGE_TABLE_LEVEL;
890
891 host_level = host_mapping_level(vcpu->kvm, large_gfn);
892
893 if (host_level == PT_PAGE_TABLE_LEVEL)
894 return host_level;
895
896 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
897
898 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
899 if (has_wrprotected_page(vcpu, large_gfn, level))
900 break;
901
902 return level - 1;
903 }
904
905 /*
906 * Pte mapping structures:
907 *
908 * If pte_list bit zero is zero, then pte_list point to the spte.
909 *
910 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
911 * pte_list_desc containing more mappings.
912 *
913 * Returns the number of pte entries before the spte was added or zero if
914 * the spte was not added.
915 *
916 */
917 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
918 unsigned long *pte_list)
919 {
920 struct pte_list_desc *desc;
921 int i, count = 0;
922
923 if (!*pte_list) {
924 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
925 *pte_list = (unsigned long)spte;
926 } else if (!(*pte_list & 1)) {
927 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
928 desc = mmu_alloc_pte_list_desc(vcpu);
929 desc->sptes[0] = (u64 *)*pte_list;
930 desc->sptes[1] = spte;
931 *pte_list = (unsigned long)desc | 1;
932 ++count;
933 } else {
934 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
935 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
936 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
937 desc = desc->more;
938 count += PTE_LIST_EXT;
939 }
940 if (desc->sptes[PTE_LIST_EXT-1]) {
941 desc->more = mmu_alloc_pte_list_desc(vcpu);
942 desc = desc->more;
943 }
944 for (i = 0; desc->sptes[i]; ++i)
945 ++count;
946 desc->sptes[i] = spte;
947 }
948 return count;
949 }
950
951 static void
952 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
953 int i, struct pte_list_desc *prev_desc)
954 {
955 int j;
956
957 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
958 ;
959 desc->sptes[i] = desc->sptes[j];
960 desc->sptes[j] = NULL;
961 if (j != 0)
962 return;
963 if (!prev_desc && !desc->more)
964 *pte_list = (unsigned long)desc->sptes[0];
965 else
966 if (prev_desc)
967 prev_desc->more = desc->more;
968 else
969 *pte_list = (unsigned long)desc->more | 1;
970 mmu_free_pte_list_desc(desc);
971 }
972
973 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
974 {
975 struct pte_list_desc *desc;
976 struct pte_list_desc *prev_desc;
977 int i;
978
979 if (!*pte_list) {
980 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
981 BUG();
982 } else if (!(*pte_list & 1)) {
983 rmap_printk("pte_list_remove: %p 1->0\n", spte);
984 if ((u64 *)*pte_list != spte) {
985 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
986 BUG();
987 }
988 *pte_list = 0;
989 } else {
990 rmap_printk("pte_list_remove: %p many->many\n", spte);
991 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
992 prev_desc = NULL;
993 while (desc) {
994 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
995 if (desc->sptes[i] == spte) {
996 pte_list_desc_remove_entry(pte_list,
997 desc, i,
998 prev_desc);
999 return;
1000 }
1001 prev_desc = desc;
1002 desc = desc->more;
1003 }
1004 pr_err("pte_list_remove: %p many->many\n", spte);
1005 BUG();
1006 }
1007 }
1008
1009 typedef void (*pte_list_walk_fn) (u64 *spte);
1010 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1011 {
1012 struct pte_list_desc *desc;
1013 int i;
1014
1015 if (!*pte_list)
1016 return;
1017
1018 if (!(*pte_list & 1))
1019 return fn((u64 *)*pte_list);
1020
1021 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1022 while (desc) {
1023 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1024 fn(desc->sptes[i]);
1025 desc = desc->more;
1026 }
1027 }
1028
1029 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1030 struct kvm_memory_slot *slot)
1031 {
1032 unsigned long idx;
1033
1034 idx = gfn_to_index(gfn, slot->base_gfn, level);
1035 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1036 }
1037
1038 /*
1039 * Take gfn and return the reverse mapping to it.
1040 */
1041 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
1042 {
1043 struct kvm_memslots *slots;
1044 struct kvm_memory_slot *slot;
1045
1046 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1047 slot = __gfn_to_memslot(slots, gfn);
1048 return __gfn_to_rmap(gfn, sp->role.level, slot);
1049 }
1050
1051 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1052 {
1053 struct kvm_mmu_memory_cache *cache;
1054
1055 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1056 return mmu_memory_cache_free_objects(cache);
1057 }
1058
1059 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1060 {
1061 struct kvm_mmu_page *sp;
1062 unsigned long *rmapp;
1063
1064 sp = page_header(__pa(spte));
1065 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1066 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1067 return pte_list_add(vcpu, spte, rmapp);
1068 }
1069
1070 static void rmap_remove(struct kvm *kvm, u64 *spte)
1071 {
1072 struct kvm_mmu_page *sp;
1073 gfn_t gfn;
1074 unsigned long *rmapp;
1075
1076 sp = page_header(__pa(spte));
1077 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1078 rmapp = gfn_to_rmap(kvm, gfn, sp);
1079 pte_list_remove(spte, rmapp);
1080 }
1081
1082 /*
1083 * Used by the following functions to iterate through the sptes linked by a
1084 * rmap. All fields are private and not assumed to be used outside.
1085 */
1086 struct rmap_iterator {
1087 /* private fields */
1088 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1089 int pos; /* index of the sptep */
1090 };
1091
1092 /*
1093 * Iteration must be started by this function. This should also be used after
1094 * removing/dropping sptes from the rmap link because in such cases the
1095 * information in the itererator may not be valid.
1096 *
1097 * Returns sptep if found, NULL otherwise.
1098 */
1099 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1100 {
1101 if (!rmap)
1102 return NULL;
1103
1104 if (!(rmap & 1)) {
1105 iter->desc = NULL;
1106 return (u64 *)rmap;
1107 }
1108
1109 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1110 iter->pos = 0;
1111 return iter->desc->sptes[iter->pos];
1112 }
1113
1114 /*
1115 * Must be used with a valid iterator: e.g. after rmap_get_first().
1116 *
1117 * Returns sptep if found, NULL otherwise.
1118 */
1119 static u64 *rmap_get_next(struct rmap_iterator *iter)
1120 {
1121 if (iter->desc) {
1122 if (iter->pos < PTE_LIST_EXT - 1) {
1123 u64 *sptep;
1124
1125 ++iter->pos;
1126 sptep = iter->desc->sptes[iter->pos];
1127 if (sptep)
1128 return sptep;
1129 }
1130
1131 iter->desc = iter->desc->more;
1132
1133 if (iter->desc) {
1134 iter->pos = 0;
1135 /* desc->sptes[0] cannot be NULL */
1136 return iter->desc->sptes[iter->pos];
1137 }
1138 }
1139
1140 return NULL;
1141 }
1142
1143 #define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
1144 for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
1145 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1146 _spte_ = rmap_get_next(_iter_))
1147
1148 static void drop_spte(struct kvm *kvm, u64 *sptep)
1149 {
1150 if (mmu_spte_clear_track_bits(sptep))
1151 rmap_remove(kvm, sptep);
1152 }
1153
1154
1155 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1156 {
1157 if (is_large_pte(*sptep)) {
1158 WARN_ON(page_header(__pa(sptep))->role.level ==
1159 PT_PAGE_TABLE_LEVEL);
1160 drop_spte(kvm, sptep);
1161 --kvm->stat.lpages;
1162 return true;
1163 }
1164
1165 return false;
1166 }
1167
1168 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1169 {
1170 if (__drop_large_spte(vcpu->kvm, sptep))
1171 kvm_flush_remote_tlbs(vcpu->kvm);
1172 }
1173
1174 /*
1175 * Write-protect on the specified @sptep, @pt_protect indicates whether
1176 * spte write-protection is caused by protecting shadow page table.
1177 *
1178 * Note: write protection is difference between dirty logging and spte
1179 * protection:
1180 * - for dirty logging, the spte can be set to writable at anytime if
1181 * its dirty bitmap is properly set.
1182 * - for spte protection, the spte can be writable only after unsync-ing
1183 * shadow page.
1184 *
1185 * Return true if tlb need be flushed.
1186 */
1187 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1188 {
1189 u64 spte = *sptep;
1190
1191 if (!is_writable_pte(spte) &&
1192 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1193 return false;
1194
1195 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1196
1197 if (pt_protect)
1198 spte &= ~SPTE_MMU_WRITEABLE;
1199 spte = spte & ~PT_WRITABLE_MASK;
1200
1201 return mmu_spte_update(sptep, spte);
1202 }
1203
1204 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1205 bool pt_protect)
1206 {
1207 u64 *sptep;
1208 struct rmap_iterator iter;
1209 bool flush = false;
1210
1211 for_each_rmap_spte(rmapp, &iter, sptep)
1212 flush |= spte_write_protect(kvm, sptep, pt_protect);
1213
1214 return flush;
1215 }
1216
1217 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1218 {
1219 u64 spte = *sptep;
1220
1221 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1222
1223 spte &= ~shadow_dirty_mask;
1224
1225 return mmu_spte_update(sptep, spte);
1226 }
1227
1228 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1229 {
1230 u64 *sptep;
1231 struct rmap_iterator iter;
1232 bool flush = false;
1233
1234 for_each_rmap_spte(rmapp, &iter, sptep)
1235 flush |= spte_clear_dirty(kvm, sptep);
1236
1237 return flush;
1238 }
1239
1240 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1241 {
1242 u64 spte = *sptep;
1243
1244 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1245
1246 spte |= shadow_dirty_mask;
1247
1248 return mmu_spte_update(sptep, spte);
1249 }
1250
1251 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1252 {
1253 u64 *sptep;
1254 struct rmap_iterator iter;
1255 bool flush = false;
1256
1257 for_each_rmap_spte(rmapp, &iter, sptep)
1258 flush |= spte_set_dirty(kvm, sptep);
1259
1260 return flush;
1261 }
1262
1263 /**
1264 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1265 * @kvm: kvm instance
1266 * @slot: slot to protect
1267 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1268 * @mask: indicates which pages we should protect
1269 *
1270 * Used when we do not need to care about huge page mappings: e.g. during dirty
1271 * logging we do not have any such mappings.
1272 */
1273 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1274 struct kvm_memory_slot *slot,
1275 gfn_t gfn_offset, unsigned long mask)
1276 {
1277 unsigned long *rmapp;
1278
1279 while (mask) {
1280 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1281 PT_PAGE_TABLE_LEVEL, slot);
1282 __rmap_write_protect(kvm, rmapp, false);
1283
1284 /* clear the first set bit */
1285 mask &= mask - 1;
1286 }
1287 }
1288
1289 /**
1290 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1291 * @kvm: kvm instance
1292 * @slot: slot to clear D-bit
1293 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1294 * @mask: indicates which pages we should clear D-bit
1295 *
1296 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1297 */
1298 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1299 struct kvm_memory_slot *slot,
1300 gfn_t gfn_offset, unsigned long mask)
1301 {
1302 unsigned long *rmapp;
1303
1304 while (mask) {
1305 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1306 PT_PAGE_TABLE_LEVEL, slot);
1307 __rmap_clear_dirty(kvm, rmapp);
1308
1309 /* clear the first set bit */
1310 mask &= mask - 1;
1311 }
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1314
1315 /**
1316 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1317 * PT level pages.
1318 *
1319 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1320 * enable dirty logging for them.
1321 *
1322 * Used when we do not need to care about huge page mappings: e.g. during dirty
1323 * logging we do not have any such mappings.
