KVM: x86: MMU: Move mapping_level_dirty_bitmap() call in mapping_level()
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52 bool tdp_enabled = false;
53
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77
78 #define PTE_PREFETCH_NUM 8
79
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
83 #define PT64_LEVEL_BITS 9
84
85 #define PT64_LEVEL_SHIFT(level) \
86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87
88 #define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92 #define PT32_LEVEL_BITS 10
93
94 #define PT32_LEVEL_SHIFT(level) \
95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96
97 #define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
100
101 #define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
121
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
124
125 #define ACC_EXEC_MASK 1
126 #define ACC_WRITE_MASK PT_WRITABLE_MASK
127 #define ACC_USER_MASK PT_USER_MASK
128 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
130 #include <trace/events/kvm.h>
131
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134
135 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
151 u64 *sptep;
152 int level;
153 unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183 shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
187 /*
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
195 */
196 #define MMIO_SPTE_GEN_LOW_SHIFT 2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
199 #define MMIO_GEN_SHIFT 20
200 #define MMIO_GEN_LOW_SHIFT 10
201 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
203
204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206 u64 mask;
207
208 WARN_ON(gen & ~MMIO_GEN_MASK);
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213 }
214
215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224 }
225
226 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
227 {
228 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
229 }
230
231 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
232 unsigned access)
233 {
234 unsigned int gen = kvm_current_mmio_generation(vcpu);
235 u64 mask = generation_mmio_spte_mask(gen);
236
237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239
240 trace_mark_mmio_spte(sptep, gfn, access, gen);
241 mmu_spte_set(sptep, mask);
242 }
243
244 static bool is_mmio_spte(u64 spte)
245 {
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248
249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252 return (spte & ~mask) >> PAGE_SHIFT;
253 }
254
255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258 return (spte & ~mask) & ~PAGE_MASK;
259 }
260
261 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
262 pfn_t pfn, unsigned access)
263 {
264 if (unlikely(is_noslot_pfn(pfn))) {
265 mark_mmio_spte(vcpu, sptep, gfn, access);
266 return true;
267 }
268
269 return false;
270 }
271
272 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
273 {
274 unsigned int kvm_gen, spte_gen;
275
276 kvm_gen = kvm_current_mmio_generation(vcpu);
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
281 }
282
283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
294 static int is_cpuid_PSE36(void)
295 {
296 return 1;
297 }
298
299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301 return vcpu->arch.efer & EFER_NX;
302 }
303
304 static int is_shadow_present_pte(u64 pte)
305 {
306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308
309 static int is_large_pte(u64 pte)
310 {
311 return pte & PT_PAGE_SIZE_MASK;
312 }
313
314 static int is_rmap_spte(u64 pte)
315 {
316 return is_shadow_present_pte(pte);
317 }
318
319 static int is_last_spte(u64 pte, int level)
320 {
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
323 if (is_large_pte(pte))
324 return 1;
325 return 0;
326 }
327
328 static pfn_t spte_to_pfn(u64 pte)
329 {
330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332
333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343 *sptep = spte;
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348 *sptep = spte;
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353 return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358 return ACCESS_ONCE(*sptep);
359 }
360 #else
361 union split_spte {
362 struct {
363 u32 spte_low;
364 u32 spte_high;
365 };
366 u64 spte;
367 };
368
369 static void count_spte_clear(u64 *sptep, u64 spte)
370 {
371 struct kvm_mmu_page *sp = page_header(__pa(sptep));
372
373 if (is_shadow_present_pte(spte))
374 return;
375
376 /* Ensure the spte is completely set before we increase the count */
377 smp_wmb();
378 sp->clear_spte_count++;
379 }
380
381 static void __set_spte(u64 *sptep, u64 spte)
382 {
383 union split_spte *ssptep, sspte;
384
385 ssptep = (union split_spte *)sptep;
386 sspte = (union split_spte)spte;
387
388 ssptep->spte_high = sspte.spte_high;
389
390 /*
391 * If we map the spte from nonpresent to present, We should store
392 * the high bits firstly, then set present bit, so cpu can not
393 * fetch this spte while we are setting the spte.
394 */
395 smp_wmb();
396
397 ssptep->spte_low = sspte.spte_low;
398 }
399
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402 union split_spte *ssptep, sspte;
403
404 ssptep = (union split_spte *)sptep;
405 sspte = (union split_spte)spte;
406
407 ssptep->spte_low = sspte.spte_low;
408
409 /*
410 * If we map the spte from present to nonpresent, we should clear
411 * present bit firstly to avoid vcpu fetch the old high bits.
412 */
413 smp_wmb();
414
415 ssptep->spte_high = sspte.spte_high;
416 count_spte_clear(sptep, spte);
417 }
418
419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420 {
421 union split_spte *ssptep, sspte, orig;
422
423 ssptep = (union split_spte *)sptep;
424 sspte = (union split_spte)spte;
425
426 /* xchg acts as a barrier before the setting of the high bits */
427 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428 orig.spte_high = ssptep->spte_high;
429 ssptep->spte_high = sspte.spte_high;
430 count_spte_clear(sptep, spte);
431
432 return orig.spte;
433 }
434
435 /*
436 * The idea using the light way get the spte on x86_32 guest is from
437 * gup_get_pte(arch/x86/mm/gup.c).
438 *
439 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440 * coalesces them and we are running out of the MMU lock. Therefore
441 * we need to protect against in-progress updates of the spte.
442 *
443 * Reading the spte while an update is in progress may get the old value
444 * for the high part of the spte. The race is fine for a present->non-present
445 * change (because the high part of the spte is ignored for non-present spte),
446 * but for a present->present change we must reread the spte.
447 *
448 * All such changes are done in two steps (present->non-present and
449 * non-present->present), hence it is enough to count the number of
450 * present->non-present updates: if it changed while reading the spte,
451 * we might have hit the race. This is done using clear_spte_count.
452 */
453 static u64 __get_spte_lockless(u64 *sptep)
454 {
455 struct kvm_mmu_page *sp = page_header(__pa(sptep));
456 union split_spte spte, *orig = (union split_spte *)sptep;
457 int count;
458
459 retry:
460 count = sp->clear_spte_count;
461 smp_rmb();
462
463 spte.spte_low = orig->spte_low;
464 smp_rmb();
465
466 spte.spte_high = orig->spte_high;
467 smp_rmb();
468
469 if (unlikely(spte.spte_low != orig->spte_low ||
470 count != sp->clear_spte_count))
471 goto retry;
472
473 return spte.spte;
474 }
475 #endif
476
477 static bool spte_is_locklessly_modifiable(u64 spte)
478 {
479 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
481 }
482
483 static bool spte_has_volatile_bits(u64 spte)
484 {
485 /*
486 * Always atomicly update spte if it can be updated
487 * out of mmu-lock, it can ensure dirty bit is not lost,
488 * also, it can help us to get a stable is_writable_pte()
489 * to ensure tlb flush is not missed.
490 */
491 if (spte_is_locklessly_modifiable(spte))
492 return true;
493
494 if (!shadow_accessed_mask)
495 return false;
496
497 if (!is_shadow_present_pte(spte))
498 return false;
499
500 if ((spte & shadow_accessed_mask) &&
501 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
502 return false;
503
504 return true;
505 }
506
507 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508 {
509 return (old_spte & bit_mask) && !(new_spte & bit_mask);
510 }
511
512 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513 {
514 return (old_spte & bit_mask) != (new_spte & bit_mask);
515 }
516
517 /* Rules for using mmu_spte_set:
518 * Set the sptep from nonpresent to present.
519 * Note: the sptep being assigned *must* be either not present
520 * or in a state where the hardware will not attempt to update
521 * the spte.
522 */
523 static void mmu_spte_set(u64 *sptep, u64 new_spte)
524 {
525 WARN_ON(is_shadow_present_pte(*sptep));
526 __set_spte(sptep, new_spte);
527 }
528
529 /* Rules for using mmu_spte_update:
530 * Update the state bits, it means the mapped pfn is not changged.
531 *
532 * Whenever we overwrite a writable spte with a read-only one we
533 * should flush remote TLBs. Otherwise rmap_write_protect
534 * will find a read-only spte, even though the writable spte
535 * might be cached on a CPU's TLB, the return value indicates this
536 * case.
537 */
538 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
539 {
540 u64 old_spte = *sptep;
541 bool ret = false;
542
543 WARN_ON(!is_rmap_spte(new_spte));
544
545 if (!is_shadow_present_pte(old_spte)) {
546 mmu_spte_set(sptep, new_spte);
547 return ret;
548 }
549
550 if (!spte_has_volatile_bits(old_spte))
551 __update_clear_spte_fast(sptep, new_spte);
552 else
553 old_spte = __update_clear_spte_slow(sptep, new_spte);
554
555 /*
556 * For the spte updated out of mmu-lock is safe, since
557 * we always atomicly update it, see the comments in
558 * spte_has_volatile_bits().
559 */
560 if (spte_is_locklessly_modifiable(old_spte) &&
561 !is_writable_pte(new_spte))
562 ret = true;
563
564 if (!shadow_accessed_mask)
565 return ret;
566
567 /*
568 * Flush TLB when accessed/dirty bits are changed in the page tables,
569 * to guarantee consistency between TLB and page tables.
570 */
571 if (spte_is_bit_changed(old_spte, new_spte,
572 shadow_accessed_mask | shadow_dirty_mask))
573 ret = true;
574
575 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
576 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
577 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
578 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
579
580 return ret;
581 }
582
583 /*
584 * Rules for using mmu_spte_clear_track_bits:
585 * It sets the sptep from present to nonpresent, and track the
586 * state bits, it is used to clear the last level sptep.
587 */
588 static int mmu_spte_clear_track_bits(u64 *sptep)
589 {
590 pfn_t pfn;
591 u64 old_spte = *sptep;
592
593 if (!spte_has_volatile_bits(old_spte))
594 __update_clear_spte_fast(sptep, 0ull);
595 else
596 old_spte = __update_clear_spte_slow(sptep, 0ull);
597
598 if (!is_rmap_spte(old_spte))
599 return 0;
600
601 pfn = spte_to_pfn(old_spte);
602
603 /*
604 * KVM does not hold the refcount of the page used by
605 * kvm mmu, before reclaiming the page, we should
606 * unmap it from mmu first.
607 */
608 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
609
610 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
611 kvm_set_pfn_accessed(pfn);
612 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
613 kvm_set_pfn_dirty(pfn);
614 return 1;
615 }
616
617 /*
618 * Rules for using mmu_spte_clear_no_track:
619 * Directly clear spte without caring the state bits of sptep,
620 * it is used to set the upper level spte.
621 */
622 static void mmu_spte_clear_no_track(u64 *sptep)
623 {
624 __update_clear_spte_fast(sptep, 0ull);
625 }
626
627 static u64 mmu_spte_get_lockless(u64 *sptep)
628 {
629 return __get_spte_lockless(sptep);
630 }
631
632 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
633 {
634 /*
635 * Prevent page table teardown by making any free-er wait during
636 * kvm_flush_remote_tlbs() IPI to all active vcpus.
637 */
638 local_irq_disable();
639 vcpu->mode = READING_SHADOW_PAGE_TABLES;
640 /*
641 * Make sure a following spte read is not reordered ahead of the write
642 * to vcpu->mode.
643 */
644 smp_mb();
645 }
646
647 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
648 {
649 /*
650 * Make sure the write to vcpu->mode is not reordered in front of
651 * reads to sptes. If it does, kvm_commit_zap_page() can see us
652 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
653 */
654 smp_mb();
655 vcpu->mode = OUTSIDE_GUEST_MODE;
656 local_irq_enable();
657 }
658
659 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
660 struct kmem_cache *base_cache, int min)
661 {
662 void *obj;
663
664 if (cache->nobjs >= min)
665 return 0;
666 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
667 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
668 if (!obj)
669 return -ENOMEM;
670 cache->objects[cache->nobjs++] = obj;
671 }
672 return 0;
673 }
674
675 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
676 {
677 return cache->nobjs;
678 }
679
680 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
681 struct kmem_cache *cache)
682 {
683 while (mc->nobjs)
684 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
685 }
686
687 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
688 int min)
689 {
690 void *page;
691
692 if (cache->nobjs >= min)
693 return 0;
694 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
695 page = (void *)__get_free_page(GFP_KERNEL);
696 if (!page)
697 return -ENOMEM;
698 cache->objects[cache->nobjs++] = page;
699 }
700 return 0;
701 }
702
703 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
704 {
705 while (mc->nobjs)
706 free_page((unsigned long)mc->objects[--mc->nobjs]);
707 }
708
709 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
710 {
711 int r;
712
713 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
714 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
715 if (r)
716 goto out;
717 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
718 if (r)
719 goto out;
720 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
721 mmu_page_header_cache, 4);
722 out:
723 return r;
724 }
725
726 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727 {
728 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729 pte_list_desc_cache);
730 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
731 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
732 mmu_page_header_cache);
733 }
734
735 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
736 {
737 void *p;
738
739 BUG_ON(!mc->nobjs);
740 p = mc->objects[--mc->nobjs];
741 return p;
742 }
743
744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745 {
746 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 }
748
749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750 {
751 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 }
753
754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755 {
756 if (!sp->role.direct)
757 return sp->gfns[index];
758
759 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760 }
761
762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763 {
764 if (sp->role.direct)
765 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
766 else
767 sp->gfns[index] = gfn;
768 }
769
770 /*
771 * Return the pointer to the large page information for a given gfn,
772 * handling slots that are not large page aligned.
773 */
774 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
775 struct kvm_memory_slot *slot,
776 int level)
777 {
778 unsigned long idx;
779
780 idx = gfn_to_index(gfn, slot->base_gfn, level);
781 return &slot->arch.lpage_info[level - 2][idx];
782 }
783
784 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
785 {
786 struct kvm_memslots *slots;
787 struct kvm_memory_slot *slot;
788 struct kvm_lpage_info *linfo;
789 gfn_t gfn;
790 int i;
791
792 gfn = sp->gfn;
793 slots = kvm_memslots_for_spte_role(kvm, sp->role);
794 slot = __gfn_to_memslot(slots, gfn);
795 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
796 linfo = lpage_info_slot(gfn, slot, i);
797 linfo->write_count += 1;
798 }
799 kvm->arch.indirect_shadow_pages++;
800 }
801
802 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
803 {
804 struct kvm_memslots *slots;
805 struct kvm_memory_slot *slot;
806 struct kvm_lpage_info *linfo;
807 gfn_t gfn;
808 int i;
809
810 gfn = sp->gfn;
811 slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 slot = __gfn_to_memslot(slots, gfn);
813 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
814 linfo = lpage_info_slot(gfn, slot, i);
815 linfo->write_count -= 1;
816 WARN_ON(linfo->write_count < 0);
817 }
818 kvm->arch.indirect_shadow_pages--;
819 }
820
821 static int has_wrprotected_page(struct kvm_vcpu *vcpu,
822 gfn_t gfn,
823 int level)
824 {
825 struct kvm_memory_slot *slot;
826 struct kvm_lpage_info *linfo;
827
828 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
829 if (slot) {
830 linfo = lpage_info_slot(gfn, slot, level);
831 return linfo->write_count;
832 }
833
834 return 1;
835 }
836
837 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
838 {
839 unsigned long page_size;
840 int i, ret = 0;
841
842 page_size = kvm_host_page_size(kvm, gfn);
843
844 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
845 if (page_size >= KVM_HPAGE_SIZE(i))
846 ret = i;
847 else
848 break;
849 }
850
851 return ret;
852 }
853
854 static struct kvm_memory_slot *
855 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
856 bool no_dirty_log)
857 {
858 struct kvm_memory_slot *slot;
859
860 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
861 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
862 (no_dirty_log && slot->dirty_bitmap))
863 slot = NULL;
864
865 return slot;
866 }
867
868 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
869 {
870 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
871 }
872
873 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
874 bool *force_pt_level)
875 {
876 int host_level, level, max_level;
877
878 if (likely(!*force_pt_level))
879 *force_pt_level = mapping_level_dirty_bitmap(vcpu, large_gfn);
880 if (unlikely(*force_pt_level))
881 return PT_PAGE_TABLE_LEVEL;
882
883 host_level = host_mapping_level(vcpu->kvm, large_gfn);
884
885 if (host_level == PT_PAGE_TABLE_LEVEL)
886 return host_level;
887
888 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
889
890 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
891 if (has_wrprotected_page(vcpu, large_gfn, level))
892 break;
893
894 return level - 1;
895 }
896
897 /*
898 * Pte mapping structures:
899 *
900 * If pte_list bit zero is zero, then pte_list point to the spte.
