KVM: SVM: Add manipulation functions for CRx intercepts
[deliverable/linux.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
35
36 #include <asm/virtext.h>
37 #include "trace.h"
38
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
46
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
49
50 #define SVM_FEATURE_NPT (1 << 0)
51 #define SVM_FEATURE_LBRV (1 << 1)
52 #define SVM_FEATURE_SVML (1 << 2)
53 #define SVM_FEATURE_NRIP (1 << 3)
54 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
55
56 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
57 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
58 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
59
60 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
61
62 static bool erratum_383_found __read_mostly;
63
64 static const u32 host_save_user_msrs[] = {
65 #ifdef CONFIG_X86_64
66 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
67 MSR_FS_BASE,
68 #endif
69 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
70 };
71
72 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
73
74 struct kvm_vcpu;
75
76 struct nested_state {
77 struct vmcb *hsave;
78 u64 hsave_msr;
79 u64 vm_cr_msr;
80 u64 vmcb;
81
82 /* These are the merged vectors */
83 u32 *msrpm;
84
85 /* gpa pointers to the real vectors */
86 u64 vmcb_msrpm;
87 u64 vmcb_iopm;
88
89 /* A VMEXIT is required but not yet emulated */
90 bool exit_required;
91
92 /*
93 * If we vmexit during an instruction emulation we need this to restore
94 * the l1 guest rip after the emulation
95 */
96 unsigned long vmexit_rip;
97 unsigned long vmexit_rsp;
98 unsigned long vmexit_rax;
99
100 /* cache for intercepts of the guest */
101 u32 intercept_cr;
102 u16 intercept_dr_read;
103 u16 intercept_dr_write;
104 u32 intercept_exceptions;
105 u64 intercept;
106
107 /* Nested Paging related state */
108 u64 nested_cr3;
109 };
110
111 #define MSRPM_OFFSETS 16
112 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
113
114 struct vcpu_svm {
115 struct kvm_vcpu vcpu;
116 struct vmcb *vmcb;
117 unsigned long vmcb_pa;
118 struct svm_cpu_data *svm_data;
119 uint64_t asid_generation;
120 uint64_t sysenter_esp;
121 uint64_t sysenter_eip;
122
123 u64 next_rip;
124
125 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
126 struct {
127 u16 fs;
128 u16 gs;
129 u16 ldt;
130 u64 gs_base;
131 } host;
132
133 u32 *msrpm;
134
135 struct nested_state nested;
136
137 bool nmi_singlestep;
138
139 unsigned int3_injected;
140 unsigned long int3_rip;
141 u32 apf_reason;
142 };
143
144 #define MSR_INVALID 0xffffffffU
145
146 static struct svm_direct_access_msrs {
147 u32 index; /* Index of the MSR */
148 bool always; /* True if intercept is always on */
149 } direct_access_msrs[] = {
150 { .index = MSR_STAR, .always = true },
151 { .index = MSR_IA32_SYSENTER_CS, .always = true },
152 #ifdef CONFIG_X86_64
153 { .index = MSR_GS_BASE, .always = true },
154 { .index = MSR_FS_BASE, .always = true },
155 { .index = MSR_KERNEL_GS_BASE, .always = true },
156 { .index = MSR_LSTAR, .always = true },
157 { .index = MSR_CSTAR, .always = true },
158 { .index = MSR_SYSCALL_MASK, .always = true },
159 #endif
160 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
161 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
162 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
163 { .index = MSR_IA32_LASTINTTOIP, .always = false },
164 { .index = MSR_INVALID, .always = false },
165 };
166
167 /* enable NPT for AMD64 and X86 with PAE */
168 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
169 static bool npt_enabled = true;
170 #else
171 static bool npt_enabled;
172 #endif
173 static int npt = 1;
174
175 module_param(npt, int, S_IRUGO);
176
177 static int nested = 1;
178 module_param(nested, int, S_IRUGO);
179
180 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
181 static void svm_complete_interrupts(struct vcpu_svm *svm);
182
183 static int nested_svm_exit_handled(struct vcpu_svm *svm);
184 static int nested_svm_intercept(struct vcpu_svm *svm);
185 static int nested_svm_vmexit(struct vcpu_svm *svm);
186 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
187 bool has_error_code, u32 error_code);
188
189 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
190 {
191 return container_of(vcpu, struct vcpu_svm, vcpu);
192 }
193
194 static void recalc_intercepts(struct vcpu_svm *svm)
195 {
196 struct vmcb_control_area *c, *h;
197 struct nested_state *g;
198
199 if (!is_guest_mode(&svm->vcpu))
200 return;
201
202 c = &svm->vmcb->control;
203 h = &svm->nested.hsave->control;
204 g = &svm->nested;
205
206 c->intercept_cr = h->intercept_cr | g->intercept_cr;
207 c->intercept_dr_read = h->intercept_dr_read | g->intercept_dr_read;
208 c->intercept_dr_write = h->intercept_dr_write | g->intercept_dr_write;
209 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
210 c->intercept = h->intercept | g->intercept;
211 }
212
213 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
214 {
215 if (is_guest_mode(&svm->vcpu))
216 return svm->nested.hsave;
217 else
218 return svm->vmcb;
219 }
220
221 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
222 {
223 struct vmcb *vmcb = get_host_vmcb(svm);
224
225 vmcb->control.intercept_cr |= (1U << bit);
226
227 recalc_intercepts(svm);
228 }
229
230 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
231 {
232 struct vmcb *vmcb = get_host_vmcb(svm);
233
234 vmcb->control.intercept_cr &= ~(1U << bit);
235
236 recalc_intercepts(svm);
237 }
238
239 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
240 {
241 struct vmcb *vmcb = get_host_vmcb(svm);
242
243 return vmcb->control.intercept_cr & (1U << bit);
244 }
245
246 static inline void enable_gif(struct vcpu_svm *svm)
247 {
248 svm->vcpu.arch.hflags |= HF_GIF_MASK;
249 }
250
251 static inline void disable_gif(struct vcpu_svm *svm)
252 {
253 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
254 }
255
256 static inline bool gif_set(struct vcpu_svm *svm)
257 {
258 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
259 }
260
261 static unsigned long iopm_base;
262
263 struct kvm_ldttss_desc {
264 u16 limit0;
265 u16 base0;
266 unsigned base1:8, type:5, dpl:2, p:1;
267 unsigned limit1:4, zero0:3, g:1, base2:8;
268 u32 base3;
269 u32 zero1;
270 } __attribute__((packed));
271
272 struct svm_cpu_data {
273 int cpu;
274
275 u64 asid_generation;
276 u32 max_asid;
277 u32 next_asid;
278 struct kvm_ldttss_desc *tss_desc;
279
280 struct page *save_area;
281 };
282
283 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
284 static uint32_t svm_features;
285
286 struct svm_init_data {
287 int cpu;
288 int r;
289 };
290
291 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
292
293 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
294 #define MSRS_RANGE_SIZE 2048
295 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
296
297 static u32 svm_msrpm_offset(u32 msr)
298 {
299 u32 offset;
300 int i;
301
302 for (i = 0; i < NUM_MSR_MAPS; i++) {
303 if (msr < msrpm_ranges[i] ||
304 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
305 continue;
306
307 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
308 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
309
310 /* Now we have the u8 offset - but need the u32 offset */
311 return offset / 4;
312 }
313
314 /* MSR not in any range */
315 return MSR_INVALID;
316 }
317
318 #define MAX_INST_SIZE 15
319
320 static inline void clgi(void)
321 {
322 asm volatile (__ex(SVM_CLGI));
323 }
324
325 static inline void stgi(void)
326 {
327 asm volatile (__ex(SVM_STGI));
328 }
329
330 static inline void invlpga(unsigned long addr, u32 asid)
331 {
332 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
333 }
334
335 static inline void force_new_asid(struct kvm_vcpu *vcpu)
336 {
337 to_svm(vcpu)->asid_generation--;
338 }
339
340 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
341 {
342 force_new_asid(vcpu);
343 }
344
345 static int get_npt_level(void)
346 {
347 #ifdef CONFIG_X86_64
348 return PT64_ROOT_LEVEL;
349 #else
350 return PT32E_ROOT_LEVEL;
351 #endif
352 }
353
354 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
355 {
356 vcpu->arch.efer = efer;
357 if (!npt_enabled && !(efer & EFER_LMA))
358 efer &= ~EFER_LME;
359
360 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
361 }
362
363 static int is_external_interrupt(u32 info)
364 {
365 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
366 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
367 }
368
369 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
370 {
371 struct vcpu_svm *svm = to_svm(vcpu);
372 u32 ret = 0;
373
374 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
375 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
376 return ret & mask;
377 }
378
379 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
380 {
381 struct vcpu_svm *svm = to_svm(vcpu);
382
383 if (mask == 0)
384 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
385 else
386 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
387
388 }
389
390 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
391 {
392 struct vcpu_svm *svm = to_svm(vcpu);
393
394 if (svm->vmcb->control.next_rip != 0)
395 svm->next_rip = svm->vmcb->control.next_rip;
396
397 if (!svm->next_rip) {
398 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
399 EMULATE_DONE)
400 printk(KERN_DEBUG "%s: NOP\n", __func__);
401 return;
402 }
403 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
404 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
405 __func__, kvm_rip_read(vcpu), svm->next_rip);
406
407 kvm_rip_write(vcpu, svm->next_rip);
408 svm_set_interrupt_shadow(vcpu, 0);
409 }
410
411 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
412 bool has_error_code, u32 error_code,
413 bool reinject)
414 {
415 struct vcpu_svm *svm = to_svm(vcpu);
416
417 /*
418 * If we are within a nested VM we'd better #VMEXIT and let the guest
419 * handle the exception
420 */
421 if (!reinject &&
422 nested_svm_check_exception(svm, nr, has_error_code, error_code))
423 return;
424
425 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
426 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
427
428 /*
429 * For guest debugging where we have to reinject #BP if some
430 * INT3 is guest-owned:
431 * Emulate nRIP by moving RIP forward. Will fail if injection
432 * raises a fault that is not intercepted. Still better than
433 * failing in all cases.
434 */
435 skip_emulated_instruction(&svm->vcpu);
436 rip = kvm_rip_read(&svm->vcpu);
437 svm->int3_rip = rip + svm->vmcb->save.cs.base;
438 svm->int3_injected = rip - old_rip;
439 }
440
441 svm->vmcb->control.event_inj = nr
442 | SVM_EVTINJ_VALID
443 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
444 | SVM_EVTINJ_TYPE_EXEPT;
445 svm->vmcb->control.event_inj_err = error_code;
446 }
447
448 static void svm_init_erratum_383(void)
449 {
450 u32 low, high;
451 int err;
452 u64 val;
453
454 if (!cpu_has_amd_erratum(amd_erratum_383))
455 return;
456
457 /* Use _safe variants to not break nested virtualization */
458 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
459 if (err)
460 return;
461
462 val |= (1ULL << 47);
463
464 low = lower_32_bits(val);
465 high = upper_32_bits(val);
466
467 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
468
469 erratum_383_found = true;
470 }
471
472 static int has_svm(void)
473 {
474 const char *msg;
475
476 if (!cpu_has_svm(&msg)) {
477 printk(KERN_INFO "has_svm: %s\n", msg);
478 return 0;
479 }
480
481 return 1;
482 }
483
484 static void svm_hardware_disable(void *garbage)
485 {
486 cpu_svm_disable();
487 }
488
489 static int svm_hardware_enable(void *garbage)
490 {
491
492 struct svm_cpu_data *sd;
493 uint64_t efer;
494 struct desc_ptr gdt_descr;
495 struct desc_struct *gdt;
496 int me = raw_smp_processor_id();
497
498 rdmsrl(MSR_EFER, efer);
499 if (efer & EFER_SVME)
500 return -EBUSY;
501
502 if (!has_svm()) {
503 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
504 me);
505 return -EINVAL;
506 }
507 sd = per_cpu(svm_data, me);
508
509 if (!sd) {
510 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
511 me);
512 return -EINVAL;
513 }
514
515 sd->asid_generation = 1;
516 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
517 sd->next_asid = sd->max_asid + 1;
518
519 native_store_gdt(&gdt_descr);
520 gdt = (struct desc_struct *)gdt_descr.address;
521 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
522
523 wrmsrl(MSR_EFER, efer | EFER_SVME);
524
525 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
526
527 svm_init_erratum_383();
528
529 return 0;
530 }
531
532 static void svm_cpu_uninit(int cpu)
533 {
534 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
535
536 if (!sd)
537 return;
538
539 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
540 __free_page(sd->save_area);
541 kfree(sd);
542 }
543
544 static int svm_cpu_init(int cpu)
545 {
546 struct svm_cpu_data *sd;
547 int r;
548
549 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
550 if (!sd)
551 return -ENOMEM;
552 sd->cpu = cpu;
553 sd->save_area = alloc_page(GFP_KERNEL);
554 r = -ENOMEM;
555 if (!sd->save_area)
556 goto err_1;
557
558 per_cpu(svm_data, cpu) = sd;
559
560 return 0;
561
562 err_1:
563 kfree(sd);
564 return r;
565
566 }
567
568 static bool valid_msr_intercept(u32 index)
569 {
570 int i;
571
572 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
573 if (direct_access_msrs[i].index == index)
574 return true;
575
576 return false;
577 }
578
579 static void set_msr_interception(u32 *msrpm, unsigned msr,
580 int read, int write)
581 {
582 u8 bit_read, bit_write;
583 unsigned long tmp;
584 u32 offset;
585
586 /*
587 * If this warning triggers extend the direct_access_msrs list at the
588 * beginning of the file
589 */
590 WARN_ON(!valid_msr_intercept(msr));
591
592 offset = svm_msrpm_offset(msr);
593 bit_read = 2 * (msr & 0x0f);
594 bit_write = 2 * (msr & 0x0f) + 1;
595 tmp = msrpm[offset];
596
597 BUG_ON(offset == MSR_INVALID);
598
599 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
600 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
601
602 msrpm[offset] = tmp;
603 }
604
605 static void svm_vcpu_init_msrpm(u32 *msrpm)
606 {
607 int i;
608
609 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
610
611 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
612 if (!direct_access_msrs[i].always)
613 continue;
614
615 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
616 }
617 }
618
619 static void add_msr_offset(u32 offset)
620 {
621 int i;
622
623 for (i = 0; i < MSRPM_OFFSETS; ++i) {
624
625 /* Offset already in list? */
626 if (msrpm_offsets[i] == offset)
627 return;
628
629 /* Slot used by another offset? */
630 if (msrpm_offsets[i] != MSR_INVALID)
631 continue;
632
633 /* Add offset to list */
634 msrpm_offsets[i] = offset;
635
636 return;
637 }
638
639 /*
640 * If this BUG triggers the msrpm_offsets table has an overflow. Just
641 * increase MSRPM_OFFSETS in this case.
