KVM: Rename vcpu->shadow_efer to efer
[deliverable/linux.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16 #include <linux/kvm_host.h>
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29
30 #include <asm/desc.h>
31
32 #include <asm/virtext.h>
33 #include "trace.h"
34
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
36
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
39
40 #define IOPM_ALLOC_ORDER 2
41 #define MSRPM_ALLOC_ORDER 1
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define SVM_FEATURE_NPT (1 << 0)
47 #define SVM_FEATURE_LBRV (1 << 1)
48 #define SVM_FEATURE_SVML (1 << 2)
49 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
50
51 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
52 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
53 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
54
55 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
56
57 static const u32 host_save_user_msrs[] = {
58 #ifdef CONFIG_X86_64
59 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
60 MSR_FS_BASE,
61 #endif
62 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
63 };
64
65 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
66
67 struct kvm_vcpu;
68
69 struct nested_state {
70 struct vmcb *hsave;
71 u64 hsave_msr;
72 u64 vmcb;
73
74 /* These are the merged vectors */
75 u32 *msrpm;
76
77 /* gpa pointers to the real vectors */
78 u64 vmcb_msrpm;
79
80 /* A VMEXIT is required but not yet emulated */
81 bool exit_required;
82
83 /* cache for intercepts of the guest */
84 u16 intercept_cr_read;
85 u16 intercept_cr_write;
86 u16 intercept_dr_read;
87 u16 intercept_dr_write;
88 u32 intercept_exceptions;
89 u64 intercept;
90
91 };
92
93 struct vcpu_svm {
94 struct kvm_vcpu vcpu;
95 struct vmcb *vmcb;
96 unsigned long vmcb_pa;
97 struct svm_cpu_data *svm_data;
98 uint64_t asid_generation;
99 uint64_t sysenter_esp;
100 uint64_t sysenter_eip;
101
102 u64 next_rip;
103
104 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
105 u64 host_gs_base;
106
107 u32 *msrpm;
108
109 struct nested_state nested;
110
111 bool nmi_singlestep;
112 };
113
114 /* enable NPT for AMD64 and X86 with PAE */
115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
116 static bool npt_enabled = true;
117 #else
118 static bool npt_enabled = false;
119 #endif
120 static int npt = 1;
121
122 module_param(npt, int, S_IRUGO);
123
124 static int nested = 1;
125 module_param(nested, int, S_IRUGO);
126
127 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
128 static void svm_complete_interrupts(struct vcpu_svm *svm);
129
130 static int nested_svm_exit_handled(struct vcpu_svm *svm);
131 static int nested_svm_vmexit(struct vcpu_svm *svm);
132 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
133 bool has_error_code, u32 error_code);
134
135 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
136 {
137 return container_of(vcpu, struct vcpu_svm, vcpu);
138 }
139
140 static inline bool is_nested(struct vcpu_svm *svm)
141 {
142 return svm->nested.vmcb;
143 }
144
145 static inline void enable_gif(struct vcpu_svm *svm)
146 {
147 svm->vcpu.arch.hflags |= HF_GIF_MASK;
148 }
149
150 static inline void disable_gif(struct vcpu_svm *svm)
151 {
152 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
153 }
154
155 static inline bool gif_set(struct vcpu_svm *svm)
156 {
157 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
158 }
159
160 static unsigned long iopm_base;
161
162 struct kvm_ldttss_desc {
163 u16 limit0;
164 u16 base0;
165 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
166 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
167 u32 base3;
168 u32 zero1;
169 } __attribute__((packed));
170
171 struct svm_cpu_data {
172 int cpu;
173
174 u64 asid_generation;
175 u32 max_asid;
176 u32 next_asid;
177 struct kvm_ldttss_desc *tss_desc;
178
179 struct page *save_area;
180 };
181
182 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
183 static uint32_t svm_features;
184
185 struct svm_init_data {
186 int cpu;
187 int r;
188 };
189
190 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
191
192 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
193 #define MSRS_RANGE_SIZE 2048
194 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
195
196 #define MAX_INST_SIZE 15
197
198 static inline u32 svm_has(u32 feat)
199 {
200 return svm_features & feat;
201 }
202
203 static inline void clgi(void)
204 {
205 asm volatile (__ex(SVM_CLGI));
206 }
207
208 static inline void stgi(void)
209 {
210 asm volatile (__ex(SVM_STGI));
211 }
212
213 static inline void invlpga(unsigned long addr, u32 asid)
214 {
215 asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
216 }
217
218 static inline void force_new_asid(struct kvm_vcpu *vcpu)
219 {
220 to_svm(vcpu)->asid_generation--;
221 }
222
223 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
224 {
225 force_new_asid(vcpu);
226 }
227
228 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
229 {
230 if (!npt_enabled && !(efer & EFER_LMA))
231 efer &= ~EFER_LME;
232
233 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
234 vcpu->arch.efer = efer;
235 }
236
237 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
238 bool has_error_code, u32 error_code)
239 {
240 struct vcpu_svm *svm = to_svm(vcpu);
241
242 /* If we are within a nested VM we'd better #VMEXIT and let the
243 guest handle the exception */
244 if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
245 return;
246
247 svm->vmcb->control.event_inj = nr
248 | SVM_EVTINJ_VALID
249 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
250 | SVM_EVTINJ_TYPE_EXEPT;
251 svm->vmcb->control.event_inj_err = error_code;
252 }
253
254 static int is_external_interrupt(u32 info)
255 {
256 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
257 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
258 }
259
260 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
261 {
262 struct vcpu_svm *svm = to_svm(vcpu);
263 u32 ret = 0;
264
265 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
266 ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
267 return ret & mask;
268 }
269
270 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
271 {
272 struct vcpu_svm *svm = to_svm(vcpu);
273
274 if (mask == 0)
275 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
276 else
277 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
278
279 }
280
281 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
282 {
283 struct vcpu_svm *svm = to_svm(vcpu);
284
285 if (!svm->next_rip) {
286 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
287 EMULATE_DONE)
288 printk(KERN_DEBUG "%s: NOP\n", __func__);
289 return;
290 }
291 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
292 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
293 __func__, kvm_rip_read(vcpu), svm->next_rip);
294
295 kvm_rip_write(vcpu, svm->next_rip);
296 svm_set_interrupt_shadow(vcpu, 0);
297 }
298
299 static int has_svm(void)
300 {
301 const char *msg;
302
303 if (!cpu_has_svm(&msg)) {
304 printk(KERN_INFO "has_svm: %s\n", msg);
305 return 0;
306 }
307
308 return 1;
309 }
310
311 static void svm_hardware_disable(void *garbage)
312 {
313 cpu_svm_disable();
314 }
315
316 static int svm_hardware_enable(void *garbage)
317 {
318
319 struct svm_cpu_data *sd;
320 uint64_t efer;
321 struct descriptor_table gdt_descr;
322 struct desc_struct *gdt;
323 int me = raw_smp_processor_id();
324
325 rdmsrl(MSR_EFER, efer);
326 if (efer & EFER_SVME)
327 return -EBUSY;
328
329 if (!has_svm()) {
330 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
331 me);
332 return -EINVAL;
333 }
334 sd = per_cpu(svm_data, me);
335
336 if (!sd) {
337 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
338 me);
339 return -EINVAL;
340 }
341
342 sd->asid_generation = 1;
343 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
344 sd->next_asid = sd->max_asid + 1;
345
346 kvm_get_gdt(&gdt_descr);
347 gdt = (struct desc_struct *)gdt_descr.base;
348 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
349
350 wrmsrl(MSR_EFER, efer | EFER_SVME);
351
352 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
353
354 return 0;
355 }
356
357 static void svm_cpu_uninit(int cpu)
358 {
359 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
360
361 if (!sd)
362 return;
363
364 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
365 __free_page(sd->save_area);
366 kfree(sd);
367 }
368
369 static int svm_cpu_init(int cpu)
370 {
371 struct svm_cpu_data *sd;
372 int r;
373
374 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
375 if (!sd)
376 return -ENOMEM;
377 sd->cpu = cpu;
378 sd->save_area = alloc_page(GFP_KERNEL);
379 r = -ENOMEM;
380 if (!sd->save_area)
381 goto err_1;
382
383 per_cpu(svm_data, cpu) = sd;
384
385 return 0;
386
387 err_1:
388 kfree(sd);
389 return r;
390
391 }
392
393 static void set_msr_interception(u32 *msrpm, unsigned msr,
394 int read, int write)
395 {
396 int i;
397
398 for (i = 0; i < NUM_MSR_MAPS; i++) {
399 if (msr >= msrpm_ranges[i] &&
400 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
401 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
402 msrpm_ranges[i]) * 2;
403
404 u32 *base = msrpm + (msr_offset / 32);
405 u32 msr_shift = msr_offset % 32;
406 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
407 *base = (*base & ~(0x3 << msr_shift)) |
408 (mask << msr_shift);
409 return;
410 }
411 }
412 BUG();
413 }
414
415 static void svm_vcpu_init_msrpm(u32 *msrpm)
416 {
417 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
418
419 #ifdef CONFIG_X86_64
420 set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
421 set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
422 set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
423 set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
424 set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
425 set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
426 #endif
427 set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
428 set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
429 }
430
431 static void svm_enable_lbrv(struct vcpu_svm *svm)
432 {
433 u32 *msrpm = svm->msrpm;
434
435 svm->vmcb->control.lbr_ctl = 1;
436 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
437 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
438 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
439 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
440 }
441
442 static void svm_disable_lbrv(struct vcpu_svm *svm)
443 {
444 u32 *msrpm = svm->msrpm;
445
446 svm->vmcb->control.lbr_ctl = 0;
447 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
448 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
449 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
450 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
451 }
452
453 static __init int svm_hardware_setup(void)
454 {
455 int cpu;
456 struct page *iopm_pages;
457 void *iopm_va;
458 int r;
459
460 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
461
462 if (!iopm_pages)
463 return -ENOMEM;
464
465 iopm_va = page_address(iopm_pages);
466 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
467 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
468
469 if (boot_cpu_has(X86_FEATURE_NX))
470 kvm_enable_efer_bits(EFER_NX);
471
472 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