1324 */
1325 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1326 struct kvm_memory_slot *slot,
1327 gfn_t gfn_offset, unsigned long mask)
1328 {
1329 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1330 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1331 mask);
1332 else
1333 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1334 }
1335
1336 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1337 {
1338 struct kvm_memory_slot *slot;
1339 unsigned long *rmapp;
1340 int i;
1341 bool write_protected = false;
1342
1343 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1344
1345 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1346 rmapp = __gfn_to_rmap(gfn, i, slot);
1347 write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
1348 }
1349
1350 return write_protected;
1351 }
1352
1353 static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1354 {
1355 u64 *sptep;
1356 struct rmap_iterator iter;
1357 bool flush = false;
1358
1359 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1360 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1361 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1362
1363 drop_spte(kvm, sptep);
1364 flush = true;
1365 }
1366
1367 return flush;
1368 }
1369
1370 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1371 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1372 unsigned long data)
1373 {
1374 return kvm_zap_rmapp(kvm, rmapp);
1375 }
1376
1377 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1378 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1379 unsigned long data)
1380 {
1381 u64 *sptep;
1382 struct rmap_iterator iter;
1383 int need_flush = 0;
1384 u64 new_spte;
1385 pte_t *ptep = (pte_t *)data;
1386 pfn_t new_pfn;
1387
1388 WARN_ON(pte_huge(*ptep));
1389 new_pfn = pte_pfn(*ptep);
1390
1391 restart:
1392 for_each_rmap_spte(rmapp, &iter, sptep) {
1393 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1394 sptep, *sptep, gfn, level);
1395
1396 need_flush = 1;
1397
1398 if (pte_write(*ptep)) {
1399 drop_spte(kvm, sptep);
1400 goto restart;
1401 } else {
1402 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1403 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1404
1405 new_spte &= ~PT_WRITABLE_MASK;
1406 new_spte &= ~SPTE_HOST_WRITEABLE;
1407 new_spte &= ~shadow_accessed_mask;
1408
1409 mmu_spte_clear_track_bits(sptep);
1410 mmu_spte_set(sptep, new_spte);
1411 }
1412 }
1413
1414 if (need_flush)
1415 kvm_flush_remote_tlbs(kvm);
1416
1417 return 0;
1418 }
1419
1420 struct slot_rmap_walk_iterator {
1421 /* input fields. */
1422 struct kvm_memory_slot *slot;
1423 gfn_t start_gfn;
1424 gfn_t end_gfn;
1425 int start_level;
1426 int end_level;
1427
1428 /* output fields. */
1429 gfn_t gfn;
1430 unsigned long *rmap;
1431 int level;
1432
1433 /* private field. */
1434 unsigned long *end_rmap;
1435 };
1436
1437 static void
1438 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1439 {
1440 iterator->level = level;
1441 iterator->gfn = iterator->start_gfn;
1442 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1443 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1444 iterator->slot);
1445 }
1446
1447 static void
1448 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1449 struct kvm_memory_slot *slot, int start_level,
1450 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1451 {
1452 iterator->slot = slot;
1453 iterator->start_level = start_level;
1454 iterator->end_level = end_level;
1455 iterator->start_gfn = start_gfn;
1456 iterator->end_gfn = end_gfn;
1457
1458 rmap_walk_init_level(iterator, iterator->start_level);
1459 }
1460
1461 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1462 {
1463 return !!iterator->rmap;
1464 }
1465
1466 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1467 {
1468 if (++iterator->rmap <= iterator->end_rmap) {
1469 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1470 return;
1471 }
1472
1473 if (++iterator->level > iterator->end_level) {
1474 iterator->rmap = NULL;
1475 return;
1476 }
1477
1478 rmap_walk_init_level(iterator, iterator->level);
1479 }
1480
1481 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1482 _start_gfn, _end_gfn, _iter_) \
1483 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1484 _end_level_, _start_gfn, _end_gfn); \
1485 slot_rmap_walk_okay(_iter_); \
1486 slot_rmap_walk_next(_iter_))
1487
1488 static int kvm_handle_hva_range(struct kvm *kvm,
1489 unsigned long start,
1490 unsigned long end,
1491 unsigned long data,
1492 int (*handler)(struct kvm *kvm,
1493 unsigned long *rmapp,
1494 struct kvm_memory_slot *slot,
1495 gfn_t gfn,
1496 int level,
1497 unsigned long data))
1498 {
1499 struct kvm_memslots *slots;
1500 struct kvm_memory_slot *memslot;
1501 struct slot_rmap_walk_iterator iterator;
1502 int ret = 0;
1503 int i;
1504
1505 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1506 slots = __kvm_memslots(kvm, i);
1507 kvm_for_each_memslot(memslot, slots) {
1508 unsigned long hva_start, hva_end;
1509 gfn_t gfn_start, gfn_end;
1510
1511 hva_start = max(start, memslot->userspace_addr);
1512 hva_end = min(end, memslot->userspace_addr +
1513 (memslot->npages << PAGE_SHIFT));
1514 if (hva_start >= hva_end)
1515 continue;
1516 /*
1517 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1518 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1519 */
1520 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1521 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1522
1523 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1524 PT_MAX_HUGEPAGE_LEVEL,
1525 gfn_start, gfn_end - 1,
1526 &iterator)
1527 ret |= handler(kvm, iterator.rmap, memslot,
1528 iterator.gfn, iterator.level, data);
1529 }
1530 }
1531
1532 return ret;
1533 }
1534
1535 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1536 unsigned long data,
1537 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1538 struct kvm_memory_slot *slot,
1539 gfn_t gfn, int level,
1540 unsigned long data))
1541 {
1542 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1543 }
1544
1545 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1546 {
1547 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1548 }
1549
1550 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1551 {
1552 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1553 }
1554
1555 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1556 {
1557 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1558 }
1559
1560 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1561 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1562 unsigned long data)
1563 {
1564 u64 *sptep;
1565 struct rmap_iterator uninitialized_var(iter);
1566 int young = 0;
1567
1568 BUG_ON(!shadow_accessed_mask);
1569
1570 for_each_rmap_spte(rmapp, &iter, sptep)
1571 if (*sptep & shadow_accessed_mask) {
1572 young = 1;
1573 clear_bit((ffs(shadow_accessed_mask) - 1),
1574 (unsigned long *)sptep);
1575 }
1576
1577 trace_kvm_age_page(gfn, level, slot, young);
1578 return young;
1579 }
1580
1581 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1582 struct kvm_memory_slot *slot, gfn_t gfn,
1583 int level, unsigned long data)
1584 {
1585 u64 *sptep;
1586 struct rmap_iterator iter;
1587 int young = 0;
1588
1589 /*
1590 * If there's no access bit in the secondary pte set by the
1591 * hardware it's up to gup-fast/gup to set the access bit in
1592 * the primary pte or in the page structure.
1593 */
1594 if (!shadow_accessed_mask)
1595 goto out;
1596
1597 for_each_rmap_spte(rmapp, &iter, sptep)
1598 if (*sptep & shadow_accessed_mask) {
1599 young = 1;
1600 break;
1601 }
1602 out:
1603 return young;
1604 }
1605
1606 #define RMAP_RECYCLE_THRESHOLD 1000
1607
1608 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1609 {
1610 unsigned long *rmapp;
1611 struct kvm_mmu_page *sp;
1612
1613 sp = page_header(__pa(spte));
1614
1615 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1616
1617 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1618 kvm_flush_remote_tlbs(vcpu->kvm);
1619 }
1620
1621 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1622 {
1623 /*
1624 * In case of absence of EPT Access and Dirty Bits supports,
1625 * emulate the accessed bit for EPT, by checking if this page has
1626 * an EPT mapping, and clearing it if it does. On the next access,
1627 * a new EPT mapping will be established.
1628 * This has some overhead, but not as much as the cost of swapping
1629 * out actively used pages or breaking up actively used hugepages.
1630 */
1631 if (!shadow_accessed_mask) {
1632 /*
1633 * We are holding the kvm->mmu_lock, and we are blowing up
1634 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1635 * This is correct as long as we don't decouple the mmu_lock
1636 * protected regions (like invalidate_range_start|end does).
1637 */
1638 kvm->mmu_notifier_seq++;
1639 return kvm_handle_hva_range(kvm, start, end, 0,
1640 kvm_unmap_rmapp);
1641 }
1642
1643 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1644 }
1645
1646 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1647 {
1648 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1649 }
1650
1651 #ifdef MMU_DEBUG
1652 static int is_empty_shadow_page(u64 *spt)
1653 {
1654 u64 *pos;
1655 u64 *end;
1656
1657 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1658 if (is_shadow_present_pte(*pos)) {
1659 printk(KERN_ERR "%s: %p %llx\n", __func__,
1660 pos, *pos);
1661 return 0;
1662 }
1663 return 1;
1664 }
1665 #endif
1666
1667 /*
1668 * This value is the sum of all of the kvm instances's
1669 * kvm->arch.n_used_mmu_pages values. We need a global,
1670 * aggregate version in order to make the slab shrinker
1671 * faster
1672 */
1673 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1674 {
1675 kvm->arch.n_used_mmu_pages += nr;
1676 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1677 }
1678
1679 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1680 {
1681 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1682 hlist_del(&sp->hash_link);
1683 list_del(&sp->link);
1684 free_page((unsigned long)sp->spt);
1685 if (!sp->role.direct)
1686 free_page((unsigned long)sp->gfns);
1687 kmem_cache_free(mmu_page_header_cache, sp);
1688 }
1689
1690 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1691 {
1692 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1693 }
1694
1695 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1696 struct kvm_mmu_page *sp, u64 *parent_pte)
1697 {
1698 if (!parent_pte)
1699 return;
1700
1701 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1702 }
1703
1704 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1705 u64 *parent_pte)
1706 {
1707 pte_list_remove(parent_pte, &sp->parent_ptes);
1708 }
1709
1710 static void drop_parent_pte(struct kvm_mmu_page *sp,
1711 u64 *parent_pte)
1712 {
1713 mmu_page_remove_parent_pte(sp, parent_pte);
1714 mmu_spte_clear_no_track(parent_pte);
1715 }
1716
1717 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1718 u64 *parent_pte, int direct)
1719 {
1720 struct kvm_mmu_page *sp;
1721
1722 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1723 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1724 if (!direct)
1725 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1726 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1727
1728 /*
1729 * The active_mmu_pages list is the FIFO list, do not move the
1730 * page until it is zapped. kvm_zap_obsolete_pages depends on
1731 * this feature. See the comments in kvm_zap_obsolete_pages().
1732 */
1733 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1734 sp->parent_ptes = 0;
1735 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1736 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1737 return sp;
1738 }
1739
1740 static void mark_unsync(u64 *spte);
1741 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1742 {
1743 pte_list_walk(&sp->parent_ptes, mark_unsync);
1744 }
1745
1746 static void mark_unsync(u64 *spte)
1747 {
1748 struct kvm_mmu_page *sp;
1749 unsigned int index;
1750
1751 sp = page_header(__pa(spte));
1752 index = spte - sp->spt;
1753 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1754 return;
1755 if (sp->unsync_children++)
1756 return;
1757 kvm_mmu_mark_parents_unsync(sp);
1758 }
1759
1760 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1761 struct kvm_mmu_page *sp)
1762 {
1763 return 1;
1764 }
1765
1766 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1767 {
1768 }
1769
1770 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1771 struct kvm_mmu_page *sp, u64 *spte,
1772 const void *pte)
1773 {
1774 WARN_ON(1);
1775 }
1776
1777 #define KVM_PAGE_ARRAY_NR 16
1778
1779 struct kvm_mmu_pages {
1780 struct mmu_page_and_offset {
1781 struct kvm_mmu_page *sp;
1782 unsigned int idx;
1783 } page[KVM_PAGE_ARRAY_NR];
1784 unsigned int nr;
1785 };
1786
1787 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1788 int idx)
1789 {
1790 int i;
1791
1792 if (sp->unsync)
1793 for (i=0; i < pvec->nr; i++)
1794 if (pvec->page[i].sp == sp)
1795 return 0;
1796
1797 pvec->page[pvec->nr].sp = sp;
1798 pvec->page[pvec->nr].idx = idx;
1799 pvec->nr++;
1800 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1801 }
1802
1803 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1804 struct kvm_mmu_pages *pvec)
1805 {
1806 int i, ret, nr_unsync_leaf = 0;
1807
1808 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1809 struct kvm_mmu_page *child;
1810 u64 ent = sp->spt[i];
1811
1812 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1813 goto clear_child_bitmap;
1814
1815 child = page_header(ent & PT64_BASE_ADDR_MASK);
1816
1817 if (child->unsync_children) {
1818 if (mmu_pages_add(pvec, child, i))
1819 return -ENOSPC;
1820
1821 ret = __mmu_unsync_walk(child, pvec);
1822 if (!ret)
1823 goto clear_child_bitmap;
1824 else if (ret > 0)
1825 nr_unsync_leaf += ret;
1826 else
1827 return ret;
1828 } else if (child->unsync) {
1829 nr_unsync_leaf++;
1830 if (mmu_pages_add(pvec, child, i))
1831 return -ENOSPC;
1832 } else
1833 goto clear_child_bitmap;
1834
1835 continue;
1836
1837 clear_child_bitmap:
1838 __clear_bit(i, sp->unsync_child_bitmap);
1839 sp->unsync_children--;
1840 WARN_ON((int)sp->unsync_children < 0);
1841 }
1842
1843
1844 return nr_unsync_leaf;
1845 }
1846
1847 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1848 struct kvm_mmu_pages *pvec)
1849 {
1850 if (!sp->unsync_children)
1851 return 0;
1852
1853 mmu_pages_add(pvec, sp, 0);
1854 return __mmu_unsync_walk(sp, pvec);
1855 }
1856
1857 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1858 {
1859 WARN_ON(!sp->unsync);
1860 trace_kvm_mmu_sync_page(sp);
1861 sp->unsync = 0;
1862 --kvm->stat.mmu_unsync;
1863 }
1864
1865 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1866 struct list_head *invalid_list);
1867 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1868 struct list_head *invalid_list);
1869
1870 /*
1871 * NOTE: we should pay more attention on the zapped-obsolete page
1872 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1873 * since it has been deleted from active_mmu_pages but still can be found
1874 * at hast list.
1875 *
1876 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1877 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1878 * all the obsolete pages.
