KVM: Handle async PF in a guest.
[deliverable/linux.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
35
36 #include <asm/virtext.h>
37 #include "trace.h"
38
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
46
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
49
50 #define SVM_FEATURE_NPT (1 << 0)
51 #define SVM_FEATURE_LBRV (1 << 1)
52 #define SVM_FEATURE_SVML (1 << 2)
53 #define SVM_FEATURE_NRIP (1 << 3)
54 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
55
56 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
57 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
58 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
59
60 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
61
62 static bool erratum_383_found __read_mostly;
63
64 static const u32 host_save_user_msrs[] = {
65 #ifdef CONFIG_X86_64
66 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
67 MSR_FS_BASE,
68 #endif
69 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
70 };
71
72 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
73
74 struct kvm_vcpu;
75
76 struct nested_state {
77 struct vmcb *hsave;
78 u64 hsave_msr;
79 u64 vm_cr_msr;
80 u64 vmcb;
81
82 /* These are the merged vectors */
83 u32 *msrpm;
84
85 /* gpa pointers to the real vectors */
86 u64 vmcb_msrpm;
87 u64 vmcb_iopm;
88
89 /* A VMEXIT is required but not yet emulated */
90 bool exit_required;
91
92 /*
93 * If we vmexit during an instruction emulation we need this to restore
94 * the l1 guest rip after the emulation
95 */
96 unsigned long vmexit_rip;
97 unsigned long vmexit_rsp;
98 unsigned long vmexit_rax;
99
100 /* cache for intercepts of the guest */
101 u16 intercept_cr_read;
102 u16 intercept_cr_write;
103 u16 intercept_dr_read;
104 u16 intercept_dr_write;
105 u32 intercept_exceptions;
106 u64 intercept;
107
108 /* Nested Paging related state */
109 u64 nested_cr3;
110 };
111
112 #define MSRPM_OFFSETS 16
113 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
114
115 struct vcpu_svm {
116 struct kvm_vcpu vcpu;
117 struct vmcb *vmcb;
118 unsigned long vmcb_pa;
119 struct svm_cpu_data *svm_data;
120 uint64_t asid_generation;
121 uint64_t sysenter_esp;
122 uint64_t sysenter_eip;
123
124 u64 next_rip;
125
126 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
127 u64 host_gs_base;
128
129 u32 *msrpm;
130
131 struct nested_state nested;
132
133 bool nmi_singlestep;
134
135 unsigned int3_injected;
136 unsigned long int3_rip;
137 u32 apf_reason;
138 };
139
140 #define MSR_INVALID 0xffffffffU
141
142 static struct svm_direct_access_msrs {
143 u32 index; /* Index of the MSR */
144 bool always; /* True if intercept is always on */
145 } direct_access_msrs[] = {
146 { .index = MSR_STAR, .always = true },
147 { .index = MSR_IA32_SYSENTER_CS, .always = true },
148 #ifdef CONFIG_X86_64
149 { .index = MSR_GS_BASE, .always = true },
150 { .index = MSR_FS_BASE, .always = true },
151 { .index = MSR_KERNEL_GS_BASE, .always = true },
152 { .index = MSR_LSTAR, .always = true },
153 { .index = MSR_CSTAR, .always = true },
154 { .index = MSR_SYSCALL_MASK, .always = true },
155 #endif
156 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
157 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
158 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
159 { .index = MSR_IA32_LASTINTTOIP, .always = false },
160 { .index = MSR_INVALID, .always = false },
161 };
162
163 /* enable NPT for AMD64 and X86 with PAE */
164 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
165 static bool npt_enabled = true;
166 #else
167 static bool npt_enabled;
168 #endif
169 static int npt = 1;
170
171 module_param(npt, int, S_IRUGO);
172
173 static int nested = 1;
174 module_param(nested, int, S_IRUGO);
175
176 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
177 static void svm_complete_interrupts(struct vcpu_svm *svm);
178
179 static int nested_svm_exit_handled(struct vcpu_svm *svm);
180 static int nested_svm_intercept(struct vcpu_svm *svm);
181 static int nested_svm_vmexit(struct vcpu_svm *svm);
182 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
183 bool has_error_code, u32 error_code);
184
185 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
186 {
187 return container_of(vcpu, struct vcpu_svm, vcpu);
188 }
189
190 static inline bool is_nested(struct vcpu_svm *svm)
191 {
192 return svm->nested.vmcb;
193 }
194
195 static inline void enable_gif(struct vcpu_svm *svm)
196 {
197 svm->vcpu.arch.hflags |= HF_GIF_MASK;
198 }
199
200 static inline void disable_gif(struct vcpu_svm *svm)
201 {
202 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
203 }
204
205 static inline bool gif_set(struct vcpu_svm *svm)
206 {
207 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
208 }
209
210 static unsigned long iopm_base;
211
212 struct kvm_ldttss_desc {
213 u16 limit0;
214 u16 base0;
215 unsigned base1:8, type:5, dpl:2, p:1;
216 unsigned limit1:4, zero0:3, g:1, base2:8;
217 u32 base3;
218 u32 zero1;
219 } __attribute__((packed));
220
221 struct svm_cpu_data {
222 int cpu;
223
224 u64 asid_generation;
225 u32 max_asid;
226 u32 next_asid;
227 struct kvm_ldttss_desc *tss_desc;
228
229 struct page *save_area;
230 };
231
232 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
233 static uint32_t svm_features;
234
235 struct svm_init_data {
236 int cpu;
237 int r;
238 };
239
240 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
241
242 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
243 #define MSRS_RANGE_SIZE 2048
244 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
245
246 static u32 svm_msrpm_offset(u32 msr)
247 {
248 u32 offset;
249 int i;
250
251 for (i = 0; i < NUM_MSR_MAPS; i++) {
252 if (msr < msrpm_ranges[i] ||
253 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
254 continue;
255
256 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
257 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
258
259 /* Now we have the u8 offset - but need the u32 offset */
260 return offset / 4;
261 }
262
263 /* MSR not in any range */
264 return MSR_INVALID;
265 }
266
267 #define MAX_INST_SIZE 15
268
269 static inline u32 svm_has(u32 feat)
270 {
271 return svm_features & feat;
272 }
273
274 static inline void clgi(void)
275 {
276 asm volatile (__ex(SVM_CLGI));
277 }
278
279 static inline void stgi(void)
280 {
281 asm volatile (__ex(SVM_STGI));
282 }
283
284 static inline void invlpga(unsigned long addr, u32 asid)
285 {
286 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
287 }
288
289 static inline void force_new_asid(struct kvm_vcpu *vcpu)
290 {
291 to_svm(vcpu)->asid_generation--;
292 }
293
294 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
295 {
296 force_new_asid(vcpu);
297 }
298
299 static int get_npt_level(void)
300 {
301 #ifdef CONFIG_X86_64
302 return PT64_ROOT_LEVEL;
303 #else
304 return PT32E_ROOT_LEVEL;
305 #endif
306 }
307
308 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
309 {
310 vcpu->arch.efer = efer;
311 if (!npt_enabled && !(efer & EFER_LMA))
312 efer &= ~EFER_LME;
313
314 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
315 }
316
317 static int is_external_interrupt(u32 info)
318 {
319 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
320 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
321 }
322
323 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
324 {
325 struct vcpu_svm *svm = to_svm(vcpu);
326 u32 ret = 0;
327
328 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
329 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
330 return ret & mask;
331 }
332
333 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
334 {
335 struct vcpu_svm *svm = to_svm(vcpu);
336
337 if (mask == 0)
338 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
339 else
340 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
341
342 }
343
344 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
345 {
346 struct vcpu_svm *svm = to_svm(vcpu);
347
348 if (svm->vmcb->control.next_rip != 0)
349 svm->next_rip = svm->vmcb->control.next_rip;
350
351 if (!svm->next_rip) {
352 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
353 EMULATE_DONE)
354 printk(KERN_DEBUG "%s: NOP\n", __func__);
355 return;
356 }
357 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
358 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
359 __func__, kvm_rip_read(vcpu), svm->next_rip);
360
361 kvm_rip_write(vcpu, svm->next_rip);
362 svm_set_interrupt_shadow(vcpu, 0);
363 }
364
365 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
366 bool has_error_code, u32 error_code,
367 bool reinject)
368 {
369 struct vcpu_svm *svm = to_svm(vcpu);
370
371 /*
372 * If we are within a nested VM we'd better #VMEXIT and let the guest
373 * handle the exception
374 */
375 if (!reinject &&
376 nested_svm_check_exception(svm, nr, has_error_code, error_code))
377 return;
378
379 if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
380 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
381
382 /*
383 * For guest debugging where we have to reinject #BP if some
384 * INT3 is guest-owned:
385 * Emulate nRIP by moving RIP forward. Will fail if injection
386 * raises a fault that is not intercepted. Still better than
387 * failing in all cases.
388 */
389 skip_emulated_instruction(&svm->vcpu);
390 rip = kvm_rip_read(&svm->vcpu);
391 svm->int3_rip = rip + svm->vmcb->save.cs.base;
392 svm->int3_injected = rip - old_rip;
393 }
394
395 svm->vmcb->control.event_inj = nr
396 | SVM_EVTINJ_VALID
397 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
398 | SVM_EVTINJ_TYPE_EXEPT;
399 svm->vmcb->control.event_inj_err = error_code;
400 }
401
402 static void svm_init_erratum_383(void)
403 {
404 u32 low, high;
405 int err;
406 u64 val;
407
408 if (!cpu_has_amd_erratum(amd_erratum_383))
409 return;
410
411 /* Use _safe variants to not break nested virtualization */
412 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
413 if (err)
414 return;
415
416 val |= (1ULL << 47);
417
418 low = lower_32_bits(val);
419 high = upper_32_bits(val);
420
421 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
422
423 erratum_383_found = true;
424 }
425
426 static int has_svm(void)
427 {
428 const char *msg;
429
430 if (!cpu_has_svm(&msg)) {
431 printk(KERN_INFO "has_svm: %s\n", msg);
432 return 0;
433 }
434
435 return 1;
436 }
437
438 static void svm_hardware_disable(void *garbage)
439 {
440 cpu_svm_disable();
441 }
442
443 static int svm_hardware_enable(void *garbage)
444 {
445
446 struct svm_cpu_data *sd;
447 uint64_t efer;
448 struct desc_ptr gdt_descr;
449 struct desc_struct *gdt;
450 int me = raw_smp_processor_id();
451
452 rdmsrl(MSR_EFER, efer);
453 if (efer & EFER_SVME)
454 return -EBUSY;
455
456 if (!has_svm()) {
457 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
458 me);
459 return -EINVAL;
460 }
461 sd = per_cpu(svm_data, me);
462
463 if (!sd) {
464 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
465 me);
466 return -EINVAL;
467 }
468
469 sd->asid_generation = 1;
470 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
471 sd->next_asid = sd->max_asid + 1;
472
473 native_store_gdt(&gdt_descr);
474 gdt = (struct desc_struct *)gdt_descr.address;
475 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
476
477 wrmsrl(MSR_EFER, efer | EFER_SVME);
478
479 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
480
481 svm_init_erratum_383();
482
483 return 0;
484 }
485
486 static void svm_cpu_uninit(int cpu)
487 {
488 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
489
490 if (!sd)
491 return;
492
493 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
494 __free_page(sd->save_area);
495 kfree(sd);
496 }
497
498 static int svm_cpu_init(int cpu)
499 {
500 struct svm_cpu_data *sd;
501 int r;
502
503 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
504 if (!sd)
505 return -ENOMEM;
506 sd->cpu = cpu;
507 sd->save_area = alloc_page(GFP_KERNEL);
508 r = -ENOMEM;
509 if (!sd->save_area)
510 goto err_1;
511
512 per_cpu(svm_data, cpu) = sd;
513
514 return 0;
515
516 err_1:
517 kfree(sd);
518 return r;
519
520 }
521
522 static bool valid_msr_intercept(u32 index)
523 {
524 int i;
525
526 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
527 if (direct_access_msrs[i].index == index)
528 return true;
529
530 return false;
531 }
532
533 static void set_msr_interception(u32 *msrpm, unsigned msr,
534 int read, int write)
535 {
536 u8 bit_read, bit_write;
537 unsigned long tmp;
538 u32 offset;
539
540 /*
541 * If this warning triggers extend the direct_access_msrs list at the
542 * beginning of the file
543 */
544 WARN_ON(!valid_msr_intercept(msr));
545
546 offset = svm_msrpm_offset(msr);
547 bit_read = 2 * (msr & 0x0f);
548 bit_write = 2 * (msr & 0x0f) + 1;
549 tmp = msrpm[offset];
550
551 BUG_ON(offset == MSR_INVALID);
552
553 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
554 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
555
556 msrpm[offset] = tmp;
557 }
558
559 static void svm_vcpu_init_msrpm(u32 *msrpm)
560 {
561 int i;
562
563 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
564
565 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
566 if (!direct_access_msrs[i].always)
567 continue;
568
569 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
570 }
571 }
572
573 static void add_msr_offset(u32 offset)
574 {
575 int i;
576
577 for (i = 0; i < MSRPM_OFFSETS; ++i) {
578
579 /* Offset already in list? */
580 if (msrpm_offsets[i] == offset)
581 return;
582
583 /* Slot used by another offset? */
584 if (msrpm_offsets[i] != MSR_INVALID)
585 continue;
586
587 /* Add offset to list */
588 msrpm_offsets[i] = offset;
589
590 return;
591 }
592
593 /*
594 * If this BUG triggers the msrpm_offsets table has an overflow. Just
595 * increase MSRPM_OFFSETS in this case.
