Merge branches 'pm-cpufreq' and 'pm-devfreq'
[deliverable/linux.git] / arch / x86 / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 /*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26 /*
27 * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro
28 * uses for EPT without A/D paging type.
29 */
30 extern u64 __pure __using_nonexistent_pte_bit(void)
31 __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT");
32
33 #if PTTYPE == 64
34 #define pt_element_t u64
35 #define guest_walker guest_walker64
36 #define FNAME(name) paging##64_##name
37 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
38 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
39 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
40 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
41 #define PT_LEVEL_BITS PT64_LEVEL_BITS
42 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
43 #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
44 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
45 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
46 #ifdef CONFIG_X86_64
47 #define PT_MAX_FULL_LEVELS 4
48 #define CMPXCHG cmpxchg
49 #else
50 #define CMPXCHG cmpxchg64
51 #define PT_MAX_FULL_LEVELS 2
52 #endif
53 #elif PTTYPE == 32
54 #define pt_element_t u32
55 #define guest_walker guest_walker32
56 #define FNAME(name) paging##32_##name
57 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
58 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
59 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
60 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
61 #define PT_LEVEL_BITS PT32_LEVEL_BITS
62 #define PT_MAX_FULL_LEVELS 2
63 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
64 #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
65 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
66 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
67 #define CMPXCHG cmpxchg
68 #elif PTTYPE == PTTYPE_EPT
69 #define pt_element_t u64
70 #define guest_walker guest_walkerEPT
71 #define FNAME(name) ept_##name
72 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
73 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
74 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
75 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
76 #define PT_LEVEL_BITS PT64_LEVEL_BITS
77 #define PT_GUEST_ACCESSED_MASK 0
78 #define PT_GUEST_DIRTY_MASK 0
79 #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit()
80 #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit()
81 #define CMPXCHG cmpxchg64
82 #define PT_MAX_FULL_LEVELS 4
83 #else
84 #error Invalid PTTYPE value
85 #endif
86
87 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
88 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
89
90 /*
91 * The guest_walker structure emulates the behavior of the hardware page
92 * table walker.
93 */
94 struct guest_walker {
95 int level;
96 unsigned max_level;
97 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
98 pt_element_t ptes[PT_MAX_FULL_LEVELS];
99 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
100 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
101 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
102 bool pte_writable[PT_MAX_FULL_LEVELS];
103 unsigned pt_access;
104 unsigned pte_access;
105 gfn_t gfn;
106 struct x86_exception fault;
107 };
108
109 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
110 {
111 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
112 }
113
114 static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte)
115 {
116 unsigned mask;
117
118 /* dirty bit is not supported, so no need to track it */
119 if (!PT_GUEST_DIRTY_MASK)
120 return;
121
122 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
123
124 mask = (unsigned)~ACC_WRITE_MASK;
125 /* Allow write access to dirty gptes */
126 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
127 PT_WRITABLE_MASK;
128 *access &= mask;
129 }
130
131 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
132 {
133 int bit7 = (gpte >> 7) & 1, low6 = gpte & 0x3f;
134
135 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) |
136 ((mmu->bad_mt_xwr & (1ull << low6)) != 0);
137 }
138
139 static inline int FNAME(is_present_gpte)(unsigned long pte)
