KVM: SVM: make iopm_base static
[deliverable/linux.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16 #include <linux/kvm_host.h>
17
18 #include "kvm_svm.h"
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/vmalloc.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27
28 #include <asm/desc.h>
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 #define IOPM_ALLOC_ORDER 2
34 #define MSRPM_ALLOC_ORDER 1
35
36 #define DB_VECTOR 1
37 #define UD_VECTOR 6
38 #define GP_VECTOR 13
39
40 #define DR7_GD_MASK (1 << 13)
41 #define DR6_BD_MASK (1 << 13)
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define SVM_FEATURE_NPT (1 << 0)
47 #define SVM_FEATURE_LBRV (1 << 1)
48 #define SVM_DEATURE_SVML (1 << 2)
49
50 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
51
52 /* enable NPT for AMD64 and X86 with PAE */
53 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
54 static bool npt_enabled = true;
55 #else
56 static bool npt_enabled = false;
57 #endif
58 static int npt = 1;
59
60 module_param(npt, int, S_IRUGO);
61
62 static void kvm_reput_irq(struct vcpu_svm *svm);
63
64 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
65 {
66 return container_of(vcpu, struct vcpu_svm, vcpu);
67 }
68
69 static unsigned long iopm_base;
70
71 struct kvm_ldttss_desc {
72 u16 limit0;
73 u16 base0;
74 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
75 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
76 u32 base3;
77 u32 zero1;
78 } __attribute__((packed));
79
80 struct svm_cpu_data {
81 int cpu;
82
83 u64 asid_generation;
84 u32 max_asid;
85 u32 next_asid;
86 struct kvm_ldttss_desc *tss_desc;
87
88 struct page *save_area;
89 };
90
91 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
92 static uint32_t svm_features;
93
94 struct svm_init_data {
95 int cpu;
96 int r;
97 };
98
99 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
100
101 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
102 #define MSRS_RANGE_SIZE 2048
103 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
104
105 #define MAX_INST_SIZE 15
106
107 static inline u32 svm_has(u32 feat)
108 {
109 return svm_features & feat;
110 }
111
112 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
113 {
114 int word_index = __ffs(vcpu->arch.irq_summary);
115 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
116 int irq = word_index * BITS_PER_LONG + bit_index;
117
118 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
119 if (!vcpu->arch.irq_pending[word_index])
120 clear_bit(word_index, &vcpu->arch.irq_summary);
121 return irq;
122 }
123
124 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
125 {
126 set_bit(irq, vcpu->arch.irq_pending);
127 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
128 }
129
130 static inline void clgi(void)
131 {
132 asm volatile (SVM_CLGI);
133 }
134
135 static inline void stgi(void)
136 {
137 asm volatile (SVM_STGI);
138 }
139
140 static inline void invlpga(unsigned long addr, u32 asid)
141 {
142 asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
143 }
144
145 static inline unsigned long kvm_read_cr2(void)
146 {
147 unsigned long cr2;
148
149 asm volatile ("mov %%cr2, %0" : "=r" (cr2));
150 return cr2;
151 }
152
153 static inline void kvm_write_cr2(unsigned long val)
154 {
155 asm volatile ("mov %0, %%cr2" :: "r" (val));
156 }
157
158 static inline unsigned long read_dr6(void)
159 {
160 unsigned long dr6;
161
162 asm volatile ("mov %%dr6, %0" : "=r" (dr6));
163 return dr6;
164 }
165
166 static inline void write_dr6(unsigned long val)
167 {
168 asm volatile ("mov %0, %%dr6" :: "r" (val));
169 }
170
171 static inline unsigned long read_dr7(void)
172 {
173 unsigned long dr7;
174
175 asm volatile ("mov %%dr7, %0" : "=r" (dr7));
176 return dr7;
177 }
178
179 static inline void write_dr7(unsigned long val)
180 {
181 asm volatile ("mov %0, %%dr7" :: "r" (val));
182 }
183
184 static inline void force_new_asid(struct kvm_vcpu *vcpu)
185 {
186 to_svm(vcpu)->asid_generation--;
187 }
188
189 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
190 {
191 force_new_asid(vcpu);
192 }
193
194 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
195 {
196 if (!npt_enabled && !(efer & EFER_LMA))
197 efer &= ~EFER_LME;
198
199 to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
200 vcpu->arch.shadow_efer = efer;
201 }
202
203 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
204 bool has_error_code, u32 error_code)
205 {
206 struct vcpu_svm *svm = to_svm(vcpu);
207
208 svm->vmcb->control.event_inj = nr
209 | SVM_EVTINJ_VALID
210 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
211 | SVM_EVTINJ_TYPE_EXEPT;
212 svm->vmcb->control.event_inj_err = error_code;
213 }
214
215 static bool svm_exception_injected(struct kvm_vcpu *vcpu)
216 {
217 struct vcpu_svm *svm = to_svm(vcpu);
218
219 return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
220 }
221
222 static int is_external_interrupt(u32 info)
223 {
224 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
225 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
226 }
227
228 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
229 {
230 struct vcpu_svm *svm = to_svm(vcpu);
231
232 if (!svm->next_rip) {
233 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
234 return;
235 }
236 if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE)
237 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
238 __FUNCTION__,
239 svm->vmcb->save.rip,
240 svm->next_rip);
241
242 vcpu->arch.rip = svm->vmcb->save.rip = svm->next_rip;
243 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
244
245 vcpu->arch.interrupt_window_open = 1;
246 }
247
248 static int has_svm(void)
249 {
250 uint32_t eax, ebx, ecx, edx;
251
252 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
253 printk(KERN_INFO "has_svm: not amd\n");
254 return 0;
255 }
256
257 cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
258 if (eax < SVM_CPUID_FUNC) {
259 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
260 return 0;
261 }
262
263 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
264 if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
265 printk(KERN_DEBUG "has_svm: svm not available\n");
266 return 0;
267 }
268 return 1;
269 }
270
271 static void svm_hardware_disable(void *garbage)
272 {
273 struct svm_cpu_data *svm_data
274 = per_cpu(svm_data, raw_smp_processor_id());
275
276 if (svm_data) {
277 uint64_t efer;
278
279 wrmsrl(MSR_VM_HSAVE_PA, 0);
280 rdmsrl(MSR_EFER, efer);