642 */
643 BUG();
644 }
645
646 static void init_msrpm_offsets(void)
647 {
648 int i;
649
650 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
651
652 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
653 u32 offset;
654
655 offset = svm_msrpm_offset(direct_access_msrs[i].index);
656 BUG_ON(offset == MSR_INVALID);
657
658 add_msr_offset(offset);
659 }
660 }
661
662 static void svm_enable_lbrv(struct vcpu_svm *svm)
663 {
664 u32 *msrpm = svm->msrpm;
665
666 svm->vmcb->control.lbr_ctl = 1;
667 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
668 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
669 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
670 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
671 }
672
673 static void svm_disable_lbrv(struct vcpu_svm *svm)
674 {
675 u32 *msrpm = svm->msrpm;
676
677 svm->vmcb->control.lbr_ctl = 0;
678 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
679 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
680 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
681 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
682 }
683
684 static __init int svm_hardware_setup(void)
685 {
686 int cpu;
687 struct page *iopm_pages;
688 void *iopm_va;
689 int r;
690
691 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
692
693 if (!iopm_pages)
694 return -ENOMEM;
695
696 iopm_va = page_address(iopm_pages);
697 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
698 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
699
700 init_msrpm_offsets();
701
702 if (boot_cpu_has(X86_FEATURE_NX))
703 kvm_enable_efer_bits(EFER_NX);
704
705 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
706 kvm_enable_efer_bits(EFER_FFXSR);
707
708 if (nested) {
709 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
710 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
711 }
712
713 for_each_possible_cpu(cpu) {
714 r = svm_cpu_init(cpu);
715 if (r)
716 goto err;
717 }
718
719 svm_features = cpuid_edx(SVM_CPUID_FUNC);
720
721 if (!boot_cpu_has(X86_FEATURE_NPT))
722 npt_enabled = false;
723
724 if (npt_enabled && !npt) {
725 printk(KERN_INFO "kvm: Nested Paging disabled\n");
726 npt_enabled = false;
727 }
728
729 if (npt_enabled) {
730 printk(KERN_INFO "kvm: Nested Paging enabled\n");
731 kvm_enable_tdp();
732 } else
733 kvm_disable_tdp();
734
735 return 0;
736
737 err:
738 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
739 iopm_base = 0;
740 return r;
741 }
742
743 static __exit void svm_hardware_unsetup(void)
744 {
745 int cpu;
746
747 for_each_possible_cpu(cpu)
748 svm_cpu_uninit(cpu);
749
750 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
751 iopm_base = 0;
752 }
753
754 static void init_seg(struct vmcb_seg *seg)
755 {
756 seg->selector = 0;
757 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
758 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
759 seg->limit = 0xffff;
760 seg->base = 0;
761 }
762
763 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
764 {
765 seg->selector = 0;
766 seg->attrib = SVM_SELECTOR_P_MASK | type;
767 seg->limit = 0xffff;
768 seg->base = 0;
769 }
770
771 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
772 {
773 struct vcpu_svm *svm = to_svm(vcpu);
774 u64 g_tsc_offset = 0;
775
776 if (is_guest_mode(vcpu)) {
777 g_tsc_offset = svm->vmcb->control.tsc_offset -
778 svm->nested.hsave->control.tsc_offset;
779 svm->nested.hsave->control.tsc_offset = offset;
780 }
781
782 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
783 }
784
785 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
786 {
787 struct vcpu_svm *svm = to_svm(vcpu);
788
789 svm->vmcb->control.tsc_offset += adjustment;
790 if (is_guest_mode(vcpu))
791 svm->nested.hsave->control.tsc_offset += adjustment;
792 }
793
794 static void init_vmcb(struct vcpu_svm *svm)
795 {
796 struct vmcb_control_area *control = &svm->vmcb->control;
797 struct vmcb_save_area *save = &svm->vmcb->save;
798
799 svm->vcpu.fpu_active = 1;
800 svm->vcpu.arch.hflags = 0;
801
802 set_cr_intercept(svm, INTERCEPT_CR0_READ);
803 set_cr_intercept(svm, INTERCEPT_CR3_READ);
804 set_cr_intercept(svm, INTERCEPT_CR4_READ);
805 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
806 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
807 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
808 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
809
810 control->intercept_dr_read = INTERCEPT_DR0_MASK |
811 INTERCEPT_DR1_MASK |
812 INTERCEPT_DR2_MASK |
813 INTERCEPT_DR3_MASK |
814 INTERCEPT_DR4_MASK |
815 INTERCEPT_DR5_MASK |
816 INTERCEPT_DR6_MASK |
817 INTERCEPT_DR7_MASK;
818
819 control->intercept_dr_write = INTERCEPT_DR0_MASK |
820 INTERCEPT_DR1_MASK |
821 INTERCEPT_DR2_MASK |
822 INTERCEPT_DR3_MASK |
823 INTERCEPT_DR4_MASK |
824 INTERCEPT_DR5_MASK |
825 INTERCEPT_DR6_MASK |
826 INTERCEPT_DR7_MASK;
827
828 control->intercept_exceptions = (1 << PF_VECTOR) |
829 (1 << UD_VECTOR) |
830 (1 << MC_VECTOR);
831
832
833 control->intercept = (1ULL << INTERCEPT_INTR) |
834 (1ULL << INTERCEPT_NMI) |
835 (1ULL << INTERCEPT_SMI) |
836 (1ULL << INTERCEPT_SELECTIVE_CR0) |
837 (1ULL << INTERCEPT_CPUID) |
838 (1ULL << INTERCEPT_INVD) |
839 (1ULL << INTERCEPT_HLT) |
840 (1ULL << INTERCEPT_INVLPG) |
841 (1ULL << INTERCEPT_INVLPGA) |
842 (1ULL << INTERCEPT_IOIO_PROT) |
843 (1ULL << INTERCEPT_MSR_PROT) |
844 (1ULL << INTERCEPT_TASK_SWITCH) |
845 (1ULL << INTERCEPT_SHUTDOWN) |
846 (1ULL << INTERCEPT_VMRUN) |
847 (1ULL << INTERCEPT_VMMCALL) |
848 (1ULL << INTERCEPT_VMLOAD) |
849 (1ULL << INTERCEPT_VMSAVE) |
850 (1ULL << INTERCEPT_STGI) |
851 (1ULL << INTERCEPT_CLGI) |
852 (1ULL << INTERCEPT_SKINIT) |
853 (1ULL << INTERCEPT_WBINVD) |
854 (1ULL << INTERCEPT_MONITOR) |
855 (1ULL << INTERCEPT_MWAIT);
856
857 control->iopm_base_pa = iopm_base;
858 control->msrpm_base_pa = __pa(svm->msrpm);
859 control->int_ctl = V_INTR_MASKING_MASK;
860
861 init_seg(&save->es);
862 init_seg(&save->ss);
863 init_seg(&save->ds);
864 init_seg(&save->fs);
865 init_seg(&save->gs);
866
867 save->cs.selector = 0xf000;
868 /* Executable/Readable Code Segment */
869 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
870 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
871 save->cs.limit = 0xffff;
872 /*
873 * cs.base should really be 0xffff0000, but vmx can't handle that, so
874 * be consistent with it.
875 *
876 * Replace when we have real mode working for vmx.
877 */
878 save->cs.base = 0xf0000;
879
880 save->gdtr.limit = 0xffff;
881 save->idtr.limit = 0xffff;
882
883 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
884 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
885
886 svm_set_efer(&svm->vcpu, 0);
887 save->dr6 = 0xffff0ff0;
888 save->dr7 = 0x400;
889 save->rflags = 2;
890 save->rip = 0x0000fff0;
891 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
892
893 /*
894 * This is the guest-visible cr0 value.
895 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
896 */
897 svm->vcpu.arch.cr0 = 0;
898 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
899
900 save->cr4 = X86_CR4_PAE;
901 /* rdx = ?? */
902
903 if (npt_enabled) {
904 /* Setup VMCB for Nested Paging */
905 control->nested_ctl = 1;
906 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
907 (1ULL << INTERCEPT_INVLPG));
908 control->intercept_exceptions &= ~(1 << PF_VECTOR);
909 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
910 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
911 save->g_pat = 0x0007040600070406ULL;
912 save->cr3 = 0;
913 save->cr4 = 0;
914 }
915 force_new_asid(&svm->vcpu);
916
917 svm->nested.vmcb = 0;
918 svm->vcpu.arch.hflags = 0;
919
920 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
921 control->pause_filter_count = 3000;
922 control->intercept |= (1ULL << INTERCEPT_PAUSE);
923 }
924
925 enable_gif(svm);
926 }
927
928 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
929 {
930 struct vcpu_svm *svm = to_svm(vcpu);
931
932 init_vmcb(svm);
933
934 if (!kvm_vcpu_is_bsp(vcpu)) {
935 kvm_rip_write(vcpu, 0);
936 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
937 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
938 }
939 vcpu->arch.regs_avail = ~0;
940 vcpu->arch.regs_dirty = ~0;
941
942 return 0;
943 }
944
945 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
946 {
947 struct vcpu_svm *svm;
948 struct page *page;
949 struct page *msrpm_pages;
950 struct page *hsave_page;
951 struct page *nested_msrpm_pages;
952 int err;
953
954 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
955 if (!svm) {
956 err = -ENOMEM;
957 goto out;
958 }
959
960 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
961 if (err)
962 goto free_svm;
963
964 err = -ENOMEM;
965 page = alloc_page(GFP_KERNEL);
966 if (!page)
967 goto uninit;
968
969 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
970 if (!msrpm_pages)
971 goto free_page1;
972
973 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
974 if (!nested_msrpm_pages)
975 goto free_page2;
976
977 hsave_page = alloc_page(GFP_KERNEL);
978 if (!hsave_page)
979 goto free_page3;
980
981 svm->nested.hsave = page_address(hsave_page);
982
983 svm->msrpm = page_address(msrpm_pages);
984 svm_vcpu_init_msrpm(svm->msrpm);
985
986 svm->nested.msrpm = page_address(nested_msrpm_pages);
987 svm_vcpu_init_msrpm(svm->nested.msrpm);
988
989 svm->vmcb = page_address(page);
990 clear_page(svm->vmcb);
991 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
992 svm->asid_generation = 0;
993 init_vmcb(svm);
994 kvm_write_tsc(&svm->vcpu, 0);
995
996 err = fx_init(&svm->vcpu);
997 if (err)
998 goto free_page4;
999
1000 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1001 if (kvm_vcpu_is_bsp(&svm->vcpu))
1002 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1003
1004 return &svm->vcpu;
1005
1006 free_page4:
1007 __free_page(hsave_page);
1008 free_page3:
1009 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1010 free_page2:
1011 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1012 free_page1:
1013 __free_page(page);
1014 uninit:
1015 kvm_vcpu_uninit(&svm->vcpu);
1016 free_svm:
1017 kmem_cache_free(kvm_vcpu_cache, svm);
1018 out:
1019 return ERR_PTR(err);
1020 }
1021
1022 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1023 {
1024 struct vcpu_svm *svm = to_svm(vcpu);
1025
1026 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1027 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1028 __free_page(virt_to_page(svm->nested.hsave));
1029 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1030 kvm_vcpu_uninit(vcpu);
1031 kmem_cache_free(kvm_vcpu_cache, svm);
1032 }
1033
1034 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1035 {
1036 struct vcpu_svm *svm = to_svm(vcpu);
1037 int i;
1038
1039 if (unlikely(cpu != vcpu->cpu)) {
1040 svm->asid_generation = 0;
1041 }
1042
1043 #ifdef CONFIG_X86_64
1044 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1045 #endif
1046 savesegment(fs, svm->host.fs);
1047 savesegment(gs, svm->host.gs);
1048 svm->host.ldt = kvm_read_ldt();
1049
1050 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1051 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1052 }
1053
1054 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1055 {
1056 struct vcpu_svm *svm = to_svm(vcpu);
1057 int i;
1058
1059 ++vcpu->stat.host_state_reload;
1060 kvm_load_ldt(svm->host.ldt);
1061 #ifdef CONFIG_X86_64
1062 loadsegment(fs, svm->host.fs);
1063 load_gs_index(svm->host.gs);
1064 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1065 #else
1066 loadsegment(gs, svm->host.gs);
1067 #endif
1068 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1069 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1070 }
1071
1072 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1073 {
1074 return to_svm(vcpu)->vmcb->save.rflags;
1075 }
1076
1077 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1078 {
1079 to_svm(vcpu)->vmcb->save.rflags = rflags;
1080 }
1081
1082 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1083 {
1084 switch (reg) {
1085 case VCPU_EXREG_PDPTR:
1086 BUG_ON(!npt_enabled);
1087 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
1088 break;
1089 default:
1090 BUG();
1091 }
1092 }
1093
1094 static void svm_set_vintr(struct vcpu_svm *svm)
1095 {
1096 svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
1097 }
1098
1099 static void svm_clear_vintr(struct vcpu_svm *svm)
1100 {
1101 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1102 }
1103
1104 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1105 {
1106 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1107
1108 switch (seg) {
1109 case VCPU_SREG_CS: return &save->cs;
1110 case VCPU_SREG_DS: return &save->ds;
1111 case VCPU_SREG_ES: return &save->es;
1112 case VCPU_SREG_FS: return &save->fs;
1113 case VCPU_SREG_GS: return &save->gs;
1114 case VCPU_SREG_SS: return &save->ss;
1115 case VCPU_SREG_TR: return &save->tr;
1116 case VCPU_SREG_LDTR: return &save->ldtr;
1117 }
1118 BUG();
1119 return NULL;
1120 }
1121
1122 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1123 {
1124 struct vmcb_seg *s = svm_seg(vcpu, seg);
1125
1126 return s->base;
1127 }
1128
1129 static void svm_get_segment(struct kvm_vcpu *vcpu,
1130 struct kvm_segment *var, int seg)
1131 {
1132 struct vmcb_seg *s = svm_seg(vcpu, seg);
1133
1134 var->base = s->base;
1135 var->limit = s->limit;
1136 var->selector = s->selector;
1137 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1138 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1139 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1140 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1141 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1142 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1143 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1144 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1145
1146 /*
1147 * AMD's VMCB does not have an explicit unusable field, so emulate it
1148 * for cross vendor migration purposes by "not present"
1149 */
1150 var->unusable = !var->present || (var->type == 0);
1151
1152 switch (seg) {
1153 case VCPU_SREG_CS:
1154 /*
1155 * SVM always stores 0 for the 'G' bit in the CS selector in
1156 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1157 * Intel's VMENTRY has a check on the 'G' bit.
