KVM: do not treat noslot pfn as a error pfn
[deliverable/linux.git] / arch / x86 / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 /*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26 #if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #define CMPXCHG cmpxchg
38 #else
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
42 #elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
51 #define PT_MAX_FULL_LEVELS 2
52 #define CMPXCHG cmpxchg
53 #else
54 #error Invalid PTTYPE value
55 #endif
56
57 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
58 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
59
60 /*
61 * The guest_walker structure emulates the behavior of the hardware page
62 * table walker.
63 */
64 struct guest_walker {
65 int level;
66 unsigned max_level;
67 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
68 pt_element_t ptes[PT_MAX_FULL_LEVELS];
69 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
70 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
71 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
72 unsigned pt_access;
73 unsigned pte_access;
74 gfn_t gfn;
75 struct x86_exception fault;
76 };
77
78 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
79 {
80 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
81 }
82
83 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
84 pt_element_t __user *ptep_user, unsigned index,
85 pt_element_t orig_pte, pt_element_t new_pte)
86 {
87 int npages;
88 pt_element_t ret;
89 pt_element_t *table;
90 struct page *page;
91
92 npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
93 /* Check if the user is doing something meaningless. */
94 if (unlikely(npages != 1))
95 return -EFAULT;
96
97 table = kmap_atomic(page);
98 ret = CMPXCHG(&table[index], orig_pte, new_pte);
99 kunmap_atomic(table);
100
101 kvm_release_page_dirty(page);
102
103 return (ret != orig_pte);
104 }
105
106 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
107 struct kvm_mmu *mmu,
108 struct guest_walker *walker,
109 int write_fault)
110 {
111 unsigned level, index;
112 pt_element_t pte, orig_pte;
113 pt_element_t __user *ptep_user;
114 gfn_t table_gfn;
115 int ret;
116
117 for (level = walker->max_level; level >= walker->level; --level) {
118 pte = orig_pte = walker->ptes[level - 1];
119 table_gfn = walker->table_gfn[level - 1];
120 ptep_user = walker->ptep_user[level - 1];
121 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
122 if (!(pte & PT_ACCESSED_MASK)) {
123 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
124 pte |= PT_ACCESSED_MASK;
125 }
126 if (level == walker->level && write_fault && !is_dirty_gpte(pte)) {
127 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
128 pte |= PT_DIRTY_MASK;
129 }
130 if (pte == orig_pte)
131 continue;
132
133 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
134 if (ret)
135 return ret;
136
137 mark_page_dirty(vcpu->kvm, table_gfn);
138 walker->ptes[level] = pte;
139 }
140 return 0;
141 }
142
143 /*
144 * Fetch a guest pte for a guest virtual address
145 */
146 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
147 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
148 gva_t addr, u32 access)
149 {
150 int ret;
151 pt_element_t pte;
152 pt_element_t __user *uninitialized_var(ptep_user);
153 gfn_t table_gfn;
154 unsigned index, pt_access, pte_access, accessed_dirty, shift;
155 gpa_t pte_gpa;
156 int offset;
157 const int write_fault = access & PFERR_WRITE_MASK;
158 const int user_fault = access & PFERR_USER_MASK;
159 const int fetch_fault = access & PFERR_FETCH_MASK;
160 u16 errcode = 0;
161 gpa_t real_gpa;
162 gfn_t gfn;
163
164 trace_kvm_mmu_pagetable_walk(addr, access);
165 retry_walk:
166 walker->level = mmu->root_level;
167 pte = mmu->get_cr3(vcpu);
168
169 #if PTTYPE == 64
170 if (walker->level == PT32E_ROOT_LEVEL) {
171 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
172 trace_kvm_mmu_paging_element(pte, walker->level);
173 if (!is_present_gpte(pte))
174 goto error;
175 --walker->level;
176 }
177 #endif