1879 */
1880 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1881 hlist_for_each_entry(_sp, \
1882 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1883 if ((_sp)->gfn != (_gfn)) {} else
1884
1885 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1886 for_each_gfn_sp(_kvm, _sp, _gfn) \
1887 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1888
1889 /* @sp->gfn should be write-protected at the call site */
1890 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1891 struct list_head *invalid_list, bool clear_unsync)
1892 {
1893 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1894 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1895 return 1;
1896 }
1897
1898 if (clear_unsync)
1899 kvm_unlink_unsync_page(vcpu->kvm, sp);
1900
1901 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1902 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1903 return 1;
1904 }
1905
1906 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1907 return 0;
1908 }
1909
1910 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1911 struct kvm_mmu_page *sp)
1912 {
1913 LIST_HEAD(invalid_list);
1914 int ret;
1915
1916 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1917 if (ret)
1918 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1919
1920 return ret;
1921 }
1922
1923 #ifdef CONFIG_KVM_MMU_AUDIT
1924 #include "mmu_audit.c"
1925 #else
1926 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1927 static void mmu_audit_disable(void) { }
1928 #endif
1929
1930 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1931 struct list_head *invalid_list)
1932 {
1933 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1934 }
1935
1936 /* @gfn should be write-protected at the call site */
1937 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1938 {
1939 struct kvm_mmu_page *s;
1940 LIST_HEAD(invalid_list);
1941 bool flush = false;
1942
1943 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1944 if (!s->unsync)
1945 continue;
1946
1947 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1948 kvm_unlink_unsync_page(vcpu->kvm, s);
1949 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1950 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1951 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1952 continue;
1953 }
1954 flush = true;
1955 }
1956
1957 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1958 if (flush)
1959 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1960 }
1961
1962 struct mmu_page_path {
1963 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1964 unsigned int idx[PT64_ROOT_LEVEL-1];
1965 };
1966
1967 #define for_each_sp(pvec, sp, parents, i) \
1968 for (i = mmu_pages_next(&pvec, &parents, -1), \
1969 sp = pvec.page[i].sp; \
1970 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1971 i = mmu_pages_next(&pvec, &parents, i))
1972
1973 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1974 struct mmu_page_path *parents,
1975 int i)
1976 {
1977 int n;
1978
1979 for (n = i+1; n < pvec->nr; n++) {
1980 struct kvm_mmu_page *sp = pvec->page[n].sp;
1981
1982 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1983 parents->idx[0] = pvec->page[n].idx;
1984 return n;
1985 }
1986
1987 parents->parent[sp->role.level-2] = sp;
1988 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1989 }
1990
1991 return n;
1992 }
1993
1994 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1995 {
1996 struct kvm_mmu_page *sp;
1997 unsigned int level = 0;
1998
1999 do {
2000 unsigned int idx = parents->idx[level];
2001
2002 sp = parents->parent[level];
2003 if (!sp)
2004 return;
2005
2006 --sp->unsync_children;
2007 WARN_ON((int)sp->unsync_children < 0);
2008 __clear_bit(idx, sp->unsync_child_bitmap);
2009 level++;
2010 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2011 }
2012
2013 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2014 struct mmu_page_path *parents,
2015 struct kvm_mmu_pages *pvec)
2016 {
2017 parents->parent[parent->role.level-1] = NULL;
2018 pvec->nr = 0;
2019 }
2020
2021 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2022 struct kvm_mmu_page *parent)
2023 {
2024 int i;
2025 struct kvm_mmu_page *sp;
2026 struct mmu_page_path parents;
2027 struct kvm_mmu_pages pages;
2028 LIST_HEAD(invalid_list);
2029
2030 kvm_mmu_pages_init(parent, &parents, &pages);
2031 while (mmu_unsync_walk(parent, &pages)) {
2032 bool protected = false;
2033
2034 for_each_sp(pages, sp, parents, i)
2035 protected |= rmap_write_protect(vcpu, sp->gfn);
2036
2037 if (protected)
2038 kvm_flush_remote_tlbs(vcpu->kvm);
2039
2040 for_each_sp(pages, sp, parents, i) {
2041 kvm_sync_page(vcpu, sp, &invalid_list);
2042 mmu_pages_clear_parents(&parents);
2043 }
2044 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2045 cond_resched_lock(&vcpu->kvm->mmu_lock);
2046 kvm_mmu_pages_init(parent, &parents, &pages);
2047 }
2048 }
2049
2050 static void init_shadow_page_table(struct kvm_mmu_page *sp)
2051 {
2052 int i;
2053
2054 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2055 sp->spt[i] = 0ull;
2056 }
2057
2058 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2059 {
2060 sp->write_flooding_count = 0;
2061 }
2062
2063 static void clear_sp_write_flooding_count(u64 *spte)
2064 {
2065 struct kvm_mmu_page *sp = page_header(__pa(spte));
2066
2067 __clear_sp_write_flooding_count(sp);
2068 }
2069
2070 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2071 {
2072 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2073 }
2074
2075 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2076 gfn_t gfn,
2077 gva_t gaddr,
2078 unsigned level,
2079 int direct,
2080 unsigned access,
2081 u64 *parent_pte)
2082 {
2083 union kvm_mmu_page_role role;
2084 unsigned quadrant;
2085 struct kvm_mmu_page *sp;
2086 bool need_sync = false;
2087
2088 role = vcpu->arch.mmu.base_role;
2089 role.level = level;
2090 role.direct = direct;
2091 if (role.direct)
2092 role.cr4_pae = 0;
2093 role.access = access;
2094 if (!vcpu->arch.mmu.direct_map
2095 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2096 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2097 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2098 role.quadrant = quadrant;
2099 }
2100 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2101 if (is_obsolete_sp(vcpu->kvm, sp))
2102 continue;
2103
2104 if (!need_sync && sp->unsync)
2105 need_sync = true;
2106
2107 if (sp->role.word != role.word)
2108 continue;
2109
2110 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2111 break;
2112
2113 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2114 if (sp->unsync_children) {
2115 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2116 kvm_mmu_mark_parents_unsync(sp);
2117 } else if (sp->unsync)
2118 kvm_mmu_mark_parents_unsync(sp);
2119
2120 __clear_sp_write_flooding_count(sp);
2121 trace_kvm_mmu_get_page(sp, false);
2122 return sp;
2123 }
2124 ++vcpu->kvm->stat.mmu_cache_miss;
2125 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2126 if (!sp)
2127 return sp;
2128 sp->gfn = gfn;
2129 sp->role = role;
2130 hlist_add_head(&sp->hash_link,
2131 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2132 if (!direct) {
2133 if (rmap_write_protect(vcpu, gfn))
2134 kvm_flush_remote_tlbs(vcpu->kvm);
2135 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2136 kvm_sync_pages(vcpu, gfn);
2137
2138 account_shadowed(vcpu->kvm, sp);
2139 }
2140 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2141 init_shadow_page_table(sp);
2142 trace_kvm_mmu_get_page(sp, true);
2143 return sp;
2144 }
2145
2146 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2147 struct kvm_vcpu *vcpu, u64 addr)
2148 {
2149 iterator->addr = addr;
2150 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2151 iterator->level = vcpu->arch.mmu.shadow_root_level;
2152
2153 if (iterator->level == PT64_ROOT_LEVEL &&
2154 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2155 !vcpu->arch.mmu.direct_map)
2156 --iterator->level;
2157
2158 if (iterator->level == PT32E_ROOT_LEVEL) {
2159 iterator->shadow_addr
2160 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2161 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2162 --iterator->level;
2163 if (!iterator->shadow_addr)
2164 iterator->level = 0;
2165 }
2166 }
2167
2168 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2169 {
2170 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2171 return false;
2172
2173 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2174 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2175 return true;
2176 }
2177
2178 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2179 u64 spte)
2180 {
2181 if (is_last_spte(spte, iterator->level)) {
2182 iterator->level = 0;
2183 return;
2184 }
2185
2186 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2187 --iterator->level;
2188 }
2189
2190 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2191 {
2192 return __shadow_walk_next(iterator, *iterator->sptep);
2193 }
2194
2195 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2196 {
2197 u64 spte;
2198
2199 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2200 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2201
2202 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2203 shadow_user_mask | shadow_x_mask;
2204
2205 if (accessed)
2206 spte |= shadow_accessed_mask;
2207
2208 mmu_spte_set(sptep, spte);
2209 }
2210
2211 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2212 unsigned direct_access)
2213 {
2214 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2215 struct kvm_mmu_page *child;
2216
2217 /*
2218 * For the direct sp, if the guest pte's dirty bit
2219 * changed form clean to dirty, it will corrupt the
2220 * sp's access: allow writable in the read-only sp,
2221 * so we should update the spte at this point to get
2222 * a new sp with the correct access.
2223 */
2224 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2225 if (child->role.access == direct_access)
2226 return;
2227
2228 drop_parent_pte(child, sptep);
2229 kvm_flush_remote_tlbs(vcpu->kvm);
2230 }
2231 }
2232
2233 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2234 u64 *spte)
2235 {
2236 u64 pte;
2237 struct kvm_mmu_page *child;
2238
2239 pte = *spte;
2240 if (is_shadow_present_pte(pte)) {
2241 if (is_last_spte(pte, sp->role.level)) {
2242 drop_spte(kvm, spte);
2243 if (is_large_pte(pte))
2244 --kvm->stat.lpages;
2245 } else {
2246 child = page_header(pte & PT64_BASE_ADDR_MASK);
2247 drop_parent_pte(child, spte);
2248 }
2249 return true;
2250 }
2251
2252 if (is_mmio_spte(pte))
2253 mmu_spte_clear_no_track(spte);
2254
2255 return false;
2256 }
2257
2258 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2259 struct kvm_mmu_page *sp)
2260 {
2261 unsigned i;
2262
2263 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2264 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2265 }
2266
2267 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2268 {
2269 mmu_page_remove_parent_pte(sp, parent_pte);
2270 }
2271
2272 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2273 {
2274 u64 *sptep;
2275 struct rmap_iterator iter;
2276
2277 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2278 drop_parent_pte(sp, sptep);
2279 }
2280
2281 static int mmu_zap_unsync_children(struct kvm *kvm,
2282 struct kvm_mmu_page *parent,
2283 struct list_head *invalid_list)
2284 {
2285 int i, zapped = 0;
2286 struct mmu_page_path parents;
2287 struct kvm_mmu_pages pages;
2288
2289 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2290 return 0;
2291
2292 kvm_mmu_pages_init(parent, &parents, &pages);
2293 while (mmu_unsync_walk(parent, &pages)) {
2294 struct kvm_mmu_page *sp;
2295
2296 for_each_sp(pages, sp, parents, i) {
2297 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2298 mmu_pages_clear_parents(&parents);
2299 zapped++;
2300 }
2301 kvm_mmu_pages_init(parent, &parents, &pages);
2302 }
2303
2304 return zapped;
2305 }
2306
2307 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2308 struct list_head *invalid_list)
2309 {
2310 int ret;
2311
2312 trace_kvm_mmu_prepare_zap_page(sp);
2313 ++kvm->stat.mmu_shadow_zapped;
2314 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2315 kvm_mmu_page_unlink_children(kvm, sp);
2316 kvm_mmu_unlink_parents(kvm, sp);
2317
2318 if (!sp->role.invalid && !sp->role.direct)
2319 unaccount_shadowed(kvm, sp);
2320
2321 if (sp->unsync)
2322 kvm_unlink_unsync_page(kvm, sp);
2323 if (!sp->root_count) {
2324 /* Count self */
2325 ret++;
2326 list_move(&sp->link, invalid_list);
2327 kvm_mod_used_mmu_pages(kvm, -1);
2328 } else {
2329 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2330
2331 /*
2332 * The obsolete pages can not be used on any vcpus.
2333 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2334 */
2335 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2336 kvm_reload_remote_mmus(kvm);
2337 }
2338
2339 sp->role.invalid = 1;
2340 return ret;
2341 }
2342
2343 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2344 struct list_head *invalid_list)
2345 {
2346 struct kvm_mmu_page *sp, *nsp;
2347
2348 if (list_empty(invalid_list))
2349 return;
2350
2351 /*
2352 * wmb: make sure everyone sees our modifications to the page tables
2353 * rmb: make sure we see changes to vcpu->mode
2354 */
2355 smp_mb();
2356
2357 /*
2358 * Wait for all vcpus to exit guest mode and/or lockless shadow
2359 * page table walks.
2360 */
2361 kvm_flush_remote_tlbs(kvm);
2362
2363 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2364 WARN_ON(!sp->role.invalid || sp->root_count);
2365 kvm_mmu_free_page(sp);
2366 }
2367 }
2368
2369 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2370 struct list_head *invalid_list)
2371 {
2372 struct kvm_mmu_page *sp;
2373
2374 if (list_empty(&kvm->arch.active_mmu_pages))
2375 return false;
2376
2377 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2378 struct kvm_mmu_page, link);
2379 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2380
2381 return true;
2382 }
2383
2384 /*
2385 * Changing the number of mmu pages allocated to the vm
2386 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2387 */
2388 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2389 {
2390 LIST_HEAD(invalid_list);
2391
2392 spin_lock(&kvm->mmu_lock);
2393
2394 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2395 /* Need to free some mmu pages to achieve the goal. */
2396 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2397 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2398 break;
2399
2400 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2401 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2402 }
2403
2404 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2405
2406 spin_unlock(&kvm->mmu_lock);
2407 }
2408
2409 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2410 {
2411 struct kvm_mmu_page *sp;
2412 LIST_HEAD(invalid_list);
2413 int r;
2414
2415 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2416 r = 0;
2417 spin_lock(&kvm->mmu_lock);
2418 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2419 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2420 sp->role.word);
2421 r = 1;
2422 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2423 }
2424 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2425 spin_unlock(&kvm->mmu_lock);
2426
2427 return r;
2428 }
2429 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2430
2431 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2432 {
2433 trace_kvm_mmu_unsync_page(sp);
2434 ++vcpu->kvm->stat.mmu_unsync;
2435 sp->unsync = 1;
2436
2437 kvm_mmu_mark_parents_unsync(sp);
2438 }
2439
2440 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2441 {
2442 struct kvm_mmu_page *s;
2443
2444 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2445 if (s->unsync)
2446 continue;
2447 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2448 __kvm_unsync_page(vcpu, s);
2449 }
2450 }
2451
2452 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2453 bool can_unsync)
2454 {
2455 struct kvm_mmu_page *s;
2456 bool need_unsync = false;
2457
2458 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2459 if (!can_unsync)
2460 return 1;
2461
2462 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2463 return 1;
2464
2465 if (!s->unsync)
2466 need_unsync = true;
2467 }
2468 if (need_unsync)
2469 kvm_unsync_pages(vcpu, gfn);
2470 return 0;
2471 }
2472
2473 static bool kvm_is_mmio_pfn(pfn_t pfn)
2474 {
2475 if (pfn_valid(pfn))
2476 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2477
2478 return true;
2479 }
2480
2481 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2482 unsigned pte_access, int level,
2483 gfn_t gfn, pfn_t pfn, bool speculative,
2484 bool can_unsync, bool host_writable)
2485 {
2486 u64 spte;
2487 int ret = 0;
2488
2489 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2490 return 0;
2491
2492 spte = PT_PRESENT_MASK;
2493 if (!speculative)
2494 spte |= shadow_accessed_mask;
2495
2496 if (pte_access & ACC_EXEC_MASK)
2497 spte |= shadow_x_mask;
2498 else
2499 spte |= shadow_nx_mask;
2500
2501 if (pte_access & ACC_USER_MASK)
2502 spte |= shadow_user_mask;
2503
2504 if (level > PT_PAGE_TABLE_LEVEL)
2505 spte |= PT_PAGE_SIZE_MASK;
2506 if (tdp_enabled)
2507 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2508 kvm_is_mmio_pfn(pfn));
2509
2510 if (host_writable)
2511 spte |= SPTE_HOST_WRITEABLE;
2512 else
2513 pte_access &= ~ACC_WRITE_MASK;
2514
2515 spte |= (u64)pfn << PAGE_SHIFT;
2516
2517 if (pte_access & ACC_WRITE_MASK) {
2518
2519 /*
2520 * Other vcpu creates new sp in the window between
2521 * mapping_level() and acquiring mmu-lock. We can
2522 * allow guest to retry the access, the mapping can
2523 * be fixed if guest refault.