901 *
902 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
903 * pte_list_desc containing more mappings.
904 *
905 * Returns the number of pte entries before the spte was added or zero if
906 * the spte was not added.
907 *
908 */
909 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
910 unsigned long *pte_list)
911 {
912 struct pte_list_desc *desc;
913 int i, count = 0;
914
915 if (!*pte_list) {
916 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
917 *pte_list = (unsigned long)spte;
918 } else if (!(*pte_list & 1)) {
919 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
920 desc = mmu_alloc_pte_list_desc(vcpu);
921 desc->sptes[0] = (u64 *)*pte_list;
922 desc->sptes[1] = spte;
923 *pte_list = (unsigned long)desc | 1;
924 ++count;
925 } else {
926 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
927 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
928 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
929 desc = desc->more;
930 count += PTE_LIST_EXT;
931 }
932 if (desc->sptes[PTE_LIST_EXT-1]) {
933 desc->more = mmu_alloc_pte_list_desc(vcpu);
934 desc = desc->more;
935 }
936 for (i = 0; desc->sptes[i]; ++i)
937 ++count;
938 desc->sptes[i] = spte;
939 }
940 return count;
941 }
942
943 static void
944 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
945 int i, struct pte_list_desc *prev_desc)
946 {
947 int j;
948
949 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
950 ;
951 desc->sptes[i] = desc->sptes[j];
952 desc->sptes[j] = NULL;
953 if (j != 0)
954 return;
955 if (!prev_desc && !desc->more)
956 *pte_list = (unsigned long)desc->sptes[0];
957 else
958 if (prev_desc)
959 prev_desc->more = desc->more;
960 else
961 *pte_list = (unsigned long)desc->more | 1;
962 mmu_free_pte_list_desc(desc);
963 }
964
965 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
966 {
967 struct pte_list_desc *desc;
968 struct pte_list_desc *prev_desc;
969 int i;
970
971 if (!*pte_list) {
972 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
973 BUG();
974 } else if (!(*pte_list & 1)) {
975 rmap_printk("pte_list_remove: %p 1->0\n", spte);
976 if ((u64 *)*pte_list != spte) {
977 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
978 BUG();
979 }
980 *pte_list = 0;
981 } else {
982 rmap_printk("pte_list_remove: %p many->many\n", spte);
983 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
984 prev_desc = NULL;
985 while (desc) {
986 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
987 if (desc->sptes[i] == spte) {
988 pte_list_desc_remove_entry(pte_list,
989 desc, i,
990 prev_desc);
991 return;
992 }
993 prev_desc = desc;
994 desc = desc->more;
995 }
996 pr_err("pte_list_remove: %p many->many\n", spte);
997 BUG();
998 }
999 }
1000
1001 typedef void (*pte_list_walk_fn) (u64 *spte);
1002 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1003 {
1004 struct pte_list_desc *desc;
1005 int i;
1006
1007 if (!*pte_list)
1008 return;
1009
1010 if (!(*pte_list & 1))
1011 return fn((u64 *)*pte_list);
1012
1013 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1014 while (desc) {
1015 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1016 fn(desc->sptes[i]);
1017 desc = desc->more;
1018 }
1019 }
1020
1021 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1022 struct kvm_memory_slot *slot)
1023 {
1024 unsigned long idx;
1025
1026 idx = gfn_to_index(gfn, slot->base_gfn, level);
1027 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1028 }
1029
1030 /*
1031 * Take gfn and return the reverse mapping to it.
1032 */
1033 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
1034 {
1035 struct kvm_memslots *slots;
1036 struct kvm_memory_slot *slot;
1037
1038 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1039 slot = __gfn_to_memslot(slots, gfn);
1040 return __gfn_to_rmap(gfn, sp->role.level, slot);
1041 }
1042
1043 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1044 {
1045 struct kvm_mmu_memory_cache *cache;
1046
1047 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1048 return mmu_memory_cache_free_objects(cache);
1049 }
1050
1051 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1052 {
1053 struct kvm_mmu_page *sp;
1054 unsigned long *rmapp;
1055
1056 sp = page_header(__pa(spte));
1057 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1058 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1059 return pte_list_add(vcpu, spte, rmapp);
1060 }
1061
1062 static void rmap_remove(struct kvm *kvm, u64 *spte)
1063 {
1064 struct kvm_mmu_page *sp;
1065 gfn_t gfn;
1066 unsigned long *rmapp;
1067
1068 sp = page_header(__pa(spte));
1069 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1070 rmapp = gfn_to_rmap(kvm, gfn, sp);
1071 pte_list_remove(spte, rmapp);
1072 }
1073
1074 /*
1075 * Used by the following functions to iterate through the sptes linked by a
1076 * rmap. All fields are private and not assumed to be used outside.
1077 */
1078 struct rmap_iterator {
1079 /* private fields */
1080 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1081 int pos; /* index of the sptep */
1082 };
1083
1084 /*
1085 * Iteration must be started by this function. This should also be used after
1086 * removing/dropping sptes from the rmap link because in such cases the
1087 * information in the itererator may not be valid.
1088 *
1089 * Returns sptep if found, NULL otherwise.
1090 */
1091 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1092 {
1093 if (!rmap)
1094 return NULL;
1095
1096 if (!(rmap & 1)) {
1097 iter->desc = NULL;
1098 return (u64 *)rmap;
1099 }
1100
1101 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1102 iter->pos = 0;
1103 return iter->desc->sptes[iter->pos];
1104 }
1105
1106 /*
1107 * Must be used with a valid iterator: e.g. after rmap_get_first().
1108 *
1109 * Returns sptep if found, NULL otherwise.
1110 */
1111 static u64 *rmap_get_next(struct rmap_iterator *iter)
1112 {
1113 if (iter->desc) {
1114 if (iter->pos < PTE_LIST_EXT - 1) {
1115 u64 *sptep;
1116
1117 ++iter->pos;
1118 sptep = iter->desc->sptes[iter->pos];
1119 if (sptep)
1120 return sptep;
1121 }
1122
1123 iter->desc = iter->desc->more;
1124
1125 if (iter->desc) {
1126 iter->pos = 0;
1127 /* desc->sptes[0] cannot be NULL */
1128 return iter->desc->sptes[iter->pos];
1129 }
1130 }
1131
1132 return NULL;
1133 }
1134
1135 #define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
1136 for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
1137 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1138 _spte_ = rmap_get_next(_iter_))
1139
1140 static void drop_spte(struct kvm *kvm, u64 *sptep)
1141 {
1142 if (mmu_spte_clear_track_bits(sptep))
1143 rmap_remove(kvm, sptep);
1144 }
1145
1146
1147 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1148 {
1149 if (is_large_pte(*sptep)) {
1150 WARN_ON(page_header(__pa(sptep))->role.level ==
1151 PT_PAGE_TABLE_LEVEL);
1152 drop_spte(kvm, sptep);
1153 --kvm->stat.lpages;
1154 return true;
1155 }
1156
1157 return false;
1158 }
1159
1160 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1161 {
1162 if (__drop_large_spte(vcpu->kvm, sptep))
1163 kvm_flush_remote_tlbs(vcpu->kvm);
1164 }
1165
1166 /*
1167 * Write-protect on the specified @sptep, @pt_protect indicates whether
1168 * spte write-protection is caused by protecting shadow page table.
1169 *
1170 * Note: write protection is difference between dirty logging and spte
1171 * protection:
1172 * - for dirty logging, the spte can be set to writable at anytime if
1173 * its dirty bitmap is properly set.
1174 * - for spte protection, the spte can be writable only after unsync-ing
1175 * shadow page.
1176 *
1177 * Return true if tlb need be flushed.
1178 */
1179 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1180 {
1181 u64 spte = *sptep;
1182
1183 if (!is_writable_pte(spte) &&
1184 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1185 return false;
1186
1187 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1188
1189 if (pt_protect)
1190 spte &= ~SPTE_MMU_WRITEABLE;
1191 spte = spte & ~PT_WRITABLE_MASK;
1192
1193 return mmu_spte_update(sptep, spte);
1194 }
1195
1196 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1197 bool pt_protect)
1198 {
1199 u64 *sptep;
1200 struct rmap_iterator iter;
1201 bool flush = false;
1202
1203 for_each_rmap_spte(rmapp, &iter, sptep)
1204 flush |= spte_write_protect(kvm, sptep, pt_protect);
1205
1206 return flush;
1207 }
1208
1209 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1210 {
1211 u64 spte = *sptep;
1212
1213 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1214
1215 spte &= ~shadow_dirty_mask;
1216
1217 return mmu_spte_update(sptep, spte);
1218 }
1219
1220 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1221 {
1222 u64 *sptep;
1223 struct rmap_iterator iter;
1224 bool flush = false;
1225
1226 for_each_rmap_spte(rmapp, &iter, sptep)
1227 flush |= spte_clear_dirty(kvm, sptep);
1228
1229 return flush;
1230 }
1231
1232 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1233 {
1234 u64 spte = *sptep;
1235
1236 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1237
1238 spte |= shadow_dirty_mask;
1239
1240 return mmu_spte_update(sptep, spte);
1241 }
1242
1243 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1244 {
1245 u64 *sptep;
1246 struct rmap_iterator iter;
1247 bool flush = false;
1248
1249 for_each_rmap_spte(rmapp, &iter, sptep)
1250 flush |= spte_set_dirty(kvm, sptep);
1251
1252 return flush;
1253 }
1254
1255 /**
1256 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1257 * @kvm: kvm instance
1258 * @slot: slot to protect
1259 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1260 * @mask: indicates which pages we should protect
1261 *
1262 * Used when we do not need to care about huge page mappings: e.g. during dirty
1263 * logging we do not have any such mappings.
1264 */
1265 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1266 struct kvm_memory_slot *slot,
1267 gfn_t gfn_offset, unsigned long mask)
1268 {
1269 unsigned long *rmapp;
1270
1271 while (mask) {
1272 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1273 PT_PAGE_TABLE_LEVEL, slot);
1274 __rmap_write_protect(kvm, rmapp, false);
1275
1276 /* clear the first set bit */
1277 mask &= mask - 1;
1278 }
1279 }
1280
1281 /**
1282 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1283 * @kvm: kvm instance
1284 * @slot: slot to clear D-bit
1285 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1286 * @mask: indicates which pages we should clear D-bit
1287 *
1288 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1289 */
1290 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1291 struct kvm_memory_slot *slot,
1292 gfn_t gfn_offset, unsigned long mask)
1293 {
1294 unsigned long *rmapp;
1295
1296 while (mask) {
1297 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1298 PT_PAGE_TABLE_LEVEL, slot);
1299 __rmap_clear_dirty(kvm, rmapp);
1300
1301 /* clear the first set bit */
1302 mask &= mask - 1;
1303 }
1304 }
1305 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1306
1307 /**
1308 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1309 * PT level pages.
1310 *
1311 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1312 * enable dirty logging for them.
1313 *
1314 * Used when we do not need to care about huge page mappings: e.g. during dirty
1315 * logging we do not have any such mappings.
1316 */
1317 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1318 struct kvm_memory_slot *slot,
1319 gfn_t gfn_offset, unsigned long mask)
1320 {
1321 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1322 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1323 mask);
1324 else
1325 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1326 }
1327
1328 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1329 {
1330 struct kvm_memory_slot *slot;
1331 unsigned long *rmapp;
1332 int i;
1333 bool write_protected = false;
1334
1335 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1336
1337 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1338 rmapp = __gfn_to_rmap(gfn, i, slot);
1339 write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
1340 }
1341
1342 return write_protected;
1343 }
1344
1345 static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1346 {
1347 u64 *sptep;
1348 struct rmap_iterator iter;
1349 bool flush = false;
1350
1351 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1352 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1353 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1354
1355 drop_spte(kvm, sptep);
1356 flush = true;
1357 }
1358
1359 return flush;
1360 }
1361
1362 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1363 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1364 unsigned long data)
1365 {
1366 return kvm_zap_rmapp(kvm, rmapp);
1367 }
1368
1369 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1370 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1371 unsigned long data)
1372 {
1373 u64 *sptep;
1374 struct rmap_iterator iter;
1375 int need_flush = 0;
1376 u64 new_spte;
1377 pte_t *ptep = (pte_t *)data;
1378 pfn_t new_pfn;
1379
1380 WARN_ON(pte_huge(*ptep));
1381 new_pfn = pte_pfn(*ptep);
1382
1383 restart:
1384 for_each_rmap_spte(rmapp, &iter, sptep) {
1385 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1386 sptep, *sptep, gfn, level);
1387
1388 need_flush = 1;
1389
1390 if (pte_write(*ptep)) {
1391 drop_spte(kvm, sptep);
1392 goto restart;
1393 } else {
1394 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1395 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1396
1397 new_spte &= ~PT_WRITABLE_MASK;
1398 new_spte &= ~SPTE_HOST_WRITEABLE;
1399 new_spte &= ~shadow_accessed_mask;
1400
1401 mmu_spte_clear_track_bits(sptep);
1402 mmu_spte_set(sptep, new_spte);
1403 }
1404 }
1405
1406 if (need_flush)
1407 kvm_flush_remote_tlbs(kvm);
1408
1409 return 0;
1410 }
1411
1412 struct slot_rmap_walk_iterator {
1413 /* input fields. */
1414 struct kvm_memory_slot *slot;
1415 gfn_t start_gfn;
1416 gfn_t end_gfn;
1417 int start_level;
1418 int end_level;
1419
1420 /* output fields. */
1421 gfn_t gfn;
1422 unsigned long *rmap;
1423 int level;
1424
1425 /* private field. */
1426 unsigned long *end_rmap;
1427 };
1428
1429 static void
1430 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1431 {
1432 iterator->level = level;
1433 iterator->gfn = iterator->start_gfn;
1434 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1435 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1436 iterator->slot);
1437 }
1438
1439 static void
1440 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1441 struct kvm_memory_slot *slot, int start_level,
1442 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1443 {
1444 iterator->slot = slot;
1445 iterator->start_level = start_level;
1446 iterator->end_level = end_level;
1447 iterator->start_gfn = start_gfn;
1448 iterator->end_gfn = end_gfn;
1449
1450 rmap_walk_init_level(iterator, iterator->start_level);
1451 }
1452
1453 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1454 {
1455 return !!iterator->rmap;
1456 }
1457
1458 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1459 {
1460 if (++iterator->rmap <= iterator->end_rmap) {
1461 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1462 return;
1463 }
1464
1465 if (++iterator->level > iterator->end_level) {
1466 iterator->rmap = NULL;
1467 return;
1468 }
1469
1470 rmap_walk_init_level(iterator, iterator->level);
1471 }
1472
1473 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1474 _start_gfn, _end_gfn, _iter_) \
1475 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1476 _end_level_, _start_gfn, _end_gfn); \
1477 slot_rmap_walk_okay(_iter_); \
1478 slot_rmap_walk_next(_iter_))
1479
1480 static int kvm_handle_hva_range(struct kvm *kvm,
1481 unsigned long start,
1482 unsigned long end,
1483 unsigned long data,
1484 int (*handler)(struct kvm *kvm,
1485 unsigned long *rmapp,
1486 struct kvm_memory_slot *slot,
1487 gfn_t gfn,
1488 int level,
1489 unsigned long data))
1490 {
1491 struct kvm_memslots *slots;
1492 struct kvm_memory_slot *memslot;
1493 struct slot_rmap_walk_iterator iterator;
1494 int ret = 0;
1495 int i;
1496
1497 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1498 slots = __kvm_memslots(kvm, i);
1499 kvm_for_each_memslot(memslot, slots) {
1500 unsigned long hva_start, hva_end;
1501 gfn_t gfn_start, gfn_end;
1502
1503 hva_start = max(start, memslot->userspace_addr);
1504 hva_end = min(end, memslot->userspace_addr +
1505 (memslot->npages << PAGE_SHIFT));
1506 if (hva_start >= hva_end)
1507 continue;
1508 /*
1509 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1510 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1511 */
1512 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1513 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1514
1515 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1516 PT_MAX_HUGEPAGE_LEVEL,
1517 gfn_start, gfn_end - 1,
1518 &iterator)
1519 ret |= handler(kvm, iterator.rmap, memslot,
1520 iterator.gfn, iterator.level, data);
1521 }
1522 }
1523
1524 return ret;
1525 }
1526
1527 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1528 unsigned long data,
1529 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1530 struct kvm_memory_slot *slot,
1531 gfn_t gfn, int level,
1532 unsigned long data))
1533 {
1534 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1535 }
1536
1537 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1538 {
1539 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1540 }
1541
1542 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1543 {
1544 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1545 }
1546
1547 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1548 {
1549 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1550 }
1551
1552 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1553 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1554 unsigned long data)
1555 {
1556 u64 *sptep;
1557 struct rmap_iterator uninitialized_var(iter);
1558 int young = 0;
1559
1560 BUG_ON(!shadow_accessed_mask);
1561
1562 for_each_rmap_spte(rmapp, &iter, sptep)
1563 if (*sptep & shadow_accessed_mask) {
1564 young = 1;
1565 clear_bit((ffs(shadow_accessed_mask) - 1),
1566 (unsigned long *)sptep);
1567 }
1568
1569 trace_kvm_age_page(gfn, level, slot, young);
1570 return young;
1571 }
1572
1573 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1574 struct kvm_memory_slot *slot, gfn_t gfn,
1575 int level, unsigned long data)
1576 {
1577 u64 *sptep;
1578 struct rmap_iterator iter;
1579 int young = 0;
1580
1581 /*
1582 * If there's no access bit in the secondary pte set by the
1583 * hardware it's up to gup-fast/gup to set the access bit in
1584 * the primary pte or in the page structure.
