Merge branch 'master' of /pub/scm/linux/kernel/git/jejb/scsi-post-merge-2.6 into...
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52 bool tdp_enabled = false;
53
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61 };
62
63 char *audit_point_name[] = {
64 "pre page fault",
65 "post page fault",
66 "pre pte write",
67 "post pte write",
68 "pre sync",
69 "post sync"
70 };
71
72 #undef MMU_DEBUG
73
74 #ifdef MMU_DEBUG
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
79 #else
80
81 #define pgprintk(x...) do { } while (0)
82 #define rmap_printk(x...) do { } while (0)
83
84 #endif
85
86 #ifdef MMU_DEBUG
87 static int dbg = 0;
88 module_param(dbg, bool, 0644);
89 #endif
90
91 static int oos_shadow = 1;
92 module_param(oos_shadow, bool, 0644);
93
94 #ifndef MMU_DEBUG
95 #define ASSERT(x) do { } while (0)
96 #else
97 #define ASSERT(x) \
98 if (!(x)) { \
99 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
100 __FILE__, __LINE__, #x); \
101 }
102 #endif
103
104 #define PTE_PREFETCH_NUM 8
105
106 #define PT_FIRST_AVAIL_BITS_SHIFT 9
107 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
108
109 #define PT64_LEVEL_BITS 9
110
111 #define PT64_LEVEL_SHIFT(level) \
112 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113
114 #define PT64_LEVEL_MASK(level) \
115 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
116
117 #define PT64_INDEX(address, level)\
118 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
119
120
121 #define PT32_LEVEL_BITS 10
122
123 #define PT32_LEVEL_SHIFT(level) \
124 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
125
126 #define PT32_LEVEL_MASK(level) \
127 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
128 #define PT32_LVL_OFFSET_MASK(level) \
129 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
130 * PT32_LEVEL_BITS))) - 1))
131
132 #define PT32_INDEX(address, level)\
133 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
134
135
136 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
137 #define PT64_DIR_BASE_ADDR_MASK \
138 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
139 #define PT64_LVL_ADDR_MASK(level) \
140 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
141 * PT64_LEVEL_BITS))) - 1))
142 #define PT64_LVL_OFFSET_MASK(level) \
143 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144 * PT64_LEVEL_BITS))) - 1))
145
146 #define PT32_BASE_ADDR_MASK PAGE_MASK
147 #define PT32_DIR_BASE_ADDR_MASK \
148 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
149 #define PT32_LVL_ADDR_MASK(level) \
150 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
151 * PT32_LEVEL_BITS))) - 1))
152
153 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
154 | PT64_NX_MASK)
155
156 #define RMAP_EXT 4
157
158 #define ACC_EXEC_MASK 1
159 #define ACC_WRITE_MASK PT_WRITABLE_MASK
160 #define ACC_USER_MASK PT_USER_MASK
161 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
162
163 #include <trace/events/kvm.h>
164
165 #define CREATE_TRACE_POINTS
166 #include "mmutrace.h"
167
168 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
169
170 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
171
172 struct kvm_rmap_desc {
173 u64 *sptes[RMAP_EXT];
174 struct kvm_rmap_desc *more;
175 };
176
177 struct kvm_shadow_walk_iterator {
178 u64 addr;
179 hpa_t shadow_addr;
180 int level;
181 u64 *sptep;
182 unsigned index;
183 };
184
185 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
186 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
187 shadow_walk_okay(&(_walker)); \
188 shadow_walk_next(&(_walker)))
189
190 typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
191
192 static struct kmem_cache *pte_chain_cache;
193 static struct kmem_cache *rmap_desc_cache;
194 static struct kmem_cache *mmu_page_header_cache;
195 static struct percpu_counter kvm_total_used_mmu_pages;
196
197 static u64 __read_mostly shadow_trap_nonpresent_pte;
198 static u64 __read_mostly shadow_notrap_nonpresent_pte;
199 static u64 __read_mostly shadow_nx_mask;
200 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
201 static u64 __read_mostly shadow_user_mask;
202 static u64 __read_mostly shadow_accessed_mask;
203 static u64 __read_mostly shadow_dirty_mask;
204
205 static inline u64 rsvd_bits(int s, int e)
206 {
207 return ((1ULL << (e - s + 1)) - 1) << s;
208 }
209
210 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
211 {
212 shadow_trap_nonpresent_pte = trap_pte;
213 shadow_notrap_nonpresent_pte = notrap_pte;
214 }
215 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
216
217 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
218 u64 dirty_mask, u64 nx_mask, u64 x_mask)
219 {
220 shadow_user_mask = user_mask;
221 shadow_accessed_mask = accessed_mask;
222 shadow_dirty_mask = dirty_mask;
223 shadow_nx_mask = nx_mask;
224 shadow_x_mask = x_mask;
225 }
226 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
227
228 static bool is_write_protection(struct kvm_vcpu *vcpu)
229 {
230 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
231 }
232
233 static int is_cpuid_PSE36(void)
234 {
235 return 1;
236 }
237
238 static int is_nx(struct kvm_vcpu *vcpu)
239 {
240 return vcpu->arch.efer & EFER_NX;
241 }
242
243 static int is_shadow_present_pte(u64 pte)
244 {
245 return pte != shadow_trap_nonpresent_pte
246 && pte != shadow_notrap_nonpresent_pte;
247 }
248
249 static int is_large_pte(u64 pte)
250 {
251 return pte & PT_PAGE_SIZE_MASK;
252 }
253
254 static int is_writable_pte(unsigned long pte)
255 {
256 return pte & PT_WRITABLE_MASK;
257 }
258
259 static int is_dirty_gpte(unsigned long pte)
260 {
261 return pte & PT_DIRTY_MASK;
262 }
263
264 static int is_rmap_spte(u64 pte)
265 {
266 return is_shadow_present_pte(pte);
267 }
268
269 static int is_last_spte(u64 pte, int level)
270 {
271 if (level == PT_PAGE_TABLE_LEVEL)
272 return 1;
273 if (is_large_pte(pte))
274 return 1;
275 return 0;
276 }
277
278 static pfn_t spte_to_pfn(u64 pte)
279 {
280 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
281 }
282
283 static gfn_t pse36_gfn_delta(u32 gpte)
284 {
285 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
286
287 return (gpte & PT32_DIR_PSE36_MASK) << shift;
288 }
289
290 static void __set_spte(u64 *sptep, u64 spte)
291 {
292 set_64bit(sptep, spte);
293 }
294
295 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
296 {
297 #ifdef CONFIG_X86_64
298 return xchg(sptep, new_spte);
299 #else
300 u64 old_spte;
301
302 do {
303 old_spte = *sptep;
304 } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
305
306 return old_spte;
307 #endif
308 }
309
310 static bool spte_has_volatile_bits(u64 spte)
311 {
312 if (!shadow_accessed_mask)
313 return false;
314
315 if (!is_shadow_present_pte(spte))
316 return false;
317
318 if ((spte & shadow_accessed_mask) &&
319 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
320 return false;
321
322 return true;
323 }
324
325 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
326 {
327 return (old_spte & bit_mask) && !(new_spte & bit_mask);
328 }
329
330 static void update_spte(u64 *sptep, u64 new_spte)
331 {
332 u64 mask, old_spte = *sptep;
333
334 WARN_ON(!is_rmap_spte(new_spte));
335
336 new_spte |= old_spte & shadow_dirty_mask;
337
338 mask = shadow_accessed_mask;
339 if (is_writable_pte(old_spte))
340 mask |= shadow_dirty_mask;
341
342 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
343 __set_spte(sptep, new_spte);
344 else
345 old_spte = __xchg_spte(sptep, new_spte);
346
347 if (!shadow_accessed_mask)
348 return;
349
350 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
351 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
352 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
353 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
354 }
355
356 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
357 struct kmem_cache *base_cache, int min)
358 {
359 void *obj;
360
361 if (cache->nobjs >= min)
362 return 0;
363 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
364 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
365 if (!obj)
366 return -ENOMEM;
367 cache->objects[cache->nobjs++] = obj;
368 }
369 return 0;
370 }
371
372 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
373 struct kmem_cache *cache)
374 {
375 while (mc->nobjs)
376 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
377 }
378
379 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
380 int min)
381 {
382 struct page *page;
383
384 if (cache->nobjs >= min)
385 return 0;
386 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
387 page = alloc_page(GFP_KERNEL);
388 if (!page)
389 return -ENOMEM;
390 cache->objects[cache->nobjs++] = page_address(page);
391 }
392 return 0;
393 }
394
395 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
396 {
397 while (mc->nobjs)
398 free_page((unsigned long)mc->objects[--mc->nobjs]);
399 }
400
401 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
402 {
403 int r;
404
405 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
406 pte_chain_cache, 4);
407 if (r)
408 goto out;
409 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
410 rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
411 if (r)
412 goto out;
413 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
414 if (r)
415 goto out;
416 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
417 mmu_page_header_cache, 4);
418 out:
419 return r;
420 }
421
422 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
423 {
424 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
425 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
426 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
427 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
428 mmu_page_header_cache);
429 }
430
431 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
432 size_t size)
433 {
434 void *p;
435
436 BUG_ON(!mc->nobjs);
437 p = mc->objects[--mc->nobjs];
438 return p;
439 }
440
441 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
442 {
443 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
444 sizeof(struct kvm_pte_chain));
445 }
446
447 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
448 {
449 kmem_cache_free(pte_chain_cache, pc);
450 }
451
452 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
453 {
454 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
455 sizeof(struct kvm_rmap_desc));
456 }
457
458 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
459 {
460 kmem_cache_free(rmap_desc_cache, rd);
461 }
462
463 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
464 {
465 if (!sp->role.direct)
466 return sp->gfns[index];
467
468 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
469 }
470
471 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
472 {
473 if (sp->role.direct)
474 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
475 else
476 sp->gfns[index] = gfn;
477 }
478
479 /*
480 * Return the pointer to the large page information for a given gfn,
481 * handling slots that are not large page aligned.
482 */
483 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
484 struct kvm_memory_slot *slot,
485 int level)
486 {
487 unsigned long idx;
488
489 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
490 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
491 return &slot->lpage_info[level - 2][idx];
492 }
493
494 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
495 {
496 struct kvm_memory_slot *slot;
497 struct kvm_lpage_info *linfo;
498 int i;
499
500 slot = gfn_to_memslot(kvm, gfn);
501 for (i = PT_DIRECTORY_LEVEL;
502 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
503 linfo = lpage_info_slot(gfn, slot, i);
504 linfo->write_count += 1;
505 }
506 }
507
508 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
509 {
510 struct kvm_memory_slot *slot;
511 struct kvm_lpage_info *linfo;
512 int i;
513
514 slot = gfn_to_memslot(kvm, gfn);
515 for (i = PT_DIRECTORY_LEVEL;
516 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
517 linfo = lpage_info_slot(gfn, slot, i);
518 linfo->write_count -= 1;
519 WARN_ON(linfo->write_count < 0);
520 }
521 }
522
523 static int has_wrprotected_page(struct kvm *kvm,
524 gfn_t gfn,
525 int level)
526 {
527 struct kvm_memory_slot *slot;
528 struct kvm_lpage_info *linfo;
529
530 slot = gfn_to_memslot(kvm, gfn);
531 if (slot) {
532 linfo = lpage_info_slot(gfn, slot, level);
533 return linfo->write_count;
534 }
535
536 return 1;
537 }
538
539 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
540 {
541 unsigned long page_size;
542 int i, ret = 0;
543
544 page_size = kvm_host_page_size(kvm, gfn);
545
546 for (i = PT_PAGE_TABLE_LEVEL;
547 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
548 if (page_size >= KVM_HPAGE_SIZE(i))
549 ret = i;
550 else
551 break;
552 }
553
554 return ret;
555 }
556
557 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
558 {
559 struct kvm_memory_slot *slot;
560 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
561 if (slot && slot->dirty_bitmap)
562 return true;
563 return false;
564 }
565
566 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
567 {
568 int host_level, level, max_level;
569
570 host_level = host_mapping_level(vcpu->kvm, large_gfn);
571
572 if (host_level == PT_PAGE_TABLE_LEVEL)
573 return host_level;
574
575 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
576 kvm_x86_ops->get_lpage_level() : host_level;
577
578 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
579 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
580 break;
581
582 return level - 1;
583 }
584
585 /*
586 * Take gfn and return the reverse mapping to it.
587 */
588
589 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
590 {
591 struct kvm_memory_slot *slot;
592 struct kvm_lpage_info *linfo;
593
594 slot = gfn_to_memslot(kvm, gfn);
595 if (likely(level == PT_PAGE_TABLE_LEVEL))
596 return &slot->rmap[gfn - slot->base_gfn];
597
598 linfo = lpage_info_slot(gfn, slot, level);
599
600 return &linfo->rmap_pde;
601 }
602
603 /*
604 * Reverse mapping data structures:
605 *
606 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
607 * that points to page_address(page).
