Merge branch 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16 #include <linux/kvm_host.h>
17
18 #include "kvm_svm.h"
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28
29 #include <asm/desc.h>
30
31 #define __ex(x) __kvm_handle_fault_on_reboot(x)
32
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
35
36 #define IOPM_ALLOC_ORDER 2
37 #define MSRPM_ALLOC_ORDER 1
38
39 #define DR7_GD_MASK (1 << 13)
40 #define DR6_BD_MASK (1 << 13)
41
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
44
45 #define SVM_FEATURE_NPT (1 << 0)
46 #define SVM_FEATURE_LBRV (1 << 1)
47 #define SVM_FEATURE_SVML (1 << 2)
48
49 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
50
51 /* enable NPT for AMD64 and X86 with PAE */
52 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
53 static bool npt_enabled = true;
54 #else
55 static bool npt_enabled = false;
56 #endif
57 static int npt = 1;
58
59 module_param(npt, int, S_IRUGO);
60
61 static void kvm_reput_irq(struct vcpu_svm *svm);
62 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
63
64 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
65 {
66 return container_of(vcpu, struct vcpu_svm, vcpu);
67 }
68
69 static unsigned long iopm_base;
70
71 struct kvm_ldttss_desc {
72 u16 limit0;
73 u16 base0;
74 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
75 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
76 u32 base3;
77 u32 zero1;
78 } __attribute__((packed));
79
80 struct svm_cpu_data {
81 int cpu;
82
83 u64 asid_generation;
84 u32 max_asid;
85 u32 next_asid;
86 struct kvm_ldttss_desc *tss_desc;
87
88 struct page *save_area;
89 };
90
91 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
92 static uint32_t svm_features;
93
94 struct svm_init_data {
95 int cpu;
96 int r;
97 };
98
99 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
100
101 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
102 #define MSRS_RANGE_SIZE 2048
103 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
104
105 #define MAX_INST_SIZE 15
106
107 static inline u32 svm_has(u32 feat)
108 {
109 return svm_features & feat;
110 }
111
112 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
113 {
114 int word_index = __ffs(vcpu->arch.irq_summary);
115 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
116 int irq = word_index * BITS_PER_LONG + bit_index;
117
118 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
119 if (!vcpu->arch.irq_pending[word_index])
120 clear_bit(word_index, &vcpu->arch.irq_summary);
121 return irq;
122 }
123
124 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
125 {
126 set_bit(irq, vcpu->arch.irq_pending);
127 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
128 }
129
130 static inline void clgi(void)
131 {
132 asm volatile (__ex(SVM_CLGI));
133 }
134
135 static inline void stgi(void)
136 {
137 asm volatile (__ex(SVM_STGI));
138 }
139
140 static inline void invlpga(unsigned long addr, u32 asid)
141 {
142 asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
143 }
144
145 static inline unsigned long kvm_read_cr2(void)
146 {
147 unsigned long cr2;
148
149 asm volatile ("mov %%cr2, %0" : "=r" (cr2));
150 return cr2;
151 }
152
153 static inline void kvm_write_cr2(unsigned long val)
154 {
155 asm volatile ("mov %0, %%cr2" :: "r" (val));
156 }
157
158 static inline unsigned long read_dr6(void)
159 {
160 unsigned long dr6;
161
162 asm volatile ("mov %%dr6, %0" : "=r" (dr6));
163 return dr6;
164 }
165
166 static inline void write_dr6(unsigned long val)
167 {
168 asm volatile ("mov %0, %%dr6" :: "r" (val));
169 }
170
171 static inline unsigned long read_dr7(void)
172 {
173 unsigned long dr7;
174
175 asm volatile ("mov %%dr7, %0" : "=r" (dr7));
176 return dr7;
177 }
178
179 static inline void write_dr7(unsigned long val)
180 {
181 asm volatile ("mov %0, %%dr7" :: "r" (val));
182 }
183
184 static inline void force_new_asid(struct kvm_vcpu *vcpu)
185 {
186 to_svm(vcpu)->asid_generation--;
187 }
188
189 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
190 {
191 force_new_asid(vcpu);
192 }
193
194 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
195 {
196 if (!npt_enabled && !(efer & EFER_LMA))
197 efer &= ~EFER_LME;
198
199 to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
200 vcpu->arch.shadow_efer = efer;
201 }
202
203 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
204 bool has_error_code, u32 error_code)
205 {
206 struct vcpu_svm *svm = to_svm(vcpu);
207
208 svm->vmcb->control.event_inj = nr
209 | SVM_EVTINJ_VALID
210 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
211 | SVM_EVTINJ_TYPE_EXEPT;
212 svm->vmcb->control.event_inj_err = error_code;
213 }
214
215 static bool svm_exception_injected(struct kvm_vcpu *vcpu)
216 {
217 struct vcpu_svm *svm = to_svm(vcpu);
218
219 return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
220 }
221
222 static int is_external_interrupt(u32 info)
223 {
224 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
225 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
226 }
227
228 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
229 {
230 struct vcpu_svm *svm = to_svm(vcpu);
231
232 if (!svm->next_rip) {
233 printk(KERN_DEBUG "%s: NOP\n", __func__);
234 return;
235 }
236 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
237 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
238 __func__, kvm_rip_read(vcpu), svm->next_rip);
239
240 kvm_rip_write(vcpu, svm->next_rip);
241 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
242
243 vcpu->arch.interrupt_window_open = 1;
244 }
245
246 static int has_svm(void)
247 {
248 uint32_t eax, ebx, ecx, edx;
249
250 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
251 printk(KERN_INFO "has_svm: not amd\n");
252 return 0;
253 }
254
255 cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
256 if (eax < SVM_CPUID_FUNC) {
257 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
258 return 0;
259 }
260
261 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
262 if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
263 printk(KERN_DEBUG "has_svm: svm not available\n");
264 return 0;
265 }
266 return 1;
267 }
268
269 static void svm_hardware_disable(void *garbage)
270 {
271 uint64_t efer;
272
273 wrmsrl(MSR_VM_HSAVE_PA, 0);
274 rdmsrl(MSR_EFER, efer);
275 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
276 }
277
278 static void svm_hardware_enable(void *garbage)
279 {
280
281 struct svm_cpu_data *svm_data;
282 uint64_t efer;
283 struct desc_ptr gdt_descr;
284 struct desc_struct *gdt;
285 int me = raw_smp_processor_id();
286
287 if (!has_svm()) {
288 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
289 return;
290 }
291 svm_data = per_cpu(svm_data, me);
292
293 if (!svm_data) {
294 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
295 me);
296 return;
297 }
298
299 svm_data->asid_generation = 1;
300 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
301 svm_data->next_asid = svm_data->max_asid + 1;
302
303 asm volatile ("sgdt %0" : "=m"(gdt_descr));
304 gdt = (struct desc_struct *)gdt_descr.address;