473 kvm_enable_efer_bits(EFER_FFXSR);
474
475 if (nested) {
476 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
477 kvm_enable_efer_bits(EFER_SVME);
478 }
479
480 for_each_possible_cpu(cpu) {
481 r = svm_cpu_init(cpu);
482 if (r)
483 goto err;
484 }
485
486 svm_features = cpuid_edx(SVM_CPUID_FUNC);
487
488 if (!svm_has(SVM_FEATURE_NPT))
489 npt_enabled = false;
490
491 if (npt_enabled && !npt) {
492 printk(KERN_INFO "kvm: Nested Paging disabled\n");
493 npt_enabled = false;
494 }
495
496 if (npt_enabled) {
497 printk(KERN_INFO "kvm: Nested Paging enabled\n");
498 kvm_enable_tdp();
499 } else
500 kvm_disable_tdp();
501
502 return 0;
503
504 err:
505 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
506 iopm_base = 0;
507 return r;
508 }
509
510 static __exit void svm_hardware_unsetup(void)
511 {
512 int cpu;
513
514 for_each_possible_cpu(cpu)
515 svm_cpu_uninit(cpu);
516
517 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
518 iopm_base = 0;
519 }
520
521 static void init_seg(struct vmcb_seg *seg)
522 {
523 seg->selector = 0;
524 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
525 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
526 seg->limit = 0xffff;
527 seg->base = 0;
528 }
529
530 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
531 {
532 seg->selector = 0;
533 seg->attrib = SVM_SELECTOR_P_MASK | type;
534 seg->limit = 0xffff;
535 seg->base = 0;
536 }
537
538 static void init_vmcb(struct vcpu_svm *svm)
539 {
540 struct vmcb_control_area *control = &svm->vmcb->control;
541 struct vmcb_save_area *save = &svm->vmcb->save;
542
543 svm->vcpu.fpu_active = 1;
544
545 control->intercept_cr_read = INTERCEPT_CR0_MASK |
546 INTERCEPT_CR3_MASK |
547 INTERCEPT_CR4_MASK;
548
549 control->intercept_cr_write = INTERCEPT_CR0_MASK |
550 INTERCEPT_CR3_MASK |
551 INTERCEPT_CR4_MASK |
552 INTERCEPT_CR8_MASK;
553
554 control->intercept_dr_read = INTERCEPT_DR0_MASK |
555 INTERCEPT_DR1_MASK |
556 INTERCEPT_DR2_MASK |
557 INTERCEPT_DR3_MASK |
558 INTERCEPT_DR4_MASK |
559 INTERCEPT_DR5_MASK |
560 INTERCEPT_DR6_MASK |
561 INTERCEPT_DR7_MASK;
562
563 control->intercept_dr_write = INTERCEPT_DR0_MASK |
564 INTERCEPT_DR1_MASK |
565 INTERCEPT_DR2_MASK |
566 INTERCEPT_DR3_MASK |
567 INTERCEPT_DR4_MASK |
568 INTERCEPT_DR5_MASK |
569 INTERCEPT_DR6_MASK |
570 INTERCEPT_DR7_MASK;
571
572 control->intercept_exceptions = (1 << PF_VECTOR) |
573 (1 << UD_VECTOR) |
574 (1 << MC_VECTOR);
575
576
577 control->intercept = (1ULL << INTERCEPT_INTR) |
578 (1ULL << INTERCEPT_NMI) |
579 (1ULL << INTERCEPT_SMI) |
580 (1ULL << INTERCEPT_SELECTIVE_CR0) |
581 (1ULL << INTERCEPT_CPUID) |
582 (1ULL << INTERCEPT_INVD) |
583 (1ULL << INTERCEPT_HLT) |
584 (1ULL << INTERCEPT_INVLPG) |
585 (1ULL << INTERCEPT_INVLPGA) |
586 (1ULL << INTERCEPT_IOIO_PROT) |
587 (1ULL << INTERCEPT_MSR_PROT) |
588 (1ULL << INTERCEPT_TASK_SWITCH) |
589 (1ULL << INTERCEPT_SHUTDOWN) |
590 (1ULL << INTERCEPT_VMRUN) |
591 (1ULL << INTERCEPT_VMMCALL) |
592 (1ULL << INTERCEPT_VMLOAD) |
593 (1ULL << INTERCEPT_VMSAVE) |
594 (1ULL << INTERCEPT_STGI) |
595 (1ULL << INTERCEPT_CLGI) |
596 (1ULL << INTERCEPT_SKINIT) |
597 (1ULL << INTERCEPT_WBINVD) |
598 (1ULL << INTERCEPT_MONITOR) |
599 (1ULL << INTERCEPT_MWAIT);
600
601 control->iopm_base_pa = iopm_base;
602 control->msrpm_base_pa = __pa(svm->msrpm);
603 control->tsc_offset = 0;
604 control->int_ctl = V_INTR_MASKING_MASK;
605
606 init_seg(&save->es);
607 init_seg(&save->ss);
608 init_seg(&save->ds);
609 init_seg(&save->fs);
610 init_seg(&save->gs);
611
612 save->cs.selector = 0xf000;
613 /* Executable/Readable Code Segment */
614 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
615 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
616 save->cs.limit = 0xffff;
617 /*
618 * cs.base should really be 0xffff0000, but vmx can't handle that, so
619 * be consistent with it.
620 *
621 * Replace when we have real mode working for vmx.
622 */
623 save->cs.base = 0xf0000;
624
625 save->gdtr.limit = 0xffff;
626 save->idtr.limit = 0xffff;
627
628 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
629 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
630
631 save->efer = EFER_SVME;
632 save->dr6 = 0xffff0ff0;
633 save->dr7 = 0x400;
634 save->rflags = 2;
635 save->rip = 0x0000fff0;
636 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
637
638 /* This is the guest-visible cr0 value.
639 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
640 */
641 svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
642 kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
643
644 save->cr4 = X86_CR4_PAE;
645 /* rdx = ?? */
646
647 if (npt_enabled) {
648 /* Setup VMCB for Nested Paging */
649 control->nested_ctl = 1;
650 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
651 (1ULL << INTERCEPT_INVLPG));
652 control->intercept_exceptions &= ~(1 << PF_VECTOR);
653 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
654 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
655 save->g_pat = 0x0007040600070406ULL;
656 save->cr3 = 0;
657 save->cr4 = 0;
658 }
659 force_new_asid(&svm->vcpu);
660
661 svm->nested.vmcb = 0;
662 svm->vcpu.arch.hflags = 0;
663
664 if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
665 control->pause_filter_count = 3000;
666 control->intercept |= (1ULL << INTERCEPT_PAUSE);
667 }
668
669 enable_gif(svm);
670 }
671
672 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
673 {
674 struct vcpu_svm *svm = to_svm(vcpu);
675
676 init_vmcb(svm);
677
678 if (!kvm_vcpu_is_bsp(vcpu)) {
679 kvm_rip_write(vcpu, 0);
680 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
681 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
682 }
683 vcpu->arch.regs_avail = ~0;
684 vcpu->arch.regs_dirty = ~0;
685
686 return 0;
687 }
688
689 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
690 {
691 struct vcpu_svm *svm;
692 struct page *page;
693 struct page *msrpm_pages;
694 struct page *hsave_page;
695 struct page *nested_msrpm_pages;
696 int err;
697
698 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
699 if (!svm) {
700 err = -ENOMEM;
701 goto out;
702 }
703
704 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
705 if (err)
706 goto free_svm;
707
708 page = alloc_page(GFP_KERNEL);
709 if (!page) {
710 err = -ENOMEM;
711 goto uninit;
712 }
713
714 err = -ENOMEM;
715 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
716 if (!msrpm_pages)
717 goto uninit;
718
719 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
720 if (!nested_msrpm_pages)
721 goto uninit;
722
723 svm->msrpm = page_address(msrpm_pages);
724 svm_vcpu_init_msrpm(svm->msrpm);
725
726 hsave_page = alloc_page(GFP_KERNEL);
727 if (!hsave_page)
728 goto uninit;
729 svm->nested.hsave = page_address(hsave_page);
730
731 svm->nested.msrpm = page_address(nested_msrpm_pages);
732
733 svm->vmcb = page_address(page);
734 clear_page(svm->vmcb);
735 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
736 svm->asid_generation = 0;
737 init_vmcb(svm);
738
739 fx_init(&svm->vcpu);
740 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
741 if (kvm_vcpu_is_bsp(&svm->vcpu))
742 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
743
744 return &svm->vcpu;
745
746 uninit:
747 kvm_vcpu_uninit(&svm->vcpu);
748 free_svm:
749 kmem_cache_free(kvm_vcpu_cache, svm);
750 out:
751 return ERR_PTR(err);
752 }
753
754 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
755 {
756 struct vcpu_svm *svm = to_svm(vcpu);
757
758 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
759 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
760 __free_page(virt_to_page(svm->nested.hsave));
761 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
762 kvm_vcpu_uninit(vcpu);
763 kmem_cache_free(kvm_vcpu_cache, svm);
764 }
765
766 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
767 {
768 struct vcpu_svm *svm = to_svm(vcpu);
769 int i;
770
771 if (unlikely(cpu != vcpu->cpu)) {
772 u64 delta;
773
774 if (check_tsc_unstable()) {
775 /*
776 * Make sure that the guest sees a monotonically
777 * increasing TSC.
778 */
779 delta = vcpu->arch.host_tsc - native_read_tsc();
780 svm->vmcb->control.tsc_offset += delta;
781 if (is_nested(svm))
782 svm->nested.hsave->control.tsc_offset += delta;
783 }
784 vcpu->cpu = cpu;
785 kvm_migrate_timers(vcpu);
786 svm->asid_generation = 0;
787 }
788
789 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
790 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
791 }
792
793 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
794 {
795 struct vcpu_svm *svm = to_svm(vcpu);
796 int i;
797
798 ++vcpu->stat.host_state_reload;
799 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
800 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
801
802 vcpu->arch.host_tsc = native_read_tsc();
803 }
804
805 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
806 {
807 return to_svm(vcpu)->vmcb->save.rflags;
808 }
809
810 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
811 {
812 to_svm(vcpu)->vmcb->save.rflags = rflags;
813 }
814
815 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
816 {
817 switch (reg) {
818 case VCPU_EXREG_PDPTR:
819 BUG_ON(!npt_enabled);
820 load_pdptrs(vcpu, vcpu->arch.cr3);
821 break;
822 default:
823 BUG();
824 }
825 }
826
827 static void svm_set_vintr(struct vcpu_svm *svm)
828 {
829 svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
830 }
831
832 static void svm_clear_vintr(struct vcpu_svm *svm)
833 {
834 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
835 }
836
837 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
838 {
839 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
840
841 switch (seg) {
842 case VCPU_SREG_CS: return &save->cs;
843 case VCPU_SREG_DS: return &save->ds;
844 case VCPU_SREG_ES: return &save->es;
845 case VCPU_SREG_FS: return &save->fs;
846 case VCPU_SREG_GS: return &save->gs;
847 case VCPU_SREG_SS: return &save->ss;
848 case VCPU_SREG_TR: return &save->tr;
849 case VCPU_SREG_LDTR: return &save->ldtr;
850 }
851 BUG();
852 return NULL;
853 }
854
855 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
856 {
857 struct vmcb_seg *s = svm_seg(vcpu, seg);
858
859 return s->base;
860 }
861
862 static void svm_get_segment(struct kvm_vcpu *vcpu,
863 struct kvm_segment *var, int seg)
864 {
865 struct vmcb_seg *s = svm_seg(vcpu, seg);
866
867 var->base = s->base;
868 var->limit = s->limit;
869 var->selector = s->selector;
870 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
871 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
872 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
873 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
874 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
875 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
876 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
877 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
878
879 /* AMD's VMCB does not have an explicit unusable field, so emulate it
880 * for cross vendor migration purposes by "not present"
881 */
882 var->unusable = !var->present || (var->type == 0);
883
884 switch (seg) {
885 case VCPU_SREG_CS:
886 /*
887 * SVM always stores 0 for the 'G' bit in the CS selector in
888 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
889 * Intel's VMENTRY has a check on the 'G' bit.