596 */
597 BUG();
598 }
599
600 static void init_msrpm_offsets(void)
601 {
602 int i;
603
604 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
605
606 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
607 u32 offset;
608
609 offset = svm_msrpm_offset(direct_access_msrs[i].index);
610 BUG_ON(offset == MSR_INVALID);
611
612 add_msr_offset(offset);
613 }
614 }
615
616 static void svm_enable_lbrv(struct vcpu_svm *svm)
617 {
618 u32 *msrpm = svm->msrpm;
619
620 svm->vmcb->control.lbr_ctl = 1;
621 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
622 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
623 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
624 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
625 }
626
627 static void svm_disable_lbrv(struct vcpu_svm *svm)
628 {
629 u32 *msrpm = svm->msrpm;
630
631 svm->vmcb->control.lbr_ctl = 0;
632 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
633 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
634 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
635 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
636 }
637
638 static __init int svm_hardware_setup(void)
639 {
640 int cpu;
641 struct page *iopm_pages;
642 void *iopm_va;
643 int r;
644
645 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
646
647 if (!iopm_pages)
648 return -ENOMEM;
649
650 iopm_va = page_address(iopm_pages);
651 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
652 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
653
654 init_msrpm_offsets();
655
656 if (boot_cpu_has(X86_FEATURE_NX))
657 kvm_enable_efer_bits(EFER_NX);
658
659 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
660 kvm_enable_efer_bits(EFER_FFXSR);
661
662 if (nested) {
663 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
664 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
665 }
666
667 for_each_possible_cpu(cpu) {
668 r = svm_cpu_init(cpu);
669 if (r)
670 goto err;
671 }
672
673 svm_features = cpuid_edx(SVM_CPUID_FUNC);
674
675 if (!svm_has(SVM_FEATURE_NPT))
676 npt_enabled = false;
677
678 if (npt_enabled && !npt) {
679 printk(KERN_INFO "kvm: Nested Paging disabled\n");
680 npt_enabled = false;
681 }
682
683 if (npt_enabled) {
684 printk(KERN_INFO "kvm: Nested Paging enabled\n");
685 kvm_enable_tdp();
686 } else
687 kvm_disable_tdp();
688
689 return 0;
690
691 err:
692 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
693 iopm_base = 0;
694 return r;
695 }
696
697 static __exit void svm_hardware_unsetup(void)
698 {
699 int cpu;
700
701 for_each_possible_cpu(cpu)
702 svm_cpu_uninit(cpu);
703
704 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
705 iopm_base = 0;
706 }
707
708 static void init_seg(struct vmcb_seg *seg)
709 {
710 seg->selector = 0;
711 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
712 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
713 seg->limit = 0xffff;
714 seg->base = 0;
715 }
716
717 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
718 {
719 seg->selector = 0;
720 seg->attrib = SVM_SELECTOR_P_MASK | type;
721 seg->limit = 0xffff;
722 seg->base = 0;
723 }
724
725 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
726 {
727 struct vcpu_svm *svm = to_svm(vcpu);
728 u64 g_tsc_offset = 0;
729
730 if (is_nested(svm)) {
731 g_tsc_offset = svm->vmcb->control.tsc_offset -
732 svm->nested.hsave->control.tsc_offset;
733 svm->nested.hsave->control.tsc_offset = offset;
734 }
735
736 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
737 }
738
739 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
740 {
741 struct vcpu_svm *svm = to_svm(vcpu);
742
743 svm->vmcb->control.tsc_offset += adjustment;
744 if (is_nested(svm))
745 svm->nested.hsave->control.tsc_offset += adjustment;
746 }
747
748 static void init_vmcb(struct vcpu_svm *svm)
749 {
750 struct vmcb_control_area *control = &svm->vmcb->control;
751 struct vmcb_save_area *save = &svm->vmcb->save;
752
753 svm->vcpu.fpu_active = 1;
754
755 control->intercept_cr_read = INTERCEPT_CR0_MASK |
756 INTERCEPT_CR3_MASK |
757 INTERCEPT_CR4_MASK;
758
759 control->intercept_cr_write = INTERCEPT_CR0_MASK |
760 INTERCEPT_CR3_MASK |
761 INTERCEPT_CR4_MASK |
762 INTERCEPT_CR8_MASK;
763
764 control->intercept_dr_read = INTERCEPT_DR0_MASK |
765 INTERCEPT_DR1_MASK |
766 INTERCEPT_DR2_MASK |
767 INTERCEPT_DR3_MASK |
768 INTERCEPT_DR4_MASK |
769 INTERCEPT_DR5_MASK |
770 INTERCEPT_DR6_MASK |
771 INTERCEPT_DR7_MASK;
772
773 control->intercept_dr_write = INTERCEPT_DR0_MASK |
774 INTERCEPT_DR1_MASK |
775 INTERCEPT_DR2_MASK |
776 INTERCEPT_DR3_MASK |
777 INTERCEPT_DR4_MASK |
778 INTERCEPT_DR5_MASK |
779 INTERCEPT_DR6_MASK |
780 INTERCEPT_DR7_MASK;
781
782 control->intercept_exceptions = (1 << PF_VECTOR) |
783 (1 << UD_VECTOR) |
784 (1 << MC_VECTOR);
785
786
787 control->intercept = (1ULL << INTERCEPT_INTR) |
788 (1ULL << INTERCEPT_NMI) |
789 (1ULL << INTERCEPT_SMI) |
790 (1ULL << INTERCEPT_SELECTIVE_CR0) |
791 (1ULL << INTERCEPT_CPUID) |
792 (1ULL << INTERCEPT_INVD) |
793 (1ULL << INTERCEPT_HLT) |
794 (1ULL << INTERCEPT_INVLPG) |
795 (1ULL << INTERCEPT_INVLPGA) |
796 (1ULL << INTERCEPT_IOIO_PROT) |
797 (1ULL << INTERCEPT_MSR_PROT) |
798 (1ULL << INTERCEPT_TASK_SWITCH) |
799 (1ULL << INTERCEPT_SHUTDOWN) |
800 (1ULL << INTERCEPT_VMRUN) |
801 (1ULL << INTERCEPT_VMMCALL) |
802 (1ULL << INTERCEPT_VMLOAD) |
803 (1ULL << INTERCEPT_VMSAVE) |
804 (1ULL << INTERCEPT_STGI) |
805 (1ULL << INTERCEPT_CLGI) |
806 (1ULL << INTERCEPT_SKINIT) |
807 (1ULL << INTERCEPT_WBINVD) |
808 (1ULL << INTERCEPT_MONITOR) |
809 (1ULL << INTERCEPT_MWAIT);
810
811 control->iopm_base_pa = iopm_base;
812 control->msrpm_base_pa = __pa(svm->msrpm);
813 control->int_ctl = V_INTR_MASKING_MASK;
814
815 init_seg(&save->es);
816 init_seg(&save->ss);
817 init_seg(&save->ds);
818 init_seg(&save->fs);
819 init_seg(&save->gs);
820
821 save->cs.selector = 0xf000;
822 /* Executable/Readable Code Segment */
823 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
824 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
825 save->cs.limit = 0xffff;
826 /*
827 * cs.base should really be 0xffff0000, but vmx can't handle that, so
828 * be consistent with it.
829 *
830 * Replace when we have real mode working for vmx.
831 */
832 save->cs.base = 0xf0000;
833
834 save->gdtr.limit = 0xffff;
835 save->idtr.limit = 0xffff;
836
837 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
838 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
839
840 svm_set_efer(&svm->vcpu, 0);
841 save->dr6 = 0xffff0ff0;
842 save->dr7 = 0x400;
843 save->rflags = 2;
844 save->rip = 0x0000fff0;
845 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
846
847 /*
848 * This is the guest-visible cr0 value.
849 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
850 */
851 svm->vcpu.arch.cr0 = 0;
852 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
853
854 save->cr4 = X86_CR4_PAE;
855 /* rdx = ?? */
856
857 if (npt_enabled) {
858 /* Setup VMCB for Nested Paging */
859 control->nested_ctl = 1;
860 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
861 (1ULL << INTERCEPT_INVLPG));
862 control->intercept_exceptions &= ~(1 << PF_VECTOR);
863 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
864 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
865 save->g_pat = 0x0007040600070406ULL;
866 save->cr3 = 0;
867 save->cr4 = 0;
868 }
869 force_new_asid(&svm->vcpu);
870
871 svm->nested.vmcb = 0;
872 svm->vcpu.arch.hflags = 0;
873
874 if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
875 control->pause_filter_count = 3000;
876 control->intercept |= (1ULL << INTERCEPT_PAUSE);
877 }
878
879 enable_gif(svm);
880 }
881
882 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
883 {
884 struct vcpu_svm *svm = to_svm(vcpu);
885
886 init_vmcb(svm);
887
888 if (!kvm_vcpu_is_bsp(vcpu)) {
889 kvm_rip_write(vcpu, 0);
890 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
891 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
892 }
893 vcpu->arch.regs_avail = ~0;
894 vcpu->arch.regs_dirty = ~0;
895
896 return 0;
897 }
898
899 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
900 {
901 struct vcpu_svm *svm;
902 struct page *page;
903 struct page *msrpm_pages;
904 struct page *hsave_page;
905 struct page *nested_msrpm_pages;
906 int err;
907
908 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
909 if (!svm) {
910 err = -ENOMEM;
911 goto out;
912 }
913
914 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
915 if (err)
916 goto free_svm;
917
918 err = -ENOMEM;
919 page = alloc_page(GFP_KERNEL);
920 if (!page)
921 goto uninit;
922
923 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
924 if (!msrpm_pages)
925 goto free_page1;
926
927 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
928 if (!nested_msrpm_pages)
929 goto free_page2;
930
931 hsave_page = alloc_page(GFP_KERNEL);
932 if (!hsave_page)
933 goto free_page3;
934
935 svm->nested.hsave = page_address(hsave_page);
936
937 svm->msrpm = page_address(msrpm_pages);
938 svm_vcpu_init_msrpm(svm->msrpm);
939
940 svm->nested.msrpm = page_address(nested_msrpm_pages);
941 svm_vcpu_init_msrpm(svm->nested.msrpm);
942
943 svm->vmcb = page_address(page);
944 clear_page(svm->vmcb);
945 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
946 svm->asid_generation = 0;
947 init_vmcb(svm);
948 kvm_write_tsc(&svm->vcpu, 0);
949
950 err = fx_init(&svm->vcpu);
951 if (err)
952 goto free_page4;
953
954 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
955 if (kvm_vcpu_is_bsp(&svm->vcpu))
956 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
957
958 return &svm->vcpu;
959
960 free_page4:
961 __free_page(hsave_page);
962 free_page3:
963 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
964 free_page2:
965 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
966 free_page1:
967 __free_page(page);
968 uninit:
969 kvm_vcpu_uninit(&svm->vcpu);
970 free_svm:
971 kmem_cache_free(kvm_vcpu_cache, svm);
972 out:
973 return ERR_PTR(err);
974 }
975
976 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
977 {
978 struct vcpu_svm *svm = to_svm(vcpu);
979
980 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
981 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
982 __free_page(virt_to_page(svm->nested.hsave));
983 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
984 kvm_vcpu_uninit(vcpu);
985 kmem_cache_free(kvm_vcpu_cache, svm);
986 }
987
988 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
989 {
990 struct vcpu_svm *svm = to_svm(vcpu);
991 int i;
992
993 if (unlikely(cpu != vcpu->cpu)) {
994 svm->asid_generation = 0;
995 }
996
997 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
998 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
999 }
1000
1001 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1002 {
1003 struct vcpu_svm *svm = to_svm(vcpu);
1004 int i;
1005
1006 ++vcpu->stat.host_state_reload;
1007 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1008 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1009 }
1010
1011 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1012 {
1013 return to_svm(vcpu)->vmcb->save.rflags;
1014 }
1015
1016 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1017 {
1018 to_svm(vcpu)->vmcb->save.rflags = rflags;
1019 }
1020
1021 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1022 {
1023 switch (reg) {
1024 case VCPU_EXREG_PDPTR:
1025 BUG_ON(!npt_enabled);
1026 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
1027 break;
1028 default:
1029 BUG();
1030 }
1031 }
1032
1033 static void svm_set_vintr(struct vcpu_svm *svm)
1034 {
1035 svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
1036 }
1037
1038 static void svm_clear_vintr(struct vcpu_svm *svm)
1039 {
1040 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1041 }
1042
1043 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1044 {
1045 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1046
1047 switch (seg) {
1048 case VCPU_SREG_CS: return &save->cs;
1049 case VCPU_SREG_DS: return &save->ds;
1050 case VCPU_SREG_ES: return &save->es;
1051 case VCPU_SREG_FS: return &save->fs;
1052 case VCPU_SREG_GS: return &save->gs;
1053 case VCPU_SREG_SS: return &save->ss;
1054 case VCPU_SREG_TR: return &save->tr;
1055 case VCPU_SREG_LDTR: return &save->ldtr;
1056 }
1057 BUG();
1058 return NULL;
1059 }
1060
1061 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1062 {
1063 struct vmcb_seg *s = svm_seg(vcpu, seg);
1064
1065 return s->base;
1066 }
1067
1068 static void svm_get_segment(struct kvm_vcpu *vcpu,
1069 struct kvm_segment *var, int seg)
1070 {
1071 struct vmcb_seg *s = svm_seg(vcpu, seg);
1072
1073 var->base = s->base;
1074 var->limit = s->limit;
1075 var->selector = s->selector;
1076 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1077 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1078 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1079 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1080 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1081 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1082 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1083 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1084
1085 /*
1086 * AMD's VMCB does not have an explicit unusable field, so emulate it
1087 * for cross vendor migration purposes by "not present"
1088 */
1089 var->unusable = !var->present || (var->type == 0);
1090
1091 switch (seg) {
1092 case VCPU_SREG_CS:
1093 /*
1094 * SVM always stores 0 for the 'G' bit in the CS selector in
1095 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1096 * Intel's VMENTRY has a check on the 'G' bit.
