KVM: MMU: make spte_is_locklessly_modifiable() more clear
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196 shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
204 trace_mark_mmio_spte(sptep, gfn, access);
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206 }
207
208 static bool is_mmio_spte(u64 spte)
209 {
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211 }
212
213 static gfn_t get_mmio_spte_gfn(u64 spte)
214 {
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216 }
217
218 static unsigned get_mmio_spte_access(u64 spte)
219 {
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221 }
222
223 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224 {
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231 }
232
233 static inline u64 rsvd_bits(int s, int e)
234 {
235 return ((1ULL << (e - s + 1)) - 1) << s;
236 }
237
238 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
240 {
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246 }
247 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
249 static int is_cpuid_PSE36(void)
250 {
251 return 1;
252 }
253
254 static int is_nx(struct kvm_vcpu *vcpu)
255 {
256 return vcpu->arch.efer & EFER_NX;
257 }
258
259 static int is_shadow_present_pte(u64 pte)
260 {
261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262 }
263
264 static int is_large_pte(u64 pte)
265 {
266 return pte & PT_PAGE_SIZE_MASK;
267 }
268
269 static int is_dirty_gpte(unsigned long pte)
270 {
271 return pte & PT_DIRTY_MASK;
272 }
273
274 static int is_rmap_spte(u64 pte)
275 {
276 return is_shadow_present_pte(pte);
277 }
278
279 static int is_last_spte(u64 pte, int level)
280 {
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
283 if (is_large_pte(pte))
284 return 1;
285 return 0;
286 }
287
288 static pfn_t spte_to_pfn(u64 pte)
289 {
290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291 }
292
293 static gfn_t pse36_gfn_delta(u32 gpte)
294 {
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298 }
299
300 #ifdef CONFIG_X86_64
301 static void __set_spte(u64 *sptep, u64 spte)
302 {
303 *sptep = spte;
304 }
305
306 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
307 {
308 *sptep = spte;
309 }
310
311 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312 {
313 return xchg(sptep, spte);
314 }
315
316 static u64 __get_spte_lockless(u64 *sptep)
317 {
318 return ACCESS_ONCE(*sptep);
319 }
320
321 static bool __check_direct_spte_mmio_pf(u64 spte)
322 {
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325 }
326 #else
327 union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333 };
334
335 static void count_spte_clear(u64 *sptep, u64 spte)
336 {
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345 }
346
347 static void __set_spte(u64 *sptep, u64 spte)
348 {
349 union split_spte *ssptep, sspte;
350
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
382 count_spte_clear(sptep, spte);
383 }
384
385 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386 {
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
396 count_spte_clear(sptep, spte);
397
398 return orig.spte;
399 }
400
401 /*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408 static u64 __get_spte_lockless(u64 *sptep)
409 {
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414 retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429 }
430
431 static bool __check_direct_spte_mmio_pf(u64 spte)
432 {
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446 }
447 #endif
448
449 static bool spte_is_locklessly_modifiable(u64 spte)
450 {
451 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
452 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
453 }
454
455 static bool spte_has_volatile_bits(u64 spte)
456 {
457 /*
458 * Always atomicly update spte if it can be updated
459 * out of mmu-lock, it can ensure dirty bit is not lost,
460 * also, it can help us to get a stable is_writable_pte()
461 * to ensure tlb flush is not missed.
462 */
463 if (spte_is_locklessly_modifiable(spte))
464 return true;
465
466 if (!shadow_accessed_mask)
467 return false;
468
469 if (!is_shadow_present_pte(spte))
470 return false;
471
472 if ((spte & shadow_accessed_mask) &&
473 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
474 return false;
475
476 return true;
477 }
478
479 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
480 {
481 return (old_spte & bit_mask) && !(new_spte & bit_mask);
482 }
483
484 /* Rules for using mmu_spte_set:
485 * Set the sptep from nonpresent to present.
486 * Note: the sptep being assigned *must* be either not present
487 * or in a state where the hardware will not attempt to update
488 * the spte.
489 */
490 static void mmu_spte_set(u64 *sptep, u64 new_spte)
491 {
492 WARN_ON(is_shadow_present_pte(*sptep));
493 __set_spte(sptep, new_spte);
494 }
495
496 /* Rules for using mmu_spte_update:
497 * Update the state bits, it means the mapped pfn is not changged.
498 *
499 * Whenever we overwrite a writable spte with a read-only one we
500 * should flush remote TLBs. Otherwise rmap_write_protect
501 * will find a read-only spte, even though the writable spte
502 * might be cached on a CPU's TLB, the return value indicates this
503 * case.
504 */
505 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
506 {
507 u64 old_spte = *sptep;
508 bool ret = false;
509
510 WARN_ON(!is_rmap_spte(new_spte));
511
512 if (!is_shadow_present_pte(old_spte)) {
513 mmu_spte_set(sptep, new_spte);
514 return ret;
515 }
516
517 if (!spte_has_volatile_bits(old_spte))
518 __update_clear_spte_fast(sptep, new_spte);
519 else
520 old_spte = __update_clear_spte_slow(sptep, new_spte);
521
522 /*
523 * For the spte updated out of mmu-lock is safe, since
524 * we always atomicly update it, see the comments in
525 * spte_has_volatile_bits().
526 */
527 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
528 ret = true;
529
530 if (!shadow_accessed_mask)
531 return ret;
532
533 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
534 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
535 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
536 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
537
538 return ret;
539 }
540
541 /*
542 * Rules for using mmu_spte_clear_track_bits:
543 * It sets the sptep from present to nonpresent, and track the
544 * state bits, it is used to clear the last level sptep.
545 */
546 static int mmu_spte_clear_track_bits(u64 *sptep)
547 {
548 pfn_t pfn;
549 u64 old_spte = *sptep;
550
551 if (!spte_has_volatile_bits(old_spte))
552 __update_clear_spte_fast(sptep, 0ull);
553 else
554 old_spte = __update_clear_spte_slow(sptep, 0ull);
555
556 if (!is_rmap_spte(old_spte))
557 return 0;
558
559 pfn = spte_to_pfn(old_spte);
560
561 /*
562 * KVM does not hold the refcount of the page used by
563 * kvm mmu, before reclaiming the page, we should
564 * unmap it from mmu first.
565 */
566 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
567
568 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
569 kvm_set_pfn_accessed(pfn);
570 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
571 kvm_set_pfn_dirty(pfn);
572 return 1;
573 }
574
575 /*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582 __update_clear_spte_fast(sptep, 0ull);
583 }
584
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587 return __get_spte_lockless(sptep);
588 }
589
590 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
591 {
592 /*
593 * Prevent page table teardown by making any free-er wait during
594 * kvm_flush_remote_tlbs() IPI to all active vcpus.
595 */
596 local_irq_disable();
597 vcpu->mode = READING_SHADOW_PAGE_TABLES;
598 /*
599 * Make sure a following spte read is not reordered ahead of the write
600 * to vcpu->mode.
601 */
602 smp_mb();
603 }
604
605 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
606 {
607 /*
608 * Make sure the write to vcpu->mode is not reordered in front of
609 * reads to sptes. If it does, kvm_commit_zap_page() can see us
610 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
611 */
612 smp_mb();
613 vcpu->mode = OUTSIDE_GUEST_MODE;
614 local_irq_enable();
615 }
616
617 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
618 struct kmem_cache *base_cache, int min)
619 {
620 void *obj;
621
622 if (cache->nobjs >= min)
623 return 0;
624 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
625 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
626 if (!obj)
627 return -ENOMEM;
628 cache->objects[cache->nobjs++] = obj;
629 }
630 return 0;
631 }
632
633 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
634 {
635 return cache->nobjs;
636 }
637
638 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
639 struct kmem_cache *cache)
640 {
641 while (mc->nobjs)
642 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
643 }
644
645 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
646 int min)
647 {
648 void *page;
649
650 if (cache->nobjs >= min)
651 return 0;
652 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
653 page = (void *)__get_free_page(GFP_KERNEL);
654 if (!page)
655 return -ENOMEM;
656 cache->objects[cache->nobjs++] = page;
657 }
658 return 0;
659 }
660
661 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
662 {
663 while (mc->nobjs)
664 free_page((unsigned long)mc->objects[--mc->nobjs]);
665 }
666
667 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
668 {
669 int r;
670
671 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
672 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
673 if (r)
674 goto out;
675 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
676 if (r)
677 goto out;
678 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
679 mmu_page_header_cache, 4);
680 out:
681 return r;
682 }
683
684 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
685 {
686 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
687 pte_list_desc_cache);
688 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
689 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
690 mmu_page_header_cache);
691 }
692
693 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
694 {
695 void *p;
696
697 BUG_ON(!mc->nobjs);
698 p = mc->objects[--mc->nobjs];
699 return p;
700 }
701
702 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
703 {
704 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
705 }
706
707 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
708 {
709 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
710 }
711
712 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
713 {
714 if (!sp->role.direct)
715 return sp->gfns[index];
716
717 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
718 }
719
720 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
721 {
722 if (sp->role.direct)
723 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
724 else
725 sp->gfns[index] = gfn;
726 }
727
728 /*
729 * Return the pointer to the large page information for a given gfn,
730 * handling slots that are not large page aligned.
731 */
732 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
733 struct kvm_memory_slot *slot,
734 int level)
735 {
736 unsigned long idx;
737
738 idx = gfn_to_index(gfn, slot->base_gfn, level);
739 return &slot->arch.lpage_info[level - 2][idx];
740 }
741
742 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
743 {
744 struct kvm_memory_slot *slot;
745 struct kvm_lpage_info *linfo;
746 int i;
747
748 slot = gfn_to_memslot(kvm, gfn);
749 for (i = PT_DIRECTORY_LEVEL;
750 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
751 linfo = lpage_info_slot(gfn, slot, i);
752 linfo->write_count += 1;
753 }
754 kvm->arch.indirect_shadow_pages++;
755 }
756
757 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
758 {
759 struct kvm_memory_slot *slot;
760 struct kvm_lpage_info *linfo;
761 int i;
762
763 slot = gfn_to_memslot(kvm, gfn);
764 for (i = PT_DIRECTORY_LEVEL;
765 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
766 linfo = lpage_info_slot(gfn, slot, i);
767 linfo->write_count -= 1;
768 WARN_ON(linfo->write_count < 0);
769 }
770 kvm->arch.indirect_shadow_pages--;
771 }
772
773 static int has_wrprotected_page(struct kvm *kvm,
774 gfn_t gfn,
775 int level)
776 {
777 struct kvm_memory_slot *slot;
778 struct kvm_lpage_info *linfo;
779
780 slot = gfn_to_memslot(kvm, gfn);
781 if (slot) {
782 linfo = lpage_info_slot(gfn, slot, level);
783 return linfo->write_count;
784 }
785
786 return 1;
787 }
788
789 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
790 {
791 unsigned long page_size;
792 int i, ret = 0;
793
794 page_size = kvm_host_page_size(kvm, gfn);
795
796 for (i = PT_PAGE_TABLE_LEVEL;
797 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
798 if (page_size >= KVM_HPAGE_SIZE(i))
799 ret = i;
800 else
801 break;
802 }
803
804 return ret;
805 }
806
807 static struct kvm_memory_slot *
808 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
809 bool no_dirty_log)
810 {
811 struct kvm_memory_slot *slot;
812
813 slot = gfn_to_memslot(vcpu->kvm, gfn);
814 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
815 (no_dirty_log && slot->dirty_bitmap))
816 slot = NULL;
817
818 return slot;
819 }
820
821 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
822 {
823 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
824 }
825
826 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
827 {
828 int host_level, level, max_level;
829
830 host_level = host_mapping_level(vcpu->kvm, large_gfn);
831
832 if (host_level == PT_PAGE_TABLE_LEVEL)
833 return host_level;
834
835 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
836 kvm_x86_ops->get_lpage_level() : host_level;
837
838 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
839 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
840 break;
841
842 return level - 1;
843 }
844
845 /*
846 * Pte mapping structures:
847 *
848 * If pte_list bit zero is zero, then pte_list point to the spte.
849 *
850 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
851 * pte_list_desc containing more mappings.
852 *
853 * Returns the number of pte entries before the spte was added or zero if
854 * the spte was not added.