608 *
609 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
610 * containing more mappings.
611 *
612 * Returns the number of rmap entries before the spte was added or zero if
613 * the spte was not added.
614 *
615 */
616 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
617 {
618 struct kvm_mmu_page *sp;
619 struct kvm_rmap_desc *desc;
620 unsigned long *rmapp;
621 int i, count = 0;
622
623 if (!is_rmap_spte(*spte))
624 return count;
625 sp = page_header(__pa(spte));
626 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
627 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
628 if (!*rmapp) {
629 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
630 *rmapp = (unsigned long)spte;
631 } else if (!(*rmapp & 1)) {
632 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
633 desc = mmu_alloc_rmap_desc(vcpu);
634 desc->sptes[0] = (u64 *)*rmapp;
635 desc->sptes[1] = spte;
636 *rmapp = (unsigned long)desc | 1;
637 ++count;
638 } else {
639 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
640 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
641 while (desc->sptes[RMAP_EXT-1] && desc->more) {
642 desc = desc->more;
643 count += RMAP_EXT;
644 }
645 if (desc->sptes[RMAP_EXT-1]) {
646 desc->more = mmu_alloc_rmap_desc(vcpu);
647 desc = desc->more;
648 }
649 for (i = 0; desc->sptes[i]; ++i)
650 ++count;
651 desc->sptes[i] = spte;
652 }
653 return count;
654 }
655
656 static void rmap_desc_remove_entry(unsigned long *rmapp,
657 struct kvm_rmap_desc *desc,
658 int i,
659 struct kvm_rmap_desc *prev_desc)
660 {
661 int j;
662
663 for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
664 ;
665 desc->sptes[i] = desc->sptes[j];
666 desc->sptes[j] = NULL;
667 if (j != 0)
668 return;
669 if (!prev_desc && !desc->more)
670 *rmapp = (unsigned long)desc->sptes[0];
671 else
672 if (prev_desc)
673 prev_desc->more = desc->more;
674 else
675 *rmapp = (unsigned long)desc->more | 1;
676 mmu_free_rmap_desc(desc);
677 }
678
679 static void rmap_remove(struct kvm *kvm, u64 *spte)
680 {
681 struct kvm_rmap_desc *desc;
682 struct kvm_rmap_desc *prev_desc;
683 struct kvm_mmu_page *sp;
684 gfn_t gfn;
685 unsigned long *rmapp;
686 int i;
687
688 sp = page_header(__pa(spte));
689 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
690 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
691 if (!*rmapp) {
692 printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
693 BUG();
694 } else if (!(*rmapp & 1)) {
695 rmap_printk("rmap_remove: %p 1->0\n", spte);
696 if ((u64 *)*rmapp != spte) {
697 printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
698 BUG();
699 }
700 *rmapp = 0;
701 } else {
702 rmap_printk("rmap_remove: %p many->many\n", spte);
703 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
704 prev_desc = NULL;
705 while (desc) {
706 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
707 if (desc->sptes[i] == spte) {
708 rmap_desc_remove_entry(rmapp,
709 desc, i,
710 prev_desc);
711 return;
712 }
713 prev_desc = desc;
714 desc = desc->more;
715 }
716 pr_err("rmap_remove: %p many->many\n", spte);
717 BUG();
718 }
719 }
720
721 static int set_spte_track_bits(u64 *sptep, u64 new_spte)
722 {
723 pfn_t pfn;
724 u64 old_spte = *sptep;
725
726 if (!spte_has_volatile_bits(old_spte))
727 __set_spte(sptep, new_spte);
728 else
729 old_spte = __xchg_spte(sptep, new_spte);
730
731 if (!is_rmap_spte(old_spte))
732 return 0;
733
734 pfn = spte_to_pfn(old_spte);
735 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
736 kvm_set_pfn_accessed(pfn);
737 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
738 kvm_set_pfn_dirty(pfn);
739 return 1;
740 }
741
742 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
743 {
744 if (set_spte_track_bits(sptep, new_spte))
745 rmap_remove(kvm, sptep);
746 }
747
748 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
749 {
750 struct kvm_rmap_desc *desc;
751 u64 *prev_spte;
752 int i;
753
754 if (!*rmapp)
755 return NULL;
756 else if (!(*rmapp & 1)) {
757 if (!spte)
758 return (u64 *)*rmapp;
759 return NULL;
760 }
761 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
762 prev_spte = NULL;
763 while (desc) {
764 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
765 if (prev_spte == spte)
766 return desc->sptes[i];
767 prev_spte = desc->sptes[i];
768 }
769 desc = desc->more;
770 }
771 return NULL;
772 }
773
774 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
775 {
776 unsigned long *rmapp;
777 u64 *spte;
778 int i, write_protected = 0;
779
780 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
781
782 spte = rmap_next(kvm, rmapp, NULL);
783 while (spte) {
784 BUG_ON(!spte);
785 BUG_ON(!(*spte & PT_PRESENT_MASK));
786 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
787 if (is_writable_pte(*spte)) {
788 update_spte(spte, *spte & ~PT_WRITABLE_MASK);
789 write_protected = 1;
790 }
791 spte = rmap_next(kvm, rmapp, spte);
792 }
793
794 /* check for huge page mappings */
795 for (i = PT_DIRECTORY_LEVEL;
796 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
797 rmapp = gfn_to_rmap(kvm, gfn, i);
798 spte = rmap_next(kvm, rmapp, NULL);
799 while (spte) {
800 BUG_ON(!spte);
801 BUG_ON(!(*spte & PT_PRESENT_MASK));
802 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
803 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
804 if (is_writable_pte(*spte)) {
805 drop_spte(kvm, spte,
806 shadow_trap_nonpresent_pte);
807 --kvm->stat.lpages;
808 spte = NULL;
809 write_protected = 1;
810 }
811 spte = rmap_next(kvm, rmapp, spte);
812 }
813 }
814
815 return write_protected;
816 }
817
818 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
819 unsigned long data)
820 {
821 u64 *spte;
822 int need_tlb_flush = 0;
823
824 while ((spte = rmap_next(kvm, rmapp, NULL))) {
825 BUG_ON(!(*spte & PT_PRESENT_MASK));
826 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
827 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
828 need_tlb_flush = 1;
829 }
830 return need_tlb_flush;
831 }
832
833 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
834 unsigned long data)
835 {
836 int need_flush = 0;
837 u64 *spte, new_spte;
838 pte_t *ptep = (pte_t *)data;
839 pfn_t new_pfn;
840
841 WARN_ON(pte_huge(*ptep));
842 new_pfn = pte_pfn(*ptep);
843 spte = rmap_next(kvm, rmapp, NULL);
844 while (spte) {
845 BUG_ON(!is_shadow_present_pte(*spte));
846 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
847 need_flush = 1;
848 if (pte_write(*ptep)) {
849 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
850 spte = rmap_next(kvm, rmapp, NULL);
851 } else {
852 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
853 new_spte |= (u64)new_pfn << PAGE_SHIFT;
854
855 new_spte &= ~PT_WRITABLE_MASK;
856 new_spte &= ~SPTE_HOST_WRITEABLE;
857 new_spte &= ~shadow_accessed_mask;
858 set_spte_track_bits(spte, new_spte);
859 spte = rmap_next(kvm, rmapp, spte);
860 }
861 }
862 if (need_flush)
863 kvm_flush_remote_tlbs(kvm);
864
865 return 0;
866 }
867
868 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
869 unsigned long data,
870 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
871 unsigned long data))
872 {
873 int i, j;
874 int ret;
875 int retval = 0;
876 struct kvm_memslots *slots;
877
878 slots = kvm_memslots(kvm);
879
880 for (i = 0; i < slots->nmemslots; i++) {
881 struct kvm_memory_slot *memslot = &slots->memslots[i];
882 unsigned long start = memslot->userspace_addr;
883 unsigned long end;
884
885 end = start + (memslot->npages << PAGE_SHIFT);
886 if (hva >= start && hva < end) {
887 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
888 gfn_t gfn = memslot->base_gfn + gfn_offset;
889
890 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
891
892 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
893 struct kvm_lpage_info *linfo;
894
895 linfo = lpage_info_slot(gfn, memslot,
896 PT_DIRECTORY_LEVEL + j);
897 ret |= handler(kvm, &linfo->rmap_pde, data);
898 }
899 trace_kvm_age_page(hva, memslot, ret);
900 retval |= ret;
901 }
902 }
903
904 return retval;
905 }
906
907 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
908 {
909 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
910 }
911
912 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
913 {
914 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
915 }
916
917 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
918 unsigned long data)
919 {
920 u64 *spte;
921 int young = 0;
922
923 /*
924 * Emulate the accessed bit for EPT, by checking if this page has
925 * an EPT mapping, and clearing it if it does. On the next access,
926 * a new EPT mapping will be established.
927 * This has some overhead, but not as much as the cost of swapping
928 * out actively used pages or breaking up actively used hugepages.
929 */
930 if (!shadow_accessed_mask)
931 return kvm_unmap_rmapp(kvm, rmapp, data);
932
933 spte = rmap_next(kvm, rmapp, NULL);
934 while (spte) {
935 int _young;
936 u64 _spte = *spte;
937 BUG_ON(!(_spte & PT_PRESENT_MASK));
938 _young = _spte & PT_ACCESSED_MASK;
939 if (_young) {
940 young = 1;
941 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
942 }
943 spte = rmap_next(kvm, rmapp, spte);
944 }
945 return young;
946 }
947
948 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
949 unsigned long data)
950 {
951 u64 *spte;
952 int young = 0;
953
954 /*
955 * If there's no access bit in the secondary pte set by the
956 * hardware it's up to gup-fast/gup to set the access bit in
957 * the primary pte or in the page structure.