1585 */
1586 if (!shadow_accessed_mask)
1587 goto out;
1588
1589 for_each_rmap_spte(rmapp, &iter, sptep)
1590 if (*sptep & shadow_accessed_mask) {
1591 young = 1;
1592 break;
1593 }
1594 out:
1595 return young;
1596 }
1597
1598 #define RMAP_RECYCLE_THRESHOLD 1000
1599
1600 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1601 {
1602 unsigned long *rmapp;
1603 struct kvm_mmu_page *sp;
1604
1605 sp = page_header(__pa(spte));
1606
1607 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1608
1609 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1610 kvm_flush_remote_tlbs(vcpu->kvm);
1611 }
1612
1613 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1614 {
1615 /*
1616 * In case of absence of EPT Access and Dirty Bits supports,
1617 * emulate the accessed bit for EPT, by checking if this page has
1618 * an EPT mapping, and clearing it if it does. On the next access,
1619 * a new EPT mapping will be established.
1620 * This has some overhead, but not as much as the cost of swapping
1621 * out actively used pages or breaking up actively used hugepages.
1622 */
1623 if (!shadow_accessed_mask) {
1624 /*
1625 * We are holding the kvm->mmu_lock, and we are blowing up
1626 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1627 * This is correct as long as we don't decouple the mmu_lock
1628 * protected regions (like invalidate_range_start|end does).
1629 */
1630 kvm->mmu_notifier_seq++;
1631 return kvm_handle_hva_range(kvm, start, end, 0,
1632 kvm_unmap_rmapp);
1633 }
1634
1635 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1636 }
1637
1638 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1639 {
1640 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1641 }
1642
1643 #ifdef MMU_DEBUG
1644 static int is_empty_shadow_page(u64 *spt)
1645 {
1646 u64 *pos;
1647 u64 *end;
1648
1649 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1650 if (is_shadow_present_pte(*pos)) {
1651 printk(KERN_ERR "%s: %p %llx\n", __func__,
1652 pos, *pos);
1653 return 0;
1654 }
1655 return 1;
1656 }
1657 #endif
1658
1659 /*
1660 * This value is the sum of all of the kvm instances's
1661 * kvm->arch.n_used_mmu_pages values. We need a global,
1662 * aggregate version in order to make the slab shrinker
1663 * faster
1664 */
1665 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1666 {
1667 kvm->arch.n_used_mmu_pages += nr;
1668 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1669 }
1670
1671 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1672 {
1673 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1674 hlist_del(&sp->hash_link);
1675 list_del(&sp->link);
1676 free_page((unsigned long)sp->spt);
1677 if (!sp->role.direct)
1678 free_page((unsigned long)sp->gfns);
1679 kmem_cache_free(mmu_page_header_cache, sp);
1680 }
1681
1682 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1683 {
1684 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1685 }
1686
1687 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1688 struct kvm_mmu_page *sp, u64 *parent_pte)
1689 {
1690 if (!parent_pte)
1691 return;
1692
1693 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1694 }
1695
1696 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1697 u64 *parent_pte)
1698 {
1699 pte_list_remove(parent_pte, &sp->parent_ptes);
1700 }
1701
1702 static void drop_parent_pte(struct kvm_mmu_page *sp,
1703 u64 *parent_pte)
1704 {
1705 mmu_page_remove_parent_pte(sp, parent_pte);
1706 mmu_spte_clear_no_track(parent_pte);
1707 }
1708
1709 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1710 u64 *parent_pte, int direct)
1711 {
1712 struct kvm_mmu_page *sp;
1713
1714 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1715 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1716 if (!direct)
1717 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1718 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1719
1720 /*
1721 * The active_mmu_pages list is the FIFO list, do not move the
1722 * page until it is zapped. kvm_zap_obsolete_pages depends on
1723 * this feature. See the comments in kvm_zap_obsolete_pages().
1724 */
1725 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1726 sp->parent_ptes = 0;
1727 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1728 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1729 return sp;
1730 }
1731
1732 static void mark_unsync(u64 *spte);
1733 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1734 {
1735 pte_list_walk(&sp->parent_ptes, mark_unsync);
1736 }
1737
1738 static void mark_unsync(u64 *spte)
1739 {
1740 struct kvm_mmu_page *sp;
1741 unsigned int index;
1742
1743 sp = page_header(__pa(spte));
1744 index = spte - sp->spt;
1745 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1746 return;
1747 if (sp->unsync_children++)
1748 return;
1749 kvm_mmu_mark_parents_unsync(sp);
1750 }
1751
1752 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1753 struct kvm_mmu_page *sp)
1754 {
1755 return 1;
1756 }
1757
1758 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1759 {
1760 }
1761
1762 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1763 struct kvm_mmu_page *sp, u64 *spte,
1764 const void *pte)
1765 {
1766 WARN_ON(1);
1767 }
1768
1769 #define KVM_PAGE_ARRAY_NR 16
1770
1771 struct kvm_mmu_pages {
1772 struct mmu_page_and_offset {
1773 struct kvm_mmu_page *sp;
1774 unsigned int idx;
1775 } page[KVM_PAGE_ARRAY_NR];
1776 unsigned int nr;
1777 };
1778
1779 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1780 int idx)
1781 {
1782 int i;
1783
1784 if (sp->unsync)
1785 for (i=0; i < pvec->nr; i++)
1786 if (pvec->page[i].sp == sp)
1787 return 0;
1788
1789 pvec->page[pvec->nr].sp = sp;
1790 pvec->page[pvec->nr].idx = idx;
1791 pvec->nr++;
1792 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1793 }
1794
1795 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1796 struct kvm_mmu_pages *pvec)
1797 {
1798 int i, ret, nr_unsync_leaf = 0;
1799
1800 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1801 struct kvm_mmu_page *child;
1802 u64 ent = sp->spt[i];
1803
1804 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1805 goto clear_child_bitmap;
1806
1807 child = page_header(ent & PT64_BASE_ADDR_MASK);
1808
1809 if (child->unsync_children) {
1810 if (mmu_pages_add(pvec, child, i))
1811 return -ENOSPC;
1812
1813 ret = __mmu_unsync_walk(child, pvec);
1814 if (!ret)
1815 goto clear_child_bitmap;
1816 else if (ret > 0)
1817 nr_unsync_leaf += ret;
1818 else
1819 return ret;
1820 } else if (child->unsync) {
1821 nr_unsync_leaf++;
1822 if (mmu_pages_add(pvec, child, i))
1823 return -ENOSPC;
1824 } else
1825 goto clear_child_bitmap;
1826
1827 continue;
1828
1829 clear_child_bitmap:
1830 __clear_bit(i, sp->unsync_child_bitmap);
1831 sp->unsync_children--;
1832 WARN_ON((int)sp->unsync_children < 0);
1833 }
1834
1835
1836 return nr_unsync_leaf;
1837 }
1838
1839 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1840 struct kvm_mmu_pages *pvec)
1841 {
1842 if (!sp->unsync_children)
1843 return 0;
1844
1845 mmu_pages_add(pvec, sp, 0);
1846 return __mmu_unsync_walk(sp, pvec);
1847 }
1848
1849 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1850 {
1851 WARN_ON(!sp->unsync);
1852 trace_kvm_mmu_sync_page(sp);
1853 sp->unsync = 0;
1854 --kvm->stat.mmu_unsync;
1855 }
1856
1857 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1858 struct list_head *invalid_list);
1859 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1860 struct list_head *invalid_list);
1861
1862 /*
1863 * NOTE: we should pay more attention on the zapped-obsolete page
1864 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1865 * since it has been deleted from active_mmu_pages but still can be found
1866 * at hast list.
1867 *
1868 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1869 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1870 * all the obsolete pages.
1871 */
1872 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1873 hlist_for_each_entry(_sp, \
1874 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1875 if ((_sp)->gfn != (_gfn)) {} else
1876
1877 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1878 for_each_gfn_sp(_kvm, _sp, _gfn) \
1879 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1880
1881 /* @sp->gfn should be write-protected at the call site */
1882 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1883 struct list_head *invalid_list, bool clear_unsync)
1884 {
1885 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1886 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1887 return 1;
1888 }
1889
1890 if (clear_unsync)
1891 kvm_unlink_unsync_page(vcpu->kvm, sp);
1892
1893 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1894 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1895 return 1;
1896 }
1897
1898 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1899 return 0;
1900 }
1901
1902 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1903 struct kvm_mmu_page *sp)
1904 {
1905 LIST_HEAD(invalid_list);
1906 int ret;
1907
1908 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1909 if (ret)
1910 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1911
1912 return ret;
1913 }
1914
1915 #ifdef CONFIG_KVM_MMU_AUDIT
1916 #include "mmu_audit.c"
1917 #else
1918 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1919 static void mmu_audit_disable(void) { }
1920 #endif
1921
1922 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1923 struct list_head *invalid_list)
1924 {
1925 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1926 }
1927
1928 /* @gfn should be write-protected at the call site */
1929 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1930 {
1931 struct kvm_mmu_page *s;
1932 LIST_HEAD(invalid_list);
1933 bool flush = false;
1934
1935 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1936 if (!s->unsync)
1937 continue;
1938
1939 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1940 kvm_unlink_unsync_page(vcpu->kvm, s);
1941 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1942 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1943 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1944 continue;
1945 }
1946 flush = true;
1947 }
1948
1949 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1950 if (flush)
1951 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1952 }
1953
1954 struct mmu_page_path {
1955 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1956 unsigned int idx[PT64_ROOT_LEVEL-1];
1957 };
1958
1959 #define for_each_sp(pvec, sp, parents, i) \
1960 for (i = mmu_pages_next(&pvec, &parents, -1), \
1961 sp = pvec.page[i].sp; \
1962 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1963 i = mmu_pages_next(&pvec, &parents, i))
1964
1965 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1966 struct mmu_page_path *parents,
1967 int i)
1968 {
1969 int n;
1970
1971 for (n = i+1; n < pvec->nr; n++) {
1972 struct kvm_mmu_page *sp = pvec->page[n].sp;
1973
1974 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1975 parents->idx[0] = pvec->page[n].idx;
1976 return n;
1977 }
1978
1979 parents->parent[sp->role.level-2] = sp;
1980 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1981 }
1982
1983 return n;
1984 }
1985
1986 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1987 {
1988 struct kvm_mmu_page *sp;
1989 unsigned int level = 0;
1990
1991 do {
1992 unsigned int idx = parents->idx[level];
1993
1994 sp = parents->parent[level];
1995 if (!sp)
1996 return;
1997
1998 --sp->unsync_children;
1999 WARN_ON((int)sp->unsync_children < 0);
2000 __clear_bit(idx, sp->unsync_child_bitmap);
2001 level++;
2002 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2003 }
2004
2005 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2006 struct mmu_page_path *parents,
2007 struct kvm_mmu_pages *pvec)
2008 {
2009 parents->parent[parent->role.level-1] = NULL;
2010 pvec->nr = 0;
2011 }
2012
2013 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2014 struct kvm_mmu_page *parent)
2015 {
2016 int i;
2017 struct kvm_mmu_page *sp;
2018 struct mmu_page_path parents;
2019 struct kvm_mmu_pages pages;
2020 LIST_HEAD(invalid_list);
2021
2022 kvm_mmu_pages_init(parent, &parents, &pages);
2023 while (mmu_unsync_walk(parent, &pages)) {
2024 bool protected = false;
2025
2026 for_each_sp(pages, sp, parents, i)
2027 protected |= rmap_write_protect(vcpu, sp->gfn);
2028
2029 if (protected)
2030 kvm_flush_remote_tlbs(vcpu->kvm);
2031
2032 for_each_sp(pages, sp, parents, i) {
2033 kvm_sync_page(vcpu, sp, &invalid_list);
2034 mmu_pages_clear_parents(&parents);
2035 }
2036 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2037 cond_resched_lock(&vcpu->kvm->mmu_lock);
2038 kvm_mmu_pages_init(parent, &parents, &pages);
2039 }
2040 }
2041
2042 static void init_shadow_page_table(struct kvm_mmu_page *sp)
2043 {
2044 int i;
2045
2046 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2047 sp->spt[i] = 0ull;
2048 }
2049
2050 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2051 {
2052 sp->write_flooding_count = 0;
2053 }
2054
2055 static void clear_sp_write_flooding_count(u64 *spte)
2056 {
2057 struct kvm_mmu_page *sp = page_header(__pa(spte));
2058
2059 __clear_sp_write_flooding_count(sp);
2060 }
2061
2062 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2063 {
2064 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2065 }
2066
2067 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2068 gfn_t gfn,
2069 gva_t gaddr,
2070 unsigned level,
2071 int direct,
2072 unsigned access,
2073 u64 *parent_pte)
2074 {
2075 union kvm_mmu_page_role role;
2076 unsigned quadrant;
2077 struct kvm_mmu_page *sp;
2078 bool need_sync = false;
2079
2080 role = vcpu->arch.mmu.base_role;
2081 role.level = level;
2082 role.direct = direct;
2083 if (role.direct)
2084 role.cr4_pae = 0;
2085 role.access = access;
2086 if (!vcpu->arch.mmu.direct_map
2087 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2088 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2089 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2090 role.quadrant = quadrant;
2091 }
2092 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2093 if (is_obsolete_sp(vcpu->kvm, sp))
2094 continue;
2095
2096 if (!need_sync && sp->unsync)
2097 need_sync = true;
2098
2099 if (sp->role.word != role.word)
2100 continue;
2101
2102 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2103 break;
2104
2105 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2106 if (sp->unsync_children) {
2107 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2108 kvm_mmu_mark_parents_unsync(sp);
2109 } else if (sp->unsync)
2110 kvm_mmu_mark_parents_unsync(sp);
2111
2112 __clear_sp_write_flooding_count(sp);
2113 trace_kvm_mmu_get_page(sp, false);
2114 return sp;
2115 }
2116 ++vcpu->kvm->stat.mmu_cache_miss;
2117 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2118 if (!sp)
2119 return sp;
2120 sp->gfn = gfn;
2121 sp->role = role;
2122 hlist_add_head(&sp->hash_link,
2123 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2124 if (!direct) {
2125 if (rmap_write_protect(vcpu, gfn))
2126 kvm_flush_remote_tlbs(vcpu->kvm);
2127 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2128 kvm_sync_pages(vcpu, gfn);
2129
2130 account_shadowed(vcpu->kvm, sp);
2131 }
2132 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2133 init_shadow_page_table(sp);
2134 trace_kvm_mmu_get_page(sp, true);
2135 return sp;
2136 }
2137
2138 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2139 struct kvm_vcpu *vcpu, u64 addr)
2140 {
2141 iterator->addr = addr;
2142 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2143 iterator->level = vcpu->arch.mmu.shadow_root_level;
2144
2145 if (iterator->level == PT64_ROOT_LEVEL &&
2146 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2147 !vcpu->arch.mmu.direct_map)
2148 --iterator->level;
2149
2150 if (iterator->level == PT32E_ROOT_LEVEL) {
2151 iterator->shadow_addr
2152 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2153 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2154 --iterator->level;
2155 if (!iterator->shadow_addr)
2156 iterator->level = 0;
2157 }
2158 }
2159
2160 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2161 {
2162 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2163 return false;
2164
2165 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2166 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2167 return true;
2168 }
2169
2170 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2171 u64 spte)
2172 {
2173 if (is_last_spte(spte, iterator->level)) {
2174 iterator->level = 0;
2175 return;
2176 }
2177
2178 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2179 --iterator->level;
2180 }
2181
2182 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2183 {
2184 return __shadow_walk_next(iterator, *iterator->sptep);
2185 }
2186
2187 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2188 {
2189 u64 spte;
2190
2191 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2192 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2193
2194 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2195 shadow_user_mask | shadow_x_mask;
2196
2197 if (accessed)
2198 spte |= shadow_accessed_mask;
2199
2200 mmu_spte_set(sptep, spte);
2201 }
2202
2203 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2204 unsigned direct_access)
2205 {
2206 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2207 struct kvm_mmu_page *child;
2208
2209 /*
2210 * For the direct sp, if the guest pte's dirty bit
2211 * changed form clean to dirty, it will corrupt the
2212 * sp's access: allow writable in the read-only sp,
2213 * so we should update the spte at this point to get
2214 * a new sp with the correct access.