305 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
306
307 rdmsrl(MSR_EFER, efer);
308 wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
309
310 wrmsrl(MSR_VM_HSAVE_PA,
311 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
312 }
313
314 static void svm_cpu_uninit(int cpu)
315 {
316 struct svm_cpu_data *svm_data
317 = per_cpu(svm_data, raw_smp_processor_id());
318
319 if (!svm_data)
320 return;
321
322 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
323 __free_page(svm_data->save_area);
324 kfree(svm_data);
325 }
326
327 static int svm_cpu_init(int cpu)
328 {
329 struct svm_cpu_data *svm_data;
330 int r;
331
332 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
333 if (!svm_data)
334 return -ENOMEM;
335 svm_data->cpu = cpu;
336 svm_data->save_area = alloc_page(GFP_KERNEL);
337 r = -ENOMEM;
338 if (!svm_data->save_area)
339 goto err_1;
340
341 per_cpu(svm_data, cpu) = svm_data;
342
343 return 0;
344
345 err_1:
346 kfree(svm_data);
347 return r;
348
349 }
350
351 static void set_msr_interception(u32 *msrpm, unsigned msr,
352 int read, int write)
353 {
354 int i;
355
356 for (i = 0; i < NUM_MSR_MAPS; i++) {
357 if (msr >= msrpm_ranges[i] &&
358 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
359 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
360 msrpm_ranges[i]) * 2;
361
362 u32 *base = msrpm + (msr_offset / 32);
363 u32 msr_shift = msr_offset % 32;
364 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
365 *base = (*base & ~(0x3 << msr_shift)) |
366 (mask << msr_shift);
367 return;
368 }
369 }
370 BUG();
371 }
372
373 static void svm_vcpu_init_msrpm(u32 *msrpm)
374 {
375 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
376
377 #ifdef CONFIG_X86_64
378 set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
379 set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
380 set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
381 set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
382 set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
383 set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
384 #endif
385 set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
386 set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
387 set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
388 set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
389 }
390
391 static void svm_enable_lbrv(struct vcpu_svm *svm)
392 {
393 u32 *msrpm = svm->msrpm;
394
395 svm->vmcb->control.lbr_ctl = 1;
396 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
397 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
398 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
399 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
400 }
401
402 static void svm_disable_lbrv(struct vcpu_svm *svm)
403 {
404 u32 *msrpm = svm->msrpm;
405
406 svm->vmcb->control.lbr_ctl = 0;
407 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
408 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
409 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
410 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
411 }
412
413 static __init int svm_hardware_setup(void)
414 {
415 int cpu;
416 struct page *iopm_pages;
417 void *iopm_va;
418 int r;
419
420 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
421
422 if (!iopm_pages)
423 return -ENOMEM;
424
425 iopm_va = page_address(iopm_pages);
426 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
427 clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
428 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
429
430 if (boot_cpu_has(X86_FEATURE_NX))
431 kvm_enable_efer_bits(EFER_NX);
432
433 for_each_online_cpu(cpu) {
434 r = svm_cpu_init(cpu);
435 if (r)
436 goto err;
437 }
438
439 svm_features = cpuid_edx(SVM_CPUID_FUNC);
440
441 if (!svm_has(SVM_FEATURE_NPT))
442 npt_enabled = false;
443
444 if (npt_enabled && !npt) {
445 printk(KERN_INFO "kvm: Nested Paging disabled\n");
446 npt_enabled = false;
447 }
448
449 if (npt_enabled) {
450 printk(KERN_INFO "kvm: Nested Paging enabled\n");
451 kvm_enable_tdp();
452 } else
453 kvm_disable_tdp();
454
455 return 0;
456
457 err:
458 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
459 iopm_base = 0;
460 return r;
461 }
462
463 static __exit void svm_hardware_unsetup(void)
464 {
465 int cpu;
466
467 for_each_online_cpu(cpu)
468 svm_cpu_uninit(cpu);
469
470 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
471 iopm_base = 0;
472 }
473
474 static void init_seg(struct vmcb_seg *seg)
475 {
476 seg->selector = 0;
477 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
478 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
479 seg->limit = 0xffff;
480 seg->base = 0;
481 }
482
483 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
484 {
485 seg->selector = 0;
486 seg->attrib = SVM_SELECTOR_P_MASK | type;
487 seg->limit = 0xffff;
488 seg->base = 0;
489 }
490
491 static void init_vmcb(struct vcpu_svm *svm)
492 {
493 struct vmcb_control_area *control = &svm->vmcb->control;
494 struct vmcb_save_area *save = &svm->vmcb->save;
495
496 control->intercept_cr_read = INTERCEPT_CR0_MASK |
497 INTERCEPT_CR3_MASK |
498 INTERCEPT_CR4_MASK;
499
500 control->intercept_cr_write = INTERCEPT_CR0_MASK |
501 INTERCEPT_CR3_MASK |
502 INTERCEPT_CR4_MASK |
503 INTERCEPT_CR8_MASK;
504
505 control->intercept_dr_read = INTERCEPT_DR0_MASK |
506 INTERCEPT_DR1_MASK |
507 INTERCEPT_DR2_MASK |
508 INTERCEPT_DR3_MASK;
509
510 control->intercept_dr_write = INTERCEPT_DR0_MASK |
511 INTERCEPT_DR1_MASK |
512 INTERCEPT_DR2_MASK |
513 INTERCEPT_DR3_MASK |
514 INTERCEPT_DR5_MASK |
515 INTERCEPT_DR7_MASK;
516
517 control->intercept_exceptions = (1 << PF_VECTOR) |
518 (1 << UD_VECTOR) |
519 (1 << MC_VECTOR);
520
521
522 control->intercept = (1ULL << INTERCEPT_INTR) |
523 (1ULL << INTERCEPT_NMI) |
524 (1ULL << INTERCEPT_SMI) |
525 (1ULL << INTERCEPT_CPUID) |
526 (1ULL << INTERCEPT_INVD) |
527 (1ULL << INTERCEPT_HLT) |
528 (1ULL << INTERCEPT_INVLPG) |
529 (1ULL << INTERCEPT_INVLPGA) |
530 (1ULL << INTERCEPT_IOIO_PROT) |
531 (1ULL << INTERCEPT_MSR_PROT) |
532 (1ULL << INTERCEPT_TASK_SWITCH) |
533 (1ULL << INTERCEPT_SHUTDOWN) |
534 (1ULL << INTERCEPT_VMRUN) |
535 (1ULL << INTERCEPT_VMMCALL) |
536 (1ULL << INTERCEPT_VMLOAD) |
537 (1ULL << INTERCEPT_VMSAVE) |
538 (1ULL << INTERCEPT_STGI) |
539 (1ULL << INTERCEPT_CLGI) |
540 (1ULL << INTERCEPT_SKINIT) |
541 (1ULL << INTERCEPT_WBINVD) |
542 (1ULL << INTERCEPT_MONITOR) |
543 (1ULL << INTERCEPT_MWAIT);
544
545 control->iopm_base_pa = iopm_base;
546 control->msrpm_base_pa = __pa(svm->msrpm);
547 control->tsc_offset = 0;
548 control->int_ctl = V_INTR_MASKING_MASK;
549
550 init_seg(&save->es);
551 init_seg(&save->ss);
552 init_seg(&save->ds);
553 init_seg(&save->fs);
554 init_seg(&save->gs);
555
556 save->cs.selector = 0xf000;
557 /* Executable/Readable Code Segment */
558 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
559 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
560 save->cs.limit = 0xffff;
561 /*
562 * cs.base should really be 0xffff0000, but vmx can't handle that, so
563 * be consistent with it.