958 */
959 if (!shadow_accessed_mask)
960 goto out;
961
962 spte = rmap_next(kvm, rmapp, NULL);
963 while (spte) {
964 u64 _spte = *spte;
965 BUG_ON(!(_spte & PT_PRESENT_MASK));
966 young = _spte & PT_ACCESSED_MASK;
967 if (young) {
968 young = 1;
969 break;
970 }
971 spte = rmap_next(kvm, rmapp, spte);
972 }
973 out:
974 return young;
975 }
976
977 #define RMAP_RECYCLE_THRESHOLD 1000
978
979 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
980 {
981 unsigned long *rmapp;
982 struct kvm_mmu_page *sp;
983
984 sp = page_header(__pa(spte));
985
986 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
987
988 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
989 kvm_flush_remote_tlbs(vcpu->kvm);
990 }
991
992 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
993 {
994 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
995 }
996
997 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
998 {
999 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1000 }
1001
1002 #ifdef MMU_DEBUG
1003 static int is_empty_shadow_page(u64 *spt)
1004 {
1005 u64 *pos;
1006 u64 *end;
1007
1008 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1009 if (is_shadow_present_pte(*pos)) {
1010 printk(KERN_ERR "%s: %p %llx\n", __func__,
1011 pos, *pos);
1012 return 0;
1013 }
1014 return 1;
1015 }
1016 #endif
1017
1018 /*
1019 * This value is the sum of all of the kvm instances's
1020 * kvm->arch.n_used_mmu_pages values. We need a global,
1021 * aggregate version in order to make the slab shrinker
1022 * faster
1023 */
1024 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1025 {
1026 kvm->arch.n_used_mmu_pages += nr;
1027 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1028 }
1029
1030 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1031 {
1032 ASSERT(is_empty_shadow_page(sp->spt));
1033 hlist_del(&sp->hash_link);
1034 list_del(&sp->link);
1035 __free_page(virt_to_page(sp->spt));
1036 if (!sp->role.direct)
1037 __free_page(virt_to_page(sp->gfns));
1038 kmem_cache_free(mmu_page_header_cache, sp);
1039 kvm_mod_used_mmu_pages(kvm, -1);
1040 }
1041
1042 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1043 {
1044 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1045 }
1046
1047 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1048 u64 *parent_pte, int direct)
1049 {
1050 struct kvm_mmu_page *sp;
1051
1052 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
1053 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1054 if (!direct)
1055 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1056 PAGE_SIZE);
1057 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1058 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1059 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1060 sp->multimapped = 0;
1061 sp->parent_pte = parent_pte;
1062 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1063 return sp;
1064 }
1065
1066 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1067 struct kvm_mmu_page *sp, u64 *parent_pte)
1068 {
1069 struct kvm_pte_chain *pte_chain;
1070 struct hlist_node *node;
1071 int i;
1072
1073 if (!parent_pte)
1074 return;
1075 if (!sp->multimapped) {
1076 u64 *old = sp->parent_pte;
1077
1078 if (!old) {
1079 sp->parent_pte = parent_pte;
1080 return;
1081 }
1082 sp->multimapped = 1;
1083 pte_chain = mmu_alloc_pte_chain(vcpu);
1084 INIT_HLIST_HEAD(&sp->parent_ptes);
1085 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1086 pte_chain->parent_ptes[0] = old;
1087 }
1088 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
1089 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
1090 continue;
1091 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
1092 if (!pte_chain->parent_ptes[i]) {
1093 pte_chain->parent_ptes[i] = parent_pte;
1094 return;
1095 }
1096 }
1097 pte_chain = mmu_alloc_pte_chain(vcpu);
1098 BUG_ON(!pte_chain);
1099 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1100 pte_chain->parent_ptes[0] = parent_pte;
1101 }
1102
1103 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1104 u64 *parent_pte)
1105 {
1106 struct kvm_pte_chain *pte_chain;
1107 struct hlist_node *node;
1108 int i;
1109
1110 if (!sp->multimapped) {
1111 BUG_ON(sp->parent_pte != parent_pte);
1112 sp->parent_pte = NULL;
1113 return;
1114 }
1115 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1116 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1117 if (!pte_chain->parent_ptes[i])
1118 break;
1119 if (pte_chain->parent_ptes[i] != parent_pte)
1120 continue;
1121 while (i + 1 < NR_PTE_CHAIN_ENTRIES
1122 && pte_chain->parent_ptes[i + 1]) {
1123 pte_chain->parent_ptes[i]
1124 = pte_chain->parent_ptes[i + 1];
1125 ++i;
1126 }
1127 pte_chain->parent_ptes[i] = NULL;
1128 if (i == 0) {
1129 hlist_del(&pte_chain->link);
1130 mmu_free_pte_chain(pte_chain);
1131 if (hlist_empty(&sp->parent_ptes)) {
1132 sp->multimapped = 0;
1133 sp->parent_pte = NULL;
1134 }
1135 }
1136 return;
1137 }
1138 BUG();
1139 }
1140
1141 static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1142 {
1143 struct kvm_pte_chain *pte_chain;
1144 struct hlist_node *node;
1145 struct kvm_mmu_page *parent_sp;
1146 int i;
1147
1148 if (!sp->multimapped && sp->parent_pte) {
1149 parent_sp = page_header(__pa(sp->parent_pte));
1150 fn(parent_sp, sp->parent_pte);
1151 return;
1152 }
1153
1154 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1155 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1156 u64 *spte = pte_chain->parent_ptes[i];
1157
1158 if (!spte)
1159 break;
1160 parent_sp = page_header(__pa(spte));
1161 fn(parent_sp, spte);
1162 }
1163 }
1164
1165 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
1166 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1167 {
1168 mmu_parent_walk(sp, mark_unsync);
1169 }
1170
1171 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
1172 {
1173 unsigned int index;
1174
1175 index = spte - sp->spt;
1176 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1177 return;
1178 if (sp->unsync_children++)
1179 return;
1180 kvm_mmu_mark_parents_unsync(sp);
1181 }
1182
1183 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1184 struct kvm_mmu_page *sp)
1185 {
1186 int i;
1187
1188 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1189 sp->spt[i] = shadow_trap_nonpresent_pte;
1190 }
1191
1192 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1193 struct kvm_mmu_page *sp)
1194 {
1195 return 1;
1196 }
1197
1198 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1199 {
1200 }
1201
1202 #define KVM_PAGE_ARRAY_NR 16
1203
1204 struct kvm_mmu_pages {
1205 struct mmu_page_and_offset {
1206 struct kvm_mmu_page *sp;
1207 unsigned int idx;
1208 } page[KVM_PAGE_ARRAY_NR];
1209 unsigned int nr;
1210 };
1211
1212 #define for_each_unsync_children(bitmap, idx) \
1213 for (idx = find_first_bit(bitmap, 512); \
1214 idx < 512; \
1215 idx = find_next_bit(bitmap, 512, idx+1))
1216
1217 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1218 int idx)
1219 {
1220 int i;
1221
1222 if (sp->unsync)
1223 for (i=0; i < pvec->nr; i++)
1224 if (pvec->page[i].sp == sp)
1225 return 0;
1226
1227 pvec->page[pvec->nr].sp = sp;
1228 pvec->page[pvec->nr].idx = idx;
1229 pvec->nr++;
1230 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1231 }
1232
1233 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1234 struct kvm_mmu_pages *pvec)
1235 {
1236 int i, ret, nr_unsync_leaf = 0;
1237
1238 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1239 struct kvm_mmu_page *child;
1240 u64 ent = sp->spt[i];
1241
1242 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1243 goto clear_child_bitmap;
1244
1245 child = page_header(ent & PT64_BASE_ADDR_MASK);
1246
1247 if (child->unsync_children) {
1248 if (mmu_pages_add(pvec, child, i))
1249 return -ENOSPC;
1250
1251 ret = __mmu_unsync_walk(child, pvec);
1252 if (!ret)
1253 goto clear_child_bitmap;
1254 else if (ret > 0)
1255 nr_unsync_leaf += ret;
1256 else
1257 return ret;
1258 } else if (child->unsync) {
1259 nr_unsync_leaf++;
1260 if (mmu_pages_add(pvec, child, i))
1261 return -ENOSPC;
1262 } else
1263 goto clear_child_bitmap;
1264
1265 continue;
1266
1267 clear_child_bitmap:
1268 __clear_bit(i, sp->unsync_child_bitmap);
1269 sp->unsync_children--;
1270 WARN_ON((int)sp->unsync_children < 0);
1271 }
1272
1273
1274 return nr_unsync_leaf;
1275 }
1276
1277 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1278 struct kvm_mmu_pages *pvec)
1279 {
1280 if (!sp->unsync_children)
1281 return 0;
1282
1283 mmu_pages_add(pvec, sp, 0);
1284 return __mmu_unsync_walk(sp, pvec);
1285 }
1286
1287 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1288 {
1289 WARN_ON(!sp->unsync);
1290 trace_kvm_mmu_sync_page(sp);
1291 sp->unsync = 0;
1292 --kvm->stat.mmu_unsync;
1293 }
1294
1295 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1296 struct list_head *invalid_list);
1297 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1298 struct list_head *invalid_list);
1299
1300 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1301 hlist_for_each_entry(sp, pos, \
1302 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1303 if ((sp)->gfn != (gfn)) {} else
1304
1305 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1306 hlist_for_each_entry(sp, pos, \
1307 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1308 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1309 (sp)->role.invalid) {} else
1310
1311 /* @sp->gfn should be write-protected at the call site */
1312 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1313 struct list_head *invalid_list, bool clear_unsync)
1314 {
1315 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1316 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1317 return 1;
1318 }
1319
1320 if (clear_unsync)
1321 kvm_unlink_unsync_page(vcpu->kvm, sp);
1322
1323 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1324 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1325 return 1;
1326 }
1327
1328 kvm_mmu_flush_tlb(vcpu);
1329 return 0;
1330 }
1331
1332 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1333 struct kvm_mmu_page *sp)
1334 {
1335 LIST_HEAD(invalid_list);
1336 int ret;
1337
1338 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1339 if (ret)
1340 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1341
1342 return ret;
1343 }
1344
1345 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1346 struct list_head *invalid_list)
1347 {
1348 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1349 }
1350
1351 /* @gfn should be write-protected at the call site */
1352 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1353 {
1354 struct kvm_mmu_page *s;
1355 struct hlist_node *node;
1356 LIST_HEAD(invalid_list);
1357 bool flush = false;
1358
1359 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1360 if (!s->unsync)
1361 continue;
1362
1363 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1364 kvm_unlink_unsync_page(vcpu->kvm, s);
1365 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1366 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1367 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1368 continue;
1369 }
1370 flush = true;
1371 }
1372
1373 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1374 if (flush)
1375 kvm_mmu_flush_tlb(vcpu);
1376 }
1377
1378 struct mmu_page_path {
1379 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1380 unsigned int idx[PT64_ROOT_LEVEL-1];
1381 };
1382
1383 #define for_each_sp(pvec, sp, parents, i) \
1384 for (i = mmu_pages_next(&pvec, &parents, -1), \
1385 sp = pvec.page[i].sp; \
1386 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1387 i = mmu_pages_next(&pvec, &parents, i))
1388
1389 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1390 struct mmu_page_path *parents,
1391 int i)
1392 {
1393 int n;
1394
1395 for (n = i+1; n < pvec->nr; n++) {
1396 struct kvm_mmu_page *sp = pvec->page[n].sp;
1397
1398 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1399 parents->idx[0] = pvec->page[n].idx;
1400 return n;
1401 }
1402
1403 parents->parent[sp->role.level-2] = sp;
1404 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1405 }
1406
1407 return n;
1408 }
1409
1410 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1411 {
1412 struct kvm_mmu_page *sp;
1413 unsigned int level = 0;
1414
1415 do {
1416 unsigned int idx = parents->idx[level];
1417
1418 sp = parents->parent[level];
1419 if (!sp)
1420 return;
1421
1422 --sp->unsync_children;
1423 WARN_ON((int)sp->unsync_children < 0);
1424 __clear_bit(idx, sp->unsync_child_bitmap);
1425 level++;
1426 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1427 }
1428
1429 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1430 struct mmu_page_path *parents,
1431 struct kvm_mmu_pages *pvec)
1432 {
1433 parents->parent[parent->role.level-1] = NULL;
1434 pvec->nr = 0;
1435 }
1436
1437 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1438 struct kvm_mmu_page *parent)
1439 {
1440 int i;
1441 struct kvm_mmu_page *sp;
1442 struct mmu_page_path parents;
1443 struct kvm_mmu_pages pages;
1444 LIST_HEAD(invalid_list);
1445
1446 kvm_mmu_pages_init(parent, &parents, &pages);
1447 while (mmu_unsync_walk(parent, &pages)) {
1448 int protected = 0;
1449
1450 for_each_sp(pages, sp, parents, i)
1451 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1452
1453 if (protected)
1454 kvm_flush_remote_tlbs(vcpu->kvm);
1455
1456 for_each_sp(pages, sp, parents, i) {
1457 kvm_sync_page(vcpu, sp, &invalid_list);
1458 mmu_pages_clear_parents(&parents);
1459 }
1460 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1461 cond_resched_lock(&vcpu->kvm->mmu_lock);
1462 kvm_mmu_pages_init(parent, &parents, &pages);
1463 }
1464 }
1465
1466 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1467 gfn_t gfn,
1468 gva_t gaddr,
1469 unsigned level,
1470 int direct,
1471 unsigned access,
1472 u64 *parent_pte)
1473 {
1474 union kvm_mmu_page_role role;
1475 unsigned quadrant;
1476 struct kvm_mmu_page *sp;
1477 struct hlist_node *node;
1478 bool need_sync = false;
1479
1480 role = vcpu->arch.mmu.base_role;
1481 role.level = level;
1482 role.direct = direct;
1483 if (role.direct)
1484 role.cr4_pae = 0;
1485 role.access = access;
1486 if (!vcpu->arch.mmu.direct_map
1487 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1488 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1489 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1490 role.quadrant = quadrant;
1491 }
1492 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1493 if (!need_sync && sp->unsync)
1494 need_sync = true;
1495
1496 if (sp->role.word != role.word)
1497 continue;
1498
1499 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1500 break;
1501
1502 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1503 if (sp->unsync_children) {
1504 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1505 kvm_mmu_mark_parents_unsync(sp);
1506 } else if (sp->unsync)
1507 kvm_mmu_mark_parents_unsync(sp);
1508
1509 trace_kvm_mmu_get_page(sp, false);
1510 return sp;
1511 }
1512 ++vcpu->kvm->stat.mmu_cache_miss;
1513 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1514 if (!sp)
1515 return sp;
1516 sp->gfn = gfn;
1517 sp->role = role;
1518 hlist_add_head(&sp->hash_link,
1519 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1520 if (!direct) {
1521 if (rmap_write_protect(vcpu->kvm, gfn))
1522 kvm_flush_remote_tlbs(vcpu->kvm);
1523 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1524 kvm_sync_pages(vcpu, gfn);
1525
1526 account_shadowed(vcpu->kvm, gfn);
1527 }
1528 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1529 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1530 else
1531 nonpaging_prefetch_page(vcpu, sp);
1532 trace_kvm_mmu_get_page(sp, true);
1533 return sp;
1534 }
1535
1536 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1537 struct kvm_vcpu *vcpu, u64 addr)
1538 {
1539 iterator->addr = addr;
1540 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1541 iterator->level = vcpu->arch.mmu.shadow_root_level;
1542
1543 if (iterator->level == PT64_ROOT_LEVEL &&
1544 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1545 !vcpu->arch.mmu.direct_map)
1546 --iterator->level;
1547
1548 if (iterator->level == PT32E_ROOT_LEVEL) {
1549 iterator->shadow_addr
1550 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1551 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1552 --iterator->level;
1553 if (!iterator->shadow_addr)
1554 iterator->level = 0;
1555 }
1556 }
1557
1558 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1559 {
1560 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1561 return false;
1562
1563 if (iterator->level == PT_PAGE_TABLE_LEVEL)
1564 if (is_large_pte(*iterator->sptep))
1565 return false;
1566
1567 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1568 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1569 return true;
1570 }
1571
1572 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1573 {
1574 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1575 --iterator->level;
1576 }
1577
1578 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1579 {
1580 u64 spte;
1581
1582 spte = __pa(sp->spt)
1583 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1584 | PT_WRITABLE_MASK | PT_USER_MASK;
1585 __set_spte(sptep, spte);
1586 }
1587
1588 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1589 {
1590 if (is_large_pte(*sptep)) {
1591 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1592 kvm_flush_remote_tlbs(vcpu->kvm);
1593 }
1594 }
1595
1596 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1597 unsigned direct_access)
1598 {
1599 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1600 struct kvm_mmu_page *child;
1601
1602 /*
1603 * For the direct sp, if the guest pte's dirty bit
1604 * changed form clean to dirty, it will corrupt the
1605 * sp's access: allow writable in the read-only sp,
1606 * so we should update the spte at this point to get
1607 * a new sp with the correct access.