2215 */
2216 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2217 if (child->role.access == direct_access)
2218 return;
2219
2220 drop_parent_pte(child, sptep);
2221 kvm_flush_remote_tlbs(vcpu->kvm);
2222 }
2223 }
2224
2225 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2226 u64 *spte)
2227 {
2228 u64 pte;
2229 struct kvm_mmu_page *child;
2230
2231 pte = *spte;
2232 if (is_shadow_present_pte(pte)) {
2233 if (is_last_spte(pte, sp->role.level)) {
2234 drop_spte(kvm, spte);
2235 if (is_large_pte(pte))
2236 --kvm->stat.lpages;
2237 } else {
2238 child = page_header(pte & PT64_BASE_ADDR_MASK);
2239 drop_parent_pte(child, spte);
2240 }
2241 return true;
2242 }
2243
2244 if (is_mmio_spte(pte))
2245 mmu_spte_clear_no_track(spte);
2246
2247 return false;
2248 }
2249
2250 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2251 struct kvm_mmu_page *sp)
2252 {
2253 unsigned i;
2254
2255 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2256 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2257 }
2258
2259 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2260 {
2261 mmu_page_remove_parent_pte(sp, parent_pte);
2262 }
2263
2264 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2265 {
2266 u64 *sptep;
2267 struct rmap_iterator iter;
2268
2269 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2270 drop_parent_pte(sp, sptep);
2271 }
2272
2273 static int mmu_zap_unsync_children(struct kvm *kvm,
2274 struct kvm_mmu_page *parent,
2275 struct list_head *invalid_list)
2276 {
2277 int i, zapped = 0;
2278 struct mmu_page_path parents;
2279 struct kvm_mmu_pages pages;
2280
2281 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2282 return 0;
2283
2284 kvm_mmu_pages_init(parent, &parents, &pages);
2285 while (mmu_unsync_walk(parent, &pages)) {
2286 struct kvm_mmu_page *sp;
2287
2288 for_each_sp(pages, sp, parents, i) {
2289 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2290 mmu_pages_clear_parents(&parents);
2291 zapped++;
2292 }
2293 kvm_mmu_pages_init(parent, &parents, &pages);
2294 }
2295
2296 return zapped;
2297 }
2298
2299 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2300 struct list_head *invalid_list)
2301 {
2302 int ret;
2303
2304 trace_kvm_mmu_prepare_zap_page(sp);
2305 ++kvm->stat.mmu_shadow_zapped;
2306 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2307 kvm_mmu_page_unlink_children(kvm, sp);
2308 kvm_mmu_unlink_parents(kvm, sp);
2309
2310 if (!sp->role.invalid && !sp->role.direct)
2311 unaccount_shadowed(kvm, sp);
2312
2313 if (sp->unsync)
2314 kvm_unlink_unsync_page(kvm, sp);
2315 if (!sp->root_count) {
2316 /* Count self */
2317 ret++;
2318 list_move(&sp->link, invalid_list);
2319 kvm_mod_used_mmu_pages(kvm, -1);
2320 } else {
2321 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2322
2323 /*
2324 * The obsolete pages can not be used on any vcpus.
2325 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2326 */
2327 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2328 kvm_reload_remote_mmus(kvm);
2329 }
2330
2331 sp->role.invalid = 1;
2332 return ret;
2333 }
2334
2335 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2336 struct list_head *invalid_list)
2337 {
2338 struct kvm_mmu_page *sp, *nsp;
2339
2340 if (list_empty(invalid_list))
2341 return;
2342
2343 /*
2344 * wmb: make sure everyone sees our modifications to the page tables
2345 * rmb: make sure we see changes to vcpu->mode
2346 */
2347 smp_mb();
2348
2349 /*
2350 * Wait for all vcpus to exit guest mode and/or lockless shadow
2351 * page table walks.
2352 */
2353 kvm_flush_remote_tlbs(kvm);
2354
2355 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2356 WARN_ON(!sp->role.invalid || sp->root_count);
2357 kvm_mmu_free_page(sp);
2358 }
2359 }
2360
2361 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2362 struct list_head *invalid_list)
2363 {
2364 struct kvm_mmu_page *sp;
2365
2366 if (list_empty(&kvm->arch.active_mmu_pages))
2367 return false;
2368
2369 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2370 struct kvm_mmu_page, link);
2371 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2372
2373 return true;
2374 }
2375
2376 /*
2377 * Changing the number of mmu pages allocated to the vm
2378 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2379 */
2380 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2381 {
2382 LIST_HEAD(invalid_list);
2383
2384 spin_lock(&kvm->mmu_lock);
2385
2386 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2387 /* Need to free some mmu pages to achieve the goal. */
2388 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2389 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2390 break;
2391
2392 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2393 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2394 }
2395
2396 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2397
2398 spin_unlock(&kvm->mmu_lock);
2399 }
2400
2401 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2402 {
2403 struct kvm_mmu_page *sp;
2404 LIST_HEAD(invalid_list);
2405 int r;
2406
2407 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2408 r = 0;
2409 spin_lock(&kvm->mmu_lock);
2410 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2411 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2412 sp->role.word);
2413 r = 1;
2414 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2415 }
2416 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2417 spin_unlock(&kvm->mmu_lock);
2418
2419 return r;
2420 }
2421 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2422
2423 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2424 {
2425 trace_kvm_mmu_unsync_page(sp);
2426 ++vcpu->kvm->stat.mmu_unsync;
2427 sp->unsync = 1;
2428
2429 kvm_mmu_mark_parents_unsync(sp);
2430 }
2431
2432 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2433 {
2434 struct kvm_mmu_page *s;
2435
2436 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2437 if (s->unsync)
2438 continue;
2439 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2440 __kvm_unsync_page(vcpu, s);
2441 }
2442 }
2443
2444 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2445 bool can_unsync)
2446 {
2447 struct kvm_mmu_page *s;
2448 bool need_unsync = false;
2449
2450 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2451 if (!can_unsync)
2452 return 1;
2453
2454 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2455 return 1;
2456
2457 if (!s->unsync)
2458 need_unsync = true;
2459 }
2460 if (need_unsync)
2461 kvm_unsync_pages(vcpu, gfn);
2462 return 0;
2463 }
2464
2465 static bool kvm_is_mmio_pfn(pfn_t pfn)
2466 {
2467 if (pfn_valid(pfn))
2468 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2469
2470 return true;
2471 }
2472
2473 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2474 unsigned pte_access, int level,
2475 gfn_t gfn, pfn_t pfn, bool speculative,
2476 bool can_unsync, bool host_writable)
2477 {
2478 u64 spte;
2479 int ret = 0;
2480
2481 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2482 return 0;
2483
2484 spte = PT_PRESENT_MASK;
2485 if (!speculative)
2486 spte |= shadow_accessed_mask;
2487
2488 if (pte_access & ACC_EXEC_MASK)
2489 spte |= shadow_x_mask;
2490 else
2491 spte |= shadow_nx_mask;
2492
2493 if (pte_access & ACC_USER_MASK)
2494 spte |= shadow_user_mask;
2495
2496 if (level > PT_PAGE_TABLE_LEVEL)
2497 spte |= PT_PAGE_SIZE_MASK;
2498 if (tdp_enabled)
2499 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2500 kvm_is_mmio_pfn(pfn));
2501
2502 if (host_writable)
2503 spte |= SPTE_HOST_WRITEABLE;
2504 else
2505 pte_access &= ~ACC_WRITE_MASK;
2506
2507 spte |= (u64)pfn << PAGE_SHIFT;
2508
2509 if (pte_access & ACC_WRITE_MASK) {
2510
2511 /*
2512 * Other vcpu creates new sp in the window between
2513 * mapping_level() and acquiring mmu-lock. We can
2514 * allow guest to retry the access, the mapping can
2515 * be fixed if guest refault.
2516 */
2517 if (level > PT_PAGE_TABLE_LEVEL &&
2518 has_wrprotected_page(vcpu, gfn, level))
2519 goto done;
2520
2521 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2522
2523 /*
2524 * Optimization: for pte sync, if spte was writable the hash
2525 * lookup is unnecessary (and expensive). Write protection
2526 * is responsibility of mmu_get_page / kvm_sync_page.
2527 * Same reasoning can be applied to dirty page accounting.
2528 */
2529 if (!can_unsync && is_writable_pte(*sptep))
2530 goto set_pte;
2531
2532 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2533 pgprintk("%s: found shadow page for %llx, marking ro\n",
2534 __func__, gfn);
2535 ret = 1;
2536 pte_access &= ~ACC_WRITE_MASK;
2537 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2538 }
2539 }
2540
2541 if (pte_access & ACC_WRITE_MASK) {
2542 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2543 spte |= shadow_dirty_mask;
2544 }
2545
2546 set_pte:
2547 if (mmu_spte_update(sptep, spte))
2548 kvm_flush_remote_tlbs(vcpu->kvm);
2549 done:
2550 return ret;
2551 }
2552
2553 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2554 unsigned pte_access, int write_fault, int *emulate,
2555 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2556 bool host_writable)
2557 {
2558 int was_rmapped = 0;
2559 int rmap_count;
2560
2561 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2562 *sptep, write_fault, gfn);
2563
2564 if (is_rmap_spte(*sptep)) {
2565 /*
2566 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2567 * the parent of the now unreachable PTE.
2568 */
2569 if (level > PT_PAGE_TABLE_LEVEL &&
2570 !is_large_pte(*sptep)) {
2571 struct kvm_mmu_page *child;
2572 u64 pte = *sptep;
2573
2574 child = page_header(pte & PT64_BASE_ADDR_MASK);
2575 drop_parent_pte(child, sptep);
2576 kvm_flush_remote_tlbs(vcpu->kvm);
2577 } else if (pfn != spte_to_pfn(*sptep)) {
2578 pgprintk("hfn old %llx new %llx\n",
2579 spte_to_pfn(*sptep), pfn);
2580 drop_spte(vcpu->kvm, sptep);
2581 kvm_flush_remote_tlbs(vcpu->kvm);
2582 } else
2583 was_rmapped = 1;
2584 }
2585
2586 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2587 true, host_writable)) {
2588 if (write_fault)
2589 *emulate = 1;
2590 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2591 }
2592
2593 if (unlikely(is_mmio_spte(*sptep) && emulate))
2594 *emulate = 1;
2595
2596 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2597 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2598 is_large_pte(*sptep)? "2MB" : "4kB",
2599 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2600 *sptep, sptep);
2601 if (!was_rmapped && is_large_pte(*sptep))
2602 ++vcpu->kvm->stat.lpages;
2603
2604 if (is_shadow_present_pte(*sptep)) {
2605 if (!was_rmapped) {
2606 rmap_count = rmap_add(vcpu, sptep, gfn);
2607 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2608 rmap_recycle(vcpu, sptep, gfn);
2609 }
2610 }
2611
2612 kvm_release_pfn_clean(pfn);
2613 }
2614
2615 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2616 bool no_dirty_log)
2617 {
2618 struct kvm_memory_slot *slot;
2619
2620 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2621 if (!slot)
2622 return KVM_PFN_ERR_FAULT;
2623
2624 return gfn_to_pfn_memslot_atomic(slot, gfn);
2625 }
2626
2627 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2628 struct kvm_mmu_page *sp,
2629 u64 *start, u64 *end)
2630 {
2631 struct page *pages[PTE_PREFETCH_NUM];
2632 struct kvm_memory_slot *slot;
2633 unsigned access = sp->role.access;
2634 int i, ret;
2635 gfn_t gfn;
2636
2637 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2638 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2639 if (!slot)
2640 return -1;
2641
2642 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2643 if (ret <= 0)
2644 return -1;
2645
2646 for (i = 0; i < ret; i++, gfn++, start++)
2647 mmu_set_spte(vcpu, start, access, 0, NULL,
2648 sp->role.level, gfn, page_to_pfn(pages[i]),
2649 true, true);
2650
2651 return 0;
2652 }
2653
2654 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2655 struct kvm_mmu_page *sp, u64 *sptep)
2656 {
2657 u64 *spte, *start = NULL;
2658 int i;
2659
2660 WARN_ON(!sp->role.direct);
2661
2662 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2663 spte = sp->spt + i;
2664
2665 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2666 if (is_shadow_present_pte(*spte) || spte == sptep) {
2667 if (!start)
2668 continue;
2669 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2670 break;
2671 start = NULL;
2672 } else if (!start)
2673 start = spte;
2674 }
2675 }
2676
2677 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2678 {
2679 struct kvm_mmu_page *sp;
2680
2681 /*
2682 * Since it's no accessed bit on EPT, it's no way to
2683 * distinguish between actually accessed translations
2684 * and prefetched, so disable pte prefetch if EPT is
2685 * enabled.
