kvm: svm: reset mmu on VCPU reset
[deliverable/linux.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40
41 #include <asm/virtext.h>
42 #include "trace.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 static const struct x86_cpu_id svm_cpu_id[] = {
50 X86_FEATURE_MATCH(X86_FEATURE_SVM),
51 {}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60
61 #define SVM_FEATURE_NPT (1 << 0)
62 #define SVM_FEATURE_LBRV (1 << 1)
63 #define SVM_FEATURE_SVML (1 << 2)
64 #define SVM_FEATURE_NRIP (1 << 3)
65 #define SVM_FEATURE_TSC_RATE (1 << 4)
66 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
67 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
68 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
69 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
70
71 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
72 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
73 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
74
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
78 #define TSC_RATIO_MIN 0x0000000000000001ULL
79 #define TSC_RATIO_MAX 0x000000ffffffffffULL
80
81 static bool erratum_383_found __read_mostly;
82
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86 MSR_FS_BASE,
87 #endif
88 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 };
90
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92
93 struct kvm_vcpu;
94
95 struct nested_state {
96 struct vmcb *hsave;
97 u64 hsave_msr;
98 u64 vm_cr_msr;
99 u64 vmcb;
100
101 /* These are the merged vectors */
102 u32 *msrpm;
103
104 /* gpa pointers to the real vectors */
105 u64 vmcb_msrpm;
106 u64 vmcb_iopm;
107
108 /* A VMEXIT is required but not yet emulated */
109 bool exit_required;
110
111 /* cache for intercepts of the guest */
112 u32 intercept_cr;
113 u32 intercept_dr;
114 u32 intercept_exceptions;
115 u64 intercept;
116
117 /* Nested Paging related state */
118 u64 nested_cr3;
119 };
120
121 #define MSRPM_OFFSETS 16
122 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
123
124 /*
125 * Set osvw_len to higher value when updated Revision Guides
126 * are published and we know what the new status bits are
127 */
128 static uint64_t osvw_len = 4, osvw_status;
129
130 struct vcpu_svm {
131 struct kvm_vcpu vcpu;
132 struct vmcb *vmcb;
133 unsigned long vmcb_pa;
134 struct svm_cpu_data *svm_data;
135 uint64_t asid_generation;
136 uint64_t sysenter_esp;
137 uint64_t sysenter_eip;
138
139 u64 next_rip;
140
141 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142 struct {
143 u16 fs;
144 u16 gs;
145 u16 ldt;
146 u64 gs_base;
147 } host;
148
149 u32 *msrpm;
150
151 ulong nmi_iret_rip;
152
153 struct nested_state nested;
154
155 bool nmi_singlestep;
156
157 unsigned int3_injected;
158 unsigned long int3_rip;
159 u32 apf_reason;
160
161 u64 tsc_ratio;
162 };
163
164 static DEFINE_PER_CPU(u64, current_tsc_ratio);
165 #define TSC_RATIO_DEFAULT 0x0100000000ULL
166
167 #define MSR_INVALID 0xffffffffU
168
169 static const struct svm_direct_access_msrs {
170 u32 index; /* Index of the MSR */
171 bool always; /* True if intercept is always on */
172 } direct_access_msrs[] = {
173 { .index = MSR_STAR, .always = true },
174 { .index = MSR_IA32_SYSENTER_CS, .always = true },
175 #ifdef CONFIG_X86_64
176 { .index = MSR_GS_BASE, .always = true },
177 { .index = MSR_FS_BASE, .always = true },
178 { .index = MSR_KERNEL_GS_BASE, .always = true },
179 { .index = MSR_LSTAR, .always = true },
180 { .index = MSR_CSTAR, .always = true },
181 { .index = MSR_SYSCALL_MASK, .always = true },
182 #endif
183 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
184 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
185 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
186 { .index = MSR_IA32_LASTINTTOIP, .always = false },
187 { .index = MSR_INVALID, .always = false },
188 };
189
190 /* enable NPT for AMD64 and X86 with PAE */
191 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
192 static bool npt_enabled = true;
193 #else
194 static bool npt_enabled;
195 #endif
196
197 /* allow nested paging (virtualized MMU) for all guests */
198 static int npt = true;
199 module_param(npt, int, S_IRUGO);
200
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, S_IRUGO);
204
205 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
206 static void svm_complete_interrupts(struct vcpu_svm *svm);
207
208 static int nested_svm_exit_handled(struct vcpu_svm *svm);
209 static int nested_svm_intercept(struct vcpu_svm *svm);
210 static int nested_svm_vmexit(struct vcpu_svm *svm);
211 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
212 bool has_error_code, u32 error_code);
213 static u64 __scale_tsc(u64 ratio, u64 tsc);
214
215 enum {
216 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
217 pause filter count */
218 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
219 VMCB_ASID, /* ASID */
220 VMCB_INTR, /* int_ctl, int_vector */
221 VMCB_NPT, /* npt_en, nCR3, gPAT */
222 VMCB_CR, /* CR0, CR3, CR4, EFER */
223 VMCB_DR, /* DR6, DR7 */
224 VMCB_DT, /* GDT, IDT */
225 VMCB_SEG, /* CS, DS, SS, ES, CPL */
226 VMCB_CR2, /* CR2 only */
227 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
228 VMCB_DIRTY_MAX,
229 };
230
231 /* TPR and CR2 are always written before VMRUN */
232 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
233
234 static inline void mark_all_dirty(struct vmcb *vmcb)
235 {
236 vmcb->control.clean = 0;
237 }
238
239 static inline void mark_all_clean(struct vmcb *vmcb)
240 {
241 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
242 & ~VMCB_ALWAYS_DIRTY_MASK;
243 }
244
245 static inline void mark_dirty(struct vmcb *vmcb, int bit)
246 {
247 vmcb->control.clean &= ~(1 << bit);
248 }
249
250 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
251 {
252 return container_of(vcpu, struct vcpu_svm, vcpu);
253 }
254
255 static void recalc_intercepts(struct vcpu_svm *svm)
256 {
257 struct vmcb_control_area *c, *h;
258 struct nested_state *g;
259
260 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
261
262 if (!is_guest_mode(&svm->vcpu))
263 return;
264
265 c = &svm->vmcb->control;
266 h = &svm->nested.hsave->control;
267 g = &svm->nested;
268
269 c->intercept_cr = h->intercept_cr | g->intercept_cr;
270 c->intercept_dr = h->intercept_dr | g->intercept_dr;
271 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
272 c->intercept = h->intercept | g->intercept;
273 }
274
275 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
276 {
277 if (is_guest_mode(&svm->vcpu))
278 return svm->nested.hsave;
279 else
280 return svm->vmcb;
281 }
282
283 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
284 {
285 struct vmcb *vmcb = get_host_vmcb(svm);
286
287 vmcb->control.intercept_cr |= (1U << bit);
288
289 recalc_intercepts(svm);
290 }
291
292 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
293 {
294 struct vmcb *vmcb = get_host_vmcb(svm);
295
296 vmcb->control.intercept_cr &= ~(1U << bit);
297
298 recalc_intercepts(svm);
299 }
300
301 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
302 {
303 struct vmcb *vmcb = get_host_vmcb(svm);
304
305 return vmcb->control.intercept_cr & (1U << bit);
306 }
307
308 static inline void set_dr_intercepts(struct vcpu_svm *svm)
309 {
310 struct vmcb *vmcb = get_host_vmcb(svm);
311
312 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
313 | (1 << INTERCEPT_DR1_READ)
314 | (1 << INTERCEPT_DR2_READ)
315 | (1 << INTERCEPT_DR3_READ)
316 | (1 << INTERCEPT_DR4_READ)
317 | (1 << INTERCEPT_DR5_READ)
318 | (1 << INTERCEPT_DR6_READ)
319 | (1 << INTERCEPT_DR7_READ)
320 | (1 << INTERCEPT_DR0_WRITE)
321 | (1 << INTERCEPT_DR1_WRITE)
322 | (1 << INTERCEPT_DR2_WRITE)
323 | (1 << INTERCEPT_DR3_WRITE)
324 | (1 << INTERCEPT_DR4_WRITE)
325 | (1 << INTERCEPT_DR5_WRITE)
326 | (1 << INTERCEPT_DR6_WRITE)
327 | (1 << INTERCEPT_DR7_WRITE);
328
329 recalc_intercepts(svm);
330 }
331
332 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
333 {
334 struct vmcb *vmcb = get_host_vmcb(svm);
335
336 vmcb->control.intercept_dr = 0;
337
338 recalc_intercepts(svm);
339 }
340
341 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
342 {
343 struct vmcb *vmcb = get_host_vmcb(svm);
344
345 vmcb->control.intercept_exceptions |= (1U << bit);
346
347 recalc_intercepts(svm);
348 }
349
350 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
351 {
352 struct vmcb *vmcb = get_host_vmcb(svm);
353
354 vmcb->control.intercept_exceptions &= ~(1U << bit);
355
356 recalc_intercepts(svm);
357 }
358
359 static inline void set_intercept(struct vcpu_svm *svm, int bit)
360 {
361 struct vmcb *vmcb = get_host_vmcb(svm);
362
363 vmcb->control.intercept |= (1ULL << bit);
364
365 recalc_intercepts(svm);
366 }
367
368 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
369 {
370 struct vmcb *vmcb = get_host_vmcb(svm);
371
372 vmcb->control.intercept &= ~(1ULL << bit);
373
374 recalc_intercepts(svm);
375 }
376
377 static inline void enable_gif(struct vcpu_svm *svm)
378 {
379 svm->vcpu.arch.hflags |= HF_GIF_MASK;
380 }
381
382 static inline void disable_gif(struct vcpu_svm *svm)
383 {
384 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
385 }
386
387 static inline bool gif_set(struct vcpu_svm *svm)
388 {
389 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
390 }
391
392 static unsigned long iopm_base;
393
394 struct kvm_ldttss_desc {
395 u16 limit0;
396 u16 base0;
397 unsigned base1:8, type:5, dpl:2, p:1;
398 unsigned limit1:4, zero0:3, g:1, base2:8;
399 u32 base3;
400 u32 zero1;
401 } __attribute__((packed));
402
403 struct svm_cpu_data {
404 int cpu;
405
406 u64 asid_generation;
407 u32 max_asid;
408 u32 next_asid;
409 struct kvm_ldttss_desc *tss_desc;
410
411 struct page *save_area;
412 };
413
414 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
415
416 struct svm_init_data {
417 int cpu;
418 int r;
419 };
420
421 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
422
423 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
424 #define MSRS_RANGE_SIZE 2048
425 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
426
427 static u32 svm_msrpm_offset(u32 msr)
428 {
429 u32 offset;
430 int i;
431
432 for (i = 0; i < NUM_MSR_MAPS; i++) {
433 if (msr < msrpm_ranges[i] ||
434 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
435 continue;
436
437 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
438 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
439
440 /* Now we have the u8 offset - but need the u32 offset */
441 return offset / 4;
442 }
443
444 /* MSR not in any range */
445 return MSR_INVALID;
446 }
447
448 #define MAX_INST_SIZE 15
449
450 static inline void clgi(void)
451 {
452 asm volatile (__ex(SVM_CLGI));
453 }
454
455 static inline void stgi(void)
456 {
457 asm volatile (__ex(SVM_STGI));
458 }
459
460 static inline void invlpga(unsigned long addr, u32 asid)
461 {
462 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
463 }
464
465 static int get_npt_level(void)
466 {
467 #ifdef CONFIG_X86_64
468 return PT64_ROOT_LEVEL;
469 #else
470 return PT32E_ROOT_LEVEL;
471 #endif
472 }
473
474 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
475 {
476 vcpu->arch.efer = efer;
477 if (!npt_enabled && !(efer & EFER_LMA))
478 efer &= ~EFER_LME;
479
480 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
481 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
482 }
483
484 static int is_external_interrupt(u32 info)
485 {
486 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
487 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
488 }
489
490 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
491 {
492 struct vcpu_svm *svm = to_svm(vcpu);
493 u32 ret = 0;
494
495 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
496 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
497 return ret;
498 }
499
500 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
501 {
502 struct vcpu_svm *svm = to_svm(vcpu);
503
504 if (mask == 0)
505 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
506 else
507 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
508
509 }
510
511 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
512 {
513 struct vcpu_svm *svm = to_svm(vcpu);
514
515 if (svm->vmcb->control.next_rip != 0) {
516 WARN_ON(!static_cpu_has(X86_FEATURE_NRIPS));
517 svm->next_rip = svm->vmcb->control.next_rip;
518 }
519
520 if (!svm->next_rip) {
521 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
522 EMULATE_DONE)
523 printk(KERN_DEBUG "%s: NOP\n", __func__);
524 return;
525 }
526 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
527 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
528 __func__, kvm_rip_read(vcpu), svm->next_rip);
529
530 kvm_rip_write(vcpu, svm->next_rip);
531 svm_set_interrupt_shadow(vcpu, 0);
532 }
533
534 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
535 bool has_error_code, u32 error_code,
536 bool reinject)
537 {
538 struct vcpu_svm *svm = to_svm(vcpu);
539
540 /*
541 * If we are within a nested VM we'd better #VMEXIT and let the guest
542 * handle the exception
543 */
544 if (!reinject &&
545 nested_svm_check_exception(svm, nr, has_error_code, error_code))
546 return;
547
548 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
549 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
550
551 /*
552 * For guest debugging where we have to reinject #BP if some
553 * INT3 is guest-owned:
554 * Emulate nRIP by moving RIP forward. Will fail if injection
555 * raises a fault that is not intercepted. Still better than
556 * failing in all cases.