281 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
282 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
283 __free_page(svm_data->save_area);
284 kfree(svm_data);
285 }
286 }
287
288 static void svm_hardware_enable(void *garbage)
289 {
290
291 struct svm_cpu_data *svm_data;
292 uint64_t efer;
293 #ifdef CONFIG_X86_64
294 struct desc_ptr gdt_descr;
295 #else
296 struct desc_ptr gdt_descr;
297 #endif
298 struct desc_struct *gdt;
299 int me = raw_smp_processor_id();
300
301 if (!has_svm()) {
302 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
303 return;
304 }
305 svm_data = per_cpu(svm_data, me);
306
307 if (!svm_data) {
308 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
309 me);
310 return;
311 }
312
313 svm_data->asid_generation = 1;
314 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
315 svm_data->next_asid = svm_data->max_asid + 1;
316
317 asm volatile ("sgdt %0" : "=m"(gdt_descr));
318 gdt = (struct desc_struct *)gdt_descr.address;
319 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
320
321 rdmsrl(MSR_EFER, efer);
322 wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
323
324 wrmsrl(MSR_VM_HSAVE_PA,
325 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
326 }
327
328 static int svm_cpu_init(int cpu)
329 {
330 struct svm_cpu_data *svm_data;
331 int r;
332
333 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
334 if (!svm_data)
335 return -ENOMEM;
336 svm_data->cpu = cpu;
337 svm_data->save_area = alloc_page(GFP_KERNEL);
338 r = -ENOMEM;
339 if (!svm_data->save_area)
340 goto err_1;
341
342 per_cpu(svm_data, cpu) = svm_data;
343
344 return 0;
345
346 err_1:
347 kfree(svm_data);
348 return r;
349
350 }
351
352 static void set_msr_interception(u32 *msrpm, unsigned msr,
353 int read, int write)
354 {
355 int i;
356
357 for (i = 0; i < NUM_MSR_MAPS; i++) {
358 if (msr >= msrpm_ranges[i] &&
359 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
360 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
361 msrpm_ranges[i]) * 2;
362
363 u32 *base = msrpm + (msr_offset / 32);
364 u32 msr_shift = msr_offset % 32;
365 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
366 *base = (*base & ~(0x3 << msr_shift)) |
367 (mask << msr_shift);
368 return;
369 }
370 }
371 BUG();
372 }
373
374 static void svm_vcpu_init_msrpm(u32 *msrpm)
375 {
376 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
377
378 #ifdef CONFIG_X86_64
379 set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
380 set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
381 set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
382 set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
383 set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
384 set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
385 #endif
386 set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
387 set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
388 set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
389 set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
390 }
391
392 static void svm_enable_lbrv(struct vcpu_svm *svm)
393 {
394 u32 *msrpm = svm->msrpm;
395
396 svm->vmcb->control.lbr_ctl = 1;
397 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
398 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
399 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
400 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
401 }
402
403 static void svm_disable_lbrv(struct vcpu_svm *svm)
404 {
405 u32 *msrpm = svm->msrpm;
406
407 svm->vmcb->control.lbr_ctl = 0;
408 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
409 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
410 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
411 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
412 }
413
414 static __init int svm_hardware_setup(void)
415 {
416 int cpu;
417 struct page *iopm_pages;
418 void *iopm_va;
419 int r;
420
421 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
422
423 if (!iopm_pages)
424 return -ENOMEM;
425
426 iopm_va = page_address(iopm_pages);
427 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
428 clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
429 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
430
431 if (boot_cpu_has(X86_FEATURE_NX))
432 kvm_enable_efer_bits(EFER_NX);
433
434 for_each_online_cpu(cpu) {
435 r = svm_cpu_init(cpu);
436 if (r)
437 goto err;
438 }
439
440 svm_features = cpuid_edx(SVM_CPUID_FUNC);
441
442 if (!svm_has(SVM_FEATURE_NPT))
443 npt_enabled = false;
444
445 if (npt_enabled && !npt) {
446 printk(KERN_INFO "kvm: Nested Paging disabled\n");
447 npt_enabled = false;
448 }
449
450 if (npt_enabled) {
451 printk(KERN_INFO "kvm: Nested Paging enabled\n");
452 kvm_enable_tdp();
453 }
454
455 return 0;
456
457 err:
458 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
459 iopm_base = 0;
460 return r;
461 }
462
463 static __exit void svm_hardware_unsetup(void)
464 {
465 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
466 iopm_base = 0;
467 }
468
469 static void init_seg(struct vmcb_seg *seg)
470 {
471 seg->selector = 0;
472 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
473 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
474 seg->limit = 0xffff;
475 seg->base = 0;
476 }
477
478 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
479 {
480 seg->selector = 0;
481 seg->attrib = SVM_SELECTOR_P_MASK | type;
482 seg->limit = 0xffff;
483 seg->base = 0;
484 }
485
486 static void init_vmcb(struct vcpu_svm *svm)
487 {
488 struct vmcb_control_area *control = &svm->vmcb->control;
489 struct vmcb_save_area *save = &svm->vmcb->save;
490
491 control->intercept_cr_read = INTERCEPT_CR0_MASK |
492 INTERCEPT_CR3_MASK |
493 INTERCEPT_CR4_MASK |
494 INTERCEPT_CR8_MASK;
495
496 control->intercept_cr_write = INTERCEPT_CR0_MASK |
497 INTERCEPT_CR3_MASK |
498 INTERCEPT_CR4_MASK |
499 INTERCEPT_CR8_MASK;
500
501 control->intercept_dr_read = INTERCEPT_DR0_MASK |
502 INTERCEPT_DR1_MASK |
503 INTERCEPT_DR2_MASK |
504 INTERCEPT_DR3_MASK;
505
506 control->intercept_dr_write = INTERCEPT_DR0_MASK |
507 INTERCEPT_DR1_MASK |
508 INTERCEPT_DR2_MASK |
509 INTERCEPT_DR3_MASK |
510 INTERCEPT_DR5_MASK |
511 INTERCEPT_DR7_MASK;
512
513 control->intercept_exceptions = (1 << PF_VECTOR) |
514 (1 << UD_VECTOR);
515
516
517 control->intercept = (1ULL << INTERCEPT_INTR) |
518 (1ULL << INTERCEPT_NMI) |
519 (1ULL << INTERCEPT_SMI) |
520 /*
521 * selective cr0 intercept bug?