855 *
856 */
857 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
858 unsigned long *pte_list)
859 {
860 struct pte_list_desc *desc;
861 int i, count = 0;
862
863 if (!*pte_list) {
864 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
865 *pte_list = (unsigned long)spte;
866 } else if (!(*pte_list & 1)) {
867 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
868 desc = mmu_alloc_pte_list_desc(vcpu);
869 desc->sptes[0] = (u64 *)*pte_list;
870 desc->sptes[1] = spte;
871 *pte_list = (unsigned long)desc | 1;
872 ++count;
873 } else {
874 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
875 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
876 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
877 desc = desc->more;
878 count += PTE_LIST_EXT;
879 }
880 if (desc->sptes[PTE_LIST_EXT-1]) {
881 desc->more = mmu_alloc_pte_list_desc(vcpu);
882 desc = desc->more;
883 }
884 for (i = 0; desc->sptes[i]; ++i)
885 ++count;
886 desc->sptes[i] = spte;
887 }
888 return count;
889 }
890
891 static void
892 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
893 int i, struct pte_list_desc *prev_desc)
894 {
895 int j;
896
897 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
898 ;
899 desc->sptes[i] = desc->sptes[j];
900 desc->sptes[j] = NULL;
901 if (j != 0)
902 return;
903 if (!prev_desc && !desc->more)
904 *pte_list = (unsigned long)desc->sptes[0];
905 else
906 if (prev_desc)
907 prev_desc->more = desc->more;
908 else
909 *pte_list = (unsigned long)desc->more | 1;
910 mmu_free_pte_list_desc(desc);
911 }
912
913 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
914 {
915 struct pte_list_desc *desc;
916 struct pte_list_desc *prev_desc;
917 int i;
918
919 if (!*pte_list) {
920 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
921 BUG();
922 } else if (!(*pte_list & 1)) {
923 rmap_printk("pte_list_remove: %p 1->0\n", spte);
924 if ((u64 *)*pte_list != spte) {
925 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
926 BUG();
927 }
928 *pte_list = 0;
929 } else {
930 rmap_printk("pte_list_remove: %p many->many\n", spte);
931 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
932 prev_desc = NULL;
933 while (desc) {
934 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
935 if (desc->sptes[i] == spte) {
936 pte_list_desc_remove_entry(pte_list,
937 desc, i,
938 prev_desc);
939 return;
940 }
941 prev_desc = desc;
942 desc = desc->more;
943 }
944 pr_err("pte_list_remove: %p many->many\n", spte);
945 BUG();
946 }
947 }
948
949 typedef void (*pte_list_walk_fn) (u64 *spte);
950 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
951 {
952 struct pte_list_desc *desc;
953 int i;
954
955 if (!*pte_list)
956 return;
957
958 if (!(*pte_list & 1))
959 return fn((u64 *)*pte_list);
960
961 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
962 while (desc) {
963 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
964 fn(desc->sptes[i]);
965 desc = desc->more;
966 }
967 }
968
969 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
970 struct kvm_memory_slot *slot)
971 {
972 unsigned long idx;
973
974 idx = gfn_to_index(gfn, slot->base_gfn, level);
975 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
976 }
977
978 /*
979 * Take gfn and return the reverse mapping to it.
980 */
981 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
982 {
983 struct kvm_memory_slot *slot;
984
985 slot = gfn_to_memslot(kvm, gfn);
986 return __gfn_to_rmap(gfn, level, slot);
987 }
988
989 static bool rmap_can_add(struct kvm_vcpu *vcpu)
990 {
991 struct kvm_mmu_memory_cache *cache;
992
993 cache = &vcpu->arch.mmu_pte_list_desc_cache;
994 return mmu_memory_cache_free_objects(cache);
995 }
996
997 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
998 {
999 struct kvm_mmu_page *sp;
1000 unsigned long *rmapp;
1001
1002 sp = page_header(__pa(spte));
1003 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1004 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1005 return pte_list_add(vcpu, spte, rmapp);
1006 }
1007
1008 static void rmap_remove(struct kvm *kvm, u64 *spte)
1009 {
1010 struct kvm_mmu_page *sp;
1011 gfn_t gfn;
1012 unsigned long *rmapp;
1013
1014 sp = page_header(__pa(spte));
1015 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1016 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1017 pte_list_remove(spte, rmapp);
1018 }
1019
1020 /*
1021 * Used by the following functions to iterate through the sptes linked by a
1022 * rmap. All fields are private and not assumed to be used outside.
1023 */
1024 struct rmap_iterator {
1025 /* private fields */
1026 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1027 int pos; /* index of the sptep */
1028 };
1029
1030 /*
1031 * Iteration must be started by this function. This should also be used after
1032 * removing/dropping sptes from the rmap link because in such cases the
1033 * information in the itererator may not be valid.
1034 *
1035 * Returns sptep if found, NULL otherwise.
1036 */
1037 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1038 {
1039 if (!rmap)
1040 return NULL;
1041
1042 if (!(rmap & 1)) {
1043 iter->desc = NULL;
1044 return (u64 *)rmap;
1045 }
1046
1047 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1048 iter->pos = 0;
1049 return iter->desc->sptes[iter->pos];
1050 }
1051
1052 /*
1053 * Must be used with a valid iterator: e.g. after rmap_get_first().
1054 *
1055 * Returns sptep if found, NULL otherwise.
1056 */
1057 static u64 *rmap_get_next(struct rmap_iterator *iter)
1058 {
1059 if (iter->desc) {
1060 if (iter->pos < PTE_LIST_EXT - 1) {
1061 u64 *sptep;
1062
1063 ++iter->pos;
1064 sptep = iter->desc->sptes[iter->pos];
1065 if (sptep)
1066 return sptep;
1067 }
1068
1069 iter->desc = iter->desc->more;
1070
1071 if (iter->desc) {
1072 iter->pos = 0;
1073 /* desc->sptes[0] cannot be NULL */
1074 return iter->desc->sptes[iter->pos];
1075 }
1076 }
1077
1078 return NULL;
1079 }
1080
1081 static void drop_spte(struct kvm *kvm, u64 *sptep)
1082 {
1083 if (mmu_spte_clear_track_bits(sptep))
1084 rmap_remove(kvm, sptep);
1085 }
1086
1087
1088 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1089 {
1090 if (is_large_pte(*sptep)) {
1091 WARN_ON(page_header(__pa(sptep))->role.level ==
1092 PT_PAGE_TABLE_LEVEL);
1093 drop_spte(kvm, sptep);
1094 --kvm->stat.lpages;
1095 return true;
1096 }
1097
1098 return false;
1099 }
1100
1101 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1102 {
1103 if (__drop_large_spte(vcpu->kvm, sptep))
1104 kvm_flush_remote_tlbs(vcpu->kvm);
1105 }
1106
1107 /*
1108 * Write-protect on the specified @sptep, @pt_protect indicates whether
1109 * spte writ-protection is caused by protecting shadow page table.
1110 * @flush indicates whether tlb need be flushed.
1111 *
1112 * Note: write protection is difference between drity logging and spte
1113 * protection:
1114 * - for dirty logging, the spte can be set to writable at anytime if
1115 * its dirty bitmap is properly set.
1116 * - for spte protection, the spte can be writable only after unsync-ing
1117 * shadow page.
1118 *
1119 * Return true if the spte is dropped.
1120 */
1121 static bool
1122 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1123 {
1124 u64 spte = *sptep;
1125
1126 if (!is_writable_pte(spte) &&
1127 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1128 return false;
1129
1130 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1131
1132 if (__drop_large_spte(kvm, sptep)) {
1133 *flush |= true;
1134 return true;
1135 }
1136
1137 if (pt_protect)
1138 spte &= ~SPTE_MMU_WRITEABLE;
1139 spte = spte & ~PT_WRITABLE_MASK;
1140
1141 *flush |= mmu_spte_update(sptep, spte);
1142 return false;
1143 }
1144
1145 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1146 bool pt_protect)
1147 {
1148 u64 *sptep;
1149 struct rmap_iterator iter;
1150 bool flush = false;
1151
1152 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1153 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1154 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1155 sptep = rmap_get_first(*rmapp, &iter);
1156 continue;
1157 }
1158
1159 sptep = rmap_get_next(&iter);
1160 }
1161
1162 return flush;
1163 }
1164
1165 /**
1166 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1167 * @kvm: kvm instance
1168 * @slot: slot to protect
1169 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1170 * @mask: indicates which pages we should protect
1171 *
1172 * Used when we do not need to care about huge page mappings: e.g. during dirty
1173 * logging we do not have any such mappings.
1174 */
1175 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1176 struct kvm_memory_slot *slot,
1177 gfn_t gfn_offset, unsigned long mask)
1178 {
1179 unsigned long *rmapp;
1180
1181 while (mask) {
1182 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1183 PT_PAGE_TABLE_LEVEL, slot);
1184 __rmap_write_protect(kvm, rmapp, false);
1185
1186 /* clear the first set bit */
1187 mask &= mask - 1;
1188 }
1189 }
1190
1191 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1192 {
1193 struct kvm_memory_slot *slot;
1194 unsigned long *rmapp;
1195 int i;
1196 bool write_protected = false;
1197
1198 slot = gfn_to_memslot(kvm, gfn);
1199
1200 for (i = PT_PAGE_TABLE_LEVEL;
1201 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1202 rmapp = __gfn_to_rmap(gfn, i, slot);
1203 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1204 }
1205
1206 return write_protected;
1207 }
1208
1209 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1210 struct kvm_memory_slot *slot, unsigned long data)
1211 {
1212 u64 *sptep;
1213 struct rmap_iterator iter;
1214 int need_tlb_flush = 0;
1215
1216 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1217 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1218 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1219
1220 drop_spte(kvm, sptep);
1221 need_tlb_flush = 1;
1222 }
1223
1224 return need_tlb_flush;
1225 }
1226
1227 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1228 struct kvm_memory_slot *slot, unsigned long data)
1229 {
1230 u64 *sptep;
1231 struct rmap_iterator iter;
1232 int need_flush = 0;
1233 u64 new_spte;
1234 pte_t *ptep = (pte_t *)data;
1235 pfn_t new_pfn;
1236
1237 WARN_ON(pte_huge(*ptep));
1238 new_pfn = pte_pfn(*ptep);
1239
1240 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1241 BUG_ON(!is_shadow_present_pte(*sptep));
1242 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1243
1244 need_flush = 1;
1245
1246 if (pte_write(*ptep)) {
1247 drop_spte(kvm, sptep);
1248 sptep = rmap_get_first(*rmapp, &iter);
1249 } else {
1250 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1251 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1252
1253 new_spte &= ~PT_WRITABLE_MASK;
1254 new_spte &= ~SPTE_HOST_WRITEABLE;
1255 new_spte &= ~shadow_accessed_mask;
1256
1257 mmu_spte_clear_track_bits(sptep);
1258 mmu_spte_set(sptep, new_spte);
1259 sptep = rmap_get_next(&iter);
1260 }
1261 }
1262
1263 if (need_flush)
1264 kvm_flush_remote_tlbs(kvm);
1265
1266 return 0;
1267 }
1268
1269 static int kvm_handle_hva_range(struct kvm *kvm,
1270 unsigned long start,
1271 unsigned long end,
1272 unsigned long data,
1273 int (*handler)(struct kvm *kvm,
1274 unsigned long *rmapp,
1275 struct kvm_memory_slot *slot,
1276 unsigned long data))
1277 {
1278 int j;
1279 int ret = 0;
1280 struct kvm_memslots *slots;
1281 struct kvm_memory_slot *memslot;
1282
1283 slots = kvm_memslots(kvm);
1284
1285 kvm_for_each_memslot(memslot, slots) {
1286 unsigned long hva_start, hva_end;
1287 gfn_t gfn_start, gfn_end;
1288
1289 hva_start = max(start, memslot->userspace_addr);
1290 hva_end = min(end, memslot->userspace_addr +
1291 (memslot->npages << PAGE_SHIFT));
1292 if (hva_start >= hva_end)
1293 continue;
1294 /*
1295 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1296 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1297 */
1298 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1299 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1300
1301 for (j = PT_PAGE_TABLE_LEVEL;
1302 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1303 unsigned long idx, idx_end;
1304 unsigned long *rmapp;
1305
1306 /*
1307 * {idx(page_j) | page_j intersects with
1308 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1309 */
1310 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1311 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1312
1313 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1314
1315 for (; idx <= idx_end; ++idx)
1316 ret |= handler(kvm, rmapp++, memslot, data);
1317 }
1318 }
1319
1320 return ret;
1321 }
1322
1323 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1324 unsigned long data,
1325 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1326 struct kvm_memory_slot *slot,
1327 unsigned long data))
1328 {
1329 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1330 }
1331
1332 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1333 {
1334 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1335 }
1336
1337 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1338 {
1339 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1340 }
1341
1342 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1343 {
1344 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1345 }
1346
1347 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1348 struct kvm_memory_slot *slot, unsigned long data)
1349 {
1350 u64 *sptep;
1351 struct rmap_iterator uninitialized_var(iter);
1352 int young = 0;
1353
1354 /*
1355 * In case of absence of EPT Access and Dirty Bits supports,
1356 * emulate the accessed bit for EPT, by checking if this page has
1357 * an EPT mapping, and clearing it if it does. On the next access,
1358 * a new EPT mapping will be established.
1359 * This has some overhead, but not as much as the cost of swapping
1360 * out actively used pages or breaking up actively used hugepages.
1361 */
1362 if (!shadow_accessed_mask) {
1363 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1364 goto out;
1365 }
1366
1367 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1368 sptep = rmap_get_next(&iter)) {
1369 BUG_ON(!is_shadow_present_pte(*sptep));
1370
1371 if (*sptep & shadow_accessed_mask) {
1372 young = 1;
1373 clear_bit((ffs(shadow_accessed_mask) - 1),
1374 (unsigned long *)sptep);
1375 }
1376 }
1377 out:
1378 /* @data has hva passed to kvm_age_hva(). */
1379 trace_kvm_age_page(data, slot, young);
1380 return young;
1381 }
1382
1383 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1384 struct kvm_memory_slot *slot, unsigned long data)
1385 {
1386 u64 *sptep;
1387 struct rmap_iterator iter;
1388 int young = 0;
1389
1390 /*
1391 * If there's no access bit in the secondary pte set by the
1392 * hardware it's up to gup-fast/gup to set the access bit in
1393 * the primary pte or in the page structure.