1097 */
1098 var->g = s->limit > 0xfffff;
1099 break;
1100 case VCPU_SREG_TR:
1101 /*
1102 * Work around a bug where the busy flag in the tr selector
1103 * isn't exposed
1104 */
1105 var->type |= 0x2;
1106 break;
1107 case VCPU_SREG_DS:
1108 case VCPU_SREG_ES:
1109 case VCPU_SREG_FS:
1110 case VCPU_SREG_GS:
1111 /*
1112 * The accessed bit must always be set in the segment
1113 * descriptor cache, although it can be cleared in the
1114 * descriptor, the cached bit always remains at 1. Since
1115 * Intel has a check on this, set it here to support
1116 * cross-vendor migration.
1117 */
1118 if (!var->unusable)
1119 var->type |= 0x1;
1120 break;
1121 case VCPU_SREG_SS:
1122 /*
1123 * On AMD CPUs sometimes the DB bit in the segment
1124 * descriptor is left as 1, although the whole segment has
1125 * been made unusable. Clear it here to pass an Intel VMX
1126 * entry check when cross vendor migrating.
1127 */
1128 if (var->unusable)
1129 var->db = 0;
1130 break;
1131 }
1132 }
1133
1134 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1135 {
1136 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1137
1138 return save->cpl;
1139 }
1140
1141 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1142 {
1143 struct vcpu_svm *svm = to_svm(vcpu);
1144
1145 dt->size = svm->vmcb->save.idtr.limit;
1146 dt->address = svm->vmcb->save.idtr.base;
1147 }
1148
1149 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1150 {
1151 struct vcpu_svm *svm = to_svm(vcpu);
1152
1153 svm->vmcb->save.idtr.limit = dt->size;
1154 svm->vmcb->save.idtr.base = dt->address ;
1155 }
1156
1157 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1158 {
1159 struct vcpu_svm *svm = to_svm(vcpu);
1160
1161 dt->size = svm->vmcb->save.gdtr.limit;
1162 dt->address = svm->vmcb->save.gdtr.base;
1163 }
1164
1165 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1166 {
1167 struct vcpu_svm *svm = to_svm(vcpu);
1168
1169 svm->vmcb->save.gdtr.limit = dt->size;
1170 svm->vmcb->save.gdtr.base = dt->address ;
1171 }
1172
1173 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1174 {
1175 }
1176
1177 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1178 {
1179 }
1180
1181 static void update_cr0_intercept(struct vcpu_svm *svm)
1182 {
1183 struct vmcb *vmcb = svm->vmcb;
1184 ulong gcr0 = svm->vcpu.arch.cr0;
1185 u64 *hcr0 = &svm->vmcb->save.cr0;
1186
1187 if (!svm->vcpu.fpu_active)
1188 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1189 else
1190 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1191 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1192
1193
1194 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1195 vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
1196 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1197 if (is_nested(svm)) {
1198 struct vmcb *hsave = svm->nested.hsave;
1199
1200 hsave->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
1201 hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1202 vmcb->control.intercept_cr_read |= svm->nested.intercept_cr_read;
1203 vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
1204 }
1205 } else {
1206 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1207 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1208 if (is_nested(svm)) {
1209 struct vmcb *hsave = svm->nested.hsave;
1210
1211 hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1212 hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1213 }
1214 }
1215 }
1216
1217 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1218 {
1219 struct vcpu_svm *svm = to_svm(vcpu);
1220
1221 if (is_nested(svm)) {
1222 /*
1223 * We are here because we run in nested mode, the host kvm
1224 * intercepts cr0 writes but the l1 hypervisor does not.
1225 * But the L1 hypervisor may intercept selective cr0 writes.
1226 * This needs to be checked here.
1227 */
1228 unsigned long old, new;
1229
1230 /* Remove bits that would trigger a real cr0 write intercept */
1231 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1232 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1233
1234 if (old == new) {
1235 /* cr0 write with ts and mp unchanged */
1236 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1237 if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
1238 svm->nested.vmexit_rip = kvm_rip_read(vcpu);
1239 svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
1240 svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
1241 return;
1242 }
1243 }
1244 }
1245
1246 #ifdef CONFIG_X86_64
1247 if (vcpu->arch.efer & EFER_LME) {
1248 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1249 vcpu->arch.efer |= EFER_LMA;
1250 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1251 }
1252
1253 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1254 vcpu->arch.efer &= ~EFER_LMA;
1255 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1256 }
1257 }
1258 #endif
1259 vcpu->arch.cr0 = cr0;
1260
1261 if (!npt_enabled)
1262 cr0 |= X86_CR0_PG | X86_CR0_WP;
1263
1264 if (!vcpu->fpu_active)
1265 cr0 |= X86_CR0_TS;
1266 /*
1267 * re-enable caching here because the QEMU bios
1268 * does not do it - this results in some delay at
1269 * reboot
1270 */
1271 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1272 svm->vmcb->save.cr0 = cr0;
1273 update_cr0_intercept(svm);
1274 }
1275
1276 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1277 {
1278 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1279 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1280
1281 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1282 force_new_asid(vcpu);
1283
1284 vcpu->arch.cr4 = cr4;
1285 if (!npt_enabled)
1286 cr4 |= X86_CR4_PAE;
1287 cr4 |= host_cr4_mce;
1288 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1289 }
1290
1291 static void svm_set_segment(struct kvm_vcpu *vcpu,
1292 struct kvm_segment *var, int seg)
1293 {
1294 struct vcpu_svm *svm = to_svm(vcpu);
1295 struct vmcb_seg *s = svm_seg(vcpu, seg);
1296
1297 s->base = var->base;
1298 s->limit = var->limit;
1299 s->selector = var->selector;
1300 if (var->unusable)
1301 s->attrib = 0;
1302 else {
1303 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1304 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1305 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1306 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1307 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1308 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1309 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1310 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1311 }
1312 if (seg == VCPU_SREG_CS)
1313 svm->vmcb->save.cpl
1314 = (svm->vmcb->save.cs.attrib
1315 >> SVM_SELECTOR_DPL_SHIFT) & 3;
1316
1317 }
1318
1319 static void update_db_intercept(struct kvm_vcpu *vcpu)
1320 {
1321 struct vcpu_svm *svm = to_svm(vcpu);
1322
1323 svm->vmcb->control.intercept_exceptions &=
1324 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1325
1326 if (svm->nmi_singlestep)
1327 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1328
1329 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1330 if (vcpu->guest_debug &
1331 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1332 svm->vmcb->control.intercept_exceptions |=
1333 1 << DB_VECTOR;
1334 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1335 svm->vmcb->control.intercept_exceptions |=
1336 1 << BP_VECTOR;
1337 } else
1338 vcpu->guest_debug = 0;
1339 }
1340
1341 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1342 {
1343 struct vcpu_svm *svm = to_svm(vcpu);
1344
1345 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1346 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1347 else
1348 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1349
1350 update_db_intercept(vcpu);
1351 }
1352
1353 static void load_host_msrs(struct kvm_vcpu *vcpu)
1354 {
1355 #ifdef CONFIG_X86_64
1356 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1357 #endif
1358 }
1359
1360 static void save_host_msrs(struct kvm_vcpu *vcpu)
1361 {
1362 #ifdef CONFIG_X86_64
1363 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1364 #endif
1365 }
1366
1367 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1368 {
1369 if (sd->next_asid > sd->max_asid) {
1370 ++sd->asid_generation;
1371 sd->next_asid = 1;
1372 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1373 }
1374
1375 svm->asid_generation = sd->asid_generation;
1376 svm->vmcb->control.asid = sd->next_asid++;
1377 }
1378
1379 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1380 {
1381 struct vcpu_svm *svm = to_svm(vcpu);
1382
1383 svm->vmcb->save.dr7 = value;
1384 }
1385
1386 static int pf_interception(struct vcpu_svm *svm)
1387 {
1388 u64 fault_address = svm->vmcb->control.exit_info_2;
1389 u32 error_code;
1390 int r = 1;
1391
1392 switch (svm->apf_reason) {
1393 default:
1394 error_code = svm->vmcb->control.exit_info_1;
1395
1396 trace_kvm_page_fault(fault_address, error_code);
1397 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1398 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1399 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1400 break;
1401 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1402 svm->apf_reason = 0;
1403 local_irq_disable();
1404 kvm_async_pf_task_wait(fault_address);
1405 local_irq_enable();
1406 break;
1407 case KVM_PV_REASON_PAGE_READY:
1408 svm->apf_reason = 0;
1409 local_irq_disable();
1410 kvm_async_pf_task_wake(fault_address);
1411 local_irq_enable();
1412 break;
1413 }
1414 return r;
1415 }
1416
1417 static int db_interception(struct vcpu_svm *svm)
1418 {
1419 struct kvm_run *kvm_run = svm->vcpu.run;
1420
1421 if (!(svm->vcpu.guest_debug &
1422 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1423 !svm->nmi_singlestep) {
1424 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1425 return 1;
1426 }
1427
1428 if (svm->nmi_singlestep) {
1429 svm->nmi_singlestep = false;
1430 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1431 svm->vmcb->save.rflags &=
1432 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1433 update_db_intercept(&svm->vcpu);
1434 }
1435
1436 if (svm->vcpu.guest_debug &
1437 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1438 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1439 kvm_run->debug.arch.pc =
1440 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1441 kvm_run->debug.arch.exception = DB_VECTOR;
1442 return 0;
1443 }
1444
1445 return 1;
1446 }
1447
1448 static int bp_interception(struct vcpu_svm *svm)
1449 {
1450 struct kvm_run *kvm_run = svm->vcpu.run;
1451
1452 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1453 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1454 kvm_run->debug.arch.exception = BP_VECTOR;
1455 return 0;
1456 }
1457
1458 static int ud_interception(struct vcpu_svm *svm)
1459 {
1460 int er;
1461
1462 er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1463 if (er != EMULATE_DONE)
1464 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1465 return 1;
1466 }
1467
1468 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1469 {
1470 struct vcpu_svm *svm = to_svm(vcpu);
1471 u32 excp;
1472
1473 if (is_nested(svm)) {
1474 u32 h_excp, n_excp;
1475
1476 h_excp = svm->nested.hsave->control.intercept_exceptions;
1477 n_excp = svm->nested.intercept_exceptions;
1478 h_excp &= ~(1 << NM_VECTOR);
1479 excp = h_excp | n_excp;
1480 } else {
1481 excp = svm->vmcb->control.intercept_exceptions;
1482 excp &= ~(1 << NM_VECTOR);
1483 }
1484
1485 svm->vmcb->control.intercept_exceptions = excp;
1486
1487 svm->vcpu.fpu_active = 1;
1488 update_cr0_intercept(svm);
1489 }
1490
1491 static int nm_interception(struct vcpu_svm *svm)
1492 {
1493 svm_fpu_activate(&svm->vcpu);
1494 return 1;
1495 }
1496
1497 static bool is_erratum_383(void)
1498 {
1499 int err, i;
1500 u64 value;
1501
1502 if (!erratum_383_found)
1503 return false;
1504
1505 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1506 if (err)
1507 return false;
1508
1509 /* Bit 62 may or may not be set for this mce */
1510 value &= ~(1ULL << 62);
1511
1512 if (value != 0xb600000000010015ULL)
1513 return false;
1514
1515 /* Clear MCi_STATUS registers */
1516 for (i = 0; i < 6; ++i)
1517 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1518
1519 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1520 if (!err) {
1521 u32 low, high;
1522
1523 value &= ~(1ULL << 2);
1524 low = lower_32_bits(value);
1525 high = upper_32_bits(value);
1526
1527 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1528 }
1529
1530 /* Flush tlb to evict multi-match entries */
1531 __flush_tlb_all();
1532
1533 return true;
1534 }
1535
1536 static void svm_handle_mce(struct vcpu_svm *svm)
1537 {
1538 if (is_erratum_383()) {
1539 /*
1540 * Erratum 383 triggered. Guest state is corrupt so kill the
1541 * guest.
1542 */
1543 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1544
1545 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1546
1547 return;
1548 }
1549
1550 /*
1551 * On an #MC intercept the MCE handler is not called automatically in
1552 * the host. So do it by hand here.
1553 */
1554 asm volatile (
1555 "int $0x12\n");
1556 /* not sure if we ever come back to this point */
1557
1558 return;
1559 }
1560
1561 static int mc_interception(struct vcpu_svm *svm)
1562 {
1563 return 1;
1564 }
1565
1566 static int shutdown_interception(struct vcpu_svm *svm)
1567 {
1568 struct kvm_run *kvm_run = svm->vcpu.run;
1569
1570 /*
1571 * VMCB is undefined after a SHUTDOWN intercept
1572 * so reinitialize it.
