KVM: x86: accessors for guest registers
[deliverable/linux.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16 #include <linux/kvm_host.h>
17
18 #include "kvm_svm.h"
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28
29 #include <asm/desc.h>
30
31 #define __ex(x) __kvm_handle_fault_on_reboot(x)
32
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
35
36 #define IOPM_ALLOC_ORDER 2
37 #define MSRPM_ALLOC_ORDER 1
38
39 #define DB_VECTOR 1
40 #define UD_VECTOR 6
41 #define GP_VECTOR 13
42
43 #define DR7_GD_MASK (1 << 13)
44 #define DR6_BD_MASK (1 << 13)
45
46 #define SEG_TYPE_LDT 2
47 #define SEG_TYPE_BUSY_TSS16 3
48
49 #define SVM_FEATURE_NPT (1 << 0)
50 #define SVM_FEATURE_LBRV (1 << 1)
51 #define SVM_DEATURE_SVML (1 << 2)
52
53 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
54
55 /* enable NPT for AMD64 and X86 with PAE */
56 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
57 static bool npt_enabled = true;
58 #else
59 static bool npt_enabled = false;
60 #endif
61 static int npt = 1;
62
63 module_param(npt, int, S_IRUGO);
64
65 static void kvm_reput_irq(struct vcpu_svm *svm);
66 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
67
68 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
69 {
70 return container_of(vcpu, struct vcpu_svm, vcpu);
71 }
72
73 static unsigned long iopm_base;
74
75 struct kvm_ldttss_desc {
76 u16 limit0;
77 u16 base0;
78 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
79 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
80 u32 base3;
81 u32 zero1;
82 } __attribute__((packed));
83
84 struct svm_cpu_data {
85 int cpu;
86
87 u64 asid_generation;
88 u32 max_asid;
89 u32 next_asid;
90 struct kvm_ldttss_desc *tss_desc;
91
92 struct page *save_area;
93 };
94
95 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
96 static uint32_t svm_features;
97
98 struct svm_init_data {
99 int cpu;
100 int r;
101 };
102
103 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
104
105 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
106 #define MSRS_RANGE_SIZE 2048
107 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
108
109 #define MAX_INST_SIZE 15
110
111 static inline u32 svm_has(u32 feat)
112 {
113 return svm_features & feat;
114 }
115
116 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
117 {
118 int word_index = __ffs(vcpu->arch.irq_summary);
119 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
120 int irq = word_index * BITS_PER_LONG + bit_index;
121
122 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
123 if (!vcpu->arch.irq_pending[word_index])
124 clear_bit(word_index, &vcpu->arch.irq_summary);
125 return irq;
126 }
127
128 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
129 {
130 set_bit(irq, vcpu->arch.irq_pending);
131 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
132 }
133
134 static inline void clgi(void)
135 {
136 asm volatile (__ex(SVM_CLGI));
137 }
138
139 static inline void stgi(void)
140 {
141 asm volatile (__ex(SVM_STGI));
142 }
143
144 static inline void invlpga(unsigned long addr, u32 asid)
145 {
146 asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
147 }
148
149 static inline unsigned long kvm_read_cr2(void)
150 {
151 unsigned long cr2;
152
153 asm volatile ("mov %%cr2, %0" : "=r" (cr2));
154 return cr2;
155 }
156
157 static inline void kvm_write_cr2(unsigned long val)
158 {
159 asm volatile ("mov %0, %%cr2" :: "r" (val));
160 }
161
162 static inline unsigned long read_dr6(void)
163 {
164 unsigned long dr6;
165
166 asm volatile ("mov %%dr6, %0" : "=r" (dr6));
167 return dr6;
168 }
169
170 static inline void write_dr6(unsigned long val)
171 {
172 asm volatile ("mov %0, %%dr6" :: "r" (val));
173 }
174
175 static inline unsigned long read_dr7(void)
176 {
177 unsigned long dr7;
178
179 asm volatile ("mov %%dr7, %0" : "=r" (dr7));
180 return dr7;
181 }
182
183 static inline void write_dr7(unsigned long val)
184 {
185 asm volatile ("mov %0, %%dr7" :: "r" (val));
186 }
187
188 static inline void force_new_asid(struct kvm_vcpu *vcpu)
189 {
190 to_svm(vcpu)->asid_generation--;
191 }
192
193 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
194 {
195 force_new_asid(vcpu);
196 }
197
198 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
199 {
200 if (!npt_enabled && !(efer & EFER_LMA))
201 efer &= ~EFER_LME;
202
203 to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
204 vcpu->arch.shadow_efer = efer;
205 }
206
207 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
208 bool has_error_code, u32 error_code)
209 {
210 struct vcpu_svm *svm = to_svm(vcpu);
211
212 svm->vmcb->control.event_inj = nr
213 | SVM_EVTINJ_VALID
214 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
215 | SVM_EVTINJ_TYPE_EXEPT;
216 svm->vmcb->control.event_inj_err = error_code;
217 }
218
219 static bool svm_exception_injected(struct kvm_vcpu *vcpu)
220 {
221 struct vcpu_svm *svm = to_svm(vcpu);
222
223 return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
224 }
225
226 static int is_external_interrupt(u32 info)
227 {
228 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
229 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
230 }
231
232 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
233 {
234 struct vcpu_svm *svm = to_svm(vcpu);
235
236 if (!svm->next_rip) {
237 printk(KERN_DEBUG "%s: NOP\n", __func__);
238 return;
239 }
240 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
241 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
242 __func__, kvm_rip_read(vcpu), svm->next_rip);
243
244 kvm_rip_write(vcpu, svm->next_rip);
245 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
246
247 vcpu->arch.interrupt_window_open = 1;
248 }
249
250 static int has_svm(void)
251 {
252 uint32_t eax, ebx, ecx, edx;
253
254 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
255 printk(KERN_INFO "has_svm: not amd\n");
256 return 0;
257 }
258
259 cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
260 if (eax < SVM_CPUID_FUNC) {
261 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
262 return 0;
263 }
264
265 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
266 if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
267 printk(KERN_DEBUG "has_svm: svm not available\n");
268 return 0;
269 }
270 return 1;
271 }
272
273 static void svm_hardware_disable(void *garbage)
274 {
275 uint64_t efer;
276
277 wrmsrl(MSR_VM_HSAVE_PA, 0);
278 rdmsrl(MSR_EFER, efer);
279 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
280 }
281
282 static void svm_hardware_enable(void *garbage)
283 {
284
285 struct svm_cpu_data *svm_data;
286 uint64_t efer;
287 struct desc_ptr gdt_descr;
288 struct desc_struct *gdt;
289 int me = raw_smp_processor_id();
290
291 if (!has_svm()) {
292 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
293 return;
294 }
295 svm_data = per_cpu(svm_data, me);
296
297 if (!svm_data) {
298 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
299 me);
300 return;
301 }
302
303 svm_data->asid_generation = 1;
304 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
305 svm_data->next_asid = svm_data->max_asid + 1;
306
307 asm volatile ("sgdt %0" : "=m"(gdt_descr));