2524 */
2525 if (level > PT_PAGE_TABLE_LEVEL &&
2526 has_wrprotected_page(vcpu, gfn, level))
2527 goto done;
2528
2529 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2530
2531 /*
2532 * Optimization: for pte sync, if spte was writable the hash
2533 * lookup is unnecessary (and expensive). Write protection
2534 * is responsibility of mmu_get_page / kvm_sync_page.
2535 * Same reasoning can be applied to dirty page accounting.
2536 */
2537 if (!can_unsync && is_writable_pte(*sptep))
2538 goto set_pte;
2539
2540 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2541 pgprintk("%s: found shadow page for %llx, marking ro\n",
2542 __func__, gfn);
2543 ret = 1;
2544 pte_access &= ~ACC_WRITE_MASK;
2545 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2546 }
2547 }
2548
2549 if (pte_access & ACC_WRITE_MASK) {
2550 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2551 spte |= shadow_dirty_mask;
2552 }
2553
2554 set_pte:
2555 if (mmu_spte_update(sptep, spte))
2556 kvm_flush_remote_tlbs(vcpu->kvm);
2557 done:
2558 return ret;
2559 }
2560
2561 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2562 unsigned pte_access, int write_fault, int *emulate,
2563 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2564 bool host_writable)
2565 {
2566 int was_rmapped = 0;
2567 int rmap_count;
2568
2569 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2570 *sptep, write_fault, gfn);
2571
2572 if (is_rmap_spte(*sptep)) {
2573 /*
2574 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2575 * the parent of the now unreachable PTE.
2576 */
2577 if (level > PT_PAGE_TABLE_LEVEL &&
2578 !is_large_pte(*sptep)) {
2579 struct kvm_mmu_page *child;
2580 u64 pte = *sptep;
2581
2582 child = page_header(pte & PT64_BASE_ADDR_MASK);
2583 drop_parent_pte(child, sptep);
2584 kvm_flush_remote_tlbs(vcpu->kvm);
2585 } else if (pfn != spte_to_pfn(*sptep)) {
2586 pgprintk("hfn old %llx new %llx\n",
2587 spte_to_pfn(*sptep), pfn);
2588 drop_spte(vcpu->kvm, sptep);
2589 kvm_flush_remote_tlbs(vcpu->kvm);
2590 } else
2591 was_rmapped = 1;
2592 }
2593
2594 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2595 true, host_writable)) {
2596 if (write_fault)
2597 *emulate = 1;
2598 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2599 }
2600
2601 if (unlikely(is_mmio_spte(*sptep) && emulate))
2602 *emulate = 1;
2603
2604 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2605 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2606 is_large_pte(*sptep)? "2MB" : "4kB",
2607 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2608 *sptep, sptep);
2609 if (!was_rmapped && is_large_pte(*sptep))
2610 ++vcpu->kvm->stat.lpages;
2611
2612 if (is_shadow_present_pte(*sptep)) {
2613 if (!was_rmapped) {
2614 rmap_count = rmap_add(vcpu, sptep, gfn);
2615 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2616 rmap_recycle(vcpu, sptep, gfn);
2617 }
2618 }
2619
2620 kvm_release_pfn_clean(pfn);
2621 }
2622
2623 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2624 bool no_dirty_log)
2625 {
2626 struct kvm_memory_slot *slot;
2627
2628 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2629 if (!slot)
2630 return KVM_PFN_ERR_FAULT;
2631
2632 return gfn_to_pfn_memslot_atomic(slot, gfn);
2633 }
2634
2635 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2636 struct kvm_mmu_page *sp,
2637 u64 *start, u64 *end)
2638 {
2639 struct page *pages[PTE_PREFETCH_NUM];
2640 struct kvm_memory_slot *slot;
2641 unsigned access = sp->role.access;
2642 int i, ret;
2643 gfn_t gfn;
2644
2645 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2646 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2647 if (!slot)
2648 return -1;
2649
2650 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2651 if (ret <= 0)
2652 return -1;
2653
2654 for (i = 0; i < ret; i++, gfn++, start++)
2655 mmu_set_spte(vcpu, start, access, 0, NULL,
2656 sp->role.level, gfn, page_to_pfn(pages[i]),
2657 true, true);
2658
2659 return 0;
2660 }
2661
2662 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2663 struct kvm_mmu_page *sp, u64 *sptep)
2664 {
2665 u64 *spte, *start = NULL;
2666 int i;
2667
2668 WARN_ON(!sp->role.direct);
2669
2670 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2671 spte = sp->spt + i;
2672
2673 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2674 if (is_shadow_present_pte(*spte) || spte == sptep) {
2675 if (!start)
2676 continue;
2677 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2678 break;
2679 start = NULL;
2680 } else if (!start)
2681 start = spte;
2682 }
2683 }
2684
2685 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2686 {
2687 struct kvm_mmu_page *sp;
2688
2689 /*
2690 * Since it's no accessed bit on EPT, it's no way to
2691 * distinguish between actually accessed translations
2692 * and prefetched, so disable pte prefetch if EPT is
2693 * enabled.
2694 */
2695 if (!shadow_accessed_mask)
2696 return;
2697
2698 sp = page_header(__pa(sptep));
2699 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2700 return;
2701
2702 __direct_pte_prefetch(vcpu, sp, sptep);
2703 }
2704
2705 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2706 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2707 bool prefault)
2708 {
2709 struct kvm_shadow_walk_iterator iterator;
2710 struct kvm_mmu_page *sp;
2711 int emulate = 0;
2712 gfn_t pseudo_gfn;
2713
2714 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2715 return 0;
2716
2717 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2718 if (iterator.level == level) {
2719 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2720 write, &emulate, level, gfn, pfn,
2721 prefault, map_writable);
2722 direct_pte_prefetch(vcpu, iterator.sptep);
2723 ++vcpu->stat.pf_fixed;
2724 break;
2725 }
2726
2727 drop_large_spte(vcpu, iterator.sptep);
2728 if (!is_shadow_present_pte(*iterator.sptep)) {
2729 u64 base_addr = iterator.addr;
2730
2731 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2732 pseudo_gfn = base_addr >> PAGE_SHIFT;
2733 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2734 iterator.level - 1,
2735 1, ACC_ALL, iterator.sptep);
2736
2737 link_shadow_page(iterator.sptep, sp, true);
2738 }
2739 }
2740 return emulate;
2741 }
2742
2743 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2744 {
2745 siginfo_t info;
2746
2747 info.si_signo = SIGBUS;
2748 info.si_errno = 0;
2749 info.si_code = BUS_MCEERR_AR;
2750 info.si_addr = (void __user *)address;
2751 info.si_addr_lsb = PAGE_SHIFT;
2752
2753 send_sig_info(SIGBUS, &info, tsk);
2754 }
2755
2756 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2757 {
2758 /*
2759 * Do not cache the mmio info caused by writing the readonly gfn
2760 * into the spte otherwise read access on readonly gfn also can
2761 * caused mmio page fault and treat it as mmio access.
2762 * Return 1 to tell kvm to emulate it.
2763 */
2764 if (pfn == KVM_PFN_ERR_RO_FAULT)
2765 return 1;
2766
2767 if (pfn == KVM_PFN_ERR_HWPOISON) {
2768 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2769 return 0;
2770 }
2771
2772 return -EFAULT;
2773 }
2774
2775 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2776 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2777 {
2778 pfn_t pfn = *pfnp;
2779 gfn_t gfn = *gfnp;
2780 int level = *levelp;
2781
2782 /*
2783 * Check if it's a transparent hugepage. If this would be an
2784 * hugetlbfs page, level wouldn't be set to
2785 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2786 * here.
2787 */
2788 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2789 level == PT_PAGE_TABLE_LEVEL &&
2790 PageTransCompound(pfn_to_page(pfn)) &&
2791 !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2792 unsigned long mask;
2793 /*
2794 * mmu_notifier_retry was successful and we hold the
2795 * mmu_lock here, so the pmd can't become splitting
2796 * from under us, and in turn
2797 * __split_huge_page_refcount() can't run from under
2798 * us and we can safely transfer the refcount from
2799 * PG_tail to PG_head as we switch the pfn to tail to
2800 * head.
2801 */
2802 *levelp = level = PT_DIRECTORY_LEVEL;
2803 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2804 VM_BUG_ON((gfn & mask) != (pfn & mask));
2805 if (pfn & mask) {
2806 gfn &= ~mask;
2807 *gfnp = gfn;
2808 kvm_release_pfn_clean(pfn);
2809 pfn &= ~mask;
2810 kvm_get_pfn(pfn);
2811 *pfnp = pfn;
2812 }
2813 }
2814 }
2815
2816 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2817 pfn_t pfn, unsigned access, int *ret_val)
2818 {
2819 bool ret = true;
2820
2821 /* The pfn is invalid, report the error! */
2822 if (unlikely(is_error_pfn(pfn))) {
2823 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2824 goto exit;
2825 }
2826
2827 if (unlikely(is_noslot_pfn(pfn)))
2828 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2829
2830 ret = false;
2831 exit:
2832 return ret;
2833 }
2834
2835 static bool page_fault_can_be_fast(u32 error_code)
2836 {
2837 /*
2838 * Do not fix the mmio spte with invalid generation number which
2839 * need to be updated by slow page fault path.
2840 */
2841 if (unlikely(error_code & PFERR_RSVD_MASK))
2842 return false;
2843
2844 /*
2845 * #PF can be fast only if the shadow page table is present and it
2846 * is caused by write-protect, that means we just need change the
2847 * W bit of the spte which can be done out of mmu-lock.
2848 */
2849 if (!(error_code & PFERR_PRESENT_MASK) ||
2850 !(error_code & PFERR_WRITE_MASK))
2851 return false;
2852
2853 return true;
2854 }
2855
2856 static bool
2857 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2858 u64 *sptep, u64 spte)
2859 {
2860 gfn_t gfn;
2861
2862 WARN_ON(!sp->role.direct);
2863
2864 /*
2865 * The gfn of direct spte is stable since it is calculated
2866 * by sp->gfn.
2867 */
2868 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2869
2870 /*
2871 * Theoretically we could also set dirty bit (and flush TLB) here in
2872 * order to eliminate unnecessary PML logging. See comments in
2873 * set_spte. But fast_page_fault is very unlikely to happen with PML
2874 * enabled, so we do not do this. This might result in the same GPA
2875 * to be logged in PML buffer again when the write really happens, and
2876 * eventually to be called by mark_page_dirty twice. But it's also no
2877 * harm. This also avoids the TLB flush needed after setting dirty bit
2878 * so non-PML cases won't be impacted.
2879 *
2880 * Compare with set_spte where instead shadow_dirty_mask is set.
2881 */
2882 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2883 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2884
2885 return true;
2886 }
2887
2888 /*
2889 * Return value:
2890 * - true: let the vcpu to access on the same address again.
2891 * - false: let the real page fault path to fix it.
2892 */
2893 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2894 u32 error_code)
2895 {
2896 struct kvm_shadow_walk_iterator iterator;
2897 struct kvm_mmu_page *sp;
2898 bool ret = false;
2899 u64 spte = 0ull;
2900
2901 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2902 return false;
2903
2904 if (!page_fault_can_be_fast(error_code))
2905 return false;
2906
2907 walk_shadow_page_lockless_begin(vcpu);
2908 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2909 if (!is_shadow_present_pte(spte) || iterator.level < level)
2910 break;
2911
2912 /*
2913 * If the mapping has been changed, let the vcpu fault on the
2914 * same address again.
2915 */
2916 if (!is_rmap_spte(spte)) {
2917 ret = true;
2918 goto exit;
2919 }
2920
2921 sp = page_header(__pa(iterator.sptep));
2922 if (!is_last_spte(spte, sp->role.level))
2923 goto exit;
2924
2925 /*
2926 * Check if it is a spurious fault caused by TLB lazily flushed.
2927 *
2928 * Need not check the access of upper level table entries since
2929 * they are always ACC_ALL.
2930 */
2931 if (is_writable_pte(spte)) {
2932 ret = true;
2933 goto exit;
2934 }
2935
2936 /*
2937 * Currently, to simplify the code, only the spte write-protected
2938 * by dirty-log can be fast fixed.
2939 */
2940 if (!spte_is_locklessly_modifiable(spte))
2941 goto exit;
2942
2943 /*
2944 * Do not fix write-permission on the large spte since we only dirty
2945 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2946 * that means other pages are missed if its slot is dirty-logged.
2947 *
2948 * Instead, we let the slow page fault path create a normal spte to
2949 * fix the access.
2950 *
2951 * See the comments in kvm_arch_commit_memory_region().
2952 */
2953 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2954 goto exit;
2955
2956 /*
2957 * Currently, fast page fault only works for direct mapping since
2958 * the gfn is not stable for indirect shadow page.
2959 * See Documentation/virtual/kvm/locking.txt to get more detail.
2960 */
2961 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2962 exit:
2963 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2964 spte, ret);
2965 walk_shadow_page_lockless_end(vcpu);
2966
2967 return ret;
2968 }
2969
2970 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2971 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2972 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2973
2974 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2975 gfn_t gfn, bool prefault)
2976 {
2977 int r;
2978 int level;
2979 bool force_pt_level = false;
2980 pfn_t pfn;
2981 unsigned long mmu_seq;
2982 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2983
2984 level = mapping_level(vcpu, gfn, &force_pt_level);
2985 if (likely(!force_pt_level)) {
2986 /*
2987 * This path builds a PAE pagetable - so we can map
2988 * 2mb pages at maximum. Therefore check if the level
2989 * is larger than that.