522 * 0: 0f 22 d8 mov %eax,%cr3
523 * 3: 0f 20 c0 mov %cr0,%eax
524 * 6: 0d 00 00 00 80 or $0x80000000,%eax
525 * b: 0f 22 c0 mov %eax,%cr0
526 * set cr3 ->interception
527 * get cr0 ->interception
528 * set cr0 -> no interception
529 */
530 /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
531 (1ULL << INTERCEPT_CPUID) |
532 (1ULL << INTERCEPT_INVD) |
533 (1ULL << INTERCEPT_HLT) |
534 (1ULL << INTERCEPT_INVLPGA) |
535 (1ULL << INTERCEPT_IOIO_PROT) |
536 (1ULL << INTERCEPT_MSR_PROT) |
537 (1ULL << INTERCEPT_TASK_SWITCH) |
538 (1ULL << INTERCEPT_SHUTDOWN) |
539 (1ULL << INTERCEPT_VMRUN) |
540 (1ULL << INTERCEPT_VMMCALL) |
541 (1ULL << INTERCEPT_VMLOAD) |
542 (1ULL << INTERCEPT_VMSAVE) |
543 (1ULL << INTERCEPT_STGI) |
544 (1ULL << INTERCEPT_CLGI) |
545 (1ULL << INTERCEPT_SKINIT) |
546 (1ULL << INTERCEPT_WBINVD) |
547 (1ULL << INTERCEPT_MONITOR) |
548 (1ULL << INTERCEPT_MWAIT);
549
550 control->iopm_base_pa = iopm_base;
551 control->msrpm_base_pa = __pa(svm->msrpm);
552 control->tsc_offset = 0;
553 control->int_ctl = V_INTR_MASKING_MASK;
554
555 init_seg(&save->es);
556 init_seg(&save->ss);
557 init_seg(&save->ds);
558 init_seg(&save->fs);
559 init_seg(&save->gs);
560
561 save->cs.selector = 0xf000;
562 /* Executable/Readable Code Segment */
563 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
564 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
565 save->cs.limit = 0xffff;
566 /*
567 * cs.base should really be 0xffff0000, but vmx can't handle that, so
568 * be consistent with it.
569 *
570 * Replace when we have real mode working for vmx.
571 */
572 save->cs.base = 0xf0000;
573
574 save->gdtr.limit = 0xffff;
575 save->idtr.limit = 0xffff;
576
577 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
578 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
579
580 save->efer = MSR_EFER_SVME_MASK;
581 save->dr6 = 0xffff0ff0;
582 save->dr7 = 0x400;
583 save->rflags = 2;
584 save->rip = 0x0000fff0;
585
586 /*
587 * cr0 val on cpu init should be 0x60000010, we enable cpu
588 * cache by default. the orderly way is to enable cache in bios.
589 */
590 save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
591 save->cr4 = X86_CR4_PAE;
592 /* rdx = ?? */
593
594 if (npt_enabled) {
595 /* Setup VMCB for Nested Paging */
596 control->nested_ctl = 1;
597 control->intercept_exceptions &= ~(1 << PF_VECTOR);
598 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
599 INTERCEPT_CR3_MASK);
600 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
601 INTERCEPT_CR3_MASK);
602 save->g_pat = 0x0007040600070406ULL;
603 /* enable caching because the QEMU Bios doesn't enable it */
604 save->cr0 = X86_CR0_ET;
605 save->cr3 = 0;
606 save->cr4 = 0;
607 }
608
609 }
610
611 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
612 {
613 struct vcpu_svm *svm = to_svm(vcpu);
614
615 init_vmcb(svm);
616
617 if (vcpu->vcpu_id != 0) {
618 svm->vmcb->save.rip = 0;
619 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
620 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
621 }
622
623 return 0;
624 }
625
626 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
627 {
628 struct vcpu_svm *svm;
629 struct page *page;
630 struct page *msrpm_pages;
631 int err;
632
633 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
634 if (!svm) {
635 err = -ENOMEM;
636 goto out;
637 }
638
639 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
640 if (err)
641 goto free_svm;
642
643 page = alloc_page(GFP_KERNEL);
644 if (!page) {
645 err = -ENOMEM;
646 goto uninit;
647 }
648
649 err = -ENOMEM;
650 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
651 if (!msrpm_pages)
652 goto uninit;
653 svm->msrpm = page_address(msrpm_pages);
654 svm_vcpu_init_msrpm(svm->msrpm);
655
656 svm->vmcb = page_address(page);
657 clear_page(svm->vmcb);
658 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
659 svm->asid_generation = 0;
660 memset(svm->db_regs, 0, sizeof(svm->db_regs));
661 init_vmcb(svm);
662
663 fx_init(&svm->vcpu);
664 svm->vcpu.fpu_active = 1;
665 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
666 if (svm->vcpu.vcpu_id == 0)
667 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
668
669 return &svm->vcpu;
670
671 uninit:
672 kvm_vcpu_uninit(&svm->vcpu);
673 free_svm:
674 kmem_cache_free(kvm_vcpu_cache, svm);
675 out:
676 return ERR_PTR(err);
677 }
678
679 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
680 {
681 struct vcpu_svm *svm = to_svm(vcpu);
682
683 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
684 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
685 kvm_vcpu_uninit(vcpu);
686 kmem_cache_free(kvm_vcpu_cache, svm);
687 }
688
689 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
690 {
691 struct vcpu_svm *svm = to_svm(vcpu);
692 int i;
693
694 if (unlikely(cpu != vcpu->cpu)) {
695 u64 tsc_this, delta;
696
697 /*
698 * Make sure that the guest sees a monotonically
699 * increasing TSC.
700 */
701 rdtscll(tsc_this);
702 delta = vcpu->arch.host_tsc - tsc_this;
703 svm->vmcb->control.tsc_offset += delta;
704 vcpu->cpu = cpu;
705 kvm_migrate_apic_timer(vcpu);
706 }
707
708 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
709 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
710 }
711
712 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
713 {
714 struct vcpu_svm *svm = to_svm(vcpu);
715 int i;
716
717 ++vcpu->stat.host_state_reload;
718 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
719 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
720
721 rdtscll(vcpu->arch.host_tsc);
722 }
723
724 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
725 {
726 }
727
728 static void svm_cache_regs(struct kvm_vcpu *vcpu)
729 {
730 struct vcpu_svm *svm = to_svm(vcpu);
731
732 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
733 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
734 vcpu->arch.rip = svm->vmcb->save.rip;
735 }
736
737 static void svm_decache_regs(struct kvm_vcpu *vcpu)
738 {
739 struct vcpu_svm *svm = to_svm(vcpu);
740 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
741 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
742 svm->vmcb->save.rip = vcpu->arch.rip;
743 }
744
745 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
746 {
747 return to_svm(vcpu)->vmcb->save.rflags;
748 }
749
750 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
751 {
752 to_svm(vcpu)->vmcb->save.rflags = rflags;
753 }
754
755 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
756 {
757 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
758
759 switch (seg) {
760 case VCPU_SREG_CS: return &save->cs;
761 case VCPU_SREG_DS: return &save->ds;
762 case VCPU_SREG_ES: return &save->es;
763 case VCPU_SREG_FS: return &save->fs;
764 case VCPU_SREG_GS: return &save->gs;
765 case VCPU_SREG_SS: return &save->ss;
766 case VCPU_SREG_TR: return &save->tr;
767 case VCPU_SREG_LDTR: return &save->ldtr;
768 }
769 BUG();
770 return NULL;
771 }
772
773 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
774 {
775 struct vmcb_seg *s = svm_seg(vcpu, seg);
776
777 return s->base;
778 }
779
780 static void svm_get_segment(struct kvm_vcpu *vcpu,
781 struct kvm_segment *var, int seg)
782 {
783 struct vmcb_seg *s = svm_seg(vcpu, seg);