564 *
565 * Replace when we have real mode working for vmx.
566 */
567 save->cs.base = 0xf0000;
568
569 save->gdtr.limit = 0xffff;
570 save->idtr.limit = 0xffff;
571
572 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
573 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
574
575 save->efer = MSR_EFER_SVME_MASK;
576 save->dr6 = 0xffff0ff0;
577 save->dr7 = 0x400;
578 save->rflags = 2;
579 save->rip = 0x0000fff0;
580 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
581
582 /*
583 * cr0 val on cpu init should be 0x60000010, we enable cpu
584 * cache by default. the orderly way is to enable cache in bios.
585 */
586 save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
587 save->cr4 = X86_CR4_PAE;
588 /* rdx = ?? */
589
590 if (npt_enabled) {
591 /* Setup VMCB for Nested Paging */
592 control->nested_ctl = 1;
593 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
594 (1ULL << INTERCEPT_INVLPG));
595 control->intercept_exceptions &= ~(1 << PF_VECTOR);
596 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
597 INTERCEPT_CR3_MASK);
598 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
599 INTERCEPT_CR3_MASK);
600 save->g_pat = 0x0007040600070406ULL;
601 /* enable caching because the QEMU Bios doesn't enable it */
602 save->cr0 = X86_CR0_ET;
603 save->cr3 = 0;
604 save->cr4 = 0;
605 }
606 force_new_asid(&svm->vcpu);
607 }
608
609 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
610 {
611 struct vcpu_svm *svm = to_svm(vcpu);
612
613 init_vmcb(svm);
614
615 if (vcpu->vcpu_id != 0) {
616 kvm_rip_write(vcpu, 0);
617 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
618 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
619 }
620 vcpu->arch.regs_avail = ~0;
621 vcpu->arch.regs_dirty = ~0;
622
623 return 0;
624 }
625
626 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
627 {
628 struct vcpu_svm *svm;
629 struct page *page;
630 struct page *msrpm_pages;
631 int err;
632
633 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
634 if (!svm) {
635 err = -ENOMEM;
636 goto out;
637 }
638
639 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
640 if (err)
641 goto free_svm;
642
643 page = alloc_page(GFP_KERNEL);
644 if (!page) {
645 err = -ENOMEM;
646 goto uninit;
647 }
648
649 err = -ENOMEM;
650 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
651 if (!msrpm_pages)
652 goto uninit;
653 svm->msrpm = page_address(msrpm_pages);
654 svm_vcpu_init_msrpm(svm->msrpm);
655
656 svm->vmcb = page_address(page);
657 clear_page(svm->vmcb);
658 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
659 svm->asid_generation = 0;
660 memset(svm->db_regs, 0, sizeof(svm->db_regs));
661 init_vmcb(svm);
662
663 fx_init(&svm->vcpu);
664 svm->vcpu.fpu_active = 1;
665 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
666 if (svm->vcpu.vcpu_id == 0)
667 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
668
669 return &svm->vcpu;
670
671 uninit:
672 kvm_vcpu_uninit(&svm->vcpu);
673 free_svm:
674 kmem_cache_free(kvm_vcpu_cache, svm);
675 out:
676 return ERR_PTR(err);
677 }
678
679 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
680 {
681 struct vcpu_svm *svm = to_svm(vcpu);
682
683 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
684 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
685 kvm_vcpu_uninit(vcpu);
686 kmem_cache_free(kvm_vcpu_cache, svm);
687 }
688
689 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
690 {
691 struct vcpu_svm *svm = to_svm(vcpu);
692 int i;
693
694 if (unlikely(cpu != vcpu->cpu)) {
695 u64 tsc_this, delta;
696
697 /*
698 * Make sure that the guest sees a monotonically
699 * increasing TSC.
700 */
701 rdtscll(tsc_this);
702 delta = vcpu->arch.host_tsc - tsc_this;
703 svm->vmcb->control.tsc_offset += delta;
704 vcpu->cpu = cpu;
705 kvm_migrate_timers(vcpu);
706 }
707
708 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
709 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
710 }
711
712 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
713 {
714 struct vcpu_svm *svm = to_svm(vcpu);
715 int i;
716
717 ++vcpu->stat.host_state_reload;
718 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
719 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
720
721 rdtscll(vcpu->arch.host_tsc);
722 }
723
724 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
725 {
726 return to_svm(vcpu)->vmcb->save.rflags;
727 }
728
729 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
730 {
731 to_svm(vcpu)->vmcb->save.rflags = rflags;
732 }
733
734 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
735 {
736 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
737
738 switch (seg) {
739 case VCPU_SREG_CS: return &save->cs;
740 case VCPU_SREG_DS: return &save->ds;
741 case VCPU_SREG_ES: return &save->es;
742 case VCPU_SREG_FS: return &save->fs;
743 case VCPU_SREG_GS: return &save->gs;
744 case VCPU_SREG_SS: return &save->ss;
745 case VCPU_SREG_TR: return &save->tr;
746 case VCPU_SREG_LDTR: return &save->ldtr;
747 }
748 BUG();
749 return NULL;
750 }
751
752 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
753 {
754 struct vmcb_seg *s = svm_seg(vcpu, seg);
755
756 return s->base;
757 }
758
759 static void svm_get_segment(struct kvm_vcpu *vcpu,
760 struct kvm_segment *var, int seg)
761 {
762 struct vmcb_seg *s = svm_seg(vcpu, seg);
763
764 var->base = s->base;
765 var->limit = s->limit;
766 var->selector = s->selector;
767 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
768 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
769 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
770 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
771 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
772 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
773 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
774 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
775 var->unusable = !var->present;
776 }
777
778 static int svm_get_cpl(struct kvm_vcpu *vcpu)
779 {
780 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
781
782 return save->cpl;
783 }
784
785 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
786 {
787 struct vcpu_svm *svm = to_svm(vcpu);
788
789 dt->limit = svm->vmcb->save.idtr.limit;
790 dt->base = svm->vmcb->save.idtr.base;
791 }
792
793 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
794 {
795 struct vcpu_svm *svm = to_svm(vcpu);
796
797 svm->vmcb->save.idtr.limit = dt->limit;
798 svm->vmcb->save.idtr.base = dt->base ;
799 }
800
801 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
802 {
803 struct vcpu_svm *svm = to_svm(vcpu);
804
805 dt->limit = svm->vmcb->save.gdtr.limit;
806 dt->base = svm->vmcb->save.gdtr.base;
807 }
808
809 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
810 {
811 struct vcpu_svm *svm = to_svm(vcpu);
812
813 svm->vmcb->save.gdtr.limit = dt->limit;
814 svm->vmcb->save.gdtr.base = dt->base ;
815 }
816
817 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
