Merge branch 'fortglx/3.7/time' of git://git.linaro.org/people/jstultz/linux into...
[deliverable/linux.git] / arch / x86 / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 /*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26 #if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #define CMPXCHG cmpxchg
38 #else
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
42 #elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
51 #define PT_MAX_FULL_LEVELS 2
52 #define CMPXCHG cmpxchg
53 #else
54 #error Invalid PTTYPE value
55 #endif
56
57 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
58 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
59
60 /*
61 * The guest_walker structure emulates the behavior of the hardware page
62 * table walker.
63 */
64 struct guest_walker {
65 int level;
66 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
67 pt_element_t ptes[PT_MAX_FULL_LEVELS];
68 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
69 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
70 unsigned pt_access;
71 unsigned pte_access;
72 gfn_t gfn;
73 struct x86_exception fault;
74 };
75
76 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
77 {
78 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
79 }
80
81 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
82 pt_element_t __user *ptep_user, unsigned index,
83 pt_element_t orig_pte, pt_element_t new_pte)
84 {
85 int npages;
86 pt_element_t ret;
87 pt_element_t *table;
88 struct page *page;
89
90 npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
91 /* Check if the user is doing something meaningless. */
92 if (unlikely(npages != 1))
93 return -EFAULT;
94
95 table = kmap_atomic(page);
96 ret = CMPXCHG(&table[index], orig_pte, new_pte);
97 kunmap_atomic(table);
98
99 kvm_release_page_dirty(page);
100
101 return (ret != orig_pte);
102 }
103
104 static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte,
105 bool last)
106 {
107 unsigned access;
108
109 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
110 if (last && !is_dirty_gpte(gpte))
111 access &= ~ACC_WRITE_MASK;
112
113 #if PTTYPE == 64
114 if (vcpu->arch.mmu.nx)
115 access &= ~(gpte >> PT64_NX_SHIFT);
116 #endif
117 return access;
118 }
119
120 static bool FNAME(is_last_gpte)(struct guest_walker *walker,
121 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
122 pt_element_t gpte)
123 {
124 if (walker->level == PT_PAGE_TABLE_LEVEL)
125 return true;
126
127 if ((walker->level == PT_DIRECTORY_LEVEL) && is_large_pte(gpte) &&
128 (PTTYPE == 64 || is_pse(vcpu)))
129 return true;
130
131 if ((walker->level == PT_PDPE_LEVEL) && is_large_pte(gpte) &&
132 (mmu->root_level == PT64_ROOT_LEVEL))
133 return true;
134
135 return false;
136 }
137
138 /*
139 * Fetch a guest pte for a guest virtual address
140 */
141 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
142 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
143 gva_t addr, u32 access)
144 {
145 pt_element_t pte;
146 pt_element_t __user *uninitialized_var(ptep_user);
147 gfn_t table_gfn;
148 unsigned index, pt_access, uninitialized_var(pte_access);
149 gpa_t pte_gpa;
150 bool eperm, last_gpte;
151 int offset;
152 const int write_fault = access & PFERR_WRITE_MASK;
153 const int user_fault = access & PFERR_USER_MASK;
154 const int fetch_fault = access & PFERR_FETCH_MASK;
155 u16 errcode = 0;
156
157 trace_kvm_mmu_pagetable_walk(addr, access);
158 retry_walk:
159 eperm = false;
160 walker->level = mmu->root_level;
161 pte = mmu->get_cr3(vcpu);
162
163 #if PTTYPE == 64
164 if (walker->level == PT32E_ROOT_LEVEL) {
165 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
166 trace_kvm_mmu_paging_element(pte, walker->level);
167 if (!is_present_gpte(pte))
168 goto error;
169 --walker->level;
170 }
171 #endif
172 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
173 (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
174
175 pt_access = ACC_ALL;
176
177 for (;;) {
178 gfn_t real_gfn;
179 unsigned long host_addr;
180
181 index = PT_INDEX(addr, walker->level);
182
183 table_gfn = gpte_to_gfn(pte);
184 offset = index * sizeof(pt_element_t);
185 pte_gpa = gfn_to_gpa(table_gfn) + offset;
186 walker->table_gfn[walker->level - 1] = table_gfn;
187 walker->pte_gpa[walker->level - 1] = pte_gpa;
188
189 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
190 PFERR_USER_MASK|PFERR_WRITE_MASK);
