Merge tag 'stable/for-linus-3.12-rc0-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / arch / x86 / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 /*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26 #if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #define CMPXCHG cmpxchg
38 #else
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
42 #elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
51 #define PT_MAX_FULL_LEVELS 2
52 #define CMPXCHG cmpxchg
53 #else
54 #error Invalid PTTYPE value
55 #endif
56
57 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
58 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
59
60 /*
61 * The guest_walker structure emulates the behavior of the hardware page
62 * table walker.
63 */
64 struct guest_walker {
65 int level;
66 unsigned max_level;
67 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
68 pt_element_t ptes[PT_MAX_FULL_LEVELS];
69 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
70 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
71 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
72 unsigned pt_access;
73 unsigned pte_access;
74 gfn_t gfn;
75 struct x86_exception fault;
76 };
77
78 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
79 {
80 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
81 }
82
83 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
84 pt_element_t __user *ptep_user, unsigned index,
85 pt_element_t orig_pte, pt_element_t new_pte)
86 {
87 int npages;
88 pt_element_t ret;
89 pt_element_t *table;
90 struct page *page;
91
92 npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
93 /* Check if the user is doing something meaningless. */
94 if (unlikely(npages != 1))
95 return -EFAULT;
96
97 table = kmap_atomic(page);
98 ret = CMPXCHG(&table[index], orig_pte, new_pte);
99 kunmap_atomic(table);
100
101 kvm_release_page_dirty(page);
102
103 return (ret != orig_pte);
104 }
105
106 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
107 struct kvm_mmu *mmu,
108 struct guest_walker *walker,
109 int write_fault)
110 {
111 unsigned level, index;
112 pt_element_t pte, orig_pte;
113 pt_element_t __user *ptep_user;
114 gfn_t table_gfn;
115 int ret;
116
117 for (level = walker->max_level; level >= walker->level; --level) {
118 pte = orig_pte = walker->ptes[level - 1];
119 table_gfn = walker->table_gfn[level - 1];
120 ptep_user = walker->ptep_user[level - 1];
121 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
122 if (!(pte & PT_ACCESSED_MASK)) {
123 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
124 pte |= PT_ACCESSED_MASK;
125 }
126 if (level == walker->level && write_fault && !is_dirty_gpte(pte)) {
127 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
128 pte |= PT_DIRTY_MASK;
129 }
130 if (pte == orig_pte)
131 continue;
132
133 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
134 if (ret)
135 return ret;
136
137 mark_page_dirty(vcpu->kvm, table_gfn);
138 walker->ptes[level] = pte;
139 }
140 return 0;
141 }
142
143 /*
144 * Fetch a guest pte for a guest virtual address
145 */
146 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
147 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
148 gva_t addr, u32 access)
149 {
150 int ret;
151 pt_element_t pte;
152 pt_element_t __user *uninitialized_var(ptep_user);
153 gfn_t table_gfn;
154 unsigned index, pt_access, pte_access, accessed_dirty;
155 gpa_t pte_gpa;
156 int offset;
157 const int write_fault = access & PFERR_WRITE_MASK;
158 const int user_fault = access & PFERR_USER_MASK;
159 const int fetch_fault = access & PFERR_FETCH_MASK;
160 u16 errcode = 0;
161 gpa_t real_gpa;
162 gfn_t gfn;
163
164 trace_kvm_mmu_pagetable_walk(addr, access);
165 retry_walk:
166 walker->level = mmu->root_level;
167 pte = mmu->get_cr3(vcpu);
168
169 #if PTTYPE == 64
170 if (walker->level == PT32E_ROOT_LEVEL) {
171 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
172 trace_kvm_mmu_paging_element(pte, walker->level);
173 if (!is_present_gpte(pte))
174 goto error;
175 --walker->level;
176 }
177 #endif
178 walker->max_level = walker->level;
179 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
180 (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
181
182 accessed_dirty = PT_ACCESSED_MASK;
183 pt_access = pte_access = ACC_ALL;
184 ++walker->level;
185
186 do {
187 gfn_t real_gfn;
188 unsigned long host_addr;
189
190 pt_access &= pte_access;
191 --walker->level;
192
193 index = PT_INDEX(addr, walker->level);
194
195 table_gfn = gpte_to_gfn(pte);
196 offset = index * sizeof(pt_element_t);
197 pte_gpa = gfn_to_gpa(table_gfn) + offset;
198 walker->table_gfn[walker->level - 1] = table_gfn;
199 walker->pte_gpa[walker->level - 1] = pte_gpa;
200
201 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
202 PFERR_USER_MASK|PFERR_WRITE_MASK);
203 if (unlikely(real_gfn == UNMAPPED_GVA))
204 goto error;
205 real_gfn = gpa_to_gfn(real_gfn);
206
207 host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
208 if (unlikely(kvm_is_error_hva(host_addr)))
209 goto error;
210
211 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
212 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
213 goto error;