1158 */
1159 var->g = s->limit > 0xfffff;
1160 break;
1161 case VCPU_SREG_TR:
1162 /*
1163 * Work around a bug where the busy flag in the tr selector
1164 * isn't exposed
1165 */
1166 var->type |= 0x2;
1167 break;
1168 case VCPU_SREG_DS:
1169 case VCPU_SREG_ES:
1170 case VCPU_SREG_FS:
1171 case VCPU_SREG_GS:
1172 /*
1173 * The accessed bit must always be set in the segment
1174 * descriptor cache, although it can be cleared in the
1175 * descriptor, the cached bit always remains at 1. Since
1176 * Intel has a check on this, set it here to support
1177 * cross-vendor migration.
1178 */
1179 if (!var->unusable)
1180 var->type |= 0x1;
1181 break;
1182 case VCPU_SREG_SS:
1183 /*
1184 * On AMD CPUs sometimes the DB bit in the segment
1185 * descriptor is left as 1, although the whole segment has
1186 * been made unusable. Clear it here to pass an Intel VMX
1187 * entry check when cross vendor migrating.
1188 */
1189 if (var->unusable)
1190 var->db = 0;
1191 break;
1192 }
1193 }
1194
1195 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1196 {
1197 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1198
1199 return save->cpl;
1200 }
1201
1202 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1203 {
1204 struct vcpu_svm *svm = to_svm(vcpu);
1205
1206 dt->size = svm->vmcb->save.idtr.limit;
1207 dt->address = svm->vmcb->save.idtr.base;
1208 }
1209
1210 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1211 {
1212 struct vcpu_svm *svm = to_svm(vcpu);
1213
1214 svm->vmcb->save.idtr.limit = dt->size;
1215 svm->vmcb->save.idtr.base = dt->address ;
1216 }
1217
1218 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1219 {
1220 struct vcpu_svm *svm = to_svm(vcpu);
1221
1222 dt->size = svm->vmcb->save.gdtr.limit;
1223 dt->address = svm->vmcb->save.gdtr.base;
1224 }
1225
1226 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1227 {
1228 struct vcpu_svm *svm = to_svm(vcpu);
1229
1230 svm->vmcb->save.gdtr.limit = dt->size;
1231 svm->vmcb->save.gdtr.base = dt->address ;
1232 }
1233
1234 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1235 {
1236 }
1237
1238 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1239 {
1240 }
1241
1242 static void update_cr0_intercept(struct vcpu_svm *svm)
1243 {
1244 ulong gcr0 = svm->vcpu.arch.cr0;
1245 u64 *hcr0 = &svm->vmcb->save.cr0;
1246
1247 if (!svm->vcpu.fpu_active)
1248 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1249 else
1250 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1251 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1252
1253
1254 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1255 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1256 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1257 } else {
1258 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1259 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1260 }
1261 }
1262
1263 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1264 {
1265 struct vcpu_svm *svm = to_svm(vcpu);
1266
1267 if (is_guest_mode(vcpu)) {
1268 /*
1269 * We are here because we run in nested mode, the host kvm
1270 * intercepts cr0 writes but the l1 hypervisor does not.
1271 * But the L1 hypervisor may intercept selective cr0 writes.
1272 * This needs to be checked here.
1273 */
1274 unsigned long old, new;
1275
1276 /* Remove bits that would trigger a real cr0 write intercept */
1277 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1278 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1279
1280 if (old == new) {
1281 /* cr0 write with ts and mp unchanged */
1282 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1283 if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
1284 svm->nested.vmexit_rip = kvm_rip_read(vcpu);
1285 svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
1286 svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
1287 return;
1288 }
1289 }
1290 }
1291
1292 #ifdef CONFIG_X86_64
1293 if (vcpu->arch.efer & EFER_LME) {
1294 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1295 vcpu->arch.efer |= EFER_LMA;
1296 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1297 }
1298
1299 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1300 vcpu->arch.efer &= ~EFER_LMA;
1301 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1302 }
1303 }
1304 #endif
1305 vcpu->arch.cr0 = cr0;
1306
1307 if (!npt_enabled)
1308 cr0 |= X86_CR0_PG | X86_CR0_WP;
1309
1310 if (!vcpu->fpu_active)
1311 cr0 |= X86_CR0_TS;
1312 /*
1313 * re-enable caching here because the QEMU bios
1314 * does not do it - this results in some delay at
1315 * reboot
1316 */
1317 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1318 svm->vmcb->save.cr0 = cr0;
1319 update_cr0_intercept(svm);
1320 }
1321
1322 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1323 {
1324 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1325 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1326
1327 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1328 force_new_asid(vcpu);
1329
1330 vcpu->arch.cr4 = cr4;
1331 if (!npt_enabled)
1332 cr4 |= X86_CR4_PAE;
1333 cr4 |= host_cr4_mce;
1334 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1335 }
1336
1337 static void svm_set_segment(struct kvm_vcpu *vcpu,
1338 struct kvm_segment *var, int seg)
1339 {
1340 struct vcpu_svm *svm = to_svm(vcpu);
1341 struct vmcb_seg *s = svm_seg(vcpu, seg);
1342
1343 s->base = var->base;
1344 s->limit = var->limit;
1345 s->selector = var->selector;
1346 if (var->unusable)
1347 s->attrib = 0;
1348 else {
1349 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1350 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1351 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1352 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1353 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1354 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1355 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1356 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1357 }
1358 if (seg == VCPU_SREG_CS)
1359 svm->vmcb->save.cpl
1360 = (svm->vmcb->save.cs.attrib
1361 >> SVM_SELECTOR_DPL_SHIFT) & 3;
1362
1363 }
1364
1365 static void update_db_intercept(struct kvm_vcpu *vcpu)
1366 {
1367 struct vcpu_svm *svm = to_svm(vcpu);
1368
1369 svm->vmcb->control.intercept_exceptions &=
1370 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1371
1372 if (svm->nmi_singlestep)
1373 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1374
1375 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1376 if (vcpu->guest_debug &
1377 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1378 svm->vmcb->control.intercept_exceptions |=
1379 1 << DB_VECTOR;
1380 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1381 svm->vmcb->control.intercept_exceptions |=
1382 1 << BP_VECTOR;
1383 } else
1384 vcpu->guest_debug = 0;
1385 }
1386
1387 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1388 {
1389 struct vcpu_svm *svm = to_svm(vcpu);
1390
1391 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1392 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1393 else
1394 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1395
1396 update_db_intercept(vcpu);
1397 }
1398
1399 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1400 {
1401 if (sd->next_asid > sd->max_asid) {
1402 ++sd->asid_generation;
1403 sd->next_asid = 1;
1404 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1405 }
1406
1407 svm->asid_generation = sd->asid_generation;
1408 svm->vmcb->control.asid = sd->next_asid++;
1409 }
1410
1411 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1412 {
1413 struct vcpu_svm *svm = to_svm(vcpu);
1414
1415 svm->vmcb->save.dr7 = value;
1416 }
1417
1418 static int pf_interception(struct vcpu_svm *svm)
1419 {
1420 u64 fault_address = svm->vmcb->control.exit_info_2;
1421 u32 error_code;
1422 int r = 1;
1423
1424 switch (svm->apf_reason) {
1425 default:
1426 error_code = svm->vmcb->control.exit_info_1;
1427
1428 trace_kvm_page_fault(fault_address, error_code);
1429 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1430 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1431 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1432 break;
1433 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1434 svm->apf_reason = 0;
1435 local_irq_disable();
1436 kvm_async_pf_task_wait(fault_address);
1437 local_irq_enable();
1438 break;
1439 case KVM_PV_REASON_PAGE_READY:
1440 svm->apf_reason = 0;
1441 local_irq_disable();
1442 kvm_async_pf_task_wake(fault_address);
1443 local_irq_enable();
1444 break;
1445 }
1446 return r;
1447 }
1448
1449 static int db_interception(struct vcpu_svm *svm)
1450 {
1451 struct kvm_run *kvm_run = svm->vcpu.run;
1452
1453 if (!(svm->vcpu.guest_debug &
1454 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1455 !svm->nmi_singlestep) {
1456 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1457 return 1;
1458 }
1459
1460 if (svm->nmi_singlestep) {
1461 svm->nmi_singlestep = false;
1462 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1463 svm->vmcb->save.rflags &=
1464 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1465 update_db_intercept(&svm->vcpu);
1466 }
1467
1468 if (svm->vcpu.guest_debug &
1469 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1470 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1471 kvm_run->debug.arch.pc =
1472 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1473 kvm_run->debug.arch.exception = DB_VECTOR;
1474 return 0;
1475 }
1476
1477 return 1;
1478 }
1479
1480 static int bp_interception(struct vcpu_svm *svm)
1481 {
1482 struct kvm_run *kvm_run = svm->vcpu.run;
1483
1484 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1485 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1486 kvm_run->debug.arch.exception = BP_VECTOR;
1487 return 0;
1488 }
1489
1490 static int ud_interception(struct vcpu_svm *svm)
1491 {
1492 int er;
1493
1494 er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1495 if (er != EMULATE_DONE)
1496 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1497 return 1;
1498 }
1499
1500 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1501 {
1502 struct vcpu_svm *svm = to_svm(vcpu);
1503 u32 excp;
1504
1505 if (is_guest_mode(vcpu)) {
1506 u32 h_excp, n_excp;
1507
1508 h_excp = svm->nested.hsave->control.intercept_exceptions;
1509 n_excp = svm->nested.intercept_exceptions;
1510 h_excp &= ~(1 << NM_VECTOR);
1511 excp = h_excp | n_excp;
1512 } else {
1513 excp = svm->vmcb->control.intercept_exceptions;
1514 excp &= ~(1 << NM_VECTOR);
1515 }
1516
1517 svm->vmcb->control.intercept_exceptions = excp;
1518
1519 svm->vcpu.fpu_active = 1;
1520 update_cr0_intercept(svm);
1521 }
1522
1523 static int nm_interception(struct vcpu_svm *svm)
1524 {
1525 svm_fpu_activate(&svm->vcpu);
1526 return 1;
1527 }
1528
1529 static bool is_erratum_383(void)
1530 {
1531 int err, i;
1532 u64 value;
1533
1534 if (!erratum_383_found)
1535 return false;
1536
1537 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1538 if (err)
1539 return false;
1540
1541 /* Bit 62 may or may not be set for this mce */
1542 value &= ~(1ULL << 62);
1543
1544 if (value != 0xb600000000010015ULL)
1545 return false;
1546
1547 /* Clear MCi_STATUS registers */
1548 for (i = 0; i < 6; ++i)
1549 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1550
1551 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1552 if (!err) {
1553 u32 low, high;
1554
1555 value &= ~(1ULL << 2);
1556 low = lower_32_bits(value);
1557 high = upper_32_bits(value);
1558
1559 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1560 }
1561
1562 /* Flush tlb to evict multi-match entries */
1563 __flush_tlb_all();
1564
1565 return true;
1566 }
1567
1568 static void svm_handle_mce(struct vcpu_svm *svm)
1569 {
1570 if (is_erratum_383()) {
1571 /*
1572 * Erratum 383 triggered. Guest state is corrupt so kill the
1573 * guest.