557 */
558 skip_emulated_instruction(&svm->vcpu);
559 rip = kvm_rip_read(&svm->vcpu);
560 svm->int3_rip = rip + svm->vmcb->save.cs.base;
561 svm->int3_injected = rip - old_rip;
562 }
563
564 svm->vmcb->control.event_inj = nr
565 | SVM_EVTINJ_VALID
566 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
567 | SVM_EVTINJ_TYPE_EXEPT;
568 svm->vmcb->control.event_inj_err = error_code;
569 }
570
571 static void svm_init_erratum_383(void)
572 {
573 u32 low, high;
574 int err;
575 u64 val;
576
577 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
578 return;
579
580 /* Use _safe variants to not break nested virtualization */
581 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
582 if (err)
583 return;
584
585 val |= (1ULL << 47);
586
587 low = lower_32_bits(val);
588 high = upper_32_bits(val);
589
590 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
591
592 erratum_383_found = true;
593 }
594
595 static void svm_init_osvw(struct kvm_vcpu *vcpu)
596 {
597 /*
598 * Guests should see errata 400 and 415 as fixed (assuming that
599 * HLT and IO instructions are intercepted).
600 */
601 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
602 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
603
604 /*
605 * By increasing VCPU's osvw.length to 3 we are telling the guest that
606 * all osvw.status bits inside that length, including bit 0 (which is
607 * reserved for erratum 298), are valid. However, if host processor's
608 * osvw_len is 0 then osvw_status[0] carries no information. We need to
609 * be conservative here and therefore we tell the guest that erratum 298
610 * is present (because we really don't know).
611 */
612 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
613 vcpu->arch.osvw.status |= 1;
614 }
615
616 static int has_svm(void)
617 {
618 const char *msg;
619
620 if (!cpu_has_svm(&msg)) {
621 printk(KERN_INFO "has_svm: %s\n", msg);
622 return 0;
623 }
624
625 return 1;
626 }
627
628 static void svm_hardware_disable(void)
629 {
630 /* Make sure we clean up behind us */
631 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
632 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
633
634 cpu_svm_disable();
635
636 amd_pmu_disable_virt();
637 }
638
639 static int svm_hardware_enable(void)
640 {
641
642 struct svm_cpu_data *sd;
643 uint64_t efer;
644 struct desc_ptr gdt_descr;
645 struct desc_struct *gdt;
646 int me = raw_smp_processor_id();
647
648 rdmsrl(MSR_EFER, efer);
649 if (efer & EFER_SVME)
650 return -EBUSY;
651
652 if (!has_svm()) {
653 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
654 return -EINVAL;
655 }
656 sd = per_cpu(svm_data, me);
657 if (!sd) {
658 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
659 return -EINVAL;
660 }
661
662 sd->asid_generation = 1;
663 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
664 sd->next_asid = sd->max_asid + 1;
665
666 native_store_gdt(&gdt_descr);
667 gdt = (struct desc_struct *)gdt_descr.address;
668 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
669
670 wrmsrl(MSR_EFER, efer | EFER_SVME);
671
672 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
673
674 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
675 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
676 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
677 }
678
679
680 /*
681 * Get OSVW bits.
682 *
683 * Note that it is possible to have a system with mixed processor
684 * revisions and therefore different OSVW bits. If bits are not the same
685 * on different processors then choose the worst case (i.e. if erratum
686 * is present on one processor and not on another then assume that the
687 * erratum is present everywhere).
688 */
689 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
690 uint64_t len, status = 0;
691 int err;
692
693 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
694 if (!err)
695 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
696 &err);
697
698 if (err)
699 osvw_status = osvw_len = 0;
700 else {
701 if (len < osvw_len)
702 osvw_len = len;
703 osvw_status |= status;
704 osvw_status &= (1ULL << osvw_len) - 1;
705 }
706 } else
707 osvw_status = osvw_len = 0;
708
709 svm_init_erratum_383();
710
711 amd_pmu_enable_virt();
712
713 return 0;
714 }
715
716 static void svm_cpu_uninit(int cpu)
717 {
718 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
719
720 if (!sd)
721 return;
722
723 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
724 __free_page(sd->save_area);
725 kfree(sd);
726 }
727
728 static int svm_cpu_init(int cpu)
729 {
730 struct svm_cpu_data *sd;
731 int r;
732
733 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
734 if (!sd)
735 return -ENOMEM;
736 sd->cpu = cpu;
737 sd->save_area = alloc_page(GFP_KERNEL);
738 r = -ENOMEM;
739 if (!sd->save_area)
740 goto err_1;
741
742 per_cpu(svm_data, cpu) = sd;
743
744 return 0;
745
746 err_1:
747 kfree(sd);
748 return r;
749
750 }
751
752 static bool valid_msr_intercept(u32 index)
753 {
754 int i;
755
756 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
757 if (direct_access_msrs[i].index == index)
758 return true;
759
760 return false;
761 }
762
763 static void set_msr_interception(u32 *msrpm, unsigned msr,
764 int read, int write)
765 {
766 u8 bit_read, bit_write;
767 unsigned long tmp;
768 u32 offset;
769
770 /*
771 * If this warning triggers extend the direct_access_msrs list at the
772 * beginning of the file
773 */
774 WARN_ON(!valid_msr_intercept(msr));
775
776 offset = svm_msrpm_offset(msr);
777 bit_read = 2 * (msr & 0x0f);
778 bit_write = 2 * (msr & 0x0f) + 1;
779 tmp = msrpm[offset];
780
781 BUG_ON(offset == MSR_INVALID);
782
783 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
784 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
785
786 msrpm[offset] = tmp;
787 }
788
789 static void svm_vcpu_init_msrpm(u32 *msrpm)
790 {
791 int i;
792
793 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
794
795 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
796 if (!direct_access_msrs[i].always)
797 continue;
798
799 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
800 }
801 }
802
803 static void add_msr_offset(u32 offset)
804 {
805 int i;
806
807 for (i = 0; i < MSRPM_OFFSETS; ++i) {
808
809 /* Offset already in list? */
810 if (msrpm_offsets[i] == offset)
811 return;
812
813 /* Slot used by another offset? */
814 if (msrpm_offsets[i] != MSR_INVALID)
815 continue;
816
817 /* Add offset to list */
818 msrpm_offsets[i] = offset;
819
820 return;
821 }
822
823 /*
824 * If this BUG triggers the msrpm_offsets table has an overflow. Just
825 * increase MSRPM_OFFSETS in this case.
826 */
827 BUG();
828 }
829
830 static void init_msrpm_offsets(void)
831 {
832 int i;
833
834 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
835
836 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
837 u32 offset;
838
839 offset = svm_msrpm_offset(direct_access_msrs[i].index);
840 BUG_ON(offset == MSR_INVALID);
841
842 add_msr_offset(offset);
843 }
844 }
845
846 static void svm_enable_lbrv(struct vcpu_svm *svm)
847 {
848 u32 *msrpm = svm->msrpm;
849
850 svm->vmcb->control.lbr_ctl = 1;
851 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
852 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
853 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
854 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
855 }
856
857 static void svm_disable_lbrv(struct vcpu_svm *svm)
858 {
859 u32 *msrpm = svm->msrpm;
860
861 svm->vmcb->control.lbr_ctl = 0;
862 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
863 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
864 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
865 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
866 }
867
868 #define MTRR_TYPE_UC_MINUS 7
869 #define MTRR2PROTVAL_INVALID 0xff
870
871 static u8 mtrr2protval[8];
872
873 static u8 fallback_mtrr_type(int mtrr)
874 {
875 /*
876 * WT and WP aren't always available in the host PAT. Treat
877 * them as UC and UC- respectively. Everything else should be
878 * there.
879 */
880 switch (mtrr)
881 {
882 case MTRR_TYPE_WRTHROUGH:
883 return MTRR_TYPE_UNCACHABLE;
884 case MTRR_TYPE_WRPROT:
885 return MTRR_TYPE_UC_MINUS;
886 default:
887 BUG();
888 }
889 }
890
891 static void build_mtrr2protval(void)
892 {
893 int i;
894 u64 pat;
895
896 for (i = 0; i < 8; i++)
897 mtrr2protval[i] = MTRR2PROTVAL_INVALID;
898
899 /* Ignore the invalid MTRR types. */
900 mtrr2protval[2] = 0;
901 mtrr2protval[3] = 0;
902
903 /*
904 * Use host PAT value to figure out the mapping from guest MTRR
905 * values to nested page table PAT/PCD/PWT values. We do not
906 * want to change the host PAT value every time we enter the
907 * guest.
908 */
909 rdmsrl(MSR_IA32_CR_PAT, pat);
910 for (i = 0; i < 8; i++) {
911 u8 mtrr = pat >> (8 * i);
912
913 if (mtrr2protval[mtrr] == MTRR2PROTVAL_INVALID)
914 mtrr2protval[mtrr] = __cm_idx2pte(i);
915 }
916
917 for (i = 0; i < 8; i++) {
918 if (mtrr2protval[i] == MTRR2PROTVAL_INVALID) {
919 u8 fallback = fallback_mtrr_type(i);
920 mtrr2protval[i] = mtrr2protval[fallback];
921 BUG_ON(mtrr2protval[i] == MTRR2PROTVAL_INVALID);
922 }
923 }
924 }
925
926 static __init int svm_hardware_setup(void)
927 {
928 int cpu;
929 struct page *iopm_pages;
930 void *iopm_va;
931 int r;
932
933 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
934
935 if (!iopm_pages)
936 return -ENOMEM;
937
938 iopm_va = page_address(iopm_pages);
939 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
940 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
941
942 init_msrpm_offsets();
943
944 if (boot_cpu_has(X86_FEATURE_NX))
945 kvm_enable_efer_bits(EFER_NX);
946
947 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
948 kvm_enable_efer_bits(EFER_FFXSR);
949
950 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
951 u64 max;
952
953 kvm_has_tsc_control = true;
954
955 /*
956 * Make sure the user can only configure tsc_khz values that
957 * fit into a signed integer.
958 * A min value is not calculated needed because it will always
959 * be 1 on all machines and a value of 0 is used to disable
960 * tsc-scaling for the vcpu.