890 */
891 var->g = s->limit > 0xfffff;
892 break;
893 case VCPU_SREG_TR:
894 /*
895 * Work around a bug where the busy flag in the tr selector
896 * isn't exposed
897 */
898 var->type |= 0x2;
899 break;
900 case VCPU_SREG_DS:
901 case VCPU_SREG_ES:
902 case VCPU_SREG_FS:
903 case VCPU_SREG_GS:
904 /*
905 * The accessed bit must always be set in the segment
906 * descriptor cache, although it can be cleared in the
907 * descriptor, the cached bit always remains at 1. Since
908 * Intel has a check on this, set it here to support
909 * cross-vendor migration.
910 */
911 if (!var->unusable)
912 var->type |= 0x1;
913 break;
914 case VCPU_SREG_SS:
915 /* On AMD CPUs sometimes the DB bit in the segment
916 * descriptor is left as 1, although the whole segment has
917 * been made unusable. Clear it here to pass an Intel VMX
918 * entry check when cross vendor migrating.
919 */
920 if (var->unusable)
921 var->db = 0;
922 break;
923 }
924 }
925
926 static int svm_get_cpl(struct kvm_vcpu *vcpu)
927 {
928 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
929
930 return save->cpl;
931 }
932
933 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
934 {
935 struct vcpu_svm *svm = to_svm(vcpu);
936
937 dt->limit = svm->vmcb->save.idtr.limit;
938 dt->base = svm->vmcb->save.idtr.base;
939 }
940
941 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
942 {
943 struct vcpu_svm *svm = to_svm(vcpu);
944
945 svm->vmcb->save.idtr.limit = dt->limit;
946 svm->vmcb->save.idtr.base = dt->base ;
947 }
948
949 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
950 {
951 struct vcpu_svm *svm = to_svm(vcpu);
952
953 dt->limit = svm->vmcb->save.gdtr.limit;
954 dt->base = svm->vmcb->save.gdtr.base;
955 }
956
957 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
958 {
959 struct vcpu_svm *svm = to_svm(vcpu);
960
961 svm->vmcb->save.gdtr.limit = dt->limit;
962 svm->vmcb->save.gdtr.base = dt->base ;
963 }
964
965 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
966 {
967 }
968
969 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
970 {
971 }
972
973 static void update_cr0_intercept(struct vcpu_svm *svm)
974 {
975 ulong gcr0 = svm->vcpu.arch.cr0;
976 u64 *hcr0 = &svm->vmcb->save.cr0;
977
978 if (!svm->vcpu.fpu_active)
979 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
980 else
981 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
982 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
983
984
985 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
986 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
987 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
988 } else {
989 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
990 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
991 }
992 }
993
994 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
995 {
996 struct vcpu_svm *svm = to_svm(vcpu);
997
998 #ifdef CONFIG_X86_64
999 if (vcpu->arch.efer & EFER_LME) {
1000 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1001 vcpu->arch.efer |= EFER_LMA;
1002 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1003 }
1004
1005 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1006 vcpu->arch.efer &= ~EFER_LMA;
1007 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1008 }
1009 }
1010 #endif
1011 vcpu->arch.cr0 = cr0;
1012
1013 if (!npt_enabled)
1014 cr0 |= X86_CR0_PG | X86_CR0_WP;
1015
1016 if (!vcpu->fpu_active)
1017 cr0 |= X86_CR0_TS;
1018 /*
1019 * re-enable caching here because the QEMU bios
1020 * does not do it - this results in some delay at
1021 * reboot
1022 */
1023 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1024 svm->vmcb->save.cr0 = cr0;
1025 update_cr0_intercept(svm);
1026 }
1027
1028 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1029 {
1030 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1031 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1032
1033 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1034 force_new_asid(vcpu);
1035
1036 vcpu->arch.cr4 = cr4;
1037 if (!npt_enabled)
1038 cr4 |= X86_CR4_PAE;
1039 cr4 |= host_cr4_mce;
1040 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1041 }
1042
1043 static void svm_set_segment(struct kvm_vcpu *vcpu,
1044 struct kvm_segment *var, int seg)
1045 {
1046 struct vcpu_svm *svm = to_svm(vcpu);
1047 struct vmcb_seg *s = svm_seg(vcpu, seg);
1048
1049 s->base = var->base;
1050 s->limit = var->limit;
1051 s->selector = var->selector;
1052 if (var->unusable)
1053 s->attrib = 0;
1054 else {
1055 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1056 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1057 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1058 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1059 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1060 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1061 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1062 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1063 }
1064 if (seg == VCPU_SREG_CS)
1065 svm->vmcb->save.cpl
1066 = (svm->vmcb->save.cs.attrib
1067 >> SVM_SELECTOR_DPL_SHIFT) & 3;
1068
1069 }
1070
1071 static void update_db_intercept(struct kvm_vcpu *vcpu)
1072 {
1073 struct vcpu_svm *svm = to_svm(vcpu);
1074
1075 svm->vmcb->control.intercept_exceptions &=
1076 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1077
1078 if (svm->nmi_singlestep)
1079 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1080
1081 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1082 if (vcpu->guest_debug &
1083 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1084 svm->vmcb->control.intercept_exceptions |=
1085 1 << DB_VECTOR;
1086 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1087 svm->vmcb->control.intercept_exceptions |=
1088 1 << BP_VECTOR;
1089 } else
1090 vcpu->guest_debug = 0;
1091 }
1092
1093 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1094 {
1095 struct vcpu_svm *svm = to_svm(vcpu);
1096
1097 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1098 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1099 else
1100 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1101
1102 update_db_intercept(vcpu);
1103 }
1104
1105 static void load_host_msrs(struct kvm_vcpu *vcpu)
1106 {
1107 #ifdef CONFIG_X86_64
1108 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1109 #endif
1110 }
1111
1112 static void save_host_msrs(struct kvm_vcpu *vcpu)
1113 {
1114 #ifdef CONFIG_X86_64
1115 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1116 #endif
1117 }
1118
1119 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1120 {
1121 if (sd->next_asid > sd->max_asid) {
1122 ++sd->asid_generation;
1123 sd->next_asid = 1;
1124 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1125 }
1126
1127 svm->asid_generation = sd->asid_generation;
1128 svm->vmcb->control.asid = sd->next_asid++;
1129 }
1130
1131 static int svm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *dest)
1132 {
1133 struct vcpu_svm *svm = to_svm(vcpu);
1134
1135 switch (dr) {
1136 case 0 ... 3:
1137 *dest = vcpu->arch.db[dr];
1138 break;
1139 case 4:
1140 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1141 return EMULATE_FAIL; /* will re-inject UD */
1142 /* fall through */
1143 case 6:
1144 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1145 *dest = vcpu->arch.dr6;
1146 else
1147 *dest = svm->vmcb->save.dr6;
1148 break;
1149 case 5:
1150 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1151 return EMULATE_FAIL; /* will re-inject UD */
1152 /* fall through */
1153 case 7:
1154 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1155 *dest = vcpu->arch.dr7;
1156 else
1157 *dest = svm->vmcb->save.dr7;
1158 break;
1159 }
1160
1161 return EMULATE_DONE;
1162 }
1163
1164 static int svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value)
1165 {
1166 struct vcpu_svm *svm = to_svm(vcpu);
1167
1168 switch (dr) {
1169 case 0 ... 3:
1170 vcpu->arch.db[dr] = value;
1171 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1172 vcpu->arch.eff_db[dr] = value;
1173 break;
1174 case 4:
1175 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1176 return EMULATE_FAIL; /* will re-inject UD */
1177 /* fall through */
1178 case 6:
1179 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1180 break;
1181 case 5:
1182 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1183 return EMULATE_FAIL; /* will re-inject UD */
1184 /* fall through */
1185 case 7:
1186 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1187 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1188 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1189 vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1190 }
1191 break;
1192 }
1193
1194 return EMULATE_DONE;
1195 }
1196
1197 static int pf_interception(struct vcpu_svm *svm)
1198 {
1199 u64 fault_address;
1200 u32 error_code;
1201
1202 fault_address = svm->vmcb->control.exit_info_2;
1203 error_code = svm->vmcb->control.exit_info_1;
1204
1205 trace_kvm_page_fault(fault_address, error_code);
1206 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1207 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1208 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1209 }
1210
1211 static int db_interception(struct vcpu_svm *svm)
1212 {
1213 struct kvm_run *kvm_run = svm->vcpu.run;
1214
1215 if (!(svm->vcpu.guest_debug &
1216 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1217 !svm->nmi_singlestep) {
1218 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1219 return 1;
1220 }
1221
1222 if (svm->nmi_singlestep) {
1223 svm->nmi_singlestep = false;
1224 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1225 svm->vmcb->save.rflags &=
1226 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1227 update_db_intercept(&svm->vcpu);
1228 }
1229
1230 if (svm->vcpu.guest_debug &
1231 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
1232 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1233 kvm_run->debug.arch.pc =
1234 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1235 kvm_run->debug.arch.exception = DB_VECTOR;
1236 return 0;
1237 }
1238
1239 return 1;
1240 }
1241
1242 static int bp_interception(struct vcpu_svm *svm)
1243 {
1244 struct kvm_run *kvm_run = svm->vcpu.run;
1245
1246 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1247 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1248 kvm_run->debug.arch.exception = BP_VECTOR;
1249 return 0;
1250 }
1251
1252 static int ud_interception(struct vcpu_svm *svm)
1253 {
1254 int er;
1255
1256 er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1257 if (er != EMULATE_DONE)
1258 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1259 return 1;
1260 }
1261
1262 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1263 {
1264 struct vcpu_svm *svm = to_svm(vcpu);
1265 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1266 svm->vcpu.fpu_active = 1;
1267 update_cr0_intercept(svm);
1268 }
1269
1270 static int nm_interception(struct vcpu_svm *svm)
1271 {
1272 svm_fpu_activate(&svm->vcpu);
1273 return 1;
1274 }
1275
1276 static int mc_interception(struct vcpu_svm *svm)
1277 {
1278 /*
1279 * On an #MC intercept the MCE handler is not called automatically in
1280 * the host. So do it by hand here.
1281 */
1282 asm volatile (
1283 "int $0x12\n");
1284 /* not sure if we ever come back to this point */
1285
1286 return 1;
1287 }
1288
1289 static int shutdown_interception(struct vcpu_svm *svm)
1290 {
1291 struct kvm_run *kvm_run = svm->vcpu.run;
1292
1293 /*
1294 * VMCB is undefined after a SHUTDOWN intercept
1295 * so reinitialize it.