1394 */
1395 if (!shadow_accessed_mask)
1396 goto out;
1397
1398 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1399 sptep = rmap_get_next(&iter)) {
1400 BUG_ON(!is_shadow_present_pte(*sptep));
1401
1402 if (*sptep & shadow_accessed_mask) {
1403 young = 1;
1404 break;
1405 }
1406 }
1407 out:
1408 return young;
1409 }
1410
1411 #define RMAP_RECYCLE_THRESHOLD 1000
1412
1413 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1414 {
1415 unsigned long *rmapp;
1416 struct kvm_mmu_page *sp;
1417
1418 sp = page_header(__pa(spte));
1419
1420 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1421
1422 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1423 kvm_flush_remote_tlbs(vcpu->kvm);
1424 }
1425
1426 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1427 {
1428 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1429 }
1430
1431 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1432 {
1433 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1434 }
1435
1436 #ifdef MMU_DEBUG
1437 static int is_empty_shadow_page(u64 *spt)
1438 {
1439 u64 *pos;
1440 u64 *end;
1441
1442 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1443 if (is_shadow_present_pte(*pos)) {
1444 printk(KERN_ERR "%s: %p %llx\n", __func__,
1445 pos, *pos);
1446 return 0;
1447 }
1448 return 1;
1449 }
1450 #endif
1451
1452 /*
1453 * This value is the sum of all of the kvm instances's
1454 * kvm->arch.n_used_mmu_pages values. We need a global,
1455 * aggregate version in order to make the slab shrinker
1456 * faster
1457 */
1458 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1459 {
1460 kvm->arch.n_used_mmu_pages += nr;
1461 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1462 }
1463
1464 /*
1465 * Remove the sp from shadow page cache, after call it,
1466 * we can not find this sp from the cache, and the shadow
1467 * page table is still valid.
1468 * It should be under the protection of mmu lock.
1469 */
1470 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1471 {
1472 ASSERT(is_empty_shadow_page(sp->spt));
1473 hlist_del(&sp->hash_link);
1474 if (!sp->role.direct)
1475 free_page((unsigned long)sp->gfns);
1476 }
1477
1478 /*
1479 * Free the shadow page table and the sp, we can do it
1480 * out of the protection of mmu lock.
1481 */
1482 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1483 {
1484 list_del(&sp->link);
1485 free_page((unsigned long)sp->spt);
1486 kmem_cache_free(mmu_page_header_cache, sp);
1487 }
1488
1489 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1490 {
1491 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1492 }
1493
1494 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1495 struct kvm_mmu_page *sp, u64 *parent_pte)
1496 {
1497 if (!parent_pte)
1498 return;
1499
1500 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1501 }
1502
1503 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1504 u64 *parent_pte)
1505 {
1506 pte_list_remove(parent_pte, &sp->parent_ptes);
1507 }
1508
1509 static void drop_parent_pte(struct kvm_mmu_page *sp,
1510 u64 *parent_pte)
1511 {
1512 mmu_page_remove_parent_pte(sp, parent_pte);
1513 mmu_spte_clear_no_track(parent_pte);
1514 }
1515
1516 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1517 u64 *parent_pte, int direct)
1518 {
1519 struct kvm_mmu_page *sp;
1520 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1521 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1522 if (!direct)
1523 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1524 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1525 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1526 sp->parent_ptes = 0;
1527 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1528 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1529 return sp;
1530 }
1531
1532 static void mark_unsync(u64 *spte);
1533 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1534 {
1535 pte_list_walk(&sp->parent_ptes, mark_unsync);
1536 }
1537
1538 static void mark_unsync(u64 *spte)
1539 {
1540 struct kvm_mmu_page *sp;
1541 unsigned int index;
1542
1543 sp = page_header(__pa(spte));
1544 index = spte - sp->spt;
1545 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1546 return;
1547 if (sp->unsync_children++)
1548 return;
1549 kvm_mmu_mark_parents_unsync(sp);
1550 }
1551
1552 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1553 struct kvm_mmu_page *sp)
1554 {
1555 return 1;
1556 }
1557
1558 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1559 {
1560 }
1561
1562 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1563 struct kvm_mmu_page *sp, u64 *spte,
1564 const void *pte)
1565 {
1566 WARN_ON(1);
1567 }
1568
1569 #define KVM_PAGE_ARRAY_NR 16
1570
1571 struct kvm_mmu_pages {
1572 struct mmu_page_and_offset {
1573 struct kvm_mmu_page *sp;
1574 unsigned int idx;
1575 } page[KVM_PAGE_ARRAY_NR];
1576 unsigned int nr;
1577 };
1578
1579 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1580 int idx)
1581 {
1582 int i;
1583
1584 if (sp->unsync)
1585 for (i=0; i < pvec->nr; i++)
1586 if (pvec->page[i].sp == sp)
1587 return 0;
1588
1589 pvec->page[pvec->nr].sp = sp;
1590 pvec->page[pvec->nr].idx = idx;
1591 pvec->nr++;
1592 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1593 }
1594
1595 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1596 struct kvm_mmu_pages *pvec)
1597 {
1598 int i, ret, nr_unsync_leaf = 0;
1599
1600 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1601 struct kvm_mmu_page *child;
1602 u64 ent = sp->spt[i];
1603
1604 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1605 goto clear_child_bitmap;
1606
1607 child = page_header(ent & PT64_BASE_ADDR_MASK);
1608
1609 if (child->unsync_children) {
1610 if (mmu_pages_add(pvec, child, i))
1611 return -ENOSPC;
1612
1613 ret = __mmu_unsync_walk(child, pvec);
1614 if (!ret)
1615 goto clear_child_bitmap;
1616 else if (ret > 0)
1617 nr_unsync_leaf += ret;
1618 else
1619 return ret;
1620 } else if (child->unsync) {
1621 nr_unsync_leaf++;
1622 if (mmu_pages_add(pvec, child, i))
1623 return -ENOSPC;
1624 } else
1625 goto clear_child_bitmap;
1626
1627 continue;
1628
1629 clear_child_bitmap:
1630 __clear_bit(i, sp->unsync_child_bitmap);
1631 sp->unsync_children--;
1632 WARN_ON((int)sp->unsync_children < 0);
1633 }
1634
1635
1636 return nr_unsync_leaf;
1637 }
1638
1639 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1640 struct kvm_mmu_pages *pvec)
1641 {
1642 if (!sp->unsync_children)
1643 return 0;
1644
1645 mmu_pages_add(pvec, sp, 0);
1646 return __mmu_unsync_walk(sp, pvec);
1647 }
1648
1649 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1650 {
1651 WARN_ON(!sp->unsync);
1652 trace_kvm_mmu_sync_page(sp);
1653 sp->unsync = 0;
1654 --kvm->stat.mmu_unsync;
1655 }
1656
1657 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1658 struct list_head *invalid_list);
1659 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1660 struct list_head *invalid_list);
1661
1662 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1663 hlist_for_each_entry(sp, pos, \
1664 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1665 if ((sp)->gfn != (gfn)) {} else
1666
1667 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1668 hlist_for_each_entry(sp, pos, \
1669 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1670 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1671 (sp)->role.invalid) {} else
1672
1673 /* @sp->gfn should be write-protected at the call site */
1674 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1675 struct list_head *invalid_list, bool clear_unsync)
1676 {
1677 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1678 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1679 return 1;
1680 }
1681
1682 if (clear_unsync)
1683 kvm_unlink_unsync_page(vcpu->kvm, sp);
1684
1685 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1686 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1687 return 1;
1688 }
1689
1690 kvm_mmu_flush_tlb(vcpu);
1691 return 0;
1692 }
1693
1694 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1695 struct kvm_mmu_page *sp)
1696 {
1697 LIST_HEAD(invalid_list);
1698 int ret;
1699
1700 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1701 if (ret)
1702 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1703
1704 return ret;
1705 }
1706
1707 #ifdef CONFIG_KVM_MMU_AUDIT
1708 #include "mmu_audit.c"
1709 #else
1710 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1711 static void mmu_audit_disable(void) { }
1712 #endif
1713
1714 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1715 struct list_head *invalid_list)
1716 {
1717 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1718 }
1719
1720 /* @gfn should be write-protected at the call site */
1721 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1722 {
1723 struct kvm_mmu_page *s;
1724 struct hlist_node *node;
1725 LIST_HEAD(invalid_list);
1726 bool flush = false;
1727
1728 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1729 if (!s->unsync)
1730 continue;
1731
1732 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1733 kvm_unlink_unsync_page(vcpu->kvm, s);
1734 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1735 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1736 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1737 continue;
1738 }
1739 flush = true;
1740 }
1741
1742 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1743 if (flush)
1744 kvm_mmu_flush_tlb(vcpu);
1745 }
1746
1747 struct mmu_page_path {
1748 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1749 unsigned int idx[PT64_ROOT_LEVEL-1];
1750 };
1751
1752 #define for_each_sp(pvec, sp, parents, i) \
1753 for (i = mmu_pages_next(&pvec, &parents, -1), \
1754 sp = pvec.page[i].sp; \
1755 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1756 i = mmu_pages_next(&pvec, &parents, i))
1757
1758 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1759 struct mmu_page_path *parents,
1760 int i)
1761 {
1762 int n;
1763
1764 for (n = i+1; n < pvec->nr; n++) {
1765 struct kvm_mmu_page *sp = pvec->page[n].sp;
1766
1767 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1768 parents->idx[0] = pvec->page[n].idx;
1769 return n;
1770 }
1771
1772 parents->parent[sp->role.level-2] = sp;
1773 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1774 }
1775
1776 return n;
1777 }
1778
1779 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1780 {
1781 struct kvm_mmu_page *sp;
1782 unsigned int level = 0;
1783
1784 do {
1785 unsigned int idx = parents->idx[level];
1786
1787 sp = parents->parent[level];
1788 if (!sp)
1789 return;
1790
1791 --sp->unsync_children;
1792 WARN_ON((int)sp->unsync_children < 0);
1793 __clear_bit(idx, sp->unsync_child_bitmap);
1794 level++;
1795 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1796 }
1797
1798 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1799 struct mmu_page_path *parents,
1800 struct kvm_mmu_pages *pvec)
1801 {
1802 parents->parent[parent->role.level-1] = NULL;
1803 pvec->nr = 0;
1804 }
1805
1806 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1807 struct kvm_mmu_page *parent)
1808 {
1809 int i;
1810 struct kvm_mmu_page *sp;
1811 struct mmu_page_path parents;
1812 struct kvm_mmu_pages pages;
1813 LIST_HEAD(invalid_list);
1814
1815 kvm_mmu_pages_init(parent, &parents, &pages);
1816 while (mmu_unsync_walk(parent, &pages)) {
1817 bool protected = false;
1818
1819 for_each_sp(pages, sp, parents, i)
1820 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1821
1822 if (protected)
1823 kvm_flush_remote_tlbs(vcpu->kvm);
1824
1825 for_each_sp(pages, sp, parents, i) {
1826 kvm_sync_page(vcpu, sp, &invalid_list);
1827 mmu_pages_clear_parents(&parents);
1828 }
1829 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1830 cond_resched_lock(&vcpu->kvm->mmu_lock);
1831 kvm_mmu_pages_init(parent, &parents, &pages);
1832 }
1833 }
1834
1835 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1836 {
1837 int i;
1838
1839 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1840 sp->spt[i] = 0ull;
1841 }
1842
1843 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1844 {
1845 sp->write_flooding_count = 0;
1846 }
1847
1848 static void clear_sp_write_flooding_count(u64 *spte)
1849 {
1850 struct kvm_mmu_page *sp = page_header(__pa(spte));
1851
1852 __clear_sp_write_flooding_count(sp);
1853 }
1854
1855 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1856 gfn_t gfn,
1857 gva_t gaddr,
1858 unsigned level,
1859 int direct,
1860 unsigned access,
1861 u64 *parent_pte)
1862 {
1863 union kvm_mmu_page_role role;
1864 unsigned quadrant;
1865 struct kvm_mmu_page *sp;
1866 struct hlist_node *node;
1867 bool need_sync = false;
1868
1869 role = vcpu->arch.mmu.base_role;
1870 role.level = level;
1871 role.direct = direct;
1872 if (role.direct)
1873 role.cr4_pae = 0;
1874 role.access = access;
1875 if (!vcpu->arch.mmu.direct_map
1876 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1877 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1878 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1879 role.quadrant = quadrant;
1880 }
1881 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1882 if (!need_sync && sp->unsync)
1883 need_sync = true;
1884
1885 if (sp->role.word != role.word)
1886 continue;
1887
1888 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1889 break;
1890
1891 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1892 if (sp->unsync_children) {
1893 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1894 kvm_mmu_mark_parents_unsync(sp);
1895 } else if (sp->unsync)
1896 kvm_mmu_mark_parents_unsync(sp);
1897
1898 __clear_sp_write_flooding_count(sp);
1899 trace_kvm_mmu_get_page(sp, false);
1900 return sp;
1901 }
1902 ++vcpu->kvm->stat.mmu_cache_miss;
1903 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1904 if (!sp)
1905 return sp;
1906 sp->gfn = gfn;
1907 sp->role = role;
1908 hlist_add_head(&sp->hash_link,
1909 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1910 if (!direct) {
1911 if (rmap_write_protect(vcpu->kvm, gfn))
1912 kvm_flush_remote_tlbs(vcpu->kvm);
1913 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1914 kvm_sync_pages(vcpu, gfn);
1915
1916 account_shadowed(vcpu->kvm, gfn);
1917 }
1918 init_shadow_page_table(sp);
1919 trace_kvm_mmu_get_page(sp, true);
1920 return sp;
1921 }
1922
1923 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1924 struct kvm_vcpu *vcpu, u64 addr)
1925 {
1926 iterator->addr = addr;
1927 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1928 iterator->level = vcpu->arch.mmu.shadow_root_level;
1929
1930 if (iterator->level == PT64_ROOT_LEVEL &&
1931 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1932 !vcpu->arch.mmu.direct_map)
1933 --iterator->level;
1934
1935 if (iterator->level == PT32E_ROOT_LEVEL) {
1936 iterator->shadow_addr
1937 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1938 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1939 --iterator->level;
1940 if (!iterator->shadow_addr)
1941 iterator->level = 0;
1942 }
1943 }
1944
1945 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1946 {
1947 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1948 return false;
1949
1950 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1951 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1952 return true;
1953 }
1954
1955 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1956 u64 spte)
1957 {
1958 if (is_last_spte(spte, iterator->level)) {
1959 iterator->level = 0;
1960 return;
1961 }
1962
1963 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1964 --iterator->level;
1965 }
1966
1967 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1968 {
1969 return __shadow_walk_next(iterator, *iterator->sptep);
1970 }
1971
1972 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1973 {
1974 u64 spte;
1975
1976 spte = __pa(sp->spt)
1977 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1978 | PT_WRITABLE_MASK | PT_USER_MASK;
1979 mmu_spte_set(sptep, spte);
1980 }
1981
1982 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1983 unsigned direct_access)
1984 {
1985 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1986 struct kvm_mmu_page *child;
1987
1988 /*
1989 * For the direct sp, if the guest pte's dirty bit
1990 * changed form clean to dirty, it will corrupt the
1991 * sp's access: allow writable in the read-only sp,
1992 * so we should update the spte at this point to get
1993 * a new sp with the correct access.