1573 */
1574 clear_page(svm->vmcb);
1575 init_vmcb(svm);
1576
1577 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1578 return 0;
1579 }
1580
1581 static int io_interception(struct vcpu_svm *svm)
1582 {
1583 struct kvm_vcpu *vcpu = &svm->vcpu;
1584 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1585 int size, in, string;
1586 unsigned port;
1587
1588 ++svm->vcpu.stat.io_exits;
1589 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1590 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1591 if (string || in)
1592 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
1593
1594 port = io_info >> 16;
1595 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1596 svm->next_rip = svm->vmcb->control.exit_info_2;
1597 skip_emulated_instruction(&svm->vcpu);
1598
1599 return kvm_fast_pio_out(vcpu, size, port);
1600 }
1601
1602 static int nmi_interception(struct vcpu_svm *svm)
1603 {
1604 return 1;
1605 }
1606
1607 static int intr_interception(struct vcpu_svm *svm)
1608 {
1609 ++svm->vcpu.stat.irq_exits;
1610 return 1;
1611 }
1612
1613 static int nop_on_interception(struct vcpu_svm *svm)
1614 {
1615 return 1;
1616 }
1617
1618 static int halt_interception(struct vcpu_svm *svm)
1619 {
1620 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1621 skip_emulated_instruction(&svm->vcpu);
1622 return kvm_emulate_halt(&svm->vcpu);
1623 }
1624
1625 static int vmmcall_interception(struct vcpu_svm *svm)
1626 {
1627 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1628 skip_emulated_instruction(&svm->vcpu);
1629 kvm_emulate_hypercall(&svm->vcpu);
1630 return 1;
1631 }
1632
1633 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1634 {
1635 struct vcpu_svm *svm = to_svm(vcpu);
1636
1637 return svm->nested.nested_cr3;
1638 }
1639
1640 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1641 unsigned long root)
1642 {
1643 struct vcpu_svm *svm = to_svm(vcpu);
1644
1645 svm->vmcb->control.nested_cr3 = root;
1646 force_new_asid(vcpu);
1647 }
1648
1649 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu)
1650 {
1651 struct vcpu_svm *svm = to_svm(vcpu);
1652
1653 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1654 svm->vmcb->control.exit_code_hi = 0;
1655 svm->vmcb->control.exit_info_1 = vcpu->arch.fault.error_code;
1656 svm->vmcb->control.exit_info_2 = vcpu->arch.fault.address;
1657
1658 nested_svm_vmexit(svm);
1659 }
1660
1661 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1662 {
1663 int r;
1664
1665 r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1666
1667 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1668 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1669 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1670 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1671 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1672
1673 return r;
1674 }
1675
1676 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1677 {
1678 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1679 }
1680
1681 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1682 {
1683 if (!(svm->vcpu.arch.efer & EFER_SVME)
1684 || !is_paging(&svm->vcpu)) {
1685 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1686 return 1;
1687 }
1688
1689 if (svm->vmcb->save.cpl) {
1690 kvm_inject_gp(&svm->vcpu, 0);
1691 return 1;
1692 }
1693
1694 return 0;
1695 }
1696
1697 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1698 bool has_error_code, u32 error_code)
1699 {
1700 int vmexit;
1701
1702 if (!is_nested(svm))
1703 return 0;
1704
1705 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1706 svm->vmcb->control.exit_code_hi = 0;
1707 svm->vmcb->control.exit_info_1 = error_code;
1708 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1709
1710 vmexit = nested_svm_intercept(svm);
1711 if (vmexit == NESTED_EXIT_DONE)
1712 svm->nested.exit_required = true;
1713
1714 return vmexit;
1715 }
1716
1717 /* This function returns true if it is save to enable the irq window */
1718 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1719 {
1720 if (!is_nested(svm))
1721 return true;
1722
1723 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1724 return true;
1725
1726 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1727 return false;
1728
1729 /*
1730 * if vmexit was already requested (by intercepted exception
1731 * for instance) do not overwrite it with "external interrupt"
1732 * vmexit.
1733 */
1734 if (svm->nested.exit_required)
1735 return false;
1736
1737 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1738 svm->vmcb->control.exit_info_1 = 0;
1739 svm->vmcb->control.exit_info_2 = 0;
1740
1741 if (svm->nested.intercept & 1ULL) {
1742 /*
1743 * The #vmexit can't be emulated here directly because this
1744 * code path runs with irqs and preemtion disabled. A
1745 * #vmexit emulation might sleep. Only signal request for
1746 * the #vmexit here.
1747 */
1748 svm->nested.exit_required = true;
1749 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1750 return false;
1751 }
1752
1753 return true;
1754 }
1755
1756 /* This function returns true if it is save to enable the nmi window */
1757 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1758 {
1759 if (!is_nested(svm))
1760 return true;
1761
1762 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1763 return true;
1764
1765 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1766 svm->nested.exit_required = true;
1767
1768 return false;
1769 }
1770
1771 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1772 {
1773 struct page *page;
1774
1775 might_sleep();
1776
1777 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1778 if (is_error_page(page))
1779 goto error;
1780
1781 *_page = page;
1782
1783 return kmap(page);
1784
1785 error:
1786 kvm_release_page_clean(page);
1787 kvm_inject_gp(&svm->vcpu, 0);
1788
1789 return NULL;
1790 }
1791
1792 static void nested_svm_unmap(struct page *page)
1793 {
1794 kunmap(page);
1795 kvm_release_page_dirty(page);
1796 }
1797
1798 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1799 {
1800 unsigned port;
1801 u8 val, bit;
1802 u64 gpa;
1803
1804 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1805 return NESTED_EXIT_HOST;
1806
1807 port = svm->vmcb->control.exit_info_1 >> 16;
1808 gpa = svm->nested.vmcb_iopm + (port / 8);
1809 bit = port % 8;
1810 val = 0;
1811
1812 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1813 val &= (1 << bit);
1814
1815 return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1816 }
1817
1818 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1819 {
1820 u32 offset, msr, value;
1821 int write, mask;
1822
1823 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1824 return NESTED_EXIT_HOST;
1825
1826 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1827 offset = svm_msrpm_offset(msr);
1828 write = svm->vmcb->control.exit_info_1 & 1;
1829 mask = 1 << ((2 * (msr & 0xf)) + write);
1830
1831 if (offset == MSR_INVALID)
1832 return NESTED_EXIT_DONE;
1833
1834 /* Offset is in 32 bit units but need in 8 bit units */
1835 offset *= 4;
1836
1837 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1838 return NESTED_EXIT_DONE;
1839
1840 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1841 }
1842
1843 static int nested_svm_exit_special(struct vcpu_svm *svm)
1844 {
1845 u32 exit_code = svm->vmcb->control.exit_code;
1846
1847 switch (exit_code) {
1848 case SVM_EXIT_INTR:
1849 case SVM_EXIT_NMI:
1850 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1851 return NESTED_EXIT_HOST;
1852 case SVM_EXIT_NPF:
1853 /* For now we are always handling NPFs when using them */
1854 if (npt_enabled)
1855 return NESTED_EXIT_HOST;
1856 break;
1857 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1858 /* When we're shadowing, trap PFs, but not async PF */
1859 if (!npt_enabled && svm->apf_reason == 0)
1860 return NESTED_EXIT_HOST;
1861 break;
1862 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1863 nm_interception(svm);
1864 break;
1865 default:
1866 break;
1867 }
1868
1869 return NESTED_EXIT_CONTINUE;
1870 }
1871
1872 /*
1873 * If this function returns true, this #vmexit was already handled
1874 */
1875 static int nested_svm_intercept(struct vcpu_svm *svm)
1876 {
1877 u32 exit_code = svm->vmcb->control.exit_code;
1878 int vmexit = NESTED_EXIT_HOST;
1879
1880 switch (exit_code) {
1881 case SVM_EXIT_MSR:
1882 vmexit = nested_svm_exit_handled_msr(svm);
1883 break;
1884 case SVM_EXIT_IOIO:
1885 vmexit = nested_svm_intercept_ioio(svm);
1886 break;
1887 case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1888 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1889 if (svm->nested.intercept_cr_read & cr_bits)
1890 vmexit = NESTED_EXIT_DONE;
1891 break;
1892 }
1893 case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1894 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1895 if (svm->nested.intercept_cr_write & cr_bits)
1896 vmexit = NESTED_EXIT_DONE;
1897 break;
1898 }
1899 case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1900 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1901 if (svm->nested.intercept_dr_read & dr_bits)
1902 vmexit = NESTED_EXIT_DONE;
1903 break;
1904 }
1905 case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1906 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1907 if (svm->nested.intercept_dr_write & dr_bits)
1908 vmexit = NESTED_EXIT_DONE;
1909 break;
1910 }
1911 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1912 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1913 if (svm->nested.intercept_exceptions & excp_bits)
1914 vmexit = NESTED_EXIT_DONE;
1915 /* async page fault always cause vmexit */
1916 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
1917 svm->apf_reason != 0)
1918 vmexit = NESTED_EXIT_DONE;
1919 break;
1920 }
1921 case SVM_EXIT_ERR: {
1922 vmexit = NESTED_EXIT_DONE;
1923 break;
1924 }
1925 default: {
1926 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1927 if (svm->nested.intercept & exit_bits)
1928 vmexit = NESTED_EXIT_DONE;
1929 }
1930 }
1931
1932 return vmexit;
1933 }
1934
1935 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1936 {
1937 int vmexit;
1938
1939 vmexit = nested_svm_intercept(svm);
1940
1941 if (vmexit == NESTED_EXIT_DONE)
1942 nested_svm_vmexit(svm);
1943
1944 return vmexit;
1945 }
1946
1947 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1948 {
1949 struct vmcb_control_area *dst = &dst_vmcb->control;
1950 struct vmcb_control_area *from = &from_vmcb->control;
1951
1952 dst->intercept_cr_read = from->intercept_cr_read;
1953 dst->intercept_cr_write = from->intercept_cr_write;
1954 dst->intercept_dr_read = from->intercept_dr_read;
1955 dst->intercept_dr_write = from->intercept_dr_write;
1956 dst->intercept_exceptions = from->intercept_exceptions;
1957 dst->intercept = from->intercept;
1958 dst->iopm_base_pa = from->iopm_base_pa;
1959 dst->msrpm_base_pa = from->msrpm_base_pa;
1960 dst->tsc_offset = from->tsc_offset;
1961 dst->asid = from->asid;
1962 dst->tlb_ctl = from->tlb_ctl;
1963 dst->int_ctl = from->int_ctl;
1964 dst->int_vector = from->int_vector;
1965 dst->int_state = from->int_state;
1966 dst->exit_code = from->exit_code;
1967 dst->exit_code_hi = from->exit_code_hi;
1968 dst->exit_info_1 = from->exit_info_1;
1969 dst->exit_info_2 = from->exit_info_2;
1970 dst->exit_int_info = from->exit_int_info;
1971 dst->exit_int_info_err = from->exit_int_info_err;
1972 dst->nested_ctl = from->nested_ctl;
1973 dst->event_inj = from->event_inj;
1974 dst->event_inj_err = from->event_inj_err;
1975 dst->nested_cr3 = from->nested_cr3;
1976 dst->lbr_ctl = from->lbr_ctl;
1977 }
1978
1979 static int nested_svm_vmexit(struct vcpu_svm *svm)
1980 {
1981 struct vmcb *nested_vmcb;
1982 struct vmcb *hsave = svm->nested.hsave;
1983 struct vmcb *vmcb = svm->vmcb;
1984 struct page *page;
1985
1986 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1987 vmcb->control.exit_info_1,
1988 vmcb->control.exit_info_2,
1989 vmcb->control.exit_int_info,
1990 vmcb->control.exit_int_info_err);
1991
1992 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
1993 if (!nested_vmcb)
1994 return 1;
1995
1996 /* Exit nested SVM mode */
1997 svm->nested.vmcb = 0;
1998
1999 /* Give the current vmcb to the guest */
2000 disable_gif(svm);
2001
2002 nested_vmcb->save.es = vmcb->save.es;
2003 nested_vmcb->save.cs = vmcb->save.cs;
2004 nested_vmcb->save.ss = vmcb->save.ss;
2005 nested_vmcb->save.ds = vmcb->save.ds;
2006 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2007 nested_vmcb->save.idtr = vmcb->save.idtr;
2008 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2009 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2010 nested_vmcb->save.cr3 = svm->vcpu.arch.cr3;
2011 nested_vmcb->save.cr2 = vmcb->save.cr2;
2012 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2013 nested_vmcb->save.rflags = vmcb->save.rflags;
2014 nested_vmcb->save.rip = vmcb->save.rip;
2015 nested_vmcb->save.rsp = vmcb->save.rsp;
2016 nested_vmcb->save.rax = vmcb->save.rax;
2017 nested_vmcb->save.dr7 = vmcb->save.dr7;
2018 nested_vmcb->save.dr6 = vmcb->save.dr6;
2019 nested_vmcb->save.cpl = vmcb->save.cpl;
2020
2021 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2022 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2023 nested_vmcb->control.int_state = vmcb->control.int_state;
2024 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2025 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2026 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2027 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2028 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2029 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2030 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2031
2032 /*
2033 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2034 * to make sure that we do not lose injected events. So check event_inj
2035 * here and copy it to exit_int_info if it is valid.
2036 * Exit_int_info and event_inj can't be both valid because the case
2037 * below only happens on a VMRUN instruction intercept which has
2038 * no valid exit_int_info set.