1296 */
1297 clear_page(svm->vmcb);
1298 init_vmcb(svm);
1299
1300 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1301 return 0;
1302 }
1303
1304 static int io_interception(struct vcpu_svm *svm)
1305 {
1306 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1307 int size, in, string;
1308 unsigned port;
1309
1310 ++svm->vcpu.stat.io_exits;
1311
1312 svm->next_rip = svm->vmcb->control.exit_info_2;
1313
1314 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1315
1316 if (string) {
1317 if (emulate_instruction(&svm->vcpu,
1318 0, 0, 0) == EMULATE_DO_MMIO)
1319 return 0;
1320 return 1;
1321 }
1322
1323 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1324 port = io_info >> 16;
1325 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1326
1327 skip_emulated_instruction(&svm->vcpu);
1328 return kvm_emulate_pio(&svm->vcpu, in, size, port);
1329 }
1330
1331 static int nmi_interception(struct vcpu_svm *svm)
1332 {
1333 return 1;
1334 }
1335
1336 static int intr_interception(struct vcpu_svm *svm)
1337 {
1338 ++svm->vcpu.stat.irq_exits;
1339 return 1;
1340 }
1341
1342 static int nop_on_interception(struct vcpu_svm *svm)
1343 {
1344 return 1;
1345 }
1346
1347 static int halt_interception(struct vcpu_svm *svm)
1348 {
1349 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1350 skip_emulated_instruction(&svm->vcpu);
1351 return kvm_emulate_halt(&svm->vcpu);
1352 }
1353
1354 static int vmmcall_interception(struct vcpu_svm *svm)
1355 {
1356 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1357 skip_emulated_instruction(&svm->vcpu);
1358 kvm_emulate_hypercall(&svm->vcpu);
1359 return 1;
1360 }
1361
1362 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1363 {
1364 if (!(svm->vcpu.arch.efer & EFER_SVME)
1365 || !is_paging(&svm->vcpu)) {
1366 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1367 return 1;
1368 }
1369
1370 if (svm->vmcb->save.cpl) {
1371 kvm_inject_gp(&svm->vcpu, 0);
1372 return 1;
1373 }
1374
1375 return 0;
1376 }
1377
1378 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1379 bool has_error_code, u32 error_code)
1380 {
1381 if (!is_nested(svm))
1382 return 0;
1383
1384 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1385 svm->vmcb->control.exit_code_hi = 0;
1386 svm->vmcb->control.exit_info_1 = error_code;
1387 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1388
1389 return nested_svm_exit_handled(svm);
1390 }
1391
1392 static inline int nested_svm_intr(struct vcpu_svm *svm)
1393 {
1394 if (!is_nested(svm))
1395 return 0;
1396
1397 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1398 return 0;
1399
1400 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1401 return 0;
1402
1403 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1404
1405 if (svm->nested.intercept & 1ULL) {
1406 /*
1407 * The #vmexit can't be emulated here directly because this
1408 * code path runs with irqs and preemtion disabled. A
1409 * #vmexit emulation might sleep. Only signal request for
1410 * the #vmexit here.
1411 */
1412 svm->nested.exit_required = true;
1413 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1414 return 1;
1415 }
1416
1417 return 0;
1418 }
1419
1420 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, enum km_type idx)
1421 {
1422 struct page *page;
1423
1424 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1425 if (is_error_page(page))
1426 goto error;
1427
1428 return kmap_atomic(page, idx);
1429
1430 error:
1431 kvm_release_page_clean(page);
1432 kvm_inject_gp(&svm->vcpu, 0);
1433
1434 return NULL;
1435 }
1436
1437 static void nested_svm_unmap(void *addr, enum km_type idx)
1438 {
1439 struct page *page;
1440
1441 if (!addr)
1442 return;
1443
1444 page = kmap_atomic_to_page(addr);
1445
1446 kunmap_atomic(addr, idx);
1447 kvm_release_page_dirty(page);
1448 }
1449
1450 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1451 {
1452 u32 param = svm->vmcb->control.exit_info_1 & 1;
1453 u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1454 bool ret = false;
1455 u32 t0, t1;
1456 u8 *msrpm;
1457
1458 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1459 return false;
1460
1461 msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1462
1463 if (!msrpm)
1464 goto out;
1465
1466 switch (msr) {
1467 case 0 ... 0x1fff:
1468 t0 = (msr * 2) % 8;
1469 t1 = msr / 8;
1470 break;
1471 case 0xc0000000 ... 0xc0001fff:
1472 t0 = (8192 + msr - 0xc0000000) * 2;
1473 t1 = (t0 / 8);
1474 t0 %= 8;
1475 break;
1476 case 0xc0010000 ... 0xc0011fff:
1477 t0 = (16384 + msr - 0xc0010000) * 2;
1478 t1 = (t0 / 8);
1479 t0 %= 8;
1480 break;
1481 default:
1482 ret = true;
1483 goto out;
1484 }
1485
1486 ret = msrpm[t1] & ((1 << param) << t0);
1487
1488 out:
1489 nested_svm_unmap(msrpm, KM_USER0);
1490
1491 return ret;
1492 }
1493
1494 static int nested_svm_exit_special(struct vcpu_svm *svm)
1495 {
1496 u32 exit_code = svm->vmcb->control.exit_code;
1497
1498 switch (exit_code) {
1499 case SVM_EXIT_INTR:
1500 case SVM_EXIT_NMI:
1501 return NESTED_EXIT_HOST;
1502 /* For now we are always handling NPFs when using them */
1503 case SVM_EXIT_NPF:
1504 if (npt_enabled)
1505 return NESTED_EXIT_HOST;
1506 break;
1507 /* When we're shadowing, trap PFs */
1508 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1509 if (!npt_enabled)
1510 return NESTED_EXIT_HOST;
1511 break;
1512 default:
1513 break;
1514 }
1515
1516 return NESTED_EXIT_CONTINUE;
1517 }
1518
1519 /*
1520 * If this function returns true, this #vmexit was already handled
1521 */
1522 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1523 {
1524 u32 exit_code = svm->vmcb->control.exit_code;
1525 int vmexit = NESTED_EXIT_HOST;
1526
1527 switch (exit_code) {
1528 case SVM_EXIT_MSR:
1529 vmexit = nested_svm_exit_handled_msr(svm);
1530 break;
1531 case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1532 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1533 if (svm->nested.intercept_cr_read & cr_bits)
1534 vmexit = NESTED_EXIT_DONE;
1535 break;
1536 }
1537 case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1538 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1539 if (svm->nested.intercept_cr_write & cr_bits)
1540 vmexit = NESTED_EXIT_DONE;
1541 break;
1542 }
1543 case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1544 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1545 if (svm->nested.intercept_dr_read & dr_bits)
1546 vmexit = NESTED_EXIT_DONE;
1547 break;
1548 }
1549 case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1550 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1551 if (svm->nested.intercept_dr_write & dr_bits)
1552 vmexit = NESTED_EXIT_DONE;
1553 break;
1554 }
1555 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1556 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1557 if (svm->nested.intercept_exceptions & excp_bits)
1558 vmexit = NESTED_EXIT_DONE;
1559 break;
1560 }
1561 default: {
1562 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1563 if (svm->nested.intercept & exit_bits)
1564 vmexit = NESTED_EXIT_DONE;
1565 }
1566 }
1567
1568 if (vmexit == NESTED_EXIT_DONE) {
1569 nested_svm_vmexit(svm);
1570 }
1571
1572 return vmexit;
1573 }
1574
1575 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1576 {
1577 struct vmcb_control_area *dst = &dst_vmcb->control;
1578 struct vmcb_control_area *from = &from_vmcb->control;
1579
1580 dst->intercept_cr_read = from->intercept_cr_read;
1581 dst->intercept_cr_write = from->intercept_cr_write;
1582 dst->intercept_dr_read = from->intercept_dr_read;
1583 dst->intercept_dr_write = from->intercept_dr_write;
1584 dst->intercept_exceptions = from->intercept_exceptions;
1585 dst->intercept = from->intercept;
1586 dst->iopm_base_pa = from->iopm_base_pa;
1587 dst->msrpm_base_pa = from->msrpm_base_pa;
1588 dst->tsc_offset = from->tsc_offset;
1589 dst->asid = from->asid;
1590 dst->tlb_ctl = from->tlb_ctl;
1591 dst->int_ctl = from->int_ctl;
1592 dst->int_vector = from->int_vector;
1593 dst->int_state = from->int_state;
1594 dst->exit_code = from->exit_code;
1595 dst->exit_code_hi = from->exit_code_hi;
1596 dst->exit_info_1 = from->exit_info_1;
1597 dst->exit_info_2 = from->exit_info_2;
1598 dst->exit_int_info = from->exit_int_info;
1599 dst->exit_int_info_err = from->exit_int_info_err;
1600 dst->nested_ctl = from->nested_ctl;
1601 dst->event_inj = from->event_inj;
1602 dst->event_inj_err = from->event_inj_err;
1603 dst->nested_cr3 = from->nested_cr3;
1604 dst->lbr_ctl = from->lbr_ctl;
1605 }
1606
1607 static int nested_svm_vmexit(struct vcpu_svm *svm)
1608 {
1609 struct vmcb *nested_vmcb;
1610 struct vmcb *hsave = svm->nested.hsave;
1611 struct vmcb *vmcb = svm->vmcb;
1612
1613 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1614 vmcb->control.exit_info_1,
1615 vmcb->control.exit_info_2,
1616 vmcb->control.exit_int_info,
1617 vmcb->control.exit_int_info_err);
1618
1619 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, KM_USER0);
1620 if (!nested_vmcb)
1621 return 1;
1622
1623 /* Give the current vmcb to the guest */
1624 disable_gif(svm);
1625
1626 nested_vmcb->save.es = vmcb->save.es;
1627 nested_vmcb->save.cs = vmcb->save.cs;
1628 nested_vmcb->save.ss = vmcb->save.ss;
1629 nested_vmcb->save.ds = vmcb->save.ds;
1630 nested_vmcb->save.gdtr = vmcb->save.gdtr;
1631 nested_vmcb->save.idtr = vmcb->save.idtr;
1632 if (npt_enabled)
1633 nested_vmcb->save.cr3 = vmcb->save.cr3;
1634 nested_vmcb->save.cr2 = vmcb->save.cr2;
1635 nested_vmcb->save.rflags = vmcb->save.rflags;
1636 nested_vmcb->save.rip = vmcb->save.rip;
1637 nested_vmcb->save.rsp = vmcb->save.rsp;
1638 nested_vmcb->save.rax = vmcb->save.rax;
1639 nested_vmcb->save.dr7 = vmcb->save.dr7;
1640 nested_vmcb->save.dr6 = vmcb->save.dr6;
1641 nested_vmcb->save.cpl = vmcb->save.cpl;
1642
1643 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
1644 nested_vmcb->control.int_vector = vmcb->control.int_vector;
1645 nested_vmcb->control.int_state = vmcb->control.int_state;
1646 nested_vmcb->control.exit_code = vmcb->control.exit_code;
1647 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
1648 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
1649 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
1650 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
1651 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1652
1653 /*
1654 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1655 * to make sure that we do not lose injected events. So check event_inj
1656 * here and copy it to exit_int_info if it is valid.