1994 */
1995 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1996 if (child->role.access == direct_access)
1997 return;
1998
1999 drop_parent_pte(child, sptep);
2000 kvm_flush_remote_tlbs(vcpu->kvm);
2001 }
2002 }
2003
2004 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2005 u64 *spte)
2006 {
2007 u64 pte;
2008 struct kvm_mmu_page *child;
2009
2010 pte = *spte;
2011 if (is_shadow_present_pte(pte)) {
2012 if (is_last_spte(pte, sp->role.level)) {
2013 drop_spte(kvm, spte);
2014 if (is_large_pte(pte))
2015 --kvm->stat.lpages;
2016 } else {
2017 child = page_header(pte & PT64_BASE_ADDR_MASK);
2018 drop_parent_pte(child, spte);
2019 }
2020 return true;
2021 }
2022
2023 if (is_mmio_spte(pte))
2024 mmu_spte_clear_no_track(spte);
2025
2026 return false;
2027 }
2028
2029 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2030 struct kvm_mmu_page *sp)
2031 {
2032 unsigned i;
2033
2034 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2035 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2036 }
2037
2038 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2039 {
2040 mmu_page_remove_parent_pte(sp, parent_pte);
2041 }
2042
2043 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2044 {
2045 u64 *sptep;
2046 struct rmap_iterator iter;
2047
2048 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2049 drop_parent_pte(sp, sptep);
2050 }
2051
2052 static int mmu_zap_unsync_children(struct kvm *kvm,
2053 struct kvm_mmu_page *parent,
2054 struct list_head *invalid_list)
2055 {
2056 int i, zapped = 0;
2057 struct mmu_page_path parents;
2058 struct kvm_mmu_pages pages;
2059
2060 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2061 return 0;
2062
2063 kvm_mmu_pages_init(parent, &parents, &pages);
2064 while (mmu_unsync_walk(parent, &pages)) {
2065 struct kvm_mmu_page *sp;
2066
2067 for_each_sp(pages, sp, parents, i) {
2068 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2069 mmu_pages_clear_parents(&parents);
2070 zapped++;
2071 }
2072 kvm_mmu_pages_init(parent, &parents, &pages);
2073 }
2074
2075 return zapped;
2076 }
2077
2078 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2079 struct list_head *invalid_list)
2080 {
2081 int ret;
2082
2083 trace_kvm_mmu_prepare_zap_page(sp);
2084 ++kvm->stat.mmu_shadow_zapped;
2085 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2086 kvm_mmu_page_unlink_children(kvm, sp);
2087 kvm_mmu_unlink_parents(kvm, sp);
2088 if (!sp->role.invalid && !sp->role.direct)
2089 unaccount_shadowed(kvm, sp->gfn);
2090 if (sp->unsync)
2091 kvm_unlink_unsync_page(kvm, sp);
2092 if (!sp->root_count) {
2093 /* Count self */
2094 ret++;
2095 list_move(&sp->link, invalid_list);
2096 kvm_mod_used_mmu_pages(kvm, -1);
2097 } else {
2098 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2099 kvm_reload_remote_mmus(kvm);
2100 }
2101
2102 sp->role.invalid = 1;
2103 return ret;
2104 }
2105
2106 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2107 struct list_head *invalid_list)
2108 {
2109 struct kvm_mmu_page *sp;
2110
2111 if (list_empty(invalid_list))
2112 return;
2113
2114 /*
2115 * wmb: make sure everyone sees our modifications to the page tables
2116 * rmb: make sure we see changes to vcpu->mode
2117 */
2118 smp_mb();
2119
2120 /*
2121 * Wait for all vcpus to exit guest mode and/or lockless shadow
2122 * page table walks.
2123 */
2124 kvm_flush_remote_tlbs(kvm);
2125
2126 do {
2127 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2128 WARN_ON(!sp->role.invalid || sp->root_count);
2129 kvm_mmu_isolate_page(sp);
2130 kvm_mmu_free_page(sp);
2131 } while (!list_empty(invalid_list));
2132 }
2133
2134 /*
2135 * Changing the number of mmu pages allocated to the vm
2136 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2137 */
2138 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2139 {
2140 LIST_HEAD(invalid_list);
2141 /*
2142 * If we set the number of mmu pages to be smaller be than the
2143 * number of actived pages , we must to free some mmu pages before we
2144 * change the value
2145 */
2146
2147 spin_lock(&kvm->mmu_lock);
2148
2149 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2150 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2151 !list_empty(&kvm->arch.active_mmu_pages)) {
2152 struct kvm_mmu_page *page;
2153
2154 page = container_of(kvm->arch.active_mmu_pages.prev,
2155 struct kvm_mmu_page, link);
2156 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2157 }
2158 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2159 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2160 }
2161
2162 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2163
2164 spin_unlock(&kvm->mmu_lock);
2165 }
2166
2167 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2168 {
2169 struct kvm_mmu_page *sp;
2170 struct hlist_node *node;
2171 LIST_HEAD(invalid_list);
2172 int r;
2173
2174 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2175 r = 0;
2176 spin_lock(&kvm->mmu_lock);
2177 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2178 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2179 sp->role.word);
2180 r = 1;
2181 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2182 }
2183 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2184 spin_unlock(&kvm->mmu_lock);
2185
2186 return r;
2187 }
2188 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2189
2190 /*
2191 * The function is based on mtrr_type_lookup() in
2192 * arch/x86/kernel/cpu/mtrr/generic.c
2193 */
2194 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2195 u64 start, u64 end)
2196 {
2197 int i;
2198 u64 base, mask;
2199 u8 prev_match, curr_match;
2200 int num_var_ranges = KVM_NR_VAR_MTRR;
2201
2202 if (!mtrr_state->enabled)
2203 return 0xFF;
2204
2205 /* Make end inclusive end, instead of exclusive */
2206 end--;
2207
2208 /* Look in fixed ranges. Just return the type as per start */
2209 if (mtrr_state->have_fixed && (start < 0x100000)) {
2210 int idx;
2211
2212 if (start < 0x80000) {
2213 idx = 0;
2214 idx += (start >> 16);
2215 return mtrr_state->fixed_ranges[idx];
2216 } else if (start < 0xC0000) {
2217 idx = 1 * 8;
2218 idx += ((start - 0x80000) >> 14);
2219 return mtrr_state->fixed_ranges[idx];
2220 } else if (start < 0x1000000) {
2221 idx = 3 * 8;
2222 idx += ((start - 0xC0000) >> 12);
2223 return mtrr_state->fixed_ranges[idx];
2224 }
2225 }
2226
2227 /*
2228 * Look in variable ranges
2229 * Look of multiple ranges matching this address and pick type
2230 * as per MTRR precedence
2231 */
2232 if (!(mtrr_state->enabled & 2))
2233 return mtrr_state->def_type;
2234
2235 prev_match = 0xFF;
2236 for (i = 0; i < num_var_ranges; ++i) {
2237 unsigned short start_state, end_state;
2238
2239 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2240 continue;
2241
2242 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2243 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2244 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2245 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2246
2247 start_state = ((start & mask) == (base & mask));
2248 end_state = ((end & mask) == (base & mask));
2249 if (start_state != end_state)
2250 return 0xFE;
2251
2252 if ((start & mask) != (base & mask))
2253 continue;
2254
2255 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2256 if (prev_match == 0xFF) {
2257 prev_match = curr_match;
2258 continue;
2259 }
2260
2261 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2262 curr_match == MTRR_TYPE_UNCACHABLE)
2263 return MTRR_TYPE_UNCACHABLE;
2264
2265 if ((prev_match == MTRR_TYPE_WRBACK &&
2266 curr_match == MTRR_TYPE_WRTHROUGH) ||
2267 (prev_match == MTRR_TYPE_WRTHROUGH &&
2268 curr_match == MTRR_TYPE_WRBACK)) {
2269 prev_match = MTRR_TYPE_WRTHROUGH;
2270 curr_match = MTRR_TYPE_WRTHROUGH;
2271 }
2272
2273 if (prev_match != curr_match)
2274 return MTRR_TYPE_UNCACHABLE;
2275 }
2276
2277 if (prev_match != 0xFF)
2278 return prev_match;
2279
2280 return mtrr_state->def_type;
2281 }
2282
2283 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2284 {
2285 u8 mtrr;
2286
2287 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2288 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2289 if (mtrr == 0xfe || mtrr == 0xff)
2290 mtrr = MTRR_TYPE_WRBACK;
2291 return mtrr;
2292 }
2293 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2294
2295 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2296 {
2297 trace_kvm_mmu_unsync_page(sp);
2298 ++vcpu->kvm->stat.mmu_unsync;
2299 sp->unsync = 1;
2300
2301 kvm_mmu_mark_parents_unsync(sp);
2302 }
2303
2304 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2305 {
2306 struct kvm_mmu_page *s;
2307 struct hlist_node *node;
2308
2309 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2310 if (s->unsync)
2311 continue;
2312 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2313 __kvm_unsync_page(vcpu, s);
2314 }
2315 }
2316
2317 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2318 bool can_unsync)
2319 {
2320 struct kvm_mmu_page *s;
2321 struct hlist_node *node;
2322 bool need_unsync = false;
2323
2324 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2325 if (!can_unsync)
2326 return 1;
2327
2328 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2329 return 1;
2330
2331 if (!need_unsync && !s->unsync) {
2332 need_unsync = true;
2333 }
2334 }
2335 if (need_unsync)
2336 kvm_unsync_pages(vcpu, gfn);
2337 return 0;
2338 }
2339
2340 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2341 unsigned pte_access, int level,
2342 gfn_t gfn, pfn_t pfn, bool speculative,
2343 bool can_unsync, bool host_writable)
2344 {
2345 u64 spte;
2346 int ret = 0;
2347
2348 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2349 return 0;
2350
2351 spte = PT_PRESENT_MASK;
2352 if (!speculative)
2353 spte |= shadow_accessed_mask;
2354
2355 if (pte_access & ACC_EXEC_MASK)
2356 spte |= shadow_x_mask;
2357 else
2358 spte |= shadow_nx_mask;
2359
2360 if (pte_access & ACC_USER_MASK)
2361 spte |= shadow_user_mask;
2362
2363 if (level > PT_PAGE_TABLE_LEVEL)
2364 spte |= PT_PAGE_SIZE_MASK;
2365 if (tdp_enabled)
2366 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2367 kvm_is_mmio_pfn(pfn));
2368
2369 if (host_writable)
2370 spte |= SPTE_HOST_WRITEABLE;
2371 else
2372 pte_access &= ~ACC_WRITE_MASK;
2373
2374 spte |= (u64)pfn << PAGE_SHIFT;
2375
2376 if (pte_access & ACC_WRITE_MASK) {
2377
2378 /*
2379 * Other vcpu creates new sp in the window between
2380 * mapping_level() and acquiring mmu-lock. We can
2381 * allow guest to retry the access, the mapping can
2382 * be fixed if guest refault.
2383 */
2384 if (level > PT_PAGE_TABLE_LEVEL &&
2385 has_wrprotected_page(vcpu->kvm, gfn, level))
2386 goto done;
2387
2388 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2389
2390 /*
2391 * Optimization: for pte sync, if spte was writable the hash
2392 * lookup is unnecessary (and expensive). Write protection
2393 * is responsibility of mmu_get_page / kvm_sync_page.
2394 * Same reasoning can be applied to dirty page accounting.
2395 */
2396 if (!can_unsync && is_writable_pte(*sptep))
2397 goto set_pte;
2398
2399 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2400 pgprintk("%s: found shadow page for %llx, marking ro\n",
2401 __func__, gfn);
2402 ret = 1;
2403 pte_access &= ~ACC_WRITE_MASK;
2404 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2405 }
2406 }
2407
2408 if (pte_access & ACC_WRITE_MASK)
2409 mark_page_dirty(vcpu->kvm, gfn);
2410
2411 set_pte:
2412 if (mmu_spte_update(sptep, spte))
2413 kvm_flush_remote_tlbs(vcpu->kvm);
2414 done:
2415 return ret;
2416 }
2417
2418 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2419 unsigned pt_access, unsigned pte_access,
2420 int write_fault, int *emulate, int level, gfn_t gfn,
2421 pfn_t pfn, bool speculative, bool host_writable)
2422 {
2423 int was_rmapped = 0;
2424 int rmap_count;
2425
2426 pgprintk("%s: spte %llx access %x write_fault %d gfn %llx\n",
2427 __func__, *sptep, pt_access,
2428 write_fault, gfn);
2429
2430 if (is_rmap_spte(*sptep)) {
2431 /*
2432 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2433 * the parent of the now unreachable PTE.