2990 */
2991 if (level > PT_DIRECTORY_LEVEL)
2992 level = PT_DIRECTORY_LEVEL;
2993
2994 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2995 }
2996
2997 if (fast_page_fault(vcpu, v, level, error_code))
2998 return 0;
2999
3000 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3001 smp_rmb();
3002
3003 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3004 return 0;
3005
3006 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3007 return r;
3008
3009 spin_lock(&vcpu->kvm->mmu_lock);
3010 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3011 goto out_unlock;
3012 make_mmu_pages_available(vcpu);
3013 if (likely(!force_pt_level))
3014 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3015 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3016 prefault);
3017 spin_unlock(&vcpu->kvm->mmu_lock);
3018
3019
3020 return r;
3021
3022 out_unlock:
3023 spin_unlock(&vcpu->kvm->mmu_lock);
3024 kvm_release_pfn_clean(pfn);
3025 return 0;
3026 }
3027
3028
3029 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3030 {
3031 int i;
3032 struct kvm_mmu_page *sp;
3033 LIST_HEAD(invalid_list);
3034
3035 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3036 return;
3037
3038 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3039 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3040 vcpu->arch.mmu.direct_map)) {
3041 hpa_t root = vcpu->arch.mmu.root_hpa;
3042
3043 spin_lock(&vcpu->kvm->mmu_lock);
3044 sp = page_header(root);
3045 --sp->root_count;
3046 if (!sp->root_count && sp->role.invalid) {
3047 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3048 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3049 }
3050 spin_unlock(&vcpu->kvm->mmu_lock);
3051 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3052 return;
3053 }
3054
3055 spin_lock(&vcpu->kvm->mmu_lock);
3056 for (i = 0; i < 4; ++i) {
3057 hpa_t root = vcpu->arch.mmu.pae_root[i];
3058
3059 if (root) {
3060 root &= PT64_BASE_ADDR_MASK;
3061 sp = page_header(root);
3062 --sp->root_count;
3063 if (!sp->root_count && sp->role.invalid)
3064 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3065 &invalid_list);
3066 }
3067 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3068 }
3069 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3070 spin_unlock(&vcpu->kvm->mmu_lock);
3071 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3072 }
3073
3074 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3075 {
3076 int ret = 0;
3077
3078 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3079 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3080 ret = 1;
3081 }
3082
3083 return ret;
3084 }
3085
3086 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3087 {
3088 struct kvm_mmu_page *sp;
3089 unsigned i;
3090
3091 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3092 spin_lock(&vcpu->kvm->mmu_lock);
3093 make_mmu_pages_available(vcpu);
3094 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3095 1, ACC_ALL, NULL);
3096 ++sp->root_count;
3097 spin_unlock(&vcpu->kvm->mmu_lock);
3098 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3099 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3100 for (i = 0; i < 4; ++i) {
3101 hpa_t root = vcpu->arch.mmu.pae_root[i];
3102
3103 MMU_WARN_ON(VALID_PAGE(root));
3104 spin_lock(&vcpu->kvm->mmu_lock);
3105 make_mmu_pages_available(vcpu);
3106 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3107 i << 30,
3108 PT32_ROOT_LEVEL, 1, ACC_ALL,
3109 NULL);
3110 root = __pa(sp->spt);
3111 ++sp->root_count;
3112 spin_unlock(&vcpu->kvm->mmu_lock);
3113 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3114 }
3115 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3116 } else
3117 BUG();
3118
3119 return 0;
3120 }
3121
3122 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3123 {
3124 struct kvm_mmu_page *sp;
3125 u64 pdptr, pm_mask;
3126 gfn_t root_gfn;
3127 int i;
3128
3129 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3130
3131 if (mmu_check_root(vcpu, root_gfn))
3132 return 1;
3133
3134 /*
3135 * Do we shadow a long mode page table? If so we need to
3136 * write-protect the guests page table root.
3137 */
3138 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3139 hpa_t root = vcpu->arch.mmu.root_hpa;
3140
3141 MMU_WARN_ON(VALID_PAGE(root));
3142
3143 spin_lock(&vcpu->kvm->mmu_lock);
3144 make_mmu_pages_available(vcpu);
3145 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3146 0, ACC_ALL, NULL);
3147 root = __pa(sp->spt);
3148 ++sp->root_count;
3149 spin_unlock(&vcpu->kvm->mmu_lock);
3150 vcpu->arch.mmu.root_hpa = root;
3151 return 0;
3152 }
3153
3154 /*
3155 * We shadow a 32 bit page table. This may be a legacy 2-level
3156 * or a PAE 3-level page table. In either case we need to be aware that
3157 * the shadow page table may be a PAE or a long mode page table.
3158 */
3159 pm_mask = PT_PRESENT_MASK;
3160 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3161 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3162
3163 for (i = 0; i < 4; ++i) {
3164 hpa_t root = vcpu->arch.mmu.pae_root[i];
3165
3166 MMU_WARN_ON(VALID_PAGE(root));
3167 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3168 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3169 if (!is_present_gpte(pdptr)) {
3170 vcpu->arch.mmu.pae_root[i] = 0;
3171 continue;
3172 }
3173 root_gfn = pdptr >> PAGE_SHIFT;
3174 if (mmu_check_root(vcpu, root_gfn))
3175 return 1;
3176 }
3177 spin_lock(&vcpu->kvm->mmu_lock);
3178 make_mmu_pages_available(vcpu);
3179 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3180 PT32_ROOT_LEVEL, 0,
3181 ACC_ALL, NULL);
3182 root = __pa(sp->spt);
3183 ++sp->root_count;
3184 spin_unlock(&vcpu->kvm->mmu_lock);
3185
3186 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3187 }
3188 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3189
3190 /*
3191 * If we shadow a 32 bit page table with a long mode page
3192 * table we enter this path.
3193 */
3194 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3195 if (vcpu->arch.mmu.lm_root == NULL) {
3196 /*
3197 * The additional page necessary for this is only
3198 * allocated on demand.
3199 */
3200
3201 u64 *lm_root;
3202
3203 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3204 if (lm_root == NULL)
3205 return 1;
3206
3207 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3208
3209 vcpu->arch.mmu.lm_root = lm_root;
3210 }
3211
3212 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3213 }
3214
3215 return 0;
3216 }
3217
3218 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3219 {
3220 if (vcpu->arch.mmu.direct_map)
3221 return mmu_alloc_direct_roots(vcpu);
3222 else
3223 return mmu_alloc_shadow_roots(vcpu);
3224 }
3225
3226 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3227 {
3228 int i;
3229 struct kvm_mmu_page *sp;
3230
3231 if (vcpu->arch.mmu.direct_map)
3232 return;
3233
3234 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3235 return;
3236
3237 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3238 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3239 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3240 hpa_t root = vcpu->arch.mmu.root_hpa;
3241 sp = page_header(root);
3242 mmu_sync_children(vcpu, sp);
3243 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3244 return;
3245 }
3246 for (i = 0; i < 4; ++i) {
3247 hpa_t root = vcpu->arch.mmu.pae_root[i];
3248
3249 if (root && VALID_PAGE(root)) {
3250 root &= PT64_BASE_ADDR_MASK;
3251 sp = page_header(root);
3252 mmu_sync_children(vcpu, sp);
3253 }
3254 }
3255 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3256 }
3257
3258 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3259 {
3260 spin_lock(&vcpu->kvm->mmu_lock);
3261 mmu_sync_roots(vcpu);
3262 spin_unlock(&vcpu->kvm->mmu_lock);
3263 }
3264 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3265
3266 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3267 u32 access, struct x86_exception *exception)
3268 {
3269 if (exception)
3270 exception->error_code = 0;
3271 return vaddr;
3272 }
3273
3274 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3275 u32 access,
3276 struct x86_exception *exception)
3277 {
3278 if (exception)
3279 exception->error_code = 0;
3280 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3281 }
3282
3283 static bool
3284 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3285 {
3286 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3287
3288 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3289 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3290 }
3291
3292 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3293 {
3294 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3295 }
3296
3297 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3298 {
3299 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3300 }
3301
3302 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3303 {
3304 if (direct)
3305 return vcpu_match_mmio_gpa(vcpu, addr);
3306
3307 return vcpu_match_mmio_gva(vcpu, addr);
3308 }
3309
3310 /* return true if reserved bit is detected on spte. */
3311 static bool
3312 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3313 {
3314 struct kvm_shadow_walk_iterator iterator;
3315 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3316 int root, leaf;
3317 bool reserved = false;
3318
3319 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3320 goto exit;
3321
3322 walk_shadow_page_lockless_begin(vcpu);
3323
3324 for (shadow_walk_init(&iterator, vcpu, addr),
3325 leaf = root = iterator.level;
3326 shadow_walk_okay(&iterator);
3327 __shadow_walk_next(&iterator, spte)) {
3328 spte = mmu_spte_get_lockless(iterator.sptep);
3329
3330 sptes[leaf - 1] = spte;
3331 leaf--;
3332
3333 if (!is_shadow_present_pte(spte))
3334 break;
3335
3336 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3337 iterator.level);
3338 }
3339
3340 walk_shadow_page_lockless_end(vcpu);
3341
3342 if (reserved) {
3343 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3344 __func__, addr);
3345 while (root > leaf) {
3346 pr_err("------ spte 0x%llx level %d.\n",
3347 sptes[root - 1], root);
3348 root--;
3349 }
3350 }
3351 exit:
3352 *sptep = spte;
3353 return reserved;
3354 }
3355
3356 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3357 {
3358 u64 spte;
3359 bool reserved;
3360
3361 if (quickly_check_mmio_pf(vcpu, addr, direct))
3362 return RET_MMIO_PF_EMULATE;
3363
3364 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3365 if (unlikely(reserved))
3366 return RET_MMIO_PF_BUG;
3367
3368 if (is_mmio_spte(spte)) {
3369 gfn_t gfn = get_mmio_spte_gfn(spte);
3370 unsigned access = get_mmio_spte_access(spte);
3371
3372 if (!check_mmio_spte(vcpu, spte))
3373 return RET_MMIO_PF_INVALID;
3374
3375 if (direct)
3376 addr = 0;
3377
3378 trace_handle_mmio_page_fault(addr, gfn, access);
3379 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3380 return RET_MMIO_PF_EMULATE;
3381 }
3382
3383 /*
3384 * If the page table is zapped by other cpus, let CPU fault again on
3385 * the address.
3386 */
3387 return RET_MMIO_PF_RETRY;
3388 }
3389 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3390
3391 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3392 u32 error_code, bool direct)
3393 {
3394 int ret;
3395
3396 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3397 WARN_ON(ret == RET_MMIO_PF_BUG);
3398 return ret;
3399 }
3400
3401 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3402 u32 error_code, bool prefault)
3403 {
3404 gfn_t gfn;
3405 int r;
3406
3407 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3408
3409 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3410 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3411
3412 if (likely(r != RET_MMIO_PF_INVALID))
3413 return r;
3414 }
3415
3416 r = mmu_topup_memory_caches(vcpu);
3417 if (r)
3418 return r;
3419
3420 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3421
3422 gfn = gva >> PAGE_SHIFT;
3423
3424 return nonpaging_map(vcpu, gva & PAGE_MASK,
3425 error_code, gfn, prefault);
3426 }
3427
3428 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3429 {
3430 struct kvm_arch_async_pf arch;
3431
3432 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3433 arch.gfn = gfn;
3434 arch.direct_map = vcpu->arch.mmu.direct_map;
3435 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3436
3437 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3438 }
3439
3440 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3441 {
3442 if (unlikely(!lapic_in_kernel(vcpu) ||
3443 kvm_event_needs_reinjection(vcpu)))
3444 return false;
3445
3446 return kvm_x86_ops->interrupt_allowed(vcpu);
3447 }
3448
3449 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3450 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3451 {
3452 struct kvm_memory_slot *slot;
3453 bool async;
3454
3455 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3456 async = false;
3457 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3458 if (!async)
3459 return false; /* *pfn has correct page already */
3460
3461 if (!prefault && can_do_async_pf(vcpu)) {
3462 trace_kvm_try_async_get_page(gva, gfn);
3463 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3464 trace_kvm_async_pf_doublefault(gva, gfn);
3465 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3466 return true;
3467 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3468 return true;
3469 }
3470
3471 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3472 return false;
3473 }
3474
3475 static bool
3476 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3477 {
3478 int page_num = KVM_PAGES_PER_HPAGE(level);
3479
3480 gfn &= ~(page_num - 1);
3481
3482 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3483 }
3484
3485 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3486 bool prefault)
3487 {
3488 pfn_t pfn;
3489 int r;
3490 int level;
3491 bool force_pt_level;
3492 gfn_t gfn = gpa >> PAGE_SHIFT;
3493 unsigned long mmu_seq;
3494 int write = error_code & PFERR_WRITE_MASK;
3495 bool map_writable;
3496
3497 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3498
3499 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3500 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3501
3502 if (likely(r != RET_MMIO_PF_INVALID))
3503 return r;
3504 }
3505
3506 r = mmu_topup_memory_caches(vcpu);
3507 if (r)
3508 return r;
3509
3510 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3511 PT_DIRECTORY_LEVEL);
3512 level = mapping_level(vcpu, gfn, &force_pt_level);
3513 if (likely(!force_pt_level)) {
3514 if (level > PT_DIRECTORY_LEVEL &&
3515 !check_hugepage_cache_consistency(vcpu, gfn, level))
3516 level = PT_DIRECTORY_LEVEL;
3517 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3518 }
3519
3520 if (fast_page_fault(vcpu, gpa, level, error_code))
3521 return 0;
3522
3523 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3524 smp_rmb();
3525
3526 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3527 return 0;
3528
3529 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3530 return r;
3531
3532 spin_lock(&vcpu->kvm->mmu_lock);
3533 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3534 goto out_unlock;
3535 make_mmu_pages_available(vcpu);
3536 if (likely(!force_pt_level))
3537 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3538 r = __direct_map(vcpu, gpa, write, map_writable,
3539 level, gfn, pfn, prefault);
3540 spin_unlock(&vcpu->kvm->mmu_lock);
3541
3542 return r;
3543
3544 out_unlock:
3545 spin_unlock(&vcpu->kvm->mmu_lock);
3546 kvm_release_pfn_clean(pfn);
3547 return 0;
3548 }
3549
3550 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3551 struct kvm_mmu *context)
3552 {
3553 context->page_fault = nonpaging_page_fault;
3554 context->gva_to_gpa = nonpaging_gva_to_gpa;
3555 context->sync_page = nonpaging_sync_page;
3556 context->invlpg = nonpaging_invlpg;
3557 context->update_pte = nonpaging_update_pte;
3558 context->root_level = 0;
3559 context->shadow_root_level = PT32E_ROOT_LEVEL;
3560 context->root_hpa = INVALID_PAGE;
3561 context->direct_map = true;
3562 context->nx = false;
3563 }
3564
3565 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3566 {
3567 mmu_free_roots(vcpu);
3568 }
3569
3570 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3571 {
3572 return kvm_read_cr3(vcpu);
3573 }
3574
3575 static void inject_page_fault(struct kvm_vcpu *vcpu,
3576 struct x86_exception *fault)
3577 {
3578 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3579 }
3580
3581 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3582 unsigned access, int *nr_present)
3583 {
3584 if (unlikely(is_mmio_spte(*sptep))) {
3585 if (gfn != get_mmio_spte_gfn(*sptep)) {
3586 mmu_spte_clear_no_track(sptep);
3587 return true;
3588 }
3589
3590 (*nr_present)++;
3591 mark_mmio_spte(vcpu, sptep, gfn, access);
3592 return true;
3593 }
3594
3595 return false;
3596 }
3597
3598 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3599 {
3600 unsigned index;
3601
3602 index = level - 1;
3603 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3604 return mmu->last_pte_bitmap & (1 << index);
3605 }
3606
3607 #define PTTYPE_EPT 18 /* arbitrary */
3608 #define PTTYPE PTTYPE_EPT
3609 #include "paging_tmpl.h"
3610 #undef PTTYPE
3611
3612 #define PTTYPE 64
3613 #include "paging_tmpl.h"
3614 #undef PTTYPE
3615
3616 #define PTTYPE 32
3617 #include "paging_tmpl.h"
3618 #undef PTTYPE
3619
3620 static void
3621 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3622 struct rsvd_bits_validate *rsvd_check,
3623 int maxphyaddr, int level, bool nx, bool gbpages,
3624 bool pse, bool amd)
3625 {
3626 u64 exb_bit_rsvd = 0;
3627 u64 gbpages_bit_rsvd = 0;
3628 u64 nonleaf_bit8_rsvd = 0;
3629
3630 rsvd_check->bad_mt_xwr = 0;
3631
3632 if (!nx)
3633 exb_bit_rsvd = rsvd_bits(63, 63);
3634 if (!gbpages)
3635 gbpages_bit_rsvd = rsvd_bits(7, 7);
3636
3637 /*
3638 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3639 * leaf entries) on AMD CPUs only.