961 */
962 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
963
964 kvm_max_guest_tsc_khz = max;
965 }
966
967 if (nested) {
968 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
969 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
970 }
971
972 for_each_possible_cpu(cpu) {
973 r = svm_cpu_init(cpu);
974 if (r)
975 goto err;
976 }
977
978 if (!boot_cpu_has(X86_FEATURE_NPT))
979 npt_enabled = false;
980
981 if (npt_enabled && !npt) {
982 printk(KERN_INFO "kvm: Nested Paging disabled\n");
983 npt_enabled = false;
984 }
985
986 if (npt_enabled) {
987 printk(KERN_INFO "kvm: Nested Paging enabled\n");
988 kvm_enable_tdp();
989 } else
990 kvm_disable_tdp();
991
992 build_mtrr2protval();
993 return 0;
994
995 err:
996 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
997 iopm_base = 0;
998 return r;
999 }
1000
1001 static __exit void svm_hardware_unsetup(void)
1002 {
1003 int cpu;
1004
1005 for_each_possible_cpu(cpu)
1006 svm_cpu_uninit(cpu);
1007
1008 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1009 iopm_base = 0;
1010 }
1011
1012 static void init_seg(struct vmcb_seg *seg)
1013 {
1014 seg->selector = 0;
1015 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1016 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1017 seg->limit = 0xffff;
1018 seg->base = 0;
1019 }
1020
1021 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1022 {
1023 seg->selector = 0;
1024 seg->attrib = SVM_SELECTOR_P_MASK | type;
1025 seg->limit = 0xffff;
1026 seg->base = 0;
1027 }
1028
1029 static u64 __scale_tsc(u64 ratio, u64 tsc)
1030 {
1031 u64 mult, frac, _tsc;
1032
1033 mult = ratio >> 32;
1034 frac = ratio & ((1ULL << 32) - 1);
1035
1036 _tsc = tsc;
1037 _tsc *= mult;
1038 _tsc += (tsc >> 32) * frac;
1039 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
1040
1041 return _tsc;
1042 }
1043
1044 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1045 {
1046 struct vcpu_svm *svm = to_svm(vcpu);
1047 u64 _tsc = tsc;
1048
1049 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1050 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
1051
1052 return _tsc;
1053 }
1054
1055 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1056 {
1057 struct vcpu_svm *svm = to_svm(vcpu);
1058 u64 ratio;
1059 u64 khz;
1060
1061 /* Guest TSC same frequency as host TSC? */
1062 if (!scale) {
1063 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1064 return;
1065 }
1066
1067 /* TSC scaling supported? */
1068 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1069 if (user_tsc_khz > tsc_khz) {
1070 vcpu->arch.tsc_catchup = 1;
1071 vcpu->arch.tsc_always_catchup = 1;
1072 } else
1073 WARN(1, "user requested TSC rate below hardware speed\n");
1074 return;
1075 }
1076
1077 khz = user_tsc_khz;
1078
1079 /* TSC scaling required - calculate ratio */
1080 ratio = khz << 32;
1081 do_div(ratio, tsc_khz);
1082
1083 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1084 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1085 user_tsc_khz);
1086 return;
1087 }
1088 svm->tsc_ratio = ratio;
1089 }
1090
1091 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1092 {
1093 struct vcpu_svm *svm = to_svm(vcpu);
1094
1095 return svm->vmcb->control.tsc_offset;
1096 }
1097
1098 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1099 {
1100 struct vcpu_svm *svm = to_svm(vcpu);
1101 u64 g_tsc_offset = 0;
1102
1103 if (is_guest_mode(vcpu)) {
1104 g_tsc_offset = svm->vmcb->control.tsc_offset -
1105 svm->nested.hsave->control.tsc_offset;
1106 svm->nested.hsave->control.tsc_offset = offset;
1107 } else
1108 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1109 svm->vmcb->control.tsc_offset,
1110 offset);
1111
1112 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1113
1114 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1115 }
1116
1117 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1118 {
1119 struct vcpu_svm *svm = to_svm(vcpu);
1120
1121 if (host) {
1122 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1123 WARN_ON(adjustment < 0);
1124 adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1125 }
1126
1127 svm->vmcb->control.tsc_offset += adjustment;
1128 if (is_guest_mode(vcpu))
1129 svm->nested.hsave->control.tsc_offset += adjustment;
1130 else
1131 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1132 svm->vmcb->control.tsc_offset - adjustment,
1133 svm->vmcb->control.tsc_offset);
1134
1135 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1136 }
1137
1138 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1139 {
1140 u64 tsc;
1141
1142 tsc = svm_scale_tsc(vcpu, rdtsc());
1143
1144 return target_tsc - tsc;
1145 }
1146
1147 static void svm_set_guest_pat(struct vcpu_svm *svm, u64 *g_pat)
1148 {
1149 struct kvm_vcpu *vcpu = &svm->vcpu;
1150
1151 /* Unlike Intel, AMD takes the guest's CR0.CD into account.
1152 *
1153 * AMD does not have IPAT. To emulate it for the case of guests
1154 * with no assigned devices, just set everything to WB. If guests
1155 * have assigned devices, however, we cannot force WB for RAM
1156 * pages only, so use the guest PAT directly.
1157 */
1158 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1159 *g_pat = 0x0606060606060606;
1160 else
1161 *g_pat = vcpu->arch.pat;
1162 }
1163
1164 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
1165 {
1166 u8 mtrr;
1167
1168 /*
1169 * 1. MMIO: trust guest MTRR, so same as item 3.
1170 * 2. No passthrough: always map as WB, and force guest PAT to WB as well
1171 * 3. Passthrough: can't guarantee the result, try to trust guest.
1172 */
1173 if (!is_mmio && !kvm_arch_has_assigned_device(vcpu->kvm))
1174 return 0;
1175
1176 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED) &&
1177 kvm_read_cr0(vcpu) & X86_CR0_CD)
1178 return _PAGE_NOCACHE;
1179
1180 mtrr = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
1181 return mtrr2protval[mtrr];
1182 }
1183
1184 static void init_vmcb(struct vcpu_svm *svm, bool init_event)
1185 {
1186 struct vmcb_control_area *control = &svm->vmcb->control;
1187 struct vmcb_save_area *save = &svm->vmcb->save;
1188
1189 svm->vcpu.fpu_active = 1;
1190 svm->vcpu.arch.hflags = 0;
1191
1192 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1193 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1194 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1195 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1196 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1197 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1198 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1199
1200 set_dr_intercepts(svm);
1201
1202 set_exception_intercept(svm, PF_VECTOR);
1203 set_exception_intercept(svm, UD_VECTOR);
1204 set_exception_intercept(svm, MC_VECTOR);
1205
1206 set_intercept(svm, INTERCEPT_INTR);
1207 set_intercept(svm, INTERCEPT_NMI);
1208 set_intercept(svm, INTERCEPT_SMI);
1209 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1210 set_intercept(svm, INTERCEPT_RDPMC);
1211 set_intercept(svm, INTERCEPT_CPUID);
1212 set_intercept(svm, INTERCEPT_INVD);
1213 set_intercept(svm, INTERCEPT_HLT);
1214 set_intercept(svm, INTERCEPT_INVLPG);
1215 set_intercept(svm, INTERCEPT_INVLPGA);
1216 set_intercept(svm, INTERCEPT_IOIO_PROT);
1217 set_intercept(svm, INTERCEPT_MSR_PROT);
1218 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1219 set_intercept(svm, INTERCEPT_SHUTDOWN);
1220 set_intercept(svm, INTERCEPT_VMRUN);
1221 set_intercept(svm, INTERCEPT_VMMCALL);
1222 set_intercept(svm, INTERCEPT_VMLOAD);
1223 set_intercept(svm, INTERCEPT_VMSAVE);
1224 set_intercept(svm, INTERCEPT_STGI);
1225 set_intercept(svm, INTERCEPT_CLGI);
1226 set_intercept(svm, INTERCEPT_SKINIT);
1227 set_intercept(svm, INTERCEPT_WBINVD);
1228 set_intercept(svm, INTERCEPT_MONITOR);
1229 set_intercept(svm, INTERCEPT_MWAIT);
1230 set_intercept(svm, INTERCEPT_XSETBV);
1231
1232 control->iopm_base_pa = iopm_base;
1233 control->msrpm_base_pa = __pa(svm->msrpm);
1234 control->int_ctl = V_INTR_MASKING_MASK;
1235
1236 init_seg(&save->es);
1237 init_seg(&save->ss);
1238 init_seg(&save->ds);
1239 init_seg(&save->fs);
1240 init_seg(&save->gs);
1241
1242 save->cs.selector = 0xf000;
1243 save->cs.base = 0xffff0000;
1244 /* Executable/Readable Code Segment */
1245 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1246 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1247 save->cs.limit = 0xffff;
1248
1249 save->gdtr.limit = 0xffff;
1250 save->idtr.limit = 0xffff;
1251
1252 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1253 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1254
1255 if (!init_event)
1256 svm_set_efer(&svm->vcpu, 0);
1257 save->dr6 = 0xffff0ff0;
1258 kvm_set_rflags(&svm->vcpu, 2);
1259 save->rip = 0x0000fff0;
1260 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1261
1262 /*
1263 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1264 * It also updates the guest-visible cr0 value.
1265 */
1266 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1267 kvm_mmu_reset_context(&svm->vcpu);
1268
1269 save->cr4 = X86_CR4_PAE;
1270 /* rdx = ?? */
1271
1272 if (npt_enabled) {
1273 /* Setup VMCB for Nested Paging */
1274 control->nested_ctl = 1;
1275 clr_intercept(svm, INTERCEPT_INVLPG);
1276 clr_exception_intercept(svm, PF_VECTOR);
1277 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1278 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1279 save->g_pat = svm->vcpu.arch.pat;
1280 svm_set_guest_pat(svm, &save->g_pat);
1281 save->cr3 = 0;
1282 save->cr4 = 0;
1283 }
1284 svm->asid_generation = 0;
1285
1286 svm->nested.vmcb = 0;
1287 svm->vcpu.arch.hflags = 0;
1288
1289 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1290 control->pause_filter_count = 3000;
1291 set_intercept(svm, INTERCEPT_PAUSE);
1292 }
1293
1294 mark_all_dirty(svm->vmcb);
1295
1296 enable_gif(svm);
1297 }
1298
1299 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1300 {
1301 struct vcpu_svm *svm = to_svm(vcpu);
1302 u32 dummy;
1303 u32 eax = 1;
1304
1305 if (!init_event) {
1306 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1307 MSR_IA32_APICBASE_ENABLE;
1308 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1309 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1310 }
1311 init_vmcb(svm, init_event);
1312
1313 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1314 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1315 }
1316
1317 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1318 {
1319 struct vcpu_svm *svm;
1320 struct page *page;
1321 struct page *msrpm_pages;
1322 struct page *hsave_page;
1323 struct page *nested_msrpm_pages;
1324 int err;
1325
1326 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1327 if (!svm) {
1328 err = -ENOMEM;
1329 goto out;
1330 }
1331
1332 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1333
1334 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1335 if (err)
1336 goto free_svm;
1337
1338 err = -ENOMEM;
1339 page = alloc_page(GFP_KERNEL);
1340 if (!page)
1341 goto uninit;
1342
1343 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1344 if (!msrpm_pages)
1345 goto free_page1;
1346
1347 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1348 if (!nested_msrpm_pages)
1349 goto free_page2;
1350
1351 hsave_page = alloc_page(GFP_KERNEL);
1352 if (!hsave_page)
1353 goto free_page3;
1354
1355 svm->nested.hsave = page_address(hsave_page);
1356
1357 svm->msrpm = page_address(msrpm_pages);
1358 svm_vcpu_init_msrpm(svm->msrpm);
1359
1360 svm->nested.msrpm = page_address(nested_msrpm_pages);
1361 svm_vcpu_init_msrpm(svm->nested.msrpm);
1362
1363 svm->vmcb = page_address(page);
1364 clear_page(svm->vmcb);
1365 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1366 svm->asid_generation = 0;
1367 init_vmcb(svm, false);
1368
1369 svm_init_osvw(&svm->vcpu);
1370
1371 return &svm->vcpu;
1372
1373 free_page3:
1374 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1375 free_page2:
1376 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1377 free_page1:
1378 __free_page(page);
1379 uninit:
1380 kvm_vcpu_uninit(&svm->vcpu);
1381 free_svm:
1382 kmem_cache_free(kvm_vcpu_cache, svm);
1383 out:
1384 return ERR_PTR(err);
1385 }
1386
1387 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1388 {
1389 struct vcpu_svm *svm = to_svm(vcpu);
1390
1391 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1392 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1393 __free_page(virt_to_page(svm->nested.hsave));
1394 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1395 kvm_vcpu_uninit(vcpu);
1396 kmem_cache_free(kvm_vcpu_cache, svm);
1397 }
1398
1399 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1400 {
1401 struct vcpu_svm *svm = to_svm(vcpu);
1402 int i;
1403
1404 if (unlikely(cpu != vcpu->cpu)) {
1405 svm->asid_generation = 0;
1406 mark_all_dirty(svm->vmcb);
1407 }
1408
1409 #ifdef CONFIG_X86_64
1410 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1411 #endif
1412 savesegment(fs, svm->host.fs);
1413 savesegment(gs, svm->host.gs);
1414 svm->host.ldt = kvm_read_ldt();
1415
1416 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1417 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1418
1419 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1420 svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1421 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1422 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1423 }
1424 }
1425
1426 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1427 {
1428 struct vcpu_svm *svm = to_svm(vcpu);
1429 int i;
1430
1431 ++vcpu->stat.host_state_reload;
1432 kvm_load_ldt(svm->host.ldt);
1433 #ifdef CONFIG_X86_64
1434 loadsegment(fs, svm->host.fs);
1435 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1436 load_gs_index(svm->host.gs);
1437 #else
1438 #ifdef CONFIG_X86_32_LAZY_GS
1439 loadsegment(gs, svm->host.gs);
1440 #endif
1441 #endif
1442 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1443 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1444 }
1445
1446 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1447 {
1448 return to_svm(vcpu)->vmcb->save.rflags;
1449 }
1450
1451 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1452 {
1453 /*
1454 * Any change of EFLAGS.VM is accompained by a reload of SS
1455 * (caused by either a task switch or an inter-privilege IRET),
1456 * so we do not need to update the CPL here.