1657 * Exit_int_info and event_inj can't be both valid because the case
1658 * below only happens on a VMRUN instruction intercept which has
1659 * no valid exit_int_info set.
1660 */
1661 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1662 struct vmcb_control_area *nc = &nested_vmcb->control;
1663
1664 nc->exit_int_info = vmcb->control.event_inj;
1665 nc->exit_int_info_err = vmcb->control.event_inj_err;
1666 }
1667
1668 nested_vmcb->control.tlb_ctl = 0;
1669 nested_vmcb->control.event_inj = 0;
1670 nested_vmcb->control.event_inj_err = 0;
1671
1672 /* We always set V_INTR_MASKING and remember the old value in hflags */
1673 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1674 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1675
1676 /* Restore the original control entries */
1677 copy_vmcb_control_area(vmcb, hsave);
1678
1679 kvm_clear_exception_queue(&svm->vcpu);
1680 kvm_clear_interrupt_queue(&svm->vcpu);
1681
1682 /* Restore selected save entries */
1683 svm->vmcb->save.es = hsave->save.es;
1684 svm->vmcb->save.cs = hsave->save.cs;
1685 svm->vmcb->save.ss = hsave->save.ss;
1686 svm->vmcb->save.ds = hsave->save.ds;
1687 svm->vmcb->save.gdtr = hsave->save.gdtr;
1688 svm->vmcb->save.idtr = hsave->save.idtr;
1689 svm->vmcb->save.rflags = hsave->save.rflags;
1690 svm_set_efer(&svm->vcpu, hsave->save.efer);
1691 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1692 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1693 if (npt_enabled) {
1694 svm->vmcb->save.cr3 = hsave->save.cr3;
1695 svm->vcpu.arch.cr3 = hsave->save.cr3;
1696 } else {
1697 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1698 }
1699 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1700 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1701 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1702 svm->vmcb->save.dr7 = 0;
1703 svm->vmcb->save.cpl = 0;
1704 svm->vmcb->control.exit_int_info = 0;
1705
1706 /* Exit nested SVM mode */
1707 svm->nested.vmcb = 0;
1708
1709 nested_svm_unmap(nested_vmcb, KM_USER0);
1710
1711 kvm_mmu_reset_context(&svm->vcpu);
1712 kvm_mmu_load(&svm->vcpu);
1713
1714 return 0;
1715 }
1716
1717 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1718 {
1719 u32 *nested_msrpm;
1720 int i;
1721
1722 nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1723 if (!nested_msrpm)
1724 return false;
1725
1726 for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1727 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1728
1729 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1730
1731 nested_svm_unmap(nested_msrpm, KM_USER0);
1732
1733 return true;
1734 }
1735
1736 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1737 {
1738 struct vmcb *nested_vmcb;
1739 struct vmcb *hsave = svm->nested.hsave;
1740 struct vmcb *vmcb = svm->vmcb;
1741
1742 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1743 if (!nested_vmcb)
1744 return false;
1745
1746 /* nested_vmcb is our indicator if nested SVM is activated */
1747 svm->nested.vmcb = svm->vmcb->save.rax;
1748
1749 trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, svm->nested.vmcb,
1750 nested_vmcb->save.rip,
1751 nested_vmcb->control.int_ctl,
1752 nested_vmcb->control.event_inj,
1753 nested_vmcb->control.nested_ctl);
1754
1755 /* Clear internal status */
1756 kvm_clear_exception_queue(&svm->vcpu);
1757 kvm_clear_interrupt_queue(&svm->vcpu);
1758
1759 /* Save the old vmcb, so we don't need to pick what we save, but
1760 can restore everything when a VMEXIT occurs */
1761 hsave->save.es = vmcb->save.es;
1762 hsave->save.cs = vmcb->save.cs;
1763 hsave->save.ss = vmcb->save.ss;
1764 hsave->save.ds = vmcb->save.ds;
1765 hsave->save.gdtr = vmcb->save.gdtr;
1766 hsave->save.idtr = vmcb->save.idtr;
1767 hsave->save.efer = svm->vcpu.arch.efer;
1768 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
1769 hsave->save.cr4 = svm->vcpu.arch.cr4;
1770 hsave->save.rflags = vmcb->save.rflags;
1771 hsave->save.rip = svm->next_rip;
1772 hsave->save.rsp = vmcb->save.rsp;
1773 hsave->save.rax = vmcb->save.rax;
1774 if (npt_enabled)
1775 hsave->save.cr3 = vmcb->save.cr3;
1776 else
1777 hsave->save.cr3 = svm->vcpu.arch.cr3;
1778
1779 copy_vmcb_control_area(hsave, vmcb);
1780
1781 if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1782 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1783 else
1784 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1785
1786 /* Load the nested guest state */
1787 svm->vmcb->save.es = nested_vmcb->save.es;
1788 svm->vmcb->save.cs = nested_vmcb->save.cs;
1789 svm->vmcb->save.ss = nested_vmcb->save.ss;
1790 svm->vmcb->save.ds = nested_vmcb->save.ds;
1791 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1792 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1793 svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1794 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1795 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1796 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1797 if (npt_enabled) {
1798 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1799 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1800 } else {
1801 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1802 kvm_mmu_reset_context(&svm->vcpu);
1803 }
1804 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1805 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1806 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1807 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1808 /* In case we don't even reach vcpu_run, the fields are not updated */
1809 svm->vmcb->save.rax = nested_vmcb->save.rax;
1810 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1811 svm->vmcb->save.rip = nested_vmcb->save.rip;
1812 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1813 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1814 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1815
1816 /* We don't want a nested guest to be more powerful than the guest,
1817 so all intercepts are ORed */
1818 svm->vmcb->control.intercept_cr_read |=
1819 nested_vmcb->control.intercept_cr_read;
1820 svm->vmcb->control.intercept_cr_write |=
1821 nested_vmcb->control.intercept_cr_write;
1822 svm->vmcb->control.intercept_dr_read |=
1823 nested_vmcb->control.intercept_dr_read;
1824 svm->vmcb->control.intercept_dr_write |=
1825 nested_vmcb->control.intercept_dr_write;
1826 svm->vmcb->control.intercept_exceptions |=
1827 nested_vmcb->control.intercept_exceptions;
1828
1829 svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1830
1831 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1832
1833 /* cache intercepts */
1834 svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
1835 svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
1836 svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
1837 svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
1838 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1839 svm->nested.intercept = nested_vmcb->control.intercept;
1840
1841 force_new_asid(&svm->vcpu);
1842 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1843 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1844 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1845 else
1846 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1847
1848 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1849 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1850 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1851 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1852 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1853
1854 nested_svm_unmap(nested_vmcb, KM_USER0);
1855
1856 enable_gif(svm);
1857
1858 return true;
1859 }
1860
1861 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1862 {
1863 to_vmcb->save.fs = from_vmcb->save.fs;
1864 to_vmcb->save.gs = from_vmcb->save.gs;
1865 to_vmcb->save.tr = from_vmcb->save.tr;
1866 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1867 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1868 to_vmcb->save.star = from_vmcb->save.star;
1869 to_vmcb->save.lstar = from_vmcb->save.lstar;
1870 to_vmcb->save.cstar = from_vmcb->save.cstar;
1871 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1872 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1873 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1874 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1875 }
1876
1877 static int vmload_interception(struct vcpu_svm *svm)
1878 {
1879 struct vmcb *nested_vmcb;
1880
1881 if (nested_svm_check_permissions(svm))
1882 return 1;
1883
1884 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1885 skip_emulated_instruction(&svm->vcpu);
1886
1887 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1888 if (!nested_vmcb)
1889 return 1;
1890
1891 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1892 nested_svm_unmap(nested_vmcb, KM_USER0);
1893
1894 return 1;
1895 }
1896
1897 static int vmsave_interception(struct vcpu_svm *svm)
1898 {
1899 struct vmcb *nested_vmcb;
1900
1901 if (nested_svm_check_permissions(svm))
1902 return 1;
1903
1904 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1905 skip_emulated_instruction(&svm->vcpu);
1906
1907 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1908 if (!nested_vmcb)
1909 return 1;
1910
1911 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1912 nested_svm_unmap(nested_vmcb, KM_USER0);
1913
1914 return 1;
1915 }
1916
1917 static int vmrun_interception(struct vcpu_svm *svm)
1918 {
1919 if (nested_svm_check_permissions(svm))
1920 return 1;
1921
1922 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1923 skip_emulated_instruction(&svm->vcpu);
1924
1925 if (!nested_svm_vmrun(svm))
1926 return 1;
1927
1928 if (!nested_svm_vmrun_msrpm(svm))
1929 goto failed;
1930
1931 return 1;
1932
1933 failed:
1934
1935 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
1936 svm->vmcb->control.exit_code_hi = 0;
1937 svm->vmcb->control.exit_info_1 = 0;
1938 svm->vmcb->control.exit_info_2 = 0;
1939
1940 nested_svm_vmexit(svm);
1941
1942 return 1;
1943 }
1944
1945 static int stgi_interception(struct vcpu_svm *svm)
1946 {
1947 if (nested_svm_check_permissions(svm))
1948 return 1;
1949
1950 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1951 skip_emulated_instruction(&svm->vcpu);
1952
1953 enable_gif(svm);
1954
1955 return 1;
1956 }
1957
1958 static int clgi_interception(struct vcpu_svm *svm)
1959 {
1960 if (nested_svm_check_permissions(svm))
1961 return 1;
1962
1963 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1964 skip_emulated_instruction(&svm->vcpu);
1965
1966 disable_gif(svm);
1967
1968 /* After a CLGI no interrupts should come */
1969 svm_clear_vintr(svm);
1970 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1971