3640 */
3641 if (amd)
3642 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3643
3644 switch (level) {
3645 case PT32_ROOT_LEVEL:
3646 /* no rsvd bits for 2 level 4K page table entries */
3647 rsvd_check->rsvd_bits_mask[0][1] = 0;
3648 rsvd_check->rsvd_bits_mask[0][0] = 0;
3649 rsvd_check->rsvd_bits_mask[1][0] =
3650 rsvd_check->rsvd_bits_mask[0][0];
3651
3652 if (!pse) {
3653 rsvd_check->rsvd_bits_mask[1][1] = 0;
3654 break;
3655 }
3656
3657 if (is_cpuid_PSE36())
3658 /* 36bits PSE 4MB page */
3659 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3660 else
3661 /* 32 bits PSE 4MB page */
3662 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3663 break;
3664 case PT32E_ROOT_LEVEL:
3665 rsvd_check->rsvd_bits_mask[0][2] =
3666 rsvd_bits(maxphyaddr, 63) |
3667 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3668 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3669 rsvd_bits(maxphyaddr, 62); /* PDE */
3670 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3671 rsvd_bits(maxphyaddr, 62); /* PTE */
3672 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3673 rsvd_bits(maxphyaddr, 62) |
3674 rsvd_bits(13, 20); /* large page */
3675 rsvd_check->rsvd_bits_mask[1][0] =
3676 rsvd_check->rsvd_bits_mask[0][0];
3677 break;
3678 case PT64_ROOT_LEVEL:
3679 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3680 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3681 rsvd_bits(maxphyaddr, 51);
3682 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3683 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3684 rsvd_bits(maxphyaddr, 51);
3685 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3686 rsvd_bits(maxphyaddr, 51);
3687 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3688 rsvd_bits(maxphyaddr, 51);
3689 rsvd_check->rsvd_bits_mask[1][3] =
3690 rsvd_check->rsvd_bits_mask[0][3];
3691 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3692 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3693 rsvd_bits(13, 29);
3694 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3695 rsvd_bits(maxphyaddr, 51) |
3696 rsvd_bits(13, 20); /* large page */
3697 rsvd_check->rsvd_bits_mask[1][0] =
3698 rsvd_check->rsvd_bits_mask[0][0];
3699 break;
3700 }
3701 }
3702
3703 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3704 struct kvm_mmu *context)
3705 {
3706 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3707 cpuid_maxphyaddr(vcpu), context->root_level,
3708 context->nx, guest_cpuid_has_gbpages(vcpu),
3709 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3710 }
3711
3712 static void
3713 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3714 int maxphyaddr, bool execonly)
3715 {
3716 u64 bad_mt_xwr;
3717
3718 rsvd_check->rsvd_bits_mask[0][3] =
3719 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3720 rsvd_check->rsvd_bits_mask[0][2] =
3721 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3722 rsvd_check->rsvd_bits_mask[0][1] =
3723 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3724 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3725
3726 /* large page */
3727 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3728 rsvd_check->rsvd_bits_mask[1][2] =
3729 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3730 rsvd_check->rsvd_bits_mask[1][1] =
3731 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3732 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3733
3734 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3735 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3736 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3737 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3738 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3739 if (!execonly) {
3740 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3741 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3742 }
3743 rsvd_check->bad_mt_xwr = bad_mt_xwr;
3744 }
3745
3746 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3747 struct kvm_mmu *context, bool execonly)
3748 {
3749 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3750 cpuid_maxphyaddr(vcpu), execonly);
3751 }
3752
3753 /*
3754 * the page table on host is the shadow page table for the page
3755 * table in guest or amd nested guest, its mmu features completely
3756 * follow the features in guest.
3757 */
3758 void
3759 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3760 {
3761 /*
3762 * Passing "true" to the last argument is okay; it adds a check
3763 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3764 */
3765 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3766 boot_cpu_data.x86_phys_bits,
3767 context->shadow_root_level, context->nx,
3768 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3769 true);
3770 }
3771 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3772
3773 static inline bool boot_cpu_is_amd(void)
3774 {
3775 WARN_ON_ONCE(!tdp_enabled);
3776 return shadow_x_mask == 0;
3777 }
3778
3779 /*
3780 * the direct page table on host, use as much mmu features as
3781 * possible, however, kvm currently does not do execution-protection.
3782 */
3783 static void
3784 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3785 struct kvm_mmu *context)
3786 {
3787 if (boot_cpu_is_amd())
3788 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3789 boot_cpu_data.x86_phys_bits,
3790 context->shadow_root_level, false,
3791 cpu_has_gbpages, true, true);
3792 else
3793 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3794 boot_cpu_data.x86_phys_bits,
3795 false);
3796
3797 }
3798
3799 /*
3800 * as the comments in reset_shadow_zero_bits_mask() except it
3801 * is the shadow page table for intel nested guest.
3802 */
3803 static void
3804 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3805 struct kvm_mmu *context, bool execonly)
3806 {
3807 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3808 boot_cpu_data.x86_phys_bits, execonly);
3809 }
3810
3811 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3812 struct kvm_mmu *mmu, bool ept)
3813 {
3814 unsigned bit, byte, pfec;
3815 u8 map;
3816 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3817
3818 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3819 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3820 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3821 pfec = byte << 1;
3822 map = 0;
3823 wf = pfec & PFERR_WRITE_MASK;
3824 uf = pfec & PFERR_USER_MASK;
3825 ff = pfec & PFERR_FETCH_MASK;
3826 /*
3827 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3828 * subject to SMAP restrictions, and cleared otherwise. The
3829 * bit is only meaningful if the SMAP bit is set in CR4.
3830 */
3831 smapf = !(pfec & PFERR_RSVD_MASK);
3832 for (bit = 0; bit < 8; ++bit) {
3833 x = bit & ACC_EXEC_MASK;
3834 w = bit & ACC_WRITE_MASK;
3835 u = bit & ACC_USER_MASK;
3836
3837 if (!ept) {
3838 /* Not really needed: !nx will cause pte.nx to fault */
3839 x |= !mmu->nx;
3840 /* Allow supervisor writes if !cr0.wp */
3841 w |= !is_write_protection(vcpu) && !uf;
3842 /* Disallow supervisor fetches of user code if cr4.smep */
3843 x &= !(cr4_smep && u && !uf);
3844
3845 /*
3846 * SMAP:kernel-mode data accesses from user-mode
3847 * mappings should fault. A fault is considered
3848 * as a SMAP violation if all of the following
3849 * conditions are ture:
3850 * - X86_CR4_SMAP is set in CR4
3851 * - An user page is accessed
3852 * - Page fault in kernel mode
3853 * - if CPL = 3 or X86_EFLAGS_AC is clear
3854 *
3855 * Here, we cover the first three conditions.
3856 * The fourth is computed dynamically in
3857 * permission_fault() and is in smapf.
3858 *
3859 * Also, SMAP does not affect instruction
3860 * fetches, add the !ff check here to make it
3861 * clearer.
3862 */
3863 smap = cr4_smap && u && !uf && !ff;
3864 } else
3865 /* Not really needed: no U/S accesses on ept */
3866 u = 1;
3867
3868 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3869 (smapf && smap);
3870 map |= fault << bit;
3871 }
3872 mmu->permissions[byte] = map;
3873 }
3874 }
3875
3876 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3877 {
3878 u8 map;
3879 unsigned level, root_level = mmu->root_level;
3880 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3881
3882 if (root_level == PT32E_ROOT_LEVEL)
3883 --root_level;
3884 /* PT_PAGE_TABLE_LEVEL always terminates */
3885 map = 1 | (1 << ps_set_index);
3886 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3887 if (level <= PT_PDPE_LEVEL
3888 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3889 map |= 1 << (ps_set_index | (level - 1));
3890 }
3891 mmu->last_pte_bitmap = map;
3892 }
3893
3894 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3895 struct kvm_mmu *context,
3896 int level)
3897 {
3898 context->nx = is_nx(vcpu);
3899 context->root_level = level;
3900
3901 reset_rsvds_bits_mask(vcpu, context);
3902 update_permission_bitmask(vcpu, context, false);
3903 update_last_pte_bitmap(vcpu, context);
3904
3905 MMU_WARN_ON(!is_pae(vcpu));
3906 context->page_fault = paging64_page_fault;
3907 context->gva_to_gpa = paging64_gva_to_gpa;
3908 context->sync_page = paging64_sync_page;
3909 context->invlpg = paging64_invlpg;
3910 context->update_pte = paging64_update_pte;
3911 context->shadow_root_level = level;
3912 context->root_hpa = INVALID_PAGE;
3913 context->direct_map = false;
3914 }
3915
3916 static void paging64_init_context(struct kvm_vcpu *vcpu,
3917 struct kvm_mmu *context)
3918 {
3919 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3920 }
3921
3922 static void paging32_init_context(struct kvm_vcpu *vcpu,
3923 struct kvm_mmu *context)
3924 {
3925 context->nx = false;
3926 context->root_level = PT32_ROOT_LEVEL;
3927
3928 reset_rsvds_bits_mask(vcpu, context);
3929 update_permission_bitmask(vcpu, context, false);
3930 update_last_pte_bitmap(vcpu, context);
3931
3932 context->page_fault = paging32_page_fault;
3933 context->gva_to_gpa = paging32_gva_to_gpa;
3934 context->sync_page = paging32_sync_page;
3935 context->invlpg = paging32_invlpg;
3936 context->update_pte = paging32_update_pte;
3937 context->shadow_root_level = PT32E_ROOT_LEVEL;
3938 context->root_hpa = INVALID_PAGE;
3939 context->direct_map = false;
3940 }
3941
3942 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3943 struct kvm_mmu *context)
3944 {
3945 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3946 }
3947
3948 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3949 {
3950 struct kvm_mmu *context = &vcpu->arch.mmu;
3951
3952 context->base_role.word = 0;
3953 context->base_role.smm = is_smm(vcpu);
3954 context->page_fault = tdp_page_fault;
3955 context->sync_page = nonpaging_sync_page;
3956 context->invlpg = nonpaging_invlpg;
3957 context->update_pte = nonpaging_update_pte;
3958 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3959 context->root_hpa = INVALID_PAGE;
3960 context->direct_map = true;
3961 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3962 context->get_cr3 = get_cr3;
3963 context->get_pdptr = kvm_pdptr_read;
3964 context->inject_page_fault = kvm_inject_page_fault;
3965
3966 if (!is_paging(vcpu)) {
3967 context->nx = false;
3968 context->gva_to_gpa = nonpaging_gva_to_gpa;
3969 context->root_level = 0;
3970 } else if (is_long_mode(vcpu)) {
3971 context->nx = is_nx(vcpu);
3972 context->root_level = PT64_ROOT_LEVEL;
3973 reset_rsvds_bits_mask(vcpu, context);
3974 context->gva_to_gpa = paging64_gva_to_gpa;
3975 } else if (is_pae(vcpu)) {
3976 context->nx = is_nx(vcpu);
3977 context->root_level = PT32E_ROOT_LEVEL;
3978 reset_rsvds_bits_mask(vcpu, context);
3979 context->gva_to_gpa = paging64_gva_to_gpa;
3980 } else {
3981 context->nx = false;
3982 context->root_level = PT32_ROOT_LEVEL;
3983 reset_rsvds_bits_mask(vcpu, context);
3984 context->gva_to_gpa = paging32_gva_to_gpa;
3985 }
3986
3987 update_permission_bitmask(vcpu, context, false);
3988 update_last_pte_bitmap(vcpu, context);
3989 reset_tdp_shadow_zero_bits_mask(vcpu, context);
3990 }
3991
3992 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3993 {
3994 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3995 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3996 struct kvm_mmu *context = &vcpu->arch.mmu;
3997
3998 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3999
4000 if (!is_paging(vcpu))
4001 nonpaging_init_context(vcpu, context);
4002 else if (is_long_mode(vcpu))
4003 paging64_init_context(vcpu, context);
4004 else if (is_pae(vcpu))
4005 paging32E_init_context(vcpu, context);
4006 else
4007 paging32_init_context(vcpu, context);
4008
4009 context->base_role.nxe = is_nx(vcpu);
4010 context->base_role.cr4_pae = !!is_pae(vcpu);
4011 context->base_role.cr0_wp = is_write_protection(vcpu);
4012 context->base_role.smep_andnot_wp
4013 = smep && !is_write_protection(vcpu);
4014 context->base_role.smap_andnot_wp
4015 = smap && !is_write_protection(vcpu);
4016 context->base_role.smm = is_smm(vcpu);
4017 reset_shadow_zero_bits_mask(vcpu, context);
4018 }
4019 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4020
4021 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4022 {
4023 struct kvm_mmu *context = &vcpu->arch.mmu;
4024
4025 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4026
4027 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4028
4029 context->nx = true;
4030 context->page_fault = ept_page_fault;
4031 context->gva_to_gpa = ept_gva_to_gpa;
4032 context->sync_page = ept_sync_page;
4033 context->invlpg = ept_invlpg;
4034 context->update_pte = ept_update_pte;
4035 context->root_level = context->shadow_root_level;
4036 context->root_hpa = INVALID_PAGE;
4037 context->direct_map = false;
4038
4039 update_permission_bitmask(vcpu, context, true);
4040 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4041 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4042 }
4043 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4044
4045 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4046 {
4047 struct kvm_mmu *context = &vcpu->arch.mmu;
4048
4049 kvm_init_shadow_mmu(vcpu);
4050 context->set_cr3 = kvm_x86_ops->set_cr3;
4051 context->get_cr3 = get_cr3;
4052 context->get_pdptr = kvm_pdptr_read;
4053 context->inject_page_fault = kvm_inject_page_fault;
4054 }
4055
4056 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4057 {
4058 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4059
4060 g_context->get_cr3 = get_cr3;
4061 g_context->get_pdptr = kvm_pdptr_read;
4062 g_context->inject_page_fault = kvm_inject_page_fault;
4063
4064 /*
4065 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4066 * translation of l2_gpa to l1_gpa addresses is done using the
4067 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4068 * functions between mmu and nested_mmu are swapped.