2039 */
2040 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2041 struct vmcb_control_area *nc = &nested_vmcb->control;
2042
2043 nc->exit_int_info = vmcb->control.event_inj;
2044 nc->exit_int_info_err = vmcb->control.event_inj_err;
2045 }
2046
2047 nested_vmcb->control.tlb_ctl = 0;
2048 nested_vmcb->control.event_inj = 0;
2049 nested_vmcb->control.event_inj_err = 0;
2050
2051 /* We always set V_INTR_MASKING and remember the old value in hflags */
2052 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2053 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2054
2055 /* Restore the original control entries */
2056 copy_vmcb_control_area(vmcb, hsave);
2057
2058 kvm_clear_exception_queue(&svm->vcpu);
2059 kvm_clear_interrupt_queue(&svm->vcpu);
2060
2061 svm->nested.nested_cr3 = 0;
2062
2063 /* Restore selected save entries */
2064 svm->vmcb->save.es = hsave->save.es;
2065 svm->vmcb->save.cs = hsave->save.cs;
2066 svm->vmcb->save.ss = hsave->save.ss;
2067 svm->vmcb->save.ds = hsave->save.ds;
2068 svm->vmcb->save.gdtr = hsave->save.gdtr;
2069 svm->vmcb->save.idtr = hsave->save.idtr;
2070 svm->vmcb->save.rflags = hsave->save.rflags;
2071 svm_set_efer(&svm->vcpu, hsave->save.efer);
2072 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2073 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2074 if (npt_enabled) {
2075 svm->vmcb->save.cr3 = hsave->save.cr3;
2076 svm->vcpu.arch.cr3 = hsave->save.cr3;
2077 } else {
2078 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2079 }
2080 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2081 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2082 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2083 svm->vmcb->save.dr7 = 0;
2084 svm->vmcb->save.cpl = 0;
2085 svm->vmcb->control.exit_int_info = 0;
2086
2087 nested_svm_unmap(page);
2088
2089 nested_svm_uninit_mmu_context(&svm->vcpu);
2090 kvm_mmu_reset_context(&svm->vcpu);
2091 kvm_mmu_load(&svm->vcpu);
2092
2093 return 0;
2094 }
2095
2096 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2097 {
2098 /*
2099 * This function merges the msr permission bitmaps of kvm and the
2100 * nested vmcb. It is omptimized in that it only merges the parts where
2101 * the kvm msr permission bitmap may contain zero bits
2102 */
2103 int i;
2104
2105 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2106 return true;
2107
2108 for (i = 0; i < MSRPM_OFFSETS; i++) {
2109 u32 value, p;
2110 u64 offset;
2111
2112 if (msrpm_offsets[i] == 0xffffffff)
2113 break;
2114
2115 p = msrpm_offsets[i];
2116 offset = svm->nested.vmcb_msrpm + (p * 4);
2117
2118 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2119 return false;
2120
2121 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2122 }
2123
2124 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2125
2126 return true;
2127 }
2128
2129 static bool nested_vmcb_checks(struct vmcb *vmcb)
2130 {
2131 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2132 return false;
2133
2134 if (vmcb->control.asid == 0)
2135 return false;
2136
2137 if (vmcb->control.nested_ctl && !npt_enabled)
2138 return false;
2139
2140 return true;
2141 }
2142
2143 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2144 {
2145 struct vmcb *nested_vmcb;
2146 struct vmcb *hsave = svm->nested.hsave;
2147 struct vmcb *vmcb = svm->vmcb;
2148 struct page *page;
2149 u64 vmcb_gpa;
2150
2151 vmcb_gpa = svm->vmcb->save.rax;
2152
2153 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2154 if (!nested_vmcb)
2155 return false;
2156
2157 if (!nested_vmcb_checks(nested_vmcb)) {
2158 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2159 nested_vmcb->control.exit_code_hi = 0;
2160 nested_vmcb->control.exit_info_1 = 0;
2161 nested_vmcb->control.exit_info_2 = 0;
2162
2163 nested_svm_unmap(page);
2164
2165 return false;
2166 }
2167
2168 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2169 nested_vmcb->save.rip,
2170 nested_vmcb->control.int_ctl,
2171 nested_vmcb->control.event_inj,
2172 nested_vmcb->control.nested_ctl);
2173
2174 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
2175 nested_vmcb->control.intercept_cr_write,
2176 nested_vmcb->control.intercept_exceptions,
2177 nested_vmcb->control.intercept);
2178
2179 /* Clear internal status */
2180 kvm_clear_exception_queue(&svm->vcpu);
2181 kvm_clear_interrupt_queue(&svm->vcpu);
2182
2183 /*
2184 * Save the old vmcb, so we don't need to pick what we save, but can
2185 * restore everything when a VMEXIT occurs
2186 */
2187 hsave->save.es = vmcb->save.es;
2188 hsave->save.cs = vmcb->save.cs;
2189 hsave->save.ss = vmcb->save.ss;
2190 hsave->save.ds = vmcb->save.ds;
2191 hsave->save.gdtr = vmcb->save.gdtr;
2192 hsave->save.idtr = vmcb->save.idtr;
2193 hsave->save.efer = svm->vcpu.arch.efer;
2194 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2195 hsave->save.cr4 = svm->vcpu.arch.cr4;
2196 hsave->save.rflags = vmcb->save.rflags;
2197 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2198 hsave->save.rsp = vmcb->save.rsp;
2199 hsave->save.rax = vmcb->save.rax;
2200 if (npt_enabled)
2201 hsave->save.cr3 = vmcb->save.cr3;
2202 else
2203 hsave->save.cr3 = svm->vcpu.arch.cr3;
2204
2205 copy_vmcb_control_area(hsave, vmcb);
2206
2207 if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2208 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2209 else
2210 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2211
2212 if (nested_vmcb->control.nested_ctl) {
2213 kvm_mmu_unload(&svm->vcpu);
2214 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2215 nested_svm_init_mmu_context(&svm->vcpu);
2216 }
2217
2218 /* Load the nested guest state */
2219 svm->vmcb->save.es = nested_vmcb->save.es;
2220 svm->vmcb->save.cs = nested_vmcb->save.cs;
2221 svm->vmcb->save.ss = nested_vmcb->save.ss;
2222 svm->vmcb->save.ds = nested_vmcb->save.ds;
2223 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2224 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2225 svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2226 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2227 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2228 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2229 if (npt_enabled) {
2230 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2231 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2232 } else
2233 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2234
2235 /* Guest paging mode is active - reset mmu */
2236 kvm_mmu_reset_context(&svm->vcpu);
2237
2238 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2239 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2240 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2241 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2242
2243 /* In case we don't even reach vcpu_run, the fields are not updated */
2244 svm->vmcb->save.rax = nested_vmcb->save.rax;
2245 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2246 svm->vmcb->save.rip = nested_vmcb->save.rip;
2247 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2248 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2249 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2250
2251 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2252 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2253
2254 /* cache intercepts */
2255 svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
2256 svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
2257 svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
2258 svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
2259 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2260 svm->nested.intercept = nested_vmcb->control.intercept;
2261
2262 force_new_asid(&svm->vcpu);
2263 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2264 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2265 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2266 else
2267 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2268
2269 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2270 /* We only want the cr8 intercept bits of the guest */
2271 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
2272 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2273 }
2274
2275 /* We don't want to see VMMCALLs from a nested guest */
2276 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL);
2277
2278 /*
2279 * We don't want a nested guest to be more powerful than the guest, so
2280 * all intercepts are ORed
2281 */
2282 svm->vmcb->control.intercept_cr_read |=
2283 nested_vmcb->control.intercept_cr_read;
2284 svm->vmcb->control.intercept_cr_write |=
2285 nested_vmcb->control.intercept_cr_write;
2286 svm->vmcb->control.intercept_dr_read |=
2287 nested_vmcb->control.intercept_dr_read;
2288 svm->vmcb->control.intercept_dr_write |=
2289 nested_vmcb->control.intercept_dr_write;
2290 svm->vmcb->control.intercept_exceptions |=
2291 nested_vmcb->control.intercept_exceptions;
2292
2293 svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
2294
2295 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2296 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2297 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2298 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2299 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2300 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2301
2302 nested_svm_unmap(page);
2303
2304 /* nested_vmcb is our indicator if nested SVM is activated */
2305 svm->nested.vmcb = vmcb_gpa;
2306
2307 enable_gif(svm);
2308
2309 return true;
2310 }
2311
2312 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2313 {
2314 to_vmcb->save.fs = from_vmcb->save.fs;
2315 to_vmcb->save.gs = from_vmcb->save.gs;
2316 to_vmcb->save.tr = from_vmcb->save.tr;
2317 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2318 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2319 to_vmcb->save.star = from_vmcb->save.star;
2320 to_vmcb->save.lstar = from_vmcb->save.lstar;
2321 to_vmcb->save.cstar = from_vmcb->save.cstar;
2322 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2323 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2324 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2325 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2326 }
2327
2328 static int vmload_interception(struct vcpu_svm *svm)
2329 {
2330 struct vmcb *nested_vmcb;
2331 struct page *page;
2332
2333 if (nested_svm_check_permissions(svm))
2334 return 1;
2335
2336 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2337 skip_emulated_instruction(&svm->vcpu);
2338
2339 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2340 if (!nested_vmcb)
2341 return 1;
2342
2343 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2344 nested_svm_unmap(page);
2345
2346 return 1;
2347 }
2348
2349 static int vmsave_interception(struct vcpu_svm *svm)
2350 {
2351 struct vmcb *nested_vmcb;
2352 struct page *page;
2353
2354 if (nested_svm_check_permissions(svm))
2355 return 1;
2356
2357 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2358 skip_emulated_instruction(&svm->vcpu);
2359
2360 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2361 if (!nested_vmcb)
2362 return 1;
2363
2364 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2365 nested_svm_unmap(page);
2366
2367 return 1;
2368 }
2369
2370 static int vmrun_interception(struct vcpu_svm *svm)
2371 {
2372 if (nested_svm_check_permissions(svm))
2373 return 1;
2374
2375 /* Save rip after vmrun instruction */
2376 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2377
2378 if (!nested_svm_vmrun(svm))
2379 return 1;
2380
2381 if (!nested_svm_vmrun_msrpm(svm))
2382 goto failed;
2383
2384 return 1;
2385
2386 failed:
2387
2388 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2389 svm->vmcb->control.exit_code_hi = 0;
2390 svm->vmcb->control.exit_info_1 = 0;
2391 svm->vmcb->control.exit_info_2 = 0;
2392
2393 nested_svm_vmexit(svm);
2394
2395 return 1;
2396 }
2397
2398 static int stgi_interception(struct vcpu_svm *svm)
2399 {
2400 if (nested_svm_check_permissions(svm))
2401 return 1;
2402
2403 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2404 skip_emulated_instruction(&svm->vcpu);
2405 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2406
2407 enable_gif(svm);
2408
2409 return 1;
2410 }
2411
2412 static int clgi_interception(struct vcpu_svm *svm)
2413 {
2414 if (nested_svm_check_permissions(svm))
2415 return 1;
2416
2417 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2418 skip_emulated_instruction(&svm->vcpu);
2419
2420 disable_gif(svm);
2421
2422 /* After a CLGI no interrupts should come */
2423 svm_clear_vintr(svm);
2424 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2425
2426 return 1;
2427 }
2428
2429 static int invlpga_interception(struct vcpu_svm *svm)
2430 {
2431 struct kvm_vcpu *vcpu = &svm->vcpu;
2432
2433 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2434 vcpu->arch.regs[VCPU_REGS_RAX]);
2435
2436 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2437 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2438
2439 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2440 skip_emulated_instruction(&svm->vcpu);
2441 return 1;
2442 }
2443
2444 static int skinit_interception(struct vcpu_svm *svm)
2445 {
2446 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2447
2448 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2449 return 1;
2450 }
2451
2452 static int invalid_op_interception(struct vcpu_svm *svm)
2453 {
2454 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2455 return 1;
2456 }
2457
2458 static int task_switch_interception(struct vcpu_svm *svm)
2459 {
2460 u16 tss_selector;
2461 int reason;
2462 int int_type = svm->vmcb->control.exit_int_info &
2463 SVM_EXITINTINFO_TYPE_MASK;
2464 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2465 uint32_t type =
2466 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2467 uint32_t idt_v =
2468 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2469 bool has_error_code = false;
2470 u32 error_code = 0;
2471
2472 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2473
2474 if (svm->vmcb->control.exit_info_2 &
2475 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2476 reason = TASK_SWITCH_IRET;
2477 else if (svm->vmcb->control.exit_info_2 &
2478 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2479 reason = TASK_SWITCH_JMP;
2480 else if (idt_v)
2481 reason = TASK_SWITCH_GATE;
2482 else
2483 reason = TASK_SWITCH_CALL;
2484
2485 if (reason == TASK_SWITCH_GATE) {
2486 switch (type) {
2487 case SVM_EXITINTINFO_TYPE_NMI:
2488 svm->vcpu.arch.nmi_injected = false;
2489 break;
2490 case SVM_EXITINTINFO_TYPE_EXEPT:
2491 if (svm->vmcb->control.exit_info_2 &
2492 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2493 has_error_code = true;
2494 error_code =
2495 (u32)svm->vmcb->control.exit_info_2;
2496 }
2497 kvm_clear_exception_queue(&svm->vcpu);
2498 break;
2499 case SVM_EXITINTINFO_TYPE_INTR:
2500 kvm_clear_interrupt_queue(&svm->vcpu);
2501 break;
2502 default:
2503 break;
2504 }
2505 }
2506
2507 if (reason != TASK_SWITCH_GATE ||
2508 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2509 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2510 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2511 skip_emulated_instruction(&svm->vcpu);
2512
2513 if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2514 has_error_code, error_code) == EMULATE_FAIL) {
2515 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2516 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2517 svm->vcpu.run->internal.ndata = 0;
2518 return 0;
2519 }
2520 return 1;
2521 }
2522
2523 static int cpuid_interception(struct vcpu_svm *svm)
2524 {
2525 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2526 kvm_emulate_cpuid(&svm->vcpu);
2527 return 1;
2528 }
2529
2530 static int iret_interception(struct vcpu_svm *svm)
2531 {
2532 ++svm->vcpu.stat.nmi_window_exits;
2533 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
2534 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2535 return 1;
2536 }
2537
2538 static int invlpg_interception(struct vcpu_svm *svm)
2539 {
2540 return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2541 }
2542
2543 static int emulate_on_interception(struct vcpu_svm *svm)
2544 {
2545 return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2546 }
2547
2548 static int cr0_write_interception(struct vcpu_svm *svm)
2549 {
2550 struct kvm_vcpu *vcpu = &svm->vcpu;
2551 int r;
2552
2553 r = emulate_instruction(&svm->vcpu, 0, 0, 0);
2554
2555 if (svm->nested.vmexit_rip) {
2556 kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
2557 kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
2558 kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
2559 svm->nested.vmexit_rip = 0;
2560 }
2561
2562 return r == EMULATE_DONE;
2563 }
2564
2565 static int cr8_write_interception(struct vcpu_svm *svm)
2566 {
2567 struct kvm_run *kvm_run = svm->vcpu.run;
2568
2569 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2570 /* instruction emulation calls kvm_set_cr8() */
2571 emulate_instruction(&svm->vcpu, 0, 0, 0);
2572 if (irqchip_in_kernel(svm->vcpu.kvm)) {
2573 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2574 return 1;
2575 }
2576 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2577 return 1;
2578 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2579 return 0;
2580 }
2581
2582 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2583 {
2584 struct vcpu_svm *svm = to_svm(vcpu);
2585
2586 switch (ecx) {
2587 case MSR_IA32_TSC: {
2588 u64 tsc_offset;
2589
2590 if (is_nested(svm))
2591 tsc_offset = svm->nested.hsave->control.tsc_offset;
2592 else
2593 tsc_offset = svm->vmcb->control.tsc_offset;
2594
2595 *data = tsc_offset + native_read_tsc();
2596 break;
2597 }
2598 case MSR_STAR:
2599 *data = svm->vmcb->save.star;
2600 break;
2601 #ifdef CONFIG_X86_64
2602 case MSR_LSTAR:
2603 *data = svm->vmcb->save.lstar;
2604 break;
2605 case MSR_CSTAR:
2606 *data = svm->vmcb->save.cstar;
2607 break;
2608 case MSR_KERNEL_GS_BASE:
2609 *data = svm->vmcb->save.kernel_gs_base;
2610 break;
2611 case MSR_SYSCALL_MASK:
2612 *data = svm->vmcb->save.sfmask;
2613 break;
2614 #endif
2615 case MSR_IA32_SYSENTER_CS:
2616 *data = svm->vmcb->save.sysenter_cs;
2617 break;
2618 case MSR_IA32_SYSENTER_EIP:
2619 *data = svm->sysenter_eip;
2620 break;
2621 case MSR_IA32_SYSENTER_ESP:
2622 *data = svm->sysenter_esp;
2623 break;
2624 /*
2625 * Nobody will change the following 5 values in the VMCB so we can
2626 * safely return them on rdmsr. They will always be 0 until LBRV is
2627 * implemented.