2686 */
2687 if (!shadow_accessed_mask)
2688 return;
2689
2690 sp = page_header(__pa(sptep));
2691 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2692 return;
2693
2694 __direct_pte_prefetch(vcpu, sp, sptep);
2695 }
2696
2697 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2698 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2699 bool prefault)
2700 {
2701 struct kvm_shadow_walk_iterator iterator;
2702 struct kvm_mmu_page *sp;
2703 int emulate = 0;
2704 gfn_t pseudo_gfn;
2705
2706 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2707 return 0;
2708
2709 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2710 if (iterator.level == level) {
2711 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2712 write, &emulate, level, gfn, pfn,
2713 prefault, map_writable);
2714 direct_pte_prefetch(vcpu, iterator.sptep);
2715 ++vcpu->stat.pf_fixed;
2716 break;
2717 }
2718
2719 drop_large_spte(vcpu, iterator.sptep);
2720 if (!is_shadow_present_pte(*iterator.sptep)) {
2721 u64 base_addr = iterator.addr;
2722
2723 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2724 pseudo_gfn = base_addr >> PAGE_SHIFT;
2725 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2726 iterator.level - 1,
2727 1, ACC_ALL, iterator.sptep);
2728
2729 link_shadow_page(iterator.sptep, sp, true);
2730 }
2731 }
2732 return emulate;
2733 }
2734
2735 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2736 {
2737 siginfo_t info;
2738
2739 info.si_signo = SIGBUS;
2740 info.si_errno = 0;
2741 info.si_code = BUS_MCEERR_AR;
2742 info.si_addr = (void __user *)address;
2743 info.si_addr_lsb = PAGE_SHIFT;
2744
2745 send_sig_info(SIGBUS, &info, tsk);
2746 }
2747
2748 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2749 {
2750 /*
2751 * Do not cache the mmio info caused by writing the readonly gfn
2752 * into the spte otherwise read access on readonly gfn also can
2753 * caused mmio page fault and treat it as mmio access.
2754 * Return 1 to tell kvm to emulate it.
2755 */
2756 if (pfn == KVM_PFN_ERR_RO_FAULT)
2757 return 1;
2758
2759 if (pfn == KVM_PFN_ERR_HWPOISON) {
2760 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2761 return 0;
2762 }
2763
2764 return -EFAULT;
2765 }
2766
2767 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2768 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2769 {
2770 pfn_t pfn = *pfnp;
2771 gfn_t gfn = *gfnp;
2772 int level = *levelp;
2773
2774 /*
2775 * Check if it's a transparent hugepage. If this would be an
2776 * hugetlbfs page, level wouldn't be set to
2777 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2778 * here.
2779 */
2780 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2781 level == PT_PAGE_TABLE_LEVEL &&
2782 PageTransCompound(pfn_to_page(pfn)) &&
2783 !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2784 unsigned long mask;
2785 /*
2786 * mmu_notifier_retry was successful and we hold the
2787 * mmu_lock here, so the pmd can't become splitting
2788 * from under us, and in turn
2789 * __split_huge_page_refcount() can't run from under
2790 * us and we can safely transfer the refcount from
2791 * PG_tail to PG_head as we switch the pfn to tail to
2792 * head.
2793 */
2794 *levelp = level = PT_DIRECTORY_LEVEL;
2795 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2796 VM_BUG_ON((gfn & mask) != (pfn & mask));
2797 if (pfn & mask) {
2798 gfn &= ~mask;
2799 *gfnp = gfn;
2800 kvm_release_pfn_clean(pfn);
2801 pfn &= ~mask;
2802 kvm_get_pfn(pfn);
2803 *pfnp = pfn;
2804 }
2805 }
2806 }
2807
2808 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2809 pfn_t pfn, unsigned access, int *ret_val)
2810 {
2811 bool ret = true;
2812
2813 /* The pfn is invalid, report the error! */
2814 if (unlikely(is_error_pfn(pfn))) {
2815 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2816 goto exit;
2817 }
2818
2819 if (unlikely(is_noslot_pfn(pfn)))
2820 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2821
2822 ret = false;
2823 exit:
2824 return ret;
2825 }
2826
2827 static bool page_fault_can_be_fast(u32 error_code)
2828 {
2829 /*
2830 * Do not fix the mmio spte with invalid generation number which
2831 * need to be updated by slow page fault path.
2832 */
2833 if (unlikely(error_code & PFERR_RSVD_MASK))
2834 return false;
2835
2836 /*
2837 * #PF can be fast only if the shadow page table is present and it
2838 * is caused by write-protect, that means we just need change the
2839 * W bit of the spte which can be done out of mmu-lock.
2840 */
2841 if (!(error_code & PFERR_PRESENT_MASK) ||
2842 !(error_code & PFERR_WRITE_MASK))
2843 return false;
2844
2845 return true;
2846 }
2847
2848 static bool
2849 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2850 u64 *sptep, u64 spte)
2851 {
2852 gfn_t gfn;
2853
2854 WARN_ON(!sp->role.direct);
2855
2856 /*
2857 * The gfn of direct spte is stable since it is calculated
2858 * by sp->gfn.
2859 */
2860 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2861
2862 /*
2863 * Theoretically we could also set dirty bit (and flush TLB) here in
2864 * order to eliminate unnecessary PML logging. See comments in
2865 * set_spte. But fast_page_fault is very unlikely to happen with PML
2866 * enabled, so we do not do this. This might result in the same GPA
2867 * to be logged in PML buffer again when the write really happens, and
2868 * eventually to be called by mark_page_dirty twice. But it's also no
2869 * harm. This also avoids the TLB flush needed after setting dirty bit
2870 * so non-PML cases won't be impacted.
2871 *
2872 * Compare with set_spte where instead shadow_dirty_mask is set.
2873 */
2874 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2875 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2876
2877 return true;
2878 }
2879
2880 /*
2881 * Return value:
2882 * - true: let the vcpu to access on the same address again.
2883 * - false: let the real page fault path to fix it.
2884 */
2885 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2886 u32 error_code)
2887 {
2888 struct kvm_shadow_walk_iterator iterator;
2889 struct kvm_mmu_page *sp;
2890 bool ret = false;
2891 u64 spte = 0ull;
2892
2893 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2894 return false;
2895
2896 if (!page_fault_can_be_fast(error_code))
2897 return false;
2898
2899 walk_shadow_page_lockless_begin(vcpu);
2900 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2901 if (!is_shadow_present_pte(spte) || iterator.level < level)
2902 break;
2903
2904 /*
2905 * If the mapping has been changed, let the vcpu fault on the
2906 * same address again.
2907 */
2908 if (!is_rmap_spte(spte)) {
2909 ret = true;
2910 goto exit;
2911 }
2912
2913 sp = page_header(__pa(iterator.sptep));
2914 if (!is_last_spte(spte, sp->role.level))
2915 goto exit;
2916
2917 /*
2918 * Check if it is a spurious fault caused by TLB lazily flushed.
2919 *
2920 * Need not check the access of upper level table entries since
2921 * they are always ACC_ALL.
2922 */
2923 if (is_writable_pte(spte)) {
2924 ret = true;
2925 goto exit;
2926 }
2927
2928 /*
2929 * Currently, to simplify the code, only the spte write-protected
2930 * by dirty-log can be fast fixed.
2931 */
2932 if (!spte_is_locklessly_modifiable(spte))
2933 goto exit;
2934
2935 /*
2936 * Do not fix write-permission on the large spte since we only dirty
2937 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2938 * that means other pages are missed if its slot is dirty-logged.
2939 *
2940 * Instead, we let the slow page fault path create a normal spte to
2941 * fix the access.
2942 *
2943 * See the comments in kvm_arch_commit_memory_region().
2944 */
2945 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2946 goto exit;
2947
2948 /*
2949 * Currently, fast page fault only works for direct mapping since
2950 * the gfn is not stable for indirect shadow page.
2951 * See Documentation/virtual/kvm/locking.txt to get more detail.
2952 */
2953 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2954 exit:
2955 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2956 spte, ret);
2957 walk_shadow_page_lockless_end(vcpu);
2958
2959 return ret;
2960 }
2961
2962 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2963 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2964 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2965
2966 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2967 gfn_t gfn, bool prefault)
2968 {
2969 int r;
2970 int level;
2971 bool force_pt_level = false;
2972 pfn_t pfn;
2973 unsigned long mmu_seq;
2974 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2975
2976 level = mapping_level(vcpu, gfn, &force_pt_level);
2977 if (likely(!force_pt_level)) {
2978 /*
2979 * This path builds a PAE pagetable - so we can map
2980 * 2mb pages at maximum. Therefore check if the level
2981 * is larger than that.
2982 */
2983 if (level > PT_DIRECTORY_LEVEL)
2984 level = PT_DIRECTORY_LEVEL;
2985
2986 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2987 }
2988
2989 if (fast_page_fault(vcpu, v, level, error_code))
2990 return 0;
2991
2992 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2993 smp_rmb();
2994
2995 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2996 return 0;
2997
2998 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2999 return r;
3000
3001 spin_lock(&vcpu->kvm->mmu_lock);
3002 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3003 goto out_unlock;
3004 make_mmu_pages_available(vcpu);
3005 if (likely(!force_pt_level))
3006 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3007 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3008 prefault);
3009 spin_unlock(&vcpu->kvm->mmu_lock);
3010
3011
3012 return r;
3013
3014 out_unlock:
3015 spin_unlock(&vcpu->kvm->mmu_lock);
3016 kvm_release_pfn_clean(pfn);
3017 return 0;
3018 }
3019
3020
3021 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3022 {
3023 int i;
3024 struct kvm_mmu_page *sp;
3025 LIST_HEAD(invalid_list);
3026
3027 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3028 return;
3029
3030 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3031 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3032 vcpu->arch.mmu.direct_map)) {
3033 hpa_t root = vcpu->arch.mmu.root_hpa;
3034
3035 spin_lock(&vcpu->kvm->mmu_lock);
3036 sp = page_header(root);
3037 --sp->root_count;
3038 if (!sp->root_count && sp->role.invalid) {
3039 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3040 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3041 }
3042 spin_unlock(&vcpu->kvm->mmu_lock);
3043 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3044 return;
3045 }
3046
3047 spin_lock(&vcpu->kvm->mmu_lock);
3048 for (i = 0; i < 4; ++i) {
3049 hpa_t root = vcpu->arch.mmu.pae_root[i];
3050
3051 if (root) {
3052 root &= PT64_BASE_ADDR_MASK;
3053 sp = page_header(root);
3054 --sp->root_count;
3055 if (!sp->root_count && sp->role.invalid)
3056 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3057 &invalid_list);
3058 }
3059 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3060 }
3061 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3062 spin_unlock(&vcpu->kvm->mmu_lock);
3063 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3064 }
3065
3066 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3067 {
3068 int ret = 0;
3069
3070 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3071 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3072 ret = 1;
3073 }
3074
3075 return ret;
3076 }
3077
3078 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3079 {
3080 struct kvm_mmu_page *sp;
3081 unsigned i;
3082
3083 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3084 spin_lock(&vcpu->kvm->mmu_lock);
3085 make_mmu_pages_available(vcpu);
3086 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3087 1, ACC_ALL, NULL);
3088 ++sp->root_count;
3089 spin_unlock(&vcpu->kvm->mmu_lock);
3090 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3091 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3092 for (i = 0; i < 4; ++i) {
3093 hpa_t root = vcpu->arch.mmu.pae_root[i];
3094
3095 MMU_WARN_ON(VALID_PAGE(root));
3096 spin_lock(&vcpu->kvm->mmu_lock);
3097 make_mmu_pages_available(vcpu);
3098 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3099 i << 30,
3100 PT32_ROOT_LEVEL, 1, ACC_ALL,
3101 NULL);
3102 root = __pa(sp->spt);
3103 ++sp->root_count;
3104 spin_unlock(&vcpu->kvm->mmu_lock);
3105 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3106 }
3107 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3108 } else
3109 BUG();
3110
3111 return 0;
3112 }
3113
3114 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3115 {
3116 struct kvm_mmu_page *sp;
3117 u64 pdptr, pm_mask;
3118 gfn_t root_gfn;
3119 int i;
3120
3121 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3122
3123 if (mmu_check_root(vcpu, root_gfn))
3124 return 1;
3125
3126 /*
3127 * Do we shadow a long mode page table? If so we need to
3128 * write-protect the guests page table root.
3129 */
3130 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3131 hpa_t root = vcpu->arch.mmu.root_hpa;
3132
3133 MMU_WARN_ON(VALID_PAGE(root));
3134
3135 spin_lock(&vcpu->kvm->mmu_lock);
3136 make_mmu_pages_available(vcpu);
3137 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3138 0, ACC_ALL, NULL);
3139 root = __pa(sp->spt);
3140 ++sp->root_count;
3141 spin_unlock(&vcpu->kvm->mmu_lock);
3142 vcpu->arch.mmu.root_hpa = root;
3143 return 0;
3144 }
3145
3146 /*
3147 * We shadow a 32 bit page table. This may be a legacy 2-level
3148 * or a PAE 3-level page table. In either case we need to be aware that
3149 * the shadow page table may be a PAE or a long mode page table.
3150 */
3151 pm_mask = PT_PRESENT_MASK;
3152 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3153 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3154
3155 for (i = 0; i < 4; ++i) {
3156 hpa_t root = vcpu->arch.mmu.pae_root[i];
3157
3158 MMU_WARN_ON(VALID_PAGE(root));
3159 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3160 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3161 if (!is_present_gpte(pdptr)) {
3162 vcpu->arch.mmu.pae_root[i] = 0;
3163 continue;
3164 }
3165 root_gfn = pdptr >> PAGE_SHIFT;
3166 if (mmu_check_root(vcpu, root_gfn))
3167 return 1;
3168 }
3169 spin_lock(&vcpu->kvm->mmu_lock);
3170 make_mmu_pages_available(vcpu);
3171 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3172 PT32_ROOT_LEVEL, 0,
3173 ACC_ALL, NULL);
3174 root = __pa(sp->spt);
3175 ++sp->root_count;
3176 spin_unlock(&vcpu->kvm->mmu_lock);
3177
3178 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3179 }
3180 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3181
3182 /*
3183 * If we shadow a 32 bit page table with a long mode page
3184 * table we enter this path.
3185 */
3186 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3187 if (vcpu->arch.mmu.lm_root == NULL) {
3188 /*
3189 * The additional page necessary for this is only
3190 * allocated on demand.
