KVM: MMU: Allow long mode shadows for legacy page tables
[deliverable/linux.git] / arch / x86 / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affilates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 /*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26 #if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
35 #define PT_LEVEL_BITS PT64_LEVEL_BITS
36 #ifdef CONFIG_X86_64
37 #define PT_MAX_FULL_LEVELS 4
38 #define CMPXCHG cmpxchg
39 #else
40 #define CMPXCHG cmpxchg64
41 #define PT_MAX_FULL_LEVELS 2
42 #endif
43 #elif PTTYPE == 32
44 #define pt_element_t u32
45 #define guest_walker guest_walker32
46 #define FNAME(name) paging##32_##name
47 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
48 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
49 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
50 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
51 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
52 #define PT_LEVEL_BITS PT32_LEVEL_BITS
53 #define PT_MAX_FULL_LEVELS 2
54 #define CMPXCHG cmpxchg
55 #else
56 #error Invalid PTTYPE value
57 #endif
58
59 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
60 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
61
62 /*
63 * The guest_walker structure emulates the behavior of the hardware page
64 * table walker.
65 */
66 struct guest_walker {
67 int level;
68 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
69 pt_element_t ptes[PT_MAX_FULL_LEVELS];
70 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
71 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
72 unsigned pt_access;
73 unsigned pte_access;
74 gfn_t gfn;
75 u32 error_code;
76 };
77
78 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
79 {
80 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
81 }
82
83 static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
84 gfn_t table_gfn, unsigned index,
85 pt_element_t orig_pte, pt_element_t new_pte)
86 {
87 pt_element_t ret;
88 pt_element_t *table;
89 struct page *page;
90
91 page = gfn_to_page(kvm, table_gfn);
92
93 table = kmap_atomic(page, KM_USER0);
94 ret = CMPXCHG(&table[index], orig_pte, new_pte);
95 kunmap_atomic(table, KM_USER0);
96
97 kvm_release_page_dirty(page);
98
99 return (ret != orig_pte);
100 }
101
102 static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
103 {
104 unsigned access;
105
106 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
107 #if PTTYPE == 64
108 if (is_nx(vcpu))
109 access &= ~(gpte >> PT64_NX_SHIFT);
110 #endif
111 return access;
112 }
113
114 /*
115 * Fetch a guest pte for a guest virtual address
116 */
117 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
118 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
119 gva_t addr, int write_fault,
120 int user_fault, int fetch_fault)
121 {
122 pt_element_t pte;
123 gfn_t table_gfn;
124 unsigned index, pt_access, uninitialized_var(pte_access);
125 gpa_t pte_gpa;
126 bool eperm, present, rsvd_fault;
127 int offset;
128 u32 access = 0;
129
130 trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
131 fetch_fault);
132 walk:
133 present = true;
134 eperm = rsvd_fault = false;
135 walker->level = mmu->root_level;
136 pte = mmu->get_cr3(vcpu);
137
138 #if PTTYPE == 64
139 if (walker->level == PT32E_ROOT_LEVEL) {
140 pte = kvm_pdptr_read_mmu(vcpu, mmu, (addr >> 30) & 3);
141 trace_kvm_mmu_paging_element(pte, walker->level);
142 if (!is_present_gpte(pte)) {
143 present = false;
144 goto error;
145 }
146 --walker->level;
147 }
148 #endif
149 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
150 (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
151
152 pt_access = ACC_ALL;
153
154 for (;;) {
155 index = PT_INDEX(addr, walker->level);
156
157 table_gfn = gpte_to_gfn(pte);