1608 */
1609 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1610 if (child->role.access == direct_access)
1611 return;
1612
1613 mmu_page_remove_parent_pte(child, sptep);
1614 __set_spte(sptep, shadow_trap_nonpresent_pte);
1615 kvm_flush_remote_tlbs(vcpu->kvm);
1616 }
1617 }
1618
1619 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1620 struct kvm_mmu_page *sp)
1621 {
1622 unsigned i;
1623 u64 *pt;
1624 u64 ent;
1625
1626 pt = sp->spt;
1627
1628 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1629 ent = pt[i];
1630
1631 if (is_shadow_present_pte(ent)) {
1632 if (!is_last_spte(ent, sp->role.level)) {
1633 ent &= PT64_BASE_ADDR_MASK;
1634 mmu_page_remove_parent_pte(page_header(ent),
1635 &pt[i]);
1636 } else {
1637 if (is_large_pte(ent))
1638 --kvm->stat.lpages;
1639 drop_spte(kvm, &pt[i],
1640 shadow_trap_nonpresent_pte);
1641 }
1642 }
1643 pt[i] = shadow_trap_nonpresent_pte;
1644 }
1645 }
1646
1647 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1648 {
1649 mmu_page_remove_parent_pte(sp, parent_pte);
1650 }
1651
1652 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1653 {
1654 int i;
1655 struct kvm_vcpu *vcpu;
1656
1657 kvm_for_each_vcpu(i, vcpu, kvm)
1658 vcpu->arch.last_pte_updated = NULL;
1659 }
1660
1661 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1662 {
1663 u64 *parent_pte;
1664
1665 while (sp->multimapped || sp->parent_pte) {
1666 if (!sp->multimapped)
1667 parent_pte = sp->parent_pte;
1668 else {
1669 struct kvm_pte_chain *chain;
1670
1671 chain = container_of(sp->parent_ptes.first,
1672 struct kvm_pte_chain, link);
1673 parent_pte = chain->parent_ptes[0];
1674 }
1675 BUG_ON(!parent_pte);
1676 kvm_mmu_put_page(sp, parent_pte);
1677 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1678 }
1679 }
1680
1681 static int mmu_zap_unsync_children(struct kvm *kvm,
1682 struct kvm_mmu_page *parent,
1683 struct list_head *invalid_list)
1684 {
1685 int i, zapped = 0;
1686 struct mmu_page_path parents;
1687 struct kvm_mmu_pages pages;
1688
1689 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1690 return 0;
1691
1692 kvm_mmu_pages_init(parent, &parents, &pages);
1693 while (mmu_unsync_walk(parent, &pages)) {
1694 struct kvm_mmu_page *sp;
1695
1696 for_each_sp(pages, sp, parents, i) {
1697 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1698 mmu_pages_clear_parents(&parents);
1699 zapped++;
1700 }
1701 kvm_mmu_pages_init(parent, &parents, &pages);
1702 }
1703
1704 return zapped;
1705 }
1706
1707 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1708 struct list_head *invalid_list)
1709 {
1710 int ret;
1711
1712 trace_kvm_mmu_prepare_zap_page(sp);
1713 ++kvm->stat.mmu_shadow_zapped;
1714 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1715 kvm_mmu_page_unlink_children(kvm, sp);
1716 kvm_mmu_unlink_parents(kvm, sp);
1717 if (!sp->role.invalid && !sp->role.direct)
1718 unaccount_shadowed(kvm, sp->gfn);
1719 if (sp->unsync)
1720 kvm_unlink_unsync_page(kvm, sp);
1721 if (!sp->root_count) {
1722 /* Count self */
1723 ret++;
1724 list_move(&sp->link, invalid_list);
1725 } else {
1726 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1727 kvm_reload_remote_mmus(kvm);
1728 }
1729
1730 sp->role.invalid = 1;
1731 kvm_mmu_reset_last_pte_updated(kvm);
1732 return ret;
1733 }
1734
1735 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1736 struct list_head *invalid_list)
1737 {
1738 struct kvm_mmu_page *sp;
1739
1740 if (list_empty(invalid_list))
1741 return;
1742
1743 kvm_flush_remote_tlbs(kvm);
1744
1745 do {
1746 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1747 WARN_ON(!sp->role.invalid || sp->root_count);
1748 kvm_mmu_free_page(kvm, sp);
1749 } while (!list_empty(invalid_list));
1750
1751 }
1752
1753 /*
1754 * Changing the number of mmu pages allocated to the vm
1755 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1756 */
1757 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1758 {
1759 LIST_HEAD(invalid_list);
1760 /*
1761 * If we set the number of mmu pages to be smaller be than the
1762 * number of actived pages , we must to free some mmu pages before we
1763 * change the value
1764 */
1765
1766 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1767 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1768 !list_empty(&kvm->arch.active_mmu_pages)) {
1769 struct kvm_mmu_page *page;
1770
1771 page = container_of(kvm->arch.active_mmu_pages.prev,
1772 struct kvm_mmu_page, link);
1773 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1774 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1775 }
1776 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1777 }
1778
1779 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1780 }
1781
1782 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1783 {
1784 struct kvm_mmu_page *sp;
1785 struct hlist_node *node;
1786 LIST_HEAD(invalid_list);
1787 int r;
1788
1789 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1790 r = 0;
1791
1792 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1793 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1794 sp->role.word);
1795 r = 1;
1796 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1797 }
1798 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1799 return r;
1800 }
1801
1802 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1803 {
1804 struct kvm_mmu_page *sp;
1805 struct hlist_node *node;
1806 LIST_HEAD(invalid_list);
1807
1808 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1809 pgprintk("%s: zap %llx %x\n",
1810 __func__, gfn, sp->role.word);
1811 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1812 }
1813 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1814 }
1815
1816 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1817 {
1818 int slot = memslot_id(kvm, gfn);
1819 struct kvm_mmu_page *sp = page_header(__pa(pte));
1820
1821 __set_bit(slot, sp->slot_bitmap);
1822 }
1823
1824 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1825 {
1826 int i;
1827 u64 *pt = sp->spt;
1828
1829 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1830 return;
1831
1832 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1833 if (pt[i] == shadow_notrap_nonpresent_pte)
1834 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1835 }
1836 }
1837
1838 /*
1839 * The function is based on mtrr_type_lookup() in
1840 * arch/x86/kernel/cpu/mtrr/generic.c
1841 */
1842 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1843 u64 start, u64 end)
1844 {
1845 int i;
1846 u64 base, mask;
1847 u8 prev_match, curr_match;
1848 int num_var_ranges = KVM_NR_VAR_MTRR;
1849
1850 if (!mtrr_state->enabled)
1851 return 0xFF;
1852
1853 /* Make end inclusive end, instead of exclusive */
1854 end--;
1855
1856 /* Look in fixed ranges. Just return the type as per start */
1857 if (mtrr_state->have_fixed && (start < 0x100000)) {
1858 int idx;
1859
1860 if (start < 0x80000) {
1861 idx = 0;
1862 idx += (start >> 16);
1863 return mtrr_state->fixed_ranges[idx];
1864 } else if (start < 0xC0000) {
1865 idx = 1 * 8;
1866 idx += ((start - 0x80000) >> 14);
1867 return mtrr_state->fixed_ranges[idx];
1868 } else if (start < 0x1000000) {
1869 idx = 3 * 8;
1870 idx += ((start - 0xC0000) >> 12);
1871 return mtrr_state->fixed_ranges[idx];
1872 }
1873 }
1874
1875 /*
1876 * Look in variable ranges
1877 * Look of multiple ranges matching this address and pick type
1878 * as per MTRR precedence
1879 */
1880 if (!(mtrr_state->enabled & 2))
1881 return mtrr_state->def_type;
1882
1883 prev_match = 0xFF;
1884 for (i = 0; i < num_var_ranges; ++i) {
1885 unsigned short start_state, end_state;
1886
1887 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1888 continue;
1889
1890 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1891 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1892 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1893 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1894
1895 start_state = ((start & mask) == (base & mask));
1896 end_state = ((end & mask) == (base & mask));
1897 if (start_state != end_state)
1898 return 0xFE;
1899
1900 if ((start & mask) != (base & mask))
1901 continue;
1902
1903 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1904 if (prev_match == 0xFF) {
1905 prev_match = curr_match;
1906 continue;
1907 }
1908
1909 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1910 curr_match == MTRR_TYPE_UNCACHABLE)
1911 return MTRR_TYPE_UNCACHABLE;
1912
1913 if ((prev_match == MTRR_TYPE_WRBACK &&
1914 curr_match == MTRR_TYPE_WRTHROUGH) ||
1915 (prev_match == MTRR_TYPE_WRTHROUGH &&
1916 curr_match == MTRR_TYPE_WRBACK)) {
1917 prev_match = MTRR_TYPE_WRTHROUGH;
1918 curr_match = MTRR_TYPE_WRTHROUGH;
1919 }
1920
1921 if (prev_match != curr_match)
1922 return MTRR_TYPE_UNCACHABLE;
1923 }
1924
1925 if (prev_match != 0xFF)
1926 return prev_match;
1927
1928 return mtrr_state->def_type;
1929 }
1930
1931 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1932 {
1933 u8 mtrr;
1934
1935 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1936 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1937 if (mtrr == 0xfe || mtrr == 0xff)
1938 mtrr = MTRR_TYPE_WRBACK;
1939 return mtrr;
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1942
1943 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1944 {
1945 trace_kvm_mmu_unsync_page(sp);
1946 ++vcpu->kvm->stat.mmu_unsync;
1947 sp->unsync = 1;
1948
1949 kvm_mmu_mark_parents_unsync(sp);
1950 mmu_convert_notrap(sp);
1951 }
1952
1953 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1954 {
1955 struct kvm_mmu_page *s;
1956 struct hlist_node *node;
1957
1958 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1959 if (s->unsync)
1960 continue;
1961 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1962 __kvm_unsync_page(vcpu, s);
1963 }
1964 }
1965
1966 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1967 bool can_unsync)
1968 {
1969 struct kvm_mmu_page *s;
1970 struct hlist_node *node;
1971 bool need_unsync = false;
1972
1973 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1974 if (!can_unsync)
1975 return 1;
1976
1977 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1978 return 1;
1979
1980 if (!need_unsync && !s->unsync) {
1981 if (!oos_shadow)
1982 return 1;
1983 need_unsync = true;
1984 }
1985 }
1986 if (need_unsync)
1987 kvm_unsync_pages(vcpu, gfn);
1988 return 0;
1989 }
1990
1991 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1992 unsigned pte_access, int user_fault,
1993 int write_fault, int dirty, int level,
1994 gfn_t gfn, pfn_t pfn, bool speculative,
1995 bool can_unsync, bool host_writable)
1996 {
1997 u64 spte, entry = *sptep;
1998 int ret = 0;
1999
2000 /*
2001 * We don't set the accessed bit, since we sometimes want to see
2002 * whether the guest actually used the pte (in order to detect
2003 * demand paging).