4069 */
4070 if (!is_paging(vcpu)) {
4071 g_context->nx = false;
4072 g_context->root_level = 0;
4073 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4074 } else if (is_long_mode(vcpu)) {
4075 g_context->nx = is_nx(vcpu);
4076 g_context->root_level = PT64_ROOT_LEVEL;
4077 reset_rsvds_bits_mask(vcpu, g_context);
4078 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4079 } else if (is_pae(vcpu)) {
4080 g_context->nx = is_nx(vcpu);
4081 g_context->root_level = PT32E_ROOT_LEVEL;
4082 reset_rsvds_bits_mask(vcpu, g_context);
4083 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4084 } else {
4085 g_context->nx = false;
4086 g_context->root_level = PT32_ROOT_LEVEL;
4087 reset_rsvds_bits_mask(vcpu, g_context);
4088 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4089 }
4090
4091 update_permission_bitmask(vcpu, g_context, false);
4092 update_last_pte_bitmap(vcpu, g_context);
4093 }
4094
4095 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4096 {
4097 if (mmu_is_nested(vcpu))
4098 init_kvm_nested_mmu(vcpu);
4099 else if (tdp_enabled)
4100 init_kvm_tdp_mmu(vcpu);
4101 else
4102 init_kvm_softmmu(vcpu);
4103 }
4104
4105 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4106 {
4107 kvm_mmu_unload(vcpu);
4108 init_kvm_mmu(vcpu);
4109 }
4110 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4111
4112 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4113 {
4114 int r;
4115
4116 r = mmu_topup_memory_caches(vcpu);
4117 if (r)
4118 goto out;
4119 r = mmu_alloc_roots(vcpu);
4120 kvm_mmu_sync_roots(vcpu);
4121 if (r)
4122 goto out;
4123 /* set_cr3() should ensure TLB has been flushed */
4124 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4125 out:
4126 return r;
4127 }
4128 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4129
4130 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4131 {
4132 mmu_free_roots(vcpu);
4133 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4134 }
4135 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4136
4137 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4138 struct kvm_mmu_page *sp, u64 *spte,
4139 const void *new)
4140 {
4141 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4142 ++vcpu->kvm->stat.mmu_pde_zapped;
4143 return;
4144 }
4145
4146 ++vcpu->kvm->stat.mmu_pte_updated;
4147 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4148 }
4149
4150 static bool need_remote_flush(u64 old, u64 new)
4151 {
4152 if (!is_shadow_present_pte(old))
4153 return false;
4154 if (!is_shadow_present_pte(new))
4155 return true;
4156 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4157 return true;
4158 old ^= shadow_nx_mask;
4159 new ^= shadow_nx_mask;
4160 return (old & ~new & PT64_PERM_MASK) != 0;
4161 }
4162
4163 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4164 bool remote_flush, bool local_flush)
4165 {
4166 if (zap_page)
4167 return;
4168
4169 if (remote_flush)
4170 kvm_flush_remote_tlbs(vcpu->kvm);
4171 else if (local_flush)
4172 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4173 }
4174
4175 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4176 const u8 *new, int *bytes)
4177 {
4178 u64 gentry;
4179 int r;
4180
4181 /*
4182 * Assume that the pte write on a page table of the same type
4183 * as the current vcpu paging mode since we update the sptes only
4184 * when they have the same mode.
4185 */
4186 if (is_pae(vcpu) && *bytes == 4) {
4187 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4188 *gpa &= ~(gpa_t)7;
4189 *bytes = 8;
4190 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4191 if (r)
4192 gentry = 0;
4193 new = (const u8 *)&gentry;
4194 }
4195
4196 switch (*bytes) {
4197 case 4:
4198 gentry = *(const u32 *)new;
4199 break;
4200 case 8:
4201 gentry = *(const u64 *)new;
4202 break;
4203 default:
4204 gentry = 0;
4205 break;
4206 }
4207
4208 return gentry;
4209 }
4210
4211 /*
4212 * If we're seeing too many writes to a page, it may no longer be a page table,
4213 * or we may be forking, in which case it is better to unmap the page.
4214 */
4215 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4216 {
4217 /*
4218 * Skip write-flooding detected for the sp whose level is 1, because
4219 * it can become unsync, then the guest page is not write-protected.
4220 */
4221 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4222 return false;
4223
4224 return ++sp->write_flooding_count >= 3;
4225 }
4226
4227 /*
4228 * Misaligned accesses are too much trouble to fix up; also, they usually
4229 * indicate a page is not used as a page table.
4230 */
4231 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4232 int bytes)
4233 {
4234 unsigned offset, pte_size, misaligned;
4235
4236 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4237 gpa, bytes, sp->role.word);
4238
4239 offset = offset_in_page(gpa);
4240 pte_size = sp->role.cr4_pae ? 8 : 4;
4241
4242 /*
4243 * Sometimes, the OS only writes the last one bytes to update status
4244 * bits, for example, in linux, andb instruction is used in clear_bit().
4245 */
4246 if (!(offset & (pte_size - 1)) && bytes == 1)
4247 return false;
4248
4249 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4250 misaligned |= bytes < 4;
4251
4252 return misaligned;
4253 }
4254
4255 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4256 {
4257 unsigned page_offset, quadrant;
4258 u64 *spte;
4259 int level;
4260
4261 page_offset = offset_in_page(gpa);
4262 level = sp->role.level;
4263 *nspte = 1;
4264 if (!sp->role.cr4_pae) {
4265 page_offset <<= 1; /* 32->64 */
4266 /*
4267 * A 32-bit pde maps 4MB while the shadow pdes map
4268 * only 2MB. So we need to double the offset again
4269 * and zap two pdes instead of one.
4270 */
4271 if (level == PT32_ROOT_LEVEL) {
4272 page_offset &= ~7; /* kill rounding error */
4273 page_offset <<= 1;
4274 *nspte = 2;
4275 }
4276 quadrant = page_offset >> PAGE_SHIFT;
4277 page_offset &= ~PAGE_MASK;
4278 if (quadrant != sp->role.quadrant)
4279 return NULL;
4280 }
4281
4282 spte = &sp->spt[page_offset / sizeof(*spte)];
4283 return spte;
4284 }
4285
4286 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4287 const u8 *new, int bytes)
4288 {
4289 gfn_t gfn = gpa >> PAGE_SHIFT;
4290 struct kvm_mmu_page *sp;
4291 LIST_HEAD(invalid_list);
4292 u64 entry, gentry, *spte;
4293 int npte;
4294 bool remote_flush, local_flush, zap_page;
4295 union kvm_mmu_page_role mask = { };
4296
4297 mask.cr0_wp = 1;
4298 mask.cr4_pae = 1;
4299 mask.nxe = 1;
4300 mask.smep_andnot_wp = 1;
4301 mask.smap_andnot_wp = 1;
4302 mask.smm = 1;
4303
4304 /*
4305 * If we don't have indirect shadow pages, it means no page is
4306 * write-protected, so we can exit simply.
4307 */
4308 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4309 return;
4310
4311 zap_page = remote_flush = local_flush = false;
4312
4313 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4314
4315 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4316
4317 /*
4318 * No need to care whether allocation memory is successful
4319 * or not since pte prefetch is skiped if it does not have
4320 * enough objects in the cache.
4321 */
4322 mmu_topup_memory_caches(vcpu);
4323
4324 spin_lock(&vcpu->kvm->mmu_lock);
4325 ++vcpu->kvm->stat.mmu_pte_write;
4326 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4327
4328 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4329 if (detect_write_misaligned(sp, gpa, bytes) ||
4330 detect_write_flooding(sp)) {
4331 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4332 &invalid_list);
4333 ++vcpu->kvm->stat.mmu_flooded;
4334 continue;
4335 }
4336
4337 spte = get_written_sptes(sp, gpa, &npte);
4338 if (!spte)
4339 continue;
4340
4341 local_flush = true;
4342 while (npte--) {
4343 entry = *spte;
4344 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4345 if (gentry &&
4346 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4347 & mask.word) && rmap_can_add(vcpu))
4348 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4349 if (need_remote_flush(entry, *spte))
4350 remote_flush = true;
4351 ++spte;
4352 }
4353 }
4354 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4355 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4356 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4357 spin_unlock(&vcpu->kvm->mmu_lock);
4358 }
4359
4360 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4361 {
4362 gpa_t gpa;
4363 int r;
4364
4365 if (vcpu->arch.mmu.direct_map)
4366 return 0;
4367
4368 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4369
4370 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4371
4372 return r;
4373 }
4374 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4375
4376 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4377 {
4378 LIST_HEAD(invalid_list);
4379
4380 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4381 return;
4382
4383 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4384 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4385 break;
4386
4387 ++vcpu->kvm->stat.mmu_recycled;
4388 }
4389 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4390 }
4391
4392 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4393 {
4394 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4395 return vcpu_match_mmio_gpa(vcpu, addr);
4396
4397 return vcpu_match_mmio_gva(vcpu, addr);
4398 }
4399
4400 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4401 void *insn, int insn_len)
4402 {
4403 int r, emulation_type = EMULTYPE_RETRY;
4404 enum emulation_result er;
4405
4406 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4407 if (r < 0)
4408 goto out;
4409
4410 if (!r) {
4411 r = 1;
4412 goto out;
4413 }
4414
4415 if (is_mmio_page_fault(vcpu, cr2))
4416 emulation_type = 0;
4417
4418 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4419
4420 switch (er) {
4421 case EMULATE_DONE:
4422 return 1;
4423 case EMULATE_USER_EXIT:
4424 ++vcpu->stat.mmio_exits;
4425 /* fall through */
4426 case EMULATE_FAIL:
4427 return 0;
4428 default:
4429 BUG();
4430 }
4431 out:
4432 return r;
4433 }
4434 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4435
4436 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4437 {
4438 vcpu->arch.mmu.invlpg(vcpu, gva);
4439 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4440 ++vcpu->stat.invlpg;
4441 }
4442 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4443
4444 void kvm_enable_tdp(void)
4445 {
4446 tdp_enabled = true;
4447 }
4448 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4449
4450 void kvm_disable_tdp(void)
4451 {
4452 tdp_enabled = false;
4453 }
4454 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4455
4456 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4457 {
4458 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4459 if (vcpu->arch.mmu.lm_root != NULL)
4460 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4461 }
4462
4463 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4464 {
4465 struct page *page;
4466 int i;
4467
4468 /*
4469 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4470 * Therefore we need to allocate shadow page tables in the first
4471 * 4GB of memory, which happens to fit the DMA32 zone.