158 offset = index * sizeof(pt_element_t);
159 pte_gpa = gfn_to_gpa(table_gfn) + offset;
160 walker->table_gfn[walker->level - 1] = table_gfn;
161 walker->pte_gpa[walker->level - 1] = pte_gpa;
162
163 if (kvm_read_guest_page_mmu(vcpu, mmu, table_gfn, &pte,
164 offset, sizeof(pte),
165 PFERR_USER_MASK|PFERR_WRITE_MASK)) {
166 present = false;
167 break;
168 }
169
170 trace_kvm_mmu_paging_element(pte, walker->level);
171
172 if (!is_present_gpte(pte)) {
173 present = false;
174 break;
175 }
176
177 if (is_rsvd_bits_set(&vcpu->arch.mmu, pte, walker->level)) {
178 rsvd_fault = true;
179 break;
180 }
181
182 if (write_fault && !is_writable_pte(pte))
183 if (user_fault || is_write_protection(vcpu))
184 eperm = true;
185
186 if (user_fault && !(pte & PT_USER_MASK))
187 eperm = true;
188
189 #if PTTYPE == 64
190 if (fetch_fault && (pte & PT64_NX_MASK))
191 eperm = true;
192 #endif
193
194 if (!eperm && !rsvd_fault && !(pte & PT_ACCESSED_MASK)) {
195 trace_kvm_mmu_set_accessed_bit(table_gfn, index,
196 sizeof(pte));
197 if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
198 index, pte, pte|PT_ACCESSED_MASK))
199 goto walk;
200 mark_page_dirty(vcpu->kvm, table_gfn);
201 pte |= PT_ACCESSED_MASK;
202 }
203
204 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
205
206 walker->ptes[walker->level - 1] = pte;
207
208 if ((walker->level == PT_PAGE_TABLE_LEVEL) ||
209 ((walker->level == PT_DIRECTORY_LEVEL) &&
210 is_large_pte(pte) &&
211 (PTTYPE == 64 || is_pse(vcpu))) ||
212 ((walker->level == PT_PDPE_LEVEL) &&
213 is_large_pte(pte) &&
214 mmu->root_level == PT64_ROOT_LEVEL)) {
215 int lvl = walker->level;
216 gpa_t real_gpa;
217 gfn_t gfn;
218
219 gfn = gpte_to_gfn_lvl(pte, lvl);
220 gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
221
222 if (PTTYPE == 32 &&
223 walker->level == PT_DIRECTORY_LEVEL &&
224 is_cpuid_PSE36())
225 gfn += pse36_gfn_delta(pte);
226
227 access |= write_fault ? PFERR_WRITE_MASK : 0;
228 access |= fetch_fault ? PFERR_FETCH_MASK : 0;
229 access |= user_fault ? PFERR_USER_MASK : 0;
230
231 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
232 access);
233 if (real_gpa == UNMAPPED_GVA)
234 return 0;
235
236 walker->gfn = real_gpa >> PAGE_SHIFT;
237
238 break;
239 }
240
241 pt_access = pte_access;
242 --walker->level;
243 }
244
245 if (!present || eperm || rsvd_fault)
246 goto error;
247
248 if (write_fault && !is_dirty_gpte(pte)) {
249 bool ret;
250
251 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
252 ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
253 pte|PT_DIRTY_MASK);
254 if (ret)
255 goto walk;
256 mark_page_dirty(vcpu->kvm, table_gfn);
257 pte |= PT_DIRTY_MASK;
258 walker->ptes[walker->level - 1] = pte;
259 }
260
261 walker->pt_access = pt_access;
262 walker->pte_access = pte_access;
263 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
264 __func__, (u64)pte, pte_access, pt_access);
265 return 1;
266
267 error:
268 walker->error_code = 0;
269 if (present)
270 walker->error_code |= PFERR_PRESENT_MASK;
271 if (write_fault)
272 walker->error_code |= PFERR_WRITE_MASK;
273 if (user_fault)
274 walker->error_code |= PFERR_USER_MASK;
275 if (fetch_fault && is_nx(vcpu))
276 walker->error_code |= PFERR_FETCH_MASK;
277 if (rsvd_fault)
278 walker->error_code |= PFERR_RSVD_MASK;
279
280 vcpu->arch.fault.address = addr;
281 vcpu->arch.fault.error_code = walker->error_code;
282
283 trace_kvm_mmu_walker_error(walker->error_code);
284 return 0;
285 }
286
287 static int FNAME(walk_addr)(struct guest_walker *walker,
288 struct kvm_vcpu *vcpu, gva_t addr,
289 int write_fault, int user_fault, int fetch_fault)
290 {
291 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
292 write_fault, user_fault, fetch_fault);
293 }
294