1972 return 1;
1973 }
1974
1975 static int invlpga_interception(struct vcpu_svm *svm)
1976 {
1977 struct kvm_vcpu *vcpu = &svm->vcpu;
1978
1979 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
1980 vcpu->arch.regs[VCPU_REGS_RAX]);
1981
1982 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1983 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
1984
1985 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1986 skip_emulated_instruction(&svm->vcpu);
1987 return 1;
1988 }
1989
1990 static int skinit_interception(struct vcpu_svm *svm)
1991 {
1992 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
1993
1994 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1995 return 1;
1996 }
1997
1998 static int invalid_op_interception(struct vcpu_svm *svm)
1999 {
2000 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2001 return 1;
2002 }
2003
2004 static int task_switch_interception(struct vcpu_svm *svm)
2005 {
2006 u16 tss_selector;
2007 int reason;
2008 int int_type = svm->vmcb->control.exit_int_info &
2009 SVM_EXITINTINFO_TYPE_MASK;
2010 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2011 uint32_t type =
2012 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2013 uint32_t idt_v =
2014 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2015
2016 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2017
2018 if (svm->vmcb->control.exit_info_2 &
2019 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2020 reason = TASK_SWITCH_IRET;
2021 else if (svm->vmcb->control.exit_info_2 &
2022 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2023 reason = TASK_SWITCH_JMP;
2024 else if (idt_v)
2025 reason = TASK_SWITCH_GATE;
2026 else
2027 reason = TASK_SWITCH_CALL;
2028
2029 if (reason == TASK_SWITCH_GATE) {
2030 switch (type) {
2031 case SVM_EXITINTINFO_TYPE_NMI:
2032 svm->vcpu.arch.nmi_injected = false;
2033 break;
2034 case SVM_EXITINTINFO_TYPE_EXEPT:
2035 kvm_clear_exception_queue(&svm->vcpu);
2036 break;
2037 case SVM_EXITINTINFO_TYPE_INTR:
2038 kvm_clear_interrupt_queue(&svm->vcpu);
2039 break;
2040 default:
2041 break;
2042 }
2043 }
2044
2045 if (reason != TASK_SWITCH_GATE ||
2046 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2047 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2048 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2049 skip_emulated_instruction(&svm->vcpu);
2050
2051 return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2052 }
2053
2054 static int cpuid_interception(struct vcpu_svm *svm)
2055 {
2056 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2057 kvm_emulate_cpuid(&svm->vcpu);
2058 return 1;
2059 }
2060
2061 static int iret_interception(struct vcpu_svm *svm)
2062 {
2063 ++svm->vcpu.stat.nmi_window_exits;
2064 svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2065 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2066 return 1;
2067 }
2068
2069 static int invlpg_interception(struct vcpu_svm *svm)
2070 {
2071 if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2072 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2073 return 1;
2074 }
2075
2076 static int emulate_on_interception(struct vcpu_svm *svm)
2077 {
2078 if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2079 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2080 return 1;
2081 }
2082
2083 static int cr8_write_interception(struct vcpu_svm *svm)
2084 {
2085 struct kvm_run *kvm_run = svm->vcpu.run;
2086
2087 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2088 /* instruction emulation calls kvm_set_cr8() */
2089 emulate_instruction(&svm->vcpu, 0, 0, 0);
2090 if (irqchip_in_kernel(svm->vcpu.kvm)) {
2091 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2092 return 1;
2093 }
2094 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2095 return 1;
2096 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2097 return 0;
2098 }
2099
2100 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2101 {
2102 struct vcpu_svm *svm = to_svm(vcpu);
2103
2104 switch (ecx) {
2105 case MSR_IA32_TSC: {
2106 u64 tsc_offset;
2107
2108 if (is_nested(svm))
2109 tsc_offset = svm->nested.hsave->control.tsc_offset;
2110 else
2111 tsc_offset = svm->vmcb->control.tsc_offset;
2112
2113 *data = tsc_offset + native_read_tsc();
2114 break;
2115 }
2116 case MSR_K6_STAR:
2117 *data = svm->vmcb->save.star;
2118 break;
2119 #ifdef CONFIG_X86_64
2120 case MSR_LSTAR:
2121 *data = svm->vmcb->save.lstar;
2122 break;
2123 case MSR_CSTAR:
2124 *data = svm->vmcb->save.cstar;
2125 break;
2126 case MSR_KERNEL_GS_BASE:
2127 *data = svm->vmcb->save.kernel_gs_base;
2128 break;
2129 case MSR_SYSCALL_MASK:
2130 *data = svm->vmcb->save.sfmask;
2131 break;
2132 #endif
2133 case MSR_IA32_SYSENTER_CS:
2134 *data = svm->vmcb->save.sysenter_cs;
2135 break;
2136 case MSR_IA32_SYSENTER_EIP:
2137 *data = svm->sysenter_eip;
2138 break;
2139 case MSR_IA32_SYSENTER_ESP:
2140 *data = svm->sysenter_esp;
2141 break;
2142 /* Nobody will change the following 5 values in the VMCB so
2143 we can safely return them on rdmsr. They will always be 0
2144 until LBRV is implemented. */
2145 case MSR_IA32_DEBUGCTLMSR:
2146 *data = svm->vmcb->save.dbgctl;
2147 break;
2148 case MSR_IA32_LASTBRANCHFROMIP:
2149 *data = svm->vmcb->save.br_from;
2150 break;
2151 case MSR_IA32_LASTBRANCHTOIP:
2152 *data = svm->vmcb->save.br_to;
2153 break;
2154 case MSR_IA32_LASTINTFROMIP:
2155 *data = svm->vmcb->save.last_excp_from;
2156 break;
2157 case MSR_IA32_LASTINTTOIP:
2158 *data = svm->vmcb->save.last_excp_to;
2159 break;
2160 case MSR_VM_HSAVE_PA:
2161 *data = svm->nested.hsave_msr;
2162 break;
2163 case MSR_VM_CR:
2164 *data = 0;
2165 break;
2166 case MSR_IA32_UCODE_REV:
2167 *data = 0x01000065;
2168 break;
2169 default:
2170 return kvm_get_msr_common(vcpu, ecx, data);
2171 }
2172 return 0;
2173 }
2174
2175 static int rdmsr_interception(struct vcpu_svm *svm)
2176 {
2177 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2178 u64 data;
2179
2180 if (svm_get_msr(&svm->vcpu, ecx, &data))
2181 kvm_inject_gp(&svm->vcpu, 0);
2182 else {
2183 trace_kvm_msr_read(ecx, data);
2184
2185 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2186 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2187 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2188 skip_emulated_instruction(&svm->vcpu);
2189 }
2190 return 1;
2191 }
2192
2193 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2194 {
2195 struct vcpu_svm *svm = to_svm(vcpu);
2196
2197 switch (ecx) {
2198 case MSR_IA32_TSC: {
2199 u64 tsc_offset = data - native_read_tsc();
2200 u64 g_tsc_offset = 0;
2201
2202 if (is_nested(svm)) {
2203 g_tsc_offset = svm->vmcb->control.tsc_offset -
2204 svm->nested.hsave->control.tsc_offset;
2205 svm->nested.hsave->control.tsc_offset = tsc_offset;
2206 }
2207
2208 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2209
2210 break;
2211 }
2212 case MSR_K6_STAR:
2213 svm->vmcb->save.star = data;
2214 break;
2215 #ifdef CONFIG_X86_64
2216 case MSR_LSTAR:
2217 svm->vmcb->save.lstar = data;
2218 break;
2219 case MSR_CSTAR:
2220 svm->vmcb->save.cstar = data;
2221 break;
2222 case MSR_KERNEL_GS_BASE:
2223 svm->vmcb->save.kernel_gs_base = data;
2224 break;
2225 case MSR_SYSCALL_MASK:
2226 svm->vmcb->save.sfmask = data;
2227 break;
2228 #endif
2229 case MSR_IA32_SYSENTER_CS:
2230 svm->vmcb->save.sysenter_cs = data;
2231 break;
2232 case MSR_IA32_SYSENTER_EIP:
2233 svm->sysenter_eip = data;
2234 svm->vmcb->save.sysenter_eip = data;
2235 break;
2236 case MSR_IA32_SYSENTER_ESP:
2237 svm->sysenter_esp = data;
2238 svm->vmcb->save.sysenter_esp = data;
2239 break;
2240 case MSR_IA32_DEBUGCTLMSR:
2241 if (!svm_has(SVM_FEATURE_LBRV)) {
2242 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2243 __func__, data);
2244 break;
2245 }
2246 if (data & DEBUGCTL_RESERVED_BITS)
2247 return 1;
2248
2249 svm->vmcb->save.dbgctl = data;
2250 if (data & (1ULL<<0))
2251 svm_enable_lbrv(svm);
2252 else
2253 svm_disable_lbrv(svm);
2254 break;
2255 case MSR_VM_HSAVE_PA:
2256 svm->nested.hsave_msr = data;
2257 break;
2258 case MSR_VM_CR:
2259 case MSR_VM_IGNNE:
2260 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2261 break;
2262 default:
2263 return kvm_set_msr_common(vcpu, ecx, data);
2264 }
2265 return 0;
2266 }
2267
2268 static int wrmsr_interception(struct vcpu_svm *svm)
2269 {
2270 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2271 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2272 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2273
2274 trace_kvm_msr_write(ecx, data);
2275
2276 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2277 if (svm_set_msr(&svm->vcpu, ecx, data))
2278 kvm_inject_gp(&svm->vcpu, 0);
2279 else
2280 skip_emulated_instruction(&svm->vcpu);
2281 return 1;
2282 }
2283
2284 static int msr_interception(struct vcpu_svm *svm)
2285 {
2286 if (svm->vmcb->control.exit_info_1)
2287 return wrmsr_interception(svm);
2288 else
2289 return rdmsr_interception(svm);
2290 }
2291
2292 static int interrupt_window_interception(struct vcpu_svm *svm)
2293 {
2294 struct kvm_run *kvm_run = svm->vcpu.run;
2295
2296 svm_clear_vintr(svm);
2297 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2298 /*
2299 * If the user space waits to inject interrupts, exit as soon as
2300 * possible
2301 */
2302 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2303 kvm_run->request_interrupt_window &&
2304 !kvm_cpu_has_interrupt(&svm->vcpu)) {
2305 ++svm->vcpu.stat.irq_window_exits;
2306 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2307 return 0;
2308 }
2309
2310 return 1;
2311 }
2312
2313 static int pause_interception(struct vcpu_svm *svm)
2314 {
2315 kvm_vcpu_on_spin(&(svm->vcpu));
2316 return 1;
2317 }
2318
2319 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2320 [SVM_EXIT_READ_CR0] = emulate_on_interception,
2321 [SVM_EXIT_READ_CR3] = emulate_on_interception,
2322 [SVM_EXIT_READ_CR4] = emulate_on_interception,
2323 [SVM_EXIT_READ_CR8] = emulate_on_interception,
2324 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
2325 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
2326 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
2327 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
2328 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2329 [SVM_EXIT_READ_DR0] = emulate_on_interception,
2330 [SVM_EXIT_READ_DR1] = emulate_on_interception,
2331 [SVM_EXIT_READ_DR2] = emulate_on_interception,
2332 [SVM_EXIT_READ_DR3] = emulate_on_interception,
2333 [SVM_EXIT_READ_DR4] = emulate_on_interception,
2334 [SVM_EXIT_READ_DR5] = emulate_on_interception,
2335 [SVM_EXIT_READ_DR6] = emulate_on_interception,
2336 [SVM_EXIT_READ_DR7] = emulate_on_interception,
2337 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
2338 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