784
785 var->base = s->base;
786 var->limit = s->limit;
787 var->selector = s->selector;
788 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
789 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
790 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
791 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
792 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
793 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
794 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
795 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
796 var->unusable = !var->present;
797 }
798
799 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
800 {
801 struct vcpu_svm *svm = to_svm(vcpu);
802
803 dt->limit = svm->vmcb->save.idtr.limit;
804 dt->base = svm->vmcb->save.idtr.base;
805 }
806
807 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
808 {
809 struct vcpu_svm *svm = to_svm(vcpu);
810
811 svm->vmcb->save.idtr.limit = dt->limit;
812 svm->vmcb->save.idtr.base = dt->base ;
813 }
814
815 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
816 {
817 struct vcpu_svm *svm = to_svm(vcpu);
818
819 dt->limit = svm->vmcb->save.gdtr.limit;
820 dt->base = svm->vmcb->save.gdtr.base;
821 }
822
823 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
824 {
825 struct vcpu_svm *svm = to_svm(vcpu);
826
827 svm->vmcb->save.gdtr.limit = dt->limit;
828 svm->vmcb->save.gdtr.base = dt->base ;
829 }
830
831 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
832 {
833 }
834
835 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
836 {
837 struct vcpu_svm *svm = to_svm(vcpu);
838
839 #ifdef CONFIG_X86_64
840 if (vcpu->arch.shadow_efer & EFER_LME) {
841 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
842 vcpu->arch.shadow_efer |= EFER_LMA;
843 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
844 }
845
846 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
847 vcpu->arch.shadow_efer &= ~EFER_LMA;
848 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
849 }
850 }
851 #endif
852 if (npt_enabled)
853 goto set;
854
855 if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
856 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
857 vcpu->fpu_active = 1;
858 }
859
860 vcpu->arch.cr0 = cr0;
861 cr0 |= X86_CR0_PG | X86_CR0_WP;
862 if (!vcpu->fpu_active) {
863 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
864 cr0 |= X86_CR0_TS;
865 }
866 set:
867 /*
868 * re-enable caching here because the QEMU bios
869 * does not do it - this results in some delay at
870 * reboot
871 */
872 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
873 svm->vmcb->save.cr0 = cr0;
874 }
875
876 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
877 {
878 vcpu->arch.cr4 = cr4;
879 if (!npt_enabled)
880 cr4 |= X86_CR4_PAE;
881 to_svm(vcpu)->vmcb->save.cr4 = cr4;
882 }
883
884 static void svm_set_segment(struct kvm_vcpu *vcpu,
885 struct kvm_segment *var, int seg)
886 {
887 struct vcpu_svm *svm = to_svm(vcpu);
888 struct vmcb_seg *s = svm_seg(vcpu, seg);
889
890 s->base = var->base;
891 s->limit = var->limit;
892 s->selector = var->selector;
893 if (var->unusable)
894 s->attrib = 0;
895 else {
896 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
897 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
898 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
899 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
900 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
901 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
902 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
903 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
904 }
905 if (seg == VCPU_SREG_CS)
906 svm->vmcb->save.cpl
907 = (svm->vmcb->save.cs.attrib
908 >> SVM_SELECTOR_DPL_SHIFT) & 3;
909
910 }
911
912 /* FIXME:
913
914 svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
915 svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
916
917 */
918
919 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
920 {
921 return -EOPNOTSUPP;
922 }
923
924 static int svm_get_irq(struct kvm_vcpu *vcpu)
925 {
926 struct vcpu_svm *svm = to_svm(vcpu);
927 u32 exit_int_info = svm->vmcb->control.exit_int_info;
928
929 if (is_external_interrupt(exit_int_info))
930 return exit_int_info & SVM_EVTINJ_VEC_MASK;
931 return -1;
932 }
933
934 static void load_host_msrs(struct kvm_vcpu *vcpu)
935 {
936 #ifdef CONFIG_X86_64
937 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
938 #endif
939 }
940
941 static void save_host_msrs(struct kvm_vcpu *vcpu)
942 {
943 #ifdef CONFIG_X86_64
944 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
945 #endif
946 }
947
948 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
949 {
950 if (svm_data->next_asid > svm_data->max_asid) {
951 ++svm_data->asid_generation;
952 svm_data->next_asid = 1;
953 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
954 }
955
956 svm->vcpu.cpu = svm_data->cpu;
957 svm->asid_generation = svm_data->asid_generation;
958 svm->vmcb->control.asid = svm_data->next_asid++;
959 }
960
961 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
962 {
963 return to_svm(vcpu)->db_regs[dr];
964 }
965
966 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
967 int *exception)
968 {
969 struct vcpu_svm *svm = to_svm(vcpu);
970
971 *exception = 0;
972
973 if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
974 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
975 svm->vmcb->save.dr6 |= DR6_BD_MASK;
976 *exception = DB_VECTOR;
977 return;
978 }
979
980 switch (dr) {
981 case 0 ... 3:
982 svm->db_regs[dr] = value;
983 return;
984 case 4 ... 5:
985 if (vcpu->arch.cr4 & X86_CR4_DE) {
986 *exception = UD_VECTOR;
987 return;
988 }
989 case 7: {
990 if (value & ~((1ULL << 32) - 1)) {
991 *exception = GP_VECTOR;
992 return;
993 }
994 svm->vmcb->save.dr7 = value;
995 return;
996 }
997 default:
998 printk(KERN_DEBUG "%s: unexpected dr %u\n",
999 __FUNCTION__, dr);
1000 *exception = UD_VECTOR;
1001 return;
1002 }
1003 }
1004
1005 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1006 {
1007 u32 exit_int_info = svm->vmcb->control.exit_int_info;
1008 struct kvm *kvm = svm->vcpu.kvm;
1009 u64 fault_address;
1010 u32 error_code;
1011
1012 if (!irqchip_in_kernel(kvm) &&
1013 is_external_interrupt(exit_int_info))
1014 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
1015
1016 fault_address = svm->vmcb->control.exit_info_2;
1017 error_code = svm->vmcb->control.exit_info_1;
1018 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1019 }
1020
1021 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1022 {
1023 int er;
1024
1025 er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1026 if (er != EMULATE_DONE)
1027 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1028 return 1;
1029 }
1030
1031 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1032 {
1033 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1034 if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1035 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1036 svm->vcpu.fpu_active = 1;
1037
1038 return 1;
1039 }
1040
1041 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1042 {
1043 /*
1044 * VMCB is undefined after a SHUTDOWN intercept
1045 * so reinitialize it.