2628 */
2629 case MSR_IA32_DEBUGCTLMSR:
2630 *data = svm->vmcb->save.dbgctl;
2631 break;
2632 case MSR_IA32_LASTBRANCHFROMIP:
2633 *data = svm->vmcb->save.br_from;
2634 break;
2635 case MSR_IA32_LASTBRANCHTOIP:
2636 *data = svm->vmcb->save.br_to;
2637 break;
2638 case MSR_IA32_LASTINTFROMIP:
2639 *data = svm->vmcb->save.last_excp_from;
2640 break;
2641 case MSR_IA32_LASTINTTOIP:
2642 *data = svm->vmcb->save.last_excp_to;
2643 break;
2644 case MSR_VM_HSAVE_PA:
2645 *data = svm->nested.hsave_msr;
2646 break;
2647 case MSR_VM_CR:
2648 *data = svm->nested.vm_cr_msr;
2649 break;
2650 case MSR_IA32_UCODE_REV:
2651 *data = 0x01000065;
2652 break;
2653 default:
2654 return kvm_get_msr_common(vcpu, ecx, data);
2655 }
2656 return 0;
2657 }
2658
2659 static int rdmsr_interception(struct vcpu_svm *svm)
2660 {
2661 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2662 u64 data;
2663
2664 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2665 trace_kvm_msr_read_ex(ecx);
2666 kvm_inject_gp(&svm->vcpu, 0);
2667 } else {
2668 trace_kvm_msr_read(ecx, data);
2669
2670 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2671 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2672 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2673 skip_emulated_instruction(&svm->vcpu);
2674 }
2675 return 1;
2676 }
2677
2678 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2679 {
2680 struct vcpu_svm *svm = to_svm(vcpu);
2681 int svm_dis, chg_mask;
2682
2683 if (data & ~SVM_VM_CR_VALID_MASK)
2684 return 1;
2685
2686 chg_mask = SVM_VM_CR_VALID_MASK;
2687
2688 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2689 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2690
2691 svm->nested.vm_cr_msr &= ~chg_mask;
2692 svm->nested.vm_cr_msr |= (data & chg_mask);
2693
2694 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2695
2696 /* check for svm_disable while efer.svme is set */
2697 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2698 return 1;
2699
2700 return 0;
2701 }
2702
2703 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2704 {
2705 struct vcpu_svm *svm = to_svm(vcpu);
2706
2707 switch (ecx) {
2708 case MSR_IA32_TSC:
2709 kvm_write_tsc(vcpu, data);
2710 break;
2711 case MSR_STAR:
2712 svm->vmcb->save.star = data;
2713 break;
2714 #ifdef CONFIG_X86_64
2715 case MSR_LSTAR:
2716 svm->vmcb->save.lstar = data;
2717 break;
2718 case MSR_CSTAR:
2719 svm->vmcb->save.cstar = data;
2720 break;
2721 case MSR_KERNEL_GS_BASE:
2722 svm->vmcb->save.kernel_gs_base = data;
2723 break;
2724 case MSR_SYSCALL_MASK:
2725 svm->vmcb->save.sfmask = data;
2726 break;
2727 #endif
2728 case MSR_IA32_SYSENTER_CS:
2729 svm->vmcb->save.sysenter_cs = data;
2730 break;
2731 case MSR_IA32_SYSENTER_EIP:
2732 svm->sysenter_eip = data;
2733 svm->vmcb->save.sysenter_eip = data;
2734 break;
2735 case MSR_IA32_SYSENTER_ESP:
2736 svm->sysenter_esp = data;
2737 svm->vmcb->save.sysenter_esp = data;
2738 break;
2739 case MSR_IA32_DEBUGCTLMSR:
2740 if (!svm_has(SVM_FEATURE_LBRV)) {
2741 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2742 __func__, data);
2743 break;
2744 }
2745 if (data & DEBUGCTL_RESERVED_BITS)
2746 return 1;
2747
2748 svm->vmcb->save.dbgctl = data;
2749 if (data & (1ULL<<0))
2750 svm_enable_lbrv(svm);
2751 else
2752 svm_disable_lbrv(svm);
2753 break;
2754 case MSR_VM_HSAVE_PA:
2755 svm->nested.hsave_msr = data;
2756 break;
2757 case MSR_VM_CR:
2758 return svm_set_vm_cr(vcpu, data);
2759 case MSR_VM_IGNNE:
2760 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2761 break;
2762 default:
2763 return kvm_set_msr_common(vcpu, ecx, data);
2764 }
2765 return 0;
2766 }
2767
2768 static int wrmsr_interception(struct vcpu_svm *svm)
2769 {
2770 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2771 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2772 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2773
2774
2775 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2776 if (svm_set_msr(&svm->vcpu, ecx, data)) {
2777 trace_kvm_msr_write_ex(ecx, data);
2778 kvm_inject_gp(&svm->vcpu, 0);
2779 } else {
2780 trace_kvm_msr_write(ecx, data);
2781 skip_emulated_instruction(&svm->vcpu);
2782 }
2783 return 1;
2784 }
2785
2786 static int msr_interception(struct vcpu_svm *svm)
2787 {
2788 if (svm->vmcb->control.exit_info_1)
2789 return wrmsr_interception(svm);
2790 else
2791 return rdmsr_interception(svm);
2792 }
2793
2794 static int interrupt_window_interception(struct vcpu_svm *svm)
2795 {
2796 struct kvm_run *kvm_run = svm->vcpu.run;
2797
2798 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2799 svm_clear_vintr(svm);
2800 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2801 /*
2802 * If the user space waits to inject interrupts, exit as soon as
2803 * possible
2804 */
2805 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2806 kvm_run->request_interrupt_window &&
2807 !kvm_cpu_has_interrupt(&svm->vcpu)) {
2808 ++svm->vcpu.stat.irq_window_exits;
2809 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2810 return 0;
2811 }
2812
2813 return 1;
2814 }
2815
2816 static int pause_interception(struct vcpu_svm *svm)
2817 {
2818 kvm_vcpu_on_spin(&(svm->vcpu));
2819 return 1;
2820 }
2821
2822 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2823 [SVM_EXIT_READ_CR0] = emulate_on_interception,
2824 [SVM_EXIT_READ_CR3] = emulate_on_interception,
2825 [SVM_EXIT_READ_CR4] = emulate_on_interception,
2826 [SVM_EXIT_READ_CR8] = emulate_on_interception,
2827 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
2828 [SVM_EXIT_WRITE_CR0] = cr0_write_interception,
2829 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
2830 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
2831 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2832 [SVM_EXIT_READ_DR0] = emulate_on_interception,
2833 [SVM_EXIT_READ_DR1] = emulate_on_interception,
2834 [SVM_EXIT_READ_DR2] = emulate_on_interception,
2835 [SVM_EXIT_READ_DR3] = emulate_on_interception,
2836 [SVM_EXIT_READ_DR4] = emulate_on_interception,
2837 [SVM_EXIT_READ_DR5] = emulate_on_interception,
2838 [SVM_EXIT_READ_DR6] = emulate_on_interception,
2839 [SVM_EXIT_READ_DR7] = emulate_on_interception,
2840 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
2841 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
2842 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
2843 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
2844 [SVM_EXIT_WRITE_DR4] = emulate_on_interception,
2845 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
2846 [SVM_EXIT_WRITE_DR6] = emulate_on_interception,
2847 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
2848 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2849 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2850 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2851 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2852 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
2853 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2854 [SVM_EXIT_INTR] = intr_interception,
2855 [SVM_EXIT_NMI] = nmi_interception,
2856 [SVM_EXIT_SMI] = nop_on_interception,
2857 [SVM_EXIT_INIT] = nop_on_interception,
2858 [SVM_EXIT_VINTR] = interrupt_window_interception,
2859 [SVM_EXIT_CPUID] = cpuid_interception,
2860 [SVM_EXIT_IRET] = iret_interception,
2861 [SVM_EXIT_INVD] = emulate_on_interception,
2862 [SVM_EXIT_PAUSE] = pause_interception,
2863 [SVM_EXIT_HLT] = halt_interception,
2864 [SVM_EXIT_INVLPG] = invlpg_interception,
2865 [SVM_EXIT_INVLPGA] = invlpga_interception,
2866 [SVM_EXIT_IOIO] = io_interception,
2867 [SVM_EXIT_MSR] = msr_interception,
2868 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2869 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2870 [SVM_EXIT_VMRUN] = vmrun_interception,
2871 [SVM_EXIT_VMMCALL] = vmmcall_interception,
2872 [SVM_EXIT_VMLOAD] = vmload_interception,
2873 [SVM_EXIT_VMSAVE] = vmsave_interception,
2874 [SVM_EXIT_STGI] = stgi_interception,
2875 [SVM_EXIT_CLGI] = clgi_interception,
2876 [SVM_EXIT_SKINIT] = skinit_interception,
2877 [SVM_EXIT_WBINVD] = emulate_on_interception,
2878 [SVM_EXIT_MONITOR] = invalid_op_interception,
2879 [SVM_EXIT_MWAIT] = invalid_op_interception,
2880 [SVM_EXIT_NPF] = pf_interception,
2881 };
2882
2883 void dump_vmcb(struct kvm_vcpu *vcpu)
2884 {
2885 struct vcpu_svm *svm = to_svm(vcpu);
2886 struct vmcb_control_area *control = &svm->vmcb->control;
2887 struct vmcb_save_area *save = &svm->vmcb->save;
2888
2889 pr_err("VMCB Control Area:\n");
2890 pr_err("cr_read: %04x\n", control->intercept_cr_read);
2891 pr_err("cr_write: %04x\n", control->intercept_cr_write);
2892 pr_err("dr_read: %04x\n", control->intercept_dr_read);
2893 pr_err("dr_write: %04x\n", control->intercept_dr_write);
2894 pr_err("exceptions: %08x\n", control->intercept_exceptions);
2895 pr_err("intercepts: %016llx\n", control->intercept);
2896 pr_err("pause filter count: %d\n", control->pause_filter_count);
2897 pr_err("iopm_base_pa: %016llx\n", control->iopm_base_pa);
2898 pr_err("msrpm_base_pa: %016llx\n", control->msrpm_base_pa);
2899 pr_err("tsc_offset: %016llx\n", control->tsc_offset);
2900 pr_err("asid: %d\n", control->asid);
2901 pr_err("tlb_ctl: %d\n", control->tlb_ctl);
2902 pr_err("int_ctl: %08x\n", control->int_ctl);
2903 pr_err("int_vector: %08x\n", control->int_vector);
2904 pr_err("int_state: %08x\n", control->int_state);
2905 pr_err("exit_code: %08x\n", control->exit_code);
2906 pr_err("exit_info1: %016llx\n", control->exit_info_1);
2907 pr_err("exit_info2: %016llx\n", control->exit_info_2);
2908 pr_err("exit_int_info: %08x\n", control->exit_int_info);
2909 pr_err("exit_int_info_err: %08x\n", control->exit_int_info_err);
2910 pr_err("nested_ctl: %lld\n", control->nested_ctl);
2911 pr_err("nested_cr3: %016llx\n", control->nested_cr3);
2912 pr_err("event_inj: %08x\n", control->event_inj);
2913 pr_err("event_inj_err: %08x\n", control->event_inj_err);
2914 pr_err("lbr_ctl: %lld\n", control->lbr_ctl);
2915 pr_err("next_rip: %016llx\n", control->next_rip);
2916 pr_err("VMCB State Save Area:\n");
2917 pr_err("es: s: %04x a: %04x l: %08x b: %016llx\n",
2918 save->es.selector, save->es.attrib,
2919 save->es.limit, save->es.base);
2920 pr_err("cs: s: %04x a: %04x l: %08x b: %016llx\n",
2921 save->cs.selector, save->cs.attrib,
2922 save->cs.limit, save->cs.base);
2923 pr_err("ss: s: %04x a: %04x l: %08x b: %016llx\n",
2924 save->ss.selector, save->ss.attrib,
2925 save->ss.limit, save->ss.base);
2926 pr_err("ds: s: %04x a: %04x l: %08x b: %016llx\n",
2927 save->ds.selector, save->ds.attrib,
2928 save->ds.limit, save->ds.base);
2929 pr_err("fs: s: %04x a: %04x l: %08x b: %016llx\n",
2930 save->fs.selector, save->fs.attrib,
2931 save->fs.limit, save->fs.base);
2932 pr_err("gs: s: %04x a: %04x l: %08x b: %016llx\n",
2933 save->gs.selector, save->gs.attrib,
2934 save->gs.limit, save->gs.base);
2935 pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
2936 save->gdtr.selector, save->gdtr.attrib,
2937 save->gdtr.limit, save->gdtr.base);
2938 pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
2939 save->ldtr.selector, save->ldtr.attrib,
2940 save->ldtr.limit, save->ldtr.base);
2941 pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
2942 save->idtr.selector, save->idtr.attrib,
2943 save->idtr.limit, save->idtr.base);
2944 pr_err("tr: s: %04x a: %04x l: %08x b: %016llx\n",