308 gdt = (struct desc_struct *)gdt_descr.address;
309 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
310
311 rdmsrl(MSR_EFER, efer);
312 wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
313
314 wrmsrl(MSR_VM_HSAVE_PA,
315 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
316 }
317
318 static void svm_cpu_uninit(int cpu)
319 {
320 struct svm_cpu_data *svm_data
321 = per_cpu(svm_data, raw_smp_processor_id());
322
323 if (!svm_data)
324 return;
325
326 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
327 __free_page(svm_data->save_area);
328 kfree(svm_data);
329 }
330
331 static int svm_cpu_init(int cpu)
332 {
333 struct svm_cpu_data *svm_data;
334 int r;
335
336 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
337 if (!svm_data)
338 return -ENOMEM;
339 svm_data->cpu = cpu;
340 svm_data->save_area = alloc_page(GFP_KERNEL);
341 r = -ENOMEM;
342 if (!svm_data->save_area)
343 goto err_1;
344
345 per_cpu(svm_data, cpu) = svm_data;
346
347 return 0;
348
349 err_1:
350 kfree(svm_data);
351 return r;
352
353 }
354
355 static void set_msr_interception(u32 *msrpm, unsigned msr,
356 int read, int write)
357 {
358 int i;
359
360 for (i = 0; i < NUM_MSR_MAPS; i++) {
361 if (msr >= msrpm_ranges[i] &&
362 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
363 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
364 msrpm_ranges[i]) * 2;
365
366 u32 *base = msrpm + (msr_offset / 32);
367 u32 msr_shift = msr_offset % 32;
368 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
369 *base = (*base & ~(0x3 << msr_shift)) |
370 (mask << msr_shift);
371 return;
372 }
373 }
374 BUG();
375 }
376
377 static void svm_vcpu_init_msrpm(u32 *msrpm)
378 {
379 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
380
381 #ifdef CONFIG_X86_64
382 set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
383 set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
384 set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
385 set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
386 set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
387 set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
388 #endif
389 set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
390 set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
391 set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
392 set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
393 }
394
395 static void svm_enable_lbrv(struct vcpu_svm *svm)
396 {
397 u32 *msrpm = svm->msrpm;
398
399 svm->vmcb->control.lbr_ctl = 1;
400 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
401 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
402 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
403 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
404 }
405
406 static void svm_disable_lbrv(struct vcpu_svm *svm)
407 {
408 u32 *msrpm = svm->msrpm;
409
410 svm->vmcb->control.lbr_ctl = 0;
411 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
412 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
413 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
414 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
415 }
416
417 static __init int svm_hardware_setup(void)
418 {
419 int cpu;
420 struct page *iopm_pages;
421 void *iopm_va;
422 int r;
423
424 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
425
426 if (!iopm_pages)
427 return -ENOMEM;
428
429 iopm_va = page_address(iopm_pages);
430 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
431 clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
432 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
433
434 if (boot_cpu_has(X86_FEATURE_NX))
435 kvm_enable_efer_bits(EFER_NX);
436
437 for_each_online_cpu(cpu) {
438 r = svm_cpu_init(cpu);
439 if (r)
440 goto err;
441 }
442
443 svm_features = cpuid_edx(SVM_CPUID_FUNC);
444
445 if (!svm_has(SVM_FEATURE_NPT))
446 npt_enabled = false;
447
448 if (npt_enabled && !npt) {
449 printk(KERN_INFO "kvm: Nested Paging disabled\n");
450 npt_enabled = false;
451 }
452
453 if (npt_enabled) {
454 printk(KERN_INFO "kvm: Nested Paging enabled\n");
455 kvm_enable_tdp();
456 } else
457 kvm_disable_tdp();
458
459 return 0;
460
461 err:
462 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
463 iopm_base = 0;
464 return r;
465 }
466
467 static __exit void svm_hardware_unsetup(void)
468 {
469 int cpu;
470
471 for_each_online_cpu(cpu)
472 svm_cpu_uninit(cpu);
473
474 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
475 iopm_base = 0;
476 }
477
478 static void init_seg(struct vmcb_seg *seg)
479 {
480 seg->selector = 0;
481 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
482 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
483 seg->limit = 0xffff;
484 seg->base = 0;
485 }
486
487 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
488 {
489 seg->selector = 0;
490 seg->attrib = SVM_SELECTOR_P_MASK | type;
491 seg->limit = 0xffff;
492 seg->base = 0;
493 }
494
495 static void init_vmcb(struct vcpu_svm *svm)
496 {
497 struct vmcb_control_area *control = &svm->vmcb->control;
498 struct vmcb_save_area *save = &svm->vmcb->save;
499
500 control->intercept_cr_read = INTERCEPT_CR0_MASK |
501 INTERCEPT_CR3_MASK |
502 INTERCEPT_CR4_MASK;
503
504 control->intercept_cr_write = INTERCEPT_CR0_MASK |
505 INTERCEPT_CR3_MASK |
506 INTERCEPT_CR4_MASK |
507 INTERCEPT_CR8_MASK;
508
509 control->intercept_dr_read = INTERCEPT_DR0_MASK |
510 INTERCEPT_DR1_MASK |
511 INTERCEPT_DR2_MASK |
512 INTERCEPT_DR3_MASK;
513
514 control->intercept_dr_write = INTERCEPT_DR0_MASK |
515 INTERCEPT_DR1_MASK |
516 INTERCEPT_DR2_MASK |
517 INTERCEPT_DR3_MASK |
518 INTERCEPT_DR5_MASK |
519 INTERCEPT_DR7_MASK;
520
521 control->intercept_exceptions = (1 << PF_VECTOR) |
522 (1 << UD_VECTOR) |
523 (1 << MC_VECTOR);
524
525
526 control->intercept = (1ULL << INTERCEPT_INTR) |
527 (1ULL << INTERCEPT_NMI) |
528 (1ULL << INTERCEPT_SMI) |
529 (1ULL << INTERCEPT_CPUID) |
530 (1ULL << INTERCEPT_INVD) |
531 (1ULL << INTERCEPT_HLT) |
532 (1ULL << INTERCEPT_INVLPGA) |
533 (1ULL << INTERCEPT_IOIO_PROT) |
534 (1ULL << INTERCEPT_MSR_PROT) |
535 (1ULL << INTERCEPT_TASK_SWITCH) |
536 (1ULL << INTERCEPT_SHUTDOWN) |
537 (1ULL << INTERCEPT_VMRUN) |
538 (1ULL << INTERCEPT_VMMCALL) |
539 (1ULL << INTERCEPT_VMLOAD) |
540 (1ULL << INTERCEPT_VMSAVE) |
541 (1ULL << INTERCEPT_STGI) |
542 (1ULL << INTERCEPT_CLGI) |
543 (1ULL << INTERCEPT_SKINIT) |
544 (1ULL << INTERCEPT_WBINVD) |
545 (1ULL << INTERCEPT_MONITOR) |
546 (1ULL << INTERCEPT_MWAIT);
547
548 control->iopm_base_pa = iopm_base;
549 control->msrpm_base_pa = __pa(svm->msrpm);
550 control->tsc_offset = 0;
551 control->int_ctl = V_INTR_MASKING_MASK;
552
553 init_seg(&save->es);
554 init_seg(&save->ss);
555 init_seg(&save->ds);
556 init_seg(&save->fs);
557 init_seg(&save->gs);
558
559 save->cs.selector = 0xf000;
560 /* Executable/Readable Code Segment */
561 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
562 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
563 save->cs.limit = 0xffff;
564 /*
565 * cs.base should really be 0xffff0000, but vmx can't handle that, so
566 * be consistent with it.
567 *
568 * Replace when we have real mode working for vmx.
569 */
570 save->cs.base = 0xf0000;
571
572 save->gdtr.limit = 0xffff;
573 save->idtr.limit = 0xffff;
574
575 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
576 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
577
578 save->efer = MSR_EFER_SVME_MASK;
579 save->dr6 = 0xffff0ff0;
580 save->dr7 = 0x400;
581 save->rflags = 2;
582 save->rip = 0x0000fff0;
583 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
584
585 /*
586 * cr0 val on cpu init should be 0x60000010, we enable cpu
587 * cache by default. the orderly way is to enable cache in bios.
588 */
589 save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
590 save->cr4 = X86_CR4_PAE;
591 /* rdx = ?? */
592
593 if (npt_enabled) {
594 /* Setup VMCB for Nested Paging */
595 control->nested_ctl = 1;
596 control->intercept &= ~(1ULL << INTERCEPT_TASK_SWITCH);
597 control->intercept_exceptions &= ~(1 << PF_VECTOR);
598 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
599 INTERCEPT_CR3_MASK);
600 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
601 INTERCEPT_CR3_MASK);
602 save->g_pat = 0x0007040600070406ULL;
603 /* enable caching because the QEMU Bios doesn't enable it */
604 save->cr0 = X86_CR0_ET;
605 save->cr3 = 0;
606 save->cr4 = 0;
607 }
608 force_new_asid(&svm->vcpu);
609 }
610
611 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
612 {
613 struct vcpu_svm *svm = to_svm(vcpu);
614
615 init_vmcb(svm);
616
617 if (vcpu->vcpu_id != 0) {
618 kvm_rip_write(vcpu, 0);
619 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
620 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
621 }
622 vcpu->arch.regs_avail = ~0;
623 vcpu->arch.regs_dirty = ~0;
624
625 return 0;
626 }
627
628 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
629 {
630 struct vcpu_svm *svm;
631 struct page *page;
632 struct page *msrpm_pages;
633 int err;
634
635 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
636 if (!svm) {
637 err = -ENOMEM;
638 goto out;
639 }
640
641 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
642 if (err)
643 goto free_svm;
644
645 page = alloc_page(GFP_KERNEL);
646 if (!page) {
647 err = -ENOMEM;
648 goto uninit;
649 }
650
651 err = -ENOMEM;
652 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
653 if (!msrpm_pages)
654 goto uninit;
655 svm->msrpm = page_address(msrpm_pages);
656 svm_vcpu_init_msrpm(svm->msrpm);
657
658 svm->vmcb = page_address(page);
659 clear_page(svm->vmcb);
660 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
661 svm->asid_generation = 0;
662 memset(svm->db_regs, 0, sizeof(svm->db_regs));
663 init_vmcb(svm);
664
665 fx_init(&svm->vcpu);
666 svm->vcpu.fpu_active = 1;
667 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
668 if (svm->vcpu.vcpu_id == 0)
669 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
670
671 return &svm->vcpu;
672
673 uninit:
674 kvm_vcpu_uninit(&svm->vcpu);
675 free_svm:
676 kmem_cache_free(kvm_vcpu_cache, svm);
677 out:
678 return ERR_PTR(err);
679 }
680
681 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
682 {
683 struct vcpu_svm *svm = to_svm(vcpu);
684
685 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
686 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
687 kvm_vcpu_uninit(vcpu);
688 kmem_cache_free(kvm_vcpu_cache, svm);
689 }
690
691 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
692 {
693 struct vcpu_svm *svm = to_svm(vcpu);
694 int i;
695
696 if (unlikely(cpu != vcpu->cpu)) {
697 u64 tsc_this, delta;
698
699 /*
700 * Make sure that the guest sees a monotonically
701 * increasing TSC.
702 */
703 rdtscll(tsc_this);
704 delta = vcpu->arch.host_tsc - tsc_this;
705 svm->vmcb->control.tsc_offset += delta;
706 vcpu->cpu = cpu;
707 kvm_migrate_timers(vcpu);
708 }
709
710 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
711 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
712 }
713
714 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
715 {
716 struct vcpu_svm *svm = to_svm(vcpu);
717 int i;
718
719 ++vcpu->stat.host_state_reload;
720 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
721 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
722
723 rdtscll(vcpu->arch.host_tsc);
724 }
725
726 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
727 {
728 return to_svm(vcpu)->vmcb->save.rflags;
729 }
730
731 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
732 {
733 to_svm(vcpu)->vmcb->save.rflags = rflags;
734 }
735
736 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
737 {
738 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
739
740 switch (seg) {
741 case VCPU_SREG_CS: return &save->cs;
742 case VCPU_SREG_DS: return &save->ds;
743 case VCPU_SREG_ES: return &save->es;
744 case VCPU_SREG_FS: return &save->fs;
745 case VCPU_SREG_GS: return &save->gs;
746 case VCPU_SREG_SS: return &save->ss;
747 case VCPU_SREG_TR: return &save->tr;
748 case VCPU_SREG_LDTR: return &save->ldtr;
749 }
750 BUG();
751 return NULL;
752 }
753
754 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
755 {
756 struct vmcb_seg *s = svm_seg(vcpu, seg);
757
758 return s->base;
759 }
760
761 static void svm_get_segment(struct kvm_vcpu *vcpu,
762 struct kvm_segment *var, int seg)
763 {
764 struct vmcb_seg *s = svm_seg(vcpu, seg);
765
766 var->base = s->base;
767 var->limit = s->limit;
768 var->selector = s->selector;
769 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
770 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
771 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
772 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
773 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
774 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
775 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
776 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
777 var->unusable = !var->present;
778 }
779
780 static int svm_get_cpl(struct kvm_vcpu *vcpu)
781 {
782 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
783
784 return save->cpl;
785 }
786
787 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
788 {
789 struct vcpu_svm *svm = to_svm(vcpu);
790
791 dt->limit = svm->vmcb->save.idtr.limit;
792 dt->base = svm->vmcb->save.idtr.base;
793 }
794
795 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
796 {
797 struct vcpu_svm *svm = to_svm(vcpu);
798
799 svm->vmcb->save.idtr.limit = dt->limit;
800 svm->vmcb->save.idtr.base = dt->base ;
801 }
802
803 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
804 {
805 struct vcpu_svm *svm = to_svm(vcpu);
806
807 dt->limit = svm->vmcb->save.gdtr.limit;
808 dt->base = svm->vmcb->save.gdtr.base;
809 }
810
811 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
812 {
813 struct vcpu_svm *svm = to_svm(vcpu);
814
815 svm->vmcb->save.gdtr.limit = dt->limit;
816 svm->vmcb->save.gdtr.base = dt->base ;
817 }
818
819 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
820 {
821 }
822
823 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
824 {
825 struct vcpu_svm *svm = to_svm(vcpu);
826
827 #ifdef CONFIG_X86_64
828 if (vcpu->arch.shadow_efer & EFER_LME) {
829 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
830 vcpu->arch.shadow_efer |= EFER_LMA;
831 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
832 }
833
834 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
835 vcpu->arch.shadow_efer &= ~EFER_LMA;
836 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
837 }
838 }
839 #endif
840 if (npt_enabled)
841 goto set;
842
843 if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
844 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
845 vcpu->fpu_active = 1;
846 }
847
848 vcpu->arch.cr0 = cr0;
849 cr0 |= X86_CR0_PG | X86_CR0_WP;
850 if (!vcpu->fpu_active) {
851 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
852 cr0 |= X86_CR0_TS;
853 }
854 set:
855 /*
856 * re-enable caching here because the QEMU bios
857 * does not do it - this results in some delay at
858 * reboot
859 */
860 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
861 svm->vmcb->save.cr0 = cr0;
862 }
863
864 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
865 {
866 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
867 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
868
869 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
870 force_new_asid(vcpu);
871
872 vcpu->arch.cr4 = cr4;
873 if (!npt_enabled)
874 cr4 |= X86_CR4_PAE;
875 cr4 |= host_cr4_mce;
876 to_svm(vcpu)->vmcb->save.cr4 = cr4;
877 }
878
879 static void svm_set_segment(struct kvm_vcpu *vcpu,
880 struct kvm_segment *var, int seg)
881 {
882 struct vcpu_svm *svm = to_svm(vcpu);
883 struct vmcb_seg *s = svm_seg(vcpu, seg);
884
885 s->base = var->base;
886 s->limit = var->limit;
887 s->selector = var->selector;
888 if (var->unusable)
889 s->attrib = 0;
890 else {
891 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
892 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
893 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
894 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
895 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
896 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
897 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
898 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
899 }
900 if (seg == VCPU_SREG_CS)
901 svm->vmcb->save.cpl
902 = (svm->vmcb->save.cs.attrib
903 >> SVM_SELECTOR_DPL_SHIFT) & 3;
904
905 }
906
907 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
908 {
909 return -EOPNOTSUPP;
910 }
911
912 static int svm_get_irq(struct kvm_vcpu *vcpu)
913 {
914 struct vcpu_svm *svm = to_svm(vcpu);
915 u32 exit_int_info = svm->vmcb->control.exit_int_info;
916
917 if (is_external_interrupt(exit_int_info))
918 return exit_int_info & SVM_EVTINJ_VEC_MASK;
919 return -1;
920 }
921
922 static void load_host_msrs(struct kvm_vcpu *vcpu)
923 {
924 #ifdef CONFIG_X86_64
925 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
926 #endif
927 }
928
929 static void save_host_msrs(struct kvm_vcpu *vcpu)
930 {
931 #ifdef CONFIG_X86_64
932 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
933 #endif
934 }
935
936 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
937 {
938 if (svm_data->next_asid > svm_data->max_asid) {
939 ++svm_data->asid_generation;
940 svm_data->next_asid = 1;
941 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
942 }
943
944 svm->vcpu.cpu = svm_data->cpu;
945 svm->asid_generation = svm_data->asid_generation;
946 svm->vmcb->control.asid = svm_data->next_asid++;
947 }
948
949 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
950 {
951 unsigned long val = to_svm(vcpu)->db_regs[dr];
952 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
953 return val;
954 }
955
956 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
957 int *exception)
958 {
959 struct vcpu_svm *svm = to_svm(vcpu);
960
961 *exception = 0;
962
963 if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
964 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
965 svm->vmcb->save.dr6 |= DR6_BD_MASK;
966 *exception = DB_VECTOR;
967 return;
968 }
969
970 switch (dr) {
971 case 0 ... 3:
972 svm->db_regs[dr] = value;
973 return;
974 case 4 ... 5:
975 if (vcpu->arch.cr4 & X86_CR4_DE) {
976 *exception = UD_VECTOR;
977 return;
978 }
979 case 7: {
980 if (value & ~((1ULL << 32) - 1)) {
981 *exception = GP_VECTOR;
982 return;
983 }
984 svm->vmcb->save.dr7 = value;
985 return;
986 }
987 default:
988 printk(KERN_DEBUG "%s: unexpected dr %u\n",
989 __func__, dr);
990 *exception = UD_VECTOR;
991 return;
992 }
993 }
994
995 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
996 {
997 u32 exit_int_info = svm->vmcb->control.exit_int_info;
998 struct kvm *kvm = svm->vcpu.kvm;
999 u64 fault_address;
1000 u32 error_code;
1001 bool event_injection = false;
1002
1003 if (!irqchip_in_kernel(kvm) &&
1004 is_external_interrupt(exit_int_info)) {
1005 event_injection = true;
1006 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
1007 }
1008
1009 fault_address = svm->vmcb->control.exit_info_2;
1010 error_code = svm->vmcb->control.exit_info_1;
1011
1012 if (!npt_enabled)
1013 KVMTRACE_3D(PAGE_FAULT, &svm->vcpu, error_code,
1014 (u32)fault_address, (u32)(fault_address >> 32),
1015 handler);
1016 else
1017 KVMTRACE_3D(TDP_FAULT, &svm->vcpu, error_code,
1018 (u32)fault_address, (u32)(fault_address >> 32),
1019 handler);
1020 /*
1021 * FIXME: Tis shouldn't be necessary here, but there is a flush
1022 * missing in the MMU code. Until we find this bug, flush the
1023 * complete TLB here on an NPF
1024 */
1025 if (npt_enabled)
1026 svm_flush_tlb(&svm->vcpu);
1027
1028 if (event_injection)
1029 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1030 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1031 }
1032
1033 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1034 {
1035 int er;
1036
1037 er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1038 if (er != EMULATE_DONE)
1039 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1040 return 1;
1041 }
1042
1043 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1044 {
1045 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1046 if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1047 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1048 svm->vcpu.fpu_active = 1;
1049
1050 return 1;
1051 }
1052
1053 static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1054 {
1055 /*
1056 * On an #MC intercept the MCE handler is not called automatically in
1057 * the host. So do it by hand here.
1058 */
1059 asm volatile (
1060 "int $0x12\n");
1061 /* not sure if we ever come back to this point */
1062
1063 return 1;
1064 }
1065
1066 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1067 {
1068 /*
1069 * VMCB is undefined after a SHUTDOWN intercept
1070 * so reinitialize it.
1071 */
1072 clear_page(svm->vmcb);
1073 init_vmcb(svm);
1074
1075 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1076 return 0;
1077 }
1078
1079 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1080 {
1081 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1082 int size, down, in, string, rep;
1083 unsigned port;
1084
1085 ++svm->vcpu.stat.io_exits;
1086
1087 svm->next_rip = svm->vmcb->control.exit_info_2;
1088
1089 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1090
1091 if (string) {
1092 if (emulate_instruction(&svm->vcpu,
1093 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1094 return 0;
1095 return 1;
1096 }
1097
1098 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1099 port = io_info >> 16;
1100 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1101 rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1102 down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1103
1104 return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1105 }
1106
1107 static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1108 {
1109 KVMTRACE_0D(NMI, &svm->vcpu, handler);
1110 return 1;
1111 }
1112
1113 static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1114 {
1115 ++svm->vcpu.stat.irq_exits;
1116 KVMTRACE_0D(INTR, &svm->vcpu, handler);
1117 return 1;
1118 }
1119
1120 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1121 {
1122 return 1;
1123 }
1124
1125 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1126 {
1127 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1128 skip_emulated_instruction(&svm->vcpu);
1129 return kvm_emulate_halt(&svm->vcpu);
1130 }
1131
1132 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1133 {
1134 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1135 skip_emulated_instruction(&svm->vcpu);
1136 kvm_emulate_hypercall(&svm->vcpu);
1137 return 1;
1138 }
1139
1140 static int invalid_op_interception(struct vcpu_svm *svm,
1141 struct kvm_run *kvm_run)
1142 {
1143 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1144 return 1;
1145 }
1146
1147 static int task_switch_interception(struct vcpu_svm *svm,
1148 struct kvm_run *kvm_run)
1149 {
1150 u16 tss_selector;
1151
1152 tss_selector = (u16)svm->vmcb->control.exit_info_1;
1153 if (svm->vmcb->control.exit_info_2 &
1154 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
1155 return kvm_task_switch(&svm->vcpu, tss_selector,
1156 TASK_SWITCH_IRET);
1157 if (svm->vmcb->control.exit_info_2 &
1158 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
1159 return kvm_task_switch(&svm->vcpu, tss_selector,
1160 TASK_SWITCH_JMP);
1161 return kvm_task_switch(&svm->vcpu, tss_selector, TASK_SWITCH_CALL);
1162 }
1163
1164 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1165 {
1166 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1167 kvm_emulate_cpuid(&svm->vcpu);
1168 return 1;
1169 }
1170
1171 static int emulate_on_interception(struct vcpu_svm *svm,
1172 struct kvm_run *kvm_run)
1173 {
1174 if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
1175 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
1176 return 1;
1177 }
1178
1179 static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1180 {
1181 emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
1182 if (irqchip_in_kernel(svm->vcpu.kvm))
1183 return 1;
1184 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1185 return 0;
1186 }
1187
1188 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1189 {
1190 struct vcpu_svm *svm = to_svm(vcpu);
1191
1192 switch (ecx) {
1193 case MSR_IA32_TIME_STAMP_COUNTER: {
1194 u64 tsc;
1195
1196 rdtscll(tsc);
1197 *data = svm->vmcb->control.tsc_offset + tsc;
1198 break;
1199 }
1200 case MSR_K6_STAR:
1201 *data = svm->vmcb->save.star;
1202 break;
1203 #ifdef CONFIG_X86_64
1204 case MSR_LSTAR:
1205 *data = svm->vmcb->save.lstar;
1206 break;
1207 case MSR_CSTAR:
1208 *data = svm->vmcb->save.cstar;
1209 break;
1210 case MSR_KERNEL_GS_BASE:
1211 *data = svm->vmcb->save.kernel_gs_base;
1212 break;
1213 case MSR_SYSCALL_MASK:
1214 *data = svm->vmcb->save.sfmask;
1215 break;
1216 #endif
1217 case MSR_IA32_SYSENTER_CS:
1218 *data = svm->vmcb->save.sysenter_cs;
1219 break;
1220 case MSR_IA32_SYSENTER_EIP:
1221 *data = svm->vmcb->save.sysenter_eip;
1222 break;
1223 case MSR_IA32_SYSENTER_ESP:
1224 *data = svm->vmcb->save.sysenter_esp;
1225 break;
1226 /* Nobody will change the following 5 values in the VMCB so
1227 we can safely return them on rdmsr. They will always be 0
1228 until LBRV is implemented. */
1229 case MSR_IA32_DEBUGCTLMSR:
1230 *data = svm->vmcb->save.dbgctl;
1231 break;
1232 case MSR_IA32_LASTBRANCHFROMIP:
1233 *data = svm->vmcb->save.br_from;
1234 break;
1235 case MSR_IA32_LASTBRANCHTOIP:
1236 *data = svm->vmcb->save.br_to;
1237 break;
1238 case MSR_IA32_LASTINTFROMIP:
1239 *data = svm->vmcb->save.last_excp_from;
1240 break;
1241 case MSR_IA32_LASTINTTOIP:
1242 *data = svm->vmcb->save.last_excp_to;
1243 break;
1244 default:
1245 return kvm_get_msr_common(vcpu, ecx, data);
1246 }
1247 return 0;
1248 }
1249
1250 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1251 {
1252 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1253 u64 data;
1254
1255 if (svm_get_msr(&svm->vcpu, ecx, &data))
1256 kvm_inject_gp(&svm->vcpu, 0);
1257 else {
1258 KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
1259 (u32)(data >> 32), handler);
1260
1261 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
1262 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
1263 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1264 skip_emulated_instruction(&svm->vcpu);
1265 }
1266 return 1;
1267 }
1268
1269 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1270 {
1271 struct vcpu_svm *svm = to_svm(vcpu);
1272
1273 switch (ecx) {
1274 case MSR_IA32_TIME_STAMP_COUNTER: {
1275 u64 tsc;
1276
1277 rdtscll(tsc);
1278 svm->vmcb->control.tsc_offset = data - tsc;
1279 break;
1280 }
1281 case MSR_K6_STAR:
1282 svm->vmcb->save.star = data;
1283 break;
1284 #ifdef CONFIG_X86_64
1285 case MSR_LSTAR:
1286 svm->vmcb->save.lstar = data;
1287 break;
1288 case MSR_CSTAR:
1289 svm->vmcb->save.cstar = data;
1290 break;
1291 case MSR_KERNEL_GS_BASE:
1292 svm->vmcb->save.kernel_gs_base = data;
1293 break;
1294 case MSR_SYSCALL_MASK:
1295 svm->vmcb->save.sfmask = data;
1296 break;
1297 #endif
1298 case MSR_IA32_SYSENTER_CS:
1299 svm->vmcb->save.sysenter_cs = data;
1300 break;
1301 case MSR_IA32_SYSENTER_EIP:
1302 svm->vmcb->save.sysenter_eip = data;
1303 break;
1304 case MSR_IA32_SYSENTER_ESP:
1305 svm->vmcb->save.sysenter_esp = data;
1306 break;
1307 case MSR_IA32_DEBUGCTLMSR:
1308 if (!svm_has(SVM_FEATURE_LBRV)) {
1309 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
1310 __func__, data);
1311 break;
1312 }
1313 if (data & DEBUGCTL_RESERVED_BITS)
1314 return 1;
1315
1316 svm->vmcb->save.dbgctl = data;
1317 if (data & (1ULL<<0))
1318 svm_enable_lbrv(svm);
1319 else
1320 svm_disable_lbrv(svm);
1321 break;
1322 case MSR_K7_EVNTSEL0:
1323 case MSR_K7_EVNTSEL1:
1324 case MSR_K7_EVNTSEL2:
1325 case MSR_K7_EVNTSEL3:
1326 case MSR_K7_PERFCTR0:
1327 case MSR_K7_PERFCTR1:
1328 case MSR_K7_PERFCTR2:
1329 case MSR_K7_PERFCTR3:
1330 /*
1331 * Just discard all writes to the performance counters; this
1332 * should keep both older linux and windows 64-bit guests
1333 * happy
1334 */
1335 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx, data);
1336
1337 break;
1338 default:
1339 return kvm_set_msr_common(vcpu, ecx, data);
1340 }
1341 return 0;
1342 }
1343
1344 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1345 {
1346 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1347 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
1348 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
1349
1350 KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
1351 handler);
1352
1353 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1354 if (svm_set_msr(&svm->vcpu, ecx, data))
1355 kvm_inject_gp(&svm->vcpu, 0);
1356 else
1357 skip_emulated_instruction(&svm->vcpu);
1358 return 1;
1359 }
1360
1361 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1362 {
1363 if (svm->vmcb->control.exit_info_1)
1364 return wrmsr_interception(svm, kvm_run);
1365 else
1366 return rdmsr_interception(svm, kvm_run);
1367 }
1368
1369 static int interrupt_window_interception(struct vcpu_svm *svm,
1370 struct kvm_run *kvm_run)
1371 {
1372 KVMTRACE_0D(PEND_INTR, &svm->vcpu, handler);
1373
1374 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1375 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1376 /*
1377 * If the user space waits to inject interrupts, exit as soon as
1378 * possible
1379 */
1380 if (kvm_run->request_interrupt_window &&
1381 !svm->vcpu.arch.irq_summary) {
1382 ++svm->vcpu.stat.irq_window_exits;
1383 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1384 return 0;
1385 }
1386
1387 return 1;
1388 }
1389
1390 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1391 struct kvm_run *kvm_run) = {
1392 [SVM_EXIT_READ_CR0] = emulate_on_interception,
1393 [SVM_EXIT_READ_CR3] = emulate_on_interception,
1394 [SVM_EXIT_READ_CR4] = emulate_on_interception,
1395 [SVM_EXIT_READ_CR8] = emulate_on_interception,
1396 /* for now: */
1397 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
1398 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
1399 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
1400 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
1401 [SVM_EXIT_READ_DR0] = emulate_on_interception,
1402 [SVM_EXIT_READ_DR1] = emulate_on_interception,
1403 [SVM_EXIT_READ_DR2] = emulate_on_interception,
1404 [SVM_EXIT_READ_DR3] = emulate_on_interception,
1405 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
1406 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
1407 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
1408 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
1409 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
1410 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
1411 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
1412 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
1413 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
1414 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
1415 [SVM_EXIT_INTR] = intr_interception,
1416 [SVM_EXIT_NMI] = nmi_interception,
1417 [SVM_EXIT_SMI] = nop_on_interception,
1418 [SVM_EXIT_INIT] = nop_on_interception,
1419 [SVM_EXIT_VINTR] = interrupt_window_interception,
1420 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
1421 [SVM_EXIT_CPUID] = cpuid_interception,
1422 [SVM_EXIT_INVD] = emulate_on_interception,
1423 [SVM_EXIT_HLT] = halt_interception,
1424 [SVM_EXIT_INVLPG] = emulate_on_interception,
1425 [SVM_EXIT_INVLPGA] = invalid_op_interception,
1426 [SVM_EXIT_IOIO] = io_interception,
1427 [SVM_EXIT_MSR] = msr_interception,
1428 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
1429 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
1430 [SVM_EXIT_VMRUN] = invalid_op_interception,
1431 [SVM_EXIT_VMMCALL] = vmmcall_interception,
1432 [SVM_EXIT_VMLOAD] = invalid_op_interception,
1433 [SVM_EXIT_VMSAVE] = invalid_op_interception,
1434 [SVM_EXIT_STGI] = invalid_op_interception,
1435 [SVM_EXIT_CLGI] = invalid_op_interception,
1436 [SVM_EXIT_SKINIT] = invalid_op_interception,
1437 [SVM_EXIT_WBINVD] = emulate_on_interception,
1438 [SVM_EXIT_MONITOR] = invalid_op_interception,
1439 [SVM_EXIT_MWAIT] = invalid_op_interception,
1440 [SVM_EXIT_NPF] = pf_interception,
1441 };
1442
1443 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1444 {
1445 struct vcpu_svm *svm = to_svm(vcpu);
1446 u32 exit_code = svm->vmcb->control.exit_code;
1447
1448 KVMTRACE_3D(VMEXIT, vcpu, exit_code, (u32)svm->vmcb->save.rip,
1449 (u32)((u64)svm->vmcb->save.rip >> 32), entryexit);
1450
1451 if (npt_enabled) {
1452 int mmu_reload = 0;
1453 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
1454 svm_set_cr0(vcpu, svm->vmcb->save.cr0);
1455 mmu_reload = 1;
1456 }
1457 vcpu->arch.cr0 = svm->vmcb->save.cr0;
1458 vcpu->arch.cr3 = svm->vmcb->save.cr3;
1459 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1460 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1461 kvm_inject_gp(vcpu, 0);
1462 return 1;
1463 }
1464 }
1465 if (mmu_reload) {
1466 kvm_mmu_reset_context(vcpu);
1467 kvm_mmu_load(vcpu);
1468 }
1469 }
1470
1471 kvm_reput_irq(svm);
1472
1473 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1474 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1475 kvm_run->fail_entry.hardware_entry_failure_reason
1476 = svm->vmcb->control.exit_code;
1477 return 0;
1478 }
1479
1480 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1481 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
1482 exit_code != SVM_EXIT_NPF)
1483 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1484 "exit_code 0x%x\n",
1485 __func__, svm->vmcb->control.exit_int_info,
1486 exit_code);
1487
1488 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1489 || !svm_exit_handlers[exit_code]) {
1490 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1491 kvm_run->hw.hardware_exit_reason = exit_code;
1492 return 0;
1493 }
1494
1495 return svm_exit_handlers[exit_code](svm, kvm_run);
1496 }
1497
1498 static void reload_tss(struct kvm_vcpu *vcpu)
1499 {
1500 int cpu = raw_smp_processor_id();
1501
1502 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1503 svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
1504 load_TR_desc();
1505 }
1506
1507 static void pre_svm_run(struct vcpu_svm *svm)
1508 {
1509 int cpu = raw_smp_processor_id();
1510
1511 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1512
1513 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1514 if (svm->vcpu.cpu != cpu ||
1515 svm->asid_generation != svm_data->asid_generation)
1516 new_asid(svm, svm_data);
1517 }
1518
1519
1520 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1521 {
1522 struct vmcb_control_area *control;
1523
1524 KVMTRACE_1D(INJ_VIRQ, &svm->vcpu, (u32)irq, handler);
1525
1526 control = &svm->vmcb->control;
1527 control->int_vector = irq;
1528 control->int_ctl &= ~V_INTR_PRIO_MASK;
1529 control->int_ctl |= V_IRQ_MASK |
1530 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1531 }
1532
1533 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1534 {
1535 struct vcpu_svm *svm = to_svm(vcpu);
1536
1537 svm_inject_irq(svm, irq);
1538 }
1539
1540 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
1541 {
1542 struct vcpu_svm *svm = to_svm(vcpu);
1543 struct vmcb *vmcb = svm->vmcb;
1544 int max_irr, tpr;
1545
1546 if (!irqchip_in_kernel(vcpu->kvm) || vcpu->arch.apic->vapic_addr)
1547 return;
1548
1549 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
1550
1551 max_irr = kvm_lapic_find_highest_irr(vcpu);
1552 if (max_irr == -1)
1553 return;
1554
1555 tpr = kvm_lapic_get_cr8(vcpu) << 4;
1556
1557 if (tpr >= (max_irr & 0xf0))
1558 vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
1559 }
1560
1561 static void svm_intr_assist(struct kvm_vcpu *vcpu)
1562 {
1563 struct vcpu_svm *svm = to_svm(vcpu);
1564 struct vmcb *vmcb = svm->vmcb;
1565 int intr_vector = -1;
1566
1567 if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1568 ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1569 intr_vector = vmcb->control.exit_int_info &
1570 SVM_EVTINJ_VEC_MASK;
1571 vmcb->control.exit_int_info = 0;
1572 svm_inject_irq(svm, intr_vector);
1573 goto out;
1574 }
1575
1576 if (vmcb->control.int_ctl & V_IRQ_MASK)
1577 goto out;
1578
1579 if (!kvm_cpu_has_interrupt(vcpu))
1580 goto out;
1581
1582 if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1583 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1584 (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1585 /* unable to deliver irq, set pending irq */
1586 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1587 svm_inject_irq(svm, 0x0);
1588 goto out;
1589 }
1590 /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1591 intr_vector = kvm_cpu_get_interrupt(vcpu);
1592 svm_inject_irq(svm, intr_vector);
1593 kvm_timer_intr_post(vcpu, intr_vector);
1594 out:
1595 update_cr8_intercept(vcpu);
1596 }
1597
1598 static void kvm_reput_irq(struct vcpu_svm *svm)
1599 {
1600 struct vmcb_control_area *control = &svm->vmcb->control;
1601
1602 if ((control->int_ctl & V_IRQ_MASK)
1603 && !irqchip_in_kernel(svm->vcpu.kvm)) {
1604 control->int_ctl &= ~V_IRQ_MASK;
1605 push_irq(&svm->vcpu, control->int_vector);
1606 }
1607
1608 svm->vcpu.arch.interrupt_window_open =
1609 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1610 }
1611
1612 static void svm_do_inject_vector(struct vcpu_svm *svm)
1613 {
1614 struct kvm_vcpu *vcpu = &svm->vcpu;
1615 int word_index = __ffs(vcpu->arch.irq_summary);
1616 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1617 int irq = word_index * BITS_PER_LONG + bit_index;
1618
1619 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1620 if (!vcpu->arch.irq_pending[word_index])
1621 clear_bit(word_index, &vcpu->arch.irq_summary);
1622 svm_inject_irq(svm, irq);
1623 }
1624
1625 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1626 struct kvm_run *kvm_run)
1627 {
1628 struct vcpu_svm *svm = to_svm(vcpu);
1629 struct vmcb_control_area *control = &svm->vmcb->control;
1630
1631 svm->vcpu.arch.interrupt_window_open =
1632 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1633 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1634
1635 if (svm->vcpu.arch.interrupt_window_open && svm->vcpu.arch.irq_summary)
1636 /*
1637 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1638 */
1639 svm_do_inject_vector(svm);
1640
1641 /*
1642 * Interrupts blocked. Wait for unblock.
1643 */
1644 if (!svm->vcpu.arch.interrupt_window_open &&
1645 (svm->vcpu.arch.irq_summary || kvm_run->request_interrupt_window))
1646 control->intercept |= 1ULL << INTERCEPT_VINTR;
1647 else
1648 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1649 }
1650
1651 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
1652 {
1653 return 0;
1654 }
1655
1656 static void save_db_regs(unsigned long *db_regs)
1657 {
1658 asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1659 asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1660 asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1661 asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1662 }
1663
1664 static void load_db_regs(unsigned long *db_regs)
1665 {
1666 asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1667 asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1668 asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1669 asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1670 }
1671
1672 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1673 {
1674 force_new_asid(vcpu);
1675 }
1676
1677 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1678 {
1679 }
1680
1681 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
1682 {
1683 struct vcpu_svm *svm = to_svm(vcpu);
1684
1685 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
1686 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
1687 kvm_lapic_set_tpr(vcpu, cr8);
1688 }
1689 }
1690
1691 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
1692 {
1693 struct vcpu_svm *svm = to_svm(vcpu);
1694 u64 cr8;
1695
1696 if (!irqchip_in_kernel(vcpu->kvm))
1697 return;
1698
1699 cr8 = kvm_get_cr8(vcpu);
1700 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
1701 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
1702 }
1703
1704 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1705 {
1706 struct vcpu_svm *svm = to_svm(vcpu);
1707 u16 fs_selector;
1708 u16 gs_selector;
1709 u16 ldt_selector;
1710
1711 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
1712 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
1713 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
1714
1715 pre_svm_run(svm);
1716
1717 sync_lapic_to_cr8(vcpu);
1718
1719 save_host_msrs(vcpu);
1720 fs_selector = kvm_read_fs();
1721 gs_selector = kvm_read_gs();
1722 ldt_selector = kvm_read_ldt();
1723 svm->host_cr2 = kvm_read_cr2();
1724 svm->host_dr6 = read_dr6();
1725 svm->host_dr7 = read_dr7();
1726 svm->vmcb->save.cr2 = vcpu->arch.cr2;
1727 /* required for live migration with NPT */
1728 if (npt_enabled)
1729 svm->vmcb->save.cr3 = vcpu->arch.cr3;
1730
1731 if (svm->vmcb->save.dr7 & 0xff) {
1732 write_dr7(0);
1733 save_db_regs(svm->host_db_regs);
1734 load_db_regs(svm->db_regs);
1735 }
1736
1737 clgi();
1738
1739 local_irq_enable();
1740
1741 asm volatile (
1742 #ifdef CONFIG_X86_64
1743 "push %%rbp; \n\t"
1744 #else
1745 "push %%ebp; \n\t"
1746 #endif
1747
1748 #ifdef CONFIG_X86_64
1749 "mov %c[rbx](%[svm]), %%rbx \n\t"
1750 "mov %c[rcx](%[svm]), %%rcx \n\t"
1751 "mov %c[rdx](%[svm]), %%rdx \n\t"
1752 "mov %c[rsi](%[svm]), %%rsi \n\t"
1753 "mov %c[rdi](%[svm]), %%rdi \n\t"
1754 "mov %c[rbp](%[svm]), %%rbp \n\t"
1755 "mov %c[r8](%[svm]), %%r8 \n\t"
1756 "mov %c[r9](%[svm]), %%r9 \n\t"
1757 "mov %c[r10](%[svm]), %%r10 \n\t"
1758 "mov %c[r11](%[svm]), %%r11 \n\t"
1759 "mov %c[r12](%[svm]), %%r12 \n\t"
1760 "mov %c[r13](%[svm]), %%r13 \n\t"
1761 "mov %c[r14](%[svm]), %%r14 \n\t"
1762 "mov %c[r15](%[svm]), %%r15 \n\t"
1763 #else
1764 "mov %c[rbx](%[svm]), %%ebx \n\t"
1765 "mov %c[rcx](%[svm]), %%ecx \n\t"
1766 "mov %c[rdx](%[svm]), %%edx \n\t"
1767 "mov %c[rsi](%[svm]), %%esi \n\t"
1768 "mov %c[rdi](%[svm]), %%edi \n\t"
1769 "mov %c[rbp](%[svm]), %%ebp \n\t"
1770 #endif
1771
1772 #ifdef CONFIG_X86_64
1773 /* Enter guest mode */
1774 "push %%rax \n\t"
1775 "mov %c[vmcb](%[svm]), %%rax \n\t"
1776 __ex(SVM_VMLOAD) "\n\t"
1777 __ex(SVM_VMRUN) "\n\t"
1778 __ex(SVM_VMSAVE) "\n\t"
1779 "pop %%rax \n\t"
1780 #else
1781 /* Enter guest mode */
1782 "push %%eax \n\t"
1783 "mov %c[vmcb](%[svm]), %%eax \n\t"
1784 __ex(SVM_VMLOAD) "\n\t"
1785 __ex(SVM_VMRUN) "\n\t"
1786 __ex(SVM_VMSAVE) "\n\t"
1787 "pop %%eax \n\t"
1788 #endif
1789
1790 /* Save guest registers, load host registers */
1791 #ifdef CONFIG_X86_64
1792 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1793 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1794 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1795 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1796 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1797 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1798 "mov %%r8, %c[r8](%[svm]) \n\t"
1799 "mov %%r9, %c[r9](%[svm]) \n\t"
1800 "mov %%r10, %c[r10](%[svm]) \n\t"
1801 "mov %%r11, %c[r11](%[svm]) \n\t"
1802 "mov %%r12, %c[r12](%[svm]) \n\t"
1803 "mov %%r13, %c[r13](%[svm]) \n\t"
1804 "mov %%r14, %c[r14](%[svm]) \n\t"
1805 "mov %%r15, %c[r15](%[svm]) \n\t"
1806
1807 "pop %%rbp; \n\t"
1808 #else
1809 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1810 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1811 "mov %%edx, %c[rdx](%[svm]) \n\t"
1812 "mov %%esi, %c[rsi](%[svm]) \n\t"
1813 "mov %%edi, %c[rdi](%[svm]) \n\t"
1814 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1815
1816 "pop %%ebp; \n\t"
1817 #endif
1818 :
1819 : [svm]"a"(svm),
1820 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1821 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
1822 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
1823 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
1824 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
1825 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
1826 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
1827 #ifdef CONFIG_X86_64
1828 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
1829 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
1830 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
1831 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
1832 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
1833 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
1834 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
1835 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
1836 #endif
1837 : "cc", "memory"
1838 #ifdef CONFIG_X86_64
1839 , "rbx", "rcx", "rdx", "rsi", "rdi"
1840 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
1841 #else
1842 , "ebx", "ecx", "edx" , "esi", "edi"
1843 #endif
1844 );
1845
1846 if ((svm->vmcb->save.dr7 & 0xff))
1847 load_db_regs(svm->host_db_regs);
1848
1849 vcpu->arch.cr2 = svm->vmcb->save.cr2;
1850 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
1851 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
1852 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
1853
1854 write_dr6(svm->host_dr6);
1855 write_dr7(svm->host_dr7);
1856 kvm_write_cr2(svm->host_cr2);
1857
1858 kvm_load_fs(fs_selector);
1859 kvm_load_gs(gs_selector);
1860 kvm_load_ldt(ldt_selector);
1861 load_host_msrs(vcpu);
1862
1863 reload_tss(vcpu);
1864
1865 local_irq_disable();
1866
1867 stgi();
1868
1869 sync_cr8_to_lapic(vcpu);
1870
1871 svm->next_rip = 0;
1872 }
1873
1874 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1875 {
1876 struct vcpu_svm *svm = to_svm(vcpu);
1877
1878 if (npt_enabled) {
1879 svm->vmcb->control.nested_cr3 = root;
1880 force_new_asid(vcpu);
1881 return;
1882 }
1883
1884 svm->vmcb->save.cr3 = root;
1885 force_new_asid(vcpu);
1886
1887 if (vcpu->fpu_active) {
1888 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1889 svm->vmcb->save.cr0 |= X86_CR0_TS;
1890 vcpu->fpu_active = 0;
1891 }
1892 }
1893
1894 static int is_disabled(void)
1895 {
1896 u64 vm_cr;
1897
1898 rdmsrl(MSR_VM_CR, vm_cr);
1899 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1900 return 1;
1901
1902 return 0;
1903 }
1904
1905 static void
1906 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1907 {
1908 /*
1909 * Patch in the VMMCALL instruction:
1910 */
1911 hypercall[0] = 0x0f;
1912 hypercall[1] = 0x01;
1913 hypercall[2] = 0xd9;
1914 }
1915
1916 static void svm_check_processor_compat(void *rtn)
1917 {
1918 *(int *)rtn = 0;
1919 }
1920
1921 static bool svm_cpu_has_accelerated_tpr(void)
1922 {
1923 return false;
1924 }
1925
1926 static int get_npt_level(void)
1927 {
1928 #ifdef CONFIG_X86_64
1929 return PT64_ROOT_LEVEL;
1930 #else
1931 return PT32E_ROOT_LEVEL;
1932 #endif
1933 }
1934
1935 static struct kvm_x86_ops svm_x86_ops = {
1936 .cpu_has_kvm_support = has_svm,
1937 .disabled_by_bios = is_disabled,
1938 .hardware_setup = svm_hardware_setup,
1939 .hardware_unsetup = svm_hardware_unsetup,
1940 .check_processor_compatibility = svm_check_processor_compat,
1941 .hardware_enable = svm_hardware_enable,
1942 .hardware_disable = svm_hardware_disable,
1943 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
1944
1945 .vcpu_create = svm_create_vcpu,
1946 .vcpu_free = svm_free_vcpu,
1947 .vcpu_reset = svm_vcpu_reset,
1948
1949 .prepare_guest_switch = svm_prepare_guest_switch,
1950 .vcpu_load = svm_vcpu_load,
1951 .vcpu_put = svm_vcpu_put,
1952
1953 .set_guest_debug = svm_guest_debug,
1954 .get_msr = svm_get_msr,
1955 .set_msr = svm_set_msr,
1956 .get_segment_base = svm_get_segment_base,
1957 .get_segment = svm_get_segment,
1958 .set_segment = svm_set_segment,
1959 .get_cpl = svm_get_cpl,
1960 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
1961 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1962 .set_cr0 = svm_set_cr0,
1963 .set_cr3 = svm_set_cr3,
1964 .set_cr4 = svm_set_cr4,
1965 .set_efer = svm_set_efer,
1966 .get_idt = svm_get_idt,
1967 .set_idt = svm_set_idt,
1968 .get_gdt = svm_get_gdt,
1969 .set_gdt = svm_set_gdt,
1970 .get_dr = svm_get_dr,
1971 .set_dr = svm_set_dr,
1972 .get_rflags = svm_get_rflags,
1973 .set_rflags = svm_set_rflags,
1974
1975 .tlb_flush = svm_flush_tlb,
1976
1977 .run = svm_vcpu_run,
1978 .handle_exit = handle_exit,
1979 .skip_emulated_instruction = skip_emulated_instruction,
1980 .patch_hypercall = svm_patch_hypercall,
1981 .get_irq = svm_get_irq,
1982 .set_irq = svm_set_irq,
1983 .queue_exception = svm_queue_exception,
1984 .exception_injected = svm_exception_injected,
1985 .inject_pending_irq = svm_intr_assist,
1986 .inject_pending_vectors = do_interrupt_requests,
1987
1988 .set_tss_addr = svm_set_tss_addr,
1989 .get_tdp_level = get_npt_level,
1990 };
1991
1992 static int __init svm_init(void)
1993 {
1994 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
1995 THIS_MODULE);
1996 }
1997
1998 static void __exit svm_exit(void)
1999 {
2000 kvm_exit();
2001 }
2002
2003 module_init(svm_init)
2004 module_exit(svm_exit)
This page took 0.083659 seconds and 5 git commands to generate.