1046 */
1047 clear_page(svm->vmcb);
1048 init_vmcb(svm);
1049
1050 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1051 return 0;
1052 }
1053
1054 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1055 {
1056 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1057 int size, down, in, string, rep;
1058 unsigned port;
1059
1060 ++svm->vcpu.stat.io_exits;
1061
1062 svm->next_rip = svm->vmcb->control.exit_info_2;
1063
1064 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1065
1066 if (string) {
1067 if (emulate_instruction(&svm->vcpu,
1068 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1069 return 0;
1070 return 1;
1071 }
1072
1073 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1074 port = io_info >> 16;
1075 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1076 rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1077 down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1078
1079 return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1080 }
1081
1082 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1083 {
1084 return 1;
1085 }
1086
1087 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1088 {
1089 svm->next_rip = svm->vmcb->save.rip + 1;
1090 skip_emulated_instruction(&svm->vcpu);
1091 return kvm_emulate_halt(&svm->vcpu);
1092 }
1093
1094 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1095 {
1096 svm->next_rip = svm->vmcb->save.rip + 3;
1097 skip_emulated_instruction(&svm->vcpu);
1098 kvm_emulate_hypercall(&svm->vcpu);
1099 return 1;
1100 }
1101
1102 static int invalid_op_interception(struct vcpu_svm *svm,
1103 struct kvm_run *kvm_run)
1104 {
1105 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1106 return 1;
1107 }
1108
1109 static int task_switch_interception(struct vcpu_svm *svm,
1110 struct kvm_run *kvm_run)
1111 {
1112 pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
1113 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1114 return 0;
1115 }
1116
1117 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1118 {
1119 svm->next_rip = svm->vmcb->save.rip + 2;
1120 kvm_emulate_cpuid(&svm->vcpu);
1121 return 1;
1122 }
1123
1124 static int emulate_on_interception(struct vcpu_svm *svm,
1125 struct kvm_run *kvm_run)
1126 {
1127 if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
1128 pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
1129 return 1;
1130 }
1131
1132 static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1133 {
1134 emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
1135 if (irqchip_in_kernel(svm->vcpu.kvm))
1136 return 1;
1137 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1138 return 0;
1139 }
1140
1141 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1142 {
1143 struct vcpu_svm *svm = to_svm(vcpu);
1144
1145 switch (ecx) {
1146 case MSR_IA32_TIME_STAMP_COUNTER: {
1147 u64 tsc;
1148
1149 rdtscll(tsc);
1150 *data = svm->vmcb->control.tsc_offset + tsc;
1151 break;
1152 }
1153 case MSR_K6_STAR:
1154 *data = svm->vmcb->save.star;
1155 break;
1156 #ifdef CONFIG_X86_64
1157 case MSR_LSTAR:
1158 *data = svm->vmcb->save.lstar;
1159 break;
1160 case MSR_CSTAR:
1161 *data = svm->vmcb->save.cstar;
1162 break;
1163 case MSR_KERNEL_GS_BASE:
1164 *data = svm->vmcb->save.kernel_gs_base;
1165 break;
1166 case MSR_SYSCALL_MASK:
1167 *data = svm->vmcb->save.sfmask;
1168 break;
1169 #endif
1170 case MSR_IA32_SYSENTER_CS:
1171 *data = svm->vmcb->save.sysenter_cs;
1172 break;
1173 case MSR_IA32_SYSENTER_EIP:
1174 *data = svm->vmcb->save.sysenter_eip;
1175 break;
1176 case MSR_IA32_SYSENTER_ESP:
1177 *data = svm->vmcb->save.sysenter_esp;
1178 break;
1179 /* Nobody will change the following 5 values in the VMCB so
1180 we can safely return them on rdmsr. They will always be 0
1181 until LBRV is implemented. */
1182 case MSR_IA32_DEBUGCTLMSR:
1183 *data = svm->vmcb->save.dbgctl;
1184 break;
1185 case MSR_IA32_LASTBRANCHFROMIP:
1186 *data = svm->vmcb->save.br_from;
1187 break;
1188 case MSR_IA32_LASTBRANCHTOIP:
1189 *data = svm->vmcb->save.br_to;
1190 break;
1191 case MSR_IA32_LASTINTFROMIP:
1192 *data = svm->vmcb->save.last_excp_from;
1193 break;
1194 case MSR_IA32_LASTINTTOIP:
1195 *data = svm->vmcb->save.last_excp_to;
1196 break;
1197 default:
1198 return kvm_get_msr_common(vcpu, ecx, data);
1199 }
1200 return 0;
1201 }
1202
1203 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1204 {
1205 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1206 u64 data;
1207
1208 if (svm_get_msr(&svm->vcpu, ecx, &data))
1209 kvm_inject_gp(&svm->vcpu, 0);
1210 else {
1211 svm->vmcb->save.rax = data & 0xffffffff;
1212 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
1213 svm->next_rip = svm->vmcb->save.rip + 2;
1214 skip_emulated_instruction(&svm->vcpu);
1215 }
1216 return 1;
1217 }
1218
1219 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1220 {
1221 struct vcpu_svm *svm = to_svm(vcpu);
1222
1223 switch (ecx) {
1224 case MSR_IA32_TIME_STAMP_COUNTER: {
1225 u64 tsc;
1226
1227 rdtscll(tsc);
1228 svm->vmcb->control.tsc_offset = data - tsc;
1229 break;
1230 }
1231 case MSR_K6_STAR:
1232 svm->vmcb->save.star = data;
1233 break;
1234 #ifdef CONFIG_X86_64
1235 case MSR_LSTAR:
1236 svm->vmcb->save.lstar = data;
1237 break;
1238 case MSR_CSTAR:
1239 svm->vmcb->save.cstar = data;
1240 break;
1241 case MSR_KERNEL_GS_BASE:
1242 svm->vmcb->save.kernel_gs_base = data;
1243 break;
1244 case MSR_SYSCALL_MASK:
1245 svm->vmcb->save.sfmask = data;
1246 break;
1247 #endif
1248 case MSR_IA32_SYSENTER_CS:
1249 svm->vmcb->save.sysenter_cs = data;
1250 break;
1251 case MSR_IA32_SYSENTER_EIP:
1252 svm->vmcb->save.sysenter_eip = data;
1253 break;
1254 case MSR_IA32_SYSENTER_ESP:
1255 svm->vmcb->save.sysenter_esp = data;
1256 break;
1257 case MSR_IA32_DEBUGCTLMSR:
1258 if (!svm_has(SVM_FEATURE_LBRV)) {
1259 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
1260 __FUNCTION__, data);
1261 break;
1262 }
1263 if (data & DEBUGCTL_RESERVED_BITS)
1264 return 1;
1265
1266 svm->vmcb->save.dbgctl = data;
1267 if (data & (1ULL<<0))
1268 svm_enable_lbrv(svm);
1269 else
1270 svm_disable_lbrv(svm);
1271 break;
1272 case MSR_K7_EVNTSEL0:
1273 case MSR_K7_EVNTSEL1:
1274 case MSR_K7_EVNTSEL2:
1275 case MSR_K7_EVNTSEL3:
1276 /*
1277 * only support writing 0 to the performance counters for now
1278 * to make Windows happy. Should be replaced by a real
1279 * performance counter emulation later.