140 {
141 #if PTTYPE != PTTYPE_EPT
142 return is_present_gpte(pte);
143 #else
144 return pte & 7;
145 #endif
146 }
147
148 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
149 pt_element_t __user *ptep_user, unsigned index,
150 pt_element_t orig_pte, pt_element_t new_pte)
151 {
152 int npages;
153 pt_element_t ret;
154 pt_element_t *table;
155 struct page *page;
156
157 npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
158 /* Check if the user is doing something meaningless. */
159 if (unlikely(npages != 1))
160 return -EFAULT;
161
162 table = kmap_atomic(page);
163 ret = CMPXCHG(&table[index], orig_pte, new_pte);
164 kunmap_atomic(table);
165
166 kvm_release_page_dirty(page);
167
168 return (ret != orig_pte);
169 }
170
171 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
172 struct kvm_mmu_page *sp, u64 *spte,
173 u64 gpte)
174 {
175 if (FNAME(is_rsvd_bits_set)(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
176 goto no_present;
177
178 if (!FNAME(is_present_gpte)(gpte))
179 goto no_present;
180
181 /* if accessed bit is not supported prefetch non accessed gpte */
182 if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK))
183 goto no_present;
184
185 return false;
186
187 no_present:
188 drop_spte(vcpu->kvm, spte);
189 return true;
190 }
191
192 static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
193 {
194 unsigned access;
195 #if PTTYPE == PTTYPE_EPT
196 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
197 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
198 ACC_USER_MASK;
199 #else
200 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
201 access &= ~(gpte >> PT64_NX_SHIFT);
202 #endif
203
204 return access;
205 }
206
207 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
208 struct kvm_mmu *mmu,
209 struct guest_walker *walker,
210 int write_fault)
211 {
212 unsigned level, index;
213 pt_element_t pte, orig_pte;
214 pt_element_t __user *ptep_user;
215 gfn_t table_gfn;
216 int ret;
217
218 /* dirty/accessed bits are not supported, so no need to update them */
219 if (!PT_GUEST_DIRTY_MASK)
220 return 0;
221
222 for (level = walker->max_level; level >= walker->level; --level) {
223 pte = orig_pte = walker->ptes[level - 1];
224 table_gfn = walker->table_gfn[level - 1];
225 ptep_user = walker->ptep_user[level - 1];
226 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
227 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
228 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
229 pte |= PT_GUEST_ACCESSED_MASK;
230 }
231 if (level == walker->level && write_fault &&
232 !(pte & PT_GUEST_DIRTY_MASK)) {
233 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
234 pte |= PT_GUEST_DIRTY_MASK;
235 }
236 if (pte == orig_pte)
237 continue;
238
239 /*
240 * If the slot is read-only, simply do not process the accessed
241 * and dirty bits. This is the correct thing to do if the slot
242 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
243 * are only supported if the accessed and dirty bits are already
244 * set in the ROM (so that MMIO writes are never needed).
245 *
246 * Note that NPT does not allow this at all and faults, since
247 * it always wants nested page table entries for the guest
248 * page tables to be writable. And EPT works but will simply
249 * overwrite the read-only memory to set the accessed and dirty
250 * bits.
251 */
252 if (unlikely(!walker->pte_writable[level - 1]))
253 continue;
254
255 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
256 if (ret)
257 return ret;
258
259 mark_page_dirty(vcpu->kvm, table_gfn);
260 walker->ptes[level] = pte;
261 }
262 return 0;
263 }
264
265 /*
266 * Fetch a guest pte for a guest virtual address
267 */
268 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
269 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
270 gva_t addr, u32 access)
271 {
272 int ret;
273 pt_element_t pte;
274 pt_element_t __user *uninitialized_var(ptep_user);
275 gfn_t table_gfn;
276 unsigned index, pt_access, pte_access, accessed_dirty;
277 gpa_t pte_gpa;
278 int offset;
279 const int write_fault = access & PFERR_WRITE_MASK;
280 const int user_fault = access & PFERR_USER_MASK;
281 const int fetch_fault = access & PFERR_FETCH_MASK;
