KVM: x86: remove unused variable from walk_addr_generic()
[deliverable/linux.git] / arch / x86 / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 /*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26 #if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #define CMPXCHG cmpxchg
38 #else
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
42 #elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
51 #define PT_MAX_FULL_LEVELS 2
52 #define CMPXCHG cmpxchg
53 #else
54 #error Invalid PTTYPE value
55 #endif
56
57 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
58 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
59
60 /*
61 * The guest_walker structure emulates the behavior of the hardware page
62 * table walker.
63 */
64 struct guest_walker {
65 int level;
66 unsigned max_level;
67 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
68 pt_element_t ptes[PT_MAX_FULL_LEVELS];
69 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
70 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
71 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
72 unsigned pt_access;
73 unsigned pte_access;
74 gfn_t gfn;
75 struct x86_exception fault;
76 };
77
78 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
79 {
80 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
81 }
82
83 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
84 pt_element_t __user *ptep_user, unsigned index,
85 pt_element_t orig_pte, pt_element_t new_pte)
86 {
87 int npages;
88 pt_element_t ret;
89 pt_element_t *table;
90 struct page *page;
91
92 npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
93 /* Check if the user is doing something meaningless. */
94 if (unlikely(npages != 1))
95 return -EFAULT;
96
97 table = kmap_atomic(page);
98 ret = CMPXCHG(&table[index], orig_pte, new_pte);
99 kunmap_atomic(table);
100
101 kvm_release_page_dirty(page);
102
103 return (ret != orig_pte);
104 }
105
106 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
107 struct kvm_mmu *mmu,
108 struct guest_walker *walker,
109 int write_fault)
110 {
111 unsigned level, index;
112 pt_element_t pte, orig_pte;
113 pt_element_t __user *ptep_user;
114 gfn_t table_gfn;
115 int ret;
116
117 for (level = walker->max_level; level >= walker->level; --level) {
118 pte = orig_pte = walker->ptes[level - 1];
119 table_gfn = walker->table_gfn[level - 1];
120 ptep_user = walker->ptep_user[level - 1];
121 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
122 if (!(pte & PT_ACCESSED_MASK)) {
123 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
124 pte |= PT_ACCESSED_MASK;
125 }
126 if (level == walker->level && write_fault && !is_dirty_gpte(pte)) {
127 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
128 pte |= PT_DIRTY_MASK;
129 }
130 if (pte == orig_pte)
131 continue;
132
133 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
134 if (ret)
135 return ret;
136
137 mark_page_dirty(vcpu->kvm, table_gfn);
138 walker->ptes[level] = pte;
139 }
140 return 0;
141 }
142
143 /*
144 * Fetch a guest pte for a guest virtual address
145 */
146 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
147 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
148 gva_t addr, u32 access)
149 {
150 int ret;
151 pt_element_t pte;
152 pt_element_t __user *uninitialized_var(ptep_user);
153 gfn_t table_gfn;
154 unsigned index, pt_access, pte_access, accessed_dirty;
155 gpa_t pte_gpa;
156 int offset;
157 const int write_fault = access & PFERR_WRITE_MASK;
158 const int user_fault = access & PFERR_USER_MASK;
159 const int fetch_fault = access & PFERR_FETCH_MASK;
160 u16 errcode = 0;
161 gpa_t real_gpa;
162 gfn_t gfn;
163
164 trace_kvm_mmu_pagetable_walk(addr, access);
165 retry_walk:
166 walker->level = mmu->root_level;
167 pte = mmu->get_cr3(vcpu);
168
169 #if PTTYPE == 64
170 if (walker->level == PT32E_ROOT_LEVEL) {
171 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
172 trace_kvm_mmu_paging_element(pte, walker->level);
173 if (!is_present_gpte(pte))
174 goto error;
175 --walker->level;
176 }
177 #endif
178 walker->max_level = walker->level;
179 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
180 (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
181
182 accessed_dirty = PT_ACCESSED_MASK;
183 pt_access = pte_access = ACC_ALL;
184 ++walker->level;
185
186 do {
187 gfn_t real_gfn;
188 unsigned long host_addr;
189
190 pt_access &= pte_access;
191 --walker->level;
192
193 index = PT_INDEX(addr, walker->level);
194
195 table_gfn = gpte_to_gfn(pte);
196 offset = index * sizeof(pt_element_t);
197 pte_gpa = gfn_to_gpa(table_gfn) + offset;
198 walker->table_gfn[walker->level - 1] = table_gfn;
199 walker->pte_gpa[walker->level - 1] = pte_gpa;
200
201 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
202 PFERR_USER_MASK|PFERR_WRITE_MASK);
203 if (unlikely(real_gfn == UNMAPPED_GVA))
204 goto error;
205 real_gfn = gpa_to_gfn(real_gfn);
206
207 host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
208 if (unlikely(kvm_is_error_hva(host_addr)))
209 goto error;
210
211 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
212 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
213 goto error;
214 walker->ptep_user[walker->level - 1] = ptep_user;
215
216 trace_kvm_mmu_paging_element(pte, walker->level);
217
218 if (unlikely(!is_present_gpte(pte)))
219 goto error;
220
221 if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
222 walker->level))) {
223 errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
224 goto error;
225 }
226
227 accessed_dirty &= pte;
228 pte_access = pt_access & gpte_access(vcpu, pte);
229
230 walker->ptes[walker->level - 1] = pte;
231 } while (!is_last_gpte(mmu, walker->level, pte));
232
233 if (unlikely(permission_fault(mmu, pte_access, access))) {
234 errcode |= PFERR_PRESENT_MASK;
235 goto error;
236 }
237
238 gfn = gpte_to_gfn_lvl(pte, walker->level);
239 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
240
241 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
242 gfn += pse36_gfn_delta(pte);
243
244 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access);
245 if (real_gpa == UNMAPPED_GVA)
246 return 0;
247
248 walker->gfn = real_gpa >> PAGE_SHIFT;
249
250 if (!write_fault)
251 protect_clean_gpte(&pte_access, pte);
252 else
253 /*
254 * On a write fault, fold the dirty bit into accessed_dirty by
255 * shifting it one place right.
256 */
257 accessed_dirty &= pte >> (PT_DIRTY_SHIFT - PT_ACCESSED_SHIFT);
258
259 if (unlikely(!accessed_dirty)) {
260 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
261 if (unlikely(ret < 0))
262 goto error;
263 else if (ret)
264 goto retry_walk;
265 }
266
267 walker->pt_access = pt_access;
268 walker->pte_access = pte_access;
269 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
270 __func__, (u64)pte, pte_access, pt_access);
271 return 1;
272
273 error:
274 errcode |= write_fault | user_fault;
275 if (fetch_fault && (mmu->nx ||
276 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
277 errcode |= PFERR_FETCH_MASK;
278
279 walker->fault.vector = PF_VECTOR;
280 walker->fault.error_code_valid = true;
281 walker->fault.error_code = errcode;
282 walker->fault.address = addr;
283 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
284
285 trace_kvm_mmu_walker_error(walker->fault.error_code);
286 return 0;
287 }
288
289 static int FNAME(walk_addr)(struct guest_walker *walker,
290 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
291 {
292 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
293 access);
294 }
295
296 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
297 struct kvm_vcpu *vcpu, gva_t addr,
298 u32 access)
299 {
300 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
301 addr, access);
302 }
303
304 static bool
305 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
306 u64 *spte, pt_element_t gpte, bool no_dirty_log)
307 {
308 unsigned pte_access;
309 gfn_t gfn;
310 pfn_t pfn;
311
312 if (prefetch_invalid_gpte(vcpu, sp, spte, gpte))
313 return false;
314
315 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
316
317 gfn = gpte_to_gfn(gpte);
318 pte_access = sp->role.access & gpte_access(vcpu, gpte);
319 protect_clean_gpte(&pte_access, gpte);
320 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
321 no_dirty_log && (pte_access & ACC_WRITE_MASK));
322 if (is_error_pfn(pfn))
323 return false;
324
325 /*
326 * we call mmu_set_spte() with host_writable = true because
327 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
328 */
329 mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
330 NULL, PT_PAGE_TABLE_LEVEL, gfn, pfn, true, true);
331
332 return true;
333 }
334
335 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
336 u64 *spte, const void *pte)
337 {
338 pt_element_t gpte = *(const pt_element_t *)pte;
339
340 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
341 }
342
343 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
344 struct guest_walker *gw, int level)
345 {
346 pt_element_t curr_pte;
347 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
348 u64 mask;
349 int r, index;
350
351 if (level == PT_PAGE_TABLE_LEVEL) {
352 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
353 base_gpa = pte_gpa & ~mask;
354 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
355
356 r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
357 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
358 curr_pte = gw->prefetch_ptes[index];
359 } else
360 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
361 &curr_pte, sizeof(curr_pte));
362
363 return r || curr_pte != gw->ptes[level - 1];
364 }
365
366 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
367 u64 *sptep)
368 {
369 struct kvm_mmu_page *sp;
370 pt_element_t *gptep = gw->prefetch_ptes;
371 u64 *spte;
372 int i;
373
374 sp = page_header(__pa(sptep));
375
376 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
377 return;
378
379 if (sp->role.direct)
380 return __direct_pte_prefetch(vcpu, sp, sptep);
381
382 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
383 spte = sp->spt + i;
384
385 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
386 if (spte == sptep)
387 continue;
388
389 if (is_shadow_present_pte(*spte))
390 continue;
391
392 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
393 break;
394 }
395 }
396
397 /*
398 * Fetch a shadow pte for a specific level in the paging hierarchy.
399 * If the guest tries to write a write-protected page, we need to
400 * emulate this operation, return 1 to indicate this case.
401 */
402 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
403 struct guest_walker *gw,
404 int user_fault, int write_fault, int hlevel,
405 pfn_t pfn, bool map_writable, bool prefault)
406 {
407 struct kvm_mmu_page *sp = NULL;
408 struct kvm_shadow_walk_iterator it;
409 unsigned direct_access, access = gw->pt_access;
410 int top_level, emulate = 0;
411
412 if (!is_present_gpte(gw->ptes[gw->level - 1]))
413 return 0;
414
415 direct_access = gw->pte_access;
416
417 top_level = vcpu->arch.mmu.root_level;
418 if (top_level == PT32E_ROOT_LEVEL)
419 top_level = PT32_ROOT_LEVEL;
420 /*
421 * Verify that the top-level gpte is still there. Since the page
422 * is a root page, it is either write protected (and cannot be
423 * changed from now on) or it is invalid (in which case, we don't
424 * really care if it changes underneath us after this point).
425 */
426 if (FNAME(gpte_changed)(vcpu, gw, top_level))
427 goto out_gpte_changed;
428
429 for (shadow_walk_init(&it, vcpu, addr);
430 shadow_walk_okay(&it) && it.level > gw->level;
431 shadow_walk_next(&it)) {
432 gfn_t table_gfn;
433
434 clear_sp_write_flooding_count(it.sptep);
435 drop_large_spte(vcpu, it.sptep);
436
437 sp = NULL;
438 if (!is_shadow_present_pte(*it.sptep)) {
439 table_gfn = gw->table_gfn[it.level - 2];
440 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
441 false, access, it.sptep);
442 }
443
444 /*
445 * Verify that the gpte in the page we've just write
446 * protected is still there.
447 */
448 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
449 goto out_gpte_changed;
450
451 if (sp)
452 link_shadow_page(it.sptep, sp);
453 }
454
455 for (;
456 shadow_walk_okay(&it) && it.level > hlevel;
457 shadow_walk_next(&it)) {
458 gfn_t direct_gfn;
459
460 clear_sp_write_flooding_count(it.sptep);
461 validate_direct_spte(vcpu, it.sptep, direct_access);
462
463 drop_large_spte(vcpu, it.sptep);
464
465 if (is_shadow_present_pte(*it.sptep))
466 continue;
467
468 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
469
470 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
471 true, direct_access, it.sptep);
472 link_shadow_page(it.sptep, sp);
473 }
474
475 clear_sp_write_flooding_count(it.sptep);
476 mmu_set_spte(vcpu, it.sptep, access, gw->pte_access,
477 user_fault, write_fault, &emulate, it.level,
478 gw->gfn, pfn, prefault, map_writable);
479 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
480
481 return emulate;
482
483 out_gpte_changed:
484 if (sp)
485 kvm_mmu_put_page(sp, it.sptep);
486 kvm_release_pfn_clean(pfn);
487 return 0;
488 }
489
490 /*
491 * Page fault handler. There are several causes for a page fault:
492 * - there is no shadow pte for the guest pte
493 * - write access through a shadow pte marked read only so that we can set
494 * the dirty bit
495 * - write access to a shadow pte marked read only so we can update the page
496 * dirty bitmap, when userspace requests it
497 * - mmio access; in this case we will never install a present shadow pte
498 * - normal guest page fault due to the guest pte marked not present, not
499 * writable, or not executable
500 *
501 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
502 * a negative value on error.
503 */
504 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
505 bool prefault)
506 {
507 int write_fault = error_code & PFERR_WRITE_MASK;
508 int user_fault = error_code & PFERR_USER_MASK;
509 struct guest_walker walker;
510 int r;
511 pfn_t pfn;
512 int level = PT_PAGE_TABLE_LEVEL;
513 int force_pt_level;
514 unsigned long mmu_seq;
515 bool map_writable;
516
517 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
518
519 if (unlikely(error_code & PFERR_RSVD_MASK))
520 return handle_mmio_page_fault(vcpu, addr, error_code,
521 mmu_is_nested(vcpu));
522
523 r = mmu_topup_memory_caches(vcpu);
524 if (r)
525 return r;
526
527 /*
528 * Look up the guest pte for the faulting address.
529 */
530 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
531
532 /*
533 * The page is not mapped by the guest. Let the guest handle it.
534 */
535 if (!r) {
536 pgprintk("%s: guest page fault\n", __func__);
537 if (!prefault)
538 inject_page_fault(vcpu, &walker.fault);
539
540 return 0;
541 }
542
543 if (walker.level >= PT_DIRECTORY_LEVEL)
544 force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
545 else
546 force_pt_level = 1;
547 if (!force_pt_level) {
548 level = min(walker.level, mapping_level(vcpu, walker.gfn));
549 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
550 }
551
552 mmu_seq = vcpu->kvm->mmu_notifier_seq;
553 smp_rmb();
554
555 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
556 &map_writable))
557 return 0;
558
559 if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
560 walker.gfn, pfn, walker.pte_access, &r))
561 return r;
562
563 spin_lock(&vcpu->kvm->mmu_lock);
564 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
565 goto out_unlock;
566
567 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
568 kvm_mmu_free_some_pages(vcpu);
569 if (!force_pt_level)
570 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
571 r = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
572 level, pfn, map_writable, prefault);
573 ++vcpu->stat.pf_fixed;
574 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
575 spin_unlock(&vcpu->kvm->mmu_lock);
576
577 return r;
578
579 out_unlock:
580 spin_unlock(&vcpu->kvm->mmu_lock);
581 kvm_release_pfn_clean(pfn);
582 return 0;
583 }
584
585 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
586 {
587 int offset = 0;
588
589 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
590
591 if (PTTYPE == 32)
592 offset = sp->role.quadrant << PT64_LEVEL_BITS;
593
594 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
595 }
596
597 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
598 {
599 struct kvm_shadow_walk_iterator iterator;
600 struct kvm_mmu_page *sp;
601 int level;
602 u64 *sptep;
603
604 vcpu_clear_mmio_info(vcpu, gva);
605
606 /*
607 * No need to check return value here, rmap_can_add() can
608 * help us to skip pte prefetch later.
609 */
610 mmu_topup_memory_caches(vcpu);
611
612 spin_lock(&vcpu->kvm->mmu_lock);
613 for_each_shadow_entry(vcpu, gva, iterator) {
614 level = iterator.level;
615 sptep = iterator.sptep;
616
617 sp = page_header(__pa(sptep));
618 if (is_last_spte(*sptep, level)) {
619 pt_element_t gpte;
620 gpa_t pte_gpa;
621
622 if (!sp->unsync)
623 break;
624
625 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
626 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
627
628 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
629 kvm_flush_remote_tlbs(vcpu->kvm);
630
631 if (!rmap_can_add(vcpu))
632 break;
633
634 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
635 sizeof(pt_element_t)))
636 break;
637
638 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
639 }
640
641 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
642 break;
643 }
644 spin_unlock(&vcpu->kvm->mmu_lock);
645 }
646
647 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
648 struct x86_exception *exception)
649 {
650 struct guest_walker walker;
651 gpa_t gpa = UNMAPPED_GVA;
652 int r;
653
654 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
655
656 if (r) {
657 gpa = gfn_to_gpa(walker.gfn);
658 gpa |= vaddr & ~PAGE_MASK;
659 } else if (exception)
660 *exception = walker.fault;
661
662 return gpa;
663 }
664
665 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
666 u32 access,
667 struct x86_exception *exception)
668 {
669 struct guest_walker walker;
670 gpa_t gpa = UNMAPPED_GVA;
671 int r;
672
673 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
674
675 if (r) {
676 gpa = gfn_to_gpa(walker.gfn);
677 gpa |= vaddr & ~PAGE_MASK;
678 } else if (exception)
679 *exception = walker.fault;
680
681 return gpa;
682 }
683
684 /*
685 * Using the cached information from sp->gfns is safe because:
686 * - The spte has a reference to the struct page, so the pfn for a given gfn
687 * can't change unless all sptes pointing to it are nuked first.
688 *
689 * Note:
690 * We should flush all tlbs if spte is dropped even though guest is
691 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
692 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
693 * used by guest then tlbs are not flushed, so guest is allowed to access the
694 * freed pages.
695 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
696 */
697 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
698 {
699 int i, nr_present = 0;
700 bool host_writable;
701 gpa_t first_pte_gpa;
702
703 /* direct kvm_mmu_page can not be unsync. */
704 BUG_ON(sp->role.direct);
705
706 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
707
708 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
709 unsigned pte_access;
710 pt_element_t gpte;
711 gpa_t pte_gpa;
712 gfn_t gfn;
713
714 if (!sp->spt[i])
715 continue;
716
717 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
718
719 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
720 sizeof(pt_element_t)))
721 return -EINVAL;
722
723 if (prefetch_invalid_gpte(vcpu, sp, &sp->spt[i], gpte)) {
724 vcpu->kvm->tlbs_dirty++;
725 continue;
726 }
727
728 gfn = gpte_to_gfn(gpte);
729 pte_access = sp->role.access;
730 pte_access &= gpte_access(vcpu, gpte);
731 protect_clean_gpte(&pte_access, gpte);
732
733 if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
734 continue;
735
736 if (gfn != sp->gfns[i]) {
737 drop_spte(vcpu->kvm, &sp->spt[i]);
738 vcpu->kvm->tlbs_dirty++;
739 continue;
740 }
741
742 nr_present++;
743
744 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
745
746 set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
747 PT_PAGE_TABLE_LEVEL, gfn,
748 spte_to_pfn(sp->spt[i]), true, false,
749 host_writable);
750 }
751
752 return !nr_present;
753 }
754
755 #undef pt_element_t
756 #undef guest_walker
757 #undef FNAME
758 #undef PT_BASE_ADDR_MASK
759 #undef PT_INDEX
760 #undef PT_LVL_ADDR_MASK
761 #undef PT_LVL_OFFSET_MASK
762 #undef PT_LEVEL_BITS
763 #undef PT_MAX_FULL_LEVELS
764 #undef gpte_to_gfn
765 #undef gpte_to_gfn_lvl
766 #undef CMPXCHG
This page took 0.053305 seconds and 6 git commands to generate.