214 walker->ptep_user[walker->level - 1] = ptep_user;
215
216 trace_kvm_mmu_paging_element(pte, walker->level);
217
218 if (unlikely(!is_present_gpte(pte)))
219 goto error;
220
221 if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
222 walker->level))) {
223 errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
224 goto error;
225 }
226
227 accessed_dirty &= pte;
228 pte_access = pt_access & gpte_access(vcpu, pte);
229
230 walker->ptes[walker->level - 1] = pte;
231 } while (!is_last_gpte(mmu, walker->level, pte));
232
233 if (unlikely(permission_fault(mmu, pte_access, access))) {
234 errcode |= PFERR_PRESENT_MASK;
235 goto error;
236 }
237
238 gfn = gpte_to_gfn_lvl(pte, walker->level);
239 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
240
241 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
242 gfn += pse36_gfn_delta(pte);
243
244 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access);
245 if (real_gpa == UNMAPPED_GVA)
246 return 0;
247
248 walker->gfn = real_gpa >> PAGE_SHIFT;
249
250 if (!write_fault)
251 protect_clean_gpte(&pte_access, pte);
252 else
253 /*
254 * On a write fault, fold the dirty bit into accessed_dirty by
255 * shifting it one place right.
256 */
257 accessed_dirty &= pte >> (PT_DIRTY_SHIFT - PT_ACCESSED_SHIFT);
258
259 if (unlikely(!accessed_dirty)) {
260 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
261 if (unlikely(ret < 0))
262 goto error;
263 else if (ret)
264 goto retry_walk;
265 }
266
267 walker->pt_access = pt_access;
268 walker->pte_access = pte_access;
269 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
270 __func__, (u64)pte, pte_access, pt_access);
271 return 1;
272
273 error:
274 errcode |= write_fault | user_fault;
275 if (fetch_fault && (mmu->nx ||
276 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
277 errcode |= PFERR_FETCH_MASK;
278
279 walker->fault.vector = PF_VECTOR;
280 walker->fault.error_code_valid = true;
281 walker->fault.error_code = errcode;
282 walker->fault.address = addr;
283 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
284
285 trace_kvm_mmu_walker_error(walker->fault.error_code);
286 return 0;
287 }
288
289 static int FNAME(walk_addr)(struct guest_walker *walker,
290 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
291 {
292 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
293 access);
294 }
295
296 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
297 struct kvm_vcpu *vcpu, gva_t addr,
298 u32 access)
299 {
300 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
301 addr, access);
302 }
303
304 static bool
305 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
306 u64 *spte, pt_element_t gpte, bool no_dirty_log)
307 {
308 unsigned pte_access;
309 gfn_t gfn;
310 pfn_t pfn;
311
312 if (prefetch_invalid_gpte(vcpu, sp, spte, gpte))
313 return false;
314
315 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
316
317 gfn = gpte_to_gfn(gpte);
318 pte_access = sp->role.access & gpte_access(vcpu, gpte);
319 protect_clean_gpte(&pte_access, gpte);
320 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
321 no_dirty_log && (pte_access & ACC_WRITE_MASK));
322 if (is_error_pfn(pfn))
323 return false;
324
325 /*
326 * we call mmu_set_spte() with host_writable = true because
327 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
328 */
329 mmu_set_spte(vcpu, spte, pte_access, 0, NULL, PT_PAGE_TABLE_LEVEL,
330 gfn, pfn, true, true);
331
332 return true;
333 }
334
335 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
336 u64 *spte, const void *pte)
337 {
338 pt_element_t gpte = *(const pt_element_t *)pte;
339
340 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
341 }
342
343 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
344 struct guest_walker *gw, int level)
345 {
346 pt_element_t curr_pte;
347 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
348 u64 mask;
349 int r, index;
350
351 if (level == PT_PAGE_TABLE_LEVEL) {
352 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
353 base_gpa = pte_gpa & ~mask;
354 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
355
356 r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
357 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
358 curr_pte = gw->prefetch_ptes[index];
359 } else
360 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
361 &curr_pte, sizeof(curr_pte));
362
363 return r || curr_pte != gw->ptes[level - 1];
364 }
365
366 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
367 u64 *sptep)
368 {
369 struct kvm_mmu_page *sp;
370 pt_element_t *gptep = gw->prefetch_ptes;
371 u64 *spte;
372 int i;
373
374 sp = page_header(__pa(sptep));
375
376 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
377 return;
378
379 if (sp->role.direct)
380 return __direct_pte_prefetch(vcpu, sp, sptep);
381
382 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
383 spte = sp->spt + i;
384
385 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
386 if (spte == sptep)
387 continue;
388
389 if (is_shadow_present_pte(*spte))
390 continue;
391
392 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
393 break;
394 }
395 }
396
397 /*
398 * Fetch a shadow pte for a specific level in the paging hierarchy.