282 u16 errcode = 0;
283 gpa_t real_gpa;
284 gfn_t gfn;
285
286 trace_kvm_mmu_pagetable_walk(addr, access);
287 retry_walk:
288 walker->level = mmu->root_level;
289 pte = mmu->get_cr3(vcpu);
290
291 #if PTTYPE == 64
292 if (walker->level == PT32E_ROOT_LEVEL) {
293 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
294 trace_kvm_mmu_paging_element(pte, walker->level);
295 if (!FNAME(is_present_gpte)(pte))
296 goto error;
297 --walker->level;
298 }
299 #endif
300 walker->max_level = walker->level;
301 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
302 (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
303
304 accessed_dirty = PT_GUEST_ACCESSED_MASK;
305 pt_access = pte_access = ACC_ALL;
306 ++walker->level;
307
308 do {
309 gfn_t real_gfn;
310 unsigned long host_addr;
311
312 pt_access &= pte_access;
313 --walker->level;
314
315 index = PT_INDEX(addr, walker->level);
316
317 table_gfn = gpte_to_gfn(pte);
318 offset = index * sizeof(pt_element_t);
319 pte_gpa = gfn_to_gpa(table_gfn) + offset;
320 walker->table_gfn[walker->level - 1] = table_gfn;
321 walker->pte_gpa[walker->level - 1] = pte_gpa;
322
323 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
324 PFERR_USER_MASK|PFERR_WRITE_MASK);
325 if (unlikely(real_gfn == UNMAPPED_GVA))
326 goto error;
327 real_gfn = gpa_to_gfn(real_gfn);
328
329 host_addr = gfn_to_hva_prot(vcpu->kvm, real_gfn,
330 &walker->pte_writable[walker->level - 1]);
331 if (unlikely(kvm_is_error_hva(host_addr)))
332 goto error;
333
334 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
335 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
336 goto error;
337 walker->ptep_user[walker->level - 1] = ptep_user;
338
339 trace_kvm_mmu_paging_element(pte, walker->level);
340
341 if (unlikely(!FNAME(is_present_gpte)(pte)))
342 goto error;
343
344 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte,
345 walker->level))) {
346 errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
347 goto error;
348 }
349
350 accessed_dirty &= pte;
351 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
352
353 walker->ptes[walker->level - 1] = pte;
354 } while (!is_last_gpte(mmu, walker->level, pte));
355
356 if (unlikely(permission_fault(mmu, pte_access, access))) {
357 errcode |= PFERR_PRESENT_MASK;
358 goto error;
359 }
360
361 gfn = gpte_to_gfn_lvl(pte, walker->level);
362 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
363
364 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
365 gfn += pse36_gfn_delta(pte);
366
367 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access);
368 if (real_gpa == UNMAPPED_GVA)
369 return 0;
370
371 walker->gfn = real_gpa >> PAGE_SHIFT;
372
373 if (!write_fault)
374 FNAME(protect_clean_gpte)(&pte_access, pte);
375 else
376 /*
377 * On a write fault, fold the dirty bit into accessed_dirty.
378 * For modes without A/D bits support accessed_dirty will be
379 * always clear.
380 */
381 accessed_dirty &= pte >>
382 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
383
384 if (unlikely(!accessed_dirty)) {
385 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
386 if (unlikely(ret < 0))
387 goto error;
388 else if (ret)
389 goto retry_walk;
390 }
391
392 walker->pt_access = pt_access;
393 walker->pte_access = pte_access;
394 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
395 __func__, (u64)pte, pte_access, pt_access);
396 return 1;
397
398 error:
399 errcode |= write_fault | user_fault;
400 if (fetch_fault && (mmu->nx ||
401 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
402 errcode |= PFERR_FETCH_MASK;
403
404 walker->fault.vector = PF_VECTOR;
405 walker->fault.error_code_valid = true;
406 walker->fault.error_code = errcode;
407
408 #if PTTYPE == PTTYPE_EPT
409 /*
410 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
411 * misconfiguration requires to be injected. The detection is
412 * done by is_rsvd_bits_set() above.
413 *
414 * We set up the value of exit_qualification to inject:
415 * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
416 * [5:3] - Calculated by the page walk of the guest EPT page tables
417 * [7:8] - Derived from [7:8] of real exit_qualification
418 *
419 * The other bits are set to 0.