2945 save->tr.selector, save->tr.attrib,
2946 save->tr.limit, save->tr.base);
2947 pr_err("cpl: %d efer: %016llx\n",
2948 save->cpl, save->efer);
2949 pr_err("cr0: %016llx cr2: %016llx\n",
2950 save->cr0, save->cr2);
2951 pr_err("cr3: %016llx cr4: %016llx\n",
2952 save->cr3, save->cr4);
2953 pr_err("dr6: %016llx dr7: %016llx\n",
2954 save->dr6, save->dr7);
2955 pr_err("rip: %016llx rflags: %016llx\n",
2956 save->rip, save->rflags);
2957 pr_err("rsp: %016llx rax: %016llx\n",
2958 save->rsp, save->rax);
2959 pr_err("star: %016llx lstar: %016llx\n",
2960 save->star, save->lstar);
2961 pr_err("cstar: %016llx sfmask: %016llx\n",
2962 save->cstar, save->sfmask);
2963 pr_err("kernel_gs_base: %016llx sysenter_cs: %016llx\n",
2964 save->kernel_gs_base, save->sysenter_cs);
2965 pr_err("sysenter_esp: %016llx sysenter_eip: %016llx\n",
2966 save->sysenter_esp, save->sysenter_eip);
2967 pr_err("gpat: %016llx dbgctl: %016llx\n",
2968 save->g_pat, save->dbgctl);
2969 pr_err("br_from: %016llx br_to: %016llx\n",
2970 save->br_from, save->br_to);
2971 pr_err("excp_from: %016llx excp_to: %016llx\n",
2972 save->last_excp_from, save->last_excp_to);
2973
2974 }
2975
2976 static int handle_exit(struct kvm_vcpu *vcpu)
2977 {
2978 struct vcpu_svm *svm = to_svm(vcpu);
2979 struct kvm_run *kvm_run = vcpu->run;
2980 u32 exit_code = svm->vmcb->control.exit_code;
2981
2982 trace_kvm_exit(exit_code, vcpu);
2983
2984 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2985 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2986 if (npt_enabled)
2987 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2988
2989 if (unlikely(svm->nested.exit_required)) {
2990 nested_svm_vmexit(svm);
2991 svm->nested.exit_required = false;
2992
2993 return 1;
2994 }
2995
2996 if (is_nested(svm)) {
2997 int vmexit;
2998
2999 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3000 svm->vmcb->control.exit_info_1,
3001 svm->vmcb->control.exit_info_2,
3002 svm->vmcb->control.exit_int_info,
3003 svm->vmcb->control.exit_int_info_err);
3004
3005 vmexit = nested_svm_exit_special(svm);
3006
3007 if (vmexit == NESTED_EXIT_CONTINUE)
3008 vmexit = nested_svm_exit_handled(svm);
3009
3010 if (vmexit == NESTED_EXIT_DONE)
3011 return 1;
3012 }
3013
3014 svm_complete_interrupts(svm);
3015
3016 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3017 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3018 kvm_run->fail_entry.hardware_entry_failure_reason
3019 = svm->vmcb->control.exit_code;
3020 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3021 dump_vmcb(vcpu);
3022 return 0;
3023 }
3024
3025 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3026 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3027 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3028 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3029 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3030 "exit_code 0x%x\n",
3031 __func__, svm->vmcb->control.exit_int_info,
3032 exit_code);
3033
3034 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3035 || !svm_exit_handlers[exit_code]) {
3036 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3037 kvm_run->hw.hardware_exit_reason = exit_code;
3038 return 0;
3039 }
3040
3041 return svm_exit_handlers[exit_code](svm);
3042 }
3043
3044 static void reload_tss(struct kvm_vcpu *vcpu)
3045 {
3046 int cpu = raw_smp_processor_id();
3047
3048 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3049 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3050 load_TR_desc();
3051 }
3052
3053 static void pre_svm_run(struct vcpu_svm *svm)
3054 {
3055 int cpu = raw_smp_processor_id();
3056
3057 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3058
3059 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3060 /* FIXME: handle wraparound of asid_generation */
3061 if (svm->asid_generation != sd->asid_generation)
3062 new_asid(svm, sd);
3063 }
3064
3065 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3066 {
3067 struct vcpu_svm *svm = to_svm(vcpu);
3068
3069 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3070 vcpu->arch.hflags |= HF_NMI_MASK;
3071 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3072 ++vcpu->stat.nmi_injections;
3073 }
3074
3075 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3076 {
3077 struct vmcb_control_area *control;
3078
3079 control = &svm->vmcb->control;
3080 control->int_vector = irq;
3081 control->int_ctl &= ~V_INTR_PRIO_MASK;
3082 control->int_ctl |= V_IRQ_MASK |
3083 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3084 }
3085
3086 static void svm_set_irq(struct kvm_vcpu *vcpu)
3087 {
3088 struct vcpu_svm *svm = to_svm(vcpu);
3089
3090 BUG_ON(!(gif_set(svm)));
3091
3092 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3093 ++vcpu->stat.irq_injections;
3094
3095 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3096 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3097 }
3098
3099 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3100 {
3101 struct vcpu_svm *svm = to_svm(vcpu);
3102
3103 if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3104 return;
3105
3106 if (irr == -1)
3107 return;
3108
3109 if (tpr >= irr)
3110 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
3111 }
3112
3113 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3114 {
3115 struct vcpu_svm *svm = to_svm(vcpu);
3116 struct vmcb *vmcb = svm->vmcb;
3117 int ret;
3118 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3119 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3120 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3121
3122 return ret;
3123 }
3124
3125 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3126 {
3127 struct vcpu_svm *svm = to_svm(vcpu);
3128
3129 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3130 }
3131
3132 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3133 {
3134 struct vcpu_svm *svm = to_svm(vcpu);
3135
3136 if (masked) {
3137 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3138 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3139 } else {
3140 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3141 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
3142 }
3143 }
3144
3145 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3146 {
3147 struct vcpu_svm *svm = to_svm(vcpu);
3148 struct vmcb *vmcb = svm->vmcb;
3149 int ret;
3150
3151 if (!gif_set(svm) ||
3152 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3153 return 0;
3154
3155 ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3156
3157 if (is_nested(svm))
3158 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3159
3160 return ret;
3161 }
3162
3163 static void enable_irq_window(struct kvm_vcpu *vcpu)
3164 {
3165 struct vcpu_svm *svm = to_svm(vcpu);
3166
3167 /*
3168 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3169 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3170 * get that intercept, this function will be called again though and
3171 * we'll get the vintr intercept.
3172 */
3173 if (gif_set(svm) && nested_svm_intr(svm)) {
3174 svm_set_vintr(svm);
3175 svm_inject_irq(svm, 0x0);
3176 }
3177 }
3178
3179 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3180 {
3181 struct vcpu_svm *svm = to_svm(vcpu);
3182
3183 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3184 == HF_NMI_MASK)
3185 return; /* IRET will cause a vm exit */
3186
3187 /*
3188 * Something prevents NMI from been injected. Single step over possible
3189 * problem (IRET or exception injection or interrupt shadow)
3190 */
3191 svm->nmi_singlestep = true;
3192 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3193 update_db_intercept(vcpu);
3194 }
3195
3196 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3197 {
3198 return 0;
3199 }
3200
3201 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3202 {
3203 force_new_asid(vcpu);
3204 }
3205
3206 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3207 {
3208 }
3209
3210 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3211 {
3212 struct vcpu_svm *svm = to_svm(vcpu);
3213
3214 if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3215 return;
3216
3217 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
3218 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3219 kvm_set_cr8(vcpu, cr8);
3220 }
3221 }
3222
3223 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3224 {
3225 struct vcpu_svm *svm = to_svm(vcpu);
3226 u64 cr8;
3227
3228 if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3229 return;
3230
3231 cr8 = kvm_get_cr8(vcpu);
3232 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3233 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3234 }
3235
3236 static void svm_complete_interrupts(struct vcpu_svm *svm)
3237 {
3238 u8 vector;
3239 int type;
3240 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3241 unsigned int3_injected = svm->int3_injected;
3242
3243 svm->int3_injected = 0;
3244
3245 if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
3246 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3247 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3248 }
3249
3250 svm->vcpu.arch.nmi_injected = false;
3251 kvm_clear_exception_queue(&svm->vcpu);
3252 kvm_clear_interrupt_queue(&svm->vcpu);
3253
3254 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3255 return;
3256
3257 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3258
3259 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3260 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3261
3262 switch (type) {
3263 case SVM_EXITINTINFO_TYPE_NMI:
3264 svm->vcpu.arch.nmi_injected = true;
3265 break;
3266 case SVM_EXITINTINFO_TYPE_EXEPT:
3267 /*
3268 * In case of software exceptions, do not reinject the vector,
3269 * but re-execute the instruction instead. Rewind RIP first
3270 * if we emulated INT3 before.
3271 */
3272 if (kvm_exception_is_soft(vector)) {
3273 if (vector == BP_VECTOR && int3_injected &&
3274 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3275 kvm_rip_write(&svm->vcpu,
3276 kvm_rip_read(&svm->vcpu) -
3277 int3_injected);
3278 break;
3279 }
3280 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3281 u32 err = svm->vmcb->control.exit_int_info_err;
3282 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3283
3284 } else
3285 kvm_requeue_exception(&svm->vcpu, vector);
3286 break;
3287 case SVM_EXITINTINFO_TYPE_INTR:
3288 kvm_queue_interrupt(&svm->vcpu, vector, false);
3289 break;
3290 default:
3291 break;
3292 }
3293 }
3294
3295 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3296 {
3297 struct vcpu_svm *svm = to_svm(vcpu);
3298 struct vmcb_control_area *control = &svm->vmcb->control;
3299
3300 control->exit_int_info = control->event_inj;
3301 control->exit_int_info_err = control->event_inj_err;
3302 control->event_inj = 0;
3303 svm_complete_interrupts(svm);
3304 }
3305
3306 #ifdef CONFIG_X86_64
3307 #define R "r"
3308 #else
3309 #define R "e"
3310 #endif
3311
3312 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3313 {
3314 struct vcpu_svm *svm = to_svm(vcpu);
3315 u16 fs_selector;
3316 u16 gs_selector;
3317 u16 ldt_selector;
3318
3319 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3320 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3321 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3322
3323 /*
3324 * A vmexit emulation is required before the vcpu can be executed
3325 * again.