818 {
819 }
820
821 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
822 {
823 struct vcpu_svm *svm = to_svm(vcpu);
824
825 #ifdef CONFIG_X86_64
826 if (vcpu->arch.shadow_efer & EFER_LME) {
827 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
828 vcpu->arch.shadow_efer |= EFER_LMA;
829 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
830 }
831
832 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
833 vcpu->arch.shadow_efer &= ~EFER_LMA;
834 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
835 }
836 }
837 #endif
838 if (npt_enabled)
839 goto set;
840
841 if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
842 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
843 vcpu->fpu_active = 1;
844 }
845
846 vcpu->arch.cr0 = cr0;
847 cr0 |= X86_CR0_PG | X86_CR0_WP;
848 if (!vcpu->fpu_active) {
849 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
850 cr0 |= X86_CR0_TS;
851 }
852 set:
853 /*
854 * re-enable caching here because the QEMU bios
855 * does not do it - this results in some delay at
856 * reboot
857 */
858 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
859 svm->vmcb->save.cr0 = cr0;
860 }
861
862 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
863 {
864 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
865 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
866
867 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
868 force_new_asid(vcpu);
869
870 vcpu->arch.cr4 = cr4;
871 if (!npt_enabled)
872 cr4 |= X86_CR4_PAE;
873 cr4 |= host_cr4_mce;
874 to_svm(vcpu)->vmcb->save.cr4 = cr4;
875 }
876
877 static void svm_set_segment(struct kvm_vcpu *vcpu,
878 struct kvm_segment *var, int seg)
879 {
880 struct vcpu_svm *svm = to_svm(vcpu);
881 struct vmcb_seg *s = svm_seg(vcpu, seg);
882
883 s->base = var->base;
884 s->limit = var->limit;
885 s->selector = var->selector;
886 if (var->unusable)
887 s->attrib = 0;
888 else {
889 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
890 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
891 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
892 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
893 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
894 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
895 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
896 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
897 }
898 if (seg == VCPU_SREG_CS)
899 svm->vmcb->save.cpl
900 = (svm->vmcb->save.cs.attrib
901 >> SVM_SELECTOR_DPL_SHIFT) & 3;
902
903 }
904
905 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
906 {
907 return -EOPNOTSUPP;
908 }
909
910 static int svm_get_irq(struct kvm_vcpu *vcpu)
911 {
912 struct vcpu_svm *svm = to_svm(vcpu);
913 u32 exit_int_info = svm->vmcb->control.exit_int_info;
914
915 if (is_external_interrupt(exit_int_info))
916 return exit_int_info & SVM_EVTINJ_VEC_MASK;
917 return -1;
918 }
919
920 static void load_host_msrs(struct kvm_vcpu *vcpu)
921 {
922 #ifdef CONFIG_X86_64
923 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
924 #endif
925 }
926
927 static void save_host_msrs(struct kvm_vcpu *vcpu)
928 {
929 #ifdef CONFIG_X86_64
930 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
931 #endif
932 }
933
934 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
935 {
936 if (svm_data->next_asid > svm_data->max_asid) {
937 ++svm_data->asid_generation;
938 svm_data->next_asid = 1;
939 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
940 }
941
942 svm->vcpu.cpu = svm_data->cpu;
943 svm->asid_generation = svm_data->asid_generation;
944 svm->vmcb->control.asid = svm_data->next_asid++;
945 }
946
947 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
948 {
949 unsigned long val = to_svm(vcpu)->db_regs[dr];
950 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
951 return val;
952 }
953
954 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
955 int *exception)
956 {
957 struct vcpu_svm *svm = to_svm(vcpu);
958
959 *exception = 0;
960
961 if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
962 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
963 svm->vmcb->save.dr6 |= DR6_BD_MASK;
964 *exception = DB_VECTOR;
965 return;
966 }
967
968 switch (dr) {
969 case 0 ... 3:
970 svm->db_regs[dr] = value;
971 return;
972 case 4 ... 5:
973 if (vcpu->arch.cr4 & X86_CR4_DE) {
974 *exception = UD_VECTOR;
975 return;
976 }
977 case 7: {
978 if (value & ~((1ULL << 32) - 1)) {
979 *exception = GP_VECTOR;
980 return;
981 }
982 svm->vmcb->save.dr7 = value;
983 return;
984 }
985 default:
986 printk(KERN_DEBUG "%s: unexpected dr %u\n",
987 __func__, dr);
988 *exception = UD_VECTOR;
989 return;
990 }
991 }
992
993 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
994 {
995 u32 exit_int_info = svm->vmcb->control.exit_int_info;
996 struct kvm *kvm = svm->vcpu.kvm;
997 u64 fault_address;
998 u32 error_code;
999 bool event_injection = false;
1000
1001 if (!irqchip_in_kernel(kvm) &&
1002 is_external_interrupt(exit_int_info)) {
1003 event_injection = true;
1004 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
1005 }
1006
1007 fault_address = svm->vmcb->control.exit_info_2;
1008 error_code = svm->vmcb->control.exit_info_1;
1009
1010 if (!npt_enabled)
1011 KVMTRACE_3D(PAGE_FAULT, &svm->vcpu, error_code,
1012 (u32)fault_address, (u32)(fault_address >> 32),
1013 handler);
1014 else
1015 KVMTRACE_3D(TDP_FAULT, &svm->vcpu, error_code,
1016 (u32)fault_address, (u32)(fault_address >> 32),
1017 handler);
1018 /*
1019 * FIXME: Tis shouldn't be necessary here, but there is a flush
1020 * missing in the MMU code. Until we find this bug, flush the
1021 * complete TLB here on an NPF
1022 */
1023 if (npt_enabled)
1024 svm_flush_tlb(&svm->vcpu);
1025
1026 if (!npt_enabled && event_injection)
1027 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1028 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1029 }
1030
1031 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1032 {
1033 int er;
1034
1035 er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1036 if (er != EMULATE_DONE)
1037 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1038 return 1;
1039 }
1040
1041 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1042 {
1043 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1044 if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1045 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1046 svm->vcpu.fpu_active = 1;
1047
1048 return 1;
1049 }
1050
1051 static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1052 {
1053 /*
1054 * On an #MC intercept the MCE handler is not called automatically in
1055 * the host. So do it by hand here.
1056 */
1057 asm volatile (
1058 "int $0x12\n");
1059 /* not sure if we ever come back to this point */
1060
1061 return 1;
1062 }
1063
1064 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1065 {
1066 /*
1067 * VMCB is undefined after a SHUTDOWN intercept
1068 * so reinitialize it.