1574 */
1575 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1576
1577 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1578
1579 return;
1580 }
1581
1582 /*
1583 * On an #MC intercept the MCE handler is not called automatically in
1584 * the host. So do it by hand here.
1585 */
1586 asm volatile (
1587 "int $0x12\n");
1588 /* not sure if we ever come back to this point */
1589
1590 return;
1591 }
1592
1593 static int mc_interception(struct vcpu_svm *svm)
1594 {
1595 return 1;
1596 }
1597
1598 static int shutdown_interception(struct vcpu_svm *svm)
1599 {
1600 struct kvm_run *kvm_run = svm->vcpu.run;
1601
1602 /*
1603 * VMCB is undefined after a SHUTDOWN intercept
1604 * so reinitialize it.
1605 */
1606 clear_page(svm->vmcb);
1607 init_vmcb(svm);
1608
1609 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1610 return 0;
1611 }
1612
1613 static int io_interception(struct vcpu_svm *svm)
1614 {
1615 struct kvm_vcpu *vcpu = &svm->vcpu;
1616 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1617 int size, in, string;
1618 unsigned port;
1619
1620 ++svm->vcpu.stat.io_exits;
1621 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1622 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1623 if (string || in)
1624 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
1625
1626 port = io_info >> 16;
1627 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1628 svm->next_rip = svm->vmcb->control.exit_info_2;
1629 skip_emulated_instruction(&svm->vcpu);
1630
1631 return kvm_fast_pio_out(vcpu, size, port);
1632 }
1633
1634 static int nmi_interception(struct vcpu_svm *svm)
1635 {
1636 return 1;
1637 }
1638
1639 static int intr_interception(struct vcpu_svm *svm)
1640 {
1641 ++svm->vcpu.stat.irq_exits;
1642 return 1;
1643 }
1644
1645 static int nop_on_interception(struct vcpu_svm *svm)
1646 {
1647 return 1;
1648 }
1649
1650 static int halt_interception(struct vcpu_svm *svm)
1651 {
1652 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1653 skip_emulated_instruction(&svm->vcpu);
1654 return kvm_emulate_halt(&svm->vcpu);
1655 }
1656
1657 static int vmmcall_interception(struct vcpu_svm *svm)
1658 {
1659 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1660 skip_emulated_instruction(&svm->vcpu);
1661 kvm_emulate_hypercall(&svm->vcpu);
1662 return 1;
1663 }
1664
1665 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1666 {
1667 struct vcpu_svm *svm = to_svm(vcpu);
1668
1669 return svm->nested.nested_cr3;
1670 }
1671
1672 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1673 unsigned long root)
1674 {
1675 struct vcpu_svm *svm = to_svm(vcpu);
1676
1677 svm->vmcb->control.nested_cr3 = root;
1678 force_new_asid(vcpu);
1679 }
1680
1681 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1682 struct x86_exception *fault)
1683 {
1684 struct vcpu_svm *svm = to_svm(vcpu);
1685
1686 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1687 svm->vmcb->control.exit_code_hi = 0;
1688 svm->vmcb->control.exit_info_1 = fault->error_code;
1689 svm->vmcb->control.exit_info_2 = fault->address;
1690
1691 nested_svm_vmexit(svm);
1692 }
1693
1694 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1695 {
1696 int r;
1697
1698 r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1699
1700 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1701 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1702 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1703 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1704 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1705
1706 return r;
1707 }
1708
1709 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1710 {
1711 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1712 }
1713
1714 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1715 {
1716 if (!(svm->vcpu.arch.efer & EFER_SVME)
1717 || !is_paging(&svm->vcpu)) {
1718 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1719 return 1;
1720 }
1721
1722 if (svm->vmcb->save.cpl) {
1723 kvm_inject_gp(&svm->vcpu, 0);
1724 return 1;
1725 }
1726
1727 return 0;
1728 }
1729
1730 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1731 bool has_error_code, u32 error_code)
1732 {
1733 int vmexit;
1734
1735 if (!is_guest_mode(&svm->vcpu))
1736 return 0;
1737
1738 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1739 svm->vmcb->control.exit_code_hi = 0;
1740 svm->vmcb->control.exit_info_1 = error_code;
1741 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1742
1743 vmexit = nested_svm_intercept(svm);
1744 if (vmexit == NESTED_EXIT_DONE)
1745 svm->nested.exit_required = true;
1746
1747 return vmexit;
1748 }
1749
1750 /* This function returns true if it is save to enable the irq window */
1751 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1752 {
1753 if (!is_guest_mode(&svm->vcpu))
1754 return true;
1755
1756 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1757 return true;
1758
1759 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1760 return false;
1761
1762 /*
1763 * if vmexit was already requested (by intercepted exception
1764 * for instance) do not overwrite it with "external interrupt"
1765 * vmexit.
1766 */
1767 if (svm->nested.exit_required)
1768 return false;
1769
1770 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1771 svm->vmcb->control.exit_info_1 = 0;
1772 svm->vmcb->control.exit_info_2 = 0;
1773
1774 if (svm->nested.intercept & 1ULL) {
1775 /*
1776 * The #vmexit can't be emulated here directly because this
1777 * code path runs with irqs and preemtion disabled. A
1778 * #vmexit emulation might sleep. Only signal request for
1779 * the #vmexit here.
1780 */
1781 svm->nested.exit_required = true;
1782 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1783 return false;
1784 }
1785
1786 return true;
1787 }
1788
1789 /* This function returns true if it is save to enable the nmi window */
1790 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1791 {
1792 if (!is_guest_mode(&svm->vcpu))
1793 return true;
1794
1795 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1796 return true;
1797
1798 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1799 svm->nested.exit_required = true;
1800
1801 return false;
1802 }
1803
1804 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1805 {
1806 struct page *page;
1807
1808 might_sleep();
1809
1810 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1811 if (is_error_page(page))
1812 goto error;
1813
1814 *_page = page;
1815
1816 return kmap(page);
1817
1818 error:
1819 kvm_release_page_clean(page);
1820 kvm_inject_gp(&svm->vcpu, 0);
1821
1822 return NULL;
1823 }
1824
1825 static void nested_svm_unmap(struct page *page)
1826 {
1827 kunmap(page);
1828 kvm_release_page_dirty(page);
1829 }
1830
1831 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1832 {
1833 unsigned port;
1834 u8 val, bit;
1835 u64 gpa;
1836
1837 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1838 return NESTED_EXIT_HOST;
1839
1840 port = svm->vmcb->control.exit_info_1 >> 16;
1841 gpa = svm->nested.vmcb_iopm + (port / 8);
1842 bit = port % 8;
1843 val = 0;
1844
1845 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1846 val &= (1 << bit);
1847
1848 return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1849 }
1850
1851 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1852 {
1853 u32 offset, msr, value;
1854 int write, mask;
1855
1856 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1857 return NESTED_EXIT_HOST;
1858
1859 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1860 offset = svm_msrpm_offset(msr);
1861 write = svm->vmcb->control.exit_info_1 & 1;
1862 mask = 1 << ((2 * (msr & 0xf)) + write);
1863
1864 if (offset == MSR_INVALID)
1865 return NESTED_EXIT_DONE;
1866
1867 /* Offset is in 32 bit units but need in 8 bit units */
1868 offset *= 4;
1869
1870 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1871 return NESTED_EXIT_DONE;
1872
1873 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1874 }
1875
1876 static int nested_svm_exit_special(struct vcpu_svm *svm)
1877 {
1878 u32 exit_code = svm->vmcb->control.exit_code;
1879
1880 switch (exit_code) {
1881 case SVM_EXIT_INTR:
1882 case SVM_EXIT_NMI:
1883 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1884 return NESTED_EXIT_HOST;
1885 case SVM_EXIT_NPF:
1886 /* For now we are always handling NPFs when using them */
1887 if (npt_enabled)
1888 return NESTED_EXIT_HOST;
1889 break;
1890 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1891 /* When we're shadowing, trap PFs, but not async PF */
1892 if (!npt_enabled && svm->apf_reason == 0)
1893 return NESTED_EXIT_HOST;
1894 break;
1895 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1896 nm_interception(svm);
1897 break;
1898 default:
1899 break;
1900 }
1901
1902 return NESTED_EXIT_CONTINUE;
1903 }
1904
1905 /*
1906 * If this function returns true, this #vmexit was already handled
1907 */
1908 static int nested_svm_intercept(struct vcpu_svm *svm)
1909 {
1910 u32 exit_code = svm->vmcb->control.exit_code;
1911 int vmexit = NESTED_EXIT_HOST;
1912
1913 switch (exit_code) {
1914 case SVM_EXIT_MSR:
1915 vmexit = nested_svm_exit_handled_msr(svm);
1916 break;
1917 case SVM_EXIT_IOIO:
1918 vmexit = nested_svm_intercept_ioio(svm);
1919 break;
1920 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
1921 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
1922 if (svm->nested.intercept_cr & bit)
1923 vmexit = NESTED_EXIT_DONE;
1924 break;
1925 }
1926 case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1927 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1928 if (svm->nested.intercept_dr_read & dr_bits)
1929 vmexit = NESTED_EXIT_DONE;
1930 break;
1931 }
1932 case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1933 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1934 if (svm->nested.intercept_dr_write & dr_bits)
1935 vmexit = NESTED_EXIT_DONE;
1936 break;
1937 }
1938 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1939 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1940 if (svm->nested.intercept_exceptions & excp_bits)
1941 vmexit = NESTED_EXIT_DONE;
1942 /* async page fault always cause vmexit */
1943 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
1944 svm->apf_reason != 0)
1945 vmexit = NESTED_EXIT_DONE;
1946 break;
1947 }
1948 case SVM_EXIT_ERR: {
1949 vmexit = NESTED_EXIT_DONE;
1950 break;
1951 }
1952 default: {
1953 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1954 if (svm->nested.intercept & exit_bits)
1955 vmexit = NESTED_EXIT_DONE;
1956 }
1957 }
1958
1959 return vmexit;
1960 }
1961
1962 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1963 {
1964 int vmexit;
1965
1966 vmexit = nested_svm_intercept(svm);
1967
1968 if (vmexit == NESTED_EXIT_DONE)
1969 nested_svm_vmexit(svm);
1970
1971 return vmexit;
1972 }
1973
1974 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1975 {
1976 struct vmcb_control_area *dst = &dst_vmcb->control;
1977 struct vmcb_control_area *from = &from_vmcb->control;
1978
1979 dst->intercept_cr = from->intercept_cr;
1980 dst->intercept_dr_read = from->intercept_dr_read;
1981 dst->intercept_dr_write = from->intercept_dr_write;
1982 dst->intercept_exceptions = from->intercept_exceptions;
1983 dst->intercept = from->intercept;
1984 dst->iopm_base_pa = from->iopm_base_pa;
1985 dst->msrpm_base_pa = from->msrpm_base_pa;
1986 dst->tsc_offset = from->tsc_offset;
1987 dst->asid = from->asid;
1988 dst->tlb_ctl = from->tlb_ctl;
1989 dst->int_ctl = from->int_ctl;
1990 dst->int_vector = from->int_vector;
1991 dst->int_state = from->int_state;
1992 dst->exit_code = from->exit_code;
1993 dst->exit_code_hi = from->exit_code_hi;
1994 dst->exit_info_1 = from->exit_info_1;
1995 dst->exit_info_2 = from->exit_info_2;
1996 dst->exit_int_info = from->exit_int_info;
1997 dst->exit_int_info_err = from->exit_int_info_err;
1998 dst->nested_ctl = from->nested_ctl;
1999 dst->event_inj = from->event_inj;
2000 dst->event_inj_err = from->event_inj_err;
2001 dst->nested_cr3 = from->nested_cr3;
2002 dst->lbr_ctl = from->lbr_ctl;
2003 }
2004
2005 static int nested_svm_vmexit(struct vcpu_svm *svm)
2006 {
2007 struct vmcb *nested_vmcb;
2008 struct vmcb *hsave = svm->nested.hsave;
2009 struct vmcb *vmcb = svm->vmcb;
2010 struct page *page;
2011
2012 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2013 vmcb->control.exit_info_1,
2014 vmcb->control.exit_info_2,
2015 vmcb->control.exit_int_info,
2016 vmcb->control.exit_int_info_err);
2017
2018 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2019 if (!nested_vmcb)
2020 return 1;
2021
2022 /* Exit Guest-Mode */
2023 leave_guest_mode(&svm->vcpu);
2024 svm->nested.vmcb = 0;
2025
2026 /* Give the current vmcb to the guest */
2027 disable_gif(svm);
2028
2029 nested_vmcb->save.es = vmcb->save.es;
2030 nested_vmcb->save.cs = vmcb->save.cs;
2031 nested_vmcb->save.ss = vmcb->save.ss;
2032 nested_vmcb->save.ds = vmcb->save.ds;
2033 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2034 nested_vmcb->save.idtr = vmcb->save.idtr;
2035 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2036 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2037 nested_vmcb->save.cr3 = svm->vcpu.arch.cr3;
2038 nested_vmcb->save.cr2 = vmcb->save.cr2;
2039 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2040 nested_vmcb->save.rflags = vmcb->save.rflags;
2041 nested_vmcb->save.rip = vmcb->save.rip;
2042 nested_vmcb->save.rsp = vmcb->save.rsp;
2043 nested_vmcb->save.rax = vmcb->save.rax;
2044 nested_vmcb->save.dr7 = vmcb->save.dr7;
2045 nested_vmcb->save.dr6 = vmcb->save.dr6;
2046 nested_vmcb->save.cpl = vmcb->save.cpl;
2047
2048 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2049 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2050 nested_vmcb->control.int_state = vmcb->control.int_state;
2051 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2052 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2053 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2054 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2055 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2056 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2057 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2058
2059 /*
2060 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2061 * to make sure that we do not lose injected events. So check event_inj
2062 * here and copy it to exit_int_info if it is valid.