1457 */
1458 to_svm(vcpu)->vmcb->save.rflags = rflags;
1459 }
1460
1461 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1462 {
1463 switch (reg) {
1464 case VCPU_EXREG_PDPTR:
1465 BUG_ON(!npt_enabled);
1466 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1467 break;
1468 default:
1469 BUG();
1470 }
1471 }
1472
1473 static void svm_set_vintr(struct vcpu_svm *svm)
1474 {
1475 set_intercept(svm, INTERCEPT_VINTR);
1476 }
1477
1478 static void svm_clear_vintr(struct vcpu_svm *svm)
1479 {
1480 clr_intercept(svm, INTERCEPT_VINTR);
1481 }
1482
1483 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1484 {
1485 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1486
1487 switch (seg) {
1488 case VCPU_SREG_CS: return &save->cs;
1489 case VCPU_SREG_DS: return &save->ds;
1490 case VCPU_SREG_ES: return &save->es;
1491 case VCPU_SREG_FS: return &save->fs;
1492 case VCPU_SREG_GS: return &save->gs;
1493 case VCPU_SREG_SS: return &save->ss;
1494 case VCPU_SREG_TR: return &save->tr;
1495 case VCPU_SREG_LDTR: return &save->ldtr;
1496 }
1497 BUG();
1498 return NULL;
1499 }
1500
1501 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1502 {
1503 struct vmcb_seg *s = svm_seg(vcpu, seg);
1504
1505 return s->base;
1506 }
1507
1508 static void svm_get_segment(struct kvm_vcpu *vcpu,
1509 struct kvm_segment *var, int seg)
1510 {
1511 struct vmcb_seg *s = svm_seg(vcpu, seg);
1512
1513 var->base = s->base;
1514 var->limit = s->limit;
1515 var->selector = s->selector;
1516 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1517 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1518 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1519 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1520 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1521 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1522 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1523
1524 /*
1525 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1526 * However, the SVM spec states that the G bit is not observed by the
1527 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1528 * So let's synthesize a legal G bit for all segments, this helps
1529 * running KVM nested. It also helps cross-vendor migration, because
1530 * Intel's vmentry has a check on the 'G' bit.
1531 */
1532 var->g = s->limit > 0xfffff;
1533
1534 /*
1535 * AMD's VMCB does not have an explicit unusable field, so emulate it
1536 * for cross vendor migration purposes by "not present"
1537 */
1538 var->unusable = !var->present || (var->type == 0);
1539
1540 switch (seg) {
1541 case VCPU_SREG_TR:
1542 /*
1543 * Work around a bug where the busy flag in the tr selector
1544 * isn't exposed
1545 */
1546 var->type |= 0x2;
1547 break;
1548 case VCPU_SREG_DS:
1549 case VCPU_SREG_ES:
1550 case VCPU_SREG_FS:
1551 case VCPU_SREG_GS:
1552 /*
1553 * The accessed bit must always be set in the segment
1554 * descriptor cache, although it can be cleared in the
1555 * descriptor, the cached bit always remains at 1. Since
1556 * Intel has a check on this, set it here to support
1557 * cross-vendor migration.
1558 */
1559 if (!var->unusable)
1560 var->type |= 0x1;
1561 break;
1562 case VCPU_SREG_SS:
1563 /*
1564 * On AMD CPUs sometimes the DB bit in the segment
1565 * descriptor is left as 1, although the whole segment has
1566 * been made unusable. Clear it here to pass an Intel VMX
1567 * entry check when cross vendor migrating.
1568 */
1569 if (var->unusable)
1570 var->db = 0;
1571 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1572 break;
1573 }
1574 }
1575
1576 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1577 {
1578 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1579
1580 return save->cpl;
1581 }
1582
1583 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1584 {
1585 struct vcpu_svm *svm = to_svm(vcpu);
1586
1587 dt->size = svm->vmcb->save.idtr.limit;
1588 dt->address = svm->vmcb->save.idtr.base;
1589 }
1590
1591 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1592 {
1593 struct vcpu_svm *svm = to_svm(vcpu);
1594
1595 svm->vmcb->save.idtr.limit = dt->size;
1596 svm->vmcb->save.idtr.base = dt->address ;
1597 mark_dirty(svm->vmcb, VMCB_DT);
1598 }
1599
1600 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1601 {
1602 struct vcpu_svm *svm = to_svm(vcpu);
1603
1604 dt->size = svm->vmcb->save.gdtr.limit;
1605 dt->address = svm->vmcb->save.gdtr.base;
1606 }
1607
1608 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1609 {
1610 struct vcpu_svm *svm = to_svm(vcpu);
1611
1612 svm->vmcb->save.gdtr.limit = dt->size;
1613 svm->vmcb->save.gdtr.base = dt->address ;
1614 mark_dirty(svm->vmcb, VMCB_DT);
1615 }
1616
1617 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1618 {
1619 }
1620
1621 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1622 {
1623 }
1624
1625 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1626 {
1627 }
1628
1629 static void update_cr0_intercept(struct vcpu_svm *svm)
1630 {
1631 ulong gcr0 = svm->vcpu.arch.cr0;
1632 u64 *hcr0 = &svm->vmcb->save.cr0;
1633
1634 if (!svm->vcpu.fpu_active)
1635 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1636 else
1637 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1638 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1639
1640 mark_dirty(svm->vmcb, VMCB_CR);
1641
1642 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1643 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1644 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1645 } else {
1646 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1647 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1648 }
1649 }
1650
1651 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1652 {
1653 struct vcpu_svm *svm = to_svm(vcpu);
1654
1655 #ifdef CONFIG_X86_64
1656 if (vcpu->arch.efer & EFER_LME) {
1657 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1658 vcpu->arch.efer |= EFER_LMA;
1659 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1660 }
1661
1662 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1663 vcpu->arch.efer &= ~EFER_LMA;
1664 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1665 }
1666 }
1667 #endif
1668 vcpu->arch.cr0 = cr0;
1669
1670 if (!npt_enabled)
1671 cr0 |= X86_CR0_PG | X86_CR0_WP;
1672
1673 if (!vcpu->fpu_active)
1674 cr0 |= X86_CR0_TS;
1675
1676 /* These are emulated via page tables. */
1677 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1678
1679 svm->vmcb->save.cr0 = cr0;
1680 mark_dirty(svm->vmcb, VMCB_CR);
1681 update_cr0_intercept(svm);
1682 }
1683
1684 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1685 {
1686 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1687 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1688
1689 if (cr4 & X86_CR4_VMXE)
1690 return 1;
1691
1692 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1693 svm_flush_tlb(vcpu);
1694
1695 vcpu->arch.cr4 = cr4;
1696 if (!npt_enabled)
1697 cr4 |= X86_CR4_PAE;
1698 cr4 |= host_cr4_mce;
1699 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1700 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1701 return 0;
1702 }
1703
1704 static void svm_set_segment(struct kvm_vcpu *vcpu,
1705 struct kvm_segment *var, int seg)
1706 {
1707 struct vcpu_svm *svm = to_svm(vcpu);
1708 struct vmcb_seg *s = svm_seg(vcpu, seg);
1709
1710 s->base = var->base;
1711 s->limit = var->limit;
1712 s->selector = var->selector;
1713 if (var->unusable)
1714 s->attrib = 0;
1715 else {
1716 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1717 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1718 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1719 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1720 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1721 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1722 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1723 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1724 }
1725
1726 /*
1727 * This is always accurate, except if SYSRET returned to a segment
1728 * with SS.DPL != 3. Intel does not have this quirk, and always
1729 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1730 * would entail passing the CPL to userspace and back.