1069 */
1070 clear_page(svm->vmcb);
1071 init_vmcb(svm);
1072
1073 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1074 return 0;
1075 }
1076
1077 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1078 {
1079 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1080 int size, down, in, string, rep;
1081 unsigned port;
1082
1083 ++svm->vcpu.stat.io_exits;
1084
1085 svm->next_rip = svm->vmcb->control.exit_info_2;
1086
1087 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1088
1089 if (string) {
1090 if (emulate_instruction(&svm->vcpu,
1091 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1092 return 0;
1093 return 1;
1094 }
1095
1096 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1097 port = io_info >> 16;
1098 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1099 rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1100 down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1101
1102 return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1103 }
1104
1105 static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1106 {
1107 KVMTRACE_0D(NMI, &svm->vcpu, handler);
1108 return 1;
1109 }
1110
1111 static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1112 {
1113 ++svm->vcpu.stat.irq_exits;
1114 KVMTRACE_0D(INTR, &svm->vcpu, handler);
1115 return 1;
1116 }
1117
1118 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1119 {
1120 return 1;
1121 }
1122
1123 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1124 {
1125 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1126 skip_emulated_instruction(&svm->vcpu);
1127 return kvm_emulate_halt(&svm->vcpu);
1128 }
1129
1130 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1131 {
1132 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1133 skip_emulated_instruction(&svm->vcpu);
1134 kvm_emulate_hypercall(&svm->vcpu);
1135 return 1;
1136 }
1137
1138 static int invalid_op_interception(struct vcpu_svm *svm,
1139 struct kvm_run *kvm_run)
1140 {
1141 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1142 return 1;
1143 }
1144
1145 static int task_switch_interception(struct vcpu_svm *svm,
1146 struct kvm_run *kvm_run)
1147 {
1148 u16 tss_selector;
1149
1150 tss_selector = (u16)svm->vmcb->control.exit_info_1;
1151 if (svm->vmcb->control.exit_info_2 &
1152 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
1153 return kvm_task_switch(&svm->vcpu, tss_selector,
1154 TASK_SWITCH_IRET);
1155 if (svm->vmcb->control.exit_info_2 &
1156 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
1157 return kvm_task_switch(&svm->vcpu, tss_selector,
1158 TASK_SWITCH_JMP);
1159 return kvm_task_switch(&svm->vcpu, tss_selector, TASK_SWITCH_CALL);
1160 }
1161
1162 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1163 {
1164 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1165 kvm_emulate_cpuid(&svm->vcpu);
1166 return 1;
1167 }
1168
1169 static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1170 {
1171 if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE)
1172 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
1173 return 1;
1174 }
1175
1176 static int emulate_on_interception(struct vcpu_svm *svm,
1177 struct kvm_run *kvm_run)
1178 {
1179 if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
1180 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
1181 return 1;
1182 }
1183
1184 static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1185 {
1186 emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
1187 if (irqchip_in_kernel(svm->vcpu.kvm))
1188 return 1;
1189 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1190 return 0;
1191 }
1192
1193 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1194 {
1195 struct vcpu_svm *svm = to_svm(vcpu);
1196
1197 switch (ecx) {
1198 case MSR_IA32_TIME_STAMP_COUNTER: {
1199 u64 tsc;
1200
1201 rdtscll(tsc);
1202 *data = svm->vmcb->control.tsc_offset + tsc;
1203 break;
1204 }
1205 case MSR_K6_STAR:
1206 *data = svm->vmcb->save.star;
1207 break;
1208 #ifdef CONFIG_X86_64
1209 case MSR_LSTAR:
1210 *data = svm->vmcb->save.lstar;
1211 break;
1212 case MSR_CSTAR:
1213 *data = svm->vmcb->save.cstar;
1214 break;
1215 case MSR_KERNEL_GS_BASE:
1216 *data = svm->vmcb->save.kernel_gs_base;
1217 break;
1218 case MSR_SYSCALL_MASK:
1219 *data = svm->vmcb->save.sfmask;
1220 break;
1221 #endif
1222 case MSR_IA32_SYSENTER_CS:
1223 *data = svm->vmcb->save.sysenter_cs;
1224 break;
1225 case MSR_IA32_SYSENTER_EIP:
1226 *data = svm->vmcb->save.sysenter_eip;
1227 break;
1228 case MSR_IA32_SYSENTER_ESP:
1229 *data = svm->vmcb->save.sysenter_esp;
1230 break;
1231 /* Nobody will change the following 5 values in the VMCB so
1232 we can safely return them on rdmsr. They will always be 0
1233 until LBRV is implemented. */
1234 case MSR_IA32_DEBUGCTLMSR:
1235 *data = svm->vmcb->save.dbgctl;
1236 break;
1237 case MSR_IA32_LASTBRANCHFROMIP:
1238 *data = svm->vmcb->save.br_from;
1239 break;
1240 case MSR_IA32_LASTBRANCHTOIP:
1241 *data = svm->vmcb->save.br_to;
1242 break;
1243 case MSR_IA32_LASTINTFROMIP:
1244 *data = svm->vmcb->save.last_excp_from;
1245 break;
1246 case MSR_IA32_LASTINTTOIP:
1247 *data = svm->vmcb->save.last_excp_to;
1248 break;
1249 default:
1250 return kvm_get_msr_common(vcpu, ecx, data);
1251 }
1252 return 0;
1253 }
1254
1255 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1256 {
1257 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1258 u64 data;
1259
1260 if (svm_get_msr(&svm->vcpu, ecx, &data))
1261 kvm_inject_gp(&svm->vcpu, 0);
1262 else {
1263 KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
1264 (u32)(data >> 32), handler);
1265
1266 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
1267 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
1268 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1269 skip_emulated_instruction(&svm->vcpu);
1270 }
1271 return 1;
1272 }
1273
1274 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1275 {
1276 struct vcpu_svm *svm = to_svm(vcpu);
1277
1278 switch (ecx) {
1279 case MSR_IA32_TIME_STAMP_COUNTER: {
1280 u64 tsc;
1281
1282 rdtscll(tsc);
1283 svm->vmcb->control.tsc_offset = data - tsc;
1284 break;
1285 }
1286 case MSR_K6_STAR:
1287 svm->vmcb->save.star = data;
1288 break;
1289 #ifdef CONFIG_X86_64
1290 case MSR_LSTAR:
1291 svm->vmcb->save.lstar = data;
1292 break;
1293 case MSR_CSTAR:
1294 svm->vmcb->save.cstar = data;
1295 break;
1296 case MSR_KERNEL_GS_BASE:
1297 svm->vmcb->save.kernel_gs_base = data;
1298 break;
1299 case MSR_SYSCALL_MASK:
1300 svm->vmcb->save.sfmask = data;
1301 break;
1302 #endif
1303 case MSR_IA32_SYSENTER_CS:
1304 svm->vmcb->save.sysenter_cs = data;
1305 break;
1306 case MSR_IA32_SYSENTER_EIP:
1307 svm->vmcb->save.sysenter_eip = data;
1308 break;
1309 case MSR_IA32_SYSENTER_ESP:
1310 svm->vmcb->save.sysenter_esp = data;
1311 break;
1312 case MSR_IA32_DEBUGCTLMSR:
1313 if (!svm_has(SVM_FEATURE_LBRV)) {
1314 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
1315 __func__, data);
1316 break;
1317 }