178 walker->max_level = walker->level;
179 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
180 (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
181
182 accessed_dirty = PT_ACCESSED_MASK;
183 pt_access = pte_access = ACC_ALL;
184 ++walker->level;
185
186 do {
187 gfn_t real_gfn;
188 unsigned long host_addr;
189
190 pt_access &= pte_access;
191 --walker->level;
192
193 index = PT_INDEX(addr, walker->level);
194
195 table_gfn = gpte_to_gfn(pte);
196 offset = index * sizeof(pt_element_t);
197 pte_gpa = gfn_to_gpa(table_gfn) + offset;
198 walker->table_gfn[walker->level - 1] = table_gfn;
199 walker->pte_gpa[walker->level - 1] = pte_gpa;
200
201 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
202 PFERR_USER_MASK|PFERR_WRITE_MASK);
203 if (unlikely(real_gfn == UNMAPPED_GVA))
204 goto error;
205 real_gfn = gpa_to_gfn(real_gfn);
206
207 host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
208 if (unlikely(kvm_is_error_hva(host_addr)))
209 goto error;
210
211 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
212 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
213 goto error;
214 walker->ptep_user[walker->level - 1] = ptep_user;
215
216 trace_kvm_mmu_paging_element(pte, walker->level);
217
218 if (unlikely(!is_present_gpte(pte)))
219 goto error;
220
221 if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
222 walker->level))) {
223 errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
224 goto error;
225 }
226
227 accessed_dirty &= pte;
228 pte_access = pt_access & gpte_access(vcpu, pte);
229
230 walker->ptes[walker->level - 1] = pte;
231 } while (!is_last_gpte(mmu, walker->level, pte));
232
233 if (unlikely(permission_fault(mmu, pte_access, access))) {
234 errcode |= PFERR_PRESENT_MASK;
235 goto error;
236 }
237
238 gfn = gpte_to_gfn_lvl(pte, walker->level);
239 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
240
241 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
242 gfn += pse36_gfn_delta(pte);
243
244 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access);
245 if (real_gpa == UNMAPPED_GVA)
246 return 0;
247
248 walker->gfn = real_gpa >> PAGE_SHIFT;
249
250 if (!write_fault)
251 protect_clean_gpte(&pte_access, pte);
252
253 /*
254 * On a write fault, fold the dirty bit into accessed_dirty by shifting it one
255 * place right.
256 *
257 * On a read fault, do nothing.
258 */
259 shift = write_fault >> ilog2(PFERR_WRITE_MASK);
260 shift *= PT_DIRTY_SHIFT - PT_ACCESSED_SHIFT;
261 accessed_dirty &= pte >> shift;
262
263 if (unlikely(!accessed_dirty)) {
264 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
265 if (unlikely(ret < 0))
266 goto error;
267 else if (ret)
268 goto retry_walk;
269 }
270
271 walker->pt_access = pt_access;
272 walker->pte_access = pte_access;
273 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
274 __func__, (u64)pte, pte_access, pt_access);
275 return 1;
276
277 error:
278 errcode |= write_fault | user_fault;
279 if (fetch_fault && (mmu->nx ||
280 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
281 errcode |= PFERR_FETCH_MASK;
282
283 walker->fault.vector = PF_VECTOR;
284 walker->fault.error_code_valid = true;
285 walker->fault.error_code = errcode;
286 walker->fault.address = addr;
287 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
288
289 trace_kvm_mmu_walker_error(walker->fault.error_code);
290 return 0;
291 }
292
293 static int FNAME(walk_addr)(struct guest_walker *walker,
294 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
295 {
296 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
297 access);
298 }
299
300 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
301 struct kvm_vcpu *vcpu, gva_t addr,
302 u32 access)
303 {
304 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
305 addr, access);
306 }
307
308 static bool
309 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
310 u64 *spte, pt_element_t gpte, bool no_dirty_log)
311 {
312 unsigned pte_access;
313 gfn_t gfn;
314 pfn_t pfn;
315
316 if (prefetch_invalid_gpte(vcpu, sp, spte, gpte))