4472 */
4473 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4474 if (!page)
4475 return -ENOMEM;
4476
4477 vcpu->arch.mmu.pae_root = page_address(page);
4478 for (i = 0; i < 4; ++i)
4479 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4480
4481 return 0;
4482 }
4483
4484 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4485 {
4486 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4487 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4488 vcpu->arch.mmu.translate_gpa = translate_gpa;
4489 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4490
4491 return alloc_mmu_pages(vcpu);
4492 }
4493
4494 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4495 {
4496 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4497
4498 init_kvm_mmu(vcpu);
4499 }
4500
4501 /* The return value indicates if tlb flush on all vcpus is needed. */
4502 typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4503
4504 /* The caller should hold mmu-lock before calling this function. */
4505 static bool
4506 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4507 slot_level_handler fn, int start_level, int end_level,
4508 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4509 {
4510 struct slot_rmap_walk_iterator iterator;
4511 bool flush = false;
4512
4513 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4514 end_gfn, &iterator) {
4515 if (iterator.rmap)
4516 flush |= fn(kvm, iterator.rmap);
4517
4518 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4519 if (flush && lock_flush_tlb) {
4520 kvm_flush_remote_tlbs(kvm);
4521 flush = false;
4522 }
4523 cond_resched_lock(&kvm->mmu_lock);
4524 }
4525 }
4526
4527 if (flush && lock_flush_tlb) {
4528 kvm_flush_remote_tlbs(kvm);
4529 flush = false;
4530 }
4531
4532 return flush;
4533 }
4534
4535 static bool
4536 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4537 slot_level_handler fn, int start_level, int end_level,
4538 bool lock_flush_tlb)
4539 {
4540 return slot_handle_level_range(kvm, memslot, fn, start_level,
4541 end_level, memslot->base_gfn,
4542 memslot->base_gfn + memslot->npages - 1,
4543 lock_flush_tlb);
4544 }
4545
4546 static bool
4547 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4548 slot_level_handler fn, bool lock_flush_tlb)
4549 {
4550 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4551 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4552 }
4553
4554 static bool
4555 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4556 slot_level_handler fn, bool lock_flush_tlb)
4557 {
4558 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4559 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4560 }
4561
4562 static bool
4563 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4564 slot_level_handler fn, bool lock_flush_tlb)
4565 {
4566 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4567 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4568 }
4569
4570 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4571 {
4572 struct kvm_memslots *slots;
4573 struct kvm_memory_slot *memslot;
4574 int i;
4575
4576 spin_lock(&kvm->mmu_lock);
4577 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4578 slots = __kvm_memslots(kvm, i);
4579 kvm_for_each_memslot(memslot, slots) {
4580 gfn_t start, end;
4581
4582 start = max(gfn_start, memslot->base_gfn);
4583 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4584 if (start >= end)
4585 continue;
4586
4587 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4588 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4589 start, end - 1, true);
4590 }
4591 }
4592
4593 spin_unlock(&kvm->mmu_lock);
4594 }
4595
4596 static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4597 {
4598 return __rmap_write_protect(kvm, rmapp, false);
4599 }
4600
4601 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4602 struct kvm_memory_slot *memslot)
4603 {
4604 bool flush;
4605
4606 spin_lock(&kvm->mmu_lock);
4607 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4608 false);
4609 spin_unlock(&kvm->mmu_lock);
4610
4611 /*
4612 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4613 * which do tlb flush out of mmu-lock should be serialized by
4614 * kvm->slots_lock otherwise tlb flush would be missed.
4615 */
4616 lockdep_assert_held(&kvm->slots_lock);
4617
4618 /*
4619 * We can flush all the TLBs out of the mmu lock without TLB
4620 * corruption since we just change the spte from writable to
4621 * readonly so that we only need to care the case of changing
4622 * spte from present to present (changing the spte from present
4623 * to nonpresent will flush all the TLBs immediately), in other
4624 * words, the only case we care is mmu_spte_update() where we
4625 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4626 * instead of PT_WRITABLE_MASK, that means it does not depend
4627 * on PT_WRITABLE_MASK anymore.
4628 */
4629 if (flush)
4630 kvm_flush_remote_tlbs(kvm);
4631 }
4632
4633 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4634 unsigned long *rmapp)
4635 {
4636 u64 *sptep;
4637 struct rmap_iterator iter;
4638 int need_tlb_flush = 0;
4639 pfn_t pfn;
4640 struct kvm_mmu_page *sp;
4641
4642 restart:
4643 for_each_rmap_spte(rmapp, &iter, sptep) {
4644 sp = page_header(__pa(sptep));
4645 pfn = spte_to_pfn(*sptep);
4646
4647 /*
4648 * We cannot do huge page mapping for indirect shadow pages,
4649 * which are found on the last rmap (level = 1) when not using
4650 * tdp; such shadow pages are synced with the page table in
4651 * the guest, and the guest page table is using 4K page size
4652 * mapping if the indirect sp has level = 1.
4653 */
4654 if (sp->role.direct &&
4655 !kvm_is_reserved_pfn(pfn) &&
4656 PageTransCompound(pfn_to_page(pfn))) {
4657 drop_spte(kvm, sptep);
4658 need_tlb_flush = 1;
4659 goto restart;
4660 }
4661 }
4662
4663 return need_tlb_flush;
4664 }
4665
4666 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4667 const struct kvm_memory_slot *memslot)
4668 {
4669 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
4670 spin_lock(&kvm->mmu_lock);
4671 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4672 kvm_mmu_zap_collapsible_spte, true);
4673 spin_unlock(&kvm->mmu_lock);
4674 }
4675
4676 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4677 struct kvm_memory_slot *memslot)
4678 {
4679 bool flush;
4680
4681 spin_lock(&kvm->mmu_lock);
4682 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4683 spin_unlock(&kvm->mmu_lock);
4684
4685 lockdep_assert_held(&kvm->slots_lock);
4686
4687 /*
4688 * It's also safe to flush TLBs out of mmu lock here as currently this
4689 * function is only used for dirty logging, in which case flushing TLB
4690 * out of mmu lock also guarantees no dirty pages will be lost in
4691 * dirty_bitmap.
4692 */
4693 if (flush)
4694 kvm_flush_remote_tlbs(kvm);
4695 }
4696 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4697
4698 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4699 struct kvm_memory_slot *memslot)
4700 {
4701 bool flush;
4702
4703 spin_lock(&kvm->mmu_lock);
4704 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4705 false);
4706 spin_unlock(&kvm->mmu_lock);
4707
4708 /* see kvm_mmu_slot_remove_write_access */
4709 lockdep_assert_held(&kvm->slots_lock);
4710
4711 if (flush)
4712 kvm_flush_remote_tlbs(kvm);
4713 }
4714 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4715
4716 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4717 struct kvm_memory_slot *memslot)
4718 {
4719 bool flush;
4720
4721 spin_lock(&kvm->mmu_lock);
4722 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4723 spin_unlock(&kvm->mmu_lock);
4724
4725 lockdep_assert_held(&kvm->slots_lock);
4726
4727 /* see kvm_mmu_slot_leaf_clear_dirty */
4728 if (flush)
4729 kvm_flush_remote_tlbs(kvm);
4730 }
4731 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4732
4733 #define BATCH_ZAP_PAGES 10
4734 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4735 {
4736 struct kvm_mmu_page *sp, *node;
4737 int batch = 0;
4738
4739 restart:
4740 list_for_each_entry_safe_reverse(sp, node,
4741 &kvm->arch.active_mmu_pages, link) {
4742 int ret;
4743
4744 /*
4745 * No obsolete page exists before new created page since
4746 * active_mmu_pages is the FIFO list.
4747 */
4748 if (!is_obsolete_sp(kvm, sp))
4749 break;
4750
4751 /*
4752 * Since we are reversely walking the list and the invalid
4753 * list will be moved to the head, skip the invalid page
4754 * can help us to avoid the infinity list walking.
4755 */
4756 if (sp->role.invalid)
4757 continue;
4758
4759 /*
4760 * Need not flush tlb since we only zap the sp with invalid
4761 * generation number.
4762 */
4763 if (batch >= BATCH_ZAP_PAGES &&
4764 cond_resched_lock(&kvm->mmu_lock)) {
4765 batch = 0;
4766 goto restart;
4767 }
4768
4769 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4770 &kvm->arch.zapped_obsolete_pages);
4771 batch += ret;
4772
4773 if (ret)
4774 goto restart;
4775 }
4776
4777 /*
4778 * Should flush tlb before free page tables since lockless-walking
4779 * may use the pages.
4780 */
4781 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4782 }
4783
4784 /*
4785 * Fast invalidate all shadow pages and use lock-break technique
4786 * to zap obsolete pages.
4787 *
4788 * It's required when memslot is being deleted or VM is being
4789 * destroyed, in these cases, we should ensure that KVM MMU does
4790 * not use any resource of the being-deleted slot or all slots
4791 * after calling the function.
4792 */
4793 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4794 {
4795 spin_lock(&kvm->mmu_lock);
4796 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4797 kvm->arch.mmu_valid_gen++;
4798
4799 /*
4800 * Notify all vcpus to reload its shadow page table
4801 * and flush TLB. Then all vcpus will switch to new
4802 * shadow page table with the new mmu_valid_gen.
4803 *
4804 * Note: we should do this under the protection of
4805 * mmu-lock, otherwise, vcpu would purge shadow page
4806 * but miss tlb flush.
4807 */
4808 kvm_reload_remote_mmus(kvm);
4809
4810 kvm_zap_obsolete_pages(kvm);
4811 spin_unlock(&kvm->mmu_lock);
4812 }
4813
4814 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4815 {
4816 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4817 }
4818
4819 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4820 {
4821 /*
4822 * The very rare case: if the generation-number is round,
4823 * zap all shadow pages.
4824 */
4825 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4826 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4827 kvm_mmu_invalidate_zap_all_pages(kvm);
4828 }
4829 }
4830
4831 static unsigned long
4832 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4833 {
4834 struct kvm *kvm;
4835 int nr_to_scan = sc->nr_to_scan;
4836 unsigned long freed = 0;
4837
4838 spin_lock(&kvm_lock);
4839
4840 list_for_each_entry(kvm, &vm_list, vm_list) {
4841 int idx;
4842 LIST_HEAD(invalid_list);
4843
4844 /*
4845 * Never scan more than sc->nr_to_scan VM instances.
4846 * Will not hit this condition practically since we do not try
4847 * to shrink more than one VM and it is very unlikely to see
4848 * !n_used_mmu_pages so many times.
4849 */
4850 if (!nr_to_scan--)
4851 break;
4852 /*
4853 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4854 * here. We may skip a VM instance errorneosly, but we do not
4855 * want to shrink a VM that only started to populate its MMU
4856 * anyway.
4857 */
4858 if (!kvm->arch.n_used_mmu_pages &&
4859 !kvm_has_zapped_obsolete_pages(kvm))
4860 continue;
4861
4862 idx = srcu_read_lock(&kvm->srcu);
4863 spin_lock(&kvm->mmu_lock);
4864
4865 if (kvm_has_zapped_obsolete_pages(kvm)) {
4866 kvm_mmu_commit_zap_page(kvm,
4867 &kvm->arch.zapped_obsolete_pages);
4868 goto unlock;
4869 }
4870
4871 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4872 freed++;
4873 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4874
4875 unlock:
4876 spin_unlock(&kvm->mmu_lock);
4877 srcu_read_unlock(&kvm->srcu, idx);
4878
4879 /*
4880 * unfair on small ones
4881 * per-vm shrinkers cry out
4882 * sadness comes quickly
4883 */
4884 list_move_tail(&kvm->vm_list, &vm_list);
4885 break;
4886 }
4887
4888 spin_unlock(&kvm_lock);
4889 return freed;
4890 }
4891
4892 static unsigned long
4893 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4894 {
4895 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4896 }
4897
4898 static struct shrinker mmu_shrinker = {
4899 .count_objects = mmu_shrink_count,
4900 .scan_objects = mmu_shrink_scan,
4901 .seeks = DEFAULT_SEEKS * 10,
4902 };
4903
4904 static void mmu_destroy_caches(void)
4905 {
4906 if (pte_list_desc_cache)
4907 kmem_cache_destroy(pte_list_desc_cache);
4908 if (mmu_page_header_cache)
4909 kmem_cache_destroy(mmu_page_header_cache);
4910 }
4911
4912 int kvm_mmu_module_init(void)
4913 {
4914 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4915 sizeof(struct pte_list_desc),
4916 0, 0, NULL);
4917 if (!pte_list_desc_cache)
4918 goto nomem;
4919
4920 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4921 sizeof(struct kvm_mmu_page),
4922 0, 0, NULL);
4923 if (!mmu_page_header_cache)
4924 goto nomem;
4925
4926 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4927 goto nomem;
4928
4929 register_shrinker(&mmu_shrinker);
4930
4931 return 0;
4932
4933 nomem:
4934 mmu_destroy_caches();
4935 return -ENOMEM;
4936 }
4937
4938 /*
4939 * Caculate mmu pages needed for kvm.
4940 */
4941 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4942 {
4943 unsigned int nr_mmu_pages;
4944 unsigned int nr_pages = 0;
4945 struct kvm_memslots *slots;
4946 struct kvm_memory_slot *memslot;
4947 int i;
4948
4949 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4950 slots = __kvm_memslots(kvm, i);
4951
4952 kvm_for_each_memslot(memslot, slots)
4953 nr_pages += memslot->npages;
4954 }
4955
4956 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4957 nr_mmu_pages = max(nr_mmu_pages,
4958 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4959
4960 return nr_mmu_pages;
4961 }
4962
4963 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4964 {
4965 kvm_mmu_unload(vcpu);
4966 free_mmu_pages(vcpu);
4967 mmu_free_memory_caches(vcpu);
4968 }
4969
4970 void kvm_mmu_module_exit(void)
4971 {
4972 mmu_destroy_caches();
4973 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4974 unregister_shrinker(&mmu_shrinker);
4975 mmu_audit_disable();
4976 }
This page took 0.169195 seconds and 6 git commands to generate.