1731 */
1732 if (seg == VCPU_SREG_SS)
1733 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1734
1735 mark_dirty(svm->vmcb, VMCB_SEG);
1736 }
1737
1738 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1739 {
1740 struct vcpu_svm *svm = to_svm(vcpu);
1741
1742 clr_exception_intercept(svm, DB_VECTOR);
1743 clr_exception_intercept(svm, BP_VECTOR);
1744
1745 if (svm->nmi_singlestep)
1746 set_exception_intercept(svm, DB_VECTOR);
1747
1748 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1749 if (vcpu->guest_debug &
1750 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1751 set_exception_intercept(svm, DB_VECTOR);
1752 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1753 set_exception_intercept(svm, BP_VECTOR);
1754 } else
1755 vcpu->guest_debug = 0;
1756 }
1757
1758 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1759 {
1760 if (sd->next_asid > sd->max_asid) {
1761 ++sd->asid_generation;
1762 sd->next_asid = 1;
1763 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1764 }
1765
1766 svm->asid_generation = sd->asid_generation;
1767 svm->vmcb->control.asid = sd->next_asid++;
1768
1769 mark_dirty(svm->vmcb, VMCB_ASID);
1770 }
1771
1772 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1773 {
1774 return to_svm(vcpu)->vmcb->save.dr6;
1775 }
1776
1777 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1778 {
1779 struct vcpu_svm *svm = to_svm(vcpu);
1780
1781 svm->vmcb->save.dr6 = value;
1782 mark_dirty(svm->vmcb, VMCB_DR);
1783 }
1784
1785 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1786 {
1787 struct vcpu_svm *svm = to_svm(vcpu);
1788
1789 get_debugreg(vcpu->arch.db[0], 0);
1790 get_debugreg(vcpu->arch.db[1], 1);
1791 get_debugreg(vcpu->arch.db[2], 2);
1792 get_debugreg(vcpu->arch.db[3], 3);
1793 vcpu->arch.dr6 = svm_get_dr6(vcpu);
1794 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1795
1796 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1797 set_dr_intercepts(svm);
1798 }
1799
1800 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1801 {
1802 struct vcpu_svm *svm = to_svm(vcpu);
1803
1804 svm->vmcb->save.dr7 = value;
1805 mark_dirty(svm->vmcb, VMCB_DR);
1806 }
1807
1808 static int pf_interception(struct vcpu_svm *svm)
1809 {
1810 u64 fault_address = svm->vmcb->control.exit_info_2;
1811 u32 error_code;
1812 int r = 1;
1813
1814 switch (svm->apf_reason) {
1815 default:
1816 error_code = svm->vmcb->control.exit_info_1;
1817
1818 trace_kvm_page_fault(fault_address, error_code);
1819 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1820 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1821 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1822 svm->vmcb->control.insn_bytes,
1823 svm->vmcb->control.insn_len);
1824 break;
1825 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1826 svm->apf_reason = 0;
1827 local_irq_disable();
1828 kvm_async_pf_task_wait(fault_address);
1829 local_irq_enable();
1830 break;
1831 case KVM_PV_REASON_PAGE_READY:
1832 svm->apf_reason = 0;
1833 local_irq_disable();
1834 kvm_async_pf_task_wake(fault_address);
1835 local_irq_enable();
1836 break;
1837 }
1838 return r;
1839 }
1840
1841 static int db_interception(struct vcpu_svm *svm)
1842 {
1843 struct kvm_run *kvm_run = svm->vcpu.run;
1844
1845 if (!(svm->vcpu.guest_debug &
1846 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1847 !svm->nmi_singlestep) {
1848 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1849 return 1;
1850 }
1851
1852 if (svm->nmi_singlestep) {
1853 svm->nmi_singlestep = false;
1854 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1855 svm->vmcb->save.rflags &=
1856 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1857 update_db_bp_intercept(&svm->vcpu);
1858 }
1859
1860 if (svm->vcpu.guest_debug &
1861 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1862 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1863 kvm_run->debug.arch.pc =
1864 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1865 kvm_run->debug.arch.exception = DB_VECTOR;
1866 return 0;
1867 }
1868
1869 return 1;
1870 }
1871
1872 static int bp_interception(struct vcpu_svm *svm)
1873 {
1874 struct kvm_run *kvm_run = svm->vcpu.run;
1875
1876 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1877 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1878 kvm_run->debug.arch.exception = BP_VECTOR;
1879 return 0;
1880 }
1881
1882 static int ud_interception(struct vcpu_svm *svm)
1883 {
1884 int er;
1885
1886 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1887 if (er != EMULATE_DONE)
1888 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1889 return 1;
1890 }
1891
1892 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1893 {
1894 struct vcpu_svm *svm = to_svm(vcpu);
1895
1896 clr_exception_intercept(svm, NM_VECTOR);
1897
1898 svm->vcpu.fpu_active = 1;
1899 update_cr0_intercept(svm);
1900 }
1901
1902 static int nm_interception(struct vcpu_svm *svm)
1903 {
1904 svm_fpu_activate(&svm->vcpu);
1905 return 1;
1906 }
1907
1908 static bool is_erratum_383(void)
1909 {
1910 int err, i;
1911 u64 value;
1912
1913 if (!erratum_383_found)
1914 return false;
1915
1916 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1917 if (err)
1918 return false;
1919
1920 /* Bit 62 may or may not be set for this mce */
1921 value &= ~(1ULL << 62);
1922
1923 if (value != 0xb600000000010015ULL)
1924 return false;
1925
1926 /* Clear MCi_STATUS registers */
1927 for (i = 0; i < 6; ++i)
1928 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1929
1930 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1931 if (!err) {
1932 u32 low, high;
1933
1934 value &= ~(1ULL << 2);
1935 low = lower_32_bits(value);
1936 high = upper_32_bits(value);
1937
1938 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1939 }
1940
1941 /* Flush tlb to evict multi-match entries */
1942 __flush_tlb_all();
1943
1944 return true;
1945 }
1946
1947 static void svm_handle_mce(struct vcpu_svm *svm)
1948 {
1949 if (is_erratum_383()) {
1950 /*
1951 * Erratum 383 triggered. Guest state is corrupt so kill the
1952 * guest.
1953 */
1954 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1955
1956 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1957
1958 return;
1959 }
1960
1961 /*
1962 * On an #MC intercept the MCE handler is not called automatically in
1963 * the host. So do it by hand here.
1964 */
1965 asm volatile (
1966 "int $0x12\n");
1967 /* not sure if we ever come back to this point */
1968
1969 return;
1970 }
1971
1972 static int mc_interception(struct vcpu_svm *svm)
1973 {
1974 return 1;
1975 }
1976
1977 static int shutdown_interception(struct vcpu_svm *svm)
1978 {
1979 struct kvm_run *kvm_run = svm->vcpu.run;
1980
1981 /*
1982 * VMCB is undefined after a SHUTDOWN intercept
1983 * so reinitialize it.
1984 */
1985 clear_page(svm->vmcb);
1986 init_vmcb(svm, false);
1987
1988 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1989 return 0;
1990 }
1991
1992 static int io_interception(struct vcpu_svm *svm)
1993 {
1994 struct kvm_vcpu *vcpu = &svm->vcpu;
1995 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1996 int size, in, string;
1997 unsigned port;
1998
1999 ++svm->vcpu.stat.io_exits;
2000 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2001 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2002 if (string || in)
2003 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2004
2005 port = io_info >> 16;
2006 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2007 svm->next_rip = svm->vmcb->control.exit_info_2;
2008 skip_emulated_instruction(&svm->vcpu);
2009
2010 return kvm_fast_pio_out(vcpu, size, port);
2011 }
2012
2013 static int nmi_interception(struct vcpu_svm *svm)
2014 {
2015 return 1;
2016 }
2017
2018 static int intr_interception(struct vcpu_svm *svm)
2019 {
2020 ++svm->vcpu.stat.irq_exits;
2021 return 1;
2022 }
2023
2024 static int nop_on_interception(struct vcpu_svm *svm)
2025 {
2026 return 1;
2027 }
2028
2029 static int halt_interception(struct vcpu_svm *svm)
2030 {
2031 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2032 return kvm_emulate_halt(&svm->vcpu);
2033 }
2034
2035 static int vmmcall_interception(struct vcpu_svm *svm)
2036 {
2037 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2038 kvm_emulate_hypercall(&svm->vcpu);
2039 return 1;
2040 }
2041
2042 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2043 {
2044 struct vcpu_svm *svm = to_svm(vcpu);
2045
2046 return svm->nested.nested_cr3;
2047 }
2048
2049 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2050 {
2051 struct vcpu_svm *svm = to_svm(vcpu);
2052 u64 cr3 = svm->nested.nested_cr3;
2053 u64 pdpte;
2054 int ret;
2055
2056 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2057 offset_in_page(cr3) + index * 8, 8);
2058 if (ret)
2059 return 0;
2060 return pdpte;
2061 }
2062
2063 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2064 unsigned long root)
2065 {
2066 struct vcpu_svm *svm = to_svm(vcpu);
2067
2068 svm->vmcb->control.nested_cr3 = root;
2069 mark_dirty(svm->vmcb, VMCB_NPT);
2070 svm_flush_tlb(vcpu);
2071 }
2072
2073 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2074 struct x86_exception *fault)
2075 {
2076 struct vcpu_svm *svm = to_svm(vcpu);
2077
2078 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2079 /*
2080 * TODO: track the cause of the nested page fault, and
2081 * correctly fill in the high bits of exit_info_1.
2082 */
2083 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2084 svm->vmcb->control.exit_code_hi = 0;
2085 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2086 svm->vmcb->control.exit_info_2 = fault->address;
2087 }
2088
2089 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2090 svm->vmcb->control.exit_info_1 |= fault->error_code;
2091
2092 /*
2093 * The present bit is always zero for page structure faults on real
2094 * hardware.
2095 */
2096 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2097 svm->vmcb->control.exit_info_1 &= ~1;
2098
2099 nested_svm_vmexit(svm);
2100 }
2101
2102 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2103 {
2104 WARN_ON(mmu_is_nested(vcpu));
2105 kvm_init_shadow_mmu(vcpu);
2106 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2107 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2108 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2109 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2110 vcpu->arch.mmu.shadow_root_level = get_npt_level();
2111 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2112 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2113 }
2114
2115 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2116 {
2117 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2118 }
2119
2120 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2121 {
2122 if (!(svm->vcpu.arch.efer & EFER_SVME)
2123 || !is_paging(&svm->vcpu)) {
2124 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2125 return 1;
2126 }
2127
2128 if (svm->vmcb->save.cpl) {
2129 kvm_inject_gp(&svm->vcpu, 0);
2130 return 1;
2131 }
2132
2133 return 0;
2134 }
2135
2136 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2137 bool has_error_code, u32 error_code)
2138 {
2139 int vmexit;
2140
2141 if (!is_guest_mode(&svm->vcpu))
2142 return 0;
2143
2144 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2145 svm->vmcb->control.exit_code_hi = 0;
2146 svm->vmcb->control.exit_info_1 = error_code;
2147 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2148
2149 vmexit = nested_svm_intercept(svm);
2150 if (vmexit == NESTED_EXIT_DONE)
2151 svm->nested.exit_required = true;
2152
2153 return vmexit;
2154 }
2155
2156 /* This function returns true if it is save to enable the irq window */
2157 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2158 {
2159 if (!is_guest_mode(&svm->vcpu))
2160 return true;
2161
2162 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2163 return true;
2164
2165 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2166 return false;
2167
2168 /*
2169 * if vmexit was already requested (by intercepted exception
2170 * for instance) do not overwrite it with "external interrupt"
2171 * vmexit.
2172 */
2173 if (svm->nested.exit_required)
2174 return false;
2175
2176 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2177 svm->vmcb->control.exit_info_1 = 0;
2178 svm->vmcb->control.exit_info_2 = 0;
2179
2180 if (svm->nested.intercept & 1ULL) {
2181 /*
2182 * The #vmexit can't be emulated here directly because this
2183 * code path runs with irqs and preemption disabled. A
2184 * #vmexit emulation might sleep. Only signal request for
2185 * the #vmexit here.