2339 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
2340 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
2341 [SVM_EXIT_WRITE_DR4] = emulate_on_interception,
2342 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
2343 [SVM_EXIT_WRITE_DR6] = emulate_on_interception,
2344 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
2345 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2346 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2347 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2348 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2349 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
2350 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2351 [SVM_EXIT_INTR] = intr_interception,
2352 [SVM_EXIT_NMI] = nmi_interception,
2353 [SVM_EXIT_SMI] = nop_on_interception,
2354 [SVM_EXIT_INIT] = nop_on_interception,
2355 [SVM_EXIT_VINTR] = interrupt_window_interception,
2356 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
2357 [SVM_EXIT_CPUID] = cpuid_interception,
2358 [SVM_EXIT_IRET] = iret_interception,
2359 [SVM_EXIT_INVD] = emulate_on_interception,
2360 [SVM_EXIT_PAUSE] = pause_interception,
2361 [SVM_EXIT_HLT] = halt_interception,
2362 [SVM_EXIT_INVLPG] = invlpg_interception,
2363 [SVM_EXIT_INVLPGA] = invlpga_interception,
2364 [SVM_EXIT_IOIO] = io_interception,
2365 [SVM_EXIT_MSR] = msr_interception,
2366 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2367 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2368 [SVM_EXIT_VMRUN] = vmrun_interception,
2369 [SVM_EXIT_VMMCALL] = vmmcall_interception,
2370 [SVM_EXIT_VMLOAD] = vmload_interception,
2371 [SVM_EXIT_VMSAVE] = vmsave_interception,
2372 [SVM_EXIT_STGI] = stgi_interception,
2373 [SVM_EXIT_CLGI] = clgi_interception,
2374 [SVM_EXIT_SKINIT] = skinit_interception,
2375 [SVM_EXIT_WBINVD] = emulate_on_interception,
2376 [SVM_EXIT_MONITOR] = invalid_op_interception,
2377 [SVM_EXIT_MWAIT] = invalid_op_interception,
2378 [SVM_EXIT_NPF] = pf_interception,
2379 };
2380
2381 static int handle_exit(struct kvm_vcpu *vcpu)
2382 {
2383 struct vcpu_svm *svm = to_svm(vcpu);
2384 struct kvm_run *kvm_run = vcpu->run;
2385 u32 exit_code = svm->vmcb->control.exit_code;
2386
2387 trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2388
2389 if (unlikely(svm->nested.exit_required)) {
2390 nested_svm_vmexit(svm);
2391 svm->nested.exit_required = false;
2392
2393 return 1;
2394 }
2395
2396 if (is_nested(svm)) {
2397 int vmexit;
2398
2399 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2400 svm->vmcb->control.exit_info_1,
2401 svm->vmcb->control.exit_info_2,
2402 svm->vmcb->control.exit_int_info,
2403 svm->vmcb->control.exit_int_info_err);
2404
2405 vmexit = nested_svm_exit_special(svm);
2406
2407 if (vmexit == NESTED_EXIT_CONTINUE)
2408 vmexit = nested_svm_exit_handled(svm);
2409
2410 if (vmexit == NESTED_EXIT_DONE)
2411 return 1;
2412 }
2413
2414 svm_complete_interrupts(svm);
2415
2416 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2417 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2418 if (npt_enabled)
2419 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2420
2421 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2422 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2423 kvm_run->fail_entry.hardware_entry_failure_reason
2424 = svm->vmcb->control.exit_code;
2425 return 0;
2426 }
2427
2428 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2429 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2430 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2431 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2432 "exit_code 0x%x\n",
2433 __func__, svm->vmcb->control.exit_int_info,
2434 exit_code);
2435
2436 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2437 || !svm_exit_handlers[exit_code]) {
2438 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2439 kvm_run->hw.hardware_exit_reason = exit_code;
2440 return 0;
2441 }
2442
2443 return svm_exit_handlers[exit_code](svm);
2444 }
2445
2446 static void reload_tss(struct kvm_vcpu *vcpu)
2447 {
2448 int cpu = raw_smp_processor_id();
2449
2450 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2451 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2452 load_TR_desc();
2453 }
2454
2455 static void pre_svm_run(struct vcpu_svm *svm)
2456 {
2457 int cpu = raw_smp_processor_id();
2458
2459 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2460
2461 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2462 /* FIXME: handle wraparound of asid_generation */
2463 if (svm->asid_generation != sd->asid_generation)
2464 new_asid(svm, sd);
2465 }
2466
2467 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2468 {
2469 struct vcpu_svm *svm = to_svm(vcpu);
2470
2471 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2472 vcpu->arch.hflags |= HF_NMI_MASK;
2473 svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2474 ++vcpu->stat.nmi_injections;
2475 }
2476
2477 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2478 {
2479 struct vmcb_control_area *control;
2480
2481 trace_kvm_inj_virq(irq);
2482
2483 ++svm->vcpu.stat.irq_injections;
2484 control = &svm->vmcb->control;
2485 control->int_vector = irq;
2486 control->int_ctl &= ~V_INTR_PRIO_MASK;
2487 control->int_ctl |= V_IRQ_MASK |
2488 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2489 }
2490
2491 static void svm_set_irq(struct kvm_vcpu *vcpu)
2492 {
2493 struct vcpu_svm *svm = to_svm(vcpu);
2494
2495 BUG_ON(!(gif_set(svm)));
2496
2497 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2498 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2499 }
2500
2501 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2502 {
2503 struct vcpu_svm *svm = to_svm(vcpu);
2504
2505 if (irr == -1)
2506 return;
2507
2508 if (tpr >= irr)
2509 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2510 }
2511
2512 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2513 {
2514 struct vcpu_svm *svm = to_svm(vcpu);
2515 struct vmcb *vmcb = svm->vmcb;
2516 return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2517 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2518 }
2519
2520 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
2521 {
2522 struct vcpu_svm *svm = to_svm(vcpu);
2523
2524 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
2525 }
2526
2527 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2528 {
2529 struct vcpu_svm *svm = to_svm(vcpu);
2530
2531 if (masked) {
2532 svm->vcpu.arch.hflags |= HF_NMI_MASK;
2533 svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2534 } else {
2535 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
2536 svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2537 }
2538 }
2539
2540 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2541 {
2542 struct vcpu_svm *svm = to_svm(vcpu);
2543 struct vmcb *vmcb = svm->vmcb;
2544 int ret;
2545
2546 if (!gif_set(svm) ||
2547 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
2548 return 0;
2549
2550 ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
2551
2552 if (is_nested(svm))
2553 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
2554
2555 return ret;
2556 }
2557
2558 static void enable_irq_window(struct kvm_vcpu *vcpu)
2559 {
2560 struct vcpu_svm *svm = to_svm(vcpu);
2561
2562 nested_svm_intr(svm);
2563
2564 /* In case GIF=0 we can't rely on the CPU to tell us when
2565 * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2566 * The next time we get that intercept, this function will be
2567 * called again though and we'll get the vintr intercept. */
2568 if (gif_set(svm)) {
2569 svm_set_vintr(svm);
2570 svm_inject_irq(svm, 0x0);
2571 }
2572 }
2573
2574 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2575 {
2576 struct vcpu_svm *svm = to_svm(vcpu);
2577
2578 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2579 == HF_NMI_MASK)
2580 return; /* IRET will cause a vm exit */
2581
2582 /* Something prevents NMI from been injected. Single step over
2583 possible problem (IRET or exception injection or interrupt
2584 shadow) */
2585 svm->nmi_singlestep = true;
2586 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2587 update_db_intercept(vcpu);
2588 }
2589
2590 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2591 {
2592 return 0;
2593 }
2594
2595 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2596 {
2597 force_new_asid(vcpu);
2598 }
2599
2600 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2601 {
2602 }
2603
2604 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2605 {
2606 struct vcpu_svm *svm = to_svm(vcpu);
2607
2608 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2609 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2610 kvm_set_cr8(vcpu, cr8);
2611 }
2612 }
2613
2614 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2615 {
2616 struct vcpu_svm *svm = to_svm(vcpu);
2617 u64 cr8;
2618
2619 cr8 = kvm_get_cr8(vcpu);
2620 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2621 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2622 }
2623
2624 static void svm_complete_interrupts(struct vcpu_svm *svm)
2625 {
2626 u8 vector;
2627 int type;
2628 u32 exitintinfo = svm->vmcb->control.exit_int_info;
2629
2630 if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2631 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2632
2633 svm->vcpu.arch.nmi_injected = false;
2634 kvm_clear_exception_queue(&svm->vcpu);
2635 kvm_clear_interrupt_queue(&svm->vcpu);
2636
2637 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2638 return;
2639
2640 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2641 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2642
2643 switch (type) {
2644 case SVM_EXITINTINFO_TYPE_NMI:
2645 svm->vcpu.arch.nmi_injected = true;
2646 break;
2647 case SVM_EXITINTINFO_TYPE_EXEPT:
2648 /* In case of software exception do not reinject an exception
2649 vector, but re-execute and instruction instead */
2650 if (is_nested(svm))
2651 break;
2652 if (kvm_exception_is_soft(vector))
2653 break;
2654 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2655 u32 err = svm->vmcb->control.exit_int_info_err;
2656 kvm_queue_exception_e(&svm->vcpu, vector, err);
2657
2658 } else
2659 kvm_queue_exception(&svm->vcpu, vector);
2660 break;
2661 case SVM_EXITINTINFO_TYPE_INTR:
2662 kvm_queue_interrupt(&svm->vcpu, vector, false);
2663 break;
2664 default:
2665 break;
2666 }
2667 }
2668
2669 #ifdef CONFIG_X86_64
2670 #define R "r"
2671 #else
2672 #define R "e"
2673 #endif
2674
2675 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
2676 {
2677 struct vcpu_svm *svm = to_svm(vcpu);
2678 u16 fs_selector;
2679 u16 gs_selector;
2680 u16 ldt_selector;
2681
2682 /*
2683 * A vmexit emulation is required before the vcpu can be executed
2684 * again.