2004 */
2005 spte = PT_PRESENT_MASK;
2006 if (!speculative)
2007 spte |= shadow_accessed_mask;
2008 if (!dirty)
2009 pte_access &= ~ACC_WRITE_MASK;
2010 if (pte_access & ACC_EXEC_MASK)
2011 spte |= shadow_x_mask;
2012 else
2013 spte |= shadow_nx_mask;
2014 if (pte_access & ACC_USER_MASK)
2015 spte |= shadow_user_mask;
2016 if (level > PT_PAGE_TABLE_LEVEL)
2017 spte |= PT_PAGE_SIZE_MASK;
2018 if (tdp_enabled)
2019 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2020 kvm_is_mmio_pfn(pfn));
2021
2022 if (host_writable)
2023 spte |= SPTE_HOST_WRITEABLE;
2024 else
2025 pte_access &= ~ACC_WRITE_MASK;
2026
2027 spte |= (u64)pfn << PAGE_SHIFT;
2028
2029 if ((pte_access & ACC_WRITE_MASK)
2030 || (!vcpu->arch.mmu.direct_map && write_fault
2031 && !is_write_protection(vcpu) && !user_fault)) {
2032
2033 if (level > PT_PAGE_TABLE_LEVEL &&
2034 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2035 ret = 1;
2036 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2037 goto done;
2038 }
2039
2040 spte |= PT_WRITABLE_MASK;
2041
2042 if (!vcpu->arch.mmu.direct_map
2043 && !(pte_access & ACC_WRITE_MASK))
2044 spte &= ~PT_USER_MASK;
2045
2046 /*
2047 * Optimization: for pte sync, if spte was writable the hash
2048 * lookup is unnecessary (and expensive). Write protection
2049 * is responsibility of mmu_get_page / kvm_sync_page.
2050 * Same reasoning can be applied to dirty page accounting.
2051 */
2052 if (!can_unsync && is_writable_pte(*sptep))
2053 goto set_pte;
2054
2055 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2056 pgprintk("%s: found shadow page for %llx, marking ro\n",
2057 __func__, gfn);
2058 ret = 1;
2059 pte_access &= ~ACC_WRITE_MASK;
2060 if (is_writable_pte(spte))
2061 spte &= ~PT_WRITABLE_MASK;
2062 }
2063 }
2064
2065 if (pte_access & ACC_WRITE_MASK)
2066 mark_page_dirty(vcpu->kvm, gfn);
2067
2068 set_pte:
2069 update_spte(sptep, spte);
2070 /*
2071 * If we overwrite a writable spte with a read-only one we
2072 * should flush remote TLBs. Otherwise rmap_write_protect
2073 * will find a read-only spte, even though the writable spte
2074 * might be cached on a CPU's TLB.
2075 */
2076 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2077 kvm_flush_remote_tlbs(vcpu->kvm);
2078 done:
2079 return ret;
2080 }
2081
2082 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2083 unsigned pt_access, unsigned pte_access,
2084 int user_fault, int write_fault, int dirty,
2085 int *ptwrite, int level, gfn_t gfn,
2086 pfn_t pfn, bool speculative,
2087 bool host_writable)
2088 {
2089 int was_rmapped = 0;
2090 int rmap_count;
2091
2092 pgprintk("%s: spte %llx access %x write_fault %d"
2093 " user_fault %d gfn %llx\n",
2094 __func__, *sptep, pt_access,
2095 write_fault, user_fault, gfn);
2096
2097 if (is_rmap_spte(*sptep)) {
2098 /*
2099 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2100 * the parent of the now unreachable PTE.
2101 */
2102 if (level > PT_PAGE_TABLE_LEVEL &&
2103 !is_large_pte(*sptep)) {
2104 struct kvm_mmu_page *child;
2105 u64 pte = *sptep;
2106
2107 child = page_header(pte & PT64_BASE_ADDR_MASK);
2108 mmu_page_remove_parent_pte(child, sptep);
2109 __set_spte(sptep, shadow_trap_nonpresent_pte);
2110 kvm_flush_remote_tlbs(vcpu->kvm);
2111 } else if (pfn != spte_to_pfn(*sptep)) {
2112 pgprintk("hfn old %llx new %llx\n",
2113 spte_to_pfn(*sptep), pfn);
2114 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2115 kvm_flush_remote_tlbs(vcpu->kvm);
2116 } else
2117 was_rmapped = 1;
2118 }
2119
2120 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2121 dirty, level, gfn, pfn, speculative, true,
2122 host_writable)) {
2123 if (write_fault)
2124 *ptwrite = 1;
2125 kvm_mmu_flush_tlb(vcpu);
2126 }
2127
2128 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2129 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2130 is_large_pte(*sptep)? "2MB" : "4kB",
2131 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2132 *sptep, sptep);
2133 if (!was_rmapped && is_large_pte(*sptep))
2134 ++vcpu->kvm->stat.lpages;
2135
2136 page_header_update_slot(vcpu->kvm, sptep, gfn);
2137 if (!was_rmapped) {
2138 rmap_count = rmap_add(vcpu, sptep, gfn);
2139 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2140 rmap_recycle(vcpu, sptep, gfn);
2141 }
2142 kvm_release_pfn_clean(pfn);
2143 if (speculative) {
2144 vcpu->arch.last_pte_updated = sptep;
2145 vcpu->arch.last_pte_gfn = gfn;
2146 }
2147 }
2148
2149 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2150 {
2151 }
2152
2153 static struct kvm_memory_slot *
2154 pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log)
2155 {
2156 struct kvm_memory_slot *slot;
2157
2158 slot = gfn_to_memslot(vcpu->kvm, gfn);
2159 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
2160 (no_dirty_log && slot->dirty_bitmap))
2161 slot = NULL;
2162
2163 return slot;
2164 }
2165
2166 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2167 bool no_dirty_log)
2168 {
2169 struct kvm_memory_slot *slot;
2170 unsigned long hva;
2171
2172 slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log);
2173 if (!slot) {
2174 get_page(bad_page);
2175 return page_to_pfn(bad_page);
2176 }
2177
2178 hva = gfn_to_hva_memslot(slot, gfn);
2179
2180 return hva_to_pfn_atomic(vcpu->kvm, hva);
2181 }
2182
2183 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2184 struct kvm_mmu_page *sp,
2185 u64 *start, u64 *end)
2186 {
2187 struct page *pages[PTE_PREFETCH_NUM];
2188 unsigned access = sp->role.access;
2189 int i, ret;
2190 gfn_t gfn;
2191
2192 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2193 if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK))
2194 return -1;
2195
2196 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2197 if (ret <= 0)
2198 return -1;
2199
2200 for (i = 0; i < ret; i++, gfn++, start++)
2201 mmu_set_spte(vcpu, start, ACC_ALL,
2202 access, 0, 0, 1, NULL,
2203 sp->role.level, gfn,
2204 page_to_pfn(pages[i]), true, true);
2205
2206 return 0;
2207 }
2208
2209 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2210 struct kvm_mmu_page *sp, u64 *sptep)
2211 {
2212 u64 *spte, *start = NULL;
2213 int i;
2214
2215 WARN_ON(!sp->role.direct);
2216
2217 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2218 spte = sp->spt + i;
2219
2220 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2221 if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2222 if (!start)
2223 continue;
2224 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2225 break;
2226 start = NULL;
2227 } else if (!start)
2228 start = spte;
2229 }
2230 }
2231
2232 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2233 {
2234 struct kvm_mmu_page *sp;
2235
2236 /*
2237 * Since it's no accessed bit on EPT, it's no way to
2238 * distinguish between actually accessed translations
2239 * and prefetched, so disable pte prefetch if EPT is
2240 * enabled.
2241 */
2242 if (!shadow_accessed_mask)
2243 return;
2244
2245 sp = page_header(__pa(sptep));
2246 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2247 return;
2248
2249 __direct_pte_prefetch(vcpu, sp, sptep);
2250 }
2251
2252 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2253 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2254 bool prefault)
2255 {
2256 struct kvm_shadow_walk_iterator iterator;
2257 struct kvm_mmu_page *sp;
2258 int pt_write = 0;
2259 gfn_t pseudo_gfn;
2260
2261 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2262 if (iterator.level == level) {
2263 unsigned pte_access = ACC_ALL;
2264
2265 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2266 0, write, 1, &pt_write,
2267 level, gfn, pfn, prefault, map_writable);
2268 direct_pte_prefetch(vcpu, iterator.sptep);
2269 ++vcpu->stat.pf_fixed;
2270 break;
2271 }
2272
2273 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2274 u64 base_addr = iterator.addr;
2275
2276 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2277 pseudo_gfn = base_addr >> PAGE_SHIFT;
2278 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2279 iterator.level - 1,
2280 1, ACC_ALL, iterator.sptep);
2281 if (!sp) {
2282 pgprintk("nonpaging_map: ENOMEM\n");
2283 kvm_release_pfn_clean(pfn);
2284 return -ENOMEM;
2285 }
2286
2287 __set_spte(iterator.sptep,
2288 __pa(sp->spt)
2289 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2290 | shadow_user_mask | shadow_x_mask
2291 | shadow_accessed_mask);
2292 }
2293 }
2294 return pt_write;
2295 }
2296
2297 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2298 {
2299 siginfo_t info;
2300
2301 info.si_signo = SIGBUS;
2302 info.si_errno = 0;
2303 info.si_code = BUS_MCEERR_AR;
2304 info.si_addr = (void __user *)address;
2305 info.si_addr_lsb = PAGE_SHIFT;
2306
2307 send_sig_info(SIGBUS, &info, tsk);
2308 }
2309
2310 static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2311 {
2312 kvm_release_pfn_clean(pfn);
2313 if (is_hwpoison_pfn(pfn)) {
2314 kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
2315 return 0;
2316 } else if (is_fault_pfn(pfn))
2317 return -EFAULT;
2318
2319 return 1;
2320 }
2321
2322 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2323 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2324 {
2325 pfn_t pfn = *pfnp;
2326 gfn_t gfn = *gfnp;
2327 int level = *levelp;
2328
2329 /*
2330 * Check if it's a transparent hugepage. If this would be an
2331 * hugetlbfs page, level wouldn't be set to
2332 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2333 * here.
2334 */
2335 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2336 level == PT_PAGE_TABLE_LEVEL &&
2337 PageTransCompound(pfn_to_page(pfn)) &&
2338 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2339 unsigned long mask;
2340 /*
2341 * mmu_notifier_retry was successful and we hold the
2342 * mmu_lock here, so the pmd can't become splitting
2343 * from under us, and in turn
2344 * __split_huge_page_refcount() can't run from under
2345 * us and we can safely transfer the refcount from
2346 * PG_tail to PG_head as we switch the pfn to tail to
2347 * head.
2348 */
2349 *levelp = level = PT_DIRECTORY_LEVEL;
2350 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2351 VM_BUG_ON((gfn & mask) != (pfn & mask));
2352 if (pfn & mask) {
2353 gfn &= ~mask;
2354 *gfnp = gfn;
2355 kvm_release_pfn_clean(pfn);
2356 pfn &= ~mask;
2357 if (!get_page_unless_zero(pfn_to_page(pfn)))
2358 BUG();
2359 *pfnp = pfn;
2360 }
2361 }
2362 }
2363
2364 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2365 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2366
2367 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2368 bool prefault)
2369 {
2370 int r;
2371 int level;
2372 int force_pt_level;
2373 pfn_t pfn;
2374 unsigned long mmu_seq;
2375 bool map_writable;
2376
2377 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2378 if (likely(!force_pt_level)) {
2379 level = mapping_level(vcpu, gfn);
2380 /*
2381 * This path builds a PAE pagetable - so we can map
2382 * 2mb pages at maximum. Therefore check if the level
2383 * is larger than that.