2434 */
2435 if (level > PT_PAGE_TABLE_LEVEL &&
2436 !is_large_pte(*sptep)) {
2437 struct kvm_mmu_page *child;
2438 u64 pte = *sptep;
2439
2440 child = page_header(pte & PT64_BASE_ADDR_MASK);
2441 drop_parent_pte(child, sptep);
2442 kvm_flush_remote_tlbs(vcpu->kvm);
2443 } else if (pfn != spte_to_pfn(*sptep)) {
2444 pgprintk("hfn old %llx new %llx\n",
2445 spte_to_pfn(*sptep), pfn);
2446 drop_spte(vcpu->kvm, sptep);
2447 kvm_flush_remote_tlbs(vcpu->kvm);
2448 } else
2449 was_rmapped = 1;
2450 }
2451
2452 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2453 true, host_writable)) {
2454 if (write_fault)
2455 *emulate = 1;
2456 kvm_mmu_flush_tlb(vcpu);
2457 }
2458
2459 if (unlikely(is_mmio_spte(*sptep) && emulate))
2460 *emulate = 1;
2461
2462 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2463 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2464 is_large_pte(*sptep)? "2MB" : "4kB",
2465 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2466 *sptep, sptep);
2467 if (!was_rmapped && is_large_pte(*sptep))
2468 ++vcpu->kvm->stat.lpages;
2469
2470 if (is_shadow_present_pte(*sptep)) {
2471 if (!was_rmapped) {
2472 rmap_count = rmap_add(vcpu, sptep, gfn);
2473 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2474 rmap_recycle(vcpu, sptep, gfn);
2475 }
2476 }
2477
2478 kvm_release_pfn_clean(pfn);
2479 }
2480
2481 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2482 {
2483 mmu_free_roots(vcpu);
2484 }
2485
2486 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2487 {
2488 int bit7;
2489
2490 bit7 = (gpte >> 7) & 1;
2491 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2492 }
2493
2494 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2495 bool no_dirty_log)
2496 {
2497 struct kvm_memory_slot *slot;
2498
2499 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2500 if (!slot)
2501 return KVM_PFN_ERR_FAULT;
2502
2503 return gfn_to_pfn_memslot_atomic(slot, gfn);
2504 }
2505
2506 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2507 struct kvm_mmu_page *sp, u64 *spte,
2508 u64 gpte)
2509 {
2510 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2511 goto no_present;
2512
2513 if (!is_present_gpte(gpte))
2514 goto no_present;
2515
2516 if (!(gpte & PT_ACCESSED_MASK))
2517 goto no_present;
2518
2519 return false;
2520
2521 no_present:
2522 drop_spte(vcpu->kvm, spte);
2523 return true;
2524 }
2525
2526 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2527 struct kvm_mmu_page *sp,
2528 u64 *start, u64 *end)
2529 {
2530 struct page *pages[PTE_PREFETCH_NUM];
2531 unsigned access = sp->role.access;
2532 int i, ret;
2533 gfn_t gfn;
2534
2535 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2536 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2537 return -1;
2538
2539 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2540 if (ret <= 0)
2541 return -1;
2542
2543 for (i = 0; i < ret; i++, gfn++, start++)
2544 mmu_set_spte(vcpu, start, ACC_ALL, access, 0, NULL,
2545 sp->role.level, gfn, page_to_pfn(pages[i]),
2546 true, true);
2547
2548 return 0;
2549 }
2550
2551 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2552 struct kvm_mmu_page *sp, u64 *sptep)
2553 {
2554 u64 *spte, *start = NULL;
2555 int i;
2556
2557 WARN_ON(!sp->role.direct);
2558
2559 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2560 spte = sp->spt + i;
2561
2562 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2563 if (is_shadow_present_pte(*spte) || spte == sptep) {
2564 if (!start)
2565 continue;
2566 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2567 break;
2568 start = NULL;
2569 } else if (!start)
2570 start = spte;
2571 }
2572 }
2573
2574 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2575 {
2576 struct kvm_mmu_page *sp;
2577
2578 /*
2579 * Since it's no accessed bit on EPT, it's no way to
2580 * distinguish between actually accessed translations
2581 * and prefetched, so disable pte prefetch if EPT is
2582 * enabled.
2583 */
2584 if (!shadow_accessed_mask)
2585 return;
2586
2587 sp = page_header(__pa(sptep));
2588 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2589 return;
2590
2591 __direct_pte_prefetch(vcpu, sp, sptep);
2592 }
2593
2594 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2595 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2596 bool prefault)
2597 {
2598 struct kvm_shadow_walk_iterator iterator;
2599 struct kvm_mmu_page *sp;
2600 int emulate = 0;
2601 gfn_t pseudo_gfn;
2602
2603 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2604 if (iterator.level == level) {
2605 unsigned pte_access = ACC_ALL;
2606
2607 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2608 write, &emulate, level, gfn, pfn,
2609 prefault, map_writable);
2610 direct_pte_prefetch(vcpu, iterator.sptep);
2611 ++vcpu->stat.pf_fixed;
2612 break;
2613 }
2614
2615 if (!is_shadow_present_pte(*iterator.sptep)) {
2616 u64 base_addr = iterator.addr;
2617
2618 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2619 pseudo_gfn = base_addr >> PAGE_SHIFT;
2620 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2621 iterator.level - 1,
2622 1, ACC_ALL, iterator.sptep);
2623
2624 mmu_spte_set(iterator.sptep,
2625 __pa(sp->spt)
2626 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2627 | shadow_user_mask | shadow_x_mask
2628 | shadow_accessed_mask);
2629 }
2630 }
2631 return emulate;
2632 }
2633
2634 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2635 {
2636 siginfo_t info;
2637
2638 info.si_signo = SIGBUS;
2639 info.si_errno = 0;
2640 info.si_code = BUS_MCEERR_AR;
2641 info.si_addr = (void __user *)address;
2642 info.si_addr_lsb = PAGE_SHIFT;
2643
2644 send_sig_info(SIGBUS, &info, tsk);
2645 }
2646
2647 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2648 {
2649 /*
2650 * Do not cache the mmio info caused by writing the readonly gfn
2651 * into the spte otherwise read access on readonly gfn also can
2652 * caused mmio page fault and treat it as mmio access.
2653 * Return 1 to tell kvm to emulate it.
2654 */
2655 if (pfn == KVM_PFN_ERR_RO_FAULT)
2656 return 1;
2657
2658 if (pfn == KVM_PFN_ERR_HWPOISON) {
2659 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2660 return 0;
2661 }
2662
2663 return -EFAULT;
2664 }
2665
2666 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2667 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2668 {
2669 pfn_t pfn = *pfnp;
2670 gfn_t gfn = *gfnp;
2671 int level = *levelp;
2672
2673 /*
2674 * Check if it's a transparent hugepage. If this would be an
2675 * hugetlbfs page, level wouldn't be set to
2676 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2677 * here.
2678 */
2679 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2680 level == PT_PAGE_TABLE_LEVEL &&
2681 PageTransCompound(pfn_to_page(pfn)) &&
2682 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2683 unsigned long mask;
2684 /*
2685 * mmu_notifier_retry was successful and we hold the
2686 * mmu_lock here, so the pmd can't become splitting
2687 * from under us, and in turn
2688 * __split_huge_page_refcount() can't run from under
2689 * us and we can safely transfer the refcount from
2690 * PG_tail to PG_head as we switch the pfn to tail to
2691 * head.
2692 */
2693 *levelp = level = PT_DIRECTORY_LEVEL;
2694 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2695 VM_BUG_ON((gfn & mask) != (pfn & mask));
2696 if (pfn & mask) {
2697 gfn &= ~mask;
2698 *gfnp = gfn;
2699 kvm_release_pfn_clean(pfn);
2700 pfn &= ~mask;
2701 kvm_get_pfn(pfn);
2702 *pfnp = pfn;
2703 }
2704 }
2705 }
2706
2707 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2708 pfn_t pfn, unsigned access, int *ret_val)
2709 {
2710 bool ret = true;
2711
2712 /* The pfn is invalid, report the error! */
2713 if (unlikely(is_error_pfn(pfn))) {
2714 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2715 goto exit;
2716 }
2717
2718 if (unlikely(is_noslot_pfn(pfn)))
2719 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2720
2721 ret = false;
2722 exit:
2723 return ret;
2724 }
2725
2726 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2727 {
2728 /*
2729 * #PF can be fast only if the shadow page table is present and it
2730 * is caused by write-protect, that means we just need change the
2731 * W bit of the spte which can be done out of mmu-lock.
2732 */
2733 if (!(error_code & PFERR_PRESENT_MASK) ||
2734 !(error_code & PFERR_WRITE_MASK))
2735 return false;
2736
2737 return true;
2738 }
2739
2740 static bool
2741 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2742 {
2743 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2744 gfn_t gfn;
2745
2746 WARN_ON(!sp->role.direct);
2747
2748 /*
2749 * The gfn of direct spte is stable since it is calculated
2750 * by sp->gfn.
2751 */
2752 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2753
2754 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2755 mark_page_dirty(vcpu->kvm, gfn);
2756
2757 return true;
2758 }
2759
2760 /*
2761 * Return value:
2762 * - true: let the vcpu to access on the same address again.
2763 * - false: let the real page fault path to fix it.
2764 */
2765 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2766 u32 error_code)
2767 {
2768 struct kvm_shadow_walk_iterator iterator;
2769 bool ret = false;
2770 u64 spte = 0ull;
2771
2772 if (!page_fault_can_be_fast(vcpu, error_code))
2773 return false;
2774
2775 walk_shadow_page_lockless_begin(vcpu);
2776 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2777 if (!is_shadow_present_pte(spte) || iterator.level < level)
2778 break;
2779
2780 /*
2781 * If the mapping has been changed, let the vcpu fault on the
2782 * same address again.
2783 */
2784 if (!is_rmap_spte(spte)) {
2785 ret = true;
2786 goto exit;
2787 }
2788
2789 if (!is_last_spte(spte, level))
2790 goto exit;
2791
2792 /*
2793 * Check if it is a spurious fault caused by TLB lazily flushed.
2794 *
2795 * Need not check the access of upper level table entries since
2796 * they are always ACC_ALL.
2797 */
2798 if (is_writable_pte(spte)) {
2799 ret = true;
2800 goto exit;
2801 }
2802
2803 /*
2804 * Currently, to simplify the code, only the spte write-protected
2805 * by dirty-log can be fast fixed.
2806 */
2807 if (!spte_is_locklessly_modifiable(spte))
2808 goto exit;
2809
2810 /*
2811 * Currently, fast page fault only works for direct mapping since
2812 * the gfn is not stable for indirect shadow page.
2813 * See Documentation/virtual/kvm/locking.txt to get more detail.
2814 */
2815 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2816 exit:
2817 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2818 spte, ret);
2819 walk_shadow_page_lockless_end(vcpu);
2820
2821 return ret;
2822 }
2823
2824 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2825 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2826
2827 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2828 gfn_t gfn, bool prefault)
2829 {
2830 int r;
2831 int level;
2832 int force_pt_level;
2833 pfn_t pfn;
2834 unsigned long mmu_seq;
2835 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2836
2837 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2838 if (likely(!force_pt_level)) {
2839 level = mapping_level(vcpu, gfn);
2840 /*
2841 * This path builds a PAE pagetable - so we can map
2842 * 2mb pages at maximum. Therefore check if the level
2843 * is larger than that.