420 */
421 if (!(errcode & PFERR_RSVD_MASK)) {
422 vcpu->arch.exit_qualification &= 0x187;
423 vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
424 }
425 #endif
426 walker->fault.address = addr;
427 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
428
429 trace_kvm_mmu_walker_error(walker->fault.error_code);
430 return 0;
431 }
432
433 static int FNAME(walk_addr)(struct guest_walker *walker,
434 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
435 {
436 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
437 access);
438 }
439
440 #if PTTYPE != PTTYPE_EPT
441 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
442 struct kvm_vcpu *vcpu, gva_t addr,
443 u32 access)
444 {
445 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
446 addr, access);
447 }
448 #endif
449
450 static bool
451 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
452 u64 *spte, pt_element_t gpte, bool no_dirty_log)
453 {
454 unsigned pte_access;
455 gfn_t gfn;
456 pfn_t pfn;
457
458 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
459 return false;
460
461 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
462
463 gfn = gpte_to_gfn(gpte);
464 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
465 FNAME(protect_clean_gpte)(&pte_access, gpte);
466 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
467 no_dirty_log && (pte_access & ACC_WRITE_MASK));
468 if (is_error_pfn(pfn))
469 return false;
470
471 /*
472 * we call mmu_set_spte() with host_writable = true because
473 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
474 */
475 mmu_set_spte(vcpu, spte, pte_access, 0, NULL, PT_PAGE_TABLE_LEVEL,
476 gfn, pfn, true, true);
477
478 return true;
479 }
480
481 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
482 u64 *spte, const void *pte)
483 {
484 pt_element_t gpte = *(const pt_element_t *)pte;
485
486 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
487 }
488
489 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
490 struct guest_walker *gw, int level)
491 {
492 pt_element_t curr_pte;
493 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
494 u64 mask;
495 int r, index;
496
497 if (level == PT_PAGE_TABLE_LEVEL) {
498 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
499 base_gpa = pte_gpa & ~mask;
500 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
501
502 r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
503 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
504 curr_pte = gw->prefetch_ptes[index];
505 } else
506 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
507 &curr_pte, sizeof(curr_pte));
508
509 return r || curr_pte != gw->ptes[level - 1];
510 }
511
512 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
513 u64 *sptep)
514 {
515 struct kvm_mmu_page *sp;
516 pt_element_t *gptep = gw->prefetch_ptes;
517 u64 *spte;
518 int i;
519
520 sp = page_header(__pa(sptep));
521
522 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
523 return;
524
525 if (sp->role.direct)
526 return __direct_pte_prefetch(vcpu, sp, sptep);
527
528 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
529 spte = sp->spt + i;
530
531 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
532 if (spte == sptep)
533 continue;
534
535 if (is_shadow_present_pte(*spte))
536 continue;
537
538 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
539 break;
540 }
541 }
542
543 /*
544 * Fetch a shadow pte for a specific level in the paging hierarchy.
545 * If the guest tries to write a write-protected page, we need to
546 * emulate this operation, return 1 to indicate this case.
547 */
548 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
549 struct guest_walker *gw,
550 int write_fault, int hlevel,
551 pfn_t pfn, bool map_writable, bool prefault)
552 {
553 struct kvm_mmu_page *sp = NULL;
554 struct kvm_shadow_walk_iterator it;
555 unsigned direct_access, access = gw->pt_access;
556 int top_level, emulate = 0;
557
558 direct_access = gw->pte_access;
559
560 top_level = vcpu->arch.mmu.root_level;
561 if (top_level == PT32E_ROOT_LEVEL)
562 top_level = PT32_ROOT_LEVEL;
563 /*
564 * Verify that the top-level gpte is still there. Since the page
565 * is a root page, it is either write protected (and cannot be
566 * changed from now on) or it is invalid (in which case, we don't
567 * really care if it changes underneath us after this point).