3191 */
3192
3193 u64 *lm_root;
3194
3195 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3196 if (lm_root == NULL)
3197 return 1;
3198
3199 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3200
3201 vcpu->arch.mmu.lm_root = lm_root;
3202 }
3203
3204 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3205 }
3206
3207 return 0;
3208 }
3209
3210 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3211 {
3212 if (vcpu->arch.mmu.direct_map)
3213 return mmu_alloc_direct_roots(vcpu);
3214 else
3215 return mmu_alloc_shadow_roots(vcpu);
3216 }
3217
3218 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3219 {
3220 int i;
3221 struct kvm_mmu_page *sp;
3222
3223 if (vcpu->arch.mmu.direct_map)
3224 return;
3225
3226 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3227 return;
3228
3229 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3230 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3231 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3232 hpa_t root = vcpu->arch.mmu.root_hpa;
3233 sp = page_header(root);
3234 mmu_sync_children(vcpu, sp);
3235 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3236 return;
3237 }
3238 for (i = 0; i < 4; ++i) {
3239 hpa_t root = vcpu->arch.mmu.pae_root[i];
3240
3241 if (root && VALID_PAGE(root)) {
3242 root &= PT64_BASE_ADDR_MASK;
3243 sp = page_header(root);
3244 mmu_sync_children(vcpu, sp);
3245 }
3246 }
3247 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3248 }
3249
3250 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3251 {
3252 spin_lock(&vcpu->kvm->mmu_lock);
3253 mmu_sync_roots(vcpu);
3254 spin_unlock(&vcpu->kvm->mmu_lock);
3255 }
3256 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3257
3258 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3259 u32 access, struct x86_exception *exception)
3260 {
3261 if (exception)
3262 exception->error_code = 0;
3263 return vaddr;
3264 }
3265
3266 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3267 u32 access,
3268 struct x86_exception *exception)
3269 {
3270 if (exception)
3271 exception->error_code = 0;
3272 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3273 }
3274
3275 static bool
3276 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3277 {
3278 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3279
3280 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3281 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3282 }
3283
3284 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3285 {
3286 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3287 }
3288
3289 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3290 {
3291 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3292 }
3293
3294 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3295 {
3296 if (direct)
3297 return vcpu_match_mmio_gpa(vcpu, addr);
3298
3299 return vcpu_match_mmio_gva(vcpu, addr);
3300 }
3301
3302 /* return true if reserved bit is detected on spte. */
3303 static bool
3304 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3305 {
3306 struct kvm_shadow_walk_iterator iterator;
3307 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3308 int root, leaf;
3309 bool reserved = false;
3310
3311 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3312 goto exit;
3313
3314 walk_shadow_page_lockless_begin(vcpu);
3315
3316 for (shadow_walk_init(&iterator, vcpu, addr),
3317 leaf = root = iterator.level;
3318 shadow_walk_okay(&iterator);
3319 __shadow_walk_next(&iterator, spte)) {
3320 spte = mmu_spte_get_lockless(iterator.sptep);
3321
3322 sptes[leaf - 1] = spte;
3323 leaf--;
3324
3325 if (!is_shadow_present_pte(spte))
3326 break;
3327
3328 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3329 iterator.level);
3330 }
3331
3332 walk_shadow_page_lockless_end(vcpu);
3333
3334 if (reserved) {
3335 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3336 __func__, addr);
3337 while (root > leaf) {
3338 pr_err("------ spte 0x%llx level %d.\n",
3339 sptes[root - 1], root);
3340 root--;
3341 }
3342 }
3343 exit:
3344 *sptep = spte;
3345 return reserved;
3346 }
3347
3348 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3349 {
3350 u64 spte;
3351 bool reserved;
3352
3353 if (quickly_check_mmio_pf(vcpu, addr, direct))
3354 return RET_MMIO_PF_EMULATE;
3355
3356 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3357 if (unlikely(reserved))
3358 return RET_MMIO_PF_BUG;
3359
3360 if (is_mmio_spte(spte)) {
3361 gfn_t gfn = get_mmio_spte_gfn(spte);
3362 unsigned access = get_mmio_spte_access(spte);
3363
3364 if (!check_mmio_spte(vcpu, spte))
3365 return RET_MMIO_PF_INVALID;
3366
3367 if (direct)
3368 addr = 0;
3369
3370 trace_handle_mmio_page_fault(addr, gfn, access);
3371 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3372 return RET_MMIO_PF_EMULATE;
3373 }
3374
3375 /*
3376 * If the page table is zapped by other cpus, let CPU fault again on
3377 * the address.
3378 */
3379 return RET_MMIO_PF_RETRY;
3380 }
3381 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3382
3383 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3384 u32 error_code, bool direct)
3385 {
3386 int ret;
3387
3388 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3389 WARN_ON(ret == RET_MMIO_PF_BUG);
3390 return ret;
3391 }
3392
3393 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3394 u32 error_code, bool prefault)
3395 {
3396 gfn_t gfn;
3397 int r;
3398
3399 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3400
3401 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3402 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3403
3404 if (likely(r != RET_MMIO_PF_INVALID))
3405 return r;
3406 }
3407
3408 r = mmu_topup_memory_caches(vcpu);
3409 if (r)
3410 return r;
3411
3412 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3413
3414 gfn = gva >> PAGE_SHIFT;
3415
3416 return nonpaging_map(vcpu, gva & PAGE_MASK,
3417 error_code, gfn, prefault);
3418 }
3419
3420 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3421 {
3422 struct kvm_arch_async_pf arch;
3423
3424 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3425 arch.gfn = gfn;
3426 arch.direct_map = vcpu->arch.mmu.direct_map;
3427 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3428
3429 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3430 }
3431
3432 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3433 {
3434 if (unlikely(!lapic_in_kernel(vcpu) ||
3435 kvm_event_needs_reinjection(vcpu)))
3436 return false;
3437
3438 return kvm_x86_ops->interrupt_allowed(vcpu);
3439 }
3440
3441 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3442 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3443 {
3444 struct kvm_memory_slot *slot;
3445 bool async;
3446
3447 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3448 async = false;
3449 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3450 if (!async)
3451 return false; /* *pfn has correct page already */
3452
3453 if (!prefault && can_do_async_pf(vcpu)) {
3454 trace_kvm_try_async_get_page(gva, gfn);
3455 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3456 trace_kvm_async_pf_doublefault(gva, gfn);
3457 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3458 return true;
3459 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3460 return true;
3461 }
3462
3463 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3464 return false;
3465 }
3466
3467 static bool
3468 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3469 {
3470 int page_num = KVM_PAGES_PER_HPAGE(level);
3471
3472 gfn &= ~(page_num - 1);
3473
3474 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3475 }
3476
3477 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3478 bool prefault)
3479 {
3480 pfn_t pfn;
3481 int r;
3482 int level;
3483 bool force_pt_level;
3484 gfn_t gfn = gpa >> PAGE_SHIFT;
3485 unsigned long mmu_seq;
3486 int write = error_code & PFERR_WRITE_MASK;
3487 bool map_writable;
3488
3489 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3490
3491 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3492 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3493
3494 if (likely(r != RET_MMIO_PF_INVALID))
3495 return r;
3496 }
3497
3498 r = mmu_topup_memory_caches(vcpu);
3499 if (r)
3500 return r;
3501
3502 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3503 PT_DIRECTORY_LEVEL);
3504 level = mapping_level(vcpu, gfn, &force_pt_level);
3505 if (likely(!force_pt_level)) {
3506 if (level > PT_DIRECTORY_LEVEL &&
3507 !check_hugepage_cache_consistency(vcpu, gfn, level))
3508 level = PT_DIRECTORY_LEVEL;
3509 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3510 }
3511
3512 if (fast_page_fault(vcpu, gpa, level, error_code))
3513 return 0;
3514
3515 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3516 smp_rmb();
3517
3518 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3519 return 0;
3520
3521 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3522 return r;
3523
3524 spin_lock(&vcpu->kvm->mmu_lock);
3525 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3526 goto out_unlock;
3527 make_mmu_pages_available(vcpu);
3528 if (likely(!force_pt_level))
3529 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3530 r = __direct_map(vcpu, gpa, write, map_writable,
3531 level, gfn, pfn, prefault);
3532 spin_unlock(&vcpu->kvm->mmu_lock);
3533
3534 return r;
3535
3536 out_unlock:
3537 spin_unlock(&vcpu->kvm->mmu_lock);
3538 kvm_release_pfn_clean(pfn);
3539 return 0;
3540 }
3541
3542 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3543 struct kvm_mmu *context)
3544 {
3545 context->page_fault = nonpaging_page_fault;
3546 context->gva_to_gpa = nonpaging_gva_to_gpa;
3547 context->sync_page = nonpaging_sync_page;
3548 context->invlpg = nonpaging_invlpg;
3549 context->update_pte = nonpaging_update_pte;
3550 context->root_level = 0;
3551 context->shadow_root_level = PT32E_ROOT_LEVEL;
3552 context->root_hpa = INVALID_PAGE;
3553 context->direct_map = true;
3554 context->nx = false;
3555 }
3556
3557 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3558 {
3559 mmu_free_roots(vcpu);
3560 }
3561
3562 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3563 {
3564 return kvm_read_cr3(vcpu);
3565 }
3566
3567 static void inject_page_fault(struct kvm_vcpu *vcpu,
3568 struct x86_exception *fault)
3569 {
3570 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3571 }
3572
3573 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3574 unsigned access, int *nr_present)
3575 {
3576 if (unlikely(is_mmio_spte(*sptep))) {
3577 if (gfn != get_mmio_spte_gfn(*sptep)) {
3578 mmu_spte_clear_no_track(sptep);
3579 return true;
3580 }
3581
3582 (*nr_present)++;
3583 mark_mmio_spte(vcpu, sptep, gfn, access);
3584 return true;
3585 }
3586
3587 return false;
3588 }
3589
3590 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3591 {
3592 unsigned index;
3593
3594 index = level - 1;
3595 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3596 return mmu->last_pte_bitmap & (1 << index);
3597 }
3598
3599 #define PTTYPE_EPT 18 /* arbitrary */
3600 #define PTTYPE PTTYPE_EPT
3601 #include "paging_tmpl.h"
3602 #undef PTTYPE
3603
3604 #define PTTYPE 64
3605 #include "paging_tmpl.h"
3606 #undef PTTYPE
3607
3608 #define PTTYPE 32
3609 #include "paging_tmpl.h"
3610 #undef PTTYPE
3611
3612 static void
3613 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3614 struct rsvd_bits_validate *rsvd_check,
3615 int maxphyaddr, int level, bool nx, bool gbpages,
3616 bool pse, bool amd)
3617 {
3618 u64 exb_bit_rsvd = 0;
3619 u64 gbpages_bit_rsvd = 0;
3620 u64 nonleaf_bit8_rsvd = 0;
3621
3622 rsvd_check->bad_mt_xwr = 0;
3623
3624 if (!nx)
3625 exb_bit_rsvd = rsvd_bits(63, 63);
3626 if (!gbpages)
3627 gbpages_bit_rsvd = rsvd_bits(7, 7);
3628
3629 /*
3630 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3631 * leaf entries) on AMD CPUs only.
3632 */
3633 if (amd)
3634 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3635
3636 switch (level) {
3637 case PT32_ROOT_LEVEL:
3638 /* no rsvd bits for 2 level 4K page table entries */
3639 rsvd_check->rsvd_bits_mask[0][1] = 0;
3640 rsvd_check->rsvd_bits_mask[0][0] = 0;
3641 rsvd_check->rsvd_bits_mask[1][0] =
3642 rsvd_check->rsvd_bits_mask[0][0];
3643
3644 if (!pse) {
3645 rsvd_check->rsvd_bits_mask[1][1] = 0;
3646 break;
3647 }
3648
3649 if (is_cpuid_PSE36())
3650 /* 36bits PSE 4MB page */
3651 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3652 else
3653 /* 32 bits PSE 4MB page */
3654 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3655 break;
3656 case PT32E_ROOT_LEVEL:
3657 rsvd_check->rsvd_bits_mask[0][2] =
3658 rsvd_bits(maxphyaddr, 63) |
3659 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3660 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3661 rsvd_bits(maxphyaddr, 62); /* PDE */
3662 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3663 rsvd_bits(maxphyaddr, 62); /* PTE */
3664 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3665 rsvd_bits(maxphyaddr, 62) |
3666 rsvd_bits(13, 20); /* large page */
3667 rsvd_check->rsvd_bits_mask[1][0] =
3668 rsvd_check->rsvd_bits_mask[0][0];
3669 break;
3670 case PT64_ROOT_LEVEL:
3671 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3672 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3673 rsvd_bits(maxphyaddr, 51);
3674 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3675 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3676 rsvd_bits(maxphyaddr, 51);
3677 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3678 rsvd_bits(maxphyaddr, 51);
3679 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3680 rsvd_bits(maxphyaddr, 51);
3681 rsvd_check->rsvd_bits_mask[1][3] =
3682 rsvd_check->rsvd_bits_mask[0][3];
3683 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3684 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3685 rsvd_bits(13, 29);
3686 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3687 rsvd_bits(maxphyaddr, 51) |
3688 rsvd_bits(13, 20); /* large page */
3689 rsvd_check->rsvd_bits_mask[1][0] =
3690 rsvd_check->rsvd_bits_mask[0][0];
3691 break;
3692 }
3693 }
3694
3695 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3696 struct kvm_mmu *context)
3697 {
3698 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3699 cpuid_maxphyaddr(vcpu), context->root_level,
3700 context->nx, guest_cpuid_has_gbpages(vcpu),
3701 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3702 }
3703
3704 static void
3705 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3706 int maxphyaddr, bool execonly)
3707 {
3708 u64 bad_mt_xwr;
3709
3710 rsvd_check->rsvd_bits_mask[0][3] =
3711 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3712 rsvd_check->rsvd_bits_mask[0][2] =
3713 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3714 rsvd_check->rsvd_bits_mask[0][1] =
3715 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3716 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3717
3718 /* large page */
3719 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3720 rsvd_check->rsvd_bits_mask[1][2] =
3721 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3722 rsvd_check->rsvd_bits_mask[1][1] =
3723 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3724 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3725
3726 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3727 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3728 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3729 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3730 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3731 if (!execonly) {
3732 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3733 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3734 }
3735 rsvd_check->bad_mt_xwr = bad_mt_xwr;
3736 }
3737
3738 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3739 struct kvm_mmu *context, bool execonly)
3740 {
3741 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3742 cpuid_maxphyaddr(vcpu), execonly);
3743 }
3744
3745 /*
3746 * the page table on host is the shadow page table for the page
3747 * table in guest or amd nested guest, its mmu features completely
3748 * follow the features in guest.
3749 */
3750 void
3751 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3752 {
3753 /*
3754 * Passing "true" to the last argument is okay; it adds a check
3755 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3756 */
3757 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3758 boot_cpu_data.x86_phys_bits,
3759 context->shadow_root_level, context->nx,
3760 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3761 true);
3762 }
3763 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3764
3765 static inline bool boot_cpu_is_amd(void)
3766 {
3767 WARN_ON_ONCE(!tdp_enabled);
3768 return shadow_x_mask == 0;
3769 }
3770
3771 /*
3772 * the direct page table on host, use as much mmu features as
3773 * possible, however, kvm currently does not do execution-protection.
3774 */
3775 static void
3776 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3777 struct kvm_mmu *context)
3778 {
3779 if (boot_cpu_is_amd())
3780 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3781 boot_cpu_data.x86_phys_bits,
3782 context->shadow_root_level, false,
3783 cpu_has_gbpages, true, true);
3784 else
3785 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3786 boot_cpu_data.x86_phys_bits,
3787 false);
3788
3789 }
3790
3791 /*
3792 * as the comments in reset_shadow_zero_bits_mask() except it
3793 * is the shadow page table for intel nested guest.
3794 */
3795 static void
3796 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3797 struct kvm_mmu *context, bool execonly)
3798 {
3799 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3800 boot_cpu_data.x86_phys_bits, execonly);
3801 }
3802
3803 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3804 struct kvm_mmu *mmu, bool ept)
3805 {
3806 unsigned bit, byte, pfec;
3807 u8 map;
3808 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3809
3810 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3811 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3812 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3813 pfec = byte << 1;
3814 map = 0;
3815 wf = pfec & PFERR_WRITE_MASK;
3816 uf = pfec & PFERR_USER_MASK;
3817 ff = pfec & PFERR_FETCH_MASK;
3818 /*
3819 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3820 * subject to SMAP restrictions, and cleared otherwise. The
3821 * bit is only meaningful if the SMAP bit is set in CR4.
3822 */
3823 smapf = !(pfec & PFERR_RSVD_MASK);
3824 for (bit = 0; bit < 8; ++bit) {
3825 x = bit & ACC_EXEC_MASK;
3826 w = bit & ACC_WRITE_MASK;
3827 u = bit & ACC_USER_MASK;
3828
3829 if (!ept) {
3830 /* Not really needed: !nx will cause pte.nx to fault */
3831 x |= !mmu->nx;
3832 /* Allow supervisor writes if !cr0.wp */
3833 w |= !is_write_protection(vcpu) && !uf;
3834 /* Disallow supervisor fetches of user code if cr4.smep */
3835 x &= !(cr4_smep && u && !uf);
3836
3837 /*
3838 * SMAP:kernel-mode data accesses from user-mode
3839 * mappings should fault. A fault is considered
3840 * as a SMAP violation if all of the following
3841 * conditions are ture:
3842 * - X86_CR4_SMAP is set in CR4
3843 * - An user page is accessed
3844 * - Page fault in kernel mode
3845 * - if CPL = 3 or X86_EFLAGS_AC is clear
3846 *
3847 * Here, we cover the first three conditions.
3848 * The fourth is computed dynamically in
3849 * permission_fault() and is in smapf.