295 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
296 struct kvm_vcpu *vcpu, gva_t addr,
297 int write_fault, int user_fault,
298 int fetch_fault)
299 {
300 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
301 addr, write_fault, user_fault,
302 fetch_fault);
303 }
304
305 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
306 u64 *spte, const void *pte)
307 {
308 pt_element_t gpte;
309 unsigned pte_access;
310 pfn_t pfn;
311 u64 new_spte;
312
313 gpte = *(const pt_element_t *)pte;
314 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
315 if (!is_present_gpte(gpte)) {
316 if (sp->unsync)
317 new_spte = shadow_trap_nonpresent_pte;
318 else
319 new_spte = shadow_notrap_nonpresent_pte;
320 __set_spte(spte, new_spte);
321 }
322 return;
323 }
324 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
325 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
326 if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
327 return;
328 pfn = vcpu->arch.update_pte.pfn;
329 if (is_error_pfn(pfn))
330 return;
331 if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
332 return;
333 kvm_get_pfn(pfn);
334 /*
335 * we call mmu_set_spte() with reset_host_protection = true beacuse that
336 * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
337 */
338 mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
339 is_dirty_gpte(gpte), NULL, PT_PAGE_TABLE_LEVEL,
340 gpte_to_gfn(gpte), pfn, true, true);
341 }
342
343 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
344 struct guest_walker *gw, int level)
345 {
346 pt_element_t curr_pte;
347 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
348 u64 mask;
349 int r, index;
350
351 if (level == PT_PAGE_TABLE_LEVEL) {
352 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
353 base_gpa = pte_gpa & ~mask;
354 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
355
356 r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
357 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
358 curr_pte = gw->prefetch_ptes[index];
359 } else
360 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
361 &curr_pte, sizeof(curr_pte));
362
363 return r || curr_pte != gw->ptes[level - 1];
364 }
365
366 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
367 u64 *sptep)
368 {
369 struct kvm_mmu_page *sp;
370 struct kvm_mmu *mmu = &vcpu->arch.mmu;
371 pt_element_t *gptep = gw->prefetch_ptes;
372 u64 *spte;
373 int i;
374
375 sp = page_header(__pa(sptep));
376
377 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
378 return;
379
380 if (sp->role.direct)
381 return __direct_pte_prefetch(vcpu, sp, sptep);
382
383 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
384 spte = sp->spt + i;
385
386 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
387 pt_element_t gpte;
388 unsigned pte_access;
389 gfn_t gfn;
390 pfn_t pfn;
391 bool dirty;
392
393 if (spte == sptep)
394 continue;
395
396 if (*spte != shadow_trap_nonpresent_pte)
397 continue;
398
399 gpte = gptep[i];
400
401 if (!is_present_gpte(gpte) ||
402 is_rsvd_bits_set(mmu, gpte, PT_PAGE_TABLE_LEVEL)) {
403 if (!sp->unsync)
404 __set_spte(spte, shadow_notrap_nonpresent_pte);
405 continue;
406 }
407
408 if (!(gpte & PT_ACCESSED_MASK))
409 continue;
410
411 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
412 gfn = gpte_to_gfn(gpte);
413 dirty = is_dirty_gpte(gpte);
414 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
415 (pte_access & ACC_WRITE_MASK) && dirty);
416 if (is_error_pfn(pfn)) {
417 kvm_release_pfn_clean(pfn);
418 break;
419 }
420
421 mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
422 dirty, NULL, PT_PAGE_TABLE_LEVEL, gfn,
423 pfn, true, true);
424 }
425 }
426
427 /*
428 * Fetch a shadow pte for a specific level in the paging hierarchy.