568 */
569 if (FNAME(gpte_changed)(vcpu, gw, top_level))
570 goto out_gpte_changed;
571
572 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
573 goto out_gpte_changed;
574
575 for (shadow_walk_init(&it, vcpu, addr);
576 shadow_walk_okay(&it) && it.level > gw->level;
577 shadow_walk_next(&it)) {
578 gfn_t table_gfn;
579
580 clear_sp_write_flooding_count(it.sptep);
581 drop_large_spte(vcpu, it.sptep);
582
583 sp = NULL;
584 if (!is_shadow_present_pte(*it.sptep)) {
585 table_gfn = gw->table_gfn[it.level - 2];
586 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
587 false, access, it.sptep);
588 }
589
590 /*
591 * Verify that the gpte in the page we've just write
592 * protected is still there.
593 */
594 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
595 goto out_gpte_changed;
596
597 if (sp)
598 link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK);
599 }
600
601 for (;
602 shadow_walk_okay(&it) && it.level > hlevel;
603 shadow_walk_next(&it)) {
604 gfn_t direct_gfn;
605
606 clear_sp_write_flooding_count(it.sptep);
607 validate_direct_spte(vcpu, it.sptep, direct_access);
608
609 drop_large_spte(vcpu, it.sptep);
610
611 if (is_shadow_present_pte(*it.sptep))
612 continue;
613
614 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
615
616 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
617 true, direct_access, it.sptep);
618 link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK);
619 }
620
621 clear_sp_write_flooding_count(it.sptep);
622 mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, &emulate,
623 it.level, gw->gfn, pfn, prefault, map_writable);
624 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
625
626 return emulate;
627
628 out_gpte_changed:
629 if (sp)
630 kvm_mmu_put_page(sp, it.sptep);
631 kvm_release_pfn_clean(pfn);
632 return 0;
633 }
634
635 /*
636 * To see whether the mapped gfn can write its page table in the current
637 * mapping.
638 *
639 * It is the helper function of FNAME(page_fault). When guest uses large page
640 * size to map the writable gfn which is used as current page table, we should
641 * force kvm to use small page size to map it because new shadow page will be
642 * created when kvm establishes shadow page table that stop kvm using large
643 * page size. Do it early can avoid unnecessary #PF and emulation.
644 *
645 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
646 * currently used as its page table.
647 *
648 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
649 * since the PDPT is always shadowed, that means, we can not use large page
650 * size to map the gfn which is used as PDPT.
651 */
652 static bool
653 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
654 struct guest_walker *walker, int user_fault,
655 bool *write_fault_to_shadow_pgtable)
656 {
657 int level;
658 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
659 bool self_changed = false;
660
661 if (!(walker->pte_access & ACC_WRITE_MASK ||
662 (!is_write_protection(vcpu) && !user_fault)))
663 return false;
664
665 for (level = walker->level; level <= walker->max_level; level++) {
666 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
667
668 self_changed |= !(gfn & mask);
669 *write_fault_to_shadow_pgtable |= !gfn;
670 }
671
672 return self_changed;
673 }
674
675 /*
676 * Page fault handler. There are several causes for a page fault:
677 * - there is no shadow pte for the guest pte
678 * - write access through a shadow pte marked read only so that we can set
679 * the dirty bit
680 * - write access to a shadow pte marked read only so we can update the page
681 * dirty bitmap, when userspace requests it
682 * - mmio access; in this case we will never install a present shadow pte
683 * - normal guest page fault due to the guest pte marked not present, not
684 * writable, or not executable
685 *
686 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
687 * a negative value on error.
688 */
689 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
690 bool prefault)
691 {
692 int write_fault = error_code & PFERR_WRITE_MASK;
693 int user_fault = error_code & PFERR_USER_MASK;
694 struct guest_walker walker;
695 int r;
696 pfn_t pfn;
697 int level = PT_PAGE_TABLE_LEVEL;
698 int force_pt_level;
699 unsigned long mmu_seq;
700 bool map_writable, is_self_change_mapping;
701
702 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
703
704 if (unlikely(error_code & PFERR_RSVD_MASK)) {
705 r = handle_mmio_page_fault(vcpu, addr, error_code,
706 mmu_is_nested(vcpu));
707 if (likely(r != RET_MMIO_PF_INVALID))
708 return r;
709 };
710
711 r = mmu_topup_memory_caches(vcpu);
712 if (r)
713 return r;
714
715 /*
716 * Look up the guest pte for the faulting address.
717 */
718 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
719
720 /*
721 * The page is not mapped by the guest. Let the guest handle it.
722 */
723 if (!r) {
724 pgprintk("%s: guest page fault\n", __func__);
725 if (!prefault)
726 inject_page_fault(vcpu, &walker.fault);
727
728 return 0;
729 }
730
731 vcpu->arch.write_fault_to_shadow_pgtable = false;
732
733 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
734 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
735
736 if (walker.level >= PT_DIRECTORY_LEVEL)
737 force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn)
738 || is_self_change_mapping;
739 else
740 force_pt_level = 1;
741 if (!force_pt_level) {
742 level = min(walker.level, mapping_level(vcpu, walker.gfn));
743 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
744 }
745
746 mmu_seq = vcpu->kvm->mmu_notifier_seq;
747 smp_rmb();
748
749 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
750 &map_writable))
751 return 0;
752
753 if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
754 walker.gfn, pfn, walker.pte_access, &r))
755 return r;
756
757 /*
758 * Do not change pte_access if the pfn is a mmio page, otherwise
759 * we will cache the incorrect access into mmio spte.
760 */
761 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
762 !is_write_protection(vcpu) && !user_fault &&
763 !is_noslot_pfn(pfn)) {
764 walker.pte_access |= ACC_WRITE_MASK;
765 walker.pte_access &= ~ACC_USER_MASK;
766
767 /*
768 * If we converted a user page to a kernel page,
769 * so that the kernel can write to it when cr0.wp=0,
770 * then we should prevent the kernel from executing it
771 * if SMEP is enabled.
772 */
773 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
774 walker.pte_access &= ~ACC_EXEC_MASK;
775 }
776
777 spin_lock(&vcpu->kvm->mmu_lock);
778 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
779 goto out_unlock;
780
781 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
782 make_mmu_pages_available(vcpu);
783 if (!force_pt_level)
784 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
785 r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
786 level, pfn, map_writable, prefault);
787 ++vcpu->stat.pf_fixed;
788 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
789 spin_unlock(&vcpu->kvm->mmu_lock);
790
791 return r;
792
793 out_unlock:
794 spin_unlock(&vcpu->kvm->mmu_lock);
795 kvm_release_pfn_clean(pfn);
796 return 0;
797 }
798
799 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
800 {
801 int offset = 0;
802
803 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
804
805 if (PTTYPE == 32)
806 offset = sp->role.quadrant << PT64_LEVEL_BITS;
807
808 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
809 }
810
811 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
812 {
813 struct kvm_shadow_walk_iterator iterator;
814 struct kvm_mmu_page *sp;
815 int level;
816 u64 *sptep;
817
818 vcpu_clear_mmio_info(vcpu, gva);
819
820 /*
821 * No need to check return value here, rmap_can_add() can
822 * help us to skip pte prefetch later.
823 */
824 mmu_topup_memory_caches(vcpu);
825
826 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
827 WARN_ON(1);
828 return;
829 }
830
831 spin_lock(&vcpu->kvm->mmu_lock);
832 for_each_shadow_entry(vcpu, gva, iterator) {
833 level = iterator.level;
834 sptep = iterator.sptep;
835
836 sp = page_header(__pa(sptep));
837 if (is_last_spte(*sptep, level)) {
838 pt_element_t gpte;
839 gpa_t pte_gpa;
840
841 if (!sp->unsync)
842 break;
843
844 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
845 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
846
847 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
848 kvm_flush_remote_tlbs(vcpu->kvm);
849
850 if (!rmap_can_add(vcpu))
851 break;
852
853 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
854 sizeof(pt_element_t)))
855 break;
856
857 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
858 }
859
860 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
861 break;
862 }
863 spin_unlock(&vcpu->kvm->mmu_lock);
864 }
865
866 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
867 struct x86_exception *exception)
868 {
869 struct guest_walker walker;
870 gpa_t gpa = UNMAPPED_GVA;
871 int r;
872
873 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
874
875 if (r) {
876 gpa = gfn_to_gpa(walker.gfn);
877 gpa |= vaddr & ~PAGE_MASK;
878 } else if (exception)
879 *exception = walker.fault;
880
881 return gpa;
882 }
883
884 #if PTTYPE != PTTYPE_EPT
885 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
886 u32 access,
887 struct x86_exception *exception)
888 {
889 struct guest_walker walker;
890 gpa_t gpa = UNMAPPED_GVA;
891 int r;
892
893 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
894
895 if (r) {
896 gpa = gfn_to_gpa(walker.gfn);
897 gpa |= vaddr & ~PAGE_MASK;
898 } else if (exception)
899 *exception = walker.fault;
900
901 return gpa;
902 }
903 #endif
904
905 /*
906 * Using the cached information from sp->gfns is safe because:
907 * - The spte has a reference to the struct page, so the pfn for a given gfn
908 * can't change unless all sptes pointing to it are nuked first.
909 *
910 * Note:
911 * We should flush all tlbs if spte is dropped even though guest is
912 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
913 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
914 * used by guest then tlbs are not flushed, so guest is allowed to access the
915 * freed pages.
916 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
917 */
918 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
919 {
920 int i, nr_present = 0;
921 bool host_writable;
922 gpa_t first_pte_gpa;
923
924 /* direct kvm_mmu_page can not be unsync. */
925 BUG_ON(sp->role.direct);
926
927 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
928
929 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
930 unsigned pte_access;
931 pt_element_t gpte;
932 gpa_t pte_gpa;
933 gfn_t gfn;
934
935 if (!sp->spt[i])
936 continue;
937
938 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
939
940 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
941 sizeof(pt_element_t)))
942 return -EINVAL;
943
944 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
945 vcpu->kvm->tlbs_dirty++;
946 continue;
947 }
948
949 gfn = gpte_to_gfn(gpte);
950 pte_access = sp->role.access;
951 pte_access &= FNAME(gpte_access)(vcpu, gpte);
952 FNAME(protect_clean_gpte)(&pte_access, gpte);
953
954 if (sync_mmio_spte(vcpu->kvm, &sp->spt[i], gfn, pte_access,
955 &nr_present))
956 continue;
957
958 if (gfn != sp->gfns[i]) {
959 drop_spte(vcpu->kvm, &sp->spt[i]);
960 vcpu->kvm->tlbs_dirty++;
961 continue;
962 }
963
964 nr_present++;
965
966 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
967
968 set_spte(vcpu, &sp->spt[i], pte_access,
969 PT_PAGE_TABLE_LEVEL, gfn,
970 spte_to_pfn(sp->spt[i]), true, false,
971 host_writable);
972 }
973
974 return !nr_present;
975 }
976
977 #undef pt_element_t
978 #undef guest_walker
979 #undef FNAME
980 #undef PT_BASE_ADDR_MASK
981 #undef PT_INDEX
982 #undef PT_LVL_ADDR_MASK
983 #undef PT_LVL_OFFSET_MASK
984 #undef PT_LEVEL_BITS
985 #undef PT_MAX_FULL_LEVELS
986 #undef gpte_to_gfn
987 #undef gpte_to_gfn_lvl
988 #undef CMPXCHG
989 #undef PT_GUEST_ACCESSED_MASK
990 #undef PT_GUEST_DIRTY_MASK
991 #undef PT_GUEST_DIRTY_SHIFT
992 #undef PT_GUEST_ACCESSED_SHIFT
This page took 0.056011 seconds and 6 git commands to generate.