3850 *
3851 * Also, SMAP does not affect instruction
3852 * fetches, add the !ff check here to make it
3853 * clearer.
3854 */
3855 smap = cr4_smap && u && !uf && !ff;
3856 } else
3857 /* Not really needed: no U/S accesses on ept */
3858 u = 1;
3859
3860 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3861 (smapf && smap);
3862 map |= fault << bit;
3863 }
3864 mmu->permissions[byte] = map;
3865 }
3866 }
3867
3868 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3869 {
3870 u8 map;
3871 unsigned level, root_level = mmu->root_level;
3872 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3873
3874 if (root_level == PT32E_ROOT_LEVEL)
3875 --root_level;
3876 /* PT_PAGE_TABLE_LEVEL always terminates */
3877 map = 1 | (1 << ps_set_index);
3878 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3879 if (level <= PT_PDPE_LEVEL
3880 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3881 map |= 1 << (ps_set_index | (level - 1));
3882 }
3883 mmu->last_pte_bitmap = map;
3884 }
3885
3886 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3887 struct kvm_mmu *context,
3888 int level)
3889 {
3890 context->nx = is_nx(vcpu);
3891 context->root_level = level;
3892
3893 reset_rsvds_bits_mask(vcpu, context);
3894 update_permission_bitmask(vcpu, context, false);
3895 update_last_pte_bitmap(vcpu, context);
3896
3897 MMU_WARN_ON(!is_pae(vcpu));
3898 context->page_fault = paging64_page_fault;
3899 context->gva_to_gpa = paging64_gva_to_gpa;
3900 context->sync_page = paging64_sync_page;
3901 context->invlpg = paging64_invlpg;
3902 context->update_pte = paging64_update_pte;
3903 context->shadow_root_level = level;
3904 context->root_hpa = INVALID_PAGE;
3905 context->direct_map = false;
3906 }
3907
3908 static void paging64_init_context(struct kvm_vcpu *vcpu,
3909 struct kvm_mmu *context)
3910 {
3911 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3912 }
3913
3914 static void paging32_init_context(struct kvm_vcpu *vcpu,
3915 struct kvm_mmu *context)
3916 {
3917 context->nx = false;
3918 context->root_level = PT32_ROOT_LEVEL;
3919
3920 reset_rsvds_bits_mask(vcpu, context);
3921 update_permission_bitmask(vcpu, context, false);
3922 update_last_pte_bitmap(vcpu, context);
3923
3924 context->page_fault = paging32_page_fault;
3925 context->gva_to_gpa = paging32_gva_to_gpa;
3926 context->sync_page = paging32_sync_page;
3927 context->invlpg = paging32_invlpg;
3928 context->update_pte = paging32_update_pte;
3929 context->shadow_root_level = PT32E_ROOT_LEVEL;
3930 context->root_hpa = INVALID_PAGE;
3931 context->direct_map = false;
3932 }
3933
3934 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3935 struct kvm_mmu *context)
3936 {
3937 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3938 }
3939
3940 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3941 {
3942 struct kvm_mmu *context = &vcpu->arch.mmu;
3943
3944 context->base_role.word = 0;
3945 context->base_role.smm = is_smm(vcpu);
3946 context->page_fault = tdp_page_fault;
3947 context->sync_page = nonpaging_sync_page;
3948 context->invlpg = nonpaging_invlpg;
3949 context->update_pte = nonpaging_update_pte;
3950 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3951 context->root_hpa = INVALID_PAGE;
3952 context->direct_map = true;
3953 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3954 context->get_cr3 = get_cr3;
3955 context->get_pdptr = kvm_pdptr_read;
3956 context->inject_page_fault = kvm_inject_page_fault;
3957
3958 if (!is_paging(vcpu)) {
3959 context->nx = false;
3960 context->gva_to_gpa = nonpaging_gva_to_gpa;
3961 context->root_level = 0;
3962 } else if (is_long_mode(vcpu)) {
3963 context->nx = is_nx(vcpu);
3964 context->root_level = PT64_ROOT_LEVEL;
3965 reset_rsvds_bits_mask(vcpu, context);
3966 context->gva_to_gpa = paging64_gva_to_gpa;
3967 } else if (is_pae(vcpu)) {
3968 context->nx = is_nx(vcpu);
3969 context->root_level = PT32E_ROOT_LEVEL;
3970 reset_rsvds_bits_mask(vcpu, context);
3971 context->gva_to_gpa = paging64_gva_to_gpa;
3972 } else {
3973 context->nx = false;
3974 context->root_level = PT32_ROOT_LEVEL;
3975 reset_rsvds_bits_mask(vcpu, context);
3976 context->gva_to_gpa = paging32_gva_to_gpa;
3977 }
3978
3979 update_permission_bitmask(vcpu, context, false);
3980 update_last_pte_bitmap(vcpu, context);
3981 reset_tdp_shadow_zero_bits_mask(vcpu, context);
3982 }
3983
3984 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3985 {
3986 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3987 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3988 struct kvm_mmu *context = &vcpu->arch.mmu;
3989
3990 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3991
3992 if (!is_paging(vcpu))
3993 nonpaging_init_context(vcpu, context);
3994 else if (is_long_mode(vcpu))
3995 paging64_init_context(vcpu, context);
3996 else if (is_pae(vcpu))
3997 paging32E_init_context(vcpu, context);
3998 else
3999 paging32_init_context(vcpu, context);
4000
4001 context->base_role.nxe = is_nx(vcpu);
4002 context->base_role.cr4_pae = !!is_pae(vcpu);
4003 context->base_role.cr0_wp = is_write_protection(vcpu);
4004 context->base_role.smep_andnot_wp
4005 = smep && !is_write_protection(vcpu);
4006 context->base_role.smap_andnot_wp
4007 = smap && !is_write_protection(vcpu);
4008 context->base_role.smm = is_smm(vcpu);
4009 reset_shadow_zero_bits_mask(vcpu, context);
4010 }
4011 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4012
4013 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4014 {
4015 struct kvm_mmu *context = &vcpu->arch.mmu;
4016
4017 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4018
4019 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4020
4021 context->nx = true;
4022 context->page_fault = ept_page_fault;
4023 context->gva_to_gpa = ept_gva_to_gpa;
4024 context->sync_page = ept_sync_page;
4025 context->invlpg = ept_invlpg;
4026 context->update_pte = ept_update_pte;
4027 context->root_level = context->shadow_root_level;
4028 context->root_hpa = INVALID_PAGE;
4029 context->direct_map = false;
4030
4031 update_permission_bitmask(vcpu, context, true);
4032 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4033 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4034 }
4035 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4036
4037 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4038 {
4039 struct kvm_mmu *context = &vcpu->arch.mmu;
4040
4041 kvm_init_shadow_mmu(vcpu);
4042 context->set_cr3 = kvm_x86_ops->set_cr3;
4043 context->get_cr3 = get_cr3;
4044 context->get_pdptr = kvm_pdptr_read;
4045 context->inject_page_fault = kvm_inject_page_fault;
4046 }
4047
4048 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4049 {
4050 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4051
4052 g_context->get_cr3 = get_cr3;
4053 g_context->get_pdptr = kvm_pdptr_read;
4054 g_context->inject_page_fault = kvm_inject_page_fault;
4055
4056 /*
4057 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4058 * translation of l2_gpa to l1_gpa addresses is done using the
4059 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4060 * functions between mmu and nested_mmu are swapped.
4061 */
4062 if (!is_paging(vcpu)) {
4063 g_context->nx = false;
4064 g_context->root_level = 0;
4065 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4066 } else if (is_long_mode(vcpu)) {
4067 g_context->nx = is_nx(vcpu);
4068 g_context->root_level = PT64_ROOT_LEVEL;
4069 reset_rsvds_bits_mask(vcpu, g_context);
4070 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4071 } else if (is_pae(vcpu)) {
4072 g_context->nx = is_nx(vcpu);
4073 g_context->root_level = PT32E_ROOT_LEVEL;
4074 reset_rsvds_bits_mask(vcpu, g_context);
4075 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4076 } else {
4077 g_context->nx = false;
4078 g_context->root_level = PT32_ROOT_LEVEL;
4079 reset_rsvds_bits_mask(vcpu, g_context);
4080 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4081 }
4082
4083 update_permission_bitmask(vcpu, g_context, false);
4084 update_last_pte_bitmap(vcpu, g_context);
4085 }
4086
4087 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4088 {
4089 if (mmu_is_nested(vcpu))
4090 init_kvm_nested_mmu(vcpu);
4091 else if (tdp_enabled)
4092 init_kvm_tdp_mmu(vcpu);
4093 else
4094 init_kvm_softmmu(vcpu);
4095 }
4096
4097 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4098 {
4099 kvm_mmu_unload(vcpu);
4100 init_kvm_mmu(vcpu);
4101 }
4102 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4103
4104 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4105 {
4106 int r;
4107
4108 r = mmu_topup_memory_caches(vcpu);
4109 if (r)
4110 goto out;
4111 r = mmu_alloc_roots(vcpu);
4112 kvm_mmu_sync_roots(vcpu);
4113 if (r)
4114 goto out;
4115 /* set_cr3() should ensure TLB has been flushed */
4116 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4117 out:
4118 return r;
4119 }
4120 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4121
4122 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4123 {
4124 mmu_free_roots(vcpu);
4125 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4126 }
4127 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4128
4129 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4130 struct kvm_mmu_page *sp, u64 *spte,
4131 const void *new)
4132 {
4133 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4134 ++vcpu->kvm->stat.mmu_pde_zapped;
4135 return;
4136 }
4137
4138 ++vcpu->kvm->stat.mmu_pte_updated;
4139 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4140 }
4141
4142 static bool need_remote_flush(u64 old, u64 new)
4143 {
4144 if (!is_shadow_present_pte(old))
4145 return false;
4146 if (!is_shadow_present_pte(new))
4147 return true;
4148 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4149 return true;
4150 old ^= shadow_nx_mask;
4151 new ^= shadow_nx_mask;
4152 return (old & ~new & PT64_PERM_MASK) != 0;
4153 }
4154
4155 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4156 bool remote_flush, bool local_flush)
4157 {
4158 if (zap_page)
4159 return;
4160
4161 if (remote_flush)
4162 kvm_flush_remote_tlbs(vcpu->kvm);
4163 else if (local_flush)
4164 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4165 }
4166
4167 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4168 const u8 *new, int *bytes)
4169 {
4170 u64 gentry;
4171 int r;
4172
4173 /*
4174 * Assume that the pte write on a page table of the same type
4175 * as the current vcpu paging mode since we update the sptes only
4176 * when they have the same mode.
4177 */
4178 if (is_pae(vcpu) && *bytes == 4) {
4179 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4180 *gpa &= ~(gpa_t)7;
4181 *bytes = 8;
4182 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4183 if (r)
4184 gentry = 0;
4185 new = (const u8 *)&gentry;
4186 }
4187
4188 switch (*bytes) {
4189 case 4:
4190 gentry = *(const u32 *)new;
4191 break;
4192 case 8:
4193 gentry = *(const u64 *)new;
4194 break;
4195 default:
4196 gentry = 0;
4197 break;
4198 }
4199
4200 return gentry;
4201 }
4202
4203 /*
4204 * If we're seeing too many writes to a page, it may no longer be a page table,
4205 * or we may be forking, in which case it is better to unmap the page.
4206 */
4207 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4208 {
4209 /*
4210 * Skip write-flooding detected for the sp whose level is 1, because
4211 * it can become unsync, then the guest page is not write-protected.
4212 */
4213 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4214 return false;
4215
4216 return ++sp->write_flooding_count >= 3;
4217 }
4218
4219 /*
4220 * Misaligned accesses are too much trouble to fix up; also, they usually
4221 * indicate a page is not used as a page table.
4222 */
4223 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4224 int bytes)
4225 {
4226 unsigned offset, pte_size, misaligned;
4227
4228 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4229 gpa, bytes, sp->role.word);
4230
4231 offset = offset_in_page(gpa);
4232 pte_size = sp->role.cr4_pae ? 8 : 4;
4233
4234 /*
4235 * Sometimes, the OS only writes the last one bytes to update status
4236 * bits, for example, in linux, andb instruction is used in clear_bit().
4237 */
4238 if (!(offset & (pte_size - 1)) && bytes == 1)
4239 return false;
4240
4241 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4242 misaligned |= bytes < 4;
4243
4244 return misaligned;
4245 }
4246
4247 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4248 {
4249 unsigned page_offset, quadrant;
4250 u64 *spte;
4251 int level;
4252
4253 page_offset = offset_in_page(gpa);
4254 level = sp->role.level;
4255 *nspte = 1;
4256 if (!sp->role.cr4_pae) {
4257 page_offset <<= 1; /* 32->64 */
4258 /*
4259 * A 32-bit pde maps 4MB while the shadow pdes map
4260 * only 2MB. So we need to double the offset again
4261 * and zap two pdes instead of one.
4262 */
4263 if (level == PT32_ROOT_LEVEL) {
4264 page_offset &= ~7; /* kill rounding error */
4265 page_offset <<= 1;
4266 *nspte = 2;
4267 }
4268 quadrant = page_offset >> PAGE_SHIFT;
4269 page_offset &= ~PAGE_MASK;
4270 if (quadrant != sp->role.quadrant)
4271 return NULL;
4272 }
4273
4274 spte = &sp->spt[page_offset / sizeof(*spte)];
4275 return spte;
4276 }
4277
4278 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4279 const u8 *new, int bytes)
4280 {
4281 gfn_t gfn = gpa >> PAGE_SHIFT;
4282 struct kvm_mmu_page *sp;
4283 LIST_HEAD(invalid_list);
4284 u64 entry, gentry, *spte;
4285 int npte;
4286 bool remote_flush, local_flush, zap_page;
4287 union kvm_mmu_page_role mask = { };
4288
4289 mask.cr0_wp = 1;
4290 mask.cr4_pae = 1;
4291 mask.nxe = 1;
4292 mask.smep_andnot_wp = 1;
4293 mask.smap_andnot_wp = 1;
4294 mask.smm = 1;
4295
4296 /*
4297 * If we don't have indirect shadow pages, it means no page is
4298 * write-protected, so we can exit simply.
4299 */
4300 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4301 return;
4302
4303 zap_page = remote_flush = local_flush = false;
4304
4305 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4306
4307 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4308
4309 /*
4310 * No need to care whether allocation memory is successful
4311 * or not since pte prefetch is skiped if it does not have
4312 * enough objects in the cache.