429 */
430 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
431 struct guest_walker *gw,
432 int user_fault, int write_fault, int hlevel,
433 int *ptwrite, pfn_t pfn)
434 {
435 unsigned access = gw->pt_access;
436 struct kvm_mmu_page *sp = NULL;
437 bool dirty = is_dirty_gpte(gw->ptes[gw->level - 1]);
438 int top_level;
439 unsigned direct_access;
440 struct kvm_shadow_walk_iterator it;
441
442 if (!is_present_gpte(gw->ptes[gw->level - 1]))
443 return NULL;
444
445 direct_access = gw->pt_access & gw->pte_access;
446 if (!dirty)
447 direct_access &= ~ACC_WRITE_MASK;
448
449 top_level = vcpu->arch.mmu.root_level;
450 if (top_level == PT32E_ROOT_LEVEL)
451 top_level = PT32_ROOT_LEVEL;
452 /*
453 * Verify that the top-level gpte is still there. Since the page
454 * is a root page, it is either write protected (and cannot be
455 * changed from now on) or it is invalid (in which case, we don't
456 * really care if it changes underneath us after this point).
457 */
458 if (FNAME(gpte_changed)(vcpu, gw, top_level))
459 goto out_gpte_changed;
460
461 for (shadow_walk_init(&it, vcpu, addr);
462 shadow_walk_okay(&it) && it.level > gw->level;
463 shadow_walk_next(&it)) {
464 gfn_t table_gfn;
465
466 drop_large_spte(vcpu, it.sptep);
467
468 sp = NULL;
469 if (!is_shadow_present_pte(*it.sptep)) {
470 table_gfn = gw->table_gfn[it.level - 2];
471 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
472 false, access, it.sptep);
473 }
474
475 /*
476 * Verify that the gpte in the page we've just write
477 * protected is still there.
478 */
479 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
480 goto out_gpte_changed;
481
482 if (sp)
483 link_shadow_page(it.sptep, sp);
484 }
485
486 for (;
487 shadow_walk_okay(&it) && it.level > hlevel;
488 shadow_walk_next(&it)) {
489 gfn_t direct_gfn;
490
491 validate_direct_spte(vcpu, it.sptep, direct_access);
492
493 drop_large_spte(vcpu, it.sptep);
494
495 if (is_shadow_present_pte(*it.sptep))
496 continue;
497
498 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
499
500 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
501 true, direct_access, it.sptep);
502 link_shadow_page(it.sptep, sp);
503 }
504
505 mmu_set_spte(vcpu, it.sptep, access, gw->pte_access & access,
506 user_fault, write_fault, dirty, ptwrite, it.level,
507 gw->gfn, pfn, false, true);
508 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
509
510 return it.sptep;
511
512 out_gpte_changed:
513 if (sp)
514 kvm_mmu_put_page(sp, it.sptep);
515 kvm_release_pfn_clean(pfn);
516 return NULL;
517 }
518
519 /*
520 * Page fault handler. There are several causes for a page fault:
521 * - there is no shadow pte for the guest pte
522 * - write access through a shadow pte marked read only so that we can set
523 * the dirty bit
524 * - write access to a shadow pte marked read only so we can update the page
525 * dirty bitmap, when userspace requests it
526 * - mmio access; in this case we will never install a present shadow pte
527 * - normal guest page fault due to the guest pte marked not present, not
528 * writable, or not executable
529 *
530 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
531 * a negative value on error.
532 */
533 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
534 u32 error_code)
535 {
536 int write_fault = error_code & PFERR_WRITE_MASK;
537 int user_fault = error_code & PFERR_USER_MASK;
538 int fetch_fault = error_code & PFERR_FETCH_MASK;
539 struct guest_walker walker;
540 u64 *sptep;
541 int write_pt = 0;
542 int r;
543 pfn_t pfn;
544 int level = PT_PAGE_TABLE_LEVEL;
545 unsigned long mmu_seq;
546
547 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
548
549 r = mmu_topup_memory_caches(vcpu);
550 if (r)
551 return r;
552
553 /*
554 * Look up the guest pte for the faulting address.
555 */
556 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
557 fetch_fault);
558
559 /*
560 * The page is not mapped by the guest. Let the guest handle it.
561 */
562 if (!r) {
563 pgprintk("%s: guest page fault\n", __func__);
564 inject_page_fault(vcpu);
565 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
566 return 0;
567 }
568
569 if (walker.level >= PT_DIRECTORY_LEVEL) {
570 level = min(walker.level, mapping_level(vcpu, walker.gfn));
571 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
572 }
573
574 mmu_seq = vcpu->kvm->mmu_notifier_seq;
575 smp_rmb();
576 pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
577
578 /* mmio */
579 if (is_error_pfn(pfn))
580 return kvm_handle_bad_page(vcpu->kvm, walker.gfn, pfn);
581
582 spin_lock(&vcpu->kvm->mmu_lock);
583 if (mmu_notifier_retry(vcpu, mmu_seq))
584 goto out_unlock;
585
586 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
587 kvm_mmu_free_some_pages(vcpu);
588 sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
589 level, &write_pt, pfn);
590 (void)sptep;
591 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
592 sptep, *sptep, write_pt);
593
594 if (!write_pt)
595 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
596
597 ++vcpu->stat.pf_fixed;
598 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
599 spin_unlock(&vcpu->kvm->mmu_lock);
600
601 return write_pt;
602
603 out_unlock:
604 spin_unlock(&vcpu->kvm->mmu_lock);
605 kvm_release_pfn_clean(pfn);
606 return 0;
607 }
608
609 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
610 {
611 struct kvm_shadow_walk_iterator iterator;
612 struct kvm_mmu_page *sp;
613 gpa_t pte_gpa = -1;
614 int level;
615 u64 *sptep;
616 int need_flush = 0;
617
618 spin_lock(&vcpu->kvm->mmu_lock);
619
620 for_each_shadow_entry(vcpu, gva, iterator) {
621 level = iterator.level;
622 sptep = iterator.sptep;
623
624 sp = page_header(__pa(sptep));
625 if (is_last_spte(*sptep, level)) {
626 int offset, shift;
627
628 if (!sp->unsync)
629 break;
630
631 shift = PAGE_SHIFT -
632 (PT_LEVEL_BITS - PT64_LEVEL_BITS) * level;
633 offset = sp->role.quadrant << shift;
634
635 pte_gpa = (sp->gfn << PAGE_SHIFT) + offset;
636 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
637
638 if (is_shadow_present_pte(*sptep)) {
639 if (is_large_pte(*sptep))
640 --vcpu->kvm->stat.lpages;
641 drop_spte(vcpu->kvm, sptep,
642 shadow_trap_nonpresent_pte);
643 need_flush = 1;
644 } else
645 __set_spte(sptep, shadow_trap_nonpresent_pte);
646 break;
647 }
648
649 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
650 break;
651 }
652
653 if (need_flush)
654 kvm_flush_remote_tlbs(vcpu->kvm);
655
656 atomic_inc(&vcpu->kvm->arch.invlpg_counter);
657
658 spin_unlock(&vcpu->kvm->mmu_lock);
659
660 if (pte_gpa == -1)
661 return;
662
663 if (mmu_topup_memory_caches(vcpu))
664 return;
665 kvm_mmu_pte_write(vcpu, pte_gpa, NULL, sizeof(pt_element_t), 0);
666 }
667
668 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
669 u32 *error)
670 {
671 struct guest_walker walker;
672 gpa_t gpa = UNMAPPED_GVA;
673 int r;
674
675 r = FNAME(walk_addr)(&walker, vcpu, vaddr,
676 !!(access & PFERR_WRITE_MASK),
677 !!(access & PFERR_USER_MASK),
678 !!(access & PFERR_FETCH_MASK));
679
680 if (r) {
681 gpa = gfn_to_gpa(walker.gfn);
682 gpa |= vaddr & ~PAGE_MASK;
683 } else if (error)
684 *error = walker.error_code;
685
686 return gpa;
687 }
688
689 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
690 u32 access, u32 *error)
691 {
692 struct guest_walker walker;
693 gpa_t gpa = UNMAPPED_GVA;
694 int r;
695
696 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr,
697 access & PFERR_WRITE_MASK,
698 access & PFERR_USER_MASK,
699 access & PFERR_FETCH_MASK);
700
701 if (r) {
702 gpa = gfn_to_gpa(walker.gfn);
703 gpa |= vaddr & ~PAGE_MASK;
704 } else if (error)
705 *error = walker.error_code;
706
707 return gpa;
708 }
709
710 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
711 struct kvm_mmu_page *sp)
712 {
713 int i, j, offset, r;
714 pt_element_t pt[256 / sizeof(pt_element_t)];
715 gpa_t pte_gpa;
716
717 if (sp->role.direct
718 || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
719 nonpaging_prefetch_page(vcpu, sp);
720 return;
721 }
722
723 pte_gpa = gfn_to_gpa(sp->gfn);
724 if (PTTYPE == 32) {
725 offset = sp->role.quadrant << PT64_LEVEL_BITS;
726 pte_gpa += offset * sizeof(pt_element_t);
727 }
728
729 for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
730 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
731 pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
732 for (j = 0; j < ARRAY_SIZE(pt); ++j)
733 if (r || is_present_gpte(pt[j]))
734 sp->spt[i+j] = shadow_trap_nonpresent_pte;
735 else
736 sp->spt[i+j] = shadow_notrap_nonpresent_pte;
737 }
738 }
739
740 /*
741 * Using the cached information from sp->gfns is safe because:
742 * - The spte has a reference to the struct page, so the pfn for a given gfn
743 * can't change unless all sptes pointing to it are nuked first.
744 */
745 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
746 bool clear_unsync)
747 {
748 int i, offset, nr_present;
749 bool reset_host_protection;
750 gpa_t first_pte_gpa;
751
752 offset = nr_present = 0;
753
754 /* direct kvm_mmu_page can not be unsync. */
755 BUG_ON(sp->role.direct);
756
757 if (PTTYPE == 32)
758 offset = sp->role.quadrant << PT64_LEVEL_BITS;
759
760 first_pte_gpa = gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
761
762 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
763 unsigned pte_access;
764 pt_element_t gpte;
765 gpa_t pte_gpa;
766 gfn_t gfn;
767
768 if (!is_shadow_present_pte(sp->spt[i]))
769 continue;
770
771 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
772
773 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
774 sizeof(pt_element_t)))
775 return -EINVAL;
776
777 gfn = gpte_to_gfn(gpte);
778 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)
779 || gfn != sp->gfns[i] || !is_present_gpte(gpte)
780 || !(gpte & PT_ACCESSED_MASK)) {
781 u64 nonpresent;
782
783 if (is_present_gpte(gpte) || !clear_unsync)
784 nonpresent = shadow_trap_nonpresent_pte;
785 else
786 nonpresent = shadow_notrap_nonpresent_pte;
787 drop_spte(vcpu->kvm, &sp->spt[i], nonpresent);
788 continue;
789 }
790
791 nr_present++;
792 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
793 if (!(sp->spt[i] & SPTE_HOST_WRITEABLE)) {
794 pte_access &= ~ACC_WRITE_MASK;
795 reset_host_protection = 0;
796 } else {
797 reset_host_protection = 1;
798 }
799 set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
800 is_dirty_gpte(gpte), PT_PAGE_TABLE_LEVEL, gfn,
801 spte_to_pfn(sp->spt[i]), true, false,
802 reset_host_protection);
803 }
804
805 return !nr_present;
806 }
807
808 #undef pt_element_t
809 #undef guest_walker
810 #undef FNAME
811 #undef PT_BASE_ADDR_MASK
812 #undef PT_INDEX
813 #undef PT_LEVEL_MASK
814 #undef PT_LVL_ADDR_MASK
815 #undef PT_LVL_OFFSET_MASK
816 #undef PT_LEVEL_BITS
817 #undef PT_MAX_FULL_LEVELS
818 #undef gpte_to_gfn
819 #undef gpte_to_gfn_lvl
820 #undef CMPXCHG
This page took 0.051505 seconds and 6 git commands to generate.