2186 */
2187 svm->nested.exit_required = true;
2188 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2189 return false;
2190 }
2191
2192 return true;
2193 }
2194
2195 /* This function returns true if it is save to enable the nmi window */
2196 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2197 {
2198 if (!is_guest_mode(&svm->vcpu))
2199 return true;
2200
2201 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2202 return true;
2203
2204 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2205 svm->nested.exit_required = true;
2206
2207 return false;
2208 }
2209
2210 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2211 {
2212 struct page *page;
2213
2214 might_sleep();
2215
2216 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2217 if (is_error_page(page))
2218 goto error;
2219
2220 *_page = page;
2221
2222 return kmap(page);
2223
2224 error:
2225 kvm_inject_gp(&svm->vcpu, 0);
2226
2227 return NULL;
2228 }
2229
2230 static void nested_svm_unmap(struct page *page)
2231 {
2232 kunmap(page);
2233 kvm_release_page_dirty(page);
2234 }
2235
2236 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2237 {
2238 unsigned port, size, iopm_len;
2239 u16 val, mask;
2240 u8 start_bit;
2241 u64 gpa;
2242
2243 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2244 return NESTED_EXIT_HOST;
2245
2246 port = svm->vmcb->control.exit_info_1 >> 16;
2247 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2248 SVM_IOIO_SIZE_SHIFT;
2249 gpa = svm->nested.vmcb_iopm + (port / 8);
2250 start_bit = port % 8;
2251 iopm_len = (start_bit + size > 8) ? 2 : 1;
2252 mask = (0xf >> (4 - size)) << start_bit;
2253 val = 0;
2254
2255 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2256 return NESTED_EXIT_DONE;
2257
2258 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2259 }
2260
2261 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2262 {
2263 u32 offset, msr, value;
2264 int write, mask;
2265
2266 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2267 return NESTED_EXIT_HOST;
2268
2269 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2270 offset = svm_msrpm_offset(msr);
2271 write = svm->vmcb->control.exit_info_1 & 1;
2272 mask = 1 << ((2 * (msr & 0xf)) + write);
2273
2274 if (offset == MSR_INVALID)
2275 return NESTED_EXIT_DONE;
2276
2277 /* Offset is in 32 bit units but need in 8 bit units */
2278 offset *= 4;
2279
2280 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2281 return NESTED_EXIT_DONE;
2282
2283 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2284 }
2285
2286 static int nested_svm_exit_special(struct vcpu_svm *svm)
2287 {
2288 u32 exit_code = svm->vmcb->control.exit_code;
2289
2290 switch (exit_code) {
2291 case SVM_EXIT_INTR:
2292 case SVM_EXIT_NMI:
2293 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2294 return NESTED_EXIT_HOST;
2295 case SVM_EXIT_NPF:
2296 /* For now we are always handling NPFs when using them */
2297 if (npt_enabled)
2298 return NESTED_EXIT_HOST;
2299 break;
2300 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2301 /* When we're shadowing, trap PFs, but not async PF */
2302 if (!npt_enabled && svm->apf_reason == 0)
2303 return NESTED_EXIT_HOST;
2304 break;
2305 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2306 nm_interception(svm);
2307 break;
2308 default:
2309 break;
2310 }
2311
2312 return NESTED_EXIT_CONTINUE;
2313 }
2314
2315 /*
2316 * If this function returns true, this #vmexit was already handled
2317 */
2318 static int nested_svm_intercept(struct vcpu_svm *svm)
2319 {
2320 u32 exit_code = svm->vmcb->control.exit_code;
2321 int vmexit = NESTED_EXIT_HOST;
2322
2323 switch (exit_code) {
2324 case SVM_EXIT_MSR:
2325 vmexit = nested_svm_exit_handled_msr(svm);
2326 break;
2327 case SVM_EXIT_IOIO:
2328 vmexit = nested_svm_intercept_ioio(svm);
2329 break;
2330 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2331 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2332 if (svm->nested.intercept_cr & bit)
2333 vmexit = NESTED_EXIT_DONE;
2334 break;
2335 }
2336 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2337 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2338 if (svm->nested.intercept_dr & bit)
2339 vmexit = NESTED_EXIT_DONE;
2340 break;
2341 }
2342 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2343 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2344 if (svm->nested.intercept_exceptions & excp_bits)
2345 vmexit = NESTED_EXIT_DONE;
2346 /* async page fault always cause vmexit */
2347 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2348 svm->apf_reason != 0)
2349 vmexit = NESTED_EXIT_DONE;
2350 break;
2351 }
2352 case SVM_EXIT_ERR: {
2353 vmexit = NESTED_EXIT_DONE;
2354 break;
2355 }
2356 default: {
2357 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2358 if (svm->nested.intercept & exit_bits)
2359 vmexit = NESTED_EXIT_DONE;
2360 }
2361 }
2362
2363 return vmexit;
2364 }
2365
2366 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2367 {
2368 int vmexit;
2369
2370 vmexit = nested_svm_intercept(svm);
2371
2372 if (vmexit == NESTED_EXIT_DONE)
2373 nested_svm_vmexit(svm);
2374
2375 return vmexit;
2376 }
2377
2378 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2379 {
2380 struct vmcb_control_area *dst = &dst_vmcb->control;
2381 struct vmcb_control_area *from = &from_vmcb->control;
2382
2383 dst->intercept_cr = from->intercept_cr;
2384 dst->intercept_dr = from->intercept_dr;
2385 dst->intercept_exceptions = from->intercept_exceptions;
2386 dst->intercept = from->intercept;
2387 dst->iopm_base_pa = from->iopm_base_pa;
2388 dst->msrpm_base_pa = from->msrpm_base_pa;
2389 dst->tsc_offset = from->tsc_offset;
2390 dst->asid = from->asid;
2391 dst->tlb_ctl = from->tlb_ctl;
2392 dst->int_ctl = from->int_ctl;
2393 dst->int_vector = from->int_vector;
2394 dst->int_state = from->int_state;
2395 dst->exit_code = from->exit_code;
2396 dst->exit_code_hi = from->exit_code_hi;
2397 dst->exit_info_1 = from->exit_info_1;
2398 dst->exit_info_2 = from->exit_info_2;
2399 dst->exit_int_info = from->exit_int_info;
2400 dst->exit_int_info_err = from->exit_int_info_err;
2401 dst->nested_ctl = from->nested_ctl;
2402 dst->event_inj = from->event_inj;
2403 dst->event_inj_err = from->event_inj_err;
2404 dst->nested_cr3 = from->nested_cr3;
2405 dst->lbr_ctl = from->lbr_ctl;
2406 }
2407
2408 static int nested_svm_vmexit(struct vcpu_svm *svm)
2409 {
2410 struct vmcb *nested_vmcb;
2411 struct vmcb *hsave = svm->nested.hsave;
2412 struct vmcb *vmcb = svm->vmcb;
2413 struct page *page;
2414
2415 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2416 vmcb->control.exit_info_1,
2417 vmcb->control.exit_info_2,
2418 vmcb->control.exit_int_info,
2419 vmcb->control.exit_int_info_err,
2420 KVM_ISA_SVM);
2421
2422 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2423 if (!nested_vmcb)
2424 return 1;
2425
2426 /* Exit Guest-Mode */
2427 leave_guest_mode(&svm->vcpu);
2428 svm->nested.vmcb = 0;
2429
2430 /* Give the current vmcb to the guest */
2431 disable_gif(svm);
2432
2433 nested_vmcb->save.es = vmcb->save.es;
2434 nested_vmcb->save.cs = vmcb->save.cs;
2435 nested_vmcb->save.ss = vmcb->save.ss;
2436 nested_vmcb->save.ds = vmcb->save.ds;
2437 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2438 nested_vmcb->save.idtr = vmcb->save.idtr;
2439 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2440 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2441 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2442 nested_vmcb->save.cr2 = vmcb->save.cr2;
2443 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2444 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2445 nested_vmcb->save.rip = vmcb->save.rip;
2446 nested_vmcb->save.rsp = vmcb->save.rsp;
2447 nested_vmcb->save.rax = vmcb->save.rax;
2448 nested_vmcb->save.dr7 = vmcb->save.dr7;
2449 nested_vmcb->save.dr6 = vmcb->save.dr6;
2450 nested_vmcb->save.cpl = vmcb->save.cpl;
2451
2452 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2453 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2454 nested_vmcb->control.int_state = vmcb->control.int_state;
2455 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2456 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2457 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2458 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2459 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2460 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2461 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2462
2463 /*
2464 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2465 * to make sure that we do not lose injected events. So check event_inj
2466 * here and copy it to exit_int_info if it is valid.
2467 * Exit_int_info and event_inj can't be both valid because the case
2468 * below only happens on a VMRUN instruction intercept which has
2469 * no valid exit_int_info set.
2470 */
2471 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2472 struct vmcb_control_area *nc = &nested_vmcb->control;
2473
2474 nc->exit_int_info = vmcb->control.event_inj;
2475 nc->exit_int_info_err = vmcb->control.event_inj_err;
2476 }
2477
2478 nested_vmcb->control.tlb_ctl = 0;
2479 nested_vmcb->control.event_inj = 0;
2480 nested_vmcb->control.event_inj_err = 0;
2481
2482 /* We always set V_INTR_MASKING and remember the old value in hflags */
2483 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2484 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2485
2486 /* Restore the original control entries */
2487 copy_vmcb_control_area(vmcb, hsave);
2488
2489 kvm_clear_exception_queue(&svm->vcpu);
2490 kvm_clear_interrupt_queue(&svm->vcpu);
2491
2492 svm->nested.nested_cr3 = 0;
2493
2494 /* Restore selected save entries */
2495 svm->vmcb->save.es = hsave->save.es;
2496 svm->vmcb->save.cs = hsave->save.cs;
2497 svm->vmcb->save.ss = hsave->save.ss;
2498 svm->vmcb->save.ds = hsave->save.ds;
2499 svm->vmcb->save.gdtr = hsave->save.gdtr;
2500 svm->vmcb->save.idtr = hsave->save.idtr;
2501 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2502 svm_set_efer(&svm->vcpu, hsave->save.efer);
2503 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2504 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2505 if (npt_enabled) {
2506 svm->vmcb->save.cr3 = hsave->save.cr3;
2507 svm->vcpu.arch.cr3 = hsave->save.cr3;
2508 } else {
2509 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2510 }
2511 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2512 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2513 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2514 svm->vmcb->save.dr7 = 0;
2515 svm->vmcb->save.cpl = 0;
2516 svm->vmcb->control.exit_int_info = 0;
2517
2518 mark_all_dirty(svm->vmcb);
2519
2520 nested_svm_unmap(page);
2521
2522 nested_svm_uninit_mmu_context(&svm->vcpu);
2523 kvm_mmu_reset_context(&svm->vcpu);
2524 kvm_mmu_load(&svm->vcpu);
2525
2526 return 0;
2527 }
2528
2529 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2530 {
2531 /*
2532 * This function merges the msr permission bitmaps of kvm and the
2533 * nested vmcb. It is optimized in that it only merges the parts where
2534 * the kvm msr permission bitmap may contain zero bits
2535 */
2536 int i;
2537
2538 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2539 return true;
2540
2541 for (i = 0; i < MSRPM_OFFSETS; i++) {
2542 u32 value, p;
2543 u64 offset;
2544
2545 if (msrpm_offsets[i] == 0xffffffff)
2546 break;
2547
2548 p = msrpm_offsets[i];
2549 offset = svm->nested.vmcb_msrpm + (p * 4);
2550
2551 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2552 return false;
2553
2554 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2555 }
2556
2557 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2558
2559 return true;
2560 }
2561
2562 static bool nested_vmcb_checks(struct vmcb *vmcb)
2563 {
2564 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2565 return false;
2566
2567 if (vmcb->control.asid == 0)
2568 return false;
2569
2570 if (vmcb->control.nested_ctl && !npt_enabled)
2571 return false;
2572
2573 return true;
2574 }
2575
2576 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2577 {
2578 struct vmcb *nested_vmcb;
2579 struct vmcb *hsave = svm->nested.hsave;
2580 struct vmcb *vmcb = svm->vmcb;
2581 struct page *page;
2582 u64 vmcb_gpa;
2583
2584 vmcb_gpa = svm->vmcb->save.rax;
2585
2586 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2587 if (!nested_vmcb)
2588 return false;
2589
2590 if (!nested_vmcb_checks(nested_vmcb)) {
2591 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2592 nested_vmcb->control.exit_code_hi = 0;
2593 nested_vmcb->control.exit_info_1 = 0;
2594 nested_vmcb->control.exit_info_2 = 0;
2595
2596 nested_svm_unmap(page);
2597
2598 return false;
2599 }
2600
2601 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2602 nested_vmcb->save.rip,
2603 nested_vmcb->control.int_ctl,
2604 nested_vmcb->control.event_inj,
2605 nested_vmcb->control.nested_ctl);
2606
2607 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2608 nested_vmcb->control.intercept_cr >> 16,
2609 nested_vmcb->control.intercept_exceptions,
2610 nested_vmcb->control.intercept);
2611
2612 /* Clear internal status */
2613 kvm_clear_exception_queue(&svm->vcpu);
2614 kvm_clear_interrupt_queue(&svm->vcpu);
2615
2616 /*
2617 * Save the old vmcb, so we don't need to pick what we save, but can
2618 * restore everything when a VMEXIT occurs
2619 */
2620 hsave->save.es = vmcb->save.es;
2621 hsave->save.cs = vmcb->save.cs;
2622 hsave->save.ss = vmcb->save.ss;
2623 hsave->save.ds = vmcb->save.ds;
2624 hsave->save.gdtr = vmcb->save.gdtr;
2625 hsave->save.idtr = vmcb->save.idtr;
2626 hsave->save.efer = svm->vcpu.arch.efer;
2627 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2628 hsave->save.cr4 = svm->vcpu.arch.cr4;
2629 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2630 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2631 hsave->save.rsp = vmcb->save.rsp;
2632 hsave->save.rax = vmcb->save.rax;
2633 if (npt_enabled)
2634 hsave->save.cr3 = vmcb->save.cr3;
2635 else
2636 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2637
2638 copy_vmcb_control_area(hsave, vmcb);
2639
2640 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2641 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2642 else