1318 if (data & DEBUGCTL_RESERVED_BITS)
1319 return 1;
1320
1321 svm->vmcb->save.dbgctl = data;
1322 if (data & (1ULL<<0))
1323 svm_enable_lbrv(svm);
1324 else
1325 svm_disable_lbrv(svm);
1326 break;
1327 case MSR_K7_EVNTSEL0:
1328 case MSR_K7_EVNTSEL1:
1329 case MSR_K7_EVNTSEL2:
1330 case MSR_K7_EVNTSEL3:
1331 case MSR_K7_PERFCTR0:
1332 case MSR_K7_PERFCTR1:
1333 case MSR_K7_PERFCTR2:
1334 case MSR_K7_PERFCTR3:
1335 /*
1336 * Just discard all writes to the performance counters; this
1337 * should keep both older linux and windows 64-bit guests
1338 * happy
1339 */
1340 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx, data);
1341
1342 break;
1343 default:
1344 return kvm_set_msr_common(vcpu, ecx, data);
1345 }
1346 return 0;
1347 }
1348
1349 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1350 {
1351 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1352 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
1353 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
1354
1355 KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
1356 handler);
1357
1358 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1359 if (svm_set_msr(&svm->vcpu, ecx, data))
1360 kvm_inject_gp(&svm->vcpu, 0);
1361 else
1362 skip_emulated_instruction(&svm->vcpu);
1363 return 1;
1364 }
1365
1366 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1367 {
1368 if (svm->vmcb->control.exit_info_1)
1369 return wrmsr_interception(svm, kvm_run);
1370 else
1371 return rdmsr_interception(svm, kvm_run);
1372 }
1373
1374 static int interrupt_window_interception(struct vcpu_svm *svm,
1375 struct kvm_run *kvm_run)
1376 {
1377 KVMTRACE_0D(PEND_INTR, &svm->vcpu, handler);
1378
1379 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1380 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1381 /*
1382 * If the user space waits to inject interrupts, exit as soon as
1383 * possible
1384 */
1385 if (kvm_run->request_interrupt_window &&
1386 !svm->vcpu.arch.irq_summary) {
1387 ++svm->vcpu.stat.irq_window_exits;
1388 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1389 return 0;
1390 }
1391
1392 return 1;
1393 }
1394
1395 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1396 struct kvm_run *kvm_run) = {
1397 [SVM_EXIT_READ_CR0] = emulate_on_interception,
1398 [SVM_EXIT_READ_CR3] = emulate_on_interception,
1399 [SVM_EXIT_READ_CR4] = emulate_on_interception,
1400 [SVM_EXIT_READ_CR8] = emulate_on_interception,
1401 /* for now: */
1402 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
1403 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
1404 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
1405 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
1406 [SVM_EXIT_READ_DR0] = emulate_on_interception,
1407 [SVM_EXIT_READ_DR1] = emulate_on_interception,
1408 [SVM_EXIT_READ_DR2] = emulate_on_interception,
1409 [SVM_EXIT_READ_DR3] = emulate_on_interception,
1410 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
1411 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
1412 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
1413 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
1414 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
1415 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
1416 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
1417 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
1418 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
1419 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
1420 [SVM_EXIT_INTR] = intr_interception,
1421 [SVM_EXIT_NMI] = nmi_interception,
1422 [SVM_EXIT_SMI] = nop_on_interception,
1423 [SVM_EXIT_INIT] = nop_on_interception,
1424 [SVM_EXIT_VINTR] = interrupt_window_interception,
1425 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
1426 [SVM_EXIT_CPUID] = cpuid_interception,
1427 [SVM_EXIT_INVD] = emulate_on_interception,
1428 [SVM_EXIT_HLT] = halt_interception,
1429 [SVM_EXIT_INVLPG] = invlpg_interception,
1430 [SVM_EXIT_INVLPGA] = invalid_op_interception,
1431 [SVM_EXIT_IOIO] = io_interception,
1432 [SVM_EXIT_MSR] = msr_interception,
1433 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
1434 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
1435 [SVM_EXIT_VMRUN] = invalid_op_interception,
1436 [SVM_EXIT_VMMCALL] = vmmcall_interception,
1437 [SVM_EXIT_VMLOAD] = invalid_op_interception,
1438 [SVM_EXIT_VMSAVE] = invalid_op_interception,
1439 [SVM_EXIT_STGI] = invalid_op_interception,
1440 [SVM_EXIT_CLGI] = invalid_op_interception,
1441 [SVM_EXIT_SKINIT] = invalid_op_interception,
1442 [SVM_EXIT_WBINVD] = emulate_on_interception,
1443 [SVM_EXIT_MONITOR] = invalid_op_interception,
1444 [SVM_EXIT_MWAIT] = invalid_op_interception,
1445 [SVM_EXIT_NPF] = pf_interception,
1446 };
1447
1448 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1449 {
1450 struct vcpu_svm *svm = to_svm(vcpu);
1451 u32 exit_code = svm->vmcb->control.exit_code;
1452
1453 KVMTRACE_3D(VMEXIT, vcpu, exit_code, (u32)svm->vmcb->save.rip,
1454 (u32)((u64)svm->vmcb->save.rip >> 32), entryexit);
1455
1456 if (npt_enabled) {
1457 int mmu_reload = 0;
1458 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
1459 svm_set_cr0(vcpu, svm->vmcb->save.cr0);
1460 mmu_reload = 1;
1461 }
1462 vcpu->arch.cr0 = svm->vmcb->save.cr0;
1463 vcpu->arch.cr3 = svm->vmcb->save.cr3;
1464 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1465 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1466 kvm_inject_gp(vcpu, 0);
1467 return 1;
1468 }
1469 }
1470 if (mmu_reload) {
1471 kvm_mmu_reset_context(vcpu);
1472 kvm_mmu_load(vcpu);
1473 }
1474 }
1475
1476 kvm_reput_irq(svm);
1477
1478 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1479 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1480 kvm_run->fail_entry.hardware_entry_failure_reason
1481 = svm->vmcb->control.exit_code;
1482 return 0;
1483 }
1484
1485 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1486 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
1487 exit_code != SVM_EXIT_NPF)
1488 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1489 "exit_code 0x%x\n",
1490 __func__, svm->vmcb->control.exit_int_info,
1491 exit_code);
1492
1493 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1494 || !svm_exit_handlers[exit_code]) {
1495 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1496 kvm_run->hw.hardware_exit_reason = exit_code;
1497 return 0;
1498 }
1499
1500 return svm_exit_handlers[exit_code](svm, kvm_run);
1501 }
1502
1503 static void reload_tss(struct kvm_vcpu *vcpu)
1504 {
1505 int cpu = raw_smp_processor_id();
1506
1507 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1508 svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
1509 load_TR_desc();
1510 }
1511
1512 static void pre_svm_run(struct vcpu_svm *svm)
1513 {
1514 int cpu = raw_smp_processor_id();
1515
1516 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1517
1518 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1519 if (svm->vcpu.cpu != cpu ||