2063 * Exit_int_info and event_inj can't be both valid because the case
2064 * below only happens on a VMRUN instruction intercept which has
2065 * no valid exit_int_info set.
2066 */
2067 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2068 struct vmcb_control_area *nc = &nested_vmcb->control;
2069
2070 nc->exit_int_info = vmcb->control.event_inj;
2071 nc->exit_int_info_err = vmcb->control.event_inj_err;
2072 }
2073
2074 nested_vmcb->control.tlb_ctl = 0;
2075 nested_vmcb->control.event_inj = 0;
2076 nested_vmcb->control.event_inj_err = 0;
2077
2078 /* We always set V_INTR_MASKING and remember the old value in hflags */
2079 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2080 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2081
2082 /* Restore the original control entries */
2083 copy_vmcb_control_area(vmcb, hsave);
2084
2085 kvm_clear_exception_queue(&svm->vcpu);
2086 kvm_clear_interrupt_queue(&svm->vcpu);
2087
2088 svm->nested.nested_cr3 = 0;
2089
2090 /* Restore selected save entries */
2091 svm->vmcb->save.es = hsave->save.es;
2092 svm->vmcb->save.cs = hsave->save.cs;
2093 svm->vmcb->save.ss = hsave->save.ss;
2094 svm->vmcb->save.ds = hsave->save.ds;
2095 svm->vmcb->save.gdtr = hsave->save.gdtr;
2096 svm->vmcb->save.idtr = hsave->save.idtr;
2097 svm->vmcb->save.rflags = hsave->save.rflags;
2098 svm_set_efer(&svm->vcpu, hsave->save.efer);
2099 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2100 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2101 if (npt_enabled) {
2102 svm->vmcb->save.cr3 = hsave->save.cr3;
2103 svm->vcpu.arch.cr3 = hsave->save.cr3;
2104 } else {
2105 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2106 }
2107 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2108 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2109 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2110 svm->vmcb->save.dr7 = 0;
2111 svm->vmcb->save.cpl = 0;
2112 svm->vmcb->control.exit_int_info = 0;
2113
2114 nested_svm_unmap(page);
2115
2116 nested_svm_uninit_mmu_context(&svm->vcpu);
2117 kvm_mmu_reset_context(&svm->vcpu);
2118 kvm_mmu_load(&svm->vcpu);
2119
2120 return 0;
2121 }
2122
2123 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2124 {
2125 /*
2126 * This function merges the msr permission bitmaps of kvm and the
2127 * nested vmcb. It is omptimized in that it only merges the parts where
2128 * the kvm msr permission bitmap may contain zero bits
2129 */
2130 int i;
2131
2132 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2133 return true;
2134
2135 for (i = 0; i < MSRPM_OFFSETS; i++) {
2136 u32 value, p;
2137 u64 offset;
2138
2139 if (msrpm_offsets[i] == 0xffffffff)
2140 break;
2141
2142 p = msrpm_offsets[i];
2143 offset = svm->nested.vmcb_msrpm + (p * 4);
2144
2145 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2146 return false;
2147
2148 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2149 }
2150
2151 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2152
2153 return true;
2154 }
2155
2156 static bool nested_vmcb_checks(struct vmcb *vmcb)
2157 {
2158 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2159 return false;
2160
2161 if (vmcb->control.asid == 0)
2162 return false;
2163
2164 if (vmcb->control.nested_ctl && !npt_enabled)
2165 return false;
2166
2167 return true;
2168 }
2169
2170 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2171 {
2172 struct vmcb *nested_vmcb;
2173 struct vmcb *hsave = svm->nested.hsave;
2174 struct vmcb *vmcb = svm->vmcb;
2175 struct page *page;
2176 u64 vmcb_gpa;
2177
2178 vmcb_gpa = svm->vmcb->save.rax;
2179
2180 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2181 if (!nested_vmcb)
2182 return false;
2183
2184 if (!nested_vmcb_checks(nested_vmcb)) {
2185 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2186 nested_vmcb->control.exit_code_hi = 0;
2187 nested_vmcb->control.exit_info_1 = 0;
2188 nested_vmcb->control.exit_info_2 = 0;
2189
2190 nested_svm_unmap(page);
2191
2192 return false;
2193 }
2194
2195 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2196 nested_vmcb->save.rip,
2197 nested_vmcb->control.int_ctl,
2198 nested_vmcb->control.event_inj,
2199 nested_vmcb->control.nested_ctl);
2200
2201 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2202 nested_vmcb->control.intercept_cr >> 16,
2203 nested_vmcb->control.intercept_exceptions,
2204 nested_vmcb->control.intercept);
2205
2206 /* Clear internal status */
2207 kvm_clear_exception_queue(&svm->vcpu);
2208 kvm_clear_interrupt_queue(&svm->vcpu);
2209
2210 /*
2211 * Save the old vmcb, so we don't need to pick what we save, but can
2212 * restore everything when a VMEXIT occurs
2213 */
2214 hsave->save.es = vmcb->save.es;
2215 hsave->save.cs = vmcb->save.cs;
2216 hsave->save.ss = vmcb->save.ss;
2217 hsave->save.ds = vmcb->save.ds;
2218 hsave->save.gdtr = vmcb->save.gdtr;
2219 hsave->save.idtr = vmcb->save.idtr;
2220 hsave->save.efer = svm->vcpu.arch.efer;
2221 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2222 hsave->save.cr4 = svm->vcpu.arch.cr4;
2223 hsave->save.rflags = vmcb->save.rflags;
2224 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2225 hsave->save.rsp = vmcb->save.rsp;
2226 hsave->save.rax = vmcb->save.rax;
2227 if (npt_enabled)
2228 hsave->save.cr3 = vmcb->save.cr3;
2229 else
2230 hsave->save.cr3 = svm->vcpu.arch.cr3;
2231
2232 copy_vmcb_control_area(hsave, vmcb);
2233
2234 if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2235 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2236 else
2237 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2238
2239 if (nested_vmcb->control.nested_ctl) {
2240 kvm_mmu_unload(&svm->vcpu);
2241 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2242 nested_svm_init_mmu_context(&svm->vcpu);
2243 }
2244
2245 /* Load the nested guest state */
2246 svm->vmcb->save.es = nested_vmcb->save.es;
2247 svm->vmcb->save.cs = nested_vmcb->save.cs;
2248 svm->vmcb->save.ss = nested_vmcb->save.ss;
2249 svm->vmcb->save.ds = nested_vmcb->save.ds;
2250 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2251 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2252 svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2253 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2254 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2255 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2256 if (npt_enabled) {
2257 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2258 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2259 } else
2260 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2261
2262 /* Guest paging mode is active - reset mmu */
2263 kvm_mmu_reset_context(&svm->vcpu);
2264
2265 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2266 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2267 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2268 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2269
2270 /* In case we don't even reach vcpu_run, the fields are not updated */
2271 svm->vmcb->save.rax = nested_vmcb->save.rax;
2272 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2273 svm->vmcb->save.rip = nested_vmcb->save.rip;
2274 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2275 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2276 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2277
2278 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2279 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2280
2281 /* cache intercepts */
2282 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2283 svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
2284 svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
2285 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2286 svm->nested.intercept = nested_vmcb->control.intercept;
2287
2288 force_new_asid(&svm->vcpu);
2289 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2290 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2291 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2292 else
2293 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2294
2295 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2296 /* We only want the cr8 intercept bits of the guest */
2297 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2298 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2299 }
2300
2301 /* We don't want to see VMMCALLs from a nested guest */
2302 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL);
2303
2304 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2305 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2306 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2307 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2308 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2309 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2310
2311 nested_svm_unmap(page);
2312
2313 /* Enter Guest-Mode */
2314 enter_guest_mode(&svm->vcpu);
2315
2316 /*
2317 * Merge guest and host intercepts - must be called with vcpu in
2318 * guest-mode to take affect here
2319 */
2320 recalc_intercepts(svm);
2321
2322 svm->nested.vmcb = vmcb_gpa;
2323
2324 enable_gif(svm);
2325
2326 return true;
2327 }
2328
2329 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2330 {
2331 to_vmcb->save.fs = from_vmcb->save.fs;
2332 to_vmcb->save.gs = from_vmcb->save.gs;
2333 to_vmcb->save.tr = from_vmcb->save.tr;
2334 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2335 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2336 to_vmcb->save.star = from_vmcb->save.star;
2337 to_vmcb->save.lstar = from_vmcb->save.lstar;
2338 to_vmcb->save.cstar = from_vmcb->save.cstar;
2339 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2340 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2341 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2342 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2343 }
2344
2345 static int vmload_interception(struct vcpu_svm *svm)
2346 {
2347 struct vmcb *nested_vmcb;
2348 struct page *page;
2349
2350 if (nested_svm_check_permissions(svm))
2351 return 1;
2352
2353 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2354 skip_emulated_instruction(&svm->vcpu);
2355
2356 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2357 if (!nested_vmcb)
2358 return 1;
2359
2360 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2361 nested_svm_unmap(page);
2362
2363 return 1;
2364 }
2365
2366 static int vmsave_interception(struct vcpu_svm *svm)
2367 {
2368 struct vmcb *nested_vmcb;
2369 struct page *page;
2370
2371 if (nested_svm_check_permissions(svm))
2372 return 1;
2373
2374 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2375 skip_emulated_instruction(&svm->vcpu);
2376
2377 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2378 if (!nested_vmcb)
2379 return 1;
2380
2381 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2382 nested_svm_unmap(page);
2383
2384 return 1;
2385 }
2386
2387 static int vmrun_interception(struct vcpu_svm *svm)
2388 {
2389 if (nested_svm_check_permissions(svm))
2390 return 1;
2391
2392 /* Save rip after vmrun instruction */
2393 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2394
2395 if (!nested_svm_vmrun(svm))
2396 return 1;
2397
2398 if (!nested_svm_vmrun_msrpm(svm))
2399 goto failed;
2400
2401 return 1;
2402
2403 failed:
2404
2405 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2406 svm->vmcb->control.exit_code_hi = 0;
2407 svm->vmcb->control.exit_info_1 = 0;
2408 svm->vmcb->control.exit_info_2 = 0;
2409
2410 nested_svm_vmexit(svm);
2411
2412 return 1;
2413 }
2414
2415 static int stgi_interception(struct vcpu_svm *svm)
2416 {
2417 if (nested_svm_check_permissions(svm))
2418 return 1;
2419
2420 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2421 skip_emulated_instruction(&svm->vcpu);
2422 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2423
2424 enable_gif(svm);
2425
2426 return 1;
2427 }
2428
2429 static int clgi_interception(struct vcpu_svm *svm)
2430 {
2431 if (nested_svm_check_permissions(svm))
2432 return 1;
2433
2434 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2435 skip_emulated_instruction(&svm->vcpu);
2436
2437 disable_gif(svm);
2438
2439 /* After a CLGI no interrupts should come */
2440 svm_clear_vintr(svm);
2441 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2442
2443 return 1;
2444 }
2445
2446 static int invlpga_interception(struct vcpu_svm *svm)
2447 {
2448 struct kvm_vcpu *vcpu = &svm->vcpu;
2449
2450 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2451 vcpu->arch.regs[VCPU_REGS_RAX]);
2452
2453 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2454 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2455
2456 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2457 skip_emulated_instruction(&svm->vcpu);
2458 return 1;
2459 }
2460
2461 static int skinit_interception(struct vcpu_svm *svm)
2462 {
2463 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2464
2465 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2466 return 1;
2467 }
2468
2469 static int invalid_op_interception(struct vcpu_svm *svm)
2470 {
2471 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2472 return 1;
2473 }
2474
2475 static int task_switch_interception(struct vcpu_svm *svm)
2476 {
2477 u16 tss_selector;
2478 int reason;
2479 int int_type = svm->vmcb->control.exit_int_info &
2480 SVM_EXITINTINFO_TYPE_MASK;
2481 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2482 uint32_t type =
2483 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2484 uint32_t idt_v =
2485 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2486 bool has_error_code = false;
2487 u32 error_code = 0;
2488
2489 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2490
2491 if (svm->vmcb->control.exit_info_2 &
2492 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2493 reason = TASK_SWITCH_IRET;
2494 else if (svm->vmcb->control.exit_info_2 &
2495 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2496 reason = TASK_SWITCH_JMP;
2497 else if (idt_v)
2498 reason = TASK_SWITCH_GATE;
2499 else
2500 reason = TASK_SWITCH_CALL;
2501
2502 if (reason == TASK_SWITCH_GATE) {
2503 switch (type) {
2504 case SVM_EXITINTINFO_TYPE_NMI:
2505 svm->vcpu.arch.nmi_injected = false;
2506 break;
2507 case SVM_EXITINTINFO_TYPE_EXEPT:
2508 if (svm->vmcb->control.exit_info_2 &
2509 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2510 has_error_code = true;
2511 error_code =
2512 (u32)svm->vmcb->control.exit_info_2;
2513 }
2514 kvm_clear_exception_queue(&svm->vcpu);
2515 break;
2516 case SVM_EXITINTINFO_TYPE_INTR:
2517 kvm_clear_interrupt_queue(&svm->vcpu);
2518 break;
2519 default:
2520 break;
2521 }
2522 }
2523
2524 if (reason != TASK_SWITCH_GATE ||
2525 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2526 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2527 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2528 skip_emulated_instruction(&svm->vcpu);
2529
2530 if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2531 has_error_code, error_code) == EMULATE_FAIL) {
2532 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2533 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2534 svm->vcpu.run->internal.ndata = 0;
2535 return 0;
2536 }
2537 return 1;
2538 }
2539
2540 static int cpuid_interception(struct vcpu_svm *svm)
2541 {
2542 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2543 kvm_emulate_cpuid(&svm->vcpu);
2544 return 1;
2545 }
2546
2547 static int iret_interception(struct vcpu_svm *svm)
2548 {
2549 ++svm->vcpu.stat.nmi_window_exits;
2550 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
2551 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2552 return 1;
2553 }
2554
2555 static int invlpg_interception(struct vcpu_svm *svm)
2556 {
2557 return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2558 }
2559
2560 static int emulate_on_interception(struct vcpu_svm *svm)
2561 {
2562 return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2563 }
2564
2565 static int cr0_write_interception(struct vcpu_svm *svm)
2566 {
2567 struct kvm_vcpu *vcpu = &svm->vcpu;
2568 int r;
2569
2570 r = emulate_instruction(&svm->vcpu, 0, 0, 0);
2571
2572 if (svm->nested.vmexit_rip) {
2573 kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
2574 kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
2575 kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
2576 svm->nested.vmexit_rip = 0;
2577 }
2578
2579 return r == EMULATE_DONE;
2580 }
2581
2582 static int cr8_write_interception(struct vcpu_svm *svm)
2583 {
2584 struct kvm_run *kvm_run = svm->vcpu.run;
2585
2586 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2587 /* instruction emulation calls kvm_set_cr8() */
2588 emulate_instruction(&svm->vcpu, 0, 0, 0);
2589 if (irqchip_in_kernel(svm->vcpu.kvm)) {
2590 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2591 return 1;
2592 }
2593 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2594 return 1;
2595 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2596 return 0;
2597 }
2598
2599 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2600 {
2601 struct vcpu_svm *svm = to_svm(vcpu);
2602
2603 switch (ecx) {
2604 case MSR_IA32_TSC: {
2605 u64 tsc_offset;
2606
2607 if (is_guest_mode(vcpu))
2608 tsc_offset = svm->nested.hsave->control.tsc_offset;
2609 else
2610 tsc_offset = svm->vmcb->control.tsc_offset;
2611
2612 *data = tsc_offset + native_read_tsc();
2613 break;
2614 }
2615 case MSR_STAR:
2616 *data = svm->vmcb->save.star;
2617 break;
2618 #ifdef CONFIG_X86_64
2619 case MSR_LSTAR:
2620 *data = svm->vmcb->save.lstar;
2621 break;
2622 case MSR_CSTAR:
2623 *data = svm->vmcb->save.cstar;
2624 break;
2625 case MSR_KERNEL_GS_BASE:
2626 *data = svm->vmcb->save.kernel_gs_base;
2627 break;
2628 case MSR_SYSCALL_MASK:
2629 *data = svm->vmcb->save.sfmask;
2630 break;
2631 #endif
2632 case MSR_IA32_SYSENTER_CS:
2633 *data = svm->vmcb->save.sysenter_cs;
2634 break;
2635 case MSR_IA32_SYSENTER_EIP:
2636 *data = svm->sysenter_eip;
2637 break;
2638 case MSR_IA32_SYSENTER_ESP:
2639 *data = svm->sysenter_esp;
2640 break;
2641 /*
2642 * Nobody will change the following 5 values in the VMCB so we can
2643 * safely return them on rdmsr. They will always be 0 until LBRV is
2644 * implemented.
2645 */
2646 case MSR_IA32_DEBUGCTLMSR:
2647 *data = svm->vmcb->save.dbgctl;
2648 break;
2649 case MSR_IA32_LASTBRANCHFROMIP:
2650 *data = svm->vmcb->save.br_from;
2651 break;
2652 case MSR_IA32_LASTBRANCHTOIP:
2653 *data = svm->vmcb->save.br_to;
2654 break;
2655 case MSR_IA32_LASTINTFROMIP:
2656 *data = svm->vmcb->save.last_excp_from;
2657 break;
2658 case MSR_IA32_LASTINTTOIP:
2659 *data = svm->vmcb->save.last_excp_to;
2660 break;
2661 case MSR_VM_HSAVE_PA:
2662 *data = svm->nested.hsave_msr;
2663 break;
2664 case MSR_VM_CR:
2665 *data = svm->nested.vm_cr_msr;
2666 break;
2667 case MSR_IA32_UCODE_REV:
2668 *data = 0x01000065;
2669 break;
2670 default:
2671 return kvm_get_msr_common(vcpu, ecx, data);
2672 }
2673 return 0;
2674 }
2675
2676 static int rdmsr_interception(struct vcpu_svm *svm)
2677 {
2678 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2679 u64 data;
2680
2681 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2682 trace_kvm_msr_read_ex(ecx);
2683 kvm_inject_gp(&svm->vcpu, 0);
2684 } else {
2685 trace_kvm_msr_read(ecx, data);
2686
2687 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2688 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2689 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2690 skip_emulated_instruction(&svm->vcpu);
2691 }
2692 return 1;
2693 }
2694
2695 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2696 {
2697 struct vcpu_svm *svm = to_svm(vcpu);
2698 int svm_dis, chg_mask;
2699
2700 if (data & ~SVM_VM_CR_VALID_MASK)
2701 return 1;
2702
2703 chg_mask = SVM_VM_CR_VALID_MASK;
2704
2705 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2706 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2707
2708 svm->nested.vm_cr_msr &= ~chg_mask;
2709 svm->nested.vm_cr_msr |= (data & chg_mask);
2710
2711 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2712
2713 /* check for svm_disable while efer.svme is set */
2714 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2715 return 1;
2716
2717 return 0;
2718 }
2719
2720 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2721 {
2722 struct vcpu_svm *svm = to_svm(vcpu);
2723
2724 switch (ecx) {
2725 case MSR_IA32_TSC:
2726 kvm_write_tsc(vcpu, data);
2727 break;
2728 case MSR_STAR:
2729 svm->vmcb->save.star = data;
2730 break;
2731 #ifdef CONFIG_X86_64
2732 case MSR_LSTAR:
2733 svm->vmcb->save.lstar = data;
2734 break;
2735 case MSR_CSTAR:
2736 svm->vmcb->save.cstar = data;
2737 break;
2738 case MSR_KERNEL_GS_BASE:
2739 svm->vmcb->save.kernel_gs_base = data;
2740 break;
2741 case MSR_SYSCALL_MASK:
2742 svm->vmcb->save.sfmask = data;
2743 break;
2744 #endif
2745 case MSR_IA32_SYSENTER_CS:
2746 svm->vmcb->save.sysenter_cs = data;
2747 break;
2748 case MSR_IA32_SYSENTER_EIP:
2749 svm->sysenter_eip = data;
2750 svm->vmcb->save.sysenter_eip = data;
2751 break;
2752 case MSR_IA32_SYSENTER_ESP:
2753 svm->sysenter_esp = data;
2754 svm->vmcb->save.sysenter_esp = data;
2755 break;
2756 case MSR_IA32_DEBUGCTLMSR:
2757 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2758 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2759 __func__, data);
2760 break;
2761 }
2762 if (data & DEBUGCTL_RESERVED_BITS)
2763 return 1;
2764
2765 svm->vmcb->save.dbgctl = data;
2766 if (data & (1ULL<<0))
2767 svm_enable_lbrv(svm);
2768 else
2769 svm_disable_lbrv(svm);
2770 break;
2771 case MSR_VM_HSAVE_PA:
2772 svm->nested.hsave_msr = data;
2773 break;
2774 case MSR_VM_CR:
2775 return svm_set_vm_cr(vcpu, data);
2776 case MSR_VM_IGNNE:
2777 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2778 break;
2779 default:
2780 return kvm_set_msr_common(vcpu, ecx, data);
2781 }
2782 return 0;
2783 }
2784
2785 static int wrmsr_interception(struct vcpu_svm *svm)
2786 {
2787 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2788 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2789 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2790
2791
2792 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2793 if (svm_set_msr(&svm->vcpu, ecx, data)) {
2794 trace_kvm_msr_write_ex(ecx, data);
2795 kvm_inject_gp(&svm->vcpu, 0);
2796 } else {
2797 trace_kvm_msr_write(ecx, data);
2798 skip_emulated_instruction(&svm->vcpu);
2799 }
2800 return 1;
2801 }
2802
2803 static int msr_interception(struct vcpu_svm *svm)
2804 {
2805 if (svm->vmcb->control.exit_info_1)
2806 return wrmsr_interception(svm);
2807 else
2808 return rdmsr_interception(svm);
2809 }
2810
2811 static int interrupt_window_interception(struct vcpu_svm *svm)
2812 {
2813 struct kvm_run *kvm_run = svm->vcpu.run;
2814
2815 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2816 svm_clear_vintr(svm);
2817 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2818 /*
2819 * If the user space waits to inject interrupts, exit as soon as
2820 * possible
2821 */
2822 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2823 kvm_run->request_interrupt_window &&
2824 !kvm_cpu_has_interrupt(&svm->vcpu)) {
2825 ++svm->vcpu.stat.irq_window_exits;
2826 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2827 return 0;
2828 }
2829
2830 return 1;
2831 }
2832
2833 static int pause_interception(struct vcpu_svm *svm)
2834 {
2835 kvm_vcpu_on_spin(&(svm->vcpu));
2836 return 1;
2837 }
2838
2839 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2840 [SVM_EXIT_READ_CR0] = emulate_on_interception,
2841 [SVM_EXIT_READ_CR3] = emulate_on_interception,
2842 [SVM_EXIT_READ_CR4] = emulate_on_interception,
2843 [SVM_EXIT_READ_CR8] = emulate_on_interception,
2844 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
2845 [SVM_EXIT_WRITE_CR0] = cr0_write_interception,
2846 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
2847 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
2848 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2849 [SVM_EXIT_READ_DR0] = emulate_on_interception,
2850 [SVM_EXIT_READ_DR1] = emulate_on_interception,
2851 [SVM_EXIT_READ_DR2] = emulate_on_interception,
2852 [SVM_EXIT_READ_DR3] = emulate_on_interception,
2853 [SVM_EXIT_READ_DR4] = emulate_on_interception,
2854 [SVM_EXIT_READ_DR5] = emulate_on_interception,
2855 [SVM_EXIT_READ_DR6] = emulate_on_interception,
2856 [SVM_EXIT_READ_DR7] = emulate_on_interception,
2857 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
2858 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
2859 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
2860 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
2861 [SVM_EXIT_WRITE_DR4] = emulate_on_interception,
2862 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
2863 [SVM_EXIT_WRITE_DR6] = emulate_on_interception,
2864 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
2865 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2866 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2867 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2868 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2869 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
2870 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2871 [SVM_EXIT_INTR] = intr_interception,
2872 [SVM_EXIT_NMI] = nmi_interception,
2873 [SVM_EXIT_SMI] = nop_on_interception,
2874 [SVM_EXIT_INIT] = nop_on_interception,
2875 [SVM_EXIT_VINTR] = interrupt_window_interception,
2876 [SVM_EXIT_CPUID] = cpuid_interception,
2877 [SVM_EXIT_IRET] = iret_interception,
2878 [SVM_EXIT_INVD] = emulate_on_interception,
2879 [SVM_EXIT_PAUSE] = pause_interception,
2880 [SVM_EXIT_HLT] = halt_interception,
2881 [SVM_EXIT_INVLPG] = invlpg_interception,
2882 [SVM_EXIT_INVLPGA] = invlpga_interception,
2883 [SVM_EXIT_IOIO] = io_interception,
2884 [SVM_EXIT_MSR] = msr_interception,
2885 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2886 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2887 [SVM_EXIT_VMRUN] = vmrun_interception,
2888 [SVM_EXIT_VMMCALL] = vmmcall_interception,
2889 [SVM_EXIT_VMLOAD] = vmload_interception,
2890 [SVM_EXIT_VMSAVE] = vmsave_interception,
2891 [SVM_EXIT_STGI] = stgi_interception,
2892 [SVM_EXIT_CLGI] = clgi_interception,
2893 [SVM_EXIT_SKINIT] = skinit_interception,
2894 [SVM_EXIT_WBINVD] = emulate_on_interception,
2895 [SVM_EXIT_MONITOR] = invalid_op_interception,
2896 [SVM_EXIT_MWAIT] = invalid_op_interception,
2897 [SVM_EXIT_NPF] = pf_interception,
2898 };
2899
2900 void dump_vmcb(struct kvm_vcpu *vcpu)
2901 {
2902 struct vcpu_svm *svm = to_svm(vcpu);
2903 struct vmcb_control_area *control = &svm->vmcb->control;
2904 struct vmcb_save_area *save = &svm->vmcb->save;
2905
2906 pr_err("VMCB Control Area:\n");
2907 pr_err("cr_read: %04x\n", control->intercept_cr & 0xffff);
2908 pr_err("cr_write: %04x\n", control->intercept_cr >> 16);
2909 pr_err("dr_read: %04x\n", control->intercept_dr_read);
2910 pr_err("dr_write: %04x\n", control->intercept_dr_write);
2911 pr_err("exceptions: %08x\n", control->intercept_exceptions);
2912 pr_err("intercepts: %016llx\n", control->intercept);
2913 pr_err("pause filter count: %d\n", control->pause_filter_count);
2914 pr_err("iopm_base_pa: %016llx\n", control->iopm_base_pa);
2915 pr_err("msrpm_base_pa: %016llx\n", control->msrpm_base_pa);
2916 pr_err("tsc_offset: %016llx\n", control->tsc_offset);
2917 pr_err("asid: %d\n", control->asid);
2918 pr_err("tlb_ctl: %d\n", control->tlb_ctl);
2919 pr_err("int_ctl: %08x\n", control->int_ctl);
2920 pr_err("int_vector: %08x\n", control->int_vector);
2921 pr_err("int_state: %08x\n", control->int_state);
2922 pr_err("exit_code: %08x\n", control->exit_code);
2923 pr_err("exit_info1: %016llx\n", control->exit_info_1);
2924 pr_err("exit_info2: %016llx\n", control->exit_info_2);
2925 pr_err("exit_int_info: %08x\n", control->exit_int_info);
2926 pr_err("exit_int_info_err: %08x\n", control->exit_int_info_err);
2927 pr_err("nested_ctl: %lld\n", control->nested_ctl);
2928 pr_err("nested_cr3: %016llx\n", control->nested_cr3);
2929 pr_err("event_inj: %08x\n", control->event_inj);
2930 pr_err("event_inj_err: %08x\n", control->event_inj_err);
2931 pr_err("lbr_ctl: %lld\n", control->lbr_ctl);
2932 pr_err("next_rip: %016llx\n", control->next_rip);
2933 pr_err("VMCB State Save Area:\n");
2934 pr_err("es: s: %04x a: %04x l: %08x b: %016llx\n",
2935 save->es.selector, save->es.attrib,
2936 save->es.limit, save->es.base);
2937 pr_err("cs: s: %04x a: %04x l: %08x b: %016llx\n",
2938 save->cs.selector, save->cs.attrib,
2939 save->cs.limit, save->cs.base);
2940 pr_err("ss: s: %04x a: %04x l: %08x b: %016llx\n",
2941 save->ss.selector, save->ss.attrib,
2942 save->ss.limit, save->ss.base);
2943 pr_err("ds: s: %04x a: %04x l: %08x b: %016llx\n",
2944 save->ds.selector, save->ds.attrib,
2945 save->ds.limit, save->ds.base);
2946 pr_err("fs: s: %04x a: %04x l: %08x b: %016llx\n",
2947 save->fs.selector, save->fs.attrib,
2948 save->fs.limit, save->fs.base);
2949 pr_err("gs: s: %04x a: %04x l: %08x b: %016llx\n",
2950 save->gs.selector, save->gs.attrib,
2951 save->gs.limit, save->gs.base);
2952 pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
2953 save->gdtr.selector, save->gdtr.attrib,
2954 save->gdtr.limit, save->gdtr.base);
2955 pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
2956 save->ldtr.selector, save->ldtr.attrib,
2957 save->ldtr.limit, save->ldtr.base);
2958 pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
2959 save->idtr.selector, save->idtr.attrib,
2960 save->idtr.limit, save->idtr.base);
2961 pr_err("tr: s: %04x a: %04x l: %08x b: %016llx\n",
2962 save->tr.selector, save->tr.attrib,
2963 save->tr.limit, save->tr.base);
2964 pr_err("cpl: %d efer: %016llx\n",
2965 save->cpl, save->efer);
2966 pr_err("cr0: %016llx cr2: %016llx\n",
2967 save->cr0, save->cr2);
2968 pr_err("cr3: %016llx cr4: %016llx\n",
2969 save->cr3, save->cr4);
2970 pr_err("dr6: %016llx dr7: %016llx\n",
2971 save->dr6, save->dr7);
2972 pr_err("rip: %016llx rflags: %016llx\n",
2973 save->rip, save->rflags);
2974 pr_err("rsp: %016llx rax: %016llx\n",
2975 save->rsp, save->rax);
2976 pr_err("star: %016llx lstar: %016llx\n",
2977 save->star, save->lstar);
2978 pr_err("cstar: %016llx sfmask: %016llx\n",
2979 save->cstar, save->sfmask);
2980 pr_err("kernel_gs_base: %016llx sysenter_cs: %016llx\n",
2981 save->kernel_gs_base, save->sysenter_cs);
2982 pr_err("sysenter_esp: %016llx sysenter_eip: %016llx\n",
2983 save->sysenter_esp, save->sysenter_eip);
2984 pr_err("gpat: %016llx dbgctl: %016llx\n",
2985 save->g_pat, save->dbgctl);
2986 pr_err("br_from: %016llx br_to: %016llx\n",
2987 save->br_from, save->br_to);
2988 pr_err("excp_from: %016llx excp_to: %016llx\n",
2989 save->last_excp_from, save->last_excp_to);
2990
2991 }
2992
2993 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
2994 {
2995 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
2996
2997 *info1 = control->exit_info_1;
2998 *info2 = control->exit_info_2;
2999 }
3000
3001 static int handle_exit(struct kvm_vcpu *vcpu)
3002 {
3003 struct vcpu_svm *svm = to_svm(vcpu);
3004 struct kvm_run *kvm_run = vcpu->run;
3005 u32 exit_code = svm->vmcb->control.exit_code;
3006
3007 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3008
3009 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3010 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3011 if (npt_enabled)
3012 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3013
3014 if (unlikely(svm->nested.exit_required)) {
3015 nested_svm_vmexit(svm);
3016 svm->nested.exit_required = false;
3017
3018 return 1;
3019 }
3020
3021 if (is_guest_mode(vcpu)) {
3022 int vmexit;
3023
3024 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3025 svm->vmcb->control.exit_info_1,
3026 svm->vmcb->control.exit_info_2,
3027 svm->vmcb->control.exit_int_info,
3028 svm->vmcb->control.exit_int_info_err);
3029
3030 vmexit = nested_svm_exit_special(svm);
3031
3032 if (vmexit == NESTED_EXIT_CONTINUE)
3033 vmexit = nested_svm_exit_handled(svm);
3034
3035 if (vmexit == NESTED_EXIT_DONE)
3036 return 1;
3037 }
3038
3039 svm_complete_interrupts(svm);
3040
3041 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3042 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3043 kvm_run->fail_entry.hardware_entry_failure_reason
3044 = svm->vmcb->control.exit_code;
3045 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3046 dump_vmcb(vcpu);
3047 return 0;
3048 }
3049
3050 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3051 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3052 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3053 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3054 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3055 "exit_code 0x%x\n",
3056 __func__, svm->vmcb->control.exit_int_info,
3057 exit_code);
3058
3059 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3060 || !svm_exit_handlers[exit_code]) {
3061 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3062 kvm_run->hw.hardware_exit_reason = exit_code;
3063 return 0;
3064 }
3065
3066 return svm_exit_handlers[exit_code](svm);
3067 }
3068
3069 static void reload_tss(struct kvm_vcpu *vcpu)
3070 {
3071 int cpu = raw_smp_processor_id();
3072
3073 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3074 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3075 load_TR_desc();
3076 }
3077
3078 static void pre_svm_run(struct vcpu_svm *svm)
3079 {
3080 int cpu = raw_smp_processor_id();
3081
3082 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3083
3084 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3085 /* FIXME: handle wraparound of asid_generation */
3086 if (svm->asid_generation != sd->asid_generation)
3087 new_asid(svm, sd);
3088 }
3089
3090 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3091 {
3092 struct vcpu_svm *svm = to_svm(vcpu);
3093
3094 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3095 vcpu->arch.hflags |= HF_NMI_MASK;
3096 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3097 ++vcpu->stat.nmi_injections;
3098 }
3099
3100 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3101 {
3102 struct vmcb_control_area *control;
3103
3104 control = &svm->vmcb->control;
3105 control->int_vector = irq;
3106 control->int_ctl &= ~V_INTR_PRIO_MASK;
3107 control->int_ctl |= V_IRQ_MASK |
3108 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3109 }
3110
3111 static void svm_set_irq(struct kvm_vcpu *vcpu)
3112 {
3113 struct vcpu_svm *svm = to_svm(vcpu);
3114
3115 BUG_ON(!(gif_set(svm)));
3116
3117 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3118 ++vcpu->stat.irq_injections;
3119
3120 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3121 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3122 }
3123
3124 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3125 {
3126 struct vcpu_svm *svm = to_svm(vcpu);
3127
3128 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3129 return;
3130
3131 if (irr == -1)
3132 return;
3133
3134 if (tpr >= irr)
3135 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3136 }
3137
3138 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3139 {
3140 struct vcpu_svm *svm = to_svm(vcpu);
3141 struct vmcb *vmcb = svm->vmcb;
3142 int ret;
3143 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3144 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3145 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3146
3147 return ret;
3148 }
3149
3150 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3151 {
3152 struct vcpu_svm *svm = to_svm(vcpu);
3153
3154 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3155 }
3156
3157 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3158 {
3159 struct vcpu_svm *svm = to_svm(vcpu);
3160
3161 if (masked) {
3162 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3163 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3164 } else {
3165 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3166 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
3167 }
3168 }
3169
3170 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3171 {
3172 struct vcpu_svm *svm = to_svm(vcpu);
3173 struct vmcb *vmcb = svm->vmcb;
3174 int ret;
3175
3176 if (!gif_set(svm) ||
3177 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3178 return 0;
3179
3180 ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3181
3182 if (is_guest_mode(vcpu))
3183 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3184
3185 return ret;
3186 }
3187
3188 static void enable_irq_window(struct kvm_vcpu *vcpu)
3189 {
3190 struct vcpu_svm *svm = to_svm(vcpu);
3191
3192 /*
3193 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3194 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3195 * get that intercept, this function will be called again though and
3196 * we'll get the vintr intercept.
3197 */
3198 if (gif_set(svm) && nested_svm_intr(svm)) {
3199 svm_set_vintr(svm);
3200 svm_inject_irq(svm, 0x0);
3201 }
3202 }
3203
3204 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3205 {
3206 struct vcpu_svm *svm = to_svm(vcpu);
3207
3208 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3209 == HF_NMI_MASK)
3210 return; /* IRET will cause a vm exit */
3211
3212 /*
3213 * Something prevents NMI from been injected. Single step over possible
3214 * problem (IRET or exception injection or interrupt shadow)
3215 */
3216 svm->nmi_singlestep = true;
3217 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3218 update_db_intercept(vcpu);
3219 }
3220
3221 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3222 {
3223 return 0;
3224 }
3225
3226 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3227 {
3228 force_new_asid(vcpu);
3229 }
3230
3231 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3232 {
3233 }
3234
3235 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3236 {
3237 struct vcpu_svm *svm = to_svm(vcpu);
3238
3239 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3240 return;
3241
3242 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3243 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3244 kvm_set_cr8(vcpu, cr8);
3245 }
3246 }
3247
3248 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3249 {
3250 struct vcpu_svm *svm = to_svm(vcpu);
3251 u64 cr8;
3252
3253 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3254 return;
3255
3256 cr8 = kvm_get_cr8(vcpu);
3257 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3258 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3259 }
3260
3261 static void svm_complete_interrupts(struct vcpu_svm *svm)
3262 {
3263 u8 vector;
3264 int type;
3265 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3266 unsigned int3_injected = svm->int3_injected;
3267
3268 svm->int3_injected = 0;
3269
3270 if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
3271 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3272 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3273 }
3274
3275 svm->vcpu.arch.nmi_injected = false;
3276 kvm_clear_exception_queue(&svm->vcpu);
3277 kvm_clear_interrupt_queue(&svm->vcpu);
3278
3279 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3280 return;
3281
3282 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3283
3284 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3285 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3286
3287 switch (type) {
3288 case SVM_EXITINTINFO_TYPE_NMI:
3289 svm->vcpu.arch.nmi_injected = true;
3290 break;
3291 case SVM_EXITINTINFO_TYPE_EXEPT:
3292 /*
3293 * In case of software exceptions, do not reinject the vector,
3294 * but re-execute the instruction instead. Rewind RIP first
3295 * if we emulated INT3 before.
3296 */
3297 if (kvm_exception_is_soft(vector)) {
3298 if (vector == BP_VECTOR && int3_injected &&
3299 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3300 kvm_rip_write(&svm->vcpu,
3301 kvm_rip_read(&svm->vcpu) -
3302 int3_injected);
3303 break;
3304 }
3305 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3306 u32 err = svm->vmcb->control.exit_int_info_err;
3307 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3308
3309 } else
3310 kvm_requeue_exception(&svm->vcpu, vector);
3311 break;
3312 case SVM_EXITINTINFO_TYPE_INTR:
3313 kvm_queue_interrupt(&svm->vcpu, vector, false);
3314 break;
3315 default:
3316 break;
3317 }
3318 }
3319
3320 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3321 {
3322 struct vcpu_svm *svm = to_svm(vcpu);
3323 struct vmcb_control_area *control = &svm->vmcb->control;
3324
3325 control->exit_int_info = control->event_inj;
3326 control->exit_int_info_err = control->event_inj_err;
3327 control->event_inj = 0;
3328 svm_complete_interrupts(svm);
3329 }
3330
3331 #ifdef CONFIG_X86_64
3332 #define R "r"
3333 #else
3334 #define R "e"
3335 #endif
3336
3337 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3338 {
3339 struct vcpu_svm *svm = to_svm(vcpu);
3340
3341 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3342 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3343 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3344
3345 /*
3346 * A vmexit emulation is required before the vcpu can be executed
3347 * again.
3348 */
3349 if (unlikely(svm->nested.exit_required))
3350 return;
3351
3352 pre_svm_run(svm);
3353
3354 sync_lapic_to_cr8(vcpu);
3355
3356 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3357
3358 clgi();
3359
3360 local_irq_enable();
3361
3362 asm volatile (
3363 "push %%"R"bp; \n\t"
3364 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3365 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3366 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3367 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3368 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3369 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3370 #ifdef CONFIG_X86_64
3371 "mov %c[r8](%[svm]), %%r8 \n\t"
3372 "mov %c[r9](%[svm]), %%r9 \n\t"
3373 "mov %c[r10](%[svm]), %%r10 \n\t"
3374 "mov %c[r11](%[svm]), %%r11 \n\t"
3375 "mov %c[r12](%[svm]), %%r12 \n\t"
3376 "mov %c[r13](%[svm]), %%r13 \n\t"
3377 "mov %c[r14](%[svm]), %%r14 \n\t"
3378 "mov %c[r15](%[svm]), %%r15 \n\t"
3379 #endif
3380
3381 /* Enter guest mode */
3382 "push %%"R"ax \n\t"
3383 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3384 __ex(SVM_VMLOAD) "\n\t"
3385 __ex(SVM_VMRUN) "\n\t"
3386 __ex(SVM_VMSAVE) "\n\t"
3387 "pop %%"R"ax \n\t"
3388
3389 /* Save guest registers, load host registers */
3390 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3391 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3392 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3393 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3394 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3395 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3396 #ifdef CONFIG_X86_64
3397 "mov %%r8, %c[r8](%[svm]) \n\t"
3398 "mov %%r9, %c[r9](%[svm]) \n\t"
3399 "mov %%r10, %c[r10](%[svm]) \n\t"
3400 "mov %%r11, %c[r11](%[svm]) \n\t"
3401 "mov %%r12, %c[r12](%[svm]) \n\t"
3402 "mov %%r13, %c[r13](%[svm]) \n\t"
3403 "mov %%r14, %c[r14](%[svm]) \n\t"
3404 "mov %%r15, %c[r15](%[svm]) \n\t"
3405 #endif
3406 "pop %%"R"bp"
3407 :
3408 : [svm]"a"(svm),
3409 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3410 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3411 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3412 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3413 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3414 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3415 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3416 #ifdef CONFIG_X86_64
3417 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3418 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3419 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3420 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3421 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3422 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3423 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3424 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3425 #endif
3426 : "cc", "memory"
3427 , R"bx", R"cx", R"dx", R"si", R"di"
3428 #ifdef CONFIG_X86_64
3429 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3430 #endif
3431 );
3432
3433 #ifdef CONFIG_X86_64
3434 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3435 #else
3436 loadsegment(fs, svm->host.fs);
3437 #endif
3438
3439 reload_tss(vcpu);
3440
3441 local_irq_disable();
3442
3443 stgi();
3444
3445 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3446 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3447 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3448 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3449
3450 sync_cr8_to_lapic(vcpu);
3451
3452 svm->next_rip = 0;
3453
3454 /* if exit due to PF check for async PF */
3455 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3456 svm->apf_reason = kvm_read_and_reset_pf_reason();
3457
3458 if (npt_enabled) {
3459 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3460 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3461 }
3462
3463 /*
3464 * We need to handle MC intercepts here before the vcpu has a chance to
3465 * change the physical cpu
3466 */
3467 if (unlikely(svm->vmcb->control.exit_code ==
3468 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3469 svm_handle_mce(svm);
3470 }
3471
3472 #undef R
3473
3474 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3475 {
3476 struct vcpu_svm *svm = to_svm(vcpu);
3477
3478 svm->vmcb->save.cr3 = root;
3479 force_new_asid(vcpu);
3480 }
3481
3482 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3483 {
3484 struct vcpu_svm *svm = to_svm(vcpu);
3485
3486 svm->vmcb->control.nested_cr3 = root;
3487
3488 /* Also sync guest cr3 here in case we live migrate */
3489 svm->vmcb->save.cr3 = vcpu->arch.cr3;
3490
3491 force_new_asid(vcpu);
3492 }
3493
3494 static int is_disabled(void)
3495 {
3496 u64 vm_cr;
3497
3498 rdmsrl(MSR_VM_CR, vm_cr);
3499 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3500 return 1;
3501
3502 return 0;
3503 }
3504
3505 static void
3506 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3507 {
3508 /*
3509 * Patch in the VMMCALL instruction:
3510 */
3511 hypercall[0] = 0x0f;
3512 hypercall[1] = 0x01;
3513 hypercall[2] = 0xd9;
3514 }
3515
3516 static void svm_check_processor_compat(void *rtn)
3517 {
3518 *(int *)rtn = 0;
3519 }
3520
3521 static bool svm_cpu_has_accelerated_tpr(void)
3522 {
3523 return false;
3524 }
3525
3526 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3527 {
3528 return 0;
3529 }
3530
3531 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3532 {
3533 }
3534
3535 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3536 {
3537 switch (func) {
3538 case 0x00000001:
3539 /* Mask out xsave bit as long as it is not supported by SVM */
3540 entry->ecx &= ~(bit(X86_FEATURE_XSAVE));
3541 break;
3542 case 0x80000001:
3543 if (nested)
3544 entry->ecx |= (1 << 2); /* Set SVM bit */
3545 break;
3546 case 0x8000000A:
3547 entry->eax = 1; /* SVM revision 1 */
3548 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3549 ASID emulation to nested SVM */
3550 entry->ecx = 0; /* Reserved */
3551 entry->edx = 0; /* Per default do not support any
3552 additional features */
3553
3554 /* Support next_rip if host supports it */
3555 if (boot_cpu_has(X86_FEATURE_NRIPS))
3556 entry->edx |= SVM_FEATURE_NRIP;
3557
3558 /* Support NPT for the guest if enabled */
3559 if (npt_enabled)
3560 entry->edx |= SVM_FEATURE_NPT;
3561
3562 break;
3563 }
3564 }
3565
3566 static const struct trace_print_flags svm_exit_reasons_str[] = {
3567 { SVM_EXIT_READ_CR0, "read_cr0" },
3568 { SVM_EXIT_READ_CR3, "read_cr3" },
3569 { SVM_EXIT_READ_CR4, "read_cr4" },
3570 { SVM_EXIT_READ_CR8, "read_cr8" },
3571 { SVM_EXIT_WRITE_CR0, "write_cr0" },
3572 { SVM_EXIT_WRITE_CR3, "write_cr3" },
3573 { SVM_EXIT_WRITE_CR4, "write_cr4" },
3574 { SVM_EXIT_WRITE_CR8, "write_cr8" },
3575 { SVM_EXIT_READ_DR0, "read_dr0" },
3576 { SVM_EXIT_READ_DR1, "read_dr1" },
3577 { SVM_EXIT_READ_DR2, "read_dr2" },
3578 { SVM_EXIT_READ_DR3, "read_dr3" },
3579 { SVM_EXIT_WRITE_DR0, "write_dr0" },
3580 { SVM_EXIT_WRITE_DR1, "write_dr1" },
3581 { SVM_EXIT_WRITE_DR2, "write_dr2" },
3582 { SVM_EXIT_WRITE_DR3, "write_dr3" },
3583 { SVM_EXIT_WRITE_DR5, "write_dr5" },
3584 { SVM_EXIT_WRITE_DR7, "write_dr7" },
3585 { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
3586 { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
3587 { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
3588 { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
3589 { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
3590 { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
3591 { SVM_EXIT_INTR, "interrupt" },
3592 { SVM_EXIT_NMI, "nmi" },
3593 { SVM_EXIT_SMI, "smi" },
3594 { SVM_EXIT_INIT, "init" },
3595 { SVM_EXIT_VINTR, "vintr" },
3596 { SVM_EXIT_CPUID, "cpuid" },
3597 { SVM_EXIT_INVD, "invd" },
3598 { SVM_EXIT_HLT, "hlt" },
3599 { SVM_EXIT_INVLPG, "invlpg" },
3600 { SVM_EXIT_INVLPGA, "invlpga" },
3601 { SVM_EXIT_IOIO, "io" },
3602 { SVM_EXIT_MSR, "msr" },
3603 { SVM_EXIT_TASK_SWITCH, "task_switch" },
3604 { SVM_EXIT_SHUTDOWN, "shutdown" },
3605 { SVM_EXIT_VMRUN, "vmrun" },
3606 { SVM_EXIT_VMMCALL, "hypercall" },
3607 { SVM_EXIT_VMLOAD, "vmload" },
3608 { SVM_EXIT_VMSAVE, "vmsave" },
3609 { SVM_EXIT_STGI, "stgi" },
3610 { SVM_EXIT_CLGI, "clgi" },
3611 { SVM_EXIT_SKINIT, "skinit" },
3612 { SVM_EXIT_WBINVD, "wbinvd" },
3613 { SVM_EXIT_MONITOR, "monitor" },
3614 { SVM_EXIT_MWAIT, "mwait" },
3615 { SVM_EXIT_NPF, "npf" },
3616 { -1, NULL }
3617 };
3618
3619 static int svm_get_lpage_level(void)
3620 {
3621 return PT_PDPE_LEVEL;
3622 }
3623
3624 static bool svm_rdtscp_supported(void)
3625 {
3626 return false;
3627 }
3628
3629 static bool svm_has_wbinvd_exit(void)
3630 {
3631 return true;
3632 }
3633
3634 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3635 {
3636 struct vcpu_svm *svm = to_svm(vcpu);
3637
3638 svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
3639 if (is_guest_mode(vcpu))
3640 svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
3641 update_cr0_intercept(svm);
3642 }
3643
3644 static struct kvm_x86_ops svm_x86_ops = {
3645 .cpu_has_kvm_support = has_svm,
3646 .disabled_by_bios = is_disabled,
3647 .hardware_setup = svm_hardware_setup,
3648 .hardware_unsetup = svm_hardware_unsetup,
3649 .check_processor_compatibility = svm_check_processor_compat,
3650 .hardware_enable = svm_hardware_enable,
3651 .hardware_disable = svm_hardware_disable,
3652 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3653
3654 .vcpu_create = svm_create_vcpu,
3655 .vcpu_free = svm_free_vcpu,
3656 .vcpu_reset = svm_vcpu_reset,
3657
3658 .prepare_guest_switch = svm_prepare_guest_switch,
3659 .vcpu_load = svm_vcpu_load,
3660 .vcpu_put = svm_vcpu_put,
3661
3662 .set_guest_debug = svm_guest_debug,
3663 .get_msr = svm_get_msr,
3664 .set_msr = svm_set_msr,
3665 .get_segment_base = svm_get_segment_base,
3666 .get_segment = svm_get_segment,
3667 .set_segment = svm_set_segment,
3668 .get_cpl = svm_get_cpl,
3669 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3670 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3671 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3672 .set_cr0 = svm_set_cr0,
3673 .set_cr3 = svm_set_cr3,
3674 .set_cr4 = svm_set_cr4,
3675 .set_efer = svm_set_efer,
3676 .get_idt = svm_get_idt,
3677 .set_idt = svm_set_idt,
3678 .get_gdt = svm_get_gdt,
3679 .set_gdt = svm_set_gdt,
3680 .set_dr7 = svm_set_dr7,
3681 .cache_reg = svm_cache_reg,
3682 .get_rflags = svm_get_rflags,
3683 .set_rflags = svm_set_rflags,
3684 .fpu_activate = svm_fpu_activate,
3685 .fpu_deactivate = svm_fpu_deactivate,
3686
3687 .tlb_flush = svm_flush_tlb,
3688
3689 .run = svm_vcpu_run,
3690 .handle_exit = handle_exit,
3691 .skip_emulated_instruction = skip_emulated_instruction,
3692 .set_interrupt_shadow = svm_set_interrupt_shadow,
3693 .get_interrupt_shadow = svm_get_interrupt_shadow,
3694 .patch_hypercall = svm_patch_hypercall,
3695 .set_irq = svm_set_irq,
3696 .set_nmi = svm_inject_nmi,
3697 .queue_exception = svm_queue_exception,
3698 .cancel_injection = svm_cancel_injection,
3699 .interrupt_allowed = svm_interrupt_allowed,
3700 .nmi_allowed = svm_nmi_allowed,
3701 .get_nmi_mask = svm_get_nmi_mask,
3702 .set_nmi_mask = svm_set_nmi_mask,
3703 .enable_nmi_window = enable_nmi_window,
3704 .enable_irq_window = enable_irq_window,
3705 .update_cr8_intercept = update_cr8_intercept,
3706
3707 .set_tss_addr = svm_set_tss_addr,
3708 .get_tdp_level = get_npt_level,
3709 .get_mt_mask = svm_get_mt_mask,
3710
3711 .get_exit_info = svm_get_exit_info,
3712 .exit_reasons_str = svm_exit_reasons_str,
3713
3714 .get_lpage_level = svm_get_lpage_level,
3715
3716 .cpuid_update = svm_cpuid_update,
3717
3718 .rdtscp_supported = svm_rdtscp_supported,
3719
3720 .set_supported_cpuid = svm_set_supported_cpuid,
3721
3722 .has_wbinvd_exit = svm_has_wbinvd_exit,
3723
3724 .write_tsc_offset = svm_write_tsc_offset,
3725 .adjust_tsc_offset = svm_adjust_tsc_offset,
3726
3727 .set_tdp_cr3 = set_tdp_cr3,
3728 };
3729
3730 static int __init svm_init(void)
3731 {
3732 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3733 __alignof__(struct vcpu_svm), THIS_MODULE);
3734 }
3735
3736 static void __exit svm_exit(void)
3737 {
3738 kvm_exit();
3739 }
3740
3741 module_init(svm_init)
3742 module_exit(svm_exit)
This page took 0.221237 seconds and 6 git commands to generate.