317 return false;
318
319 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
320
321 gfn = gpte_to_gfn(gpte);
322 pte_access = sp->role.access & gpte_access(vcpu, gpte);
323 protect_clean_gpte(&pte_access, gpte);
324 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
325 no_dirty_log && (pte_access & ACC_WRITE_MASK));
326 if (is_error_pfn(pfn))
327 return false;
328
329 /*
330 * we call mmu_set_spte() with host_writable = true because
331 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
332 */
333 mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
334 NULL, PT_PAGE_TABLE_LEVEL, gfn, pfn, true, true);
335
336 return true;
337 }
338
339 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
340 u64 *spte, const void *pte)
341 {
342 pt_element_t gpte = *(const pt_element_t *)pte;
343
344 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
345 }
346
347 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
348 struct guest_walker *gw, int level)
349 {
350 pt_element_t curr_pte;
351 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
352 u64 mask;
353 int r, index;
354
355 if (level == PT_PAGE_TABLE_LEVEL) {
356 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
357 base_gpa = pte_gpa & ~mask;
358 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
359
360 r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
361 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
362 curr_pte = gw->prefetch_ptes[index];
363 } else
364 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
365 &curr_pte, sizeof(curr_pte));
366
367 return r || curr_pte != gw->ptes[level - 1];
368 }
369
370 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
371 u64 *sptep)
372 {
373 struct kvm_mmu_page *sp;
374 pt_element_t *gptep = gw->prefetch_ptes;
375 u64 *spte;
376 int i;
377
378 sp = page_header(__pa(sptep));
379
380 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
381 return;
382
383 if (sp->role.direct)
384 return __direct_pte_prefetch(vcpu, sp, sptep);
385
386 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
387 spte = sp->spt + i;
388
389 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
390 if (spte == sptep)
391 continue;
392
393 if (is_shadow_present_pte(*spte))
394 continue;
395
396 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
397 break;
398 }
399 }
400
401 /*
402 * Fetch a shadow pte for a specific level in the paging hierarchy.
403 * If the guest tries to write a write-protected page, we need to
404 * emulate this operation, return 1 to indicate this case.
405 */
406 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
407 struct guest_walker *gw,
408 int user_fault, int write_fault, int hlevel,
409 pfn_t pfn, bool map_writable, bool prefault)
410 {
411 struct kvm_mmu_page *sp = NULL;
412 struct kvm_shadow_walk_iterator it;
413 unsigned direct_access, access = gw->pt_access;
414 int top_level, emulate = 0;
415
416 if (!is_present_gpte(gw->ptes[gw->level - 1]))
417 return 0;
418
419 direct_access = gw->pte_access;
420
421 top_level = vcpu->arch.mmu.root_level;
422 if (top_level == PT32E_ROOT_LEVEL)
423 top_level = PT32_ROOT_LEVEL;
424 /*
425 * Verify that the top-level gpte is still there. Since the page
426 * is a root page, it is either write protected (and cannot be
427 * changed from now on) or it is invalid (in which case, we don't
428 * really care if it changes underneath us after this point).
429 */
430 if (FNAME(gpte_changed)(vcpu, gw, top_level))
431 goto out_gpte_changed;
432
433 for (shadow_walk_init(&it, vcpu, addr);
434 shadow_walk_okay(&it) && it.level > gw->level;
435 shadow_walk_next(&it)) {
436 gfn_t table_gfn;
437
438 clear_sp_write_flooding_count(it.sptep);
439 drop_large_spte(vcpu, it.sptep);
440
441 sp = NULL;
442 if (!is_shadow_present_pte(*it.sptep)) {
443 table_gfn = gw->table_gfn[it.level - 2];
444 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
445 false, access, it.sptep);
446 }
447
448 /*
449 * Verify that the gpte in the page we've just write
450 * protected is still there.