2844 */
2845 if (level > PT_DIRECTORY_LEVEL)
2846 level = PT_DIRECTORY_LEVEL;
2847
2848 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2849 } else
2850 level = PT_PAGE_TABLE_LEVEL;
2851
2852 if (fast_page_fault(vcpu, v, level, error_code))
2853 return 0;
2854
2855 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2856 smp_rmb();
2857
2858 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2859 return 0;
2860
2861 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2862 return r;
2863
2864 spin_lock(&vcpu->kvm->mmu_lock);
2865 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2866 goto out_unlock;
2867 kvm_mmu_free_some_pages(vcpu);
2868 if (likely(!force_pt_level))
2869 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2870 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2871 prefault);
2872 spin_unlock(&vcpu->kvm->mmu_lock);
2873
2874
2875 return r;
2876
2877 out_unlock:
2878 spin_unlock(&vcpu->kvm->mmu_lock);
2879 kvm_release_pfn_clean(pfn);
2880 return 0;
2881 }
2882
2883
2884 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2885 {
2886 int i;
2887 struct kvm_mmu_page *sp;
2888 LIST_HEAD(invalid_list);
2889
2890 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2891 return;
2892 spin_lock(&vcpu->kvm->mmu_lock);
2893 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2894 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2895 vcpu->arch.mmu.direct_map)) {
2896 hpa_t root = vcpu->arch.mmu.root_hpa;
2897
2898 sp = page_header(root);
2899 --sp->root_count;
2900 if (!sp->root_count && sp->role.invalid) {
2901 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2902 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2903 }
2904 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2905 spin_unlock(&vcpu->kvm->mmu_lock);
2906 return;
2907 }
2908 for (i = 0; i < 4; ++i) {
2909 hpa_t root = vcpu->arch.mmu.pae_root[i];
2910
2911 if (root) {
2912 root &= PT64_BASE_ADDR_MASK;
2913 sp = page_header(root);
2914 --sp->root_count;
2915 if (!sp->root_count && sp->role.invalid)
2916 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2917 &invalid_list);
2918 }
2919 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2920 }
2921 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2922 spin_unlock(&vcpu->kvm->mmu_lock);
2923 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2924 }
2925
2926 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2927 {
2928 int ret = 0;
2929
2930 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2931 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2932 ret = 1;
2933 }
2934
2935 return ret;
2936 }
2937
2938 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2939 {
2940 struct kvm_mmu_page *sp;
2941 unsigned i;
2942
2943 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2944 spin_lock(&vcpu->kvm->mmu_lock);
2945 kvm_mmu_free_some_pages(vcpu);
2946 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2947 1, ACC_ALL, NULL);
2948 ++sp->root_count;
2949 spin_unlock(&vcpu->kvm->mmu_lock);
2950 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2951 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2952 for (i = 0; i < 4; ++i) {
2953 hpa_t root = vcpu->arch.mmu.pae_root[i];
2954
2955 ASSERT(!VALID_PAGE(root));
2956 spin_lock(&vcpu->kvm->mmu_lock);
2957 kvm_mmu_free_some_pages(vcpu);
2958 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2959 i << 30,
2960 PT32_ROOT_LEVEL, 1, ACC_ALL,
2961 NULL);
2962 root = __pa(sp->spt);
2963 ++sp->root_count;
2964 spin_unlock(&vcpu->kvm->mmu_lock);
2965 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2966 }
2967 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2968 } else
2969 BUG();
2970
2971 return 0;
2972 }
2973
2974 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2975 {
2976 struct kvm_mmu_page *sp;
2977 u64 pdptr, pm_mask;
2978 gfn_t root_gfn;
2979 int i;
2980
2981 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2982
2983 if (mmu_check_root(vcpu, root_gfn))
2984 return 1;
2985
2986 /*
2987 * Do we shadow a long mode page table? If so we need to
2988 * write-protect the guests page table root.
2989 */
2990 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2991 hpa_t root = vcpu->arch.mmu.root_hpa;
2992
2993 ASSERT(!VALID_PAGE(root));
2994
2995 spin_lock(&vcpu->kvm->mmu_lock);
2996 kvm_mmu_free_some_pages(vcpu);
2997 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2998 0, ACC_ALL, NULL);
2999 root = __pa(sp->spt);
3000 ++sp->root_count;
3001 spin_unlock(&vcpu->kvm->mmu_lock);
3002 vcpu->arch.mmu.root_hpa = root;
3003 return 0;
3004 }
3005
3006 /*
3007 * We shadow a 32 bit page table. This may be a legacy 2-level
3008 * or a PAE 3-level page table. In either case we need to be aware that
3009 * the shadow page table may be a PAE or a long mode page table.
3010 */
3011 pm_mask = PT_PRESENT_MASK;
3012 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3013 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3014
3015 for (i = 0; i < 4; ++i) {
3016 hpa_t root = vcpu->arch.mmu.pae_root[i];
3017
3018 ASSERT(!VALID_PAGE(root));
3019 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3020 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3021 if (!is_present_gpte(pdptr)) {
3022 vcpu->arch.mmu.pae_root[i] = 0;
3023 continue;
3024 }
3025 root_gfn = pdptr >> PAGE_SHIFT;
3026 if (mmu_check_root(vcpu, root_gfn))
3027 return 1;
3028 }
3029 spin_lock(&vcpu->kvm->mmu_lock);
3030 kvm_mmu_free_some_pages(vcpu);
3031 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3032 PT32_ROOT_LEVEL, 0,
3033 ACC_ALL, NULL);
3034 root = __pa(sp->spt);
3035 ++sp->root_count;
3036 spin_unlock(&vcpu->kvm->mmu_lock);
3037
3038 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3039 }
3040 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3041
3042 /*
3043 * If we shadow a 32 bit page table with a long mode page
3044 * table we enter this path.
3045 */
3046 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3047 if (vcpu->arch.mmu.lm_root == NULL) {
3048 /*
3049 * The additional page necessary for this is only
3050 * allocated on demand.
3051 */
3052
3053 u64 *lm_root;
3054
3055 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3056 if (lm_root == NULL)
3057 return 1;
3058
3059 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3060
3061 vcpu->arch.mmu.lm_root = lm_root;
3062 }
3063
3064 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3065 }
3066
3067 return 0;
3068 }
3069
3070 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3071 {
3072 if (vcpu->arch.mmu.direct_map)
3073 return mmu_alloc_direct_roots(vcpu);
3074 else
3075 return mmu_alloc_shadow_roots(vcpu);
3076 }
3077
3078 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3079 {
3080 int i;
3081 struct kvm_mmu_page *sp;
3082
3083 if (vcpu->arch.mmu.direct_map)
3084 return;
3085
3086 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3087 return;
3088
3089 vcpu_clear_mmio_info(vcpu, ~0ul);
3090 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3091 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3092 hpa_t root = vcpu->arch.mmu.root_hpa;
3093 sp = page_header(root);
3094 mmu_sync_children(vcpu, sp);
3095 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3096 return;
3097 }
3098 for (i = 0; i < 4; ++i) {
3099 hpa_t root = vcpu->arch.mmu.pae_root[i];
3100
3101 if (root && VALID_PAGE(root)) {
3102 root &= PT64_BASE_ADDR_MASK;
3103 sp = page_header(root);
3104 mmu_sync_children(vcpu, sp);
3105 }
3106 }
3107 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3108 }
3109
3110 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3111 {
3112 spin_lock(&vcpu->kvm->mmu_lock);
3113 mmu_sync_roots(vcpu);
3114 spin_unlock(&vcpu->kvm->mmu_lock);
3115 }
3116
3117 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3118 u32 access, struct x86_exception *exception)
3119 {
3120 if (exception)
3121 exception->error_code = 0;
3122 return vaddr;
3123 }
3124
3125 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3126 u32 access,
3127 struct x86_exception *exception)
3128 {
3129 if (exception)
3130 exception->error_code = 0;
3131 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3132 }
3133
3134 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3135 {
3136 if (direct)
3137 return vcpu_match_mmio_gpa(vcpu, addr);
3138
3139 return vcpu_match_mmio_gva(vcpu, addr);
3140 }
3141
3142
3143 /*
3144 * On direct hosts, the last spte is only allows two states
3145 * for mmio page fault:
3146 * - It is the mmio spte
3147 * - It is zapped or it is being zapped.
3148 *
3149 * This function completely checks the spte when the last spte
3150 * is not the mmio spte.
3151 */
3152 static bool check_direct_spte_mmio_pf(u64 spte)
3153 {
3154 return __check_direct_spte_mmio_pf(spte);
3155 }
3156
3157 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3158 {
3159 struct kvm_shadow_walk_iterator iterator;
3160 u64 spte = 0ull;
3161
3162 walk_shadow_page_lockless_begin(vcpu);
3163 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3164 if (!is_shadow_present_pte(spte))
3165 break;
3166 walk_shadow_page_lockless_end(vcpu);
3167
3168 return spte;
3169 }
3170
3171 /*
3172 * If it is a real mmio page fault, return 1 and emulat the instruction
3173 * directly, return 0 to let CPU fault again on the address, -1 is
3174 * returned if bug is detected.
3175 */
3176 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3177 {
3178 u64 spte;
3179
3180 if (quickly_check_mmio_pf(vcpu, addr, direct))
3181 return 1;
3182
3183 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3184
3185 if (is_mmio_spte(spte)) {
3186 gfn_t gfn = get_mmio_spte_gfn(spte);
3187 unsigned access = get_mmio_spte_access(spte);
3188
3189 if (direct)
3190 addr = 0;
3191
3192 trace_handle_mmio_page_fault(addr, gfn, access);
3193 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3194 return 1;
3195 }
3196
3197 /*
3198 * It's ok if the gva is remapped by other cpus on shadow guest,
3199 * it's a BUG if the gfn is not a mmio page.
3200 */
3201 if (direct && !check_direct_spte_mmio_pf(spte))
3202 return -1;
3203
3204 /*
3205 * If the page table is zapped by other cpus, let CPU fault again on
3206 * the address.
3207 */
3208 return 0;
3209 }
3210 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3211
3212 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3213 u32 error_code, bool direct)
3214 {
3215 int ret;
3216
3217 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3218 WARN_ON(ret < 0);
3219 return ret;
3220 }
3221
3222 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3223 u32 error_code, bool prefault)
3224 {
3225 gfn_t gfn;
3226 int r;
3227
3228 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3229
3230 if (unlikely(error_code & PFERR_RSVD_MASK))
3231 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3232
3233 r = mmu_topup_memory_caches(vcpu);
3234 if (r)
3235 return r;
3236
3237 ASSERT(vcpu);
3238 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3239
3240 gfn = gva >> PAGE_SHIFT;
3241
3242 return nonpaging_map(vcpu, gva & PAGE_MASK,
3243 error_code, gfn, prefault);
3244 }
3245
3246 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3247 {
3248 struct kvm_arch_async_pf arch;
3249
3250 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3251 arch.gfn = gfn;
3252 arch.direct_map = vcpu->arch.mmu.direct_map;
3253 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3254
3255 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3256 }
3257
3258 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3259 {
3260 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3261 kvm_event_needs_reinjection(vcpu)))
3262 return false;
3263
3264 return kvm_x86_ops->interrupt_allowed(vcpu);
3265 }
3266
3267 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3268 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3269 {
3270 bool async;
3271
3272 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3273
3274 if (!async)
3275 return false; /* *pfn has correct page already */
3276
3277 if (!prefault && can_do_async_pf(vcpu)) {
3278 trace_kvm_try_async_get_page(gva, gfn);
3279 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3280 trace_kvm_async_pf_doublefault(gva, gfn);
3281 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3282 return true;
3283 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3284 return true;
3285 }
3286
3287 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3288
3289 return false;
3290 }
3291
3292 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3293 bool prefault)
3294 {
3295 pfn_t pfn;
3296 int r;
3297 int level;
3298 int force_pt_level;
3299 gfn_t gfn = gpa >> PAGE_SHIFT;
3300 unsigned long mmu_seq;
3301 int write = error_code & PFERR_WRITE_MASK;
3302 bool map_writable;
3303
3304 ASSERT(vcpu);
3305 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3306
3307 if (unlikely(error_code & PFERR_RSVD_MASK))
3308 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3309
3310 r = mmu_topup_memory_caches(vcpu);
3311 if (r)
3312 return r;
3313
3314 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3315 if (likely(!force_pt_level)) {
3316 level = mapping_level(vcpu, gfn);
3317 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3318 } else
3319 level = PT_PAGE_TABLE_LEVEL;
3320
3321 if (fast_page_fault(vcpu, gpa, level, error_code))
3322 return 0;
3323
3324 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3325 smp_rmb();
3326
3327 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3328 return 0;
3329
3330 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3331 return r;
3332
3333 spin_lock(&vcpu->kvm->mmu_lock);
3334 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3335 goto out_unlock;
3336 kvm_mmu_free_some_pages(vcpu);
3337 if (likely(!force_pt_level))
3338 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3339 r = __direct_map(vcpu, gpa, write, map_writable,
3340 level, gfn, pfn, prefault);
3341 spin_unlock(&vcpu->kvm->mmu_lock);
3342
3343 return r;
3344
3345 out_unlock:
3346 spin_unlock(&vcpu->kvm->mmu_lock);
3347 kvm_release_pfn_clean(pfn);
3348 return 0;
3349 }
3350
3351 static void nonpaging_free(struct kvm_vcpu *vcpu)
3352 {
3353 mmu_free_roots(vcpu);
3354 }
3355
3356 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3357 struct kvm_mmu *context)
3358 {
3359 context->new_cr3 = nonpaging_new_cr3;
3360 context->page_fault = nonpaging_page_fault;
3361 context->gva_to_gpa = nonpaging_gva_to_gpa;
3362 context->free = nonpaging_free;
3363 context->sync_page = nonpaging_sync_page;
3364 context->invlpg = nonpaging_invlpg;
3365 context->update_pte = nonpaging_update_pte;
3366 context->root_level = 0;
3367 context->shadow_root_level = PT32E_ROOT_LEVEL;
3368 context->root_hpa = INVALID_PAGE;