1520 svm->asid_generation != svm_data->asid_generation)
1521 new_asid(svm, svm_data);
1522 }
1523
1524
1525 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1526 {
1527 struct vmcb_control_area *control;
1528
1529 KVMTRACE_1D(INJ_VIRQ, &svm->vcpu, (u32)irq, handler);
1530
1531 ++svm->vcpu.stat.irq_injections;
1532 control = &svm->vmcb->control;
1533 control->int_vector = irq;
1534 control->int_ctl &= ~V_INTR_PRIO_MASK;
1535 control->int_ctl |= V_IRQ_MASK |
1536 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1537 }
1538
1539 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1540 {
1541 struct vcpu_svm *svm = to_svm(vcpu);
1542
1543 svm_inject_irq(svm, irq);
1544 }
1545
1546 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
1547 {
1548 struct vcpu_svm *svm = to_svm(vcpu);
1549 struct vmcb *vmcb = svm->vmcb;
1550 int max_irr, tpr;
1551
1552 if (!irqchip_in_kernel(vcpu->kvm) || vcpu->arch.apic->vapic_addr)
1553 return;
1554
1555 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
1556
1557 max_irr = kvm_lapic_find_highest_irr(vcpu);
1558 if (max_irr == -1)
1559 return;
1560
1561 tpr = kvm_lapic_get_cr8(vcpu) << 4;
1562
1563 if (tpr >= (max_irr & 0xf0))
1564 vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
1565 }
1566
1567 static void svm_intr_assist(struct kvm_vcpu *vcpu)
1568 {
1569 struct vcpu_svm *svm = to_svm(vcpu);
1570 struct vmcb *vmcb = svm->vmcb;
1571 int intr_vector = -1;
1572
1573 if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1574 ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1575 intr_vector = vmcb->control.exit_int_info &
1576 SVM_EVTINJ_VEC_MASK;
1577 vmcb->control.exit_int_info = 0;
1578 svm_inject_irq(svm, intr_vector);
1579 goto out;
1580 }
1581
1582 if (vmcb->control.int_ctl & V_IRQ_MASK)
1583 goto out;
1584
1585 if (!kvm_cpu_has_interrupt(vcpu))
1586 goto out;
1587
1588 if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1589 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1590 (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1591 /* unable to deliver irq, set pending irq */
1592 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1593 svm_inject_irq(svm, 0x0);
1594 goto out;
1595 }
1596 /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1597 intr_vector = kvm_cpu_get_interrupt(vcpu);
1598 svm_inject_irq(svm, intr_vector);
1599 kvm_timer_intr_post(vcpu, intr_vector);
1600 out:
1601 update_cr8_intercept(vcpu);
1602 }
1603
1604 static void kvm_reput_irq(struct vcpu_svm *svm)
1605 {
1606 struct vmcb_control_area *control = &svm->vmcb->control;
1607
1608 if ((control->int_ctl & V_IRQ_MASK)
1609 && !irqchip_in_kernel(svm->vcpu.kvm)) {
1610 control->int_ctl &= ~V_IRQ_MASK;
1611 push_irq(&svm->vcpu, control->int_vector);
1612 }
1613
1614 svm->vcpu.arch.interrupt_window_open =
1615 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1616 }
1617
1618 static void svm_do_inject_vector(struct vcpu_svm *svm)
1619 {
1620 struct kvm_vcpu *vcpu = &svm->vcpu;
1621 int word_index = __ffs(vcpu->arch.irq_summary);
1622 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1623 int irq = word_index * BITS_PER_LONG + bit_index;
1624
1625 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1626 if (!vcpu->arch.irq_pending[word_index])
1627 clear_bit(word_index, &vcpu->arch.irq_summary);
1628 svm_inject_irq(svm, irq);
1629 }
1630
1631 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1632 struct kvm_run *kvm_run)
1633 {
1634 struct vcpu_svm *svm = to_svm(vcpu);
1635 struct vmcb_control_area *control = &svm->vmcb->control;
1636
1637 svm->vcpu.arch.interrupt_window_open =
1638 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1639 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1640
1641 if (svm->vcpu.arch.interrupt_window_open && svm->vcpu.arch.irq_summary)
1642 /*
1643 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1644 */
1645 svm_do_inject_vector(svm);
1646
1647 /*
1648 * Interrupts blocked. Wait for unblock.
1649 */
1650 if (!svm->vcpu.arch.interrupt_window_open &&
1651 (svm->vcpu.arch.irq_summary || kvm_run->request_interrupt_window))
1652 control->intercept |= 1ULL << INTERCEPT_VINTR;
1653 else
1654 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1655 }
1656
1657 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
1658 {
1659 return 0;
1660 }
1661
1662 static void save_db_regs(unsigned long *db_regs)
1663 {
1664 asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1665 asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1666 asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1667 asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1668 }
1669
1670 static void load_db_regs(unsigned long *db_regs)
1671 {
1672 asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1673 asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1674 asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1675 asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1676 }
1677
1678 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1679 {
1680 force_new_asid(vcpu);
1681 }
1682
1683 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1684 {
1685 }
1686
1687 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
1688 {
1689 struct vcpu_svm *svm = to_svm(vcpu);
1690
1691 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
1692 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
1693 kvm_lapic_set_tpr(vcpu, cr8);
1694 }
1695 }
1696
1697 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
1698 {
1699 struct vcpu_svm *svm = to_svm(vcpu);
1700 u64 cr8;
1701
1702 if (!irqchip_in_kernel(vcpu->kvm))
1703 return;
1704
1705 cr8 = kvm_get_cr8(vcpu);
1706 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
1707 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
1708 }
1709
1710 #ifdef CONFIG_X86_64
1711 #define R "r"
1712 #else
1713 #define R "e"
1714 #endif
1715
1716 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1717 {
1718 struct vcpu_svm *svm = to_svm(vcpu);
1719 u16 fs_selector;
1720 u16 gs_selector;
1721 u16 ldt_selector;
1722
1723 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
1724 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
1725 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
1726
1727 pre_svm_run(svm);
1728
1729 sync_lapic_to_cr8(vcpu);
1730
1731 save_host_msrs(vcpu);
1732 fs_selector = kvm_read_fs();
1733 gs_selector = kvm_read_gs();
1734 ldt_selector = kvm_read_ldt();
1735 svm->host_cr2 = kvm_read_cr2();
1736 svm->host_dr6 = read_dr6();
1737 svm->host_dr7 = read_dr7();
1738 svm->vmcb->save.cr2 = vcpu->arch.cr2;
1739 /* required for live migration with NPT */
1740 if (npt_enabled)
1741 svm->vmcb->save.cr3 = vcpu->arch.cr3;
1742
1743 if (svm->vmcb->save.dr7 & 0xff) {
1744 write_dr7(0);
1745 save_db_regs(svm->host_db_regs);
1746 load_db_regs(svm->db_regs);
1747 }
1748
1749 clgi();
1750
1751 local_irq_enable();
1752
1753 asm volatile (
1754 "push %%"R"bp; \n\t"
1755 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