4313 */
4314 mmu_topup_memory_caches(vcpu);
4315
4316 spin_lock(&vcpu->kvm->mmu_lock);
4317 ++vcpu->kvm->stat.mmu_pte_write;
4318 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4319
4320 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4321 if (detect_write_misaligned(sp, gpa, bytes) ||
4322 detect_write_flooding(sp)) {
4323 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4324 &invalid_list);
4325 ++vcpu->kvm->stat.mmu_flooded;
4326 continue;
4327 }
4328
4329 spte = get_written_sptes(sp, gpa, &npte);
4330 if (!spte)
4331 continue;
4332
4333 local_flush = true;
4334 while (npte--) {
4335 entry = *spte;
4336 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4337 if (gentry &&
4338 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4339 & mask.word) && rmap_can_add(vcpu))
4340 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4341 if (need_remote_flush(entry, *spte))
4342 remote_flush = true;
4343 ++spte;
4344 }
4345 }
4346 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4347 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4348 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4349 spin_unlock(&vcpu->kvm->mmu_lock);
4350 }
4351
4352 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4353 {
4354 gpa_t gpa;
4355 int r;
4356
4357 if (vcpu->arch.mmu.direct_map)
4358 return 0;
4359
4360 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4361
4362 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4363
4364 return r;
4365 }
4366 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4367
4368 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4369 {
4370 LIST_HEAD(invalid_list);
4371
4372 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4373 return;
4374
4375 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4376 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4377 break;
4378
4379 ++vcpu->kvm->stat.mmu_recycled;
4380 }
4381 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4382 }
4383
4384 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4385 {
4386 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4387 return vcpu_match_mmio_gpa(vcpu, addr);
4388
4389 return vcpu_match_mmio_gva(vcpu, addr);
4390 }
4391
4392 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4393 void *insn, int insn_len)
4394 {
4395 int r, emulation_type = EMULTYPE_RETRY;
4396 enum emulation_result er;
4397
4398 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4399 if (r < 0)
4400 goto out;
4401
4402 if (!r) {
4403 r = 1;
4404 goto out;
4405 }
4406
4407 if (is_mmio_page_fault(vcpu, cr2))
4408 emulation_type = 0;
4409
4410 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4411
4412 switch (er) {
4413 case EMULATE_DONE:
4414 return 1;
4415 case EMULATE_USER_EXIT:
4416 ++vcpu->stat.mmio_exits;
4417 /* fall through */
4418 case EMULATE_FAIL:
4419 return 0;
4420 default:
4421 BUG();
4422 }
4423 out:
4424 return r;
4425 }
4426 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4427
4428 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4429 {
4430 vcpu->arch.mmu.invlpg(vcpu, gva);
4431 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4432 ++vcpu->stat.invlpg;
4433 }
4434 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4435
4436 void kvm_enable_tdp(void)
4437 {
4438 tdp_enabled = true;
4439 }
4440 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4441
4442 void kvm_disable_tdp(void)
4443 {
4444 tdp_enabled = false;
4445 }
4446 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4447
4448 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4449 {
4450 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4451 if (vcpu->arch.mmu.lm_root != NULL)
4452 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4453 }
4454
4455 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4456 {
4457 struct page *page;
4458 int i;
4459
4460 /*
4461 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4462 * Therefore we need to allocate shadow page tables in the first
4463 * 4GB of memory, which happens to fit the DMA32 zone.
4464 */
4465 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4466 if (!page)
4467 return -ENOMEM;
4468
4469 vcpu->arch.mmu.pae_root = page_address(page);
4470 for (i = 0; i < 4; ++i)
4471 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4472
4473 return 0;
4474 }
4475
4476 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4477 {
4478 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4479 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4480 vcpu->arch.mmu.translate_gpa = translate_gpa;
4481 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4482
4483 return alloc_mmu_pages(vcpu);
4484 }
4485
4486 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4487 {
4488 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4489
4490 init_kvm_mmu(vcpu);
4491 }
4492
4493 /* The return value indicates if tlb flush on all vcpus is needed. */
4494 typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4495
4496 /* The caller should hold mmu-lock before calling this function. */
4497 static bool
4498 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4499 slot_level_handler fn, int start_level, int end_level,
4500 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4501 {
4502 struct slot_rmap_walk_iterator iterator;
4503 bool flush = false;
4504
4505 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4506 end_gfn, &iterator) {
4507 if (iterator.rmap)
4508 flush |= fn(kvm, iterator.rmap);
4509
4510 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4511 if (flush && lock_flush_tlb) {
4512 kvm_flush_remote_tlbs(kvm);
4513 flush = false;
4514 }
4515 cond_resched_lock(&kvm->mmu_lock);
4516 }
4517 }
4518
4519 if (flush && lock_flush_tlb) {
4520 kvm_flush_remote_tlbs(kvm);
4521 flush = false;
4522 }
4523
4524 return flush;
4525 }
4526
4527 static bool
4528 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4529 slot_level_handler fn, int start_level, int end_level,
4530 bool lock_flush_tlb)
4531 {
4532 return slot_handle_level_range(kvm, memslot, fn, start_level,
4533 end_level, memslot->base_gfn,
4534 memslot->base_gfn + memslot->npages - 1,
4535 lock_flush_tlb);
4536 }
4537
4538 static bool
4539 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4540 slot_level_handler fn, bool lock_flush_tlb)
4541 {
4542 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4543 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4544 }
4545
4546 static bool
4547 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4548 slot_level_handler fn, bool lock_flush_tlb)
4549 {
4550 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4551 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4552 }
4553
4554 static bool
4555 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4556 slot_level_handler fn, bool lock_flush_tlb)
4557 {
4558 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4559 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4560 }
4561
4562 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4563 {
4564 struct kvm_memslots *slots;
4565 struct kvm_memory_slot *memslot;
4566 int i;
4567
4568 spin_lock(&kvm->mmu_lock);
4569 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4570 slots = __kvm_memslots(kvm, i);
4571 kvm_for_each_memslot(memslot, slots) {
4572 gfn_t start, end;
4573
4574 start = max(gfn_start, memslot->base_gfn);
4575 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4576 if (start >= end)
4577 continue;
4578
4579 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4580 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4581 start, end - 1, true);
4582 }
4583 }
4584
4585 spin_unlock(&kvm->mmu_lock);
4586 }
4587
4588 static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4589 {
4590 return __rmap_write_protect(kvm, rmapp, false);
4591 }
4592
4593 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4594 struct kvm_memory_slot *memslot)
4595 {
4596 bool flush;
4597
4598 spin_lock(&kvm->mmu_lock);
4599 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4600 false);
4601 spin_unlock(&kvm->mmu_lock);
4602
4603 /*
4604 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4605 * which do tlb flush out of mmu-lock should be serialized by
4606 * kvm->slots_lock otherwise tlb flush would be missed.
4607 */
4608 lockdep_assert_held(&kvm->slots_lock);
4609
4610 /*
4611 * We can flush all the TLBs out of the mmu lock without TLB
4612 * corruption since we just change the spte from writable to
4613 * readonly so that we only need to care the case of changing
4614 * spte from present to present (changing the spte from present
4615 * to nonpresent will flush all the TLBs immediately), in other
4616 * words, the only case we care is mmu_spte_update() where we
4617 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4618 * instead of PT_WRITABLE_MASK, that means it does not depend
4619 * on PT_WRITABLE_MASK anymore.
4620 */
4621 if (flush)
4622 kvm_flush_remote_tlbs(kvm);
4623 }
4624
4625 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4626 unsigned long *rmapp)
4627 {
4628 u64 *sptep;
4629 struct rmap_iterator iter;
4630 int need_tlb_flush = 0;
4631 pfn_t pfn;
4632 struct kvm_mmu_page *sp;
4633
4634 restart:
4635 for_each_rmap_spte(rmapp, &iter, sptep) {
4636 sp = page_header(__pa(sptep));
4637 pfn = spte_to_pfn(*sptep);
4638
4639 /*
4640 * We cannot do huge page mapping for indirect shadow pages,
4641 * which are found on the last rmap (level = 1) when not using
4642 * tdp; such shadow pages are synced with the page table in
4643 * the guest, and the guest page table is using 4K page size
4644 * mapping if the indirect sp has level = 1.
4645 */
4646 if (sp->role.direct &&
4647 !kvm_is_reserved_pfn(pfn) &&
4648 PageTransCompound(pfn_to_page(pfn))) {
4649 drop_spte(kvm, sptep);
4650 need_tlb_flush = 1;
4651 goto restart;
4652 }
4653 }
4654
4655 return need_tlb_flush;
4656 }
4657
4658 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4659 const struct kvm_memory_slot *memslot)
4660 {
4661 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
4662 spin_lock(&kvm->mmu_lock);
4663 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4664 kvm_mmu_zap_collapsible_spte, true);
4665 spin_unlock(&kvm->mmu_lock);
4666 }
4667
4668 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4669 struct kvm_memory_slot *memslot)
4670 {
4671 bool flush;
4672
4673 spin_lock(&kvm->mmu_lock);
4674 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4675 spin_unlock(&kvm->mmu_lock);
4676
4677 lockdep_assert_held(&kvm->slots_lock);
4678
4679 /*
4680 * It's also safe to flush TLBs out of mmu lock here as currently this
4681 * function is only used for dirty logging, in which case flushing TLB
4682 * out of mmu lock also guarantees no dirty pages will be lost in
4683 * dirty_bitmap.
4684 */
4685 if (flush)
4686 kvm_flush_remote_tlbs(kvm);
4687 }
4688 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4689
4690 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4691 struct kvm_memory_slot *memslot)
4692 {
4693 bool flush;
4694
4695 spin_lock(&kvm->mmu_lock);
4696 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4697 false);
4698 spin_unlock(&kvm->mmu_lock);
4699
4700 /* see kvm_mmu_slot_remove_write_access */
4701 lockdep_assert_held(&kvm->slots_lock);
4702
4703 if (flush)
4704 kvm_flush_remote_tlbs(kvm);
4705 }
4706 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4707
4708 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4709 struct kvm_memory_slot *memslot)
4710 {
4711 bool flush;
4712
4713 spin_lock(&kvm->mmu_lock);
4714 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4715 spin_unlock(&kvm->mmu_lock);
4716
4717 lockdep_assert_held(&kvm->slots_lock);
4718
4719 /* see kvm_mmu_slot_leaf_clear_dirty */
4720 if (flush)
4721 kvm_flush_remote_tlbs(kvm);
4722 }
4723 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4724
4725 #define BATCH_ZAP_PAGES 10
4726 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4727 {
4728 struct kvm_mmu_page *sp, *node;
4729 int batch = 0;
4730
4731 restart:
4732 list_for_each_entry_safe_reverse(sp, node,
4733 &kvm->arch.active_mmu_pages, link) {
4734 int ret;
4735
4736 /*
4737 * No obsolete page exists before new created page since
4738 * active_mmu_pages is the FIFO list.
4739 */
4740 if (!is_obsolete_sp(kvm, sp))
4741 break;
4742
4743 /*
4744 * Since we are reversely walking the list and the invalid
4745 * list will be moved to the head, skip the invalid page
4746 * can help us to avoid the infinity list walking.
4747 */
4748 if (sp->role.invalid)
4749 continue;
4750
4751 /*
4752 * Need not flush tlb since we only zap the sp with invalid
4753 * generation number.
4754 */
4755 if (batch >= BATCH_ZAP_PAGES &&
4756 cond_resched_lock(&kvm->mmu_lock)) {
4757 batch = 0;
4758 goto restart;
4759 }
4760
4761 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4762 &kvm->arch.zapped_obsolete_pages);
4763 batch += ret;
4764
4765 if (ret)
4766 goto restart;
4767 }
4768
4769 /*
4770 * Should flush tlb before free page tables since lockless-walking
4771 * may use the pages.
4772 */
4773 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4774 }
4775
4776 /*
4777 * Fast invalidate all shadow pages and use lock-break technique
4778 * to zap obsolete pages.
4779 *
4780 * It's required when memslot is being deleted or VM is being
4781 * destroyed, in these cases, we should ensure that KVM MMU does
4782 * not use any resource of the being-deleted slot or all slots
4783 * after calling the function.
4784 */
4785 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4786 {
4787 spin_lock(&kvm->mmu_lock);
4788 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4789 kvm->arch.mmu_valid_gen++;
4790
4791 /*
4792 * Notify all vcpus to reload its shadow page table
4793 * and flush TLB. Then all vcpus will switch to new
4794 * shadow page table with the new mmu_valid_gen.
4795 *
4796 * Note: we should do this under the protection of
4797 * mmu-lock, otherwise, vcpu would purge shadow page
4798 * but miss tlb flush.
4799 */
4800 kvm_reload_remote_mmus(kvm);
4801
4802 kvm_zap_obsolete_pages(kvm);
4803 spin_unlock(&kvm->mmu_lock);
4804 }
4805
4806 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4807 {
4808 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4809 }
4810
4811 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4812 {
4813 /*
4814 * The very rare case: if the generation-number is round,
4815 * zap all shadow pages.
4816 */
4817 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4818 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4819 kvm_mmu_invalidate_zap_all_pages(kvm);
4820 }
4821 }
4822
4823 static unsigned long
4824 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4825 {
4826 struct kvm *kvm;
4827 int nr_to_scan = sc->nr_to_scan;
4828 unsigned long freed = 0;
4829
4830 spin_lock(&kvm_lock);
4831
4832 list_for_each_entry(kvm, &vm_list, vm_list) {
4833 int idx;
4834 LIST_HEAD(invalid_list);
4835
4836 /*
4837 * Never scan more than sc->nr_to_scan VM instances.
4838 * Will not hit this condition practically since we do not try
4839 * to shrink more than one VM and it is very unlikely to see
4840 * !n_used_mmu_pages so many times.
4841 */
4842 if (!nr_to_scan--)
4843 break;
4844 /*
4845 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4846 * here. We may skip a VM instance errorneosly, but we do not
4847 * want to shrink a VM that only started to populate its MMU
4848 * anyway.
4849 */
4850 if (!kvm->arch.n_used_mmu_pages &&
4851 !kvm_has_zapped_obsolete_pages(kvm))
4852 continue;
4853
4854 idx = srcu_read_lock(&kvm->srcu);
4855 spin_lock(&kvm->mmu_lock);
4856
4857 if (kvm_has_zapped_obsolete_pages(kvm)) {
4858 kvm_mmu_commit_zap_page(kvm,
4859 &kvm->arch.zapped_obsolete_pages);
4860 goto unlock;
4861 }
4862
4863 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4864 freed++;
4865 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4866
4867 unlock:
4868 spin_unlock(&kvm->mmu_lock);
4869 srcu_read_unlock(&kvm->srcu, idx);
4870
4871 /*
4872 * unfair on small ones
4873 * per-vm shrinkers cry out
4874 * sadness comes quickly
4875 */
4876 list_move_tail(&kvm->vm_list, &vm_list);
4877 break;
4878 }
4879
4880 spin_unlock(&kvm_lock);
4881 return freed;
4882 }
4883
4884 static unsigned long
4885 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4886 {
4887 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4888 }
4889
4890 static struct shrinker mmu_shrinker = {
4891 .count_objects = mmu_shrink_count,
4892 .scan_objects = mmu_shrink_scan,
4893 .seeks = DEFAULT_SEEKS * 10,
4894 };
4895
4896 static void mmu_destroy_caches(void)
4897 {
4898 if (pte_list_desc_cache)
4899 kmem_cache_destroy(pte_list_desc_cache);
4900 if (mmu_page_header_cache)
4901 kmem_cache_destroy(mmu_page_header_cache);
4902 }
4903
4904 int kvm_mmu_module_init(void)
4905 {
4906 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4907 sizeof(struct pte_list_desc),
4908 0, 0, NULL);
4909 if (!pte_list_desc_cache)
4910 goto nomem;
4911
4912 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4913 sizeof(struct kvm_mmu_page),
4914 0, 0, NULL);
4915 if (!mmu_page_header_cache)
4916 goto nomem;
4917
4918 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4919 goto nomem;
4920
4921 register_shrinker(&mmu_shrinker);
4922
4923 return 0;
4924
4925 nomem:
4926 mmu_destroy_caches();
4927 return -ENOMEM;
4928 }
4929
4930 /*
4931 * Caculate mmu pages needed for kvm.
4932 */
4933 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4934 {
4935 unsigned int nr_mmu_pages;
4936 unsigned int nr_pages = 0;
4937 struct kvm_memslots *slots;
4938 struct kvm_memory_slot *memslot;
4939 int i;
4940
4941 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4942 slots = __kvm_memslots(kvm, i);
4943
4944 kvm_for_each_memslot(memslot, slots)
4945 nr_pages += memslot->npages;
4946 }
4947
4948 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4949 nr_mmu_pages = max(nr_mmu_pages,
4950 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4951
4952 return nr_mmu_pages;
4953 }
4954
4955 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4956 {
4957 kvm_mmu_unload(vcpu);
4958 free_mmu_pages(vcpu);
4959 mmu_free_memory_caches(vcpu);
4960 }
4961
4962 void kvm_mmu_module_exit(void)
4963 {
4964 mmu_destroy_caches();
4965 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4966 unregister_shrinker(&mmu_shrinker);
4967 mmu_audit_disable();
4968 }
This page took 0.161579 seconds and 6 git commands to generate.