3369 context->direct_map = true;
3370 context->nx = false;
3371 return 0;
3372 }
3373
3374 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3375 {
3376 ++vcpu->stat.tlb_flush;
3377 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3378 }
3379
3380 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3381 {
3382 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3383 mmu_free_roots(vcpu);
3384 }
3385
3386 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3387 {
3388 return kvm_read_cr3(vcpu);
3389 }
3390
3391 static void inject_page_fault(struct kvm_vcpu *vcpu,
3392 struct x86_exception *fault)
3393 {
3394 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3395 }
3396
3397 static void paging_free(struct kvm_vcpu *vcpu)
3398 {
3399 nonpaging_free(vcpu);
3400 }
3401
3402 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3403 {
3404 unsigned mask;
3405
3406 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3407
3408 mask = (unsigned)~ACC_WRITE_MASK;
3409 /* Allow write access to dirty gptes */
3410 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3411 *access &= mask;
3412 }
3413
3414 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3415 int *nr_present)
3416 {
3417 if (unlikely(is_mmio_spte(*sptep))) {
3418 if (gfn != get_mmio_spte_gfn(*sptep)) {
3419 mmu_spte_clear_no_track(sptep);
3420 return true;
3421 }
3422
3423 (*nr_present)++;
3424 mark_mmio_spte(sptep, gfn, access);
3425 return true;
3426 }
3427
3428 return false;
3429 }
3430
3431 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3432 {
3433 unsigned access;
3434
3435 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3436 access &= ~(gpte >> PT64_NX_SHIFT);
3437
3438 return access;
3439 }
3440
3441 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3442 {
3443 unsigned index;
3444
3445 index = level - 1;
3446 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3447 return mmu->last_pte_bitmap & (1 << index);
3448 }
3449
3450 #define PTTYPE 64
3451 #include "paging_tmpl.h"
3452 #undef PTTYPE
3453
3454 #define PTTYPE 32
3455 #include "paging_tmpl.h"
3456 #undef PTTYPE
3457
3458 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3459 struct kvm_mmu *context)
3460 {
3461 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3462 u64 exb_bit_rsvd = 0;
3463
3464 if (!context->nx)
3465 exb_bit_rsvd = rsvd_bits(63, 63);
3466 switch (context->root_level) {
3467 case PT32_ROOT_LEVEL:
3468 /* no rsvd bits for 2 level 4K page table entries */
3469 context->rsvd_bits_mask[0][1] = 0;
3470 context->rsvd_bits_mask[0][0] = 0;
3471 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3472
3473 if (!is_pse(vcpu)) {
3474 context->rsvd_bits_mask[1][1] = 0;
3475 break;
3476 }
3477
3478 if (is_cpuid_PSE36())
3479 /* 36bits PSE 4MB page */
3480 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3481 else
3482 /* 32 bits PSE 4MB page */
3483 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3484 break;
3485 case PT32E_ROOT_LEVEL:
3486 context->rsvd_bits_mask[0][2] =
3487 rsvd_bits(maxphyaddr, 63) |
3488 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3489 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3490 rsvd_bits(maxphyaddr, 62); /* PDE */
3491 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3492 rsvd_bits(maxphyaddr, 62); /* PTE */
3493 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3494 rsvd_bits(maxphyaddr, 62) |
3495 rsvd_bits(13, 20); /* large page */
3496 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3497 break;
3498 case PT64_ROOT_LEVEL:
3499 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3500 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3501 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3502 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3503 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3504 rsvd_bits(maxphyaddr, 51);
3505 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3506 rsvd_bits(maxphyaddr, 51);
3507 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3508 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3509 rsvd_bits(maxphyaddr, 51) |
3510 rsvd_bits(13, 29);
3511 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3512 rsvd_bits(maxphyaddr, 51) |
3513 rsvd_bits(13, 20); /* large page */
3514 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3515 break;
3516 }
3517 }
3518
3519 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3520 {
3521 unsigned bit, byte, pfec;
3522 u8 map;
3523 bool fault, x, w, u, wf, uf, ff, smep;
3524
3525 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3526 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3527 pfec = byte << 1;
3528 map = 0;
3529 wf = pfec & PFERR_WRITE_MASK;
3530 uf = pfec & PFERR_USER_MASK;
3531 ff = pfec & PFERR_FETCH_MASK;
3532 for (bit = 0; bit < 8; ++bit) {
3533 x = bit & ACC_EXEC_MASK;
3534 w = bit & ACC_WRITE_MASK;
3535 u = bit & ACC_USER_MASK;
3536
3537 /* Not really needed: !nx will cause pte.nx to fault */
3538 x |= !mmu->nx;
3539 /* Allow supervisor writes if !cr0.wp */
3540 w |= !is_write_protection(vcpu) && !uf;
3541 /* Disallow supervisor fetches of user code if cr4.smep */
3542 x &= !(smep && u && !uf);
3543
3544 fault = (ff && !x) || (uf && !u) || (wf && !w);
3545 map |= fault << bit;
3546 }
3547 mmu->permissions[byte] = map;
3548 }
3549 }
3550
3551 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3552 {
3553 u8 map;
3554 unsigned level, root_level = mmu->root_level;
3555 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3556
3557 if (root_level == PT32E_ROOT_LEVEL)
3558 --root_level;
3559 /* PT_PAGE_TABLE_LEVEL always terminates */
3560 map = 1 | (1 << ps_set_index);
3561 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3562 if (level <= PT_PDPE_LEVEL
3563 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3564 map |= 1 << (ps_set_index | (level - 1));
3565 }
3566 mmu->last_pte_bitmap = map;
3567 }
3568
3569 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3570 struct kvm_mmu *context,
3571 int level)
3572 {
3573 context->nx = is_nx(vcpu);
3574 context->root_level = level;
3575
3576 reset_rsvds_bits_mask(vcpu, context);
3577 update_permission_bitmask(vcpu, context);
3578 update_last_pte_bitmap(vcpu, context);
3579
3580 ASSERT(is_pae(vcpu));
3581 context->new_cr3 = paging_new_cr3;
3582 context->page_fault = paging64_page_fault;
3583 context->gva_to_gpa = paging64_gva_to_gpa;
3584 context->sync_page = paging64_sync_page;
3585 context->invlpg = paging64_invlpg;
3586 context->update_pte = paging64_update_pte;
3587 context->free = paging_free;
3588 context->shadow_root_level = level;
3589 context->root_hpa = INVALID_PAGE;
3590 context->direct_map = false;
3591 return 0;
3592 }
3593
3594 static int paging64_init_context(struct kvm_vcpu *vcpu,
3595 struct kvm_mmu *context)
3596 {
3597 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3598 }
3599
3600 static int paging32_init_context(struct kvm_vcpu *vcpu,
3601 struct kvm_mmu *context)
3602 {
3603 context->nx = false;
3604 context->root_level = PT32_ROOT_LEVEL;
3605
3606 reset_rsvds_bits_mask(vcpu, context);
3607 update_permission_bitmask(vcpu, context);
3608 update_last_pte_bitmap(vcpu, context);
3609
3610 context->new_cr3 = paging_new_cr3;
3611 context->page_fault = paging32_page_fault;
3612 context->gva_to_gpa = paging32_gva_to_gpa;
3613 context->free = paging_free;
3614 context->sync_page = paging32_sync_page;
3615 context->invlpg = paging32_invlpg;
3616 context->update_pte = paging32_update_pte;
3617 context->shadow_root_level = PT32E_ROOT_LEVEL;
3618 context->root_hpa = INVALID_PAGE;
3619 context->direct_map = false;
3620 return 0;
3621 }
3622
3623 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3624 struct kvm_mmu *context)
3625 {
3626 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3627 }
3628
3629 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3630 {
3631 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3632
3633 context->base_role.word = 0;
3634 context->new_cr3 = nonpaging_new_cr3;
3635 context->page_fault = tdp_page_fault;
3636 context->free = nonpaging_free;
3637 context->sync_page = nonpaging_sync_page;
3638 context->invlpg = nonpaging_invlpg;
3639 context->update_pte = nonpaging_update_pte;
3640 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3641 context->root_hpa = INVALID_PAGE;
3642 context->direct_map = true;
3643 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3644 context->get_cr3 = get_cr3;
3645 context->get_pdptr = kvm_pdptr_read;
3646 context->inject_page_fault = kvm_inject_page_fault;
3647
3648 if (!is_paging(vcpu)) {
3649 context->nx = false;
3650 context->gva_to_gpa = nonpaging_gva_to_gpa;
3651 context->root_level = 0;
3652 } else if (is_long_mode(vcpu)) {
3653 context->nx = is_nx(vcpu);
3654 context->root_level = PT64_ROOT_LEVEL;
3655 reset_rsvds_bits_mask(vcpu, context);
3656 context->gva_to_gpa = paging64_gva_to_gpa;
3657 } else if (is_pae(vcpu)) {
3658 context->nx = is_nx(vcpu);
3659 context->root_level = PT32E_ROOT_LEVEL;
3660 reset_rsvds_bits_mask(vcpu, context);
3661 context->gva_to_gpa = paging64_gva_to_gpa;
3662 } else {
3663 context->nx = false;
3664 context->root_level = PT32_ROOT_LEVEL;
3665 reset_rsvds_bits_mask(vcpu, context);
3666 context->gva_to_gpa = paging32_gva_to_gpa;
3667 }
3668
3669 update_permission_bitmask(vcpu, context);
3670 update_last_pte_bitmap(vcpu, context);
3671
3672 return 0;
3673 }
3674
3675 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3676 {
3677 int r;
3678 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3679 ASSERT(vcpu);
3680 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3681
3682 if (!is_paging(vcpu))
3683 r = nonpaging_init_context(vcpu, context);
3684 else if (is_long_mode(vcpu))
3685 r = paging64_init_context(vcpu, context);
3686 else if (is_pae(vcpu))
3687 r = paging32E_init_context(vcpu, context);
3688 else
3689 r = paging32_init_context(vcpu, context);
3690
3691 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3692 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3693 vcpu->arch.mmu.base_role.smep_andnot_wp
3694 = smep && !is_write_protection(vcpu);
3695
3696 return r;
3697 }
3698 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3699
3700 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3701 {
3702 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3703
3704 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3705 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3706 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3707 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3708
3709 return r;
3710 }
3711
3712 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3713 {
3714 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3715
3716 g_context->get_cr3 = get_cr3;
3717 g_context->get_pdptr = kvm_pdptr_read;
3718 g_context->inject_page_fault = kvm_inject_page_fault;
3719
3720 /*
3721 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3722 * translation of l2_gpa to l1_gpa addresses is done using the
3723 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3724 * functions between mmu and nested_mmu are swapped.
3725 */
3726 if (!is_paging(vcpu)) {
3727 g_context->nx = false;
3728 g_context->root_level = 0;
3729 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3730 } else if (is_long_mode(vcpu)) {
3731 g_context->nx = is_nx(vcpu);
3732 g_context->root_level = PT64_ROOT_LEVEL;
3733 reset_rsvds_bits_mask(vcpu, g_context);
3734 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3735 } else if (is_pae(vcpu)) {
3736 g_context->nx = is_nx(vcpu);
3737 g_context->root_level = PT32E_ROOT_LEVEL;
3738 reset_rsvds_bits_mask(vcpu, g_context);
3739 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3740 } else {
3741 g_context->nx = false;
3742 g_context->root_level = PT32_ROOT_LEVEL;
3743 reset_rsvds_bits_mask(vcpu, g_context);
3744 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3745 }
3746
3747 update_permission_bitmask(vcpu, g_context);
3748 update_last_pte_bitmap(vcpu, g_context);
3749
3750 return 0;
3751 }
3752
3753 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3754 {
3755 if (mmu_is_nested(vcpu))
3756 return init_kvm_nested_mmu(vcpu);
3757 else if (tdp_enabled)
3758 return init_kvm_tdp_mmu(vcpu);
3759 else
3760 return init_kvm_softmmu(vcpu);
3761 }
3762
3763 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3764 {
3765 ASSERT(vcpu);
3766 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3767 /* mmu.free() should set root_hpa = INVALID_PAGE */
3768 vcpu->arch.mmu.free(vcpu);
3769 }
3770
3771 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3772 {
3773 destroy_kvm_mmu(vcpu);
3774 return init_kvm_mmu(vcpu);
3775 }
3776 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3777
3778 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3779 {
3780 int r;
3781
3782 r = mmu_topup_memory_caches(vcpu);
3783 if (r)
3784 goto out;
3785 r = mmu_alloc_roots(vcpu);
3786 spin_lock(&vcpu->kvm->mmu_lock);
3787 mmu_sync_roots(vcpu);
3788 spin_unlock(&vcpu->kvm->mmu_lock);
3789 if (r)
3790 goto out;
3791 /* set_cr3() should ensure TLB has been flushed */
3792 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3793 out:
3794 return r;
3795 }
3796 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3797
3798 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3799 {
3800 mmu_free_roots(vcpu);
3801 }
3802 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3803
3804 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3805 struct kvm_mmu_page *sp, u64 *spte,
3806 const void *new)
3807 {
3808 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3809 ++vcpu->kvm->stat.mmu_pde_zapped;
3810 return;
3811 }
3812
3813 ++vcpu->kvm->stat.mmu_pte_updated;
3814 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3815 }
3816
3817 static bool need_remote_flush(u64 old, u64 new)
3818 {
3819 if (!is_shadow_present_pte(old))
3820 return false;
3821 if (!is_shadow_present_pte(new))
3822 return true;
3823 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3824 return true;
3825 old ^= PT64_NX_MASK;
3826 new ^= PT64_NX_MASK;
3827 return (old & ~new & PT64_PERM_MASK) != 0;
3828 }
3829
3830 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3831 bool remote_flush, bool local_flush)
3832 {
3833 if (zap_page)
3834 return;
3835
3836 if (remote_flush)
3837 kvm_flush_remote_tlbs(vcpu->kvm);
3838 else if (local_flush)
3839 kvm_mmu_flush_tlb(vcpu);
3840 }
3841
3842 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3843 const u8 *new, int *bytes)
3844 {
3845 u64 gentry;
3846 int r;
3847
3848 /*
3849 * Assume that the pte write on a page table of the same type
3850 * as the current vcpu paging mode since we update the sptes only
3851 * when they have the same mode.