1756 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
1757 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
1758 "mov %c[rsi](%[svm]), %%"R"si \n\t"
1759 "mov %c[rdi](%[svm]), %%"R"di \n\t"
1760 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
1761 #ifdef CONFIG_X86_64
1762 "mov %c[r8](%[svm]), %%r8 \n\t"
1763 "mov %c[r9](%[svm]), %%r9 \n\t"
1764 "mov %c[r10](%[svm]), %%r10 \n\t"
1765 "mov %c[r11](%[svm]), %%r11 \n\t"
1766 "mov %c[r12](%[svm]), %%r12 \n\t"
1767 "mov %c[r13](%[svm]), %%r13 \n\t"
1768 "mov %c[r14](%[svm]), %%r14 \n\t"
1769 "mov %c[r15](%[svm]), %%r15 \n\t"
1770 #endif
1771
1772 /* Enter guest mode */
1773 "push %%"R"ax \n\t"
1774 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
1775 __ex(SVM_VMLOAD) "\n\t"
1776 __ex(SVM_VMRUN) "\n\t"
1777 __ex(SVM_VMSAVE) "\n\t"
1778 "pop %%"R"ax \n\t"
1779
1780 /* Save guest registers, load host registers */
1781 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
1782 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
1783 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
1784 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
1785 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
1786 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
1787 #ifdef CONFIG_X86_64
1788 "mov %%r8, %c[r8](%[svm]) \n\t"
1789 "mov %%r9, %c[r9](%[svm]) \n\t"
1790 "mov %%r10, %c[r10](%[svm]) \n\t"
1791 "mov %%r11, %c[r11](%[svm]) \n\t"
1792 "mov %%r12, %c[r12](%[svm]) \n\t"
1793 "mov %%r13, %c[r13](%[svm]) \n\t"
1794 "mov %%r14, %c[r14](%[svm]) \n\t"
1795 "mov %%r15, %c[r15](%[svm]) \n\t"
1796 #endif
1797 "pop %%"R"bp"
1798 :
1799 : [svm]"a"(svm),
1800 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1801 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
1802 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
1803 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
1804 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
1805 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
1806 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
1807 #ifdef CONFIG_X86_64
1808 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
1809 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
1810 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
1811 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
1812 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
1813 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
1814 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
1815 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
1816 #endif
1817 : "cc", "memory"
1818 , R"bx", R"cx", R"dx", R"si", R"di"
1819 #ifdef CONFIG_X86_64
1820 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
1821 #endif
1822 );
1823
1824 if ((svm->vmcb->save.dr7 & 0xff))
1825 load_db_regs(svm->host_db_regs);
1826
1827 vcpu->arch.cr2 = svm->vmcb->save.cr2;
1828 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
1829 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
1830 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
1831
1832 write_dr6(svm->host_dr6);
1833 write_dr7(svm->host_dr7);
1834 kvm_write_cr2(svm->host_cr2);
1835
1836 kvm_load_fs(fs_selector);
1837 kvm_load_gs(gs_selector);
1838 kvm_load_ldt(ldt_selector);
1839 load_host_msrs(vcpu);
1840
1841 reload_tss(vcpu);
1842
1843 local_irq_disable();
1844
1845 stgi();
1846
1847 sync_cr8_to_lapic(vcpu);
1848
1849 svm->next_rip = 0;
1850 }
1851
1852 #undef R
1853
1854 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1855 {
1856 struct vcpu_svm *svm = to_svm(vcpu);
1857
1858 if (npt_enabled) {
1859 svm->vmcb->control.nested_cr3 = root;
1860 force_new_asid(vcpu);
1861 return;
1862 }
1863
1864 svm->vmcb->save.cr3 = root;
1865 force_new_asid(vcpu);
1866
1867 if (vcpu->fpu_active) {
1868 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1869 svm->vmcb->save.cr0 |= X86_CR0_TS;
1870 vcpu->fpu_active = 0;
1871 }
1872 }
1873
1874 static int is_disabled(void)
1875 {
1876 u64 vm_cr;
1877
1878 rdmsrl(MSR_VM_CR, vm_cr);
1879 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1880 return 1;
1881
1882 return 0;
1883 }
1884
1885 static void
1886 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1887 {
1888 /*
1889 * Patch in the VMMCALL instruction:
1890 */
1891 hypercall[0] = 0x0f;
1892 hypercall[1] = 0x01;
1893 hypercall[2] = 0xd9;
1894 }
1895
1896 static void svm_check_processor_compat(void *rtn)
1897 {
1898 *(int *)rtn = 0;
1899 }
1900
1901 static bool svm_cpu_has_accelerated_tpr(void)
1902 {
1903 return false;
1904 }
1905
1906 static int get_npt_level(void)
1907 {
1908 #ifdef CONFIG_X86_64
1909 return PT64_ROOT_LEVEL;
1910 #else
1911 return PT32E_ROOT_LEVEL;
1912 #endif
1913 }
1914
1915 static struct kvm_x86_ops svm_x86_ops = {
1916 .cpu_has_kvm_support = has_svm,
1917 .disabled_by_bios = is_disabled,
1918 .hardware_setup = svm_hardware_setup,
1919 .hardware_unsetup = svm_hardware_unsetup,
1920 .check_processor_compatibility = svm_check_processor_compat,
1921 .hardware_enable = svm_hardware_enable,
1922 .hardware_disable = svm_hardware_disable,
1923 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
1924
1925 .vcpu_create = svm_create_vcpu,
1926 .vcpu_free = svm_free_vcpu,
1927 .vcpu_reset = svm_vcpu_reset,
1928
1929 .prepare_guest_switch = svm_prepare_guest_switch,
1930 .vcpu_load = svm_vcpu_load,
1931 .vcpu_put = svm_vcpu_put,
1932
1933 .set_guest_debug = svm_guest_debug,
1934 .get_msr = svm_get_msr,
1935 .set_msr = svm_set_msr,
1936 .get_segment_base = svm_get_segment_base,
1937 .get_segment = svm_get_segment,
1938 .set_segment = svm_set_segment,
1939 .get_cpl = svm_get_cpl,
1940 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
1941 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1942 .set_cr0 = svm_set_cr0,
1943 .set_cr3 = svm_set_cr3,
1944 .set_cr4 = svm_set_cr4,
1945 .set_efer = svm_set_efer,
1946 .get_idt = svm_get_idt,
1947 .set_idt = svm_set_idt,
1948 .get_gdt = svm_get_gdt,
1949 .set_gdt = svm_set_gdt,
1950 .get_dr = svm_get_dr,
1951 .set_dr = svm_set_dr,
1952 .get_rflags = svm_get_rflags,
1953 .set_rflags = svm_set_rflags,
1954
1955 .tlb_flush = svm_flush_tlb,
1956
1957 .run = svm_vcpu_run,
1958 .handle_exit = handle_exit,
1959 .skip_emulated_instruction = skip_emulated_instruction,
1960 .patch_hypercall = svm_patch_hypercall,
1961 .get_irq = svm_get_irq,
1962 .set_irq = svm_set_irq,
1963 .queue_exception = svm_queue_exception,
1964 .exception_injected = svm_exception_injected,
1965 .inject_pending_irq = svm_intr_assist,
1966 .inject_pending_vectors = do_interrupt_requests,
1967
1968 .set_tss_addr = svm_set_tss_addr,
1969 .get_tdp_level = get_npt_level,
1970 };
1971
1972 static int __init svm_init(void)
1973 {
1974 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
1975 THIS_MODULE);
1976 }
1977
1978 static void __exit svm_exit(void)
1979 {
1980 kvm_exit();
1981 }
1982
1983 module_init(svm_init)
1984 module_exit(svm_exit)
This page took 0.071751 seconds and 6 git commands to generate.