191 if (unlikely(real_gfn == UNMAPPED_GVA))
192 goto error;
193 real_gfn = gpa_to_gfn(real_gfn);
194
195 host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
196 if (unlikely(kvm_is_error_hva(host_addr)))
197 goto error;
198
199 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
200 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
201 goto error;
202
203 trace_kvm_mmu_paging_element(pte, walker->level);
204
205 if (unlikely(!is_present_gpte(pte)))
206 goto error;
207
208 if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
209 walker->level))) {
210 errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
211 goto error;
212 }
213
214 if (!check_write_user_access(vcpu, write_fault, user_fault,
215 pte))
216 eperm = true;
217
218 #if PTTYPE == 64
219 if (unlikely(fetch_fault && (pte & PT64_NX_MASK)))
220 eperm = true;
221 #endif
222
223 last_gpte = FNAME(is_last_gpte)(walker, vcpu, mmu, pte);
224 if (last_gpte) {
225 pte_access = pt_access &
226 FNAME(gpte_access)(vcpu, pte, true);
227 /* check if the kernel is fetching from user page */
228 if (unlikely(pte_access & PT_USER_MASK) &&
229 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
230 if (fetch_fault && !user_fault)
231 eperm = true;
232 }
233
234 if (!eperm && unlikely(!(pte & PT_ACCESSED_MASK))) {
235 int ret;
236 trace_kvm_mmu_set_accessed_bit(table_gfn, index,
237 sizeof(pte));
238 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
239 pte, pte|PT_ACCESSED_MASK);
240 if (unlikely(ret < 0))
241 goto error;
242 else if (ret)
243 goto retry_walk;
244
245 mark_page_dirty(vcpu->kvm, table_gfn);
246 pte |= PT_ACCESSED_MASK;
247 }
248
249 walker->ptes[walker->level - 1] = pte;
250
251 if (last_gpte) {
252 int lvl = walker->level;
253 gpa_t real_gpa;
254 gfn_t gfn;
255 u32 ac;
256
257 gfn = gpte_to_gfn_lvl(pte, lvl);
258 gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
259
260 if (PTTYPE == 32 &&
261 walker->level == PT_DIRECTORY_LEVEL &&
262 is_cpuid_PSE36())
263 gfn += pse36_gfn_delta(pte);
264
265 ac = write_fault | fetch_fault | user_fault;
266
267 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
268 ac);
269 if (real_gpa == UNMAPPED_GVA)
270 return 0;
271
272 walker->gfn = real_gpa >> PAGE_SHIFT;
273
274 break;
275 }
276
277 pt_access &= FNAME(gpte_access)(vcpu, pte, false);
278 --walker->level;
279 }
280
281 if (unlikely(eperm)) {
282 errcode |= PFERR_PRESENT_MASK;
283 goto error;
284 }
285
286 if (write_fault && unlikely(!is_dirty_gpte(pte))) {
287 int ret;
288
289 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
290 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
291 pte, pte|PT_DIRTY_MASK);
292 if (unlikely(ret < 0))
293 goto error;
294 else if (ret)
295 goto retry_walk;
296
297 mark_page_dirty(vcpu->kvm, table_gfn);
298 pte |= PT_DIRTY_MASK;
299 walker->ptes[walker->level - 1] = pte;
300 }
301
302 walker->pt_access = pt_access;
303 walker->pte_access = pte_access;
304 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
305 __func__, (u64)pte, pte_access, pt_access);
306 return 1;
307
308 error:
309 errcode |= write_fault | user_fault;
310 if (fetch_fault && (mmu->nx ||
311 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
312 errcode |= PFERR_FETCH_MASK;
313
314 walker->fault.vector = PF_VECTOR;
315 walker->fault.error_code_valid = true;
316 walker->fault.error_code = errcode;
317 walker->fault.address = addr;
318 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
319
320 trace_kvm_mmu_walker_error(walker->fault.error_code);
321 return 0;
322 }
323
324 static int FNAME(walk_addr)(struct guest_walker *walker,
325 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
326 {
327 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
328 access);
329 }
330
331 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
332 struct kvm_vcpu *vcpu, gva_t addr,
333 u32 access)
334 {
335 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
336 addr, access);
337 }
338
339 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
340 struct kvm_mmu_page *sp, u64 *spte,
341 pt_element_t gpte)
342 {
343 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
344 goto no_present;
345
346 if (!is_present_gpte(gpte))
347 goto no_present;
348
349 if (!(gpte & PT_ACCESSED_MASK))
350 goto no_present;
351
352 return false;
353
354 no_present:
355 drop_spte(vcpu->kvm, spte);
356 return true;
357 }
358
359 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
360 u64 *spte, const void *pte)
361 {
362 pt_element_t gpte;
363 unsigned pte_access;
364 pfn_t pfn;
365
366 gpte = *(const pt_element_t *)pte;
367 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
368 return;
369
370 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
371 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte, true);
372 pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
373 if (mmu_invalid_pfn(pfn)) {
374 kvm_release_pfn_clean(pfn);
375 return;
376 }
377
378 /*
379 * we call mmu_set_spte() with host_writable = true because that
380 * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
381 */
382 mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
383 NULL, PT_PAGE_TABLE_LEVEL,
384 gpte_to_gfn(gpte), pfn, true, true);
385 }
386
387 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
388 struct guest_walker *gw, int level)
389 {
390 pt_element_t curr_pte;
391 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
392 u64 mask;
393 int r, index;
394
395 if (level == PT_PAGE_TABLE_LEVEL) {
396 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
397 base_gpa = pte_gpa & ~mask;
398 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
399
400 r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
401 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
402 curr_pte = gw->prefetch_ptes[index];
403 } else
404 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
405 &curr_pte, sizeof(curr_pte));
406
407 return r || curr_pte != gw->ptes[level - 1];
408 }
409
410 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
411 u64 *sptep)
412 {
413 struct kvm_mmu_page *sp;
414 pt_element_t *gptep = gw->prefetch_ptes;
415 u64 *spte;
416 int i;
417
418 sp = page_header(__pa(sptep));
419
420 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
421 return;
422
423 if (sp->role.direct)
424 return __direct_pte_prefetch(vcpu, sp, sptep);
425
426 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
427 spte = sp->spt + i;
428
429 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
430 pt_element_t gpte;
431 unsigned pte_access;
432 gfn_t gfn;
433 pfn_t pfn;
434
435 if (spte == sptep)
436 continue;
437
438 if (is_shadow_present_pte(*spte))
439 continue;
440
441 gpte = gptep[i];
442
443 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
444 continue;
445
446 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte,
447 true);
448 gfn = gpte_to_gfn(gpte);
449 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
450 pte_access & ACC_WRITE_MASK);
451 if (mmu_invalid_pfn(pfn)) {
452 kvm_release_pfn_clean(pfn);
453 break;
454 }
455
456 mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
457 NULL, PT_PAGE_TABLE_LEVEL, gfn,
458 pfn, true, true);
459 }
460 }
461
462 /*
463 * Fetch a shadow pte for a specific level in the paging hierarchy.
464 */
465 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
466 struct guest_walker *gw,
467 int user_fault, int write_fault, int hlevel,
468 int *emulate, pfn_t pfn, bool map_writable,
469 bool prefault)
470 {
471 unsigned access = gw->pt_access;
472 struct kvm_mmu_page *sp = NULL;
473 int top_level;
474 unsigned direct_access;
475 struct kvm_shadow_walk_iterator it;
476
477 if (!is_present_gpte(gw->ptes[gw->level - 1]))
478 return NULL;
479
480 direct_access = gw->pte_access;
481
482 top_level = vcpu->arch.mmu.root_level;
483 if (top_level == PT32E_ROOT_LEVEL)
484 top_level = PT32_ROOT_LEVEL;
485 /*
486 * Verify that the top-level gpte is still there. Since the page
487 * is a root page, it is either write protected (and cannot be
488 * changed from now on) or it is invalid (in which case, we don't
489 * really care if it changes underneath us after this point).
490 */
491 if (FNAME(gpte_changed)(vcpu, gw, top_level))
492 goto out_gpte_changed;
493
494 for (shadow_walk_init(&it, vcpu, addr);
495 shadow_walk_okay(&it) && it.level > gw->level;
496 shadow_walk_next(&it)) {
497 gfn_t table_gfn;
498
499 clear_sp_write_flooding_count(it.sptep);
500 drop_large_spte(vcpu, it.sptep);
501
502 sp = NULL;
503 if (!is_shadow_present_pte(*it.sptep)) {
504 table_gfn = gw->table_gfn[it.level - 2];
505 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
506 false, access, it.sptep);
507 }
508
509 /*
510 * Verify that the gpte in the page we've just write
511 * protected is still there.
512 */
513 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
514 goto out_gpte_changed;
515
516 if (sp)
517 link_shadow_page(it.sptep, sp);
518 }
519
520 for (;
521 shadow_walk_okay(&it) && it.level > hlevel;
522 shadow_walk_next(&it)) {
523 gfn_t direct_gfn;
524
525 clear_sp_write_flooding_count(it.sptep);
526 validate_direct_spte(vcpu, it.sptep, direct_access);
527
528 drop_large_spte(vcpu, it.sptep);
529
530 if (is_shadow_present_pte(*it.sptep))
531 continue;
532
533 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
534
535 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
536 true, direct_access, it.sptep);
537 link_shadow_page(it.sptep, sp);
538 }
539
540 clear_sp_write_flooding_count(it.sptep);
541 mmu_set_spte(vcpu, it.sptep, access, gw->pte_access,
542 user_fault, write_fault, emulate, it.level,
543 gw->gfn, pfn, prefault, map_writable);
544 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
545
546 return it.sptep;
547
548 out_gpte_changed:
549 if (sp)
550 kvm_mmu_put_page(sp, it.sptep);
551 kvm_release_pfn_clean(pfn);
552 return NULL;
553 }
554
555 /*
556 * Page fault handler. There are several causes for a page fault:
557 * - there is no shadow pte for the guest pte
558 * - write access through a shadow pte marked read only so that we can set
559 * the dirty bit
560 * - write access to a shadow pte marked read only so we can update the page
561 * dirty bitmap, when userspace requests it
562 * - mmio access; in this case we will never install a present shadow pte
563 * - normal guest page fault due to the guest pte marked not present, not
564 * writable, or not executable
565 *
566 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
567 * a negative value on error.
568 */
569 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
570 bool prefault)
571 {
572 int write_fault = error_code & PFERR_WRITE_MASK;
573 int user_fault = error_code & PFERR_USER_MASK;
574 struct guest_walker walker;
575 u64 *sptep;
576 int emulate = 0;
577 int r;
578 pfn_t pfn;
579 int level = PT_PAGE_TABLE_LEVEL;
580 int force_pt_level;
581 unsigned long mmu_seq;
582 bool map_writable;
583
584 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
585
586 if (unlikely(error_code & PFERR_RSVD_MASK))
587 return handle_mmio_page_fault(vcpu, addr, error_code,
588 mmu_is_nested(vcpu));
589
590 r = mmu_topup_memory_caches(vcpu);
591 if (r)
592 return r;
593
594 /*
595 * Look up the guest pte for the faulting address.
596 */
597 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
598
599 /*
600 * The page is not mapped by the guest. Let the guest handle it.
601 */
602 if (!r) {
603 pgprintk("%s: guest page fault\n", __func__);
604 if (!prefault)
605 inject_page_fault(vcpu, &walker.fault);
606
607 return 0;
608 }
609
610 if (walker.level >= PT_DIRECTORY_LEVEL)
611 force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
612 else
613 force_pt_level = 1;
614 if (!force_pt_level) {
615 level = min(walker.level, mapping_level(vcpu, walker.gfn));
616 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
617 }
618
619 mmu_seq = vcpu->kvm->mmu_notifier_seq;
620 smp_rmb();
621
622 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
623 &map_writable))
624 return 0;
625
626 if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
627 walker.gfn, pfn, walker.pte_access, &r))
628 return r;
629
630 spin_lock(&vcpu->kvm->mmu_lock);
631 if (mmu_notifier_retry(vcpu, mmu_seq))
632 goto out_unlock;
633
634 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
635 kvm_mmu_free_some_pages(vcpu);
636 if (!force_pt_level)
637 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
638 sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
639 level, &emulate, pfn, map_writable, prefault);
640 (void)sptep;
641 pgprintk("%s: shadow pte %p %llx emulate %d\n", __func__,
642 sptep, *sptep, emulate);
643
644 ++vcpu->stat.pf_fixed;
645 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
646 spin_unlock(&vcpu->kvm->mmu_lock);
647
648 return emulate;
649
650 out_unlock:
651 spin_unlock(&vcpu->kvm->mmu_lock);
652 kvm_release_pfn_clean(pfn);
653 return 0;
654 }
655
656 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
657 {
658 int offset = 0;
659
660 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
661
662 if (PTTYPE == 32)
663 offset = sp->role.quadrant << PT64_LEVEL_BITS;
664
665 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
666 }
667
668 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
669 {
670 struct kvm_shadow_walk_iterator iterator;
671 struct kvm_mmu_page *sp;
672 int level;
673 u64 *sptep;
674
675 vcpu_clear_mmio_info(vcpu, gva);
676
677 /*
678 * No need to check return value here, rmap_can_add() can
679 * help us to skip pte prefetch later.
680 */
681 mmu_topup_memory_caches(vcpu);
682
683 spin_lock(&vcpu->kvm->mmu_lock);
684 for_each_shadow_entry(vcpu, gva, iterator) {
685 level = iterator.level;
686 sptep = iterator.sptep;
687
688 sp = page_header(__pa(sptep));
689 if (is_last_spte(*sptep, level)) {
690 pt_element_t gpte;
691 gpa_t pte_gpa;
692
693 if (!sp->unsync)
694 break;
695
696 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
697 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
698
699 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
700 kvm_flush_remote_tlbs(vcpu->kvm);
701
702 if (!rmap_can_add(vcpu))
703 break;
704
705 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
706 sizeof(pt_element_t)))
707 break;
708
709 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
710 }
711
712 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
713 break;
714 }
715 spin_unlock(&vcpu->kvm->mmu_lock);
716 }
717
718 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
719 struct x86_exception *exception)
720 {
721 struct guest_walker walker;
722 gpa_t gpa = UNMAPPED_GVA;
723 int r;
724
725 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
726
727 if (r) {
728 gpa = gfn_to_gpa(walker.gfn);
729 gpa |= vaddr & ~PAGE_MASK;
730 } else if (exception)
731 *exception = walker.fault;
732
733 return gpa;
734 }
735
736 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
737 u32 access,
738 struct x86_exception *exception)
739 {
740 struct guest_walker walker;
741 gpa_t gpa = UNMAPPED_GVA;
742 int r;
743
744 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
745
746 if (r) {
747 gpa = gfn_to_gpa(walker.gfn);
748 gpa |= vaddr & ~PAGE_MASK;
749 } else if (exception)
750 *exception = walker.fault;
751
752 return gpa;
753 }
754
755 /*
756 * Using the cached information from sp->gfns is safe because:
757 * - The spte has a reference to the struct page, so the pfn for a given gfn
758 * can't change unless all sptes pointing to it are nuked first.
759 *
760 * Note:
761 * We should flush all tlbs if spte is dropped even though guest is
762 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
763 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
764 * used by guest then tlbs are not flushed, so guest is allowed to access the
765 * freed pages.
766 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
767 */
768 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
769 {
770 int i, nr_present = 0;
771 bool host_writable;
772 gpa_t first_pte_gpa;
773
774 /* direct kvm_mmu_page can not be unsync. */
775 BUG_ON(sp->role.direct);
776
777 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
778
779 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
780 unsigned pte_access;
781 pt_element_t gpte;
782 gpa_t pte_gpa;
783 gfn_t gfn;
784
785 if (!sp->spt[i])
786 continue;
787
788 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
789
790 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
791 sizeof(pt_element_t)))
792 return -EINVAL;
793
794 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
795 vcpu->kvm->tlbs_dirty++;
796 continue;
797 }
798
799 gfn = gpte_to_gfn(gpte);
800 pte_access = sp->role.access;
801 pte_access &= FNAME(gpte_access)(vcpu, gpte, true);
802
803 if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
804 continue;
805
806 if (gfn != sp->gfns[i]) {
807 drop_spte(vcpu->kvm, &sp->spt[i]);
808 vcpu->kvm->tlbs_dirty++;
809 continue;
810 }
811
812 nr_present++;
813
814 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
815
816 set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
817 PT_PAGE_TABLE_LEVEL, gfn,
818 spte_to_pfn(sp->spt[i]), true, false,
819 host_writable);
820 }
821
822 return !nr_present;
823 }
824
825 #undef pt_element_t
826 #undef guest_walker
827 #undef FNAME
828 #undef PT_BASE_ADDR_MASK
829 #undef PT_INDEX
830 #undef PT_LVL_ADDR_MASK
831 #undef PT_LVL_OFFSET_MASK
832 #undef PT_LEVEL_BITS
833 #undef PT_MAX_FULL_LEVELS
834 #undef gpte_to_gfn
835 #undef gpte_to_gfn_lvl
836 #undef CMPXCHG
This page took 0.071905 seconds and 6 git commands to generate.