2643 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2644
2645 if (nested_vmcb->control.nested_ctl) {
2646 kvm_mmu_unload(&svm->vcpu);
2647 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2648 nested_svm_init_mmu_context(&svm->vcpu);
2649 }
2650
2651 /* Load the nested guest state */
2652 svm->vmcb->save.es = nested_vmcb->save.es;
2653 svm->vmcb->save.cs = nested_vmcb->save.cs;
2654 svm->vmcb->save.ss = nested_vmcb->save.ss;
2655 svm->vmcb->save.ds = nested_vmcb->save.ds;
2656 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2657 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2658 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2659 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2660 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2661 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2662 if (npt_enabled) {
2663 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2664 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2665 } else
2666 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2667
2668 /* Guest paging mode is active - reset mmu */
2669 kvm_mmu_reset_context(&svm->vcpu);
2670
2671 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2672 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2673 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2674 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2675
2676 /* In case we don't even reach vcpu_run, the fields are not updated */
2677 svm->vmcb->save.rax = nested_vmcb->save.rax;
2678 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2679 svm->vmcb->save.rip = nested_vmcb->save.rip;
2680 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2681 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2682 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2683
2684 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2685 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2686
2687 /* cache intercepts */
2688 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2689 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2690 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2691 svm->nested.intercept = nested_vmcb->control.intercept;
2692
2693 svm_flush_tlb(&svm->vcpu);
2694 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2695 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2696 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2697 else
2698 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2699
2700 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2701 /* We only want the cr8 intercept bits of the guest */
2702 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2703 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2704 }
2705
2706 /* We don't want to see VMMCALLs from a nested guest */
2707 clr_intercept(svm, INTERCEPT_VMMCALL);
2708
2709 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2710 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2711 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2712 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2713 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2714 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2715
2716 nested_svm_unmap(page);
2717
2718 /* Enter Guest-Mode */
2719 enter_guest_mode(&svm->vcpu);
2720
2721 /*
2722 * Merge guest and host intercepts - must be called with vcpu in
2723 * guest-mode to take affect here
2724 */
2725 recalc_intercepts(svm);
2726
2727 svm->nested.vmcb = vmcb_gpa;
2728
2729 enable_gif(svm);
2730
2731 mark_all_dirty(svm->vmcb);
2732
2733 return true;
2734 }
2735
2736 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2737 {
2738 to_vmcb->save.fs = from_vmcb->save.fs;
2739 to_vmcb->save.gs = from_vmcb->save.gs;
2740 to_vmcb->save.tr = from_vmcb->save.tr;
2741 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2742 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2743 to_vmcb->save.star = from_vmcb->save.star;
2744 to_vmcb->save.lstar = from_vmcb->save.lstar;
2745 to_vmcb->save.cstar = from_vmcb->save.cstar;
2746 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2747 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2748 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2749 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2750 }
2751
2752 static int vmload_interception(struct vcpu_svm *svm)
2753 {
2754 struct vmcb *nested_vmcb;
2755 struct page *page;
2756
2757 if (nested_svm_check_permissions(svm))
2758 return 1;
2759
2760 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2761 if (!nested_vmcb)
2762 return 1;
2763
2764 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2765 skip_emulated_instruction(&svm->vcpu);
2766
2767 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2768 nested_svm_unmap(page);
2769
2770 return 1;
2771 }
2772
2773 static int vmsave_interception(struct vcpu_svm *svm)
2774 {
2775 struct vmcb *nested_vmcb;
2776 struct page *page;
2777
2778 if (nested_svm_check_permissions(svm))
2779 return 1;
2780
2781 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2782 if (!nested_vmcb)
2783 return 1;
2784
2785 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2786 skip_emulated_instruction(&svm->vcpu);
2787
2788 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2789 nested_svm_unmap(page);
2790
2791 return 1;
2792 }
2793
2794 static int vmrun_interception(struct vcpu_svm *svm)
2795 {
2796 if (nested_svm_check_permissions(svm))
2797 return 1;
2798
2799 /* Save rip after vmrun instruction */
2800 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2801
2802 if (!nested_svm_vmrun(svm))
2803 return 1;
2804
2805 if (!nested_svm_vmrun_msrpm(svm))
2806 goto failed;
2807
2808 return 1;
2809
2810 failed:
2811
2812 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2813 svm->vmcb->control.exit_code_hi = 0;
2814 svm->vmcb->control.exit_info_1 = 0;
2815 svm->vmcb->control.exit_info_2 = 0;
2816
2817 nested_svm_vmexit(svm);
2818
2819 return 1;
2820 }
2821
2822 static int stgi_interception(struct vcpu_svm *svm)
2823 {
2824 if (nested_svm_check_permissions(svm))
2825 return 1;
2826
2827 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2828 skip_emulated_instruction(&svm->vcpu);
2829 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2830
2831 enable_gif(svm);
2832
2833 return 1;
2834 }
2835
2836 static int clgi_interception(struct vcpu_svm *svm)
2837 {
2838 if (nested_svm_check_permissions(svm))
2839 return 1;
2840
2841 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2842 skip_emulated_instruction(&svm->vcpu);
2843
2844 disable_gif(svm);
2845
2846 /* After a CLGI no interrupts should come */
2847 svm_clear_vintr(svm);
2848 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2849
2850 mark_dirty(svm->vmcb, VMCB_INTR);
2851
2852 return 1;
2853 }
2854
2855 static int invlpga_interception(struct vcpu_svm *svm)
2856 {
2857 struct kvm_vcpu *vcpu = &svm->vcpu;
2858
2859 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2860 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2861
2862 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2863 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2864
2865 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2866 skip_emulated_instruction(&svm->vcpu);
2867 return 1;
2868 }
2869
2870 static int skinit_interception(struct vcpu_svm *svm)
2871 {
2872 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2873
2874 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2875 return 1;
2876 }
2877
2878 static int wbinvd_interception(struct vcpu_svm *svm)
2879 {
2880 kvm_emulate_wbinvd(&svm->vcpu);
2881 return 1;
2882 }
2883
2884 static int xsetbv_interception(struct vcpu_svm *svm)
2885 {
2886 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2887 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2888
2889 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2890 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2891 skip_emulated_instruction(&svm->vcpu);
2892 }
2893
2894 return 1;
2895 }
2896
2897 static int task_switch_interception(struct vcpu_svm *svm)
2898 {
2899 u16 tss_selector;
2900 int reason;
2901 int int_type = svm->vmcb->control.exit_int_info &
2902 SVM_EXITINTINFO_TYPE_MASK;
2903 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2904 uint32_t type =
2905 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2906 uint32_t idt_v =
2907 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2908 bool has_error_code = false;
2909 u32 error_code = 0;
2910
2911 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2912
2913 if (svm->vmcb->control.exit_info_2 &
2914 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2915 reason = TASK_SWITCH_IRET;
2916 else if (svm->vmcb->control.exit_info_2 &
2917 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2918 reason = TASK_SWITCH_JMP;
2919 else if (idt_v)
2920 reason = TASK_SWITCH_GATE;
2921 else
2922 reason = TASK_SWITCH_CALL;
2923
2924 if (reason == TASK_SWITCH_GATE) {
2925 switch (type) {
2926 case SVM_EXITINTINFO_TYPE_NMI:
2927 svm->vcpu.arch.nmi_injected = false;
2928 break;
2929 case SVM_EXITINTINFO_TYPE_EXEPT:
2930 if (svm->vmcb->control.exit_info_2 &
2931 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2932 has_error_code = true;
2933 error_code =
2934 (u32)svm->vmcb->control.exit_info_2;
2935 }
2936 kvm_clear_exception_queue(&svm->vcpu);
2937 break;
2938 case SVM_EXITINTINFO_TYPE_INTR:
2939 kvm_clear_interrupt_queue(&svm->vcpu);
2940 break;
2941 default:
2942 break;
2943 }
2944 }
2945
2946 if (reason != TASK_SWITCH_GATE ||
2947 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2948 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2949 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2950 skip_emulated_instruction(&svm->vcpu);
2951
2952 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2953 int_vec = -1;
2954
2955 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2956 has_error_code, error_code) == EMULATE_FAIL) {
2957 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2958 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2959 svm->vcpu.run->internal.ndata = 0;
2960 return 0;
2961 }
2962 return 1;
2963 }
2964
2965 static int cpuid_interception(struct vcpu_svm *svm)
2966 {
2967 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2968 kvm_emulate_cpuid(&svm->vcpu);
2969 return 1;
2970 }
2971
2972 static int iret_interception(struct vcpu_svm *svm)
2973 {
2974 ++svm->vcpu.stat.nmi_window_exits;
2975 clr_intercept(svm, INTERCEPT_IRET);
2976 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2977 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2978 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2979 return 1;
2980 }
2981
2982 static int invlpg_interception(struct vcpu_svm *svm)
2983 {
2984 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2985 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2986
2987 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2988 skip_emulated_instruction(&svm->vcpu);
2989 return 1;
2990 }
2991
2992 static int emulate_on_interception(struct vcpu_svm *svm)
2993 {
2994 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2995 }
2996
2997 static int rdpmc_interception(struct vcpu_svm *svm)
2998 {
2999 int err;
3000
3001 if (!static_cpu_has(X86_FEATURE_NRIPS))
3002 return emulate_on_interception(svm);
3003
3004 err = kvm_rdpmc(&svm->vcpu);
3005 kvm_complete_insn_gp(&svm->vcpu, err);
3006
3007 return 1;
3008 }
3009
3010 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3011 unsigned long val)
3012 {
3013 unsigned long cr0 = svm->vcpu.arch.cr0;
3014 bool ret = false;
3015 u64 intercept;
3016
3017 intercept = svm->nested.intercept;
3018
3019 if (!is_guest_mode(&svm->vcpu) ||
3020 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3021 return false;
3022
3023 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3024 val &= ~SVM_CR0_SELECTIVE_MASK;
3025
3026 if (cr0 ^ val) {
3027 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3028 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3029 }
3030
3031 return ret;
3032 }
3033
3034 #define CR_VALID (1ULL << 63)
3035
3036 static int cr_interception(struct vcpu_svm *svm)
3037 {
3038 int reg, cr;
3039 unsigned long val;
3040 int err;
3041
3042 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3043 return emulate_on_interception(svm);
3044
3045 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3046 return emulate_on_interception(svm);
3047
3048 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3049 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3050 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3051 else
3052 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3053
3054 err = 0;
3055 if (cr >= 16) { /* mov to cr */
3056 cr -= 16;
3057 val = kvm_register_read(&svm->vcpu, reg);
3058 switch (cr) {
3059 case 0:
3060 if (!check_selective_cr0_intercepted(svm, val))
3061 err = kvm_set_cr0(&svm->vcpu, val);
3062 else
3063 return 1;
3064
3065 break;
3066 case 3:
3067 err = kvm_set_cr3(&svm->vcpu, val);
3068 break;
3069 case 4:
3070 err = kvm_set_cr4(&svm->vcpu, val);
3071 break;
3072 case 8:
3073 err = kvm_set_cr8(&svm->vcpu, val);
3074 break;
3075 default:
3076 WARN(1, "unhandled write to CR%d", cr);
3077 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3078 return 1;
3079 }
3080 } else { /* mov from cr */
3081 switch (cr) {
3082 case 0:
3083 val = kvm_read_cr0(&svm->vcpu);
3084 break;
3085 case 2:
3086 val = svm->vcpu.arch.cr2;
3087 break;
3088 case 3:
3089 val = kvm_read_cr3(&svm->vcpu);
3090 break;
3091 case 4:
3092 val = kvm_read_cr4(&svm->vcpu);
3093 break;
3094 case 8:
3095 val = kvm_get_cr8(&svm->vcpu);
3096 break;
3097 default:
3098 WARN(1, "unhandled read from CR%d", cr);
3099 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3100 return 1;
3101 }
3102 kvm_register_write(&svm->vcpu, reg, val);
3103 }
3104 kvm_complete_insn_gp(&svm->vcpu, err);
3105
3106 return 1;
3107 }
3108
3109 static int dr_interception(struct vcpu_svm *svm)
3110 {
3111 int reg, dr;
3112 unsigned long val;
3113
3114 if (svm->vcpu.guest_debug == 0) {
3115 /*
3116 * No more DR vmexits; force a reload of the debug registers
3117 * and reenter on this instruction. The next vmexit will
3118 * retrieve the full state of the debug registers.