1280 */
1281 if (data != 0)
1282 goto unhandled;
1283 break;
1284 default:
1285 unhandled:
1286 return kvm_set_msr_common(vcpu, ecx, data);
1287 }
1288 return 0;
1289 }
1290
1291 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1292 {
1293 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1294 u64 data = (svm->vmcb->save.rax & -1u)
1295 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
1296 svm->next_rip = svm->vmcb->save.rip + 2;
1297 if (svm_set_msr(&svm->vcpu, ecx, data))
1298 kvm_inject_gp(&svm->vcpu, 0);
1299 else
1300 skip_emulated_instruction(&svm->vcpu);
1301 return 1;
1302 }
1303
1304 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1305 {
1306 if (svm->vmcb->control.exit_info_1)
1307 return wrmsr_interception(svm, kvm_run);
1308 else
1309 return rdmsr_interception(svm, kvm_run);
1310 }
1311
1312 static int interrupt_window_interception(struct vcpu_svm *svm,
1313 struct kvm_run *kvm_run)
1314 {
1315 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1316 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1317 /*
1318 * If the user space waits to inject interrupts, exit as soon as
1319 * possible
1320 */
1321 if (kvm_run->request_interrupt_window &&
1322 !svm->vcpu.arch.irq_summary) {
1323 ++svm->vcpu.stat.irq_window_exits;
1324 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1325 return 0;
1326 }
1327
1328 return 1;
1329 }
1330
1331 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1332 struct kvm_run *kvm_run) = {
1333 [SVM_EXIT_READ_CR0] = emulate_on_interception,
1334 [SVM_EXIT_READ_CR3] = emulate_on_interception,
1335 [SVM_EXIT_READ_CR4] = emulate_on_interception,
1336 [SVM_EXIT_READ_CR8] = emulate_on_interception,
1337 /* for now: */
1338 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
1339 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
1340 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
1341 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
1342 [SVM_EXIT_READ_DR0] = emulate_on_interception,
1343 [SVM_EXIT_READ_DR1] = emulate_on_interception,
1344 [SVM_EXIT_READ_DR2] = emulate_on_interception,
1345 [SVM_EXIT_READ_DR3] = emulate_on_interception,
1346 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
1347 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
1348 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
1349 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
1350 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
1351 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
1352 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
1353 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
1354 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
1355 [SVM_EXIT_INTR] = nop_on_interception,
1356 [SVM_EXIT_NMI] = nop_on_interception,
1357 [SVM_EXIT_SMI] = nop_on_interception,
1358 [SVM_EXIT_INIT] = nop_on_interception,
1359 [SVM_EXIT_VINTR] = interrupt_window_interception,
1360 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
1361 [SVM_EXIT_CPUID] = cpuid_interception,
1362 [SVM_EXIT_INVD] = emulate_on_interception,
1363 [SVM_EXIT_HLT] = halt_interception,
1364 [SVM_EXIT_INVLPG] = emulate_on_interception,
1365 [SVM_EXIT_INVLPGA] = invalid_op_interception,
1366 [SVM_EXIT_IOIO] = io_interception,
1367 [SVM_EXIT_MSR] = msr_interception,
1368 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
1369 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
1370 [SVM_EXIT_VMRUN] = invalid_op_interception,
1371 [SVM_EXIT_VMMCALL] = vmmcall_interception,
1372 [SVM_EXIT_VMLOAD] = invalid_op_interception,
1373 [SVM_EXIT_VMSAVE] = invalid_op_interception,
1374 [SVM_EXIT_STGI] = invalid_op_interception,
1375 [SVM_EXIT_CLGI] = invalid_op_interception,
1376 [SVM_EXIT_SKINIT] = invalid_op_interception,
1377 [SVM_EXIT_WBINVD] = emulate_on_interception,
1378 [SVM_EXIT_MONITOR] = invalid_op_interception,
1379 [SVM_EXIT_MWAIT] = invalid_op_interception,
1380 [SVM_EXIT_NPF] = pf_interception,
1381 };
1382
1383 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1384 {
1385 struct vcpu_svm *svm = to_svm(vcpu);
1386 u32 exit_code = svm->vmcb->control.exit_code;
1387
1388 if (npt_enabled) {
1389 int mmu_reload = 0;
1390 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
1391 svm_set_cr0(vcpu, svm->vmcb->save.cr0);
1392 mmu_reload = 1;
1393 }
1394 vcpu->arch.cr0 = svm->vmcb->save.cr0;
1395 vcpu->arch.cr3 = svm->vmcb->save.cr3;
1396 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1397 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1398 kvm_inject_gp(vcpu, 0);
1399 return 1;
1400 }
1401 }
1402 if (mmu_reload) {
1403 kvm_mmu_reset_context(vcpu);
1404 kvm_mmu_load(vcpu);
1405 }
1406 }
1407
1408 kvm_reput_irq(svm);
1409
1410 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1411 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1412 kvm_run->fail_entry.hardware_entry_failure_reason
1413 = svm->vmcb->control.exit_code;
1414 return 0;
1415 }
1416
1417 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1418 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
1419 exit_code != SVM_EXIT_NPF)
1420 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1421 "exit_code 0x%x\n",
1422 __FUNCTION__, svm->vmcb->control.exit_int_info,
1423 exit_code);
1424
1425 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1426 || !svm_exit_handlers[exit_code]) {
1427 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1428 kvm_run->hw.hardware_exit_reason = exit_code;
1429 return 0;
1430 }
1431
1432 return svm_exit_handlers[exit_code](svm, kvm_run);
1433 }
1434
1435 static void reload_tss(struct kvm_vcpu *vcpu)
1436 {
1437 int cpu = raw_smp_processor_id();
1438
1439 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1440 svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
1441 load_TR_desc();
1442 }
1443
1444 static void pre_svm_run(struct vcpu_svm *svm)
1445 {
1446 int cpu = raw_smp_processor_id();
1447
1448 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1449
1450 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1451 if (svm->vcpu.cpu != cpu ||
1452 svm->asid_generation != svm_data->asid_generation)
1453 new_asid(svm, svm_data);
1454 }
1455
1456
1457 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1458 {
1459 struct vmcb_control_area *control;