3852 */
3853 if (is_pae(vcpu) && *bytes == 4) {
3854 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3855 *gpa &= ~(gpa_t)7;
3856 *bytes = 8;
3857 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3858 if (r)
3859 gentry = 0;
3860 new = (const u8 *)&gentry;
3861 }
3862
3863 switch (*bytes) {
3864 case 4:
3865 gentry = *(const u32 *)new;
3866 break;
3867 case 8:
3868 gentry = *(const u64 *)new;
3869 break;
3870 default:
3871 gentry = 0;
3872 break;
3873 }
3874
3875 return gentry;
3876 }
3877
3878 /*
3879 * If we're seeing too many writes to a page, it may no longer be a page table,
3880 * or we may be forking, in which case it is better to unmap the page.
3881 */
3882 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3883 {
3884 /*
3885 * Skip write-flooding detected for the sp whose level is 1, because
3886 * it can become unsync, then the guest page is not write-protected.
3887 */
3888 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3889 return false;
3890
3891 return ++sp->write_flooding_count >= 3;
3892 }
3893
3894 /*
3895 * Misaligned accesses are too much trouble to fix up; also, they usually
3896 * indicate a page is not used as a page table.
3897 */
3898 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3899 int bytes)
3900 {
3901 unsigned offset, pte_size, misaligned;
3902
3903 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3904 gpa, bytes, sp->role.word);
3905
3906 offset = offset_in_page(gpa);
3907 pte_size = sp->role.cr4_pae ? 8 : 4;
3908
3909 /*
3910 * Sometimes, the OS only writes the last one bytes to update status
3911 * bits, for example, in linux, andb instruction is used in clear_bit().
3912 */
3913 if (!(offset & (pte_size - 1)) && bytes == 1)
3914 return false;
3915
3916 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3917 misaligned |= bytes < 4;
3918
3919 return misaligned;
3920 }
3921
3922 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3923 {
3924 unsigned page_offset, quadrant;
3925 u64 *spte;
3926 int level;
3927
3928 page_offset = offset_in_page(gpa);
3929 level = sp->role.level;
3930 *nspte = 1;
3931 if (!sp->role.cr4_pae) {
3932 page_offset <<= 1; /* 32->64 */
3933 /*
3934 * A 32-bit pde maps 4MB while the shadow pdes map
3935 * only 2MB. So we need to double the offset again
3936 * and zap two pdes instead of one.
3937 */
3938 if (level == PT32_ROOT_LEVEL) {
3939 page_offset &= ~7; /* kill rounding error */
3940 page_offset <<= 1;
3941 *nspte = 2;
3942 }
3943 quadrant = page_offset >> PAGE_SHIFT;
3944 page_offset &= ~PAGE_MASK;
3945 if (quadrant != sp->role.quadrant)
3946 return NULL;
3947 }
3948
3949 spte = &sp->spt[page_offset / sizeof(*spte)];
3950 return spte;
3951 }
3952
3953 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3954 const u8 *new, int bytes)
3955 {
3956 gfn_t gfn = gpa >> PAGE_SHIFT;
3957 union kvm_mmu_page_role mask = { .word = 0 };
3958 struct kvm_mmu_page *sp;
3959 struct hlist_node *node;
3960 LIST_HEAD(invalid_list);
3961 u64 entry, gentry, *spte;
3962 int npte;
3963 bool remote_flush, local_flush, zap_page;
3964
3965 /*
3966 * If we don't have indirect shadow pages, it means no page is
3967 * write-protected, so we can exit simply.
3968 */
3969 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3970 return;
3971
3972 zap_page = remote_flush = local_flush = false;
3973
3974 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3975
3976 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3977
3978 /*
3979 * No need to care whether allocation memory is successful
3980 * or not since pte prefetch is skiped if it does not have
3981 * enough objects in the cache.
3982 */
3983 mmu_topup_memory_caches(vcpu);
3984
3985 spin_lock(&vcpu->kvm->mmu_lock);
3986 ++vcpu->kvm->stat.mmu_pte_write;
3987 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3988
3989 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3990 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3991 if (detect_write_misaligned(sp, gpa, bytes) ||
3992 detect_write_flooding(sp)) {
3993 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3994 &invalid_list);
3995 ++vcpu->kvm->stat.mmu_flooded;
3996 continue;
3997 }
3998
3999 spte = get_written_sptes(sp, gpa, &npte);
4000 if (!spte)
4001 continue;
4002
4003 local_flush = true;
4004 while (npte--) {
4005 entry = *spte;
4006 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4007 if (gentry &&
4008 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4009 & mask.word) && rmap_can_add(vcpu))
4010 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4011 if (!remote_flush && need_remote_flush(entry, *spte))
4012 remote_flush = true;
4013 ++spte;
4014 }
4015 }
4016 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4017 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4018 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4019 spin_unlock(&vcpu->kvm->mmu_lock);
4020 }
4021
4022 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4023 {
4024 gpa_t gpa;
4025 int r;
4026
4027 if (vcpu->arch.mmu.direct_map)
4028 return 0;
4029
4030 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4031
4032 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4033
4034 return r;
4035 }
4036 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4037
4038 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
4039 {
4040 LIST_HEAD(invalid_list);
4041
4042 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
4043 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4044 struct kvm_mmu_page *sp;
4045
4046 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4047 struct kvm_mmu_page, link);
4048 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4049 ++vcpu->kvm->stat.mmu_recycled;
4050 }
4051 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4052 }
4053
4054 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4055 {
4056 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4057 return vcpu_match_mmio_gpa(vcpu, addr);
4058
4059 return vcpu_match_mmio_gva(vcpu, addr);
4060 }
4061
4062 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4063 void *insn, int insn_len)
4064 {
4065 int r, emulation_type = EMULTYPE_RETRY;
4066 enum emulation_result er;
4067
4068 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4069 if (r < 0)
4070 goto out;
4071
4072 if (!r) {
4073 r = 1;
4074 goto out;
4075 }
4076
4077 if (is_mmio_page_fault(vcpu, cr2))
4078 emulation_type = 0;
4079
4080 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4081
4082 switch (er) {
4083 case EMULATE_DONE:
4084 return 1;
4085 case EMULATE_DO_MMIO:
4086 ++vcpu->stat.mmio_exits;
4087 /* fall through */
4088 case EMULATE_FAIL:
4089 return 0;
4090 default:
4091 BUG();
4092 }
4093 out:
4094 return r;
4095 }
4096 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4097
4098 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4099 {
4100 vcpu->arch.mmu.invlpg(vcpu, gva);
4101 kvm_mmu_flush_tlb(vcpu);
4102 ++vcpu->stat.invlpg;
4103 }
4104 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4105
4106 void kvm_enable_tdp(void)
4107 {
4108 tdp_enabled = true;
4109 }
4110 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4111
4112 void kvm_disable_tdp(void)
4113 {
4114 tdp_enabled = false;
4115 }
4116 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4117
4118 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4119 {
4120 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4121 if (vcpu->arch.mmu.lm_root != NULL)
4122 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4123 }
4124
4125 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4126 {
4127 struct page *page;
4128 int i;
4129
4130 ASSERT(vcpu);
4131
4132 /*
4133 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4134 * Therefore we need to allocate shadow page tables in the first
4135 * 4GB of memory, which happens to fit the DMA32 zone.
4136 */
4137 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4138 if (!page)
4139 return -ENOMEM;
4140
4141 vcpu->arch.mmu.pae_root = page_address(page);
4142 for (i = 0; i < 4; ++i)
4143 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4144
4145 return 0;
4146 }
4147
4148 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4149 {
4150 ASSERT(vcpu);
4151
4152 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4153 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4154 vcpu->arch.mmu.translate_gpa = translate_gpa;
4155 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4156
4157 return alloc_mmu_pages(vcpu);
4158 }
4159
4160 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4161 {
4162 ASSERT(vcpu);
4163 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4164
4165 return init_kvm_mmu(vcpu);
4166 }
4167
4168 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4169 {
4170 struct kvm_memory_slot *memslot;
4171 gfn_t last_gfn;
4172 int i;
4173
4174 memslot = id_to_memslot(kvm->memslots, slot);
4175 last_gfn = memslot->base_gfn + memslot->npages - 1;
4176
4177 spin_lock(&kvm->mmu_lock);
4178
4179 for (i = PT_PAGE_TABLE_LEVEL;
4180 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4181 unsigned long *rmapp;
4182 unsigned long last_index, index;
4183
4184 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4185 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4186
4187 for (index = 0; index <= last_index; ++index, ++rmapp) {
4188 if (*rmapp)
4189 __rmap_write_protect(kvm, rmapp, false);
4190
4191 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4192 kvm_flush_remote_tlbs(kvm);
4193 cond_resched_lock(&kvm->mmu_lock);
4194 }
4195 }
4196 }
4197
4198 kvm_flush_remote_tlbs(kvm);
4199 spin_unlock(&kvm->mmu_lock);
4200 }
4201
4202 void kvm_mmu_zap_all(struct kvm *kvm)
4203 {
4204 struct kvm_mmu_page *sp, *node;
4205 LIST_HEAD(invalid_list);
4206
4207 spin_lock(&kvm->mmu_lock);
4208 restart:
4209 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4210 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4211 goto restart;
4212
4213 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4214 spin_unlock(&kvm->mmu_lock);
4215 }
4216
4217 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4218 struct list_head *invalid_list)
4219 {
4220 struct kvm_mmu_page *page;
4221
4222 if (list_empty(&kvm->arch.active_mmu_pages))
4223 return;
4224
4225 page = container_of(kvm->arch.active_mmu_pages.prev,
4226 struct kvm_mmu_page, link);
4227 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4228 }
4229
4230 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4231 {
4232 struct kvm *kvm;
4233 int nr_to_scan = sc->nr_to_scan;
4234
4235 if (nr_to_scan == 0)
4236 goto out;
4237
4238 raw_spin_lock(&kvm_lock);
4239
4240 list_for_each_entry(kvm, &vm_list, vm_list) {
4241 int idx;
4242 LIST_HEAD(invalid_list);
4243
4244 /*
4245 * Never scan more than sc->nr_to_scan VM instances.
4246 * Will not hit this condition practically since we do not try
4247 * to shrink more than one VM and it is very unlikely to see
4248 * !n_used_mmu_pages so many times.
4249 */
4250 if (!nr_to_scan--)
4251 break;
4252 /*
4253 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4254 * here. We may skip a VM instance errorneosly, but we do not
4255 * want to shrink a VM that only started to populate its MMU
4256 * anyway.
4257 */
4258 if (!kvm->arch.n_used_mmu_pages)
4259 continue;
4260
4261 idx = srcu_read_lock(&kvm->srcu);
4262 spin_lock(&kvm->mmu_lock);
4263
4264 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4265 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4266
4267 spin_unlock(&kvm->mmu_lock);
4268 srcu_read_unlock(&kvm->srcu, idx);
4269
4270 list_move_tail(&kvm->vm_list, &vm_list);
4271 break;
4272 }
4273
4274 raw_spin_unlock(&kvm_lock);
4275
4276 out:
4277 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4278 }
4279
4280 static struct shrinker mmu_shrinker = {
4281 .shrink = mmu_shrink,
4282 .seeks = DEFAULT_SEEKS * 10,
4283 };
4284
4285 static void mmu_destroy_caches(void)
4286 {
4287 if (pte_list_desc_cache)
4288 kmem_cache_destroy(pte_list_desc_cache);
4289 if (mmu_page_header_cache)
4290 kmem_cache_destroy(mmu_page_header_cache);
4291 }
4292
4293 int kvm_mmu_module_init(void)
4294 {
4295 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4296 sizeof(struct pte_list_desc),
4297 0, 0, NULL);
4298 if (!pte_list_desc_cache)
4299 goto nomem;
4300
4301 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4302 sizeof(struct kvm_mmu_page),
4303 0, 0, NULL);
4304 if (!mmu_page_header_cache)
4305 goto nomem;
4306
4307 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4308 goto nomem;
4309
4310 register_shrinker(&mmu_shrinker);
4311
4312 return 0;
4313
4314 nomem:
4315 mmu_destroy_caches();
4316 return -ENOMEM;
4317 }
4318
4319 /*
4320 * Caculate mmu pages needed for kvm.
4321 */
4322 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4323 {
4324 unsigned int nr_mmu_pages;
4325 unsigned int nr_pages = 0;
4326 struct kvm_memslots *slots;
4327 struct kvm_memory_slot *memslot;
4328
4329 slots = kvm_memslots(kvm);
4330
4331 kvm_for_each_memslot(memslot, slots)
4332 nr_pages += memslot->npages;
4333
4334 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4335 nr_mmu_pages = max(nr_mmu_pages,
4336 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4337
4338 return nr_mmu_pages;
4339 }
4340
4341 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4342 {
4343 struct kvm_shadow_walk_iterator iterator;
4344 u64 spte;
4345 int nr_sptes = 0;
4346
4347 walk_shadow_page_lockless_begin(vcpu);
4348 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4349 sptes[iterator.level-1] = spte;
4350 nr_sptes++;
4351 if (!is_shadow_present_pte(spte))
4352 break;
4353 }
4354 walk_shadow_page_lockless_end(vcpu);
4355
4356 return nr_sptes;
4357 }
4358 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4359
4360 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4361 {
4362 ASSERT(vcpu);
4363
4364 destroy_kvm_mmu(vcpu);
4365 free_mmu_pages(vcpu);
4366 mmu_free_memory_caches(vcpu);
4367 }
4368
4369 void kvm_mmu_module_exit(void)
4370 {
4371 mmu_destroy_caches();
4372 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4373 unregister_shrinker(&mmu_shrinker);
4374 mmu_audit_disable();
4375 }
This page took 0.172766 seconds and 6 git commands to generate.