451 */
452 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
453 goto out_gpte_changed;
454
455 if (sp)
456 link_shadow_page(it.sptep, sp);
457 }
458
459 for (;
460 shadow_walk_okay(&it) && it.level > hlevel;
461 shadow_walk_next(&it)) {
462 gfn_t direct_gfn;
463
464 clear_sp_write_flooding_count(it.sptep);
465 validate_direct_spte(vcpu, it.sptep, direct_access);
466
467 drop_large_spte(vcpu, it.sptep);
468
469 if (is_shadow_present_pte(*it.sptep))
470 continue;
471
472 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
473
474 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
475 true, direct_access, it.sptep);
476 link_shadow_page(it.sptep, sp);
477 }
478
479 clear_sp_write_flooding_count(it.sptep);
480 mmu_set_spte(vcpu, it.sptep, access, gw->pte_access,
481 user_fault, write_fault, &emulate, it.level,
482 gw->gfn, pfn, prefault, map_writable);
483 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
484
485 return emulate;
486
487 out_gpte_changed:
488 if (sp)
489 kvm_mmu_put_page(sp, it.sptep);
490 kvm_release_pfn_clean(pfn);
491 return 0;
492 }
493
494 /*
495 * Page fault handler. There are several causes for a page fault:
496 * - there is no shadow pte for the guest pte
497 * - write access through a shadow pte marked read only so that we can set
498 * the dirty bit
499 * - write access to a shadow pte marked read only so we can update the page
500 * dirty bitmap, when userspace requests it
501 * - mmio access; in this case we will never install a present shadow pte
502 * - normal guest page fault due to the guest pte marked not present, not
503 * writable, or not executable
504 *
505 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
506 * a negative value on error.
507 */
508 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
509 bool prefault)
510 {
511 int write_fault = error_code & PFERR_WRITE_MASK;
512 int user_fault = error_code & PFERR_USER_MASK;
513 struct guest_walker walker;
514 int r;
515 pfn_t pfn;
516 int level = PT_PAGE_TABLE_LEVEL;
517 int force_pt_level;
518 unsigned long mmu_seq;
519 bool map_writable;
520
521 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
522
523 if (unlikely(error_code & PFERR_RSVD_MASK))
524 return handle_mmio_page_fault(vcpu, addr, error_code,
525 mmu_is_nested(vcpu));
526
527 r = mmu_topup_memory_caches(vcpu);
528 if (r)
529 return r;
530
531 /*
532 * Look up the guest pte for the faulting address.
533 */
534 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
535
536 /*
537 * The page is not mapped by the guest. Let the guest handle it.
538 */
539 if (!r) {
540 pgprintk("%s: guest page fault\n", __func__);
541 if (!prefault)
542 inject_page_fault(vcpu, &walker.fault);
543
544 return 0;
545 }
546
547 if (walker.level >= PT_DIRECTORY_LEVEL)
548 force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
549 else
550 force_pt_level = 1;
551 if (!force_pt_level) {
552 level = min(walker.level, mapping_level(vcpu, walker.gfn));
553 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
554 }
555
556 mmu_seq = vcpu->kvm->mmu_notifier_seq;
557 smp_rmb();
558
559 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
560 &map_writable))
561 return 0;
562
563 if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
564 walker.gfn, pfn, walker.pte_access, &r))
565 return r;
566
567 spin_lock(&vcpu->kvm->mmu_lock);
568 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
569 goto out_unlock;
570
571 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
572 kvm_mmu_free_some_pages(vcpu);
573 if (!force_pt_level)
574 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
575 r = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
576 level, pfn, map_writable, prefault);
577 ++vcpu->stat.pf_fixed;
578 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
579 spin_unlock(&vcpu->kvm->mmu_lock);
580
581 return r;
582
583 out_unlock:
584 spin_unlock(&vcpu->kvm->mmu_lock);
585 kvm_release_pfn_clean(pfn);
586 return 0;
587 }
588
589 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
590 {
591 int offset = 0;
592
593 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
594
595 if (PTTYPE == 32)
596 offset = sp->role.quadrant << PT64_LEVEL_BITS;
597
598 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
599 }
600
601 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
602 {
603 struct kvm_shadow_walk_iterator iterator;
604 struct kvm_mmu_page *sp;
605 int level;
606 u64 *sptep;
607
608 vcpu_clear_mmio_info(vcpu, gva);
609
610 /*
611 * No need to check return value here, rmap_can_add() can
612 * help us to skip pte prefetch later.