2685 */
2686 if (unlikely(svm->nested.exit_required))
2687 return;
2688
2689 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2690 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2691 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2692
2693 pre_svm_run(svm);
2694
2695 sync_lapic_to_cr8(vcpu);
2696
2697 save_host_msrs(vcpu);
2698 fs_selector = kvm_read_fs();
2699 gs_selector = kvm_read_gs();
2700 ldt_selector = kvm_read_ldt();
2701 svm->vmcb->save.cr2 = vcpu->arch.cr2;
2702 /* required for live migration with NPT */
2703 if (npt_enabled)
2704 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2705
2706 clgi();
2707
2708 local_irq_enable();
2709
2710 asm volatile (
2711 "push %%"R"bp; \n\t"
2712 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2713 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2714 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2715 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2716 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2717 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2718 #ifdef CONFIG_X86_64
2719 "mov %c[r8](%[svm]), %%r8 \n\t"
2720 "mov %c[r9](%[svm]), %%r9 \n\t"
2721 "mov %c[r10](%[svm]), %%r10 \n\t"
2722 "mov %c[r11](%[svm]), %%r11 \n\t"
2723 "mov %c[r12](%[svm]), %%r12 \n\t"
2724 "mov %c[r13](%[svm]), %%r13 \n\t"
2725 "mov %c[r14](%[svm]), %%r14 \n\t"
2726 "mov %c[r15](%[svm]), %%r15 \n\t"
2727 #endif
2728
2729 /* Enter guest mode */
2730 "push %%"R"ax \n\t"
2731 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2732 __ex(SVM_VMLOAD) "\n\t"
2733 __ex(SVM_VMRUN) "\n\t"
2734 __ex(SVM_VMSAVE) "\n\t"
2735 "pop %%"R"ax \n\t"
2736
2737 /* Save guest registers, load host registers */
2738 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2739 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2740 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2741 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2742 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2743 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2744 #ifdef CONFIG_X86_64
2745 "mov %%r8, %c[r8](%[svm]) \n\t"
2746 "mov %%r9, %c[r9](%[svm]) \n\t"
2747 "mov %%r10, %c[r10](%[svm]) \n\t"
2748 "mov %%r11, %c[r11](%[svm]) \n\t"
2749 "mov %%r12, %c[r12](%[svm]) \n\t"
2750 "mov %%r13, %c[r13](%[svm]) \n\t"
2751 "mov %%r14, %c[r14](%[svm]) \n\t"
2752 "mov %%r15, %c[r15](%[svm]) \n\t"
2753 #endif
2754 "pop %%"R"bp"
2755 :
2756 : [svm]"a"(svm),
2757 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2758 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2759 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2760 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2761 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2762 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2763 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2764 #ifdef CONFIG_X86_64
2765 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2766 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2767 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2768 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2769 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2770 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2771 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2772 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2773 #endif
2774 : "cc", "memory"
2775 , R"bx", R"cx", R"dx", R"si", R"di"
2776 #ifdef CONFIG_X86_64
2777 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2778 #endif
2779 );
2780
2781 vcpu->arch.cr2 = svm->vmcb->save.cr2;
2782 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2783 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2784 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2785
2786 kvm_load_fs(fs_selector);
2787 kvm_load_gs(gs_selector);
2788 kvm_load_ldt(ldt_selector);
2789 load_host_msrs(vcpu);
2790
2791 reload_tss(vcpu);
2792
2793 local_irq_disable();
2794
2795 stgi();
2796
2797 sync_cr8_to_lapic(vcpu);
2798
2799 svm->next_rip = 0;
2800
2801 if (npt_enabled) {
2802 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2803 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2804 }
2805 }
2806
2807 #undef R
2808
2809 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2810 {
2811 struct vcpu_svm *svm = to_svm(vcpu);
2812
2813 if (npt_enabled) {
2814 svm->vmcb->control.nested_cr3 = root;
2815 force_new_asid(vcpu);
2816 return;
2817 }
2818
2819 svm->vmcb->save.cr3 = root;
2820 force_new_asid(vcpu);
2821 }
2822
2823 static int is_disabled(void)
2824 {
2825 u64 vm_cr;
2826
2827 rdmsrl(MSR_VM_CR, vm_cr);
2828 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2829 return 1;
2830
2831 return 0;
2832 }
2833
2834 static void
2835 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2836 {
2837 /*
2838 * Patch in the VMMCALL instruction:
2839 */
2840 hypercall[0] = 0x0f;
2841 hypercall[1] = 0x01;
2842 hypercall[2] = 0xd9;
2843 }
2844
2845 static void svm_check_processor_compat(void *rtn)
2846 {
2847 *(int *)rtn = 0;
2848 }
2849
2850 static bool svm_cpu_has_accelerated_tpr(void)
2851 {
2852 return false;
2853 }
2854
2855 static int get_npt_level(void)
2856 {
2857 #ifdef CONFIG_X86_64
2858 return PT64_ROOT_LEVEL;
2859 #else
2860 return PT32E_ROOT_LEVEL;
2861 #endif
2862 }
2863
2864 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2865 {
2866 return 0;
2867 }
2868
2869 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
2870 {
2871 }
2872
2873 static const struct trace_print_flags svm_exit_reasons_str[] = {
2874 { SVM_EXIT_READ_CR0, "read_cr0" },
2875 { SVM_EXIT_READ_CR3, "read_cr3" },
2876 { SVM_EXIT_READ_CR4, "read_cr4" },
2877 { SVM_EXIT_READ_CR8, "read_cr8" },
2878 { SVM_EXIT_WRITE_CR0, "write_cr0" },
2879 { SVM_EXIT_WRITE_CR3, "write_cr3" },
2880 { SVM_EXIT_WRITE_CR4, "write_cr4" },
2881 { SVM_EXIT_WRITE_CR8, "write_cr8" },
2882 { SVM_EXIT_READ_DR0, "read_dr0" },
2883 { SVM_EXIT_READ_DR1, "read_dr1" },
2884 { SVM_EXIT_READ_DR2, "read_dr2" },
2885 { SVM_EXIT_READ_DR3, "read_dr3" },
2886 { SVM_EXIT_WRITE_DR0, "write_dr0" },
2887 { SVM_EXIT_WRITE_DR1, "write_dr1" },
2888 { SVM_EXIT_WRITE_DR2, "write_dr2" },
2889 { SVM_EXIT_WRITE_DR3, "write_dr3" },
2890 { SVM_EXIT_WRITE_DR5, "write_dr5" },
2891 { SVM_EXIT_WRITE_DR7, "write_dr7" },
2892 { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
2893 { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
2894 { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
2895 { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
2896 { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
2897 { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
2898 { SVM_EXIT_INTR, "interrupt" },
2899 { SVM_EXIT_NMI, "nmi" },
2900 { SVM_EXIT_SMI, "smi" },
2901 { SVM_EXIT_INIT, "init" },
2902 { SVM_EXIT_VINTR, "vintr" },
2903 { SVM_EXIT_CPUID, "cpuid" },
2904 { SVM_EXIT_INVD, "invd" },
2905 { SVM_EXIT_HLT, "hlt" },
2906 { SVM_EXIT_INVLPG, "invlpg" },
2907 { SVM_EXIT_INVLPGA, "invlpga" },
2908 { SVM_EXIT_IOIO, "io" },
2909 { SVM_EXIT_MSR, "msr" },
2910 { SVM_EXIT_TASK_SWITCH, "task_switch" },
2911 { SVM_EXIT_SHUTDOWN, "shutdown" },
2912 { SVM_EXIT_VMRUN, "vmrun" },
2913 { SVM_EXIT_VMMCALL, "hypercall" },
2914 { SVM_EXIT_VMLOAD, "vmload" },
2915 { SVM_EXIT_VMSAVE, "vmsave" },
2916 { SVM_EXIT_STGI, "stgi" },
2917 { SVM_EXIT_CLGI, "clgi" },
2918 { SVM_EXIT_SKINIT, "skinit" },
2919 { SVM_EXIT_WBINVD, "wbinvd" },
2920 { SVM_EXIT_MONITOR, "monitor" },
2921 { SVM_EXIT_MWAIT, "mwait" },
2922 { SVM_EXIT_NPF, "npf" },
2923 { -1, NULL }
2924 };
2925
2926 static int svm_get_lpage_level(void)
2927 {
2928 return PT_PDPE_LEVEL;
2929 }
2930
2931 static bool svm_rdtscp_supported(void)
2932 {
2933 return false;
2934 }
2935
2936 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
2937 {
2938 struct vcpu_svm *svm = to_svm(vcpu);
2939
2940 update_cr0_intercept(svm);
2941 svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
2942 }
2943
2944 static struct kvm_x86_ops svm_x86_ops = {
2945 .cpu_has_kvm_support = has_svm,
2946 .disabled_by_bios = is_disabled,
2947 .hardware_setup = svm_hardware_setup,
2948 .hardware_unsetup = svm_hardware_unsetup,
2949 .check_processor_compatibility = svm_check_processor_compat,
2950 .hardware_enable = svm_hardware_enable,
2951 .hardware_disable = svm_hardware_disable,
2952 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2953
2954 .vcpu_create = svm_create_vcpu,
2955 .vcpu_free = svm_free_vcpu,
2956 .vcpu_reset = svm_vcpu_reset,
2957
2958 .prepare_guest_switch = svm_prepare_guest_switch,
2959 .vcpu_load = svm_vcpu_load,
2960 .vcpu_put = svm_vcpu_put,
2961
2962 .set_guest_debug = svm_guest_debug,
2963 .get_msr = svm_get_msr,
2964 .set_msr = svm_set_msr,
2965 .get_segment_base = svm_get_segment_base,
2966 .get_segment = svm_get_segment,
2967 .set_segment = svm_set_segment,
2968 .get_cpl = svm_get_cpl,
2969 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
2970 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
2971 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
2972 .set_cr0 = svm_set_cr0,
2973 .set_cr3 = svm_set_cr3,
2974 .set_cr4 = svm_set_cr4,
2975 .set_efer = svm_set_efer,
2976 .get_idt = svm_get_idt,
2977 .set_idt = svm_set_idt,
2978 .get_gdt = svm_get_gdt,
2979 .set_gdt = svm_set_gdt,
2980 .get_dr = svm_get_dr,
2981 .set_dr = svm_set_dr,
2982 .cache_reg = svm_cache_reg,
2983 .get_rflags = svm_get_rflags,
2984 .set_rflags = svm_set_rflags,
2985 .fpu_activate = svm_fpu_activate,
2986 .fpu_deactivate = svm_fpu_deactivate,
2987
2988 .tlb_flush = svm_flush_tlb,
2989
2990 .run = svm_vcpu_run,
2991 .handle_exit = handle_exit,
2992 .skip_emulated_instruction = skip_emulated_instruction,
2993 .set_interrupt_shadow = svm_set_interrupt_shadow,
2994 .get_interrupt_shadow = svm_get_interrupt_shadow,
2995 .patch_hypercall = svm_patch_hypercall,
2996 .set_irq = svm_set_irq,
2997 .set_nmi = svm_inject_nmi,
2998 .queue_exception = svm_queue_exception,
2999 .interrupt_allowed = svm_interrupt_allowed,
3000 .nmi_allowed = svm_nmi_allowed,
3001 .get_nmi_mask = svm_get_nmi_mask,
3002 .set_nmi_mask = svm_set_nmi_mask,
3003 .enable_nmi_window = enable_nmi_window,
3004 .enable_irq_window = enable_irq_window,
3005 .update_cr8_intercept = update_cr8_intercept,
3006
3007 .set_tss_addr = svm_set_tss_addr,
3008 .get_tdp_level = get_npt_level,
3009 .get_mt_mask = svm_get_mt_mask,
3010
3011 .exit_reasons_str = svm_exit_reasons_str,
3012 .get_lpage_level = svm_get_lpage_level,
3013
3014 .cpuid_update = svm_cpuid_update,
3015
3016 .rdtscp_supported = svm_rdtscp_supported,
3017 };
3018
3019 static int __init svm_init(void)
3020 {
3021 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3022 THIS_MODULE);
3023 }
3024
3025 static void __exit svm_exit(void)
3026 {
3027 kvm_exit();
3028 }
3029
3030 module_init(svm_init)
3031 module_exit(svm_exit)
This page took 0.183402 seconds and 5 git commands to generate.