1460
1461 control = &svm->vmcb->control;
1462 control->int_vector = irq;
1463 control->int_ctl &= ~V_INTR_PRIO_MASK;
1464 control->int_ctl |= V_IRQ_MASK |
1465 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1466 }
1467
1468 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1469 {
1470 struct vcpu_svm *svm = to_svm(vcpu);
1471
1472 svm_inject_irq(svm, irq);
1473 }
1474
1475 static void svm_intr_assist(struct kvm_vcpu *vcpu)
1476 {
1477 struct vcpu_svm *svm = to_svm(vcpu);
1478 struct vmcb *vmcb = svm->vmcb;
1479 int intr_vector = -1;
1480
1481 if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1482 ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1483 intr_vector = vmcb->control.exit_int_info &
1484 SVM_EVTINJ_VEC_MASK;
1485 vmcb->control.exit_int_info = 0;
1486 svm_inject_irq(svm, intr_vector);
1487 return;
1488 }
1489
1490 if (vmcb->control.int_ctl & V_IRQ_MASK)
1491 return;
1492
1493 if (!kvm_cpu_has_interrupt(vcpu))
1494 return;
1495
1496 if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1497 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1498 (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1499 /* unable to deliver irq, set pending irq */
1500 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1501 svm_inject_irq(svm, 0x0);
1502 return;
1503 }
1504 /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1505 intr_vector = kvm_cpu_get_interrupt(vcpu);
1506 svm_inject_irq(svm, intr_vector);
1507 kvm_timer_intr_post(vcpu, intr_vector);
1508 }
1509
1510 static void kvm_reput_irq(struct vcpu_svm *svm)
1511 {
1512 struct vmcb_control_area *control = &svm->vmcb->control;
1513
1514 if ((control->int_ctl & V_IRQ_MASK)
1515 && !irqchip_in_kernel(svm->vcpu.kvm)) {
1516 control->int_ctl &= ~V_IRQ_MASK;
1517 push_irq(&svm->vcpu, control->int_vector);
1518 }
1519
1520 svm->vcpu.arch.interrupt_window_open =
1521 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1522 }
1523
1524 static void svm_do_inject_vector(struct vcpu_svm *svm)
1525 {
1526 struct kvm_vcpu *vcpu = &svm->vcpu;
1527 int word_index = __ffs(vcpu->arch.irq_summary);
1528 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1529 int irq = word_index * BITS_PER_LONG + bit_index;
1530
1531 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1532 if (!vcpu->arch.irq_pending[word_index])
1533 clear_bit(word_index, &vcpu->arch.irq_summary);
1534 svm_inject_irq(svm, irq);
1535 }
1536
1537 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1538 struct kvm_run *kvm_run)
1539 {
1540 struct vcpu_svm *svm = to_svm(vcpu);
1541 struct vmcb_control_area *control = &svm->vmcb->control;
1542
1543 svm->vcpu.arch.interrupt_window_open =
1544 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1545 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1546
1547 if (svm->vcpu.arch.interrupt_window_open && svm->vcpu.arch.irq_summary)
1548 /*
1549 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1550 */
1551 svm_do_inject_vector(svm);
1552
1553 /*
1554 * Interrupts blocked. Wait for unblock.
1555 */
1556 if (!svm->vcpu.arch.interrupt_window_open &&
1557 (svm->vcpu.arch.irq_summary || kvm_run->request_interrupt_window))
1558 control->intercept |= 1ULL << INTERCEPT_VINTR;
1559 else
1560 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1561 }
1562
1563 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
1564 {
1565 return 0;
1566 }
1567
1568 static void save_db_regs(unsigned long *db_regs)
1569 {
1570 asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1571 asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1572 asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1573 asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1574 }
1575
1576 static void load_db_regs(unsigned long *db_regs)
1577 {
1578 asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1579 asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1580 asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1581 asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1582 }
1583
1584 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1585 {
1586 force_new_asid(vcpu);
1587 }
1588
1589 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1590 {
1591 }
1592
1593 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1594 {
1595 struct vcpu_svm *svm = to_svm(vcpu);
1596 u16 fs_selector;
1597 u16 gs_selector;
1598 u16 ldt_selector;
1599
1600 pre_svm_run(svm);
1601
1602 save_host_msrs(vcpu);
1603 fs_selector = read_fs();
1604 gs_selector = read_gs();
1605 ldt_selector = read_ldt();
1606 svm->host_cr2 = kvm_read_cr2();
1607 svm->host_dr6 = read_dr6();
1608 svm->host_dr7 = read_dr7();
1609 svm->vmcb->save.cr2 = vcpu->arch.cr2;
1610 /* required for live migration with NPT */
1611 if (npt_enabled)
1612 svm->vmcb->save.cr3 = vcpu->arch.cr3;
1613
1614 if (svm->vmcb->save.dr7 & 0xff) {
1615 write_dr7(0);
1616 save_db_regs(svm->host_db_regs);
1617 load_db_regs(svm->db_regs);
1618 }
1619
1620 clgi();
1621
1622 local_irq_enable();
1623
1624 asm volatile (
1625 #ifdef CONFIG_X86_64
1626 "push %%rbp; \n\t"
1627 #else
1628 "push %%ebp; \n\t"
1629 #endif
1630
1631 #ifdef CONFIG_X86_64
1632 "mov %c[rbx](%[svm]), %%rbx \n\t"
1633 "mov %c[rcx](%[svm]), %%rcx \n\t"
1634 "mov %c[rdx](%[svm]), %%rdx \n\t"
1635 "mov %c[rsi](%[svm]), %%rsi \n\t"
1636 "mov %c[rdi](%[svm]), %%rdi \n\t"
1637 "mov %c[rbp](%[svm]), %%rbp \n\t"
1638 "mov %c[r8](%[svm]), %%r8 \n\t"
1639 "mov %c[r9](%[svm]), %%r9 \n\t"
1640 "mov %c[r10](%[svm]), %%r10 \n\t"
1641 "mov %c[r11](%[svm]), %%r11 \n\t"
1642 "mov %c[r12](%[svm]), %%r12 \n\t"
1643 "mov %c[r13](%[svm]), %%r13 \n\t"
1644 "mov %c[r14](%[svm]), %%r14 \n\t"
1645 "mov %c[r15](%[svm]), %%r15 \n\t"
1646 #else
1647 "mov %c[rbx](%[svm]), %%ebx \n\t"
1648 "mov %c[rcx](%[svm]), %%ecx \n\t"
1649 "mov %c[rdx](%[svm]), %%edx \n\t"
1650 "mov %c[rsi](%[svm]), %%esi \n\t"
1651 "mov %c[rdi](%[svm]), %%edi \n\t"
1652 "mov %c[rbp](%[svm]), %%ebp \n\t"
1653 #endif
1654
1655 #ifdef CONFIG_X86_64
1656 /* Enter guest mode */
1657 "push %%rax \n\t"
1658 "mov %c[vmcb](%[svm]), %%rax \n\t"
1659 SVM_VMLOAD "\n\t"
1660 SVM_VMRUN "\n\t"
1661 SVM_VMSAVE "\n\t"
1662 "pop %%rax \n\t"
1663 #else
1664 /* Enter guest mode */
1665 "push %%eax \n\t"
1666 "mov %c[vmcb](%[svm]), %%eax \n\t"
1667 SVM_VMLOAD "\n\t"