2384 */
2385 if (level > PT_DIRECTORY_LEVEL)
2386 level = PT_DIRECTORY_LEVEL;
2387
2388 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2389 } else
2390 level = PT_PAGE_TABLE_LEVEL;
2391
2392 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2393 smp_rmb();
2394
2395 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2396 return 0;
2397
2398 /* mmio */
2399 if (is_error_pfn(pfn))
2400 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2401
2402 spin_lock(&vcpu->kvm->mmu_lock);
2403 if (mmu_notifier_retry(vcpu, mmu_seq))
2404 goto out_unlock;
2405 kvm_mmu_free_some_pages(vcpu);
2406 if (likely(!force_pt_level))
2407 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2408 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2409 prefault);
2410 spin_unlock(&vcpu->kvm->mmu_lock);
2411
2412
2413 return r;
2414
2415 out_unlock:
2416 spin_unlock(&vcpu->kvm->mmu_lock);
2417 kvm_release_pfn_clean(pfn);
2418 return 0;
2419 }
2420
2421
2422 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2423 {
2424 int i;
2425 struct kvm_mmu_page *sp;
2426 LIST_HEAD(invalid_list);
2427
2428 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2429 return;
2430 spin_lock(&vcpu->kvm->mmu_lock);
2431 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2432 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2433 vcpu->arch.mmu.direct_map)) {
2434 hpa_t root = vcpu->arch.mmu.root_hpa;
2435
2436 sp = page_header(root);
2437 --sp->root_count;
2438 if (!sp->root_count && sp->role.invalid) {
2439 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2440 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2441 }
2442 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2443 spin_unlock(&vcpu->kvm->mmu_lock);
2444 return;
2445 }
2446 for (i = 0; i < 4; ++i) {
2447 hpa_t root = vcpu->arch.mmu.pae_root[i];
2448
2449 if (root) {
2450 root &= PT64_BASE_ADDR_MASK;
2451 sp = page_header(root);
2452 --sp->root_count;
2453 if (!sp->root_count && sp->role.invalid)
2454 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2455 &invalid_list);
2456 }
2457 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2458 }
2459 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2460 spin_unlock(&vcpu->kvm->mmu_lock);
2461 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2462 }
2463
2464 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2465 {
2466 int ret = 0;
2467
2468 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2469 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2470 ret = 1;
2471 }
2472
2473 return ret;
2474 }
2475
2476 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2477 {
2478 struct kvm_mmu_page *sp;
2479 unsigned i;
2480
2481 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2482 spin_lock(&vcpu->kvm->mmu_lock);
2483 kvm_mmu_free_some_pages(vcpu);
2484 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2485 1, ACC_ALL, NULL);
2486 ++sp->root_count;
2487 spin_unlock(&vcpu->kvm->mmu_lock);
2488 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2489 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2490 for (i = 0; i < 4; ++i) {
2491 hpa_t root = vcpu->arch.mmu.pae_root[i];
2492
2493 ASSERT(!VALID_PAGE(root));
2494 spin_lock(&vcpu->kvm->mmu_lock);
2495 kvm_mmu_free_some_pages(vcpu);
2496 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2497 i << 30,
2498 PT32_ROOT_LEVEL, 1, ACC_ALL,
2499 NULL);
2500 root = __pa(sp->spt);
2501 ++sp->root_count;
2502 spin_unlock(&vcpu->kvm->mmu_lock);
2503 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2504 }
2505 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2506 } else
2507 BUG();
2508
2509 return 0;
2510 }
2511
2512 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2513 {
2514 struct kvm_mmu_page *sp;
2515 u64 pdptr, pm_mask;
2516 gfn_t root_gfn;
2517 int i;
2518
2519 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2520
2521 if (mmu_check_root(vcpu, root_gfn))
2522 return 1;
2523
2524 /*
2525 * Do we shadow a long mode page table? If so we need to
2526 * write-protect the guests page table root.
2527 */
2528 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2529 hpa_t root = vcpu->arch.mmu.root_hpa;
2530
2531 ASSERT(!VALID_PAGE(root));
2532
2533 spin_lock(&vcpu->kvm->mmu_lock);
2534 kvm_mmu_free_some_pages(vcpu);
2535 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2536 0, ACC_ALL, NULL);
2537 root = __pa(sp->spt);
2538 ++sp->root_count;
2539 spin_unlock(&vcpu->kvm->mmu_lock);
2540 vcpu->arch.mmu.root_hpa = root;
2541 return 0;
2542 }
2543
2544 /*
2545 * We shadow a 32 bit page table. This may be a legacy 2-level
2546 * or a PAE 3-level page table. In either case we need to be aware that
2547 * the shadow page table may be a PAE or a long mode page table.
2548 */
2549 pm_mask = PT_PRESENT_MASK;
2550 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2551 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2552
2553 for (i = 0; i < 4; ++i) {
2554 hpa_t root = vcpu->arch.mmu.pae_root[i];
2555
2556 ASSERT(!VALID_PAGE(root));
2557 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2558 pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2559 if (!is_present_gpte(pdptr)) {
2560 vcpu->arch.mmu.pae_root[i] = 0;
2561 continue;
2562 }
2563 root_gfn = pdptr >> PAGE_SHIFT;
2564 if (mmu_check_root(vcpu, root_gfn))
2565 return 1;
2566 }
2567 spin_lock(&vcpu->kvm->mmu_lock);
2568 kvm_mmu_free_some_pages(vcpu);
2569 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2570 PT32_ROOT_LEVEL, 0,
2571 ACC_ALL, NULL);
2572 root = __pa(sp->spt);
2573 ++sp->root_count;
2574 spin_unlock(&vcpu->kvm->mmu_lock);
2575
2576 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2577 }
2578 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2579
2580 /*
2581 * If we shadow a 32 bit page table with a long mode page
2582 * table we enter this path.
2583 */
2584 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2585 if (vcpu->arch.mmu.lm_root == NULL) {
2586 /*
2587 * The additional page necessary for this is only
2588 * allocated on demand.
2589 */
2590
2591 u64 *lm_root;
2592
2593 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2594 if (lm_root == NULL)
2595 return 1;
2596
2597 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2598
2599 vcpu->arch.mmu.lm_root = lm_root;
2600 }
2601
2602 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2603 }
2604
2605 return 0;
2606 }
2607
2608 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2609 {
2610 if (vcpu->arch.mmu.direct_map)
2611 return mmu_alloc_direct_roots(vcpu);
2612 else
2613 return mmu_alloc_shadow_roots(vcpu);
2614 }
2615
2616 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2617 {
2618 int i;
2619 struct kvm_mmu_page *sp;
2620
2621 if (vcpu->arch.mmu.direct_map)
2622 return;
2623
2624 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2625 return;
2626
2627 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2628 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2629 hpa_t root = vcpu->arch.mmu.root_hpa;
2630 sp = page_header(root);
2631 mmu_sync_children(vcpu, sp);
2632 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2633 return;
2634 }
2635 for (i = 0; i < 4; ++i) {
2636 hpa_t root = vcpu->arch.mmu.pae_root[i];
2637
2638 if (root && VALID_PAGE(root)) {
2639 root &= PT64_BASE_ADDR_MASK;
2640 sp = page_header(root);
2641 mmu_sync_children(vcpu, sp);
2642 }
2643 }
2644 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2645 }
2646
2647 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2648 {
2649 spin_lock(&vcpu->kvm->mmu_lock);
2650 mmu_sync_roots(vcpu);
2651 spin_unlock(&vcpu->kvm->mmu_lock);
2652 }
2653
2654 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2655 u32 access, struct x86_exception *exception)
2656 {
2657 if (exception)
2658 exception->error_code = 0;
2659 return vaddr;
2660 }
2661
2662 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2663 u32 access,
2664 struct x86_exception *exception)
2665 {
2666 if (exception)
2667 exception->error_code = 0;
2668 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2669 }
2670
2671 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2672 u32 error_code, bool prefault)
2673 {
2674 gfn_t gfn;
2675 int r;
2676
2677 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2678 r = mmu_topup_memory_caches(vcpu);
2679 if (r)
2680 return r;
2681
2682 ASSERT(vcpu);
2683 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2684
2685 gfn = gva >> PAGE_SHIFT;
2686
2687 return nonpaging_map(vcpu, gva & PAGE_MASK,
2688 error_code & PFERR_WRITE_MASK, gfn, prefault);
2689 }
2690
2691 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
2692 {
2693 struct kvm_arch_async_pf arch;
2694
2695 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
2696 arch.gfn = gfn;
2697 arch.direct_map = vcpu->arch.mmu.direct_map;
2698 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
2699
2700 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
2701 }
2702
2703 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
2704 {
2705 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
2706 kvm_event_needs_reinjection(vcpu)))
2707 return false;
2708
2709 return kvm_x86_ops->interrupt_allowed(vcpu);
2710 }
2711
2712 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2713 gva_t gva, pfn_t *pfn, bool write, bool *writable)
2714 {
2715 bool async;
2716
2717 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
2718
2719 if (!async)
2720 return false; /* *pfn has correct page already */
2721
2722 put_page(pfn_to_page(*pfn));
2723
2724 if (!prefault && can_do_async_pf(vcpu)) {
2725 trace_kvm_try_async_get_page(gva, gfn);
2726 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
2727 trace_kvm_async_pf_doublefault(gva, gfn);
2728 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2729 return true;
2730 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
2731 return true;
2732 }
2733
2734 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
2735
2736 return false;
2737 }
2738
2739 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
2740 bool prefault)
2741 {
2742 pfn_t pfn;
2743 int r;
2744 int level;
2745 int force_pt_level;
2746 gfn_t gfn = gpa >> PAGE_SHIFT;
2747 unsigned long mmu_seq;
2748 int write = error_code & PFERR_WRITE_MASK;
2749 bool map_writable;
2750
2751 ASSERT(vcpu);
2752 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2753
2754 r = mmu_topup_memory_caches(vcpu);
2755 if (r)
2756 return r;
2757
2758 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2759 if (likely(!force_pt_level)) {
2760 level = mapping_level(vcpu, gfn);
2761 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2762 } else
2763 level = PT_PAGE_TABLE_LEVEL;
2764
2765 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2766 smp_rmb();
2767
2768 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
2769 return 0;
2770
2771 /* mmio */
2772 if (is_error_pfn(pfn))
2773 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2774 spin_lock(&vcpu->kvm->mmu_lock);
2775 if (mmu_notifier_retry(vcpu, mmu_seq))
2776 goto out_unlock;
2777 kvm_mmu_free_some_pages(vcpu);
2778 if (likely(!force_pt_level))
2779 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2780 r = __direct_map(vcpu, gpa, write, map_writable,
2781 level, gfn, pfn, prefault);
2782 spin_unlock(&vcpu->kvm->mmu_lock);
2783
2784 return r;
2785
2786 out_unlock:
2787 spin_unlock(&vcpu->kvm->mmu_lock);
2788 kvm_release_pfn_clean(pfn);
2789 return 0;
2790 }
2791
2792 static void nonpaging_free(struct kvm_vcpu *vcpu)
2793 {
2794 mmu_free_roots(vcpu);
2795 }
2796
2797 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2798 struct kvm_mmu *context)
2799 {
2800 context->new_cr3 = nonpaging_new_cr3;
2801 context->page_fault = nonpaging_page_fault;
2802 context->gva_to_gpa = nonpaging_gva_to_gpa;
2803 context->free = nonpaging_free;
2804 context->prefetch_page = nonpaging_prefetch_page;
2805 context->sync_page = nonpaging_sync_page;
2806 context->invlpg = nonpaging_invlpg;
2807 context->root_level = 0;
2808 context->shadow_root_level = PT32E_ROOT_LEVEL;
2809 context->root_hpa = INVALID_PAGE;
2810 context->direct_map = true;
2811 context->nx = false;
2812 return 0;
2813 }
2814
2815 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2816 {
2817 ++vcpu->stat.tlb_flush;
2818 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2819 }
2820
2821 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2822 {
2823 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
2824 mmu_free_roots(vcpu);
2825 }
2826
2827 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2828 {
2829 return kvm_read_cr3(vcpu);
2830 }
2831
2832 static void inject_page_fault(struct kvm_vcpu *vcpu,
2833 struct x86_exception *fault)
2834 {
2835 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
2836 }
2837
2838 static void paging_free(struct kvm_vcpu *vcpu)
2839 {
2840 nonpaging_free(vcpu);
2841 }
2842
2843 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2844 {
2845 int bit7;
2846
2847 bit7 = (gpte >> 7) & 1;
2848 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2849 }
2850
2851 #define PTTYPE 64
2852 #include "paging_tmpl.h"
2853 #undef PTTYPE
2854
2855 #define PTTYPE 32
2856 #include "paging_tmpl.h"
2857 #undef PTTYPE
2858
2859 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2860 struct kvm_mmu *context,
2861 int level)
2862 {
2863 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2864 u64 exb_bit_rsvd = 0;
2865
2866 if (!context->nx)
2867 exb_bit_rsvd = rsvd_bits(63, 63);
2868 switch (level) {
2869 case PT32_ROOT_LEVEL:
2870 /* no rsvd bits for 2 level 4K page table entries */
2871 context->rsvd_bits_mask[0][1] = 0;
2872 context->rsvd_bits_mask[0][0] = 0;
2873 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2874
2875 if (!is_pse(vcpu)) {
2876 context->rsvd_bits_mask[1][1] = 0;
2877 break;
2878 }
2879
2880 if (is_cpuid_PSE36())
2881 /* 36bits PSE 4MB page */
2882 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2883 else
2884 /* 32 bits PSE 4MB page */
2885 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2886 break;