3119 */
3120 clr_dr_intercepts(svm);
3121 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3122 return 1;
3123 }
3124
3125 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3126 return emulate_on_interception(svm);
3127
3128 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3129 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3130
3131 if (dr >= 16) { /* mov to DRn */
3132 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3133 return 1;
3134 val = kvm_register_read(&svm->vcpu, reg);
3135 kvm_set_dr(&svm->vcpu, dr - 16, val);
3136 } else {
3137 if (!kvm_require_dr(&svm->vcpu, dr))
3138 return 1;
3139 kvm_get_dr(&svm->vcpu, dr, &val);
3140 kvm_register_write(&svm->vcpu, reg, val);
3141 }
3142
3143 skip_emulated_instruction(&svm->vcpu);
3144
3145 return 1;
3146 }
3147
3148 static int cr8_write_interception(struct vcpu_svm *svm)
3149 {
3150 struct kvm_run *kvm_run = svm->vcpu.run;
3151 int r;
3152
3153 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3154 /* instruction emulation calls kvm_set_cr8() */
3155 r = cr_interception(svm);
3156 if (irqchip_in_kernel(svm->vcpu.kvm))
3157 return r;
3158 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3159 return r;
3160 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3161 return 0;
3162 }
3163
3164 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3165 {
3166 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3167 return vmcb->control.tsc_offset +
3168 svm_scale_tsc(vcpu, host_tsc);
3169 }
3170
3171 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3172 {
3173 struct vcpu_svm *svm = to_svm(vcpu);
3174
3175 switch (msr_info->index) {
3176 case MSR_IA32_TSC: {
3177 msr_info->data = svm->vmcb->control.tsc_offset +
3178 svm_scale_tsc(vcpu, rdtsc());
3179
3180 break;
3181 }
3182 case MSR_STAR:
3183 msr_info->data = svm->vmcb->save.star;
3184 break;
3185 #ifdef CONFIG_X86_64
3186 case MSR_LSTAR:
3187 msr_info->data = svm->vmcb->save.lstar;
3188 break;
3189 case MSR_CSTAR:
3190 msr_info->data = svm->vmcb->save.cstar;
3191 break;
3192 case MSR_KERNEL_GS_BASE:
3193 msr_info->data = svm->vmcb->save.kernel_gs_base;
3194 break;
3195 case MSR_SYSCALL_MASK:
3196 msr_info->data = svm->vmcb->save.sfmask;
3197 break;
3198 #endif
3199 case MSR_IA32_SYSENTER_CS:
3200 msr_info->data = svm->vmcb->save.sysenter_cs;
3201 break;
3202 case MSR_IA32_SYSENTER_EIP:
3203 msr_info->data = svm->sysenter_eip;
3204 break;
3205 case MSR_IA32_SYSENTER_ESP:
3206 msr_info->data = svm->sysenter_esp;
3207 break;
3208 /*
3209 * Nobody will change the following 5 values in the VMCB so we can
3210 * safely return them on rdmsr. They will always be 0 until LBRV is
3211 * implemented.
3212 */
3213 case MSR_IA32_DEBUGCTLMSR:
3214 msr_info->data = svm->vmcb->save.dbgctl;
3215 break;
3216 case MSR_IA32_LASTBRANCHFROMIP:
3217 msr_info->data = svm->vmcb->save.br_from;
3218 break;
3219 case MSR_IA32_LASTBRANCHTOIP:
3220 msr_info->data = svm->vmcb->save.br_to;
3221 break;
3222 case MSR_IA32_LASTINTFROMIP:
3223 msr_info->data = svm->vmcb->save.last_excp_from;
3224 break;
3225 case MSR_IA32_LASTINTTOIP:
3226 msr_info->data = svm->vmcb->save.last_excp_to;
3227 break;
3228 case MSR_VM_HSAVE_PA:
3229 msr_info->data = svm->nested.hsave_msr;
3230 break;
3231 case MSR_VM_CR:
3232 msr_info->data = svm->nested.vm_cr_msr;
3233 break;
3234 case MSR_IA32_UCODE_REV:
3235 msr_info->data = 0x01000065;
3236 break;
3237 default:
3238 return kvm_get_msr_common(vcpu, msr_info);
3239 }
3240 return 0;
3241 }
3242
3243 static int rdmsr_interception(struct vcpu_svm *svm)
3244 {
3245 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3246 struct msr_data msr_info;
3247
3248 msr_info.index = ecx;
3249 msr_info.host_initiated = false;
3250 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3251 trace_kvm_msr_read_ex(ecx);
3252 kvm_inject_gp(&svm->vcpu, 0);
3253 } else {
3254 trace_kvm_msr_read(ecx, msr_info.data);
3255
3256 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3257 msr_info.data & 0xffffffff);
3258 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3259 msr_info.data >> 32);
3260 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3261 skip_emulated_instruction(&svm->vcpu);
3262 }
3263 return 1;
3264 }
3265
3266 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3267 {
3268 struct vcpu_svm *svm = to_svm(vcpu);
3269 int svm_dis, chg_mask;
3270
3271 if (data & ~SVM_VM_CR_VALID_MASK)
3272 return 1;
3273
3274 chg_mask = SVM_VM_CR_VALID_MASK;
3275
3276 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3277 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3278
3279 svm->nested.vm_cr_msr &= ~chg_mask;
3280 svm->nested.vm_cr_msr |= (data & chg_mask);
3281
3282 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3283
3284 /* check for svm_disable while efer.svme is set */
3285 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3286 return 1;
3287
3288 return 0;
3289 }
3290
3291 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3292 {
3293 struct vcpu_svm *svm = to_svm(vcpu);
3294
3295 u32 ecx = msr->index;
3296 u64 data = msr->data;
3297 switch (ecx) {
3298 case MSR_IA32_TSC:
3299 kvm_write_tsc(vcpu, msr);
3300 break;
3301 case MSR_STAR:
3302 svm->vmcb->save.star = data;
3303 break;
3304 #ifdef CONFIG_X86_64
3305 case MSR_LSTAR:
3306 svm->vmcb->save.lstar = data;
3307 break;
3308 case MSR_CSTAR:
3309 svm->vmcb->save.cstar = data;
3310 break;
3311 case MSR_KERNEL_GS_BASE:
3312 svm->vmcb->save.kernel_gs_base = data;
3313 break;
3314 case MSR_SYSCALL_MASK:
3315 svm->vmcb->save.sfmask = data;
3316 break;
3317 #endif
3318 case MSR_IA32_SYSENTER_CS:
3319 svm->vmcb->save.sysenter_cs = data;
3320 break;
3321 case MSR_IA32_SYSENTER_EIP:
3322 svm->sysenter_eip = data;
3323 svm->vmcb->save.sysenter_eip = data;
3324 break;
3325 case MSR_IA32_SYSENTER_ESP:
3326 svm->sysenter_esp = data;
3327 svm->vmcb->save.sysenter_esp = data;
3328 break;
3329 case MSR_IA32_DEBUGCTLMSR:
3330 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3331 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3332 __func__, data);
3333 break;
3334 }
3335 if (data & DEBUGCTL_RESERVED_BITS)
3336 return 1;
3337
3338 svm->vmcb->save.dbgctl = data;
3339 mark_dirty(svm->vmcb, VMCB_LBR);
3340 if (data & (1ULL<<0))
3341 svm_enable_lbrv(svm);
3342 else
3343 svm_disable_lbrv(svm);
3344 break;
3345 case MSR_VM_HSAVE_PA:
3346 svm->nested.hsave_msr = data;
3347 break;
3348 case MSR_VM_CR:
3349 return svm_set_vm_cr(vcpu, data);
3350 case MSR_VM_IGNNE:
3351 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3352 break;
3353 case MSR_IA32_CR_PAT:
3354 if (npt_enabled) {
3355 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3356 return 1;
3357 vcpu->arch.pat = data;
3358 svm_set_guest_pat(svm, &svm->vmcb->save.g_pat);
3359 mark_dirty(svm->vmcb, VMCB_NPT);
3360 break;
3361 }
3362 /* fall through */
3363 default:
3364 return kvm_set_msr_common(vcpu, msr);
3365 }
3366 return 0;
3367 }
3368
3369 static int wrmsr_interception(struct vcpu_svm *svm)
3370 {
3371 struct msr_data msr;
3372 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3373 u64 data = kvm_read_edx_eax(&svm->vcpu);
3374
3375 msr.data = data;
3376 msr.index = ecx;
3377 msr.host_initiated = false;
3378
3379 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3380 if (kvm_set_msr(&svm->vcpu, &msr)) {
3381 trace_kvm_msr_write_ex(ecx, data);
3382 kvm_inject_gp(&svm->vcpu, 0);
3383 } else {
3384 trace_kvm_msr_write(ecx, data);
3385 skip_emulated_instruction(&svm->vcpu);
3386 }
3387 return 1;
3388 }
3389
3390 static int msr_interception(struct vcpu_svm *svm)
3391 {
3392 if (svm->vmcb->control.exit_info_1)
3393 return wrmsr_interception(svm);
3394 else
3395 return rdmsr_interception(svm);
3396 }
3397
3398 static int interrupt_window_interception(struct vcpu_svm *svm)
3399 {
3400 struct kvm_run *kvm_run = svm->vcpu.run;
3401
3402 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3403 svm_clear_vintr(svm);
3404 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3405 mark_dirty(svm->vmcb, VMCB_INTR);
3406 ++svm->vcpu.stat.irq_window_exits;
3407 /*
3408 * If the user space waits to inject interrupts, exit as soon as
3409 * possible
3410 */
3411 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3412 kvm_run->request_interrupt_window &&
3413 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3414 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3415 return 0;
3416 }
3417
3418 return 1;
3419 }
3420
3421 static int pause_interception(struct vcpu_svm *svm)
3422 {
3423 kvm_vcpu_on_spin(&(svm->vcpu));
3424 return 1;
3425 }
3426
3427 static int nop_interception(struct vcpu_svm *svm)
3428 {
3429 skip_emulated_instruction(&(svm->vcpu));
3430 return 1;
3431 }
3432
3433 static int monitor_interception(struct vcpu_svm *svm)
3434 {
3435 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3436 return nop_interception(svm);
3437 }
3438
3439 static int mwait_interception(struct vcpu_svm *svm)
3440 {
3441 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3442 return nop_interception(svm);
3443 }
3444
3445 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3446 [SVM_EXIT_READ_CR0] = cr_interception,
3447 [SVM_EXIT_READ_CR3] = cr_interception,
3448 [SVM_EXIT_READ_CR4] = cr_interception,
3449 [SVM_EXIT_READ_CR8] = cr_interception,
3450 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3451 [SVM_EXIT_WRITE_CR0] = cr_interception,
3452 [SVM_EXIT_WRITE_CR3] = cr_interception,
3453 [SVM_EXIT_WRITE_CR4] = cr_interception,
3454 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3455 [SVM_EXIT_READ_DR0] = dr_interception,
3456 [SVM_EXIT_READ_DR1] = dr_interception,
3457 [SVM_EXIT_READ_DR2] = dr_interception,
3458 [SVM_EXIT_READ_DR3] = dr_interception,
3459 [SVM_EXIT_READ_DR4] = dr_interception,
3460 [SVM_EXIT_READ_DR5] = dr_interception,
3461 [SVM_EXIT_READ_DR6] = dr_interception,
3462 [SVM_EXIT_READ_DR7] = dr_interception,
3463 [SVM_EXIT_WRITE_DR0] = dr_interception,
3464 [SVM_EXIT_WRITE_DR1] = dr_interception,
3465 [SVM_EXIT_WRITE_DR2] = dr_interception,
3466 [SVM_EXIT_WRITE_DR3] = dr_interