86d802be602d33b583cb047462d2f64111ed0b0f
[deliverable/linux.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/kvm_para.h>
38
39 #include <asm/virtext.h>
40 #include "trace.h"
41
42 #define __ex(x) __kvm_handle_fault_on_reboot(x)
43
44 MODULE_AUTHOR("Qumranet");
45 MODULE_LICENSE("GPL");
46
47 static const struct x86_cpu_id svm_cpu_id[] = {
48 X86_FEATURE_MATCH(X86_FEATURE_SVM),
49 {}
50 };
51 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
52
53 #define IOPM_ALLOC_ORDER 2
54 #define MSRPM_ALLOC_ORDER 1
55
56 #define SEG_TYPE_LDT 2
57 #define SEG_TYPE_BUSY_TSS16 3
58
59 #define SVM_FEATURE_NPT (1 << 0)
60 #define SVM_FEATURE_LBRV (1 << 1)
61 #define SVM_FEATURE_SVML (1 << 2)
62 #define SVM_FEATURE_NRIP (1 << 3)
63 #define SVM_FEATURE_TSC_RATE (1 << 4)
64 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
65 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
66 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
67 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
68
69 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
70 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
71 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
72
73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
74
75 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
76 #define TSC_RATIO_MIN 0x0000000000000001ULL
77 #define TSC_RATIO_MAX 0x000000ffffffffffULL
78
79 static bool erratum_383_found __read_mostly;
80
81 static const u32 host_save_user_msrs[] = {
82 #ifdef CONFIG_X86_64
83 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
84 MSR_FS_BASE,
85 #endif
86 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
87 };
88
89 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
90
91 struct kvm_vcpu;
92
93 struct nested_state {
94 struct vmcb *hsave;
95 u64 hsave_msr;
96 u64 vm_cr_msr;
97 u64 vmcb;
98
99 /* These are the merged vectors */
100 u32 *msrpm;
101
102 /* gpa pointers to the real vectors */
103 u64 vmcb_msrpm;
104 u64 vmcb_iopm;
105
106 /* A VMEXIT is required but not yet emulated */
107 bool exit_required;
108
109 /* cache for intercepts of the guest */
110 u32 intercept_cr;
111 u32 intercept_dr;
112 u32 intercept_exceptions;
113 u64 intercept;
114
115 /* Nested Paging related state */
116 u64 nested_cr3;
117 };
118
119 #define MSRPM_OFFSETS 16
120 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
121
122 /*
123 * Set osvw_len to higher value when updated Revision Guides
124 * are published and we know what the new status bits are
125 */
126 static uint64_t osvw_len = 4, osvw_status;
127
128 struct vcpu_svm {
129 struct kvm_vcpu vcpu;
130 struct vmcb *vmcb;
131 unsigned long vmcb_pa;
132 struct svm_cpu_data *svm_data;
133 uint64_t asid_generation;
134 uint64_t sysenter_esp;
135 uint64_t sysenter_eip;
136
137 u64 next_rip;
138
139 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
140 struct {
141 u16 fs;
142 u16 gs;
143 u16 ldt;
144 u64 gs_base;
145 } host;
146
147 u32 *msrpm;
148
149 ulong nmi_iret_rip;
150
151 struct nested_state nested;
152
153 bool nmi_singlestep;
154
155 unsigned int3_injected;
156 unsigned long int3_rip;
157 u32 apf_reason;
158
159 u64 tsc_ratio;
160 };
161
162 static DEFINE_PER_CPU(u64, current_tsc_ratio);
163 #define TSC_RATIO_DEFAULT 0x0100000000ULL
164
165 #define MSR_INVALID 0xffffffffU
166
167 static const struct svm_direct_access_msrs {
168 u32 index; /* Index of the MSR */
169 bool always; /* True if intercept is always on */
170 } direct_access_msrs[] = {
171 { .index = MSR_STAR, .always = true },
172 { .index = MSR_IA32_SYSENTER_CS, .always = true },
173 #ifdef CONFIG_X86_64
174 { .index = MSR_GS_BASE, .always = true },
175 { .index = MSR_FS_BASE, .always = true },
176 { .index = MSR_KERNEL_GS_BASE, .always = true },
177 { .index = MSR_LSTAR, .always = true },
178 { .index = MSR_CSTAR, .always = true },
179 { .index = MSR_SYSCALL_MASK, .always = true },
180 #endif
181 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
182 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
183 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
184 { .index = MSR_IA32_LASTINTTOIP, .always = false },
185 { .index = MSR_INVALID, .always = false },
186 };
187
188 /* enable NPT for AMD64 and X86 with PAE */
189 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
190 static bool npt_enabled = true;
191 #else
192 static bool npt_enabled;
193 #endif
194
195 /* allow nested paging (virtualized MMU) for all guests */
196 static int npt = true;
197 module_param(npt, int, S_IRUGO);
198
199 /* allow nested virtualization in KVM/SVM */
200 static int nested = true;
201 module_param(nested, int, S_IRUGO);
202
203 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
204 static void svm_complete_interrupts(struct vcpu_svm *svm);
205
206 static int nested_svm_exit_handled(struct vcpu_svm *svm);
207 static int nested_svm_intercept(struct vcpu_svm *svm);
208 static int nested_svm_vmexit(struct vcpu_svm *svm);
209 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
210 bool has_error_code, u32 error_code);
211 static u64 __scale_tsc(u64 ratio, u64 tsc);
212
213 enum {
214 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
215 pause filter count */
216 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
217 VMCB_ASID, /* ASID */
218 VMCB_INTR, /* int_ctl, int_vector */
219 VMCB_NPT, /* npt_en, nCR3, gPAT */
220 VMCB_CR, /* CR0, CR3, CR4, EFER */
221 VMCB_DR, /* DR6, DR7 */
222 VMCB_DT, /* GDT, IDT */
223 VMCB_SEG, /* CS, DS, SS, ES, CPL */
224 VMCB_CR2, /* CR2 only */
225 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
226 VMCB_DIRTY_MAX,
227 };
228
229 /* TPR and CR2 are always written before VMRUN */
230 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
231
232 static inline void mark_all_dirty(struct vmcb *vmcb)
233 {
234 vmcb->control.clean = 0;
235 }
236
237 static inline void mark_all_clean(struct vmcb *vmcb)
238 {
239 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
240 & ~VMCB_ALWAYS_DIRTY_MASK;
241 }
242
243 static inline void mark_dirty(struct vmcb *vmcb, int bit)
244 {
245 vmcb->control.clean &= ~(1 << bit);
246 }
247
248 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
249 {
250 return container_of(vcpu, struct vcpu_svm, vcpu);
251 }
252
253 static void recalc_intercepts(struct vcpu_svm *svm)
254 {
255 struct vmcb_control_area *c, *h;
256 struct nested_state *g;
257
258 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
259
260 if (!is_guest_mode(&svm->vcpu))
261 return;
262
263 c = &svm->vmcb->control;
264 h = &svm->nested.hsave->control;
265 g = &svm->nested;
266
267 c->intercept_cr = h->intercept_cr | g->intercept_cr;
268 c->intercept_dr = h->intercept_dr | g->intercept_dr;
269 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
270 c->intercept = h->intercept | g->intercept;
271 }
272
273 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
274 {
275 if (is_guest_mode(&svm->vcpu))
276 return svm->nested.hsave;
277 else
278 return svm->vmcb;
279 }
280
281 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
282 {
283 struct vmcb *vmcb = get_host_vmcb(svm);
284
285 vmcb->control.intercept_cr |= (1U << bit);
286
287 recalc_intercepts(svm);
288 }
289
290 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
291 {
292 struct vmcb *vmcb = get_host_vmcb(svm);
293
294 vmcb->control.intercept_cr &= ~(1U << bit);
295
296 recalc_intercepts(svm);
297 }
298
299 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
300 {
301 struct vmcb *vmcb = get_host_vmcb(svm);
302
303 return vmcb->control.intercept_cr & (1U << bit);
304 }
305
306 static inline void set_dr_intercepts(struct vcpu_svm *svm)
307 {
308 struct vmcb *vmcb = get_host_vmcb(svm);
309
310 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
311 | (1 << INTERCEPT_DR1_READ)
312 | (1 << INTERCEPT_DR2_READ)
313 | (1 << INTERCEPT_DR3_READ)
314 | (1 << INTERCEPT_DR4_READ)
315 | (1 << INTERCEPT_DR5_READ)
316 | (1 << INTERCEPT_DR6_READ)
317 | (1 << INTERCEPT_DR7_READ)
318 | (1 << INTERCEPT_DR0_WRITE)
319 | (1 << INTERCEPT_DR1_WRITE)
320 | (1 << INTERCEPT_DR2_WRITE)
321 | (1 << INTERCEPT_DR3_WRITE)
322 | (1 << INTERCEPT_DR4_WRITE)
323 | (1 << INTERCEPT_DR5_WRITE)
324 | (1 << INTERCEPT_DR6_WRITE)
325 | (1 << INTERCEPT_DR7_WRITE);
326
327 recalc_intercepts(svm);
328 }
329
330 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
331 {
332 struct vmcb *vmcb = get_host_vmcb(svm);
333
334 vmcb->control.intercept_dr = 0;
335
336 recalc_intercepts(svm);
337 }
338
339 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
340 {
341 struct vmcb *vmcb = get_host_vmcb(svm);
342
343 vmcb->control.intercept_exceptions |= (1U << bit);
344
345 recalc_intercepts(svm);
346 }
347
348 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
349 {
350 struct vmcb *vmcb = get_host_vmcb(svm);
351
352 vmcb->control.intercept_exceptions &= ~(1U << bit);
353
354 recalc_intercepts(svm);
355 }
356
357 static inline void set_intercept(struct vcpu_svm *svm, int bit)
358 {
359 struct vmcb *vmcb = get_host_vmcb(svm);
360
361 vmcb->control.intercept |= (1ULL << bit);
362
363 recalc_intercepts(svm);
364 }
365
366 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
367 {
368 struct vmcb *vmcb = get_host_vmcb(svm);
369
370 vmcb->control.intercept &= ~(1ULL << bit);
371
372 recalc_intercepts(svm);
373 }
374
375 static inline void enable_gif(struct vcpu_svm *svm)
376 {
377 svm->vcpu.arch.hflags |= HF_GIF_MASK;
378 }
379
380 static inline void disable_gif(struct vcpu_svm *svm)
381 {
382 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
383 }
384
385 static inline bool gif_set(struct vcpu_svm *svm)
386 {
387 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
388 }
389
390 static unsigned long iopm_base;
391
392 struct kvm_ldttss_desc {
393 u16 limit0;
394 u16 base0;
395 unsigned base1:8, type:5, dpl:2, p:1;
396 unsigned limit1:4, zero0:3, g:1, base2:8;
397 u32 base3;
398 u32 zero1;
399 } __attribute__((packed));
400
401 struct svm_cpu_data {
402 int cpu;
403
404 u64 asid_generation;
405 u32 max_asid;
406 u32 next_asid;
407 struct kvm_ldttss_desc *tss_desc;
408
409 struct page *save_area;
410 };
411
412 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
413
414 struct svm_init_data {
415 int cpu;
416 int r;
417 };
418
419 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
420
421 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
422 #define MSRS_RANGE_SIZE 2048
423 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
424
425 static u32 svm_msrpm_offset(u32 msr)
426 {
427 u32 offset;
428 int i;
429
430 for (i = 0; i < NUM_MSR_MAPS; i++) {
431 if (msr < msrpm_ranges[i] ||
432 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
433 continue;
434
435 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
436 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
437
438 /* Now we have the u8 offset - but need the u32 offset */
439 return offset / 4;
440 }
441
442 /* MSR not in any range */
443 return MSR_INVALID;
444 }
445
446 #define MAX_INST_SIZE 15
447
448 static inline void clgi(void)
449 {
450 asm volatile (__ex(SVM_CLGI));
451 }
452
453 static inline void stgi(void)
454 {
455 asm volatile (__ex(SVM_STGI));
456 }
457
458 static inline void invlpga(unsigned long addr, u32 asid)
459 {
460 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
461 }
462
463 static int get_npt_level(void)
464 {
465 #ifdef CONFIG_X86_64
466 return PT64_ROOT_LEVEL;
467 #else
468 return PT32E_ROOT_LEVEL;
469 #endif
470 }
471
472 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
473 {
474 vcpu->arch.efer = efer;
475 if (!npt_enabled && !(efer & EFER_LMA))
476 efer &= ~EFER_LME;
477
478 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
479 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
480 }
481
482 static int is_external_interrupt(u32 info)
483 {
484 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
485 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
486 }
487
488 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
489 {
490 struct vcpu_svm *svm = to_svm(vcpu);
491 u32 ret = 0;
492
493 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
494 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
495 return ret & mask;
496 }
497
498 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
499 {
500 struct vcpu_svm *svm = to_svm(vcpu);
501
502 if (mask == 0)
503 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
504 else
505 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
506
507 }
508
509 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
510 {
511 struct vcpu_svm *svm = to_svm(vcpu);
512
513 if (svm->vmcb->control.next_rip != 0)
514 svm->next_rip = svm->vmcb->control.next_rip;
515
516 if (!svm->next_rip) {
517 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
518 EMULATE_DONE)
519 printk(KERN_DEBUG "%s: NOP\n", __func__);
520 return;
521 }
522 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
523 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
524 __func__, kvm_rip_read(vcpu), svm->next_rip);
525
526 kvm_rip_write(vcpu, svm->next_rip);
527 svm_set_interrupt_shadow(vcpu, 0);
528 }
529
530 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
531 bool has_error_code, u32 error_code,
532 bool reinject)
533 {
534 struct vcpu_svm *svm = to_svm(vcpu);
535
536 /*
537 * If we are within a nested VM we'd better #VMEXIT and let the guest
538 * handle the exception
539 */
540 if (!reinject &&
541 nested_svm_check_exception(svm, nr, has_error_code, error_code))
542 return;
543
544 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
545 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
546
547 /*
548 * For guest debugging where we have to reinject #BP if some
549 * INT3 is guest-owned:
550 * Emulate nRIP by moving RIP forward. Will fail if injection
551 * raises a fault that is not intercepted. Still better than
552 * failing in all cases.
553 */
554 skip_emulated_instruction(&svm->vcpu);
555 rip = kvm_rip_read(&svm->vcpu);
556 svm->int3_rip = rip + svm->vmcb->save.cs.base;
557 svm->int3_injected = rip - old_rip;
558 }
559
560 svm->vmcb->control.event_inj = nr
561 | SVM_EVTINJ_VALID
562 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
563 | SVM_EVTINJ_TYPE_EXEPT;
564 svm->vmcb->control.event_inj_err = error_code;
565 }
566
567 static void svm_init_erratum_383(void)
568 {
569 u32 low, high;
570 int err;
571 u64 val;
572
573 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
574 return;
575
576 /* Use _safe variants to not break nested virtualization */
577 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
578 if (err)
579 return;
580
581 val |= (1ULL << 47);
582
583 low = lower_32_bits(val);
584 high = upper_32_bits(val);
585
586 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
587
588 erratum_383_found = true;
589 }
590
591 static void svm_init_osvw(struct kvm_vcpu *vcpu)
592 {
593 /*
594 * Guests should see errata 400 and 415 as fixed (assuming that
595 * HLT and IO instructions are intercepted).
596 */
597 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
598 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
599
600 /*
601 * By increasing VCPU's osvw.length to 3 we are telling the guest that
602 * all osvw.status bits inside that length, including bit 0 (which is
603 * reserved for erratum 298), are valid. However, if host processor's
604 * osvw_len is 0 then osvw_status[0] carries no information. We need to
605 * be conservative here and therefore we tell the guest that erratum 298
606 * is present (because we really don't know).
607 */
608 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
609 vcpu->arch.osvw.status |= 1;
610 }
611
612 static int has_svm(void)
613 {
614 const char *msg;
615
616 if (!cpu_has_svm(&msg)) {
617 printk(KERN_INFO "has_svm: %s\n", msg);
618 return 0;
619 }
620
621 return 1;
622 }
623
624 static void svm_hardware_disable(void *garbage)
625 {
626 /* Make sure we clean up behind us */
627 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
628 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
629
630 cpu_svm_disable();
631
632 amd_pmu_disable_virt();
633 }
634
635 static int svm_hardware_enable(void *garbage)
636 {
637
638 struct svm_cpu_data *sd;
639 uint64_t efer;
640 struct desc_ptr gdt_descr;
641 struct desc_struct *gdt;
642 int me = raw_smp_processor_id();
643
644 rdmsrl(MSR_EFER, efer);
645 if (efer & EFER_SVME)
646 return -EBUSY;
647
648 if (!has_svm()) {
649 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
650 return -EINVAL;
651 }
652 sd = per_cpu(svm_data, me);
653 if (!sd) {
654 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
655 return -EINVAL;
656 }
657
658 sd->asid_generation = 1;
659 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
660 sd->next_asid = sd->max_asid + 1;
661
662 native_store_gdt(&gdt_descr);
663 gdt = (struct desc_struct *)gdt_descr.address;
664 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
665
666 wrmsrl(MSR_EFER, efer | EFER_SVME);
667
668 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
669
670 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
671 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
672 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
673 }
674
675
676 /*
677 * Get OSVW bits.
678 *
679 * Note that it is possible to have a system with mixed processor
680 * revisions and therefore different OSVW bits. If bits are not the same
681 * on different processors then choose the worst case (i.e. if erratum
682 * is present on one processor and not on another then assume that the
683 * erratum is present everywhere).
684 */
685 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
686 uint64_t len, status = 0;
687 int err;
688
689 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
690 if (!err)
691 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
692 &err);
693
694 if (err)
695 osvw_status = osvw_len = 0;
696 else {
697 if (len < osvw_len)
698 osvw_len = len;
699 osvw_status |= status;
700 osvw_status &= (1ULL << osvw_len) - 1;
701 }
702 } else
703 osvw_status = osvw_len = 0;
704
705 svm_init_erratum_383();
706
707 amd_pmu_enable_virt();
708
709 return 0;
710 }
711
712 static void svm_cpu_uninit(int cpu)
713 {
714 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
715
716 if (!sd)
717 return;
718
719 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
720 __free_page(sd->save_area);
721 kfree(sd);
722 }
723
724 static int svm_cpu_init(int cpu)
725 {
726 struct svm_cpu_data *sd;
727 int r;
728
729 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
730 if (!sd)
731 return -ENOMEM;
732 sd->cpu = cpu;
733 sd->save_area = alloc_page(GFP_KERNEL);
734 r = -ENOMEM;
735 if (!sd->save_area)
736 goto err_1;
737
738 per_cpu(svm_data, cpu) = sd;
739
740 return 0;
741
742 err_1:
743 kfree(sd);
744 return r;
745
746 }
747
748 static bool valid_msr_intercept(u32 index)
749 {
750 int i;
751
752 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
753 if (direct_access_msrs[i].index == index)
754 return true;
755
756 return false;
757 }
758
759 static void set_msr_interception(u32 *msrpm, unsigned msr,
760 int read, int write)
761 {
762 u8 bit_read, bit_write;
763 unsigned long tmp;
764 u32 offset;
765
766 /*
767 * If this warning triggers extend the direct_access_msrs list at the
768 * beginning of the file
769 */
770 WARN_ON(!valid_msr_intercept(msr));
771
772 offset = svm_msrpm_offset(msr);
773 bit_read = 2 * (msr & 0x0f);
774 bit_write = 2 * (msr & 0x0f) + 1;
775 tmp = msrpm[offset];
776
777 BUG_ON(offset == MSR_INVALID);
778
779 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
780 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
781
782 msrpm[offset] = tmp;
783 }
784
785 static void svm_vcpu_init_msrpm(u32 *msrpm)
786 {
787 int i;
788
789 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
790
791 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
792 if (!direct_access_msrs[i].always)
793 continue;
794
795 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
796 }
797 }
798
799 static void add_msr_offset(u32 offset)
800 {
801 int i;
802
803 for (i = 0; i < MSRPM_OFFSETS; ++i) {
804
805 /* Offset already in list? */
806 if (msrpm_offsets[i] == offset)
807 return;
808
809 /* Slot used by another offset? */
810 if (msrpm_offsets[i] != MSR_INVALID)
811 continue;
812
813 /* Add offset to list */
814 msrpm_offsets[i] = offset;
815
816 return;
817 }
818
819 /*
820 * If this BUG triggers the msrpm_offsets table has an overflow. Just
821 * increase MSRPM_OFFSETS in this case.
822 */
823 BUG();
824 }
825
826 static void init_msrpm_offsets(void)
827 {
828 int i;
829
830 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
831
832 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
833 u32 offset;
834
835 offset = svm_msrpm_offset(direct_access_msrs[i].index);
836 BUG_ON(offset == MSR_INVALID);
837
838 add_msr_offset(offset);
839 }
840 }
841
842 static void svm_enable_lbrv(struct vcpu_svm *svm)
843 {
844 u32 *msrpm = svm->msrpm;
845
846 svm->vmcb->control.lbr_ctl = 1;
847 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
848 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
849 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
850 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
851 }
852
853 static void svm_disable_lbrv(struct vcpu_svm *svm)
854 {
855 u32 *msrpm = svm->msrpm;
856
857 svm->vmcb->control.lbr_ctl = 0;
858 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
859 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
860 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
861 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
862 }
863
864 static __init int svm_hardware_setup(void)
865 {
866 int cpu;
867 struct page *iopm_pages;
868 void *iopm_va;
869 int r;
870
871 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
872
873 if (!iopm_pages)
874 return -ENOMEM;
875
876 iopm_va = page_address(iopm_pages);
877 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
878 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
879
880 init_msrpm_offsets();
881
882 if (boot_cpu_has(X86_FEATURE_NX))
883 kvm_enable_efer_bits(EFER_NX);
884
885 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
886 kvm_enable_efer_bits(EFER_FFXSR);
887
888 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
889 u64 max;
890
891 kvm_has_tsc_control = true;
892
893 /*
894 * Make sure the user can only configure tsc_khz values that
895 * fit into a signed integer.
896 * A min value is not calculated needed because it will always
897 * be 1 on all machines and a value of 0 is used to disable
898 * tsc-scaling for the vcpu.
899 */
900 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
901
902 kvm_max_guest_tsc_khz = max;
903 }
904
905 if (nested) {
906 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
907 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
908 }
909
910 for_each_possible_cpu(cpu) {
911 r = svm_cpu_init(cpu);
912 if (r)
913 goto err;
914 }
915
916 if (!boot_cpu_has(X86_FEATURE_NPT))
917 npt_enabled = false;
918
919 if (npt_enabled && !npt) {
920 printk(KERN_INFO "kvm: Nested Paging disabled\n");
921 npt_enabled = false;
922 }
923
924 if (npt_enabled) {
925 printk(KERN_INFO "kvm: Nested Paging enabled\n");
926 kvm_enable_tdp();
927 } else
928 kvm_disable_tdp();
929
930 return 0;
931
932 err:
933 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
934 iopm_base = 0;
935 return r;
936 }
937
938 static __exit void svm_hardware_unsetup(void)
939 {
940 int cpu;
941
942 for_each_possible_cpu(cpu)
943 svm_cpu_uninit(cpu);
944
945 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
946 iopm_base = 0;
947 }
948
949 static void init_seg(struct vmcb_seg *seg)
950 {
951 seg->selector = 0;
952 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
953 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
954 seg->limit = 0xffff;
955 seg->base = 0;
956 }
957
958 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
959 {
960 seg->selector = 0;
961 seg->attrib = SVM_SELECTOR_P_MASK | type;
962 seg->limit = 0xffff;
963 seg->base = 0;
964 }
965
966 static u64 __scale_tsc(u64 ratio, u64 tsc)
967 {
968 u64 mult, frac, _tsc;
969
970 mult = ratio >> 32;
971 frac = ratio & ((1ULL << 32) - 1);
972
973 _tsc = tsc;
974 _tsc *= mult;
975 _tsc += (tsc >> 32) * frac;
976 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
977
978 return _tsc;
979 }
980
981 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
982 {
983 struct vcpu_svm *svm = to_svm(vcpu);
984 u64 _tsc = tsc;
985
986 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
987 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
988
989 return _tsc;
990 }
991
992 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
993 {
994 struct vcpu_svm *svm = to_svm(vcpu);
995 u64 ratio;
996 u64 khz;
997
998 /* Guest TSC same frequency as host TSC? */
999 if (!scale) {
1000 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1001 return;
1002 }
1003
1004 /* TSC scaling supported? */
1005 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1006 if (user_tsc_khz > tsc_khz) {
1007 vcpu->arch.tsc_catchup = 1;
1008 vcpu->arch.tsc_always_catchup = 1;
1009 } else
1010 WARN(1, "user requested TSC rate below hardware speed\n");
1011 return;
1012 }
1013
1014 khz = user_tsc_khz;
1015
1016 /* TSC scaling required - calculate ratio */
1017 ratio = khz << 32;
1018 do_div(ratio, tsc_khz);
1019
1020 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1021 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1022 user_tsc_khz);
1023 return;
1024 }
1025 svm->tsc_ratio = ratio;
1026 }
1027
1028 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1029 {
1030 struct vcpu_svm *svm = to_svm(vcpu);
1031
1032 return svm->vmcb->control.tsc_offset;
1033 }
1034
1035 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1036 {
1037 struct vcpu_svm *svm = to_svm(vcpu);
1038 u64 g_tsc_offset = 0;
1039
1040 if (is_guest_mode(vcpu)) {
1041 g_tsc_offset = svm->vmcb->control.tsc_offset -
1042 svm->nested.hsave->control.tsc_offset;
1043 svm->nested.hsave->control.tsc_offset = offset;
1044 } else
1045 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1046 svm->vmcb->control.tsc_offset,
1047 offset);
1048
1049 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1050
1051 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1052 }
1053
1054 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1055 {
1056 struct vcpu_svm *svm = to_svm(vcpu);
1057
1058 WARN_ON(adjustment < 0);
1059 if (host)
1060 adjustment = svm_scale_tsc(vcpu, adjustment);
1061
1062 svm->vmcb->control.tsc_offset += adjustment;
1063 if (is_guest_mode(vcpu))
1064 svm->nested.hsave->control.tsc_offset += adjustment;
1065 else
1066 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1067 svm->vmcb->control.tsc_offset - adjustment,
1068 svm->vmcb->control.tsc_offset);
1069
1070 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1071 }
1072
1073 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1074 {
1075 u64 tsc;
1076
1077 tsc = svm_scale_tsc(vcpu, native_read_tsc());
1078
1079 return target_tsc - tsc;
1080 }
1081
1082 static void init_vmcb(struct vcpu_svm *svm)
1083 {
1084 struct vmcb_control_area *control = &svm->vmcb->control;
1085 struct vmcb_save_area *save = &svm->vmcb->save;
1086
1087 svm->vcpu.fpu_active = 1;
1088 svm->vcpu.arch.hflags = 0;
1089
1090 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1091 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1092 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1093 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1094 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1095 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1096 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1097
1098 set_dr_intercepts(svm);
1099
1100 set_exception_intercept(svm, PF_VECTOR);
1101 set_exception_intercept(svm, UD_VECTOR);
1102 set_exception_intercept(svm, MC_VECTOR);
1103
1104 set_intercept(svm, INTERCEPT_INTR);
1105 set_intercept(svm, INTERCEPT_NMI);
1106 set_intercept(svm, INTERCEPT_SMI);
1107 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1108 set_intercept(svm, INTERCEPT_RDPMC);
1109 set_intercept(svm, INTERCEPT_CPUID);
1110 set_intercept(svm, INTERCEPT_INVD);
1111 set_intercept(svm, INTERCEPT_HLT);
1112 set_intercept(svm, INTERCEPT_INVLPG);
1113 set_intercept(svm, INTERCEPT_INVLPGA);
1114 set_intercept(svm, INTERCEPT_IOIO_PROT);
1115 set_intercept(svm, INTERCEPT_MSR_PROT);
1116 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1117 set_intercept(svm, INTERCEPT_SHUTDOWN);
1118 set_intercept(svm, INTERCEPT_VMRUN);
1119 set_intercept(svm, INTERCEPT_VMMCALL);
1120 set_intercept(svm, INTERCEPT_VMLOAD);
1121 set_intercept(svm, INTERCEPT_VMSAVE);
1122 set_intercept(svm, INTERCEPT_STGI);
1123 set_intercept(svm, INTERCEPT_CLGI);
1124 set_intercept(svm, INTERCEPT_SKINIT);
1125 set_intercept(svm, INTERCEPT_WBINVD);
1126 set_intercept(svm, INTERCEPT_MONITOR);
1127 set_intercept(svm, INTERCEPT_MWAIT);
1128 set_intercept(svm, INTERCEPT_XSETBV);
1129
1130 control->iopm_base_pa = iopm_base;
1131 control->msrpm_base_pa = __pa(svm->msrpm);
1132 control->int_ctl = V_INTR_MASKING_MASK;
1133
1134 init_seg(&save->es);
1135 init_seg(&save->ss);
1136 init_seg(&save->ds);
1137 init_seg(&save->fs);
1138 init_seg(&save->gs);
1139
1140 save->cs.selector = 0xf000;
1141 save->cs.base = 0xffff0000;
1142 /* Executable/Readable Code Segment */
1143 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1144 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1145 save->cs.limit = 0xffff;
1146
1147 save->gdtr.limit = 0xffff;
1148 save->idtr.limit = 0xffff;
1149
1150 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1151 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1152
1153 svm_set_efer(&svm->vcpu, 0);
1154 save->dr6 = 0xffff0ff0;
1155 kvm_set_rflags(&svm->vcpu, 2);
1156 save->rip = 0x0000fff0;
1157 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1158
1159 /*
1160 * This is the guest-visible cr0 value.
1161 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1162 */
1163 svm->vcpu.arch.cr0 = 0;
1164 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1165
1166 save->cr4 = X86_CR4_PAE;
1167 /* rdx = ?? */
1168
1169 if (npt_enabled) {
1170 /* Setup VMCB for Nested Paging */
1171 control->nested_ctl = 1;
1172 clr_intercept(svm, INTERCEPT_INVLPG);
1173 clr_exception_intercept(svm, PF_VECTOR);
1174 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1175 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1176 save->g_pat = 0x0007040600070406ULL;
1177 save->cr3 = 0;
1178 save->cr4 = 0;
1179 }
1180 svm->asid_generation = 0;
1181
1182 svm->nested.vmcb = 0;
1183 svm->vcpu.arch.hflags = 0;
1184
1185 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1186 control->pause_filter_count = 3000;
1187 set_intercept(svm, INTERCEPT_PAUSE);
1188 }
1189
1190 mark_all_dirty(svm->vmcb);
1191
1192 enable_gif(svm);
1193 }
1194
1195 static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1196 {
1197 struct vcpu_svm *svm = to_svm(vcpu);
1198 u32 dummy;
1199 u32 eax = 1;
1200
1201 init_vmcb(svm);
1202
1203 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1204 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1205 }
1206
1207 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1208 {
1209 struct vcpu_svm *svm;
1210 struct page *page;
1211 struct page *msrpm_pages;
1212 struct page *hsave_page;
1213 struct page *nested_msrpm_pages;
1214 int err;
1215
1216 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1217 if (!svm) {
1218 err = -ENOMEM;
1219 goto out;
1220 }
1221
1222 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1223
1224 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1225 if (err)
1226 goto free_svm;
1227
1228 err = -ENOMEM;
1229 page = alloc_page(GFP_KERNEL);
1230 if (!page)
1231 goto uninit;
1232
1233 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1234 if (!msrpm_pages)
1235 goto free_page1;
1236
1237 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1238 if (!nested_msrpm_pages)
1239 goto free_page2;
1240
1241 hsave_page = alloc_page(GFP_KERNEL);
1242 if (!hsave_page)
1243 goto free_page3;
1244
1245 svm->nested.hsave = page_address(hsave_page);
1246
1247 svm->msrpm = page_address(msrpm_pages);
1248 svm_vcpu_init_msrpm(svm->msrpm);
1249
1250 svm->nested.msrpm = page_address(nested_msrpm_pages);
1251 svm_vcpu_init_msrpm(svm->nested.msrpm);
1252
1253 svm->vmcb = page_address(page);
1254 clear_page(svm->vmcb);
1255 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1256 svm->asid_generation = 0;
1257 init_vmcb(svm);
1258
1259 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1260 if (kvm_vcpu_is_bsp(&svm->vcpu))
1261 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1262
1263 svm_init_osvw(&svm->vcpu);
1264
1265 return &svm->vcpu;
1266
1267 free_page3:
1268 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1269 free_page2:
1270 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1271 free_page1:
1272 __free_page(page);
1273 uninit:
1274 kvm_vcpu_uninit(&svm->vcpu);
1275 free_svm:
1276 kmem_cache_free(kvm_vcpu_cache, svm);
1277 out:
1278 return ERR_PTR(err);
1279 }
1280
1281 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1282 {
1283 struct vcpu_svm *svm = to_svm(vcpu);
1284
1285 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1286 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1287 __free_page(virt_to_page(svm->nested.hsave));
1288 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1289 kvm_vcpu_uninit(vcpu);
1290 kmem_cache_free(kvm_vcpu_cache, svm);
1291 }
1292
1293 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1294 {
1295 struct vcpu_svm *svm = to_svm(vcpu);
1296 int i;
1297
1298 if (unlikely(cpu != vcpu->cpu)) {
1299 svm->asid_generation = 0;
1300 mark_all_dirty(svm->vmcb);
1301 }
1302
1303 #ifdef CONFIG_X86_64
1304 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1305 #endif
1306 savesegment(fs, svm->host.fs);
1307 savesegment(gs, svm->host.gs);
1308 svm->host.ldt = kvm_read_ldt();
1309
1310 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1311 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1312
1313 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1314 svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1315 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1316 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1317 }
1318 }
1319
1320 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1321 {
1322 struct vcpu_svm *svm = to_svm(vcpu);
1323 int i;
1324
1325 ++vcpu->stat.host_state_reload;
1326 kvm_load_ldt(svm->host.ldt);
1327 #ifdef CONFIG_X86_64
1328 loadsegment(fs, svm->host.fs);
1329 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1330 load_gs_index(svm->host.gs);
1331 #else
1332 #ifdef CONFIG_X86_32_LAZY_GS
1333 loadsegment(gs, svm->host.gs);
1334 #endif
1335 #endif
1336 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1337 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1338 }
1339
1340 static void svm_update_cpl(struct kvm_vcpu *vcpu)
1341 {
1342 struct vcpu_svm *svm = to_svm(vcpu);
1343 int cpl;
1344
1345 if (!is_protmode(vcpu))
1346 cpl = 0;
1347 else if (svm->vmcb->save.rflags & X86_EFLAGS_VM)
1348 cpl = 3;
1349 else
1350 cpl = svm->vmcb->save.cs.selector & 0x3;
1351
1352 svm->vmcb->save.cpl = cpl;
1353 }
1354
1355 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1356 {
1357 return to_svm(vcpu)->vmcb->save.rflags;
1358 }
1359
1360 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1361 {
1362 unsigned long old_rflags = to_svm(vcpu)->vmcb->save.rflags;
1363
1364 to_svm(vcpu)->vmcb->save.rflags = rflags;
1365 if ((old_rflags ^ rflags) & X86_EFLAGS_VM)
1366 svm_update_cpl(vcpu);
1367 }
1368
1369 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1370 {
1371 switch (reg) {
1372 case VCPU_EXREG_PDPTR:
1373 BUG_ON(!npt_enabled);
1374 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1375 break;
1376 default:
1377 BUG();
1378 }
1379 }
1380
1381 static void svm_set_vintr(struct vcpu_svm *svm)
1382 {
1383 set_intercept(svm, INTERCEPT_VINTR);
1384 }
1385
1386 static void svm_clear_vintr(struct vcpu_svm *svm)
1387 {
1388 clr_intercept(svm, INTERCEPT_VINTR);
1389 }
1390
1391 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1392 {
1393 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1394
1395 switch (seg) {
1396 case VCPU_SREG_CS: return &save->cs;
1397 case VCPU_SREG_DS: return &save->ds;
1398 case VCPU_SREG_ES: return &save->es;
1399 case VCPU_SREG_FS: return &save->fs;
1400 case VCPU_SREG_GS: return &save->gs;
1401 case VCPU_SREG_SS: return &save->ss;
1402 case VCPU_SREG_TR: return &save->tr;
1403 case VCPU_SREG_LDTR: return &save->ldtr;
1404 }
1405 BUG();
1406 return NULL;
1407 }
1408
1409 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1410 {
1411 struct vmcb_seg *s = svm_seg(vcpu, seg);
1412
1413 return s->base;
1414 }
1415
1416 static void svm_get_segment(struct kvm_vcpu *vcpu,
1417 struct kvm_segment *var, int seg)
1418 {
1419 struct vmcb_seg *s = svm_seg(vcpu, seg);
1420
1421 var->base = s->base;
1422 var->limit = s->limit;
1423 var->selector = s->selector;
1424 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1425 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1426 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1427 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1428 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1429 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1430 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1431 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1432
1433 /*
1434 * AMD's VMCB does not have an explicit unusable field, so emulate it
1435 * for cross vendor migration purposes by "not present"
1436 */
1437 var->unusable = !var->present || (var->type == 0);
1438
1439 switch (seg) {
1440 case VCPU_SREG_CS:
1441 /*
1442 * SVM always stores 0 for the 'G' bit in the CS selector in
1443 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1444 * Intel's VMENTRY has a check on the 'G' bit.
1445 */
1446 var->g = s->limit > 0xfffff;
1447 break;
1448 case VCPU_SREG_TR:
1449 /*
1450 * Work around a bug where the busy flag in the tr selector
1451 * isn't exposed
1452 */
1453 var->type |= 0x2;
1454 break;
1455 case VCPU_SREG_DS:
1456 case VCPU_SREG_ES:
1457 case VCPU_SREG_FS:
1458 case VCPU_SREG_GS:
1459 /*
1460 * The accessed bit must always be set in the segment
1461 * descriptor cache, although it can be cleared in the
1462 * descriptor, the cached bit always remains at 1. Since
1463 * Intel has a check on this, set it here to support
1464 * cross-vendor migration.
1465 */
1466 if (!var->unusable)
1467 var->type |= 0x1;
1468 break;
1469 case VCPU_SREG_SS:
1470 /*
1471 * On AMD CPUs sometimes the DB bit in the segment
1472 * descriptor is left as 1, although the whole segment has
1473 * been made unusable. Clear it here to pass an Intel VMX
1474 * entry check when cross vendor migrating.
1475 */
1476 if (var->unusable)
1477 var->db = 0;
1478 break;
1479 }
1480 }
1481
1482 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1483 {
1484 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1485
1486 return save->cpl;
1487 }
1488
1489 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1490 {
1491 struct vcpu_svm *svm = to_svm(vcpu);
1492
1493 dt->size = svm->vmcb->save.idtr.limit;
1494 dt->address = svm->vmcb->save.idtr.base;
1495 }
1496
1497 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1498 {
1499 struct vcpu_svm *svm = to_svm(vcpu);
1500
1501 svm->vmcb->save.idtr.limit = dt->size;
1502 svm->vmcb->save.idtr.base = dt->address ;
1503 mark_dirty(svm->vmcb, VMCB_DT);
1504 }
1505
1506 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1507 {
1508 struct vcpu_svm *svm = to_svm(vcpu);
1509
1510 dt->size = svm->vmcb->save.gdtr.limit;
1511 dt->address = svm->vmcb->save.gdtr.base;
1512 }
1513
1514 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1515 {
1516 struct vcpu_svm *svm = to_svm(vcpu);
1517
1518 svm->vmcb->save.gdtr.limit = dt->size;
1519 svm->vmcb->save.gdtr.base = dt->address ;
1520 mark_dirty(svm->vmcb, VMCB_DT);
1521 }
1522
1523 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1524 {
1525 }
1526
1527 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1528 {
1529 }
1530
1531 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1532 {
1533 }
1534
1535 static void update_cr0_intercept(struct vcpu_svm *svm)
1536 {
1537 ulong gcr0 = svm->vcpu.arch.cr0;
1538 u64 *hcr0 = &svm->vmcb->save.cr0;
1539
1540 if (!svm->vcpu.fpu_active)
1541 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1542 else
1543 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1544 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1545
1546 mark_dirty(svm->vmcb, VMCB_CR);
1547
1548 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1549 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1550 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1551 } else {
1552 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1553 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1554 }
1555 }
1556
1557 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1558 {
1559 struct vcpu_svm *svm = to_svm(vcpu);
1560
1561 #ifdef CONFIG_X86_64
1562 if (vcpu->arch.efer & EFER_LME) {
1563 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1564 vcpu->arch.efer |= EFER_LMA;
1565 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1566 }
1567
1568 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1569 vcpu->arch.efer &= ~EFER_LMA;
1570 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1571 }
1572 }
1573 #endif
1574 vcpu->arch.cr0 = cr0;
1575
1576 if (!npt_enabled)
1577 cr0 |= X86_CR0_PG | X86_CR0_WP;
1578
1579 if (!vcpu->fpu_active)
1580 cr0 |= X86_CR0_TS;
1581 /*
1582 * re-enable caching here because the QEMU bios
1583 * does not do it - this results in some delay at
1584 * reboot
1585 */
1586 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1587 svm->vmcb->save.cr0 = cr0;
1588 mark_dirty(svm->vmcb, VMCB_CR);
1589 update_cr0_intercept(svm);
1590 }
1591
1592 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1593 {
1594 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1595 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1596
1597 if (cr4 & X86_CR4_VMXE)
1598 return 1;
1599
1600 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1601 svm_flush_tlb(vcpu);
1602
1603 vcpu->arch.cr4 = cr4;
1604 if (!npt_enabled)
1605 cr4 |= X86_CR4_PAE;
1606 cr4 |= host_cr4_mce;
1607 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1608 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1609 return 0;
1610 }
1611
1612 static void svm_set_segment(struct kvm_vcpu *vcpu,
1613 struct kvm_segment *var, int seg)
1614 {
1615 struct vcpu_svm *svm = to_svm(vcpu);
1616 struct vmcb_seg *s = svm_seg(vcpu, seg);
1617
1618 s->base = var->base;
1619 s->limit = var->limit;
1620 s->selector = var->selector;
1621 if (var->unusable)
1622 s->attrib = 0;
1623 else {
1624 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1625 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1626 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1627 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1628 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1629 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1630 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1631 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1632 }
1633 if (seg == VCPU_SREG_CS)
1634 svm_update_cpl(vcpu);
1635
1636 mark_dirty(svm->vmcb, VMCB_SEG);
1637 }
1638
1639 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1640 {
1641 struct vcpu_svm *svm = to_svm(vcpu);
1642
1643 clr_exception_intercept(svm, DB_VECTOR);
1644 clr_exception_intercept(svm, BP_VECTOR);
1645
1646 if (svm->nmi_singlestep)
1647 set_exception_intercept(svm, DB_VECTOR);
1648
1649 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1650 if (vcpu->guest_debug &
1651 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1652 set_exception_intercept(svm, DB_VECTOR);
1653 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1654 set_exception_intercept(svm, BP_VECTOR);
1655 } else
1656 vcpu->guest_debug = 0;
1657 }
1658
1659 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1660 {
1661 if (sd->next_asid > sd->max_asid) {
1662 ++sd->asid_generation;
1663 sd->next_asid = 1;
1664 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1665 }
1666
1667 svm->asid_generation = sd->asid_generation;
1668 svm->vmcb->control.asid = sd->next_asid++;
1669
1670 mark_dirty(svm->vmcb, VMCB_ASID);
1671 }
1672
1673 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1674 {
1675 return to_svm(vcpu)->vmcb->save.dr6;
1676 }
1677
1678 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1679 {
1680 struct vcpu_svm *svm = to_svm(vcpu);
1681
1682 svm->vmcb->save.dr6 = value;
1683 mark_dirty(svm->vmcb, VMCB_DR);
1684 }
1685
1686 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1687 {
1688 struct vcpu_svm *svm = to_svm(vcpu);
1689
1690 svm->vmcb->save.dr7 = value;
1691 mark_dirty(svm->vmcb, VMCB_DR);
1692 }
1693
1694 static int pf_interception(struct vcpu_svm *svm)
1695 {
1696 u64 fault_address = svm->vmcb->control.exit_info_2;
1697 u32 error_code;
1698 int r = 1;
1699
1700 switch (svm->apf_reason) {
1701 default:
1702 error_code = svm->vmcb->control.exit_info_1;
1703
1704 trace_kvm_page_fault(fault_address, error_code);
1705 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1706 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1707 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1708 svm->vmcb->control.insn_bytes,
1709 svm->vmcb->control.insn_len);
1710 break;
1711 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1712 svm->apf_reason = 0;
1713 local_irq_disable();
1714 kvm_async_pf_task_wait(fault_address);
1715 local_irq_enable();
1716 break;
1717 case KVM_PV_REASON_PAGE_READY:
1718 svm->apf_reason = 0;
1719 local_irq_disable();
1720 kvm_async_pf_task_wake(fault_address);
1721 local_irq_enable();
1722 break;
1723 }
1724 return r;
1725 }
1726
1727 static int db_interception(struct vcpu_svm *svm)
1728 {
1729 struct kvm_run *kvm_run = svm->vcpu.run;
1730
1731 if (!(svm->vcpu.guest_debug &
1732 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1733 !svm->nmi_singlestep) {
1734 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1735 return 1;
1736 }
1737
1738 if (svm->nmi_singlestep) {
1739 svm->nmi_singlestep = false;
1740 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1741 svm->vmcb->save.rflags &=
1742 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1743 update_db_bp_intercept(&svm->vcpu);
1744 }
1745
1746 if (svm->vcpu.guest_debug &
1747 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1748 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1749 kvm_run->debug.arch.pc =
1750 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1751 kvm_run->debug.arch.exception = DB_VECTOR;
1752 return 0;
1753 }
1754
1755 return 1;
1756 }
1757
1758 static int bp_interception(struct vcpu_svm *svm)
1759 {
1760 struct kvm_run *kvm_run = svm->vcpu.run;
1761
1762 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1763 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1764 kvm_run->debug.arch.exception = BP_VECTOR;
1765 return 0;
1766 }
1767
1768 static int ud_interception(struct vcpu_svm *svm)
1769 {
1770 int er;
1771
1772 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1773 if (er != EMULATE_DONE)
1774 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1775 return 1;
1776 }
1777
1778 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1779 {
1780 struct vcpu_svm *svm = to_svm(vcpu);
1781
1782 clr_exception_intercept(svm, NM_VECTOR);
1783
1784 svm->vcpu.fpu_active = 1;
1785 update_cr0_intercept(svm);
1786 }
1787
1788 static int nm_interception(struct vcpu_svm *svm)
1789 {
1790 svm_fpu_activate(&svm->vcpu);
1791 return 1;
1792 }
1793
1794 static bool is_erratum_383(void)
1795 {
1796 int err, i;
1797 u64 value;
1798
1799 if (!erratum_383_found)
1800 return false;
1801
1802 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1803 if (err)
1804 return false;
1805
1806 /* Bit 62 may or may not be set for this mce */
1807 value &= ~(1ULL << 62);
1808
1809 if (value != 0xb600000000010015ULL)
1810 return false;
1811
1812 /* Clear MCi_STATUS registers */
1813 for (i = 0; i < 6; ++i)
1814 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1815
1816 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1817 if (!err) {
1818 u32 low, high;
1819
1820 value &= ~(1ULL << 2);
1821 low = lower_32_bits(value);
1822 high = upper_32_bits(value);
1823
1824 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1825 }
1826
1827 /* Flush tlb to evict multi-match entries */
1828 __flush_tlb_all();
1829
1830 return true;
1831 }
1832
1833 static void svm_handle_mce(struct vcpu_svm *svm)
1834 {
1835 if (is_erratum_383()) {
1836 /*
1837 * Erratum 383 triggered. Guest state is corrupt so kill the
1838 * guest.
1839 */
1840 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1841
1842 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1843
1844 return;
1845 }
1846
1847 /*
1848 * On an #MC intercept the MCE handler is not called automatically in
1849 * the host. So do it by hand here.
1850 */
1851 asm volatile (
1852 "int $0x12\n");
1853 /* not sure if we ever come back to this point */
1854
1855 return;
1856 }
1857
1858 static int mc_interception(struct vcpu_svm *svm)
1859 {
1860 return 1;
1861 }
1862
1863 static int shutdown_interception(struct vcpu_svm *svm)
1864 {
1865 struct kvm_run *kvm_run = svm->vcpu.run;
1866
1867 /*
1868 * VMCB is undefined after a SHUTDOWN intercept
1869 * so reinitialize it.
1870 */
1871 clear_page(svm->vmcb);
1872 init_vmcb(svm);
1873
1874 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1875 return 0;
1876 }
1877
1878 static int io_interception(struct vcpu_svm *svm)
1879 {
1880 struct kvm_vcpu *vcpu = &svm->vcpu;
1881 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1882 int size, in, string;
1883 unsigned port;
1884
1885 ++svm->vcpu.stat.io_exits;
1886 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1887 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1888 if (string || in)
1889 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1890
1891 port = io_info >> 16;
1892 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1893 svm->next_rip = svm->vmcb->control.exit_info_2;
1894 skip_emulated_instruction(&svm->vcpu);
1895
1896 return kvm_fast_pio_out(vcpu, size, port);
1897 }
1898
1899 static int nmi_interception(struct vcpu_svm *svm)
1900 {
1901 return 1;
1902 }
1903
1904 static int intr_interception(struct vcpu_svm *svm)
1905 {
1906 ++svm->vcpu.stat.irq_exits;
1907 return 1;
1908 }
1909
1910 static int nop_on_interception(struct vcpu_svm *svm)
1911 {
1912 return 1;
1913 }
1914
1915 static int halt_interception(struct vcpu_svm *svm)
1916 {
1917 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1918 skip_emulated_instruction(&svm->vcpu);
1919 return kvm_emulate_halt(&svm->vcpu);
1920 }
1921
1922 static int vmmcall_interception(struct vcpu_svm *svm)
1923 {
1924 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1925 skip_emulated_instruction(&svm->vcpu);
1926 kvm_emulate_hypercall(&svm->vcpu);
1927 return 1;
1928 }
1929
1930 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1931 {
1932 struct vcpu_svm *svm = to_svm(vcpu);
1933
1934 return svm->nested.nested_cr3;
1935 }
1936
1937 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1938 {
1939 struct vcpu_svm *svm = to_svm(vcpu);
1940 u64 cr3 = svm->nested.nested_cr3;
1941 u64 pdpte;
1942 int ret;
1943
1944 ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1945 offset_in_page(cr3) + index * 8, 8);
1946 if (ret)
1947 return 0;
1948 return pdpte;
1949 }
1950
1951 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1952 unsigned long root)
1953 {
1954 struct vcpu_svm *svm = to_svm(vcpu);
1955
1956 svm->vmcb->control.nested_cr3 = root;
1957 mark_dirty(svm->vmcb, VMCB_NPT);
1958 svm_flush_tlb(vcpu);
1959 }
1960
1961 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1962 struct x86_exception *fault)
1963 {
1964 struct vcpu_svm *svm = to_svm(vcpu);
1965
1966 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1967 svm->vmcb->control.exit_code_hi = 0;
1968 svm->vmcb->control.exit_info_1 = fault->error_code;
1969 svm->vmcb->control.exit_info_2 = fault->address;
1970
1971 nested_svm_vmexit(svm);
1972 }
1973
1974 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1975 {
1976 kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1977
1978 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1979 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1980 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
1981 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1982 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1983 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1984 }
1985
1986 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1987 {
1988 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1989 }
1990
1991 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1992 {
1993 if (!(svm->vcpu.arch.efer & EFER_SVME)
1994 || !is_paging(&svm->vcpu)) {
1995 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1996 return 1;
1997 }
1998
1999 if (svm->vmcb->save.cpl) {
2000 kvm_inject_gp(&svm->vcpu, 0);
2001 return 1;
2002 }
2003
2004 return 0;
2005 }
2006
2007 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2008 bool has_error_code, u32 error_code)
2009 {
2010 int vmexit;
2011
2012 if (!is_guest_mode(&svm->vcpu))
2013 return 0;
2014
2015 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2016 svm->vmcb->control.exit_code_hi = 0;
2017 svm->vmcb->control.exit_info_1 = error_code;
2018 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2019
2020 vmexit = nested_svm_intercept(svm);
2021 if (vmexit == NESTED_EXIT_DONE)
2022 svm->nested.exit_required = true;
2023
2024 return vmexit;
2025 }
2026
2027 /* This function returns true if it is save to enable the irq window */
2028 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2029 {
2030 if (!is_guest_mode(&svm->vcpu))
2031 return true;
2032
2033 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2034 return true;
2035
2036 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2037 return false;
2038
2039 /*
2040 * if vmexit was already requested (by intercepted exception
2041 * for instance) do not overwrite it with "external interrupt"
2042 * vmexit.
2043 */
2044 if (svm->nested.exit_required)
2045 return false;
2046
2047 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2048 svm->vmcb->control.exit_info_1 = 0;
2049 svm->vmcb->control.exit_info_2 = 0;
2050
2051 if (svm->nested.intercept & 1ULL) {
2052 /*
2053 * The #vmexit can't be emulated here directly because this
2054 * code path runs with irqs and preemption disabled. A
2055 * #vmexit emulation might sleep. Only signal request for
2056 * the #vmexit here.
2057 */
2058 svm->nested.exit_required = true;
2059 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2060 return false;
2061 }
2062
2063 return true;
2064 }
2065
2066 /* This function returns true if it is save to enable the nmi window */
2067 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2068 {
2069 if (!is_guest_mode(&svm->vcpu))
2070 return true;
2071
2072 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2073 return true;
2074
2075 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2076 svm->nested.exit_required = true;
2077
2078 return false;
2079 }
2080
2081 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2082 {
2083 struct page *page;
2084
2085 might_sleep();
2086
2087 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2088 if (is_error_page(page))
2089 goto error;
2090
2091 *_page = page;
2092
2093 return kmap(page);
2094
2095 error:
2096 kvm_inject_gp(&svm->vcpu, 0);
2097
2098 return NULL;
2099 }
2100
2101 static void nested_svm_unmap(struct page *page)
2102 {
2103 kunmap(page);
2104 kvm_release_page_dirty(page);
2105 }
2106
2107 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2108 {
2109 unsigned port;
2110 u8 val, bit;
2111 u64 gpa;
2112
2113 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2114 return NESTED_EXIT_HOST;
2115
2116 port = svm->vmcb->control.exit_info_1 >> 16;
2117 gpa = svm->nested.vmcb_iopm + (port / 8);
2118 bit = port % 8;
2119 val = 0;
2120
2121 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2122 val &= (1 << bit);
2123
2124 return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2125 }
2126
2127 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2128 {
2129 u32 offset, msr, value;
2130 int write, mask;
2131
2132 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2133 return NESTED_EXIT_HOST;
2134
2135 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2136 offset = svm_msrpm_offset(msr);
2137 write = svm->vmcb->control.exit_info_1 & 1;
2138 mask = 1 << ((2 * (msr & 0xf)) + write);
2139
2140 if (offset == MSR_INVALID)
2141 return NESTED_EXIT_DONE;
2142
2143 /* Offset is in 32 bit units but need in 8 bit units */
2144 offset *= 4;
2145
2146 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2147 return NESTED_EXIT_DONE;
2148
2149 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2150 }
2151
2152 static int nested_svm_exit_special(struct vcpu_svm *svm)
2153 {
2154 u32 exit_code = svm->vmcb->control.exit_code;
2155
2156 switch (exit_code) {
2157 case SVM_EXIT_INTR:
2158 case SVM_EXIT_NMI:
2159 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2160 return NESTED_EXIT_HOST;
2161 case SVM_EXIT_NPF:
2162 /* For now we are always handling NPFs when using them */
2163 if (npt_enabled)
2164 return NESTED_EXIT_HOST;
2165 break;
2166 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2167 /* When we're shadowing, trap PFs, but not async PF */
2168 if (!npt_enabled && svm->apf_reason == 0)
2169 return NESTED_EXIT_HOST;
2170 break;
2171 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2172 nm_interception(svm);
2173 break;
2174 default:
2175 break;
2176 }
2177
2178 return NESTED_EXIT_CONTINUE;
2179 }
2180
2181 /*
2182 * If this function returns true, this #vmexit was already handled
2183 */
2184 static int nested_svm_intercept(struct vcpu_svm *svm)
2185 {
2186 u32 exit_code = svm->vmcb->control.exit_code;
2187 int vmexit = NESTED_EXIT_HOST;
2188
2189 switch (exit_code) {
2190 case SVM_EXIT_MSR:
2191 vmexit = nested_svm_exit_handled_msr(svm);
2192 break;
2193 case SVM_EXIT_IOIO:
2194 vmexit = nested_svm_intercept_ioio(svm);
2195 break;
2196 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2197 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2198 if (svm->nested.intercept_cr & bit)
2199 vmexit = NESTED_EXIT_DONE;
2200 break;
2201 }
2202 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2203 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2204 if (svm->nested.intercept_dr & bit)
2205 vmexit = NESTED_EXIT_DONE;
2206 break;
2207 }
2208 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2209 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2210 if (svm->nested.intercept_exceptions & excp_bits)
2211 vmexit = NESTED_EXIT_DONE;
2212 /* async page fault always cause vmexit */
2213 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2214 svm->apf_reason != 0)
2215 vmexit = NESTED_EXIT_DONE;
2216 break;
2217 }
2218 case SVM_EXIT_ERR: {
2219 vmexit = NESTED_EXIT_DONE;
2220 break;
2221 }
2222 default: {
2223 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2224 if (svm->nested.intercept & exit_bits)
2225 vmexit = NESTED_EXIT_DONE;
2226 }
2227 }
2228
2229 return vmexit;
2230 }
2231
2232 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2233 {
2234 int vmexit;
2235
2236 vmexit = nested_svm_intercept(svm);
2237
2238 if (vmexit == NESTED_EXIT_DONE)
2239 nested_svm_vmexit(svm);
2240
2241 return vmexit;
2242 }
2243
2244 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2245 {
2246 struct vmcb_control_area *dst = &dst_vmcb->control;
2247 struct vmcb_control_area *from = &from_vmcb->control;
2248
2249 dst->intercept_cr = from->intercept_cr;
2250 dst->intercept_dr = from->intercept_dr;
2251 dst->intercept_exceptions = from->intercept_exceptions;
2252 dst->intercept = from->intercept;
2253 dst->iopm_base_pa = from->iopm_base_pa;
2254 dst->msrpm_base_pa = from->msrpm_base_pa;
2255 dst->tsc_offset = from->tsc_offset;
2256 dst->asid = from->asid;
2257 dst->tlb_ctl = from->tlb_ctl;
2258 dst->int_ctl = from->int_ctl;
2259 dst->int_vector = from->int_vector;
2260 dst->int_state = from->int_state;
2261 dst->exit_code = from->exit_code;
2262 dst->exit_code_hi = from->exit_code_hi;
2263 dst->exit_info_1 = from->exit_info_1;
2264 dst->exit_info_2 = from->exit_info_2;
2265 dst->exit_int_info = from->exit_int_info;
2266 dst->exit_int_info_err = from->exit_int_info_err;
2267 dst->nested_ctl = from->nested_ctl;
2268 dst->event_inj = from->event_inj;
2269 dst->event_inj_err = from->event_inj_err;
2270 dst->nested_cr3 = from->nested_cr3;
2271 dst->lbr_ctl = from->lbr_ctl;
2272 }
2273
2274 static int nested_svm_vmexit(struct vcpu_svm *svm)
2275 {
2276 struct vmcb *nested_vmcb;
2277 struct vmcb *hsave = svm->nested.hsave;
2278 struct vmcb *vmcb = svm->vmcb;
2279 struct page *page;
2280
2281 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2282 vmcb->control.exit_info_1,
2283 vmcb->control.exit_info_2,
2284 vmcb->control.exit_int_info,
2285 vmcb->control.exit_int_info_err,
2286 KVM_ISA_SVM);
2287
2288 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2289 if (!nested_vmcb)
2290 return 1;
2291
2292 /* Exit Guest-Mode */
2293 leave_guest_mode(&svm->vcpu);
2294 svm->nested.vmcb = 0;
2295
2296 /* Give the current vmcb to the guest */
2297 disable_gif(svm);
2298
2299 nested_vmcb->save.es = vmcb->save.es;
2300 nested_vmcb->save.cs = vmcb->save.cs;
2301 nested_vmcb->save.ss = vmcb->save.ss;
2302 nested_vmcb->save.ds = vmcb->save.ds;
2303 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2304 nested_vmcb->save.idtr = vmcb->save.idtr;
2305 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2306 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2307 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2308 nested_vmcb->save.cr2 = vmcb->save.cr2;
2309 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2310 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2311 nested_vmcb->save.rip = vmcb->save.rip;
2312 nested_vmcb->save.rsp = vmcb->save.rsp;
2313 nested_vmcb->save.rax = vmcb->save.rax;
2314 nested_vmcb->save.dr7 = vmcb->save.dr7;
2315 nested_vmcb->save.dr6 = vmcb->save.dr6;
2316 nested_vmcb->save.cpl = vmcb->save.cpl;
2317
2318 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2319 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2320 nested_vmcb->control.int_state = vmcb->control.int_state;
2321 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2322 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2323 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2324 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2325 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2326 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2327 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2328
2329 /*
2330 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2331 * to make sure that we do not lose injected events. So check event_inj
2332 * here and copy it to exit_int_info if it is valid.
2333 * Exit_int_info and event_inj can't be both valid because the case
2334 * below only happens on a VMRUN instruction intercept which has
2335 * no valid exit_int_info set.
2336 */
2337 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2338 struct vmcb_control_area *nc = &nested_vmcb->control;
2339
2340 nc->exit_int_info = vmcb->control.event_inj;
2341 nc->exit_int_info_err = vmcb->control.event_inj_err;
2342 }
2343
2344 nested_vmcb->control.tlb_ctl = 0;
2345 nested_vmcb->control.event_inj = 0;
2346 nested_vmcb->control.event_inj_err = 0;
2347
2348 /* We always set V_INTR_MASKING and remember the old value in hflags */
2349 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2350 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2351
2352 /* Restore the original control entries */
2353 copy_vmcb_control_area(vmcb, hsave);
2354
2355 kvm_clear_exception_queue(&svm->vcpu);
2356 kvm_clear_interrupt_queue(&svm->vcpu);
2357
2358 svm->nested.nested_cr3 = 0;
2359
2360 /* Restore selected save entries */
2361 svm->vmcb->save.es = hsave->save.es;
2362 svm->vmcb->save.cs = hsave->save.cs;
2363 svm->vmcb->save.ss = hsave->save.ss;
2364 svm->vmcb->save.ds = hsave->save.ds;
2365 svm->vmcb->save.gdtr = hsave->save.gdtr;
2366 svm->vmcb->save.idtr = hsave->save.idtr;
2367 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2368 svm_set_efer(&svm->vcpu, hsave->save.efer);
2369 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2370 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2371 if (npt_enabled) {
2372 svm->vmcb->save.cr3 = hsave->save.cr3;
2373 svm->vcpu.arch.cr3 = hsave->save.cr3;
2374 } else {
2375 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2376 }
2377 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2378 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2379 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2380 svm->vmcb->save.dr7 = 0;
2381 svm->vmcb->save.cpl = 0;
2382 svm->vmcb->control.exit_int_info = 0;
2383
2384 mark_all_dirty(svm->vmcb);
2385
2386 nested_svm_unmap(page);
2387
2388 nested_svm_uninit_mmu_context(&svm->vcpu);
2389 kvm_mmu_reset_context(&svm->vcpu);
2390 kvm_mmu_load(&svm->vcpu);
2391
2392 return 0;
2393 }
2394
2395 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2396 {
2397 /*
2398 * This function merges the msr permission bitmaps of kvm and the
2399 * nested vmcb. It is optimized in that it only merges the parts where
2400 * the kvm msr permission bitmap may contain zero bits
2401 */
2402 int i;
2403
2404 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2405 return true;
2406
2407 for (i = 0; i < MSRPM_OFFSETS; i++) {
2408 u32 value, p;
2409 u64 offset;
2410
2411 if (msrpm_offsets[i] == 0xffffffff)
2412 break;
2413
2414 p = msrpm_offsets[i];
2415 offset = svm->nested.vmcb_msrpm + (p * 4);
2416
2417 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2418 return false;
2419
2420 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2421 }
2422
2423 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2424
2425 return true;
2426 }
2427
2428 static bool nested_vmcb_checks(struct vmcb *vmcb)
2429 {
2430 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2431 return false;
2432
2433 if (vmcb->control.asid == 0)
2434 return false;
2435
2436 if (vmcb->control.nested_ctl && !npt_enabled)
2437 return false;
2438
2439 return true;
2440 }
2441
2442 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2443 {
2444 struct vmcb *nested_vmcb;
2445 struct vmcb *hsave = svm->nested.hsave;
2446 struct vmcb *vmcb = svm->vmcb;
2447 struct page *page;
2448 u64 vmcb_gpa;
2449
2450 vmcb_gpa = svm->vmcb->save.rax;
2451
2452 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2453 if (!nested_vmcb)
2454 return false;
2455
2456 if (!nested_vmcb_checks(nested_vmcb)) {
2457 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2458 nested_vmcb->control.exit_code_hi = 0;
2459 nested_vmcb->control.exit_info_1 = 0;
2460 nested_vmcb->control.exit_info_2 = 0;
2461
2462 nested_svm_unmap(page);
2463
2464 return false;
2465 }
2466
2467 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2468 nested_vmcb->save.rip,
2469 nested_vmcb->control.int_ctl,
2470 nested_vmcb->control.event_inj,
2471 nested_vmcb->control.nested_ctl);
2472
2473 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2474 nested_vmcb->control.intercept_cr >> 16,
2475 nested_vmcb->control.intercept_exceptions,
2476 nested_vmcb->control.intercept);
2477
2478 /* Clear internal status */
2479 kvm_clear_exception_queue(&svm->vcpu);
2480 kvm_clear_interrupt_queue(&svm->vcpu);
2481
2482 /*
2483 * Save the old vmcb, so we don't need to pick what we save, but can
2484 * restore everything when a VMEXIT occurs
2485 */
2486 hsave->save.es = vmcb->save.es;
2487 hsave->save.cs = vmcb->save.cs;
2488 hsave->save.ss = vmcb->save.ss;
2489 hsave->save.ds = vmcb->save.ds;
2490 hsave->save.gdtr = vmcb->save.gdtr;
2491 hsave->save.idtr = vmcb->save.idtr;
2492 hsave->save.efer = svm->vcpu.arch.efer;
2493 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2494 hsave->save.cr4 = svm->vcpu.arch.cr4;
2495 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2496 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2497 hsave->save.rsp = vmcb->save.rsp;
2498 hsave->save.rax = vmcb->save.rax;
2499 if (npt_enabled)
2500 hsave->save.cr3 = vmcb->save.cr3;
2501 else
2502 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2503
2504 copy_vmcb_control_area(hsave, vmcb);
2505
2506 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2507 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2508 else
2509 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2510
2511 if (nested_vmcb->control.nested_ctl) {
2512 kvm_mmu_unload(&svm->vcpu);
2513 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2514 nested_svm_init_mmu_context(&svm->vcpu);
2515 }
2516
2517 /* Load the nested guest state */
2518 svm->vmcb->save.es = nested_vmcb->save.es;
2519 svm->vmcb->save.cs = nested_vmcb->save.cs;
2520 svm->vmcb->save.ss = nested_vmcb->save.ss;
2521 svm->vmcb->save.ds = nested_vmcb->save.ds;
2522 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2523 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2524 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2525 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2526 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2527 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2528 if (npt_enabled) {
2529 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2530 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2531 } else
2532 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2533
2534 /* Guest paging mode is active - reset mmu */
2535 kvm_mmu_reset_context(&svm->vcpu);
2536
2537 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2538 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2539 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2540 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2541
2542 /* In case we don't even reach vcpu_run, the fields are not updated */
2543 svm->vmcb->save.rax = nested_vmcb->save.rax;
2544 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2545 svm->vmcb->save.rip = nested_vmcb->save.rip;
2546 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2547 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2548 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2549
2550 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2551 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2552
2553 /* cache intercepts */
2554 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2555 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2556 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2557 svm->nested.intercept = nested_vmcb->control.intercept;
2558
2559 svm_flush_tlb(&svm->vcpu);
2560 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2561 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2562 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2563 else
2564 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2565
2566 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2567 /* We only want the cr8 intercept bits of the guest */
2568 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2569 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2570 }
2571
2572 /* We don't want to see VMMCALLs from a nested guest */
2573 clr_intercept(svm, INTERCEPT_VMMCALL);
2574
2575 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2576 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2577 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2578 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2579 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2580 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2581
2582 nested_svm_unmap(page);
2583
2584 /* Enter Guest-Mode */
2585 enter_guest_mode(&svm->vcpu);
2586
2587 /*
2588 * Merge guest and host intercepts - must be called with vcpu in
2589 * guest-mode to take affect here
2590 */
2591 recalc_intercepts(svm);
2592
2593 svm->nested.vmcb = vmcb_gpa;
2594
2595 enable_gif(svm);
2596
2597 mark_all_dirty(svm->vmcb);
2598
2599 return true;
2600 }
2601
2602 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2603 {
2604 to_vmcb->save.fs = from_vmcb->save.fs;
2605 to_vmcb->save.gs = from_vmcb->save.gs;
2606 to_vmcb->save.tr = from_vmcb->save.tr;
2607 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2608 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2609 to_vmcb->save.star = from_vmcb->save.star;
2610 to_vmcb->save.lstar = from_vmcb->save.lstar;
2611 to_vmcb->save.cstar = from_vmcb->save.cstar;
2612 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2613 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2614 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2615 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2616 }
2617
2618 static int vmload_interception(struct vcpu_svm *svm)
2619 {
2620 struct vmcb *nested_vmcb;
2621 struct page *page;
2622
2623 if (nested_svm_check_permissions(svm))
2624 return 1;
2625
2626 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2627 if (!nested_vmcb)
2628 return 1;
2629
2630 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2631 skip_emulated_instruction(&svm->vcpu);
2632
2633 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2634 nested_svm_unmap(page);
2635
2636 return 1;
2637 }
2638
2639 static int vmsave_interception(struct vcpu_svm *svm)
2640 {
2641 struct vmcb *nested_vmcb;
2642 struct page *page;
2643
2644 if (nested_svm_check_permissions(svm))
2645 return 1;
2646
2647 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2648 if (!nested_vmcb)
2649 return 1;
2650
2651 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2652 skip_emulated_instruction(&svm->vcpu);
2653
2654 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2655 nested_svm_unmap(page);
2656
2657 return 1;
2658 }
2659
2660 static int vmrun_interception(struct vcpu_svm *svm)
2661 {
2662 if (nested_svm_check_permissions(svm))
2663 return 1;
2664
2665 /* Save rip after vmrun instruction */
2666 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2667
2668 if (!nested_svm_vmrun(svm))
2669 return 1;
2670
2671 if (!nested_svm_vmrun_msrpm(svm))
2672 goto failed;
2673
2674 return 1;
2675
2676 failed:
2677
2678 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2679 svm->vmcb->control.exit_code_hi = 0;
2680 svm->vmcb->control.exit_info_1 = 0;
2681 svm->vmcb->control.exit_info_2 = 0;
2682
2683 nested_svm_vmexit(svm);
2684
2685 return 1;
2686 }
2687
2688 static int stgi_interception(struct vcpu_svm *svm)
2689 {
2690 if (nested_svm_check_permissions(svm))
2691 return 1;
2692
2693 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2694 skip_emulated_instruction(&svm->vcpu);
2695 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2696
2697 enable_gif(svm);
2698
2699 return 1;
2700 }
2701
2702 static int clgi_interception(struct vcpu_svm *svm)
2703 {
2704 if (nested_svm_check_permissions(svm))
2705 return 1;
2706
2707 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2708 skip_emulated_instruction(&svm->vcpu);
2709
2710 disable_gif(svm);
2711
2712 /* After a CLGI no interrupts should come */
2713 svm_clear_vintr(svm);
2714 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2715
2716 mark_dirty(svm->vmcb, VMCB_INTR);
2717
2718 return 1;
2719 }
2720
2721 static int invlpga_interception(struct vcpu_svm *svm)
2722 {
2723 struct kvm_vcpu *vcpu = &svm->vcpu;
2724
2725 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2726 vcpu->arch.regs[VCPU_REGS_RAX]);
2727
2728 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2729 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2730
2731 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2732 skip_emulated_instruction(&svm->vcpu);
2733 return 1;
2734 }
2735
2736 static int skinit_interception(struct vcpu_svm *svm)
2737 {
2738 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2739
2740 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2741 return 1;
2742 }
2743
2744 static int xsetbv_interception(struct vcpu_svm *svm)
2745 {
2746 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2747 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2748
2749 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2750 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2751 skip_emulated_instruction(&svm->vcpu);
2752 }
2753
2754 return 1;
2755 }
2756
2757 static int invalid_op_interception(struct vcpu_svm *svm)
2758 {
2759 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2760 return 1;
2761 }
2762
2763 static int task_switch_interception(struct vcpu_svm *svm)
2764 {
2765 u16 tss_selector;
2766 int reason;
2767 int int_type = svm->vmcb->control.exit_int_info &
2768 SVM_EXITINTINFO_TYPE_MASK;
2769 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2770 uint32_t type =
2771 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2772 uint32_t idt_v =
2773 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2774 bool has_error_code = false;
2775 u32 error_code = 0;
2776
2777 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2778
2779 if (svm->vmcb->control.exit_info_2 &
2780 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2781 reason = TASK_SWITCH_IRET;
2782 else if (svm->vmcb->control.exit_info_2 &
2783 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2784 reason = TASK_SWITCH_JMP;
2785 else if (idt_v)
2786 reason = TASK_SWITCH_GATE;
2787 else
2788 reason = TASK_SWITCH_CALL;
2789
2790 if (reason == TASK_SWITCH_GATE) {
2791 switch (type) {
2792 case SVM_EXITINTINFO_TYPE_NMI:
2793 svm->vcpu.arch.nmi_injected = false;
2794 break;
2795 case SVM_EXITINTINFO_TYPE_EXEPT:
2796 if (svm->vmcb->control.exit_info_2 &
2797 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2798 has_error_code = true;
2799 error_code =
2800 (u32)svm->vmcb->control.exit_info_2;
2801 }
2802 kvm_clear_exception_queue(&svm->vcpu);
2803 break;
2804 case SVM_EXITINTINFO_TYPE_INTR:
2805 kvm_clear_interrupt_queue(&svm->vcpu);
2806 break;
2807 default:
2808 break;
2809 }
2810 }
2811
2812 if (reason != TASK_SWITCH_GATE ||
2813 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2814 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2815 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2816 skip_emulated_instruction(&svm->vcpu);
2817
2818 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2819 int_vec = -1;
2820
2821 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2822 has_error_code, error_code) == EMULATE_FAIL) {
2823 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2824 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2825 svm->vcpu.run->internal.ndata = 0;
2826 return 0;
2827 }
2828 return 1;
2829 }
2830
2831 static int cpuid_interception(struct vcpu_svm *svm)
2832 {
2833 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2834 kvm_emulate_cpuid(&svm->vcpu);
2835 return 1;
2836 }
2837
2838 static int iret_interception(struct vcpu_svm *svm)
2839 {
2840 ++svm->vcpu.stat.nmi_window_exits;
2841 clr_intercept(svm, INTERCEPT_IRET);
2842 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2843 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2844 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2845 return 1;
2846 }
2847
2848 static int invlpg_interception(struct vcpu_svm *svm)
2849 {
2850 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2851 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2852
2853 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2854 skip_emulated_instruction(&svm->vcpu);
2855 return 1;
2856 }
2857
2858 static int emulate_on_interception(struct vcpu_svm *svm)
2859 {
2860 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2861 }
2862
2863 static int rdpmc_interception(struct vcpu_svm *svm)
2864 {
2865 int err;
2866
2867 if (!static_cpu_has(X86_FEATURE_NRIPS))
2868 return emulate_on_interception(svm);
2869
2870 err = kvm_rdpmc(&svm->vcpu);
2871 kvm_complete_insn_gp(&svm->vcpu, err);
2872
2873 return 1;
2874 }
2875
2876 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2877 {
2878 unsigned long cr0 = svm->vcpu.arch.cr0;
2879 bool ret = false;
2880 u64 intercept;
2881
2882 intercept = svm->nested.intercept;
2883
2884 if (!is_guest_mode(&svm->vcpu) ||
2885 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2886 return false;
2887
2888 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2889 val &= ~SVM_CR0_SELECTIVE_MASK;
2890
2891 if (cr0 ^ val) {
2892 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2893 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2894 }
2895
2896 return ret;
2897 }
2898
2899 #define CR_VALID (1ULL << 63)
2900
2901 static int cr_interception(struct vcpu_svm *svm)
2902 {
2903 int reg, cr;
2904 unsigned long val;
2905 int err;
2906
2907 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2908 return emulate_on_interception(svm);
2909
2910 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2911 return emulate_on_interception(svm);
2912
2913 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2914 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2915
2916 err = 0;
2917 if (cr >= 16) { /* mov to cr */
2918 cr -= 16;
2919 val = kvm_register_read(&svm->vcpu, reg);
2920 switch (cr) {
2921 case 0:
2922 if (!check_selective_cr0_intercepted(svm, val))
2923 err = kvm_set_cr0(&svm->vcpu, val);
2924 else
2925 return 1;
2926
2927 break;
2928 case 3:
2929 err = kvm_set_cr3(&svm->vcpu, val);
2930 break;
2931 case 4:
2932 err = kvm_set_cr4(&svm->vcpu, val);
2933 break;
2934 case 8:
2935 err = kvm_set_cr8(&svm->vcpu, val);
2936 break;
2937 default:
2938 WARN(1, "unhandled write to CR%d", cr);
2939 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2940 return 1;
2941 }
2942 } else { /* mov from cr */
2943 switch (cr) {
2944 case 0:
2945 val = kvm_read_cr0(&svm->vcpu);
2946 break;
2947 case 2:
2948 val = svm->vcpu.arch.cr2;
2949 break;
2950 case 3:
2951 val = kvm_read_cr3(&svm->vcpu);
2952 break;
2953 case 4:
2954 val = kvm_read_cr4(&svm->vcpu);
2955 break;
2956 case 8:
2957 val = kvm_get_cr8(&svm->vcpu);
2958 break;
2959 default:
2960 WARN(1, "unhandled read from CR%d", cr);
2961 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2962 return 1;
2963 }
2964 kvm_register_write(&svm->vcpu, reg, val);
2965 }
2966 kvm_complete_insn_gp(&svm->vcpu, err);
2967
2968 return 1;
2969 }
2970
2971 static int dr_interception(struct vcpu_svm *svm)
2972 {
2973 int reg, dr;
2974 unsigned long val;
2975 int err;
2976
2977 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2978 return emulate_on_interception(svm);
2979
2980 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2981 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2982
2983 if (dr >= 16) { /* mov to DRn */
2984 val = kvm_register_read(&svm->vcpu, reg);
2985 kvm_set_dr(&svm->vcpu, dr - 16, val);
2986 } else {
2987 err = kvm_get_dr(&svm->vcpu, dr, &val);
2988 if (!err)
2989 kvm_register_write(&svm->vcpu, reg, val);
2990 }
2991
2992 skip_emulated_instruction(&svm->vcpu);
2993
2994 return 1;
2995 }
2996
2997 static int cr8_write_interception(struct vcpu_svm *svm)
2998 {
2999 struct kvm_run *kvm_run = svm->vcpu.run;
3000 int r;
3001
3002 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3003 /* instruction emulation calls kvm_set_cr8() */
3004 r = cr_interception(svm);
3005 if (irqchip_in_kernel(svm->vcpu.kvm)) {
3006 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3007 return r;
3008 }
3009 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3010 return r;
3011 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3012 return 0;
3013 }
3014
3015 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3016 {
3017 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3018 return vmcb->control.tsc_offset +
3019 svm_scale_tsc(vcpu, host_tsc);
3020 }
3021
3022 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3023 {
3024 struct vcpu_svm *svm = to_svm(vcpu);
3025
3026 switch (ecx) {
3027 case MSR_IA32_TSC: {
3028 *data = svm->vmcb->control.tsc_offset +
3029 svm_scale_tsc(vcpu, native_read_tsc());
3030
3031 break;
3032 }
3033 case MSR_STAR:
3034 *data = svm->vmcb->save.star;
3035 break;
3036 #ifdef CONFIG_X86_64
3037 case MSR_LSTAR:
3038 *data = svm->vmcb->save.lstar;
3039 break;
3040 case MSR_CSTAR:
3041 *data = svm->vmcb->save.cstar;
3042 break;
3043 case MSR_KERNEL_GS_BASE:
3044 *data = svm->vmcb->save.kernel_gs_base;
3045 break;
3046 case MSR_SYSCALL_MASK:
3047 *data = svm->vmcb->save.sfmask;
3048 break;
3049 #endif
3050 case MSR_IA32_SYSENTER_CS:
3051 *data = svm->vmcb->save.sysenter_cs;
3052 break;
3053 case MSR_IA32_SYSENTER_EIP:
3054 *data = svm->sysenter_eip;
3055 break;
3056 case MSR_IA32_SYSENTER_ESP:
3057 *data = svm->sysenter_esp;
3058 break;
3059 /*
3060 * Nobody will change the following 5 values in the VMCB so we can
3061 * safely return them on rdmsr. They will always be 0 until LBRV is
3062 * implemented.
3063 */
3064 case MSR_IA32_DEBUGCTLMSR:
3065 *data = svm->vmcb->save.dbgctl;
3066 break;
3067 case MSR_IA32_LASTBRANCHFROMIP:
3068 *data = svm->vmcb->save.br_from;
3069 break;
3070 case MSR_IA32_LASTBRANCHTOIP:
3071 *data = svm->vmcb->save.br_to;
3072 break;
3073 case MSR_IA32_LASTINTFROMIP:
3074 *data = svm->vmcb->save.last_excp_from;
3075 break;
3076 case MSR_IA32_LASTINTTOIP:
3077 *data = svm->vmcb->save.last_excp_to;
3078 break;
3079 case MSR_VM_HSAVE_PA:
3080 *data = svm->nested.hsave_msr;
3081 break;
3082 case MSR_VM_CR:
3083 *data = svm->nested.vm_cr_msr;
3084 break;
3085 case MSR_IA32_UCODE_REV:
3086 *data = 0x01000065;
3087 break;
3088 default:
3089 return kvm_get_msr_common(vcpu, ecx, data);
3090 }
3091 return 0;
3092 }
3093
3094 static int rdmsr_interception(struct vcpu_svm *svm)
3095 {
3096 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3097 u64 data;
3098
3099 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3100 trace_kvm_msr_read_ex(ecx);
3101 kvm_inject_gp(&svm->vcpu, 0);
3102 } else {
3103 trace_kvm_msr_read(ecx, data);
3104
3105 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3106 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3107 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3108 skip_emulated_instruction(&svm->vcpu);
3109 }
3110 return 1;
3111 }
3112
3113 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3114 {
3115 struct vcpu_svm *svm = to_svm(vcpu);
3116 int svm_dis, chg_mask;
3117
3118 if (data & ~SVM_VM_CR_VALID_MASK)
3119 return 1;
3120
3121 chg_mask = SVM_VM_CR_VALID_MASK;
3122
3123 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3124 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3125
3126 svm->nested.vm_cr_msr &= ~chg_mask;
3127 svm->nested.vm_cr_msr |= (data & chg_mask);
3128
3129 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3130
3131 /* check for svm_disable while efer.svme is set */
3132 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3133 return 1;
3134
3135 return 0;
3136 }
3137
3138 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3139 {
3140 struct vcpu_svm *svm = to_svm(vcpu);
3141
3142 u32 ecx = msr->index;
3143 u64 data = msr->data;
3144 switch (ecx) {
3145 case MSR_IA32_TSC:
3146 kvm_write_tsc(vcpu, msr);
3147 break;
3148 case MSR_STAR:
3149 svm->vmcb->save.star = data;
3150 break;
3151 #ifdef CONFIG_X86_64
3152 case MSR_LSTAR:
3153 svm->vmcb->save.lstar = data;
3154 break;
3155 case MSR_CSTAR:
3156 svm->vmcb->save.cstar = data;
3157 break;
3158 case MSR_KERNEL_GS_BASE:
3159 svm->vmcb->save.kernel_gs_base = data;
3160 break;
3161 case MSR_SYSCALL_MASK:
3162 svm->vmcb->save.sfmask = data;
3163 break;
3164 #endif
3165 case MSR_IA32_SYSENTER_CS:
3166 svm->vmcb->save.sysenter_cs = data;
3167 break;
3168 case MSR_IA32_SYSENTER_EIP:
3169 svm->sysenter_eip = data;
3170 svm->vmcb->save.sysenter_eip = data;
3171 break;
3172 case MSR_IA32_SYSENTER_ESP:
3173 svm->sysenter_esp = data;
3174 svm->vmcb->save.sysenter_esp = data;
3175 break;
3176 case MSR_IA32_DEBUGCTLMSR:
3177 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3178 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3179 __func__, data);
3180 break;
3181 }
3182 if (data & DEBUGCTL_RESERVED_BITS)
3183 return 1;
3184
3185 svm->vmcb->save.dbgctl = data;
3186 mark_dirty(svm->vmcb, VMCB_LBR);
3187 if (data & (1ULL<<0))
3188 svm_enable_lbrv(svm);
3189 else
3190 svm_disable_lbrv(svm);
3191 break;
3192 case MSR_VM_HSAVE_PA:
3193 svm->nested.hsave_msr = data;
3194 break;
3195 case MSR_VM_CR:
3196 return svm_set_vm_cr(vcpu, data);
3197 case MSR_VM_IGNNE:
3198 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3199 break;
3200 default:
3201 return kvm_set_msr_common(vcpu, msr);
3202 }
3203 return 0;
3204 }
3205
3206 static int wrmsr_interception(struct vcpu_svm *svm)
3207 {
3208 struct msr_data msr;
3209 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3210 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3211 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3212
3213 msr.data = data;
3214 msr.index = ecx;
3215 msr.host_initiated = false;
3216
3217 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3218 if (svm_set_msr(&svm->vcpu, &msr)) {
3219 trace_kvm_msr_write_ex(ecx, data);
3220 kvm_inject_gp(&svm->vcpu, 0);
3221 } else {
3222 trace_kvm_msr_write(ecx, data);
3223 skip_emulated_instruction(&svm->vcpu);
3224 }
3225 return 1;
3226 }
3227
3228 static int msr_interception(struct vcpu_svm *svm)
3229 {
3230 if (svm->vmcb->control.exit_info_1)
3231 return wrmsr_interception(svm);
3232 else
3233 return rdmsr_interception(svm);
3234 }
3235
3236 static int interrupt_window_interception(struct vcpu_svm *svm)
3237 {
3238 struct kvm_run *kvm_run = svm->vcpu.run;
3239
3240 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3241 svm_clear_vintr(svm);
3242 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3243 mark_dirty(svm->vmcb, VMCB_INTR);
3244 ++svm->vcpu.stat.irq_window_exits;
3245 /*
3246 * If the user space waits to inject interrupts, exit as soon as
3247 * possible
3248 */
3249 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3250 kvm_run->request_interrupt_window &&
3251 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3252 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3253 return 0;
3254 }
3255
3256 return 1;
3257 }
3258
3259 static int pause_interception(struct vcpu_svm *svm)
3260 {
3261 kvm_vcpu_on_spin(&(svm->vcpu));
3262 return 1;
3263 }
3264
3265 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3266 [SVM_EXIT_READ_CR0] = cr_interception,
3267 [SVM_EXIT_READ_CR3] = cr_interception,
3268 [SVM_EXIT_READ_CR4] = cr_interception,
3269 [SVM_EXIT_READ_CR8] = cr_interception,
3270 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
3271 [SVM_EXIT_WRITE_CR0] = cr_interception,
3272 [SVM_EXIT_WRITE_CR3] = cr_interception,
3273 [SVM_EXIT_WRITE_CR4] = cr_interception,
3274 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3275 [SVM_EXIT_READ_DR0] = dr_interception,
3276 [SVM_EXIT_READ_DR1] = dr_interception,
3277 [SVM_EXIT_READ_DR2] = dr_interception,
3278 [SVM_EXIT_READ_DR3] = dr_interception,
3279 [SVM_EXIT_READ_DR4] = dr_interception,
3280 [SVM_EXIT_READ_DR5] = dr_interception,
3281 [SVM_EXIT_READ_DR6] = dr_interception,
3282 [SVM_EXIT_READ_DR7] = dr_interception,
3283 [SVM_EXIT_WRITE_DR0] = dr_interception,
3284 [SVM_EXIT_WRITE_DR1] = dr_interception,
3285 [SVM_EXIT_WRITE_DR2] = dr_interception,
3286 [SVM_EXIT_WRITE_DR3] = dr_interception,
3287 [SVM_EXIT_WRITE_DR4] = dr_interception,
3288 [SVM_EXIT_WRITE_DR5] = dr_interception,
3289 [SVM_EXIT_WRITE_DR6] = dr_interception,
3290 [SVM_EXIT_WRITE_DR7] = dr_interception,
3291 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3292 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3293 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3294 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3295 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3296 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3297 [SVM_EXIT_INTR] = intr_interception,
3298 [SVM_EXIT_NMI] = nmi_interception,
3299 [SVM_EXIT_SMI] = nop_on_interception,
3300 [SVM_EXIT_INIT] = nop_on_interception,
3301 [SVM_EXIT_VINTR] = interrupt_window_interception,
3302 [SVM_EXIT_RDPMC] = rdpmc_interception,
3303 [SVM_EXIT_CPUID] = cpuid_interception,
3304 [SVM_EXIT_IRET] = iret_interception,
3305 [SVM_EXIT_INVD] = emulate_on_interception,
3306 [SVM_EXIT_PAUSE] = pause_interception,
3307 [SVM_EXIT_HLT] = halt_interception,
3308 [SVM_EXIT_INVLPG] = invlpg_interception,
3309 [SVM_EXIT_INVLPGA] = invlpga_interception,
3310 [SVM_EXIT_IOIO] = io_interception,
3311 [SVM_EXIT_MSR] = msr_interception,
3312 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3313 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3314 [SVM_EXIT_VMRUN] = vmrun_interception,
3315 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3316 [SVM_EXIT_VMLOAD] = vmload_interception,
3317 [SVM_EXIT_VMSAVE] = vmsave_interception,
3318 [SVM_EXIT_STGI] = stgi_interception,
3319 [SVM_EXIT_CLGI] = clgi_interception,
3320 [SVM_EXIT_SKINIT] = skinit_interception,
3321 [SVM_EXIT_WBINVD] = emulate_on_interception,
3322 [SVM_EXIT_MONITOR] = invalid_op_interception,
3323 [SVM_EXIT_MWAIT] = invalid_op_interception,
3324 [SVM_EXIT_XSETBV] = xsetbv_interception,
3325 [SVM_EXIT_NPF] = pf_interception,
3326 };
3327
3328 static void dump_vmcb(struct kvm_vcpu *vcpu)
3329 {
3330 struct vcpu_svm *svm = to_svm(vcpu);
3331 struct vmcb_control_area *control = &svm->vmcb->control;
3332 struct vmcb_save_area *save = &svm->vmcb->save;
3333
3334 pr_err("VMCB Control Area:\n");
3335 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3336 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3337 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3338 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3339 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3340 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3341 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3342 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3343 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3344 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3345 pr_err("%-20s%d\n", "asid:", control->asid);
3346 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3347 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3348 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3349 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3350 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3351 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3352 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3353 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3354 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3355 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3356 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3357 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3358 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3359 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3360 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3361 pr_err("VMCB State Save Area:\n");
3362 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3363 "es:",
3364 save->es.selector, save->es.attrib,
3365 save->es.limit, save->es.base);
3366 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3367 "cs:",
3368 save->cs.selector, save->cs.attrib,
3369 save->cs.limit, save->cs.base);
3370 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3371 "ss:",
3372 save->ss.selector, save->ss.attrib,
3373 save->ss.limit, save->ss.base);
3374 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3375 "ds:",
3376 save->ds.selector, save->ds.attrib,
3377 save->ds.limit, save->ds.base);
3378 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3379 "fs:",
3380 save->fs.selector, save->fs.attrib,
3381 save->fs.limit, save->fs.base);
3382 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3383 "gs:",
3384 save->gs.selector, save->gs.attrib,
3385 save->gs.limit, save->gs.base);
3386 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3387 "gdtr:",
3388 save->gdtr.selector, save->gdtr.attrib,
3389 save->gdtr.limit, save->gdtr.base);
3390 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3391 "ldtr:",
3392 save->ldtr.selector, save->ldtr.attrib,
3393 save->ldtr.limit, save->ldtr.base);
3394 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3395 "idtr:",
3396 save->idtr.selector, save->idtr.attrib,
3397 save->idtr.limit, save->idtr.base);
3398 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3399 "tr:",
3400 save->tr.selector, save->tr.attrib,
3401 save->tr.limit, save->tr.base);
3402 pr_err("cpl: %d efer: %016llx\n",
3403 save->cpl, save->efer);
3404 pr_err("%-15s %016llx %-13s %016llx\n",
3405 "cr0:", save->cr0, "cr2:", save->cr2);
3406 pr_err("%-15s %016llx %-13s %016llx\n",
3407 "cr3:", save->cr3, "cr4:", save->cr4);
3408 pr_err("%-15s %016llx %-13s %016llx\n",
3409 "dr6:", save->dr6, "dr7:", save->dr7);
3410 pr_err("%-15s %016llx %-13s %016llx\n",
3411 "rip:", save->rip, "rflags:", save->rflags);
3412 pr_err("%-15s %016llx %-13s %016llx\n",
3413 "rsp:", save->rsp, "rax:", save->rax);
3414 pr_err("%-15s %016llx %-13s %016llx\n",
3415 "star:", save->star, "lstar:", save->lstar);
3416 pr_err("%-15s %016llx %-13s %016llx\n",
3417 "cstar:", save->cstar, "sfmask:", save->sfmask);
3418 pr_err("%-15s %016llx %-13s %016llx\n",
3419 "kernel_gs_base:", save->kernel_gs_base,
3420 "sysenter_cs:", save->sysenter_cs);
3421 pr_err("%-15s %016llx %-13s %016llx\n",
3422 "sysenter_esp:", save->sysenter_esp,
3423 "sysenter_eip:", save->sysenter_eip);
3424 pr_err("%-15s %016llx %-13s %016llx\n",
3425 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3426 pr_err("%-15s %016llx %-13s %016llx\n",
3427 "br_from:", save->br_from, "br_to:", save->br_to);
3428 pr_err("%-15s %016llx %-13s %016llx\n",
3429 "excp_from:", save->last_excp_from,
3430 "excp_to:", save->last_excp_to);
3431 }
3432
3433 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3434 {
3435 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3436
3437 *info1 = control->exit_info_1;
3438 *info2 = control->exit_info_2;
3439 }
3440
3441 static int handle_exit(struct kvm_vcpu *vcpu)
3442 {
3443 struct vcpu_svm *svm = to_svm(vcpu);
3444 struct kvm_run *kvm_run = vcpu->run;
3445 u32 exit_code = svm->vmcb->control.exit_code;
3446
3447 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3448 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3449 if (npt_enabled)
3450 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3451
3452 if (unlikely(svm->nested.exit_required)) {
3453 nested_svm_vmexit(svm);
3454 svm->nested.exit_required = false;
3455
3456 return 1;
3457 }
3458
3459 if (is_guest_mode(vcpu)) {
3460 int vmexit;
3461
3462 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3463 svm->vmcb->control.exit_info_1,
3464 svm->vmcb->control.exit_info_2,
3465 svm->vmcb->control.exit_int_info,
3466 svm->vmcb->control.exit_int_info_err,
3467 KVM_ISA_SVM);
3468
3469 vmexit = nested_svm_exit_special(svm);
3470
3471 if (vmexit == NESTED_EXIT_CONTINUE)
3472 vmexit = nested_svm_exit_handled(svm);
3473
3474 if (vmexit == NESTED_EXIT_DONE)
3475 return 1;
3476 }
3477
3478 svm_complete_interrupts(svm);
3479
3480 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3481 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3482 kvm_run->fail_entry.hardware_entry_failure_reason
3483 = svm->vmcb->control.exit_code;
3484 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3485 dump_vmcb(vcpu);
3486 return 0;
3487 }
3488
3489 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3490 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3491 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3492 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3493 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3494 "exit_code 0x%x\n",
3495 __func__, svm->vmcb->control.exit_int_info,
3496 exit_code);
3497
3498 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3499 || !svm_exit_handlers[exit_code]) {
3500 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3501 kvm_run->hw.hardware_exit_reason = exit_code;
3502 return 0;
3503 }
3504
3505 return svm_exit_handlers[exit_code](svm);
3506 }
3507
3508 static void reload_tss(struct kvm_vcpu *vcpu)
3509 {
3510 int cpu = raw_smp_processor_id();
3511
3512 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3513 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3514 load_TR_desc();
3515 }
3516
3517 static void pre_svm_run(struct vcpu_svm *svm)
3518 {
3519 int cpu = raw_smp_processor_id();
3520
3521 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3522
3523 /* FIXME: handle wraparound of asid_generation */
3524 if (svm->asid_generation != sd->asid_generation)
3525 new_asid(svm, sd);
3526 }
3527
3528 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3529 {
3530 struct vcpu_svm *svm = to_svm(vcpu);
3531
3532 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3533 vcpu->arch.hflags |= HF_NMI_MASK;
3534 set_intercept(svm, INTERCEPT_IRET);
3535 ++vcpu->stat.nmi_injections;
3536 }
3537
3538 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3539 {
3540 struct vmcb_control_area *control;
3541
3542 control = &svm->vmcb->control;
3543 control->int_vector = irq;
3544 control->int_ctl &= ~V_INTR_PRIO_MASK;
3545 control->int_ctl |= V_IRQ_MASK |
3546 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3547 mark_dirty(svm->vmcb, VMCB_INTR);
3548 }
3549
3550 static void svm_set_irq(struct kvm_vcpu *vcpu)
3551 {
3552 struct vcpu_svm *svm = to_svm(vcpu);
3553
3554 BUG_ON(!(gif_set(svm)));
3555
3556 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3557 ++vcpu->stat.irq_injections;
3558
3559 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3560 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3561 }
3562
3563 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3564 {
3565 struct vcpu_svm *svm = to_svm(vcpu);
3566
3567 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3568 return;
3569
3570 if (irr == -1)
3571 return;
3572
3573 if (tpr >= irr)
3574 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3575 }
3576
3577 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3578 {
3579 return;
3580 }
3581
3582 static int svm_vm_has_apicv(struct kvm *kvm)
3583 {
3584 return 0;
3585 }
3586
3587 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3588 {
3589 return;
3590 }
3591
3592 static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
3593 {
3594 return;
3595 }
3596
3597 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3598 {
3599 return;
3600 }
3601
3602 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3603 {
3604 struct vcpu_svm *svm = to_svm(vcpu);
3605 struct vmcb *vmcb = svm->vmcb;
3606 int ret;
3607 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3608 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3609 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3610
3611 return ret;
3612 }
3613
3614 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3615 {
3616 struct vcpu_svm *svm = to_svm(vcpu);
3617
3618 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3619 }
3620
3621 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3622 {
3623 struct vcpu_svm *svm = to_svm(vcpu);
3624
3625 if (masked) {
3626 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3627 set_intercept(svm, INTERCEPT_IRET);
3628 } else {
3629 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3630 clr_intercept(svm, INTERCEPT_IRET);
3631 }
3632 }
3633
3634 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3635 {
3636 struct vcpu_svm *svm = to_svm(vcpu);
3637 struct vmcb *vmcb = svm->vmcb;
3638 int ret;
3639
3640 if (!gif_set(svm) ||
3641 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3642 return 0;
3643
3644 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3645
3646 if (is_guest_mode(vcpu))
3647 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3648
3649 return ret;
3650 }
3651
3652 static void enable_irq_window(struct kvm_vcpu *vcpu)
3653 {
3654 struct vcpu_svm *svm = to_svm(vcpu);
3655
3656 /*
3657 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3658 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3659 * get that intercept, this function will be called again though and
3660 * we'll get the vintr intercept.
3661 */
3662 if (gif_set(svm) && nested_svm_intr(svm)) {
3663 svm_set_vintr(svm);
3664 svm_inject_irq(svm, 0x0);
3665 }
3666 }
3667
3668 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3669 {
3670 struct vcpu_svm *svm = to_svm(vcpu);
3671
3672 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3673 == HF_NMI_MASK)
3674 return; /* IRET will cause a vm exit */
3675
3676 /*
3677 * Something prevents NMI from been injected. Single step over possible
3678 * problem (IRET or exception injection or interrupt shadow)
3679 */
3680 svm->nmi_singlestep = true;
3681 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3682 update_db_bp_intercept(vcpu);
3683 }
3684
3685 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3686 {
3687 return 0;
3688 }
3689
3690 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3691 {
3692 struct vcpu_svm *svm = to_svm(vcpu);
3693
3694 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3695 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3696 else
3697 svm->asid_generation--;
3698 }
3699
3700 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3701 {
3702 }
3703
3704 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3705 {
3706 struct vcpu_svm *svm = to_svm(vcpu);
3707
3708 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3709 return;
3710
3711 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3712 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3713 kvm_set_cr8(vcpu, cr8);
3714 }
3715 }
3716
3717 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3718 {
3719 struct vcpu_svm *svm = to_svm(vcpu);
3720 u64 cr8;
3721
3722 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3723 return;
3724
3725 cr8 = kvm_get_cr8(vcpu);
3726 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3727 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3728 }
3729
3730 static void svm_complete_interrupts(struct vcpu_svm *svm)
3731 {
3732 u8 vector;
3733 int type;
3734 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3735 unsigned int3_injected = svm->int3_injected;
3736
3737 svm->int3_injected = 0;
3738
3739 /*
3740 * If we've made progress since setting HF_IRET_MASK, we've
3741 * executed an IRET and can allow NMI injection.
3742 */
3743 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3744 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3745 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3746 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3747 }
3748
3749 svm->vcpu.arch.nmi_injected = false;
3750 kvm_clear_exception_queue(&svm->vcpu);
3751 kvm_clear_interrupt_queue(&svm->vcpu);
3752
3753 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3754 return;
3755
3756 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3757
3758 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3759 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3760
3761 switch (type) {
3762 case SVM_EXITINTINFO_TYPE_NMI:
3763 svm->vcpu.arch.nmi_injected = true;
3764 break;
3765 case SVM_EXITINTINFO_TYPE_EXEPT:
3766 /*
3767 * In case of software exceptions, do not reinject the vector,
3768 * but re-execute the instruction instead. Rewind RIP first
3769 * if we emulated INT3 before.
3770 */
3771 if (kvm_exception_is_soft(vector)) {
3772 if (vector == BP_VECTOR && int3_injected &&
3773 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3774 kvm_rip_write(&svm->vcpu,
3775 kvm_rip_read(&svm->vcpu) -
3776 int3_injected);
3777 break;
3778 }
3779 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3780 u32 err = svm->vmcb->control.exit_int_info_err;
3781 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3782
3783 } else
3784 kvm_requeue_exception(&svm->vcpu, vector);
3785 break;
3786 case SVM_EXITINTINFO_TYPE_INTR:
3787 kvm_queue_interrupt(&svm->vcpu, vector, false);
3788 break;
3789 default:
3790 break;
3791 }
3792 }
3793
3794 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3795 {
3796 struct vcpu_svm *svm = to_svm(vcpu);
3797 struct vmcb_control_area *control = &svm->vmcb->control;
3798
3799 control->exit_int_info = control->event_inj;
3800 control->exit_int_info_err = control->event_inj_err;
3801 control->event_inj = 0;
3802 svm_complete_interrupts(svm);
3803 }
3804
3805 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3806 {
3807 struct vcpu_svm *svm = to_svm(vcpu);
3808
3809 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3810 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3811 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3812
3813 /*
3814 * A vmexit emulation is required before the vcpu can be executed
3815 * again.
3816 */
3817 if (unlikely(svm->nested.exit_required))
3818 return;
3819
3820 pre_svm_run(svm);
3821
3822 sync_lapic_to_cr8(vcpu);
3823
3824 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3825
3826 clgi();
3827
3828 local_irq_enable();
3829
3830 asm volatile (
3831 "push %%" _ASM_BP "; \n\t"
3832 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3833 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3834 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3835 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3836 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3837 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3838 #ifdef CONFIG_X86_64
3839 "mov %c[r8](%[svm]), %%r8 \n\t"
3840 "mov %c[r9](%[svm]), %%r9 \n\t"
3841 "mov %c[r10](%[svm]), %%r10 \n\t"
3842 "mov %c[r11](%[svm]), %%r11 \n\t"
3843 "mov %c[r12](%[svm]), %%r12 \n\t"
3844 "mov %c[r13](%[svm]), %%r13 \n\t"
3845 "mov %c[r14](%[svm]), %%r14 \n\t"
3846 "mov %c[r15](%[svm]), %%r15 \n\t"
3847 #endif
3848
3849 /* Enter guest mode */
3850 "push %%" _ASM_AX " \n\t"
3851 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3852 __ex(SVM_VMLOAD) "\n\t"
3853 __ex(SVM_VMRUN) "\n\t"
3854 __ex(SVM_VMSAVE) "\n\t"
3855 "pop %%" _ASM_AX " \n\t"
3856
3857 /* Save guest registers, load host registers */
3858 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3859 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3860 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3861 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3862 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3863 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3864 #ifdef CONFIG_X86_64
3865 "mov %%r8, %c[r8](%[svm]) \n\t"
3866 "mov %%r9, %c[r9](%[svm]) \n\t"
3867 "mov %%r10, %c[r10](%[svm]) \n\t"
3868 "mov %%r11, %c[r11](%[svm]) \n\t"
3869 "mov %%r12, %c[r12](%[svm]) \n\t"
3870 "mov %%r13, %c[r13](%[svm]) \n\t"
3871 "mov %%r14, %c[r14](%[svm]) \n\t"
3872 "mov %%r15, %c[r15](%[svm]) \n\t"
3873 #endif
3874 "pop %%" _ASM_BP
3875 :
3876 : [svm]"a"(svm),
3877 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3878 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3879 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3880 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3881 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3882 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3883 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3884 #ifdef CONFIG_X86_64
3885 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3886 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3887 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3888 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3889 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3890 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3891 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3892 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3893 #endif
3894 : "cc", "memory"
3895 #ifdef CONFIG_X86_64
3896 , "rbx", "rcx", "rdx", "rsi", "rdi"
3897 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3898 #else
3899 , "ebx", "ecx", "edx", "esi", "edi"
3900 #endif
3901 );
3902
3903 #ifdef CONFIG_X86_64
3904 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3905 #else
3906 loadsegment(fs, svm->host.fs);
3907 #ifndef CONFIG_X86_32_LAZY_GS
3908 loadsegment(gs, svm->host.gs);
3909 #endif
3910 #endif
3911
3912 reload_tss(vcpu);
3913
3914 local_irq_disable();
3915
3916 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3917 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3918 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3919 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3920
3921 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3922
3923 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3924 kvm_before_handle_nmi(&svm->vcpu);
3925
3926 stgi();
3927
3928 /* Any pending NMI will happen here */
3929
3930 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3931 kvm_after_handle_nmi(&svm->vcpu);
3932
3933 sync_cr8_to_lapic(vcpu);
3934
3935 svm->next_rip = 0;
3936
3937 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3938
3939 /* if exit due to PF check for async PF */
3940 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3941 svm->apf_reason = kvm_read_and_reset_pf_reason();
3942
3943 if (npt_enabled) {
3944 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3945 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3946 }
3947
3948 /*
3949 * We need to handle MC intercepts here before the vcpu has a chance to
3950 * change the physical cpu
3951 */
3952 if (unlikely(svm->vmcb->control.exit_code ==
3953 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3954 svm_handle_mce(svm);
3955
3956 mark_all_clean(svm->vmcb);
3957 }
3958
3959 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3960 {
3961 struct vcpu_svm *svm = to_svm(vcpu);
3962
3963 svm->vmcb->save.cr3 = root;
3964 mark_dirty(svm->vmcb, VMCB_CR);
3965 svm_flush_tlb(vcpu);
3966 }
3967
3968 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3969 {
3970 struct vcpu_svm *svm = to_svm(vcpu);
3971
3972 svm->vmcb->control.nested_cr3 = root;
3973 mark_dirty(svm->vmcb, VMCB_NPT);
3974
3975 /* Also sync guest cr3 here in case we live migrate */
3976 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3977 mark_dirty(svm->vmcb, VMCB_CR);
3978
3979 svm_flush_tlb(vcpu);
3980 }
3981
3982 static int is_disabled(void)
3983 {
3984 u64 vm_cr;
3985
3986 rdmsrl(MSR_VM_CR, vm_cr);
3987 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3988 return 1;
3989
3990 return 0;
3991 }
3992
3993 static void
3994 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3995 {
3996 /*
3997 * Patch in the VMMCALL instruction:
3998 */
3999 hypercall[0] = 0x0f;
4000 hypercall[1] = 0x01;
4001 hypercall[2] = 0xd9;
4002 }
4003
4004 static void svm_check_processor_compat(void *rtn)
4005 {
4006 *(int *)rtn = 0;
4007 }
4008
4009 static bool svm_cpu_has_accelerated_tpr(void)
4010 {
4011 return false;
4012 }
4013
4014 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4015 {
4016 return 0;
4017 }
4018
4019 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4020 {
4021 }
4022
4023 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4024 {
4025 switch (func) {
4026 case 0x80000001:
4027 if (nested)
4028 entry->ecx |= (1 << 2); /* Set SVM bit */
4029 break;
4030 case 0x8000000A:
4031 entry->eax = 1; /* SVM revision 1 */
4032 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4033 ASID emulation to nested SVM */
4034 entry->ecx = 0; /* Reserved */
4035 entry->edx = 0; /* Per default do not support any
4036 additional features */
4037
4038 /* Support next_rip if host supports it */
4039 if (boot_cpu_has(X86_FEATURE_NRIPS))
4040 entry->edx |= SVM_FEATURE_NRIP;
4041
4042 /* Support NPT for the guest if enabled */
4043 if (npt_enabled)
4044 entry->edx |= SVM_FEATURE_NPT;
4045
4046 break;
4047 }
4048 }
4049
4050 static int svm_get_lpage_level(void)
4051 {
4052 return PT_PDPE_LEVEL;
4053 }
4054
4055 static bool svm_rdtscp_supported(void)
4056 {
4057 return false;
4058 }
4059
4060 static bool svm_invpcid_supported(void)
4061 {
4062 return false;
4063 }
4064
4065 static bool svm_has_wbinvd_exit(void)
4066 {
4067 return true;
4068 }
4069
4070 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4071 {
4072 struct vcpu_svm *svm = to_svm(vcpu);
4073
4074 set_exception_intercept(svm, NM_VECTOR);
4075 update_cr0_intercept(svm);
4076 }
4077
4078 #define PRE_EX(exit) { .exit_code = (exit), \
4079 .stage = X86_ICPT_PRE_EXCEPT, }
4080 #define POST_EX(exit) { .exit_code = (exit), \
4081 .stage = X86_ICPT_POST_EXCEPT, }
4082 #define POST_MEM(exit) { .exit_code = (exit), \
4083 .stage = X86_ICPT_POST_MEMACCESS, }
4084
4085 static const struct __x86_intercept {
4086 u32 exit_code;
4087 enum x86_intercept_stage stage;
4088 } x86_intercept_map[] = {
4089 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4090 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4091 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4092 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4093 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4094 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4095 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4096 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4097 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4098 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4099 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4100 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4101 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4102 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4103 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4104 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4105 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4106 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4107 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4108 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4109 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4110 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4111 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4112 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4113 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4114 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4115 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4116 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4117 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4118 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4119 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4120 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4121 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4122 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4123 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4124 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4125 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4126 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4127 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4128 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4129 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4130 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4131 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4132 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4133 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4134 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4135 };
4136
4137 #undef PRE_EX
4138 #undef POST_EX
4139 #undef POST_MEM
4140
4141 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4142 struct x86_instruction_info *info,
4143 enum x86_intercept_stage stage)
4144 {
4145 struct vcpu_svm *svm = to_svm(vcpu);
4146 int vmexit, ret = X86EMUL_CONTINUE;
4147 struct __x86_intercept icpt_info;
4148 struct vmcb *vmcb = svm->vmcb;
4149
4150 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4151 goto out;
4152
4153 icpt_info = x86_intercept_map[info->intercept];
4154
4155 if (stage != icpt_info.stage)
4156 goto out;
4157
4158 switch (icpt_info.exit_code) {
4159 case SVM_EXIT_READ_CR0:
4160 if (info->intercept == x86_intercept_cr_read)
4161 icpt_info.exit_code += info->modrm_reg;
4162 break;
4163 case SVM_EXIT_WRITE_CR0: {
4164 unsigned long cr0, val;
4165 u64 intercept;
4166
4167 if (info->intercept == x86_intercept_cr_write)
4168 icpt_info.exit_code += info->modrm_reg;
4169
4170 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4171 break;
4172
4173 intercept = svm->nested.intercept;
4174
4175 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4176 break;
4177
4178 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4179 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4180
4181 if (info->intercept == x86_intercept_lmsw) {
4182 cr0 &= 0xfUL;
4183 val &= 0xfUL;
4184 /* lmsw can't clear PE - catch this here */
4185 if (cr0 & X86_CR0_PE)
4186 val |= X86_CR0_PE;
4187 }
4188
4189 if (cr0 ^ val)
4190 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4191
4192 break;
4193 }
4194 case SVM_EXIT_READ_DR0:
4195 case SVM_EXIT_WRITE_DR0:
4196 icpt_info.exit_code += info->modrm_reg;
4197 break;
4198 case SVM_EXIT_MSR:
4199 if (info->intercept == x86_intercept_wrmsr)
4200 vmcb->control.exit_info_1 = 1;
4201 else
4202 vmcb->control.exit_info_1 = 0;
4203 break;
4204 case SVM_EXIT_PAUSE:
4205 /*
4206 * We get this for NOP only, but pause
4207 * is rep not, check this here
4208 */
4209 if (info->rep_prefix != REPE_PREFIX)
4210 goto out;
4211 case SVM_EXIT_IOIO: {
4212 u64 exit_info;
4213 u32 bytes;
4214
4215 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4216
4217 if (info->intercept == x86_intercept_in ||
4218 info->intercept == x86_intercept_ins) {
4219 exit_info |= SVM_IOIO_TYPE_MASK;
4220 bytes = info->src_bytes;
4221 } else {
4222 bytes = info->dst_bytes;
4223 }
4224
4225 if (info->intercept == x86_intercept_outs ||
4226 info->intercept == x86_intercept_ins)
4227 exit_info |= SVM_IOIO_STR_MASK;
4228
4229 if (info->rep_prefix)
4230 exit_info |= SVM_IOIO_REP_MASK;
4231
4232 bytes = min(bytes, 4u);
4233
4234 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4235
4236 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4237
4238 vmcb->control.exit_info_1 = exit_info;
4239 vmcb->control.exit_info_2 = info->next_rip;
4240
4241 break;
4242 }
4243 default:
4244 break;
4245 }
4246
4247 vmcb->control.next_rip = info->next_rip;
4248 vmcb->control.exit_code = icpt_info.exit_code;
4249 vmexit = nested_svm_exit_handled(svm);
4250
4251 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4252 : X86EMUL_CONTINUE;
4253
4254 out:
4255 return ret;
4256 }
4257
4258 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4259 {
4260 local_irq_enable();
4261 }
4262
4263 static struct kvm_x86_ops svm_x86_ops = {
4264 .cpu_has_kvm_support = has_svm,
4265 .disabled_by_bios = is_disabled,
4266 .hardware_setup = svm_hardware_setup,
4267 .hardware_unsetup = svm_hardware_unsetup,
4268 .check_processor_compatibility = svm_check_processor_compat,
4269 .hardware_enable = svm_hardware_enable,
4270 .hardware_disable = svm_hardware_disable,
4271 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4272
4273 .vcpu_create = svm_create_vcpu,
4274 .vcpu_free = svm_free_vcpu,
4275 .vcpu_reset = svm_vcpu_reset,
4276
4277 .prepare_guest_switch = svm_prepare_guest_switch,
4278 .vcpu_load = svm_vcpu_load,
4279 .vcpu_put = svm_vcpu_put,
4280
4281 .update_db_bp_intercept = update_db_bp_intercept,
4282 .get_msr = svm_get_msr,
4283 .set_msr = svm_set_msr,
4284 .get_segment_base = svm_get_segment_base,
4285 .get_segment = svm_get_segment,
4286 .set_segment = svm_set_segment,
4287 .get_cpl = svm_get_cpl,
4288 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4289 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4290 .decache_cr3 = svm_decache_cr3,
4291 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4292 .set_cr0 = svm_set_cr0,
4293 .set_cr3 = svm_set_cr3,
4294 .set_cr4 = svm_set_cr4,
4295 .set_efer = svm_set_efer,
4296 .get_idt = svm_get_idt,
4297 .set_idt = svm_set_idt,
4298 .get_gdt = svm_get_gdt,
4299 .set_gdt = svm_set_gdt,
4300 .get_dr6 = svm_get_dr6,
4301 .set_dr6 = svm_set_dr6,
4302 .set_dr7 = svm_set_dr7,
4303 .cache_reg = svm_cache_reg,
4304 .get_rflags = svm_get_rflags,
4305 .set_rflags = svm_set_rflags,
4306 .fpu_activate = svm_fpu_activate,
4307 .fpu_deactivate = svm_fpu_deactivate,
4308
4309 .tlb_flush = svm_flush_tlb,
4310
4311 .run = svm_vcpu_run,
4312 .handle_exit = handle_exit,
4313 .skip_emulated_instruction = skip_emulated_instruction,
4314 .set_interrupt_shadow = svm_set_interrupt_shadow,
4315 .get_interrupt_shadow = svm_get_interrupt_shadow,
4316 .patch_hypercall = svm_patch_hypercall,
4317 .set_irq = svm_set_irq,
4318 .set_nmi = svm_inject_nmi,
4319 .queue_exception = svm_queue_exception,
4320 .cancel_injection = svm_cancel_injection,
4321 .interrupt_allowed = svm_interrupt_allowed,
4322 .nmi_allowed = svm_nmi_allowed,
4323 .get_nmi_mask = svm_get_nmi_mask,
4324 .set_nmi_mask = svm_set_nmi_mask,
4325 .enable_nmi_window = enable_nmi_window,
4326 .enable_irq_window = enable_irq_window,
4327 .update_cr8_intercept = update_cr8_intercept,
4328 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4329 .vm_has_apicv = svm_vm_has_apicv,
4330 .load_eoi_exitmap = svm_load_eoi_exitmap,
4331 .hwapic_isr_update = svm_hwapic_isr_update,
4332 .sync_pir_to_irr = svm_sync_pir_to_irr,
4333
4334 .set_tss_addr = svm_set_tss_addr,
4335 .get_tdp_level = get_npt_level,
4336 .get_mt_mask = svm_get_mt_mask,
4337
4338 .get_exit_info = svm_get_exit_info,
4339
4340 .get_lpage_level = svm_get_lpage_level,
4341
4342 .cpuid_update = svm_cpuid_update,
4343
4344 .rdtscp_supported = svm_rdtscp_supported,
4345 .invpcid_supported = svm_invpcid_supported,
4346
4347 .set_supported_cpuid = svm_set_supported_cpuid,
4348
4349 .has_wbinvd_exit = svm_has_wbinvd_exit,
4350
4351 .set_tsc_khz = svm_set_tsc_khz,
4352 .read_tsc_offset = svm_read_tsc_offset,
4353 .write_tsc_offset = svm_write_tsc_offset,
4354 .adjust_tsc_offset = svm_adjust_tsc_offset,
4355 .compute_tsc_offset = svm_compute_tsc_offset,
4356 .read_l1_tsc = svm_read_l1_tsc,
4357
4358 .set_tdp_cr3 = set_tdp_cr3,
4359
4360 .check_intercept = svm_check_intercept,
4361 .handle_external_intr = svm_handle_external_intr,
4362 };
4363
4364 static int __init svm_init(void)
4365 {
4366 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4367 __alignof__(struct vcpu_svm), THIS_MODULE);
4368 }
4369
4370 static void __exit svm_exit(void)
4371 {
4372 kvm_exit();
4373 }
4374
4375 module_init(svm_init)
4376 module_exit(svm_exit)
This page took 0.117808 seconds and 4 git commands to generate.