399 * If the guest tries to write a write-protected page, we need to
400 * emulate this operation, return 1 to indicate this case.
401 */
402 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
403 struct guest_walker *gw,
404 int write_fault, int hlevel,
405 pfn_t pfn, bool map_writable, bool prefault)
406 {
407 struct kvm_mmu_page *sp = NULL;
408 struct kvm_shadow_walk_iterator it;
409 unsigned direct_access, access = gw->pt_access;
410 int top_level, emulate = 0;
411
412 direct_access = gw->pte_access;
413
414 top_level = vcpu->arch.mmu.root_level;
415 if (top_level == PT32E_ROOT_LEVEL)
416 top_level = PT32_ROOT_LEVEL;
417 /*
418 * Verify that the top-level gpte is still there. Since the page
419 * is a root page, it is either write protected (and cannot be
420 * changed from now on) or it is invalid (in which case, we don't
421 * really care if it changes underneath us after this point).
422 */
423 if (FNAME(gpte_changed)(vcpu, gw, top_level))
424 goto out_gpte_changed;
425
426 for (shadow_walk_init(&it, vcpu, addr);
427 shadow_walk_okay(&it) && it.level > gw->level;
428 shadow_walk_next(&it)) {
429 gfn_t table_gfn;
430
431 clear_sp_write_flooding_count(it.sptep);
432 drop_large_spte(vcpu, it.sptep);
433
434 sp = NULL;
435 if (!is_shadow_present_pte(*it.sptep)) {
436 table_gfn = gw->table_gfn[it.level - 2];
437 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
438 false, access, it.sptep);
439 }
440
441 /*
442 * Verify that the gpte in the page we've just write
443 * protected is still there.
444 */
445 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
446 goto out_gpte_changed;
447
448 if (sp)
449 link_shadow_page(it.sptep, sp);
450 }
451
452 for (;
453 shadow_walk_okay(&it) && it.level > hlevel;
454 shadow_walk_next(&it)) {
455 gfn_t direct_gfn;
456
457 clear_sp_write_flooding_count(it.sptep);
458 validate_direct_spte(vcpu, it.sptep, direct_access);
459
460 drop_large_spte(vcpu, it.sptep);
461
462 if (is_shadow_present_pte(*it.sptep))
463 continue;
464
465 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
466
467 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
468 true, direct_access, it.sptep);
469 link_shadow_page(it.sptep, sp);
470 }
471
472 clear_sp_write_flooding_count(it.sptep);
473 mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, &emulate,
474 it.level, gw->gfn, pfn, prefault, map_writable);
475 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
476
477 return emulate;
478
479 out_gpte_changed:
480 if (sp)
481 kvm_mmu_put_page(sp, it.sptep);
482 kvm_release_pfn_clean(pfn);
483 return 0;
484 }
485
486 /*
487 * To see whether the mapped gfn can write its page table in the current
488 * mapping.
489 *
490 * It is the helper function of FNAME(page_fault). When guest uses large page
491 * size to map the writable gfn which is used as current page table, we should
492 * force kvm to use small page size to map it because new shadow page will be
493 * created when kvm establishes shadow page table that stop kvm using large
494 * page size. Do it early can avoid unnecessary #PF and emulation.
495 *
496 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
497 * currently used as its page table.
498 *
499 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
500 * since the PDPT is always shadowed, that means, we can not use large page
501 * size to map the gfn which is used as PDPT.
502 */
503 static bool
504 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
505 struct guest_walker *walker, int user_fault,
506 bool *write_fault_to_shadow_pgtable)
507 {
508 int level;
509 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
510 bool self_changed = false;
511
512 if (!(walker->pte_access & ACC_WRITE_MASK ||
513 (!is_write_protection(vcpu) && !user_fault)))
514 return false;
515
516 for (level = walker->level; level <= walker->max_level; level++) {
517 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
518
519 self_changed |= !(gfn & mask);
520 *write_fault_to_shadow_pgtable |= !gfn;
521 }
522
523 return self_changed;
524 }
525
526 /*
527 * Page fault handler. There are several causes for a page fault:
528 * - there is no shadow pte for the guest pte
529 * - write access through a shadow pte marked read only so that we can set
530 * the dirty bit
531 * - write access to a shadow pte marked read only so we can update the page
532 * dirty bitmap, when userspace requests it
533 * - mmio access; in this case we will never install a present shadow pte
534 * - normal guest page fault due to the guest pte marked not present, not
535 * writable, or not executable
536 *
537 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
538 * a negative value on error.
539 */
540 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
541 bool prefault)
542 {
543 int write_fault = error_code & PFERR_WRITE_MASK;
544 int user_fault = error_code & PFERR_USER_MASK;
545 struct guest_walker walker;
546 int r;
547 pfn_t pfn;
548 int level = PT_PAGE_TABLE_LEVEL;
549 int force_pt_level;
550 unsigned long mmu_seq;
551 bool map_writable, is_self_change_mapping;
552
553 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
554
555 if (unlikely(error_code & PFERR_RSVD_MASK)) {
556 r = handle_mmio_page_fault(vcpu, addr, error_code,
557 mmu_is_nested(vcpu));
558 if (likely(r != RET_MMIO_PF_INVALID))
559 return r;
560 };
561
562 r = mmu_topup_memory_caches(vcpu);
563 if (r)
564 return r;
565
566 /*
567 * Look up the guest pte for the faulting address.
568 */
569 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
570
571 /*
572 * The page is not mapped by the guest. Let the guest handle it.
573 */
574 if (!r) {
575 pgprintk("%s: guest page fault\n", __func__);
576 if (!prefault)
577 inject_page_fault(vcpu, &walker.fault);
578
579 return 0;
580 }
581
582 vcpu->arch.write_fault_to_shadow_pgtable = false;
583
584 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
585 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
586
587 if (walker.level >= PT_DIRECTORY_LEVEL)
588 force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn)
589 || is_self_change_mapping;
590 else
591 force_pt_level = 1;
592 if (!force_pt_level) {
593 level = min(walker.level, mapping_level(vcpu, walker.gfn));
594 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
595 }
596
597 mmu_seq = vcpu->kvm->mmu_notifier_seq;
598 smp_rmb();
599
600 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
601 &map_writable))
602 return 0;
603
604 if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
605 walker.gfn, pfn, walker.pte_access, &r))
606 return r;
607
608 /*
609 * Do not change pte_access if the pfn is a mmio page, otherwise
610 * we will cache the incorrect access into mmio spte.
611 */
612 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
613 !is_write_protection(vcpu) && !user_fault &&
614 !is_noslot_pfn(pfn)) {
615 walker.pte_access |= ACC_WRITE_MASK;
616 walker.pte_access &= ~ACC_USER_MASK;
617
618 /*
619 * If we converted a user page to a kernel page,
620 * so that the kernel can write to it when cr0.wp=0,
621 * then we should prevent the kernel from executing it
622 * if SMEP is enabled.
623 */
624 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
625 walker.pte_access &= ~ACC_EXEC_MASK;
626 }
627
628 spin_lock(&vcpu->kvm->mmu_lock);
629 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
630 goto out_unlock;
631
632 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
633 make_mmu_pages_available(vcpu);
634 if (!force_pt_level)
635 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
636 r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
637 level, pfn, map_writable, prefault);
638 ++vcpu->stat.pf_fixed;
639 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
640 spin_unlock(&vcpu->kvm->mmu_lock);
641
642 return r;
643
644 out_unlock:
645 spin_unlock(&vcpu->kvm->mmu_lock);
646 kvm_release_pfn_clean(pfn);
647 return 0;
648 }
649
650 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
651 {
652 int offset = 0;
653
654 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
655
656 if (PTTYPE == 32)
657 offset = sp->role.quadrant << PT64_LEVEL_BITS;
658
659 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
660 }
661
662 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
663 {
664 struct kvm_shadow_walk_iterator iterator;
665 struct kvm_mmu_page *sp;
666 int level;
667 u64 *sptep;
668
669 vcpu_clear_mmio_info(vcpu, gva);
670
671 /*
672 * No need to check return value here, rmap_can_add() can
673 * help us to skip pte prefetch later.