1668 SVM_VMRUN "\n\t"
1669 SVM_VMSAVE "\n\t"
1670 "pop %%eax \n\t"
1671 #endif
1672
1673 /* Save guest registers, load host registers */
1674 #ifdef CONFIG_X86_64
1675 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1676 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1677 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1678 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1679 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1680 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1681 "mov %%r8, %c[r8](%[svm]) \n\t"
1682 "mov %%r9, %c[r9](%[svm]) \n\t"
1683 "mov %%r10, %c[r10](%[svm]) \n\t"
1684 "mov %%r11, %c[r11](%[svm]) \n\t"
1685 "mov %%r12, %c[r12](%[svm]) \n\t"
1686 "mov %%r13, %c[r13](%[svm]) \n\t"
1687 "mov %%r14, %c[r14](%[svm]) \n\t"
1688 "mov %%r15, %c[r15](%[svm]) \n\t"
1689
1690 "pop %%rbp; \n\t"
1691 #else
1692 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1693 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1694 "mov %%edx, %c[rdx](%[svm]) \n\t"
1695 "mov %%esi, %c[rsi](%[svm]) \n\t"
1696 "mov %%edi, %c[rdi](%[svm]) \n\t"
1697 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1698
1699 "pop %%ebp; \n\t"
1700 #endif
1701 :
1702 : [svm]"a"(svm),
1703 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1704 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
1705 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
1706 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
1707 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
1708 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
1709 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
1710 #ifdef CONFIG_X86_64
1711 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
1712 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
1713 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
1714 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
1715 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
1716 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
1717 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
1718 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
1719 #endif
1720 : "cc", "memory"
1721 #ifdef CONFIG_X86_64
1722 , "rbx", "rcx", "rdx", "rsi", "rdi"
1723 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
1724 #else
1725 , "ebx", "ecx", "edx" , "esi", "edi"
1726 #endif
1727 );
1728
1729 if ((svm->vmcb->save.dr7 & 0xff))
1730 load_db_regs(svm->host_db_regs);
1731
1732 vcpu->arch.cr2 = svm->vmcb->save.cr2;
1733
1734 write_dr6(svm->host_dr6);
1735 write_dr7(svm->host_dr7);
1736 kvm_write_cr2(svm->host_cr2);
1737
1738 load_fs(fs_selector);
1739 load_gs(gs_selector);
1740 load_ldt(ldt_selector);
1741 load_host_msrs(vcpu);
1742
1743 reload_tss(vcpu);
1744
1745 local_irq_disable();
1746
1747 stgi();
1748
1749 svm->next_rip = 0;
1750 }
1751
1752 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1753 {
1754 struct vcpu_svm *svm = to_svm(vcpu);
1755
1756 if (npt_enabled) {
1757 svm->vmcb->control.nested_cr3 = root;
1758 force_new_asid(vcpu);
1759 return;
1760 }
1761
1762 svm->vmcb->save.cr3 = root;
1763 force_new_asid(vcpu);
1764
1765 if (vcpu->fpu_active) {
1766 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1767 svm->vmcb->save.cr0 |= X86_CR0_TS;
1768 vcpu->fpu_active = 0;
1769 }
1770 }
1771
1772 static int is_disabled(void)
1773 {
1774 u64 vm_cr;
1775
1776 rdmsrl(MSR_VM_CR, vm_cr);
1777 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1778 return 1;
1779
1780 return 0;
1781 }
1782
1783 static void
1784 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1785 {
1786 /*
1787 * Patch in the VMMCALL instruction:
1788 */
1789 hypercall[0] = 0x0f;
1790 hypercall[1] = 0x01;
1791 hypercall[2] = 0xd9;
1792 }
1793
1794 static void svm_check_processor_compat(void *rtn)
1795 {
1796 *(int *)rtn = 0;
1797 }
1798
1799 static bool svm_cpu_has_accelerated_tpr(void)
1800 {
1801 return false;
1802 }
1803
1804 static struct kvm_x86_ops svm_x86_ops = {
1805 .cpu_has_kvm_support = has_svm,
1806 .disabled_by_bios = is_disabled,
1807 .hardware_setup = svm_hardware_setup,
1808 .hardware_unsetup = svm_hardware_unsetup,
1809 .check_processor_compatibility = svm_check_processor_compat,
1810 .hardware_enable = svm_hardware_enable,
1811 .hardware_disable = svm_hardware_disable,
1812 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
1813
1814 .vcpu_create = svm_create_vcpu,
1815 .vcpu_free = svm_free_vcpu,
1816 .vcpu_reset = svm_vcpu_reset,
1817
1818 .prepare_guest_switch = svm_prepare_guest_switch,
1819 .vcpu_load = svm_vcpu_load,
1820 .vcpu_put = svm_vcpu_put,
1821 .vcpu_decache = svm_vcpu_decache,
1822
1823 .set_guest_debug = svm_guest_debug,
1824 .get_msr = svm_get_msr,
1825 .set_msr = svm_set_msr,
1826 .get_segment_base = svm_get_segment_base,
1827 .get_segment = svm_get_segment,
1828 .set_segment = svm_set_segment,
1829 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
1830 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1831 .set_cr0 = svm_set_cr0,
1832 .set_cr3 = svm_set_cr3,
1833 .set_cr4 = svm_set_cr4,
1834 .set_efer = svm_set_efer,
1835 .get_idt = svm_get_idt,
1836 .set_idt = svm_set_idt,
1837 .get_gdt = svm_get_gdt,
1838 .set_gdt = svm_set_gdt,
1839 .get_dr = svm_get_dr,
1840 .set_dr = svm_set_dr,
1841 .cache_regs = svm_cache_regs,
1842 .decache_regs = svm_decache_regs,
1843 .get_rflags = svm_get_rflags,
1844 .set_rflags = svm_set_rflags,
1845
1846 .tlb_flush = svm_flush_tlb,
1847
1848 .run = svm_vcpu_run,
1849 .handle_exit = handle_exit,
1850 .skip_emulated_instruction = skip_emulated_instruction,
1851 .patch_hypercall = svm_patch_hypercall,
1852 .get_irq = svm_get_irq,
1853 .set_irq = svm_set_irq,
1854 .queue_exception = svm_queue_exception,
1855 .exception_injected = svm_exception_injected,
1856 .inject_pending_irq = svm_intr_assist,
1857 .inject_pending_vectors = do_interrupt_requests,
1858
1859 .set_tss_addr = svm_set_tss_addr,
1860 };
1861
1862 static int __init svm_init(void)
1863 {
1864 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
1865 THIS_MODULE);
1866 }
1867
1868 static void __exit svm_exit(void)
1869 {
1870 kvm_exit();
1871 }
1872
1873 module_init(svm_init)
1874 module_exit(svm_exit)
This page took 0.072578 seconds and 5 git commands to generate.