613 */
614 mmu_topup_memory_caches(vcpu);
615
616 spin_lock(&vcpu->kvm->mmu_lock);
617 for_each_shadow_entry(vcpu, gva, iterator) {
618 level = iterator.level;
619 sptep = iterator.sptep;
620
621 sp = page_header(__pa(sptep));
622 if (is_last_spte(*sptep, level)) {
623 pt_element_t gpte;
624 gpa_t pte_gpa;
625
626 if (!sp->unsync)
627 break;
628
629 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
630 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
631
632 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
633 kvm_flush_remote_tlbs(vcpu->kvm);
634
635 if (!rmap_can_add(vcpu))
636 break;
637
638 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
639 sizeof(pt_element_t)))
640 break;
641
642 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
643 }
644
645 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
646 break;
647 }
648 spin_unlock(&vcpu->kvm->mmu_lock);
649 }
650
651 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
652 struct x86_exception *exception)
653 {
654 struct guest_walker walker;
655 gpa_t gpa = UNMAPPED_GVA;
656 int r;
657
658 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
659
660 if (r) {
661 gpa = gfn_to_gpa(walker.gfn);
662 gpa |= vaddr & ~PAGE_MASK;
663 } else if (exception)
664 *exception = walker.fault;
665
666 return gpa;
667 }
668
669 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
670 u32 access,
671 struct x86_exception *exception)
672 {
673 struct guest_walker walker;
674 gpa_t gpa = UNMAPPED_GVA;
675 int r;
676
677 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
678
679 if (r) {
680 gpa = gfn_to_gpa(walker.gfn);
681 gpa |= vaddr & ~PAGE_MASK;
682 } else if (exception)
683 *exception = walker.fault;
684
685 return gpa;
686 }
687
688 /*
689 * Using the cached information from sp->gfns is safe because:
690 * - The spte has a reference to the struct page, so the pfn for a given gfn
691 * can't change unless all sptes pointing to it are nuked first.
692 *
693 * Note:
694 * We should flush all tlbs if spte is dropped even though guest is
695 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
696 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
697 * used by guest then tlbs are not flushed, so guest is allowed to access the
698 * freed pages.
699 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
700 */
701 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
702 {
703 int i, nr_present = 0;
704 bool host_writable;
705 gpa_t first_pte_gpa;
706
707 /* direct kvm_mmu_page can not be unsync. */
708 BUG_ON(sp->role.direct);
709
710 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
711
712 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
713 unsigned pte_access;
714 pt_element_t gpte;
715 gpa_t pte_gpa;
716 gfn_t gfn;
717
718 if (!sp->spt[i])
719 continue;
720
721 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
722
723 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
724 sizeof(pt_element_t)))
725 return -EINVAL;
726
727 if (prefetch_invalid_gpte(vcpu, sp, &sp->spt[i], gpte)) {
728 vcpu->kvm->tlbs_dirty++;
729 continue;
730 }
731
732 gfn = gpte_to_gfn(gpte);
733 pte_access = sp->role.access;
734 pte_access &= gpte_access(vcpu, gpte);
735 protect_clean_gpte(&pte_access, gpte);
736
737 if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
738 continue;
739
740 if (gfn != sp->gfns[i]) {
741 drop_spte(vcpu->kvm, &sp->spt[i]);
742 vcpu->kvm->tlbs_dirty++;
743 continue;
744 }
745
746 nr_present++;
747
748 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
749
750 set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
751 PT_PAGE_TABLE_LEVEL, gfn,
752 spte_to_pfn(sp->spt[i]), true, false,
753 host_writable);
754 }
755
756 return !nr_present;
757 }
758
759 #undef pt_element_t
760 #undef guest_walker
761 #undef FNAME
762 #undef PT_BASE_ADDR_MASK
763 #undef PT_INDEX
764 #undef PT_LVL_ADDR_MASK
765 #undef PT_LVL_OFFSET_MASK
766 #undef PT_LEVEL_BITS
767 #undef PT_MAX_FULL_LEVELS
768 #undef gpte_to_gfn
769 #undef gpte_to_gfn_lvl
770 #undef CMPXCHG
This page took 0.045901 seconds and 6 git commands to generate.