2887 case PT32E_ROOT_LEVEL:
2888 context->rsvd_bits_mask[0][2] =
2889 rsvd_bits(maxphyaddr, 63) |
2890 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2891 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2892 rsvd_bits(maxphyaddr, 62); /* PDE */
2893 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2894 rsvd_bits(maxphyaddr, 62); /* PTE */
2895 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2896 rsvd_bits(maxphyaddr, 62) |
2897 rsvd_bits(13, 20); /* large page */
2898 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2899 break;
2900 case PT64_ROOT_LEVEL:
2901 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2902 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2903 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2904 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2905 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2906 rsvd_bits(maxphyaddr, 51);
2907 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2908 rsvd_bits(maxphyaddr, 51);
2909 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2910 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2911 rsvd_bits(maxphyaddr, 51) |
2912 rsvd_bits(13, 29);
2913 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2914 rsvd_bits(maxphyaddr, 51) |
2915 rsvd_bits(13, 20); /* large page */
2916 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2917 break;
2918 }
2919 }
2920
2921 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2922 struct kvm_mmu *context,
2923 int level)
2924 {
2925 context->nx = is_nx(vcpu);
2926
2927 reset_rsvds_bits_mask(vcpu, context, level);
2928
2929 ASSERT(is_pae(vcpu));
2930 context->new_cr3 = paging_new_cr3;
2931 context->page_fault = paging64_page_fault;
2932 context->gva_to_gpa = paging64_gva_to_gpa;
2933 context->prefetch_page = paging64_prefetch_page;
2934 context->sync_page = paging64_sync_page;
2935 context->invlpg = paging64_invlpg;
2936 context->free = paging_free;
2937 context->root_level = level;
2938 context->shadow_root_level = level;
2939 context->root_hpa = INVALID_PAGE;
2940 context->direct_map = false;
2941 return 0;
2942 }
2943
2944 static int paging64_init_context(struct kvm_vcpu *vcpu,
2945 struct kvm_mmu *context)
2946 {
2947 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2948 }
2949
2950 static int paging32_init_context(struct kvm_vcpu *vcpu,
2951 struct kvm_mmu *context)
2952 {
2953 context->nx = false;
2954
2955 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2956
2957 context->new_cr3 = paging_new_cr3;
2958 context->page_fault = paging32_page_fault;
2959 context->gva_to_gpa = paging32_gva_to_gpa;
2960 context->free = paging_free;
2961 context->prefetch_page = paging32_prefetch_page;
2962 context->sync_page = paging32_sync_page;
2963 context->invlpg = paging32_invlpg;
2964 context->root_level = PT32_ROOT_LEVEL;
2965 context->shadow_root_level = PT32E_ROOT_LEVEL;
2966 context->root_hpa = INVALID_PAGE;
2967 context->direct_map = false;
2968 return 0;
2969 }
2970
2971 static int paging32E_init_context(struct kvm_vcpu *vcpu,
2972 struct kvm_mmu *context)
2973 {
2974 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2975 }
2976
2977 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2978 {
2979 struct kvm_mmu *context = vcpu->arch.walk_mmu;
2980
2981 context->base_role.word = 0;
2982 context->new_cr3 = nonpaging_new_cr3;
2983 context->page_fault = tdp_page_fault;
2984 context->free = nonpaging_free;
2985 context->prefetch_page = nonpaging_prefetch_page;
2986 context->sync_page = nonpaging_sync_page;
2987 context->invlpg = nonpaging_invlpg;
2988 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2989 context->root_hpa = INVALID_PAGE;
2990 context->direct_map = true;
2991 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2992 context->get_cr3 = get_cr3;
2993 context->inject_page_fault = kvm_inject_page_fault;
2994 context->nx = is_nx(vcpu);
2995
2996 if (!is_paging(vcpu)) {
2997 context->nx = false;
2998 context->gva_to_gpa = nonpaging_gva_to_gpa;
2999 context->root_level = 0;
3000 } else if (is_long_mode(vcpu)) {
3001 context->nx = is_nx(vcpu);
3002 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
3003 context->gva_to_gpa = paging64_gva_to_gpa;
3004 context->root_level = PT64_ROOT_LEVEL;
3005 } else if (is_pae(vcpu)) {
3006 context->nx = is_nx(vcpu);
3007 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
3008 context->gva_to_gpa = paging64_gva_to_gpa;
3009 context->root_level = PT32E_ROOT_LEVEL;
3010 } else {
3011 context->nx = false;
3012 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3013 context->gva_to_gpa = paging32_gva_to_gpa;
3014 context->root_level = PT32_ROOT_LEVEL;
3015 }
3016
3017 return 0;
3018 }
3019
3020 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3021 {
3022 int r;
3023 ASSERT(vcpu);
3024 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3025
3026 if (!is_paging(vcpu))
3027 r = nonpaging_init_context(vcpu, context);
3028 else if (is_long_mode(vcpu))
3029 r = paging64_init_context(vcpu, context);
3030 else if (is_pae(vcpu))
3031 r = paging32E_init_context(vcpu, context);
3032 else
3033 r = paging32_init_context(vcpu, context);
3034
3035 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3036 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3037
3038 return r;
3039 }
3040 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3041
3042 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3043 {
3044 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3045
3046 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3047 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3048 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3049
3050 return r;
3051 }
3052
3053 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3054 {
3055 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3056
3057 g_context->get_cr3 = get_cr3;
3058 g_context->inject_page_fault = kvm_inject_page_fault;
3059
3060 /*
3061 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3062 * translation of l2_gpa to l1_gpa addresses is done using the
3063 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3064 * functions between mmu and nested_mmu are swapped.
3065 */
3066 if (!is_paging(vcpu)) {
3067 g_context->nx = false;
3068 g_context->root_level = 0;
3069 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3070 } else if (is_long_mode(vcpu)) {
3071 g_context->nx = is_nx(vcpu);
3072 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3073 g_context->root_level = PT64_ROOT_LEVEL;
3074 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3075 } else if (is_pae(vcpu)) {
3076 g_context->nx = is_nx(vcpu);
3077 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3078 g_context->root_level = PT32E_ROOT_LEVEL;
3079 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3080 } else {
3081 g_context->nx = false;
3082 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3083 g_context->root_level = PT32_ROOT_LEVEL;
3084 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3085 }
3086
3087 return 0;
3088 }
3089
3090 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3091 {
3092 vcpu->arch.update_pte.pfn = bad_pfn;
3093
3094 if (mmu_is_nested(vcpu))
3095 return init_kvm_nested_mmu(vcpu);
3096 else if (tdp_enabled)
3097 return init_kvm_tdp_mmu(vcpu);
3098 else
3099 return init_kvm_softmmu(vcpu);
3100 }
3101
3102 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3103 {
3104 ASSERT(vcpu);
3105 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3106 /* mmu.free() should set root_hpa = INVALID_PAGE */
3107 vcpu->arch.mmu.free(vcpu);
3108 }
3109
3110 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3111 {
3112 destroy_kvm_mmu(vcpu);
3113 return init_kvm_mmu(vcpu);
3114 }
3115 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3116
3117 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3118 {
3119 int r;
3120
3121 r = mmu_topup_memory_caches(vcpu);
3122 if (r)
3123 goto out;
3124 r = mmu_alloc_roots(vcpu);
3125 spin_lock(&vcpu->kvm->mmu_lock);
3126 mmu_sync_roots(vcpu);
3127 spin_unlock(&vcpu->kvm->mmu_lock);
3128 if (r)
3129 goto out;
3130 /* set_cr3() should ensure TLB has been flushed */
3131 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3132 out:
3133 return r;
3134 }
3135 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3136
3137 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3138 {
3139 mmu_free_roots(vcpu);
3140 }
3141 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3142
3143 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
3144 struct kvm_mmu_page *sp,
3145 u64 *spte)
3146 {
3147 u64 pte;
3148 struct kvm_mmu_page *child;
3149
3150 pte = *spte;
3151 if (is_shadow_present_pte(pte)) {
3152 if (is_last_spte(pte, sp->role.level))
3153 drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
3154 else {
3155 child = page_header(pte & PT64_BASE_ADDR_MASK);
3156 mmu_page_remove_parent_pte(child, spte);
3157 }
3158 }
3159 __set_spte(spte, shadow_trap_nonpresent_pte);
3160 if (is_large_pte(pte))
3161 --vcpu->kvm->stat.lpages;
3162 }
3163
3164 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3165 struct kvm_mmu_page *sp,
3166 u64 *spte,
3167 const void *new)
3168 {
3169 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3170 ++vcpu->kvm->stat.mmu_pde_zapped;
3171 return;
3172 }
3173
3174 ++vcpu->kvm->stat.mmu_pte_updated;
3175 if (!sp->role.cr4_pae)
3176 paging32_update_pte(vcpu, sp, spte, new);
3177 else
3178 paging64_update_pte(vcpu, sp, spte, new);
3179 }
3180
3181 static bool need_remote_flush(u64 old, u64 new)
3182 {
3183 if (!is_shadow_present_pte(old))
3184 return false;
3185 if (!is_shadow_present_pte(new))
3186 return true;
3187 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3188 return true;
3189 old ^= PT64_NX_MASK;
3190 new ^= PT64_NX_MASK;
3191 return (old & ~new & PT64_PERM_MASK) != 0;
3192 }
3193
3194 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3195 bool remote_flush, bool local_flush)
3196 {
3197 if (zap_page)
3198 return;
3199
3200 if (remote_flush)
3201 kvm_flush_remote_tlbs(vcpu->kvm);
3202 else if (local_flush)
3203 kvm_mmu_flush_tlb(vcpu);
3204 }
3205
3206 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3207 {
3208 u64 *spte = vcpu->arch.last_pte_updated;
3209
3210 return !!(spte && (*spte & shadow_accessed_mask));
3211 }
3212
3213 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3214 u64 gpte)
3215 {
3216 gfn_t gfn;
3217 pfn_t pfn;
3218
3219 if (!is_present_gpte(gpte))
3220 return;
3221 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
3222
3223 vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
3224 smp_rmb();
3225 pfn = gfn_to_pfn(vcpu->kvm, gfn);
3226
3227 if (is_error_pfn(pfn)) {
3228 kvm_release_pfn_clean(pfn);
3229 return;
3230 }
3231 vcpu->arch.update_pte.gfn = gfn;
3232 vcpu->arch.update_pte.pfn = pfn;
3233 }
3234
3235 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3236 {
3237 u64 *spte = vcpu->arch.last_pte_updated;
3238
3239 if (spte
3240 && vcpu->arch.last_pte_gfn == gfn
3241 && shadow_accessed_mask
3242 && !(*spte & shadow_accessed_mask)
3243 && is_shadow_present_pte(*spte))
3244 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3245 }
3246
3247 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3248 const u8 *new, int bytes,
3249 bool guest_initiated)
3250 {
3251 gfn_t gfn = gpa >> PAGE_SHIFT;
3252 union kvm_mmu_page_role mask = { .word = 0 };
3253 struct kvm_mmu_page *sp;
3254 struct hlist_node *node;
3255 LIST_HEAD(invalid_list);
3256 u64 entry, gentry;
3257 u64 *spte;
3258 unsigned offset = offset_in_page(gpa);
3259 unsigned pte_size;
3260 unsigned page_offset;
3261 unsigned misaligned;
3262 unsigned quadrant;
3263 int level;
3264 int flooded = 0;
3265 int npte;
3266 int r;
3267 int invlpg_counter;
3268 bool remote_flush, local_flush, zap_page;
3269
3270 zap_page = remote_flush = local_flush = false;
3271
3272 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3273
3274 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3275
3276 /*
3277 * Assume that the pte write on a page table of the same type
3278 * as the current vcpu paging mode. This is nearly always true
3279 * (might be false while changing modes). Note it is verified later
3280 * by update_pte().
3281 */
3282 if ((is_pae(vcpu) && bytes == 4) || !new) {
3283 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3284 if (is_pae(vcpu)) {
3285 gpa &= ~(gpa_t)7;
3286 bytes = 8;
3287 }
3288 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3289 if (r)
3290 gentry = 0;
3291 new = (const u8 *)&gentry;
3292 }
3293
3294 switch (bytes) {
3295 case 4:
3296 gentry = *(const u32 *)new;
3297 break;
3298 case 8:
3299 gentry = *(const u64 *)new;
3300 break;
3301 default:
3302 gentry = 0;
3303 break;
3304 }
3305
3306 mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
3307 spin_lock(&vcpu->kvm->mmu_lock);
3308 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3309 gentry = 0;
3310 kvm_mmu_access_page(vcpu, gfn);
3311 kvm_mmu_free_some_pages(vcpu);
3312 ++vcpu->kvm->stat.mmu_pte_write;
3313 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3314 if (guest_initiated) {
3315 if (gfn == vcpu->arch.last_pt_write_gfn
3316 && !last_updated_pte_accessed(vcpu)) {
3317 ++vcpu->arch.last_pt_write_count;
3318 if (vcpu->arch.last_pt_write_count >= 3)
3319 flooded = 1;
3320 } else {
3321 vcpu->arch.last_pt_write_gfn = gfn;
3322 vcpu->arch.last_pt_write_count = 1;
3323 vcpu->arch.last_pte_updated = NULL;
3324 }
3325 }
3326
3327 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3328 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3329 pte_size = sp->role.cr4_pae ? 8 : 4;
3330 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3331 misaligned |= bytes < 4;
3332 if (misaligned || flooded) {
3333 /*
3334 * Misaligned accesses are too much trouble to fix
3335 * up; also, they usually indicate a page is not used
3336 * as a page table.
3337 *
3338 * If we're seeing too many writes to a page,
3339 * it may no longer be a page table, or we may be
3340 * forking, in which case it is better to unmap the
3341 * page.
