KVM: MMU: Switch to mmu spinlock
[deliverable/linux.git] / arch / x86 / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 /*
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
23 */
24
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #define CMPXCHG cmpxchg
38 #else
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
42 #elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
48 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
49 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
50 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
51 #define PT_LEVEL_BITS PT32_LEVEL_BITS
52 #define PT_MAX_FULL_LEVELS 2
53 #define CMPXCHG cmpxchg
54 #else
55 #error Invalid PTTYPE value
56 #endif
57
58 #define gpte_to_gfn FNAME(gpte_to_gfn)
59 #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
60
61 /*
62 * The guest_walker structure emulates the behavior of the hardware page
63 * table walker.
64 */
65 struct guest_walker {
66 int level;
67 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
68 pt_element_t ptes[PT_MAX_FULL_LEVELS];
69 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
70 unsigned pt_access;
71 unsigned pte_access;
72 gfn_t gfn;
73 u32 error_code;
74 };
75
76 static gfn_t gpte_to_gfn(pt_element_t gpte)
77 {
78 return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
79 }
80
81 static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
82 {
83 return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
84 }
85
86 static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
87 gfn_t table_gfn, unsigned index,
88 pt_element_t orig_pte, pt_element_t new_pte)
89 {
90 pt_element_t ret;
91 pt_element_t *table;
92 struct page *page;
93
94 page = gfn_to_page(kvm, table_gfn);
95 table = kmap_atomic(page, KM_USER0);
96
97 ret = CMPXCHG(&table[index], orig_pte, new_pte);
98
99 kunmap_atomic(table, KM_USER0);
100
101 kvm_release_page_dirty(page);
102
103 return (ret != orig_pte);
104 }
105
106 static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
107 {
108 unsigned access;
109
110 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
111 #if PTTYPE == 64
112 if (is_nx(vcpu))
113 access &= ~(gpte >> PT64_NX_SHIFT);
114 #endif
115 return access;
116 }
117
118 /*
119 * Fetch a guest pte for a guest virtual address
120 */
121 static int FNAME(walk_addr)(struct guest_walker *walker,
122 struct kvm_vcpu *vcpu, gva_t addr,
123 int write_fault, int user_fault, int fetch_fault)
124 {
125 pt_element_t pte;
126 gfn_t table_gfn;
127 unsigned index, pt_access, pte_access;
128 gpa_t pte_gpa;
129
130 pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
131 walk:
132 walker->level = vcpu->arch.mmu.root_level;
133 pte = vcpu->arch.cr3;
134 #if PTTYPE == 64
135 if (!is_long_mode(vcpu)) {
136 pte = vcpu->arch.pdptrs[(addr >> 30) & 3];
137 if (!is_present_pte(pte))
138 goto not_present;
139 --walker->level;
140 }
141 #endif
142 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
143 (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
144
145 pt_access = ACC_ALL;
146
147 for (;;) {
148 index = PT_INDEX(addr, walker->level);
149
150 table_gfn = gpte_to_gfn(pte);
151 pte_gpa = gfn_to_gpa(table_gfn);
152 pte_gpa += index * sizeof(pt_element_t);
153 walker->table_gfn[walker->level - 1] = table_gfn;
154 walker->pte_gpa[walker->level - 1] = pte_gpa;
155 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
156 walker->level - 1, table_gfn);
157
158 kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
159
160 if (!is_present_pte(pte))
161 goto not_present;
162
163 if (write_fault && !is_writeble_pte(pte))
164 if (user_fault || is_write_protection(vcpu))
165 goto access_error;
166
167 if (user_fault && !(pte & PT_USER_MASK))
168 goto access_error;
169
170 #if PTTYPE == 64
171 if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
172 goto access_error;
173 #endif
174
175 if (!(pte & PT_ACCESSED_MASK)) {
176 mark_page_dirty(vcpu->kvm, table_gfn);
177 if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
178 index, pte, pte|PT_ACCESSED_MASK))
179 goto walk;
180 pte |= PT_ACCESSED_MASK;
181 }
182
183 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
184
185 walker->ptes[walker->level - 1] = pte;
186
187 if (walker->level == PT_PAGE_TABLE_LEVEL) {
188 walker->gfn = gpte_to_gfn(pte);
189 break;
190 }
191
192 if (walker->level == PT_DIRECTORY_LEVEL
193 && (pte & PT_PAGE_SIZE_MASK)
194 && (PTTYPE == 64 || is_pse(vcpu))) {
195 walker->gfn = gpte_to_gfn_pde(pte);
196 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
197 if (PTTYPE == 32 && is_cpuid_PSE36())
198 walker->gfn += pse36_gfn_delta(pte);
199 break;
200 }
201
202 pt_access = pte_access;
203 --walker->level;
204 }
205
206 if (write_fault && !is_dirty_pte(pte)) {
207 bool ret;
208
209 mark_page_dirty(vcpu->kvm, table_gfn);
210 ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
211 pte|PT_DIRTY_MASK);
212 if (ret)
213 goto walk;
214 pte |= PT_DIRTY_MASK;
215 kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
216 walker->ptes[walker->level - 1] = pte;
217 }
218
219 walker->pt_access = pt_access;
220 walker->pte_access = pte_access;
221 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
222 __FUNCTION__, (u64)pte, pt_access, pte_access);
223 return 1;
224
225 not_present:
226 walker->error_code = 0;
227 goto err;
228
229 access_error:
230 walker->error_code = PFERR_PRESENT_MASK;
231
232 err:
233 if (write_fault)
234 walker->error_code |= PFERR_WRITE_MASK;
235 if (user_fault)
236 walker->error_code |= PFERR_USER_MASK;
237 if (fetch_fault)
238 walker->error_code |= PFERR_FETCH_MASK;
239 return 0;
240 }
241
242 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
243 u64 *spte, const void *pte, int bytes,
244 int offset_in_pte)
245 {
246 pt_element_t gpte;
247 unsigned pte_access;
248 struct page *npage;
249
250 gpte = *(const pt_element_t *)pte;
251 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
252 if (!offset_in_pte && !is_present_pte(gpte))
253 set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
254 return;
255 }
256 if (bytes < sizeof(pt_element_t))
257 return;
258 pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
259 pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
260 if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
261 return;
262 npage = vcpu->arch.update_pte.page;
263 if (!npage)
264 return;
265 get_page(npage);
266 mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
267 gpte & PT_DIRTY_MASK, NULL, gpte_to_gfn(gpte), npage);
268 }
269
270 /*
271 * Fetch a shadow pte for a specific level in the paging hierarchy.
272 */
273 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
274 struct guest_walker *walker,
275 int user_fault, int write_fault, int *ptwrite,
276 struct page *page)
277 {
278 hpa_t shadow_addr;
279 int level;
280 u64 *shadow_ent;
281 unsigned access = walker->pt_access;
282
283 if (!is_present_pte(walker->ptes[walker->level - 1]))
284 return NULL;
285
286 shadow_addr = vcpu->arch.mmu.root_hpa;
287 level = vcpu->arch.mmu.shadow_root_level;
288 if (level == PT32E_ROOT_LEVEL) {
289 shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
290 shadow_addr &= PT64_BASE_ADDR_MASK;
291 --level;
292 }
293
294 for (; ; level--) {
295 u32 index = SHADOW_PT_INDEX(addr, level);
296 struct kvm_mmu_page *shadow_page;
297 u64 shadow_pte;
298 int metaphysical;
299 gfn_t table_gfn;
300 bool new_page = 0;
301
302 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
303 if (is_shadow_present_pte(*shadow_ent)) {
304 if (level == PT_PAGE_TABLE_LEVEL)
305 break;
306 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
307 continue;
308 }
309
310 if (level == PT_PAGE_TABLE_LEVEL)
311 break;
312
313 if (level - 1 == PT_PAGE_TABLE_LEVEL
314 && walker->level == PT_DIRECTORY_LEVEL) {
315 metaphysical = 1;
316 if (!is_dirty_pte(walker->ptes[level - 1]))
317 access &= ~ACC_WRITE_MASK;
318 table_gfn = gpte_to_gfn(walker->ptes[level - 1]);
319 } else {
320 metaphysical = 0;
321 table_gfn = walker->table_gfn[level - 2];
322 }
323 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
324 metaphysical, access,
325 shadow_ent, &new_page);
326 if (new_page && !metaphysical) {
327 int r;
328 pt_element_t curr_pte;
329 r = kvm_read_guest_atomic(vcpu->kvm,
330 walker->pte_gpa[level - 2],
331 &curr_pte, sizeof(curr_pte));
332 if (r || curr_pte != walker->ptes[level - 2]) {
333 kvm_release_page_clean(page);
334 return NULL;
335 }
336 }
337 shadow_addr = __pa(shadow_page->spt);
338 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
339 | PT_WRITABLE_MASK | PT_USER_MASK;
340 *shadow_ent = shadow_pte;
341 }
342
343 mmu_set_spte(vcpu, shadow_ent, access, walker->pte_access & access,
344 user_fault, write_fault,
345 walker->ptes[walker->level-1] & PT_DIRTY_MASK,
346 ptwrite, walker->gfn, page);
347
348 return shadow_ent;
349 }
350
351 /*
352 * Page fault handler. There are several causes for a page fault:
353 * - there is no shadow pte for the guest pte
354 * - write access through a shadow pte marked read only so that we can set
355 * the dirty bit
356 * - write access to a shadow pte marked read only so we can update the page
357 * dirty bitmap, when userspace requests it
358 * - mmio access; in this case we will never install a present shadow pte
359 * - normal guest page fault due to the guest pte marked not present, not
360 * writable, or not executable
361 *
362 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
363 * a negative value on error.
364 */
365 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
366 u32 error_code)
367 {
368 int write_fault = error_code & PFERR_WRITE_MASK;
369 int user_fault = error_code & PFERR_USER_MASK;
370 int fetch_fault = error_code & PFERR_FETCH_MASK;
371 struct guest_walker walker;
372 u64 *shadow_pte;
373 int write_pt = 0;
374 int r;
375 struct page *page;
376
377 pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
378 kvm_mmu_audit(vcpu, "pre page fault");
379
380 r = mmu_topup_memory_caches(vcpu);
381 if (r)
382 return r;
383
384 down_read(&current->mm->mmap_sem);
385 /*
386 * Look up the shadow pte for the faulting address.
387 */
388 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
389 fetch_fault);
390
391 /*
392 * The page is not mapped by the guest. Let the guest handle it.
393 */
394 if (!r) {
395 pgprintk("%s: guest page fault\n", __FUNCTION__);
396 inject_page_fault(vcpu, addr, walker.error_code);
397 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
398 up_read(&current->mm->mmap_sem);
399 return 0;
400 }
401
402 page = gfn_to_page(vcpu->kvm, walker.gfn);
403
404 spin_lock(&vcpu->kvm->mmu_lock);
405 shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
406 &write_pt, page);
407 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
408 shadow_pte, *shadow_pte, write_pt);
409
410 if (!write_pt)
411 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
412
413 /*
414 * mmio: emulate if accessible, otherwise its a guest fault.
415 */
416 if (shadow_pte && is_io_pte(*shadow_pte)) {
417 spin_unlock(&vcpu->kvm->mmu_lock);
418 up_read(&current->mm->mmap_sem);
419 return 1;
420 }
421
422 ++vcpu->stat.pf_fixed;
423 kvm_mmu_audit(vcpu, "post page fault (fixed)");
424 spin_unlock(&vcpu->kvm->mmu_lock);
425 up_read(&current->mm->mmap_sem);
426
427 return write_pt;
428 }
429
430 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
431 {
432 struct guest_walker walker;
433 gpa_t gpa = UNMAPPED_GVA;
434 int r;
435
436 r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
437
438 if (r) {
439 gpa = gfn_to_gpa(walker.gfn);
440 gpa |= vaddr & ~PAGE_MASK;
441 }
442
443 return gpa;
444 }
445
446 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
447 struct kvm_mmu_page *sp)
448 {
449 int i, offset = 0, r = 0;
450 pt_element_t pt;
451
452 if (sp->role.metaphysical
453 || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
454 nonpaging_prefetch_page(vcpu, sp);
455 return;
456 }
457
458 if (PTTYPE == 32)
459 offset = sp->role.quadrant << PT64_LEVEL_BITS;
460
461 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
462 gpa_t pte_gpa = gfn_to_gpa(sp->gfn);
463 pte_gpa += (i+offset) * sizeof(pt_element_t);
464
465 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &pt,
466 sizeof(pt_element_t));
467 if (r || is_present_pte(pt))
468 sp->spt[i] = shadow_trap_nonpresent_pte;
469 else
470 sp->spt[i] = shadow_notrap_nonpresent_pte;
471 }
472 }
473
474 #undef pt_element_t
475 #undef guest_walker
476 #undef FNAME
477 #undef PT_BASE_ADDR_MASK
478 #undef PT_INDEX
479 #undef SHADOW_PT_INDEX
480 #undef PT_LEVEL_MASK
481 #undef PT_DIR_BASE_ADDR_MASK
482 #undef PT_LEVEL_BITS
483 #undef PT_MAX_FULL_LEVELS
484 #undef gpte_to_gfn
485 #undef gpte_to_gfn_pde
486 #undef CMPXCHG
This page took 0.041108 seconds and 5 git commands to generate.