3326 */
3327 if (unlikely(svm->nested.exit_required))
3328 return;
3329
3330 pre_svm_run(svm);
3331
3332 sync_lapic_to_cr8(vcpu);
3333
3334 save_host_msrs(vcpu);
3335 savesegment(fs, fs_selector);
3336 savesegment(gs, gs_selector);
3337 ldt_selector = kvm_read_ldt();
3338 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3339
3340 clgi();
3341
3342 local_irq_enable();
3343
3344 asm volatile (
3345 "push %%"R"bp; \n\t"
3346 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3347 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3348 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3349 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3350 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3351 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3352 #ifdef CONFIG_X86_64
3353 "mov %c[r8](%[svm]), %%r8 \n\t"
3354 "mov %c[r9](%[svm]), %%r9 \n\t"
3355 "mov %c[r10](%[svm]), %%r10 \n\t"
3356 "mov %c[r11](%[svm]), %%r11 \n\t"
3357 "mov %c[r12](%[svm]), %%r12 \n\t"
3358 "mov %c[r13](%[svm]), %%r13 \n\t"
3359 "mov %c[r14](%[svm]), %%r14 \n\t"
3360 "mov %c[r15](%[svm]), %%r15 \n\t"
3361 #endif
3362
3363 /* Enter guest mode */
3364 "push %%"R"ax \n\t"
3365 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3366 __ex(SVM_VMLOAD) "\n\t"
3367 __ex(SVM_VMRUN) "\n\t"
3368 __ex(SVM_VMSAVE) "\n\t"
3369 "pop %%"R"ax \n\t"
3370
3371 /* Save guest registers, load host registers */
3372 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3373 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3374 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3375 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3376 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3377 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3378 #ifdef CONFIG_X86_64
3379 "mov %%r8, %c[r8](%[svm]) \n\t"
3380 "mov %%r9, %c[r9](%[svm]) \n\t"
3381 "mov %%r10, %c[r10](%[svm]) \n\t"
3382 "mov %%r11, %c[r11](%[svm]) \n\t"
3383 "mov %%r12, %c[r12](%[svm]) \n\t"
3384 "mov %%r13, %c[r13](%[svm]) \n\t"
3385 "mov %%r14, %c[r14](%[svm]) \n\t"
3386 "mov %%r15, %c[r15](%[svm]) \n\t"
3387 #endif
3388 "pop %%"R"bp"
3389 :
3390 : [svm]"a"(svm),
3391 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3392 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3393 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3394 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3395 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3396 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3397 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3398 #ifdef CONFIG_X86_64
3399 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3400 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3401 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3402 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3403 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3404 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3405 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3406 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3407 #endif
3408 : "cc", "memory"
3409 , R"bx", R"cx", R"dx", R"si", R"di"
3410 #ifdef CONFIG_X86_64
3411 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3412 #endif
3413 );
3414
3415 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3416 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3417 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3418 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3419
3420 load_host_msrs(vcpu);
3421 kvm_load_ldt(ldt_selector);
3422 loadsegment(fs, fs_selector);
3423 #ifdef CONFIG_X86_64
3424 load_gs_index(gs_selector);
3425 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
3426 #else
3427 loadsegment(gs, gs_selector);
3428 #endif
3429
3430 reload_tss(vcpu);
3431
3432 local_irq_disable();
3433
3434 stgi();
3435
3436 sync_cr8_to_lapic(vcpu);
3437
3438 svm->next_rip = 0;
3439
3440 /* if exit due to PF check for async PF */
3441 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3442 svm->apf_reason = kvm_read_and_reset_pf_reason();
3443
3444 if (npt_enabled) {
3445 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3446 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3447 }
3448
3449 /*
3450 * We need to handle MC intercepts here before the vcpu has a chance to
3451 * change the physical cpu
3452 */
3453 if (unlikely(svm->vmcb->control.exit_code ==
3454 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3455 svm_handle_mce(svm);
3456 }
3457
3458 #undef R
3459
3460 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3461 {
3462 struct vcpu_svm *svm = to_svm(vcpu);
3463
3464 svm->vmcb->save.cr3 = root;
3465 force_new_asid(vcpu);
3466 }
3467
3468 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3469 {
3470 struct vcpu_svm *svm = to_svm(vcpu);
3471
3472 svm->vmcb->control.nested_cr3 = root;
3473
3474 /* Also sync guest cr3 here in case we live migrate */
3475 svm->vmcb->save.cr3 = vcpu->arch.cr3;
3476
3477 force_new_asid(vcpu);
3478 }
3479
3480 static int is_disabled(void)
3481 {
3482 u64 vm_cr;
3483
3484 rdmsrl(MSR_VM_CR, vm_cr);
3485 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3486 return 1;
3487
3488 return 0;
3489 }
3490
3491 static void
3492 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3493 {
3494 /*
3495 * Patch in the VMMCALL instruction:
3496 */
3497 hypercall[0] = 0x0f;
3498 hypercall[1] = 0x01;
3499 hypercall[2] = 0xd9;
3500 }
3501
3502 static void svm_check_processor_compat(void *rtn)
3503 {
3504 *(int *)rtn = 0;
3505 }
3506
3507 static bool svm_cpu_has_accelerated_tpr(void)
3508 {
3509 return false;
3510 }
3511
3512 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3513 {
3514 return 0;
3515 }
3516
3517 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3518 {
3519 }
3520
3521 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3522 {
3523 switch (func) {
3524 case 0x00000001:
3525 /* Mask out xsave bit as long as it is not supported by SVM */
3526 entry->ecx &= ~(bit(X86_FEATURE_XSAVE));
3527 break;
3528 case 0x80000001:
3529 if (nested)
3530 entry->ecx |= (1 << 2); /* Set SVM bit */
3531 break;
3532 case 0x8000000A:
3533 entry->eax = 1; /* SVM revision 1 */
3534 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3535 ASID emulation to nested SVM */
3536 entry->ecx = 0; /* Reserved */
3537 entry->edx = 0; /* Per default do not support any
3538 additional features */
3539
3540 /* Support next_rip if host supports it */
3541 if (svm_has(SVM_FEATURE_NRIP))
3542 entry->edx |= SVM_FEATURE_NRIP;
3543
3544 /* Support NPT for the guest if enabled */
3545 if (npt_enabled)
3546 entry->edx |= SVM_FEATURE_NPT;
3547
3548 break;
3549 }
3550 }
3551
3552 static const struct trace_print_flags svm_exit_reasons_str[] = {
3553 { SVM_EXIT_READ_CR0, "read_cr0" },
3554 { SVM_EXIT_READ_CR3, "read_cr3" },
3555 { SVM_EXIT_READ_CR4, "read_cr4" },
3556 { SVM_EXIT_READ_CR8, "read_cr8" },
3557 { SVM_EXIT_WRITE_CR0, "write_cr0" },
3558 { SVM_EXIT_WRITE_CR3, "write_cr3" },
3559 { SVM_EXIT_WRITE_CR4, "write_cr4" },
3560 { SVM_EXIT_WRITE_CR8, "write_cr8" },
3561 { SVM_EXIT_READ_DR0, "read_dr0" },
3562 { SVM_EXIT_READ_DR1, "read_dr1" },
3563 { SVM_EXIT_READ_DR2, "read_dr2" },
3564 { SVM_EXIT_READ_DR3, "read_dr3" },
3565 { SVM_EXIT_WRITE_DR0, "write_dr0" },
3566 { SVM_EXIT_WRITE_DR1, "write_dr1" },
3567 { SVM_EXIT_WRITE_DR2, "write_dr2" },
3568 { SVM_EXIT_WRITE_DR3, "write_dr3" },
3569 { SVM_EXIT_WRITE_DR5, "write_dr5" },
3570 { SVM_EXIT_WRITE_DR7, "write_dr7" },
3571 { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
3572 { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
3573 { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
3574 { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
3575 { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
3576 { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
3577 { SVM_EXIT_INTR, "interrupt" },
3578 { SVM_EXIT_NMI, "nmi" },
3579 { SVM_EXIT_SMI, "smi" },
3580 { SVM_EXIT_INIT, "init" },
3581 { SVM_EXIT_VINTR, "vintr" },
3582 { SVM_EXIT_CPUID, "cpuid" },
3583 { SVM_EXIT_INVD, "invd" },
3584 { SVM_EXIT_HLT, "hlt" },
3585 { SVM_EXIT_INVLPG, "invlpg" },
3586 { SVM_EXIT_INVLPGA, "invlpga" },
3587 { SVM_EXIT_IOIO, "io" },
3588 { SVM_EXIT_MSR, "msr" },
3589 { SVM_EXIT_TASK_SWITCH, "task_switch" },
3590 { SVM_EXIT_SHUTDOWN, "shutdown" },
3591 { SVM_EXIT_VMRUN, "vmrun" },
3592 { SVM_EXIT_VMMCALL, "hypercall" },
3593 { SVM_EXIT_VMLOAD, "vmload" },
3594 { SVM_EXIT_VMSAVE, "vmsave" },
3595 { SVM_EXIT_STGI, "stgi" },
3596 { SVM_EXIT_CLGI, "clgi" },
3597 { SVM_EXIT_SKINIT, "skinit" },
3598 { SVM_EXIT_WBINVD, "wbinvd" },
3599 { SVM_EXIT_MONITOR, "monitor" },
3600 { SVM_EXIT_MWAIT, "mwait" },
3601 { SVM_EXIT_NPF, "npf" },
3602 { -1, NULL }
3603 };
3604
3605 static int svm_get_lpage_level(void)
3606 {
3607 return PT_PDPE_LEVEL;
3608 }
3609
3610 static bool svm_rdtscp_supported(void)
3611 {
3612 return false;
3613 }
3614
3615 static bool svm_has_wbinvd_exit(void)
3616 {
3617 return true;
3618 }
3619
3620 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3621 {
3622 struct vcpu_svm *svm = to_svm(vcpu);
3623
3624 svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
3625 if (is_nested(svm))
3626 svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
3627 update_cr0_intercept(svm);
3628 }
3629
3630 static struct kvm_x86_ops svm_x86_ops = {
3631 .cpu_has_kvm_support = has_svm,
3632 .disabled_by_bios = is_disabled,
3633 .hardware_setup = svm_hardware_setup,
3634 .hardware_unsetup = svm_hardware_unsetup,
3635 .check_processor_compatibility = svm_check_processor_compat,
3636 .hardware_enable = svm_hardware_enable,
3637 .hardware_disable = svm_hardware_disable,
3638 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3639
3640 .vcpu_create = svm_create_vcpu,
3641 .vcpu_free = svm_free_vcpu,
3642 .vcpu_reset = svm_vcpu_reset,
3643
3644 .prepare_guest_switch = svm_prepare_guest_switch,
3645 .vcpu_load = svm_vcpu_load,
3646 .vcpu_put = svm_vcpu_put,
3647
3648 .set_guest_debug = svm_guest_debug,
3649 .get_msr = svm_get_msr,
3650 .set_msr = svm_set_msr,
3651 .get_segment_base = svm_get_segment_base,
3652 .get_segment = svm_get_segment,
3653 .set_segment = svm_set_segment,
3654 .get_cpl = svm_get_cpl,
3655 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3656 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3657 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3658 .set_cr0 = svm_set_cr0,
3659 .set_cr3 = svm_set_cr3,
3660 .set_cr4 = svm_set_cr4,
3661 .set_efer = svm_set_efer,
3662 .get_idt = svm_get_idt,
3663 .set_idt = svm_set_idt,
3664 .get_gdt = svm_get_gdt,
3665 .set_gdt = svm_set_gdt,
3666 .set_dr7 = svm_set_dr7,
3667 .cache_reg = svm_cache_reg,
3668 .get_rflags = svm_get_rflags,
3669 .set_rflags = svm_set_rflags,
3670 .fpu_activate = svm_fpu_activate,
3671 .fpu_deactivate = svm_fpu_deactivate,
3672
3673 .tlb_flush = svm_flush_tlb,
3674
3675 .run = svm_vcpu_run,
3676 .handle_exit = handle_exit,
3677 .skip_emulated_instruction = skip_emulated_instruction,
3678 .set_interrupt_shadow = svm_set_interrupt_shadow,
3679 .get_interrupt_shadow = svm_get_interrupt_shadow,
3680 .patch_hypercall = svm_patch_hypercall,
3681 .set_irq = svm_set_irq,
3682 .set_nmi = svm_inject_nmi,
3683 .queue_exception = svm_queue_exception,
3684 .cancel_injection = svm_cancel_injection,
3685 .interrupt_allowed = svm_interrupt_allowed,
3686 .nmi_allowed = svm_nmi_allowed,
3687 .get_nmi_mask = svm_get_nmi_mask,
3688 .set_nmi_mask = svm_set_nmi_mask,
3689 .enable_nmi_window = enable_nmi_window,
3690 .enable_irq_window = enable_irq_window,
3691 .update_cr8_intercept = update_cr8_intercept,
3692
3693 .set_tss_addr = svm_set_tss_addr,
3694 .get_tdp_level = get_npt_level,
3695 .get_mt_mask = svm_get_mt_mask,
3696
3697 .exit_reasons_str = svm_exit_reasons_str,
3698 .get_lpage_level = svm_get_lpage_level,
3699
3700 .cpuid_update = svm_cpuid_update,
3701
3702 .rdtscp_supported = svm_rdtscp_supported,
3703
3704 .set_supported_cpuid = svm_set_supported_cpuid,
3705
3706 .has_wbinvd_exit = svm_has_wbinvd_exit,
3707
3708 .write_tsc_offset = svm_write_tsc_offset,
3709 .adjust_tsc_offset = svm_adjust_tsc_offset,
3710
3711 .set_tdp_cr3 = set_tdp_cr3,
3712 };
3713
3714 static int __init svm_init(void)
3715 {
3716 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3717 __alignof__(struct vcpu_svm), THIS_MODULE);
3718 }
3719
3720 static void __exit svm_exit(void)
3721 {
3722 kvm_exit();
3723 }
3724
3725 module_init(svm_init)
3726 module_exit(svm_exit)
This page took 0.125676 seconds and 6 git commands to generate.