3342 */
3343 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3344 gpa, bytes, sp->role.word);
3345 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3346 &invalid_list);
3347 ++vcpu->kvm->stat.mmu_flooded;
3348 continue;
3349 }
3350 page_offset = offset;
3351 level = sp->role.level;
3352 npte = 1;
3353 if (!sp->role.cr4_pae) {
3354 page_offset <<= 1; /* 32->64 */
3355 /*
3356 * A 32-bit pde maps 4MB while the shadow pdes map
3357 * only 2MB. So we need to double the offset again
3358 * and zap two pdes instead of one.
3359 */
3360 if (level == PT32_ROOT_LEVEL) {
3361 page_offset &= ~7; /* kill rounding error */
3362 page_offset <<= 1;
3363 npte = 2;
3364 }
3365 quadrant = page_offset >> PAGE_SHIFT;
3366 page_offset &= ~PAGE_MASK;
3367 if (quadrant != sp->role.quadrant)
3368 continue;
3369 }
3370 local_flush = true;
3371 spte = &sp->spt[page_offset / sizeof(*spte)];
3372 while (npte--) {
3373 entry = *spte;
3374 mmu_pte_write_zap_pte(vcpu, sp, spte);
3375 if (gentry &&
3376 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3377 & mask.word))
3378 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3379 if (!remote_flush && need_remote_flush(entry, *spte))
3380 remote_flush = true;
3381 ++spte;
3382 }
3383 }
3384 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3385 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3386 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3387 spin_unlock(&vcpu->kvm->mmu_lock);
3388 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
3389 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
3390 vcpu->arch.update_pte.pfn = bad_pfn;
3391 }
3392 }
3393
3394 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3395 {
3396 gpa_t gpa;
3397 int r;
3398
3399 if (vcpu->arch.mmu.direct_map)
3400 return 0;
3401
3402 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3403
3404 spin_lock(&vcpu->kvm->mmu_lock);
3405 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3406 spin_unlock(&vcpu->kvm->mmu_lock);
3407 return r;
3408 }
3409 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3410
3411 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3412 {
3413 LIST_HEAD(invalid_list);
3414
3415 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3416 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3417 struct kvm_mmu_page *sp;
3418
3419 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3420 struct kvm_mmu_page, link);
3421 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3422 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3423 ++vcpu->kvm->stat.mmu_recycled;
3424 }
3425 }
3426
3427 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3428 void *insn, int insn_len)
3429 {
3430 int r;
3431 enum emulation_result er;
3432
3433 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3434 if (r < 0)
3435 goto out;
3436
3437 if (!r) {
3438 r = 1;
3439 goto out;
3440 }
3441
3442 r = mmu_topup_memory_caches(vcpu);
3443 if (r)
3444 goto out;
3445
3446 er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3447
3448 switch (er) {
3449 case EMULATE_DONE:
3450 return 1;
3451 case EMULATE_DO_MMIO:
3452 ++vcpu->stat.mmio_exits;
3453 /* fall through */
3454 case EMULATE_FAIL:
3455 return 0;
3456 default:
3457 BUG();
3458 }
3459 out:
3460 return r;
3461 }
3462 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3463
3464 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3465 {
3466 vcpu->arch.mmu.invlpg(vcpu, gva);
3467 kvm_mmu_flush_tlb(vcpu);
3468 ++vcpu->stat.invlpg;
3469 }
3470 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3471
3472 void kvm_enable_tdp(void)
3473 {
3474 tdp_enabled = true;
3475 }
3476 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3477
3478 void kvm_disable_tdp(void)
3479 {
3480 tdp_enabled = false;
3481 }
3482 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3483
3484 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3485 {
3486 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3487 if (vcpu->arch.mmu.lm_root != NULL)
3488 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3489 }
3490
3491 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3492 {
3493 struct page *page;
3494 int i;
3495
3496 ASSERT(vcpu);
3497
3498 /*
3499 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3500 * Therefore we need to allocate shadow page tables in the first
3501 * 4GB of memory, which happens to fit the DMA32 zone.
3502 */
3503 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3504 if (!page)
3505 return -ENOMEM;
3506
3507 vcpu->arch.mmu.pae_root = page_address(page);
3508 for (i = 0; i < 4; ++i)
3509 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3510
3511 return 0;
3512 }
3513
3514 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3515 {
3516 ASSERT(vcpu);
3517 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3518
3519 return alloc_mmu_pages(vcpu);
3520 }
3521
3522 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3523 {
3524 ASSERT(vcpu);
3525 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3526
3527 return init_kvm_mmu(vcpu);
3528 }
3529
3530 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3531 {
3532 struct kvm_mmu_page *sp;
3533
3534 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3535 int i;
3536 u64 *pt;
3537
3538 if (!test_bit(slot, sp->slot_bitmap))
3539 continue;
3540
3541 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
3542 continue;
3543
3544 pt = sp->spt;
3545 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
3546 /* avoid RMW */
3547 if (is_writable_pte(pt[i]))
3548 update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
3549 }
3550 kvm_flush_remote_tlbs(kvm);
3551 }
3552
3553 void kvm_mmu_zap_all(struct kvm *kvm)
3554 {
3555 struct kvm_mmu_page *sp, *node;
3556 LIST_HEAD(invalid_list);
3557
3558 spin_lock(&kvm->mmu_lock);
3559 restart:
3560 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3561 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3562 goto restart;
3563
3564 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3565 spin_unlock(&kvm->mmu_lock);
3566 }
3567
3568 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3569 struct list_head *invalid_list)
3570 {
3571 struct kvm_mmu_page *page;
3572
3573 page = container_of(kvm->arch.active_mmu_pages.prev,
3574 struct kvm_mmu_page, link);
3575 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3576 }
3577
3578 static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
3579 {
3580 struct kvm *kvm;
3581 struct kvm *kvm_freed = NULL;
3582
3583 if (nr_to_scan == 0)
3584 goto out;
3585
3586 spin_lock(&kvm_lock);
3587
3588 list_for_each_entry(kvm, &vm_list, vm_list) {
3589 int idx, freed_pages;
3590 LIST_HEAD(invalid_list);
3591
3592 idx = srcu_read_lock(&kvm->srcu);
3593 spin_lock(&kvm->mmu_lock);
3594 if (!kvm_freed && nr_to_scan > 0 &&
3595 kvm->arch.n_used_mmu_pages > 0) {
3596 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3597 &invalid_list);
3598 kvm_freed = kvm;
3599 }
3600 nr_to_scan--;
3601
3602 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3603 spin_unlock(&kvm->mmu_lock);
3604 srcu_read_unlock(&kvm->srcu, idx);
3605 }
3606 if (kvm_freed)
3607 list_move_tail(&kvm_freed->vm_list, &vm_list);
3608
3609 spin_unlock(&kvm_lock);
3610
3611 out:
3612 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3613 }
3614
3615 static struct shrinker mmu_shrinker = {
3616 .shrink = mmu_shrink,
3617 .seeks = DEFAULT_SEEKS * 10,
3618 };
3619
3620 static void mmu_destroy_caches(void)
3621 {
3622 if (pte_chain_cache)
3623 kmem_cache_destroy(pte_chain_cache);
3624 if (rmap_desc_cache)
3625 kmem_cache_destroy(rmap_desc_cache);
3626 if (mmu_page_header_cache)
3627 kmem_cache_destroy(mmu_page_header_cache);
3628 }
3629
3630 int kvm_mmu_module_init(void)
3631 {
3632 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
3633 sizeof(struct kvm_pte_chain),
3634 0, 0, NULL);
3635 if (!pte_chain_cache)
3636 goto nomem;
3637 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
3638 sizeof(struct kvm_rmap_desc),
3639 0, 0, NULL);
3640 if (!rmap_desc_cache)
3641 goto nomem;
3642
3643 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3644 sizeof(struct kvm_mmu_page),
3645 0, 0, NULL);
3646 if (!mmu_page_header_cache)
3647 goto nomem;
3648
3649 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3650 goto nomem;
3651
3652 register_shrinker(&mmu_shrinker);
3653
3654 return 0;
3655
3656 nomem:
3657 mmu_destroy_caches();
3658 return -ENOMEM;
3659 }
3660
3661 /*
3662 * Caculate mmu pages needed for kvm.
3663 */
3664 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3665 {
3666 int i;
3667 unsigned int nr_mmu_pages;
3668 unsigned int nr_pages = 0;
3669 struct kvm_memslots *slots;
3670
3671 slots = kvm_memslots(kvm);
3672
3673 for (i = 0; i < slots->nmemslots; i++)
3674 nr_pages += slots->memslots[i].npages;
3675
3676 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3677 nr_mmu_pages = max(nr_mmu_pages,
3678 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3679
3680 return nr_mmu_pages;
3681 }
3682
3683 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3684 unsigned len)
3685 {
3686 if (len > buffer->len)
3687 return NULL;
3688 return buffer->ptr;
3689 }
3690
3691 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3692 unsigned len)
3693 {
3694 void *ret;
3695
3696 ret = pv_mmu_peek_buffer(buffer, len);
3697 if (!ret)
3698 return ret;
3699 buffer->ptr += len;
3700 buffer->len -= len;
3701 buffer->processed += len;
3702 return ret;
3703 }
3704
3705 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3706 gpa_t addr, gpa_t value)
3707 {
3708 int bytes = 8;
3709 int r;
3710
3711 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3712 bytes = 4;
3713
3714 r = mmu_topup_memory_caches(vcpu);
3715 if (r)
3716 return r;
3717
3718 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3719 return -EFAULT;
3720
3721 return 1;
3722 }
3723
3724 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3725 {
3726 (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
3727 return 1;
3728 }
3729
3730 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3731 {
3732 spin_lock(&vcpu->kvm->mmu_lock);
3733 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3734 spin_unlock(&vcpu->kvm->mmu_lock);
3735 return 1;
3736 }
3737
3738 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3739 struct kvm_pv_mmu_op_buffer *buffer)
3740 {
3741 struct kvm_mmu_op_header *header;
3742
3743 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3744 if (!header)
3745 return 0;
3746 switch (header->op) {
3747 case KVM_MMU_OP_WRITE_PTE: {
3748 struct kvm_mmu_op_write_pte *wpte;
3749
3750 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3751 if (!wpte)
3752 return 0;
3753 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3754 wpte->pte_val);
3755 }
3756 case KVM_MMU_OP_FLUSH_TLB: {
3757 struct kvm_mmu_op_flush_tlb *ftlb;
3758
3759 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3760 if (!ftlb)
3761 return 0;
3762 return kvm_pv_mmu_flush_tlb(vcpu);
3763 }
3764 case KVM_MMU_OP_RELEASE_PT: {
3765 struct kvm_mmu_op_release_pt *rpt;
3766
3767 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3768 if (!rpt)
3769 return 0;
3770 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3771 }
3772 default: return 0;
3773 }
3774 }
3775
3776 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3777 gpa_t addr, unsigned long *ret)
3778 {
3779 int r;
3780 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3781
3782 buffer->ptr = buffer->buf;
3783 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3784 buffer->processed = 0;
3785
3786 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3787 if (r)
3788 goto out;
3789
3790 while (buffer->len) {
3791 r = kvm_pv_mmu_op_one(vcpu, buffer);
3792 if (r < 0)
3793 goto out;
3794 if (r == 0)
3795 break;
3796 }
3797
3798 r = 1;
3799 out:
3800 *ret = buffer->processed;
3801 return r;
3802 }
3803
3804 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3805 {
3806 struct kvm_shadow_walk_iterator iterator;
3807 int nr_sptes = 0;
3808
3809 spin_lock(&vcpu->kvm->mmu_lock);
3810 for_each_shadow_entry(vcpu, addr, iterator) {
3811 sptes[iterator.level-1] = *iterator.sptep;
3812 nr_sptes++;
3813 if (!is_shadow_present_pte(*iterator.sptep))
3814 break;
3815 }
3816 spin_unlock(&vcpu->kvm->mmu_lock);
3817
3818 return nr_sptes;
3819 }
3820 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3821
3822 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3823 {
3824 ASSERT(vcpu);
3825
3826 destroy_kvm_mmu(vcpu);
3827 free_mmu_pages(vcpu);
3828 mmu_free_memory_caches(vcpu);
3829 }
3830
3831 #ifdef CONFIG_KVM_MMU_AUDIT
3832 #include "mmu_audit.c"
3833 #else
3834 static void mmu_audit_disable(void) { }
3835 #endif
3836
3837 void kvm_mmu_module_exit(void)
3838 {
3839 mmu_destroy_caches();
3840 percpu_counter_destroy(&kvm_total_used_mmu_pages);
3841 unregister_shrinker(&mmu_shrinker);
3842 mmu_audit_disable();
3843 }
This page took 0.214224 seconds and 6 git commands to generate.