674 */
675 mmu_topup_memory_caches(vcpu);
676
677 spin_lock(&vcpu->kvm->mmu_lock);
678 for_each_shadow_entry(vcpu, gva, iterator) {
679 level = iterator.level;
680 sptep = iterator.sptep;
681
682 sp = page_header(__pa(sptep));
683 if (is_last_spte(*sptep, level)) {
684 pt_element_t gpte;
685 gpa_t pte_gpa;
686
687 if (!sp->unsync)
688 break;
689
690 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
691 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
692
693 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
694 kvm_flush_remote_tlbs(vcpu->kvm);
695
696 if (!rmap_can_add(vcpu))
697 break;
698
699 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
700 sizeof(pt_element_t)))
701 break;
702
703 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
704 }
705
706 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
707 break;
708 }
709 spin_unlock(&vcpu->kvm->mmu_lock);
710 }
711
712 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
713 struct x86_exception *exception)
714 {
715 struct guest_walker walker;
716 gpa_t gpa = UNMAPPED_GVA;
717 int r;
718
719 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
720
721 if (r) {
722 gpa = gfn_to_gpa(walker.gfn);
723 gpa |= vaddr & ~PAGE_MASK;
724 } else if (exception)
725 *exception = walker.fault;
726
727 return gpa;
728 }
729
730 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
731 u32 access,
732 struct x86_exception *exception)
733 {
734 struct guest_walker walker;
735 gpa_t gpa = UNMAPPED_GVA;
736 int r;
737
738 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
739
740 if (r) {
741 gpa = gfn_to_gpa(walker.gfn);
742 gpa |= vaddr & ~PAGE_MASK;
743 } else if (exception)
744 *exception = walker.fault;
745
746 return gpa;
747 }
748
749 /*
750 * Using the cached information from sp->gfns is safe because:
751 * - The spte has a reference to the struct page, so the pfn for a given gfn
752 * can't change unless all sptes pointing to it are nuked first.
753 *
754 * Note:
755 * We should flush all tlbs if spte is dropped even though guest is
756 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
757 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
758 * used by guest then tlbs are not flushed, so guest is allowed to access the
759 * freed pages.
760 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
761 */
762 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
763 {
764 int i, nr_present = 0;
765 bool host_writable;
766 gpa_t first_pte_gpa;
767
768 /* direct kvm_mmu_page can not be unsync. */
769 BUG_ON(sp->role.direct);
770
771 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
772
773 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
774 unsigned pte_access;
775 pt_element_t gpte;
776 gpa_t pte_gpa;
777 gfn_t gfn;
778
779 if (!sp->spt[i])
780 continue;
781
782 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
783
784 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
785 sizeof(pt_element_t)))
786 return -EINVAL;
787
788 if (prefetch_invalid_gpte(vcpu, sp, &sp->spt[i], gpte)) {
789 vcpu->kvm->tlbs_dirty++;
790 continue;
791 }
792
793 gfn = gpte_to_gfn(gpte);
794 pte_access = sp->role.access;
795 pte_access &= gpte_access(vcpu, gpte);
796 protect_clean_gpte(&pte_access, gpte);
797
798 if (sync_mmio_spte(vcpu->kvm, &sp->spt[i], gfn, pte_access,
799 &nr_present))
800 continue;
801
802 if (gfn != sp->gfns[i]) {
803 drop_spte(vcpu->kvm, &sp->spt[i]);
804 vcpu->kvm->tlbs_dirty++;
805 continue;
806 }
807
808 nr_present++;
809
810 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
811
812 set_spte(vcpu, &sp->spt[i], pte_access,
813 PT_PAGE_TABLE_LEVEL, gfn,
814 spte_to_pfn(sp->spt[i]), true, false,
815 host_writable);
816 }
817
818 return !nr_present;
819 }
820
821 #undef pt_element_t
822 #undef guest_walker
823 #undef FNAME
824 #undef PT_BASE_ADDR_MASK
825 #undef PT_INDEX
826 #undef PT_LVL_ADDR_MASK
827 #undef PT_LVL_OFFSET_MASK
828 #undef PT_LEVEL_BITS
829 #undef PT_MAX_FULL_LEVELS
830 #undef gpte_to_gfn
831 #undef gpte_to_gfn_lvl
832 #undef CMPXCHG
This page took 0.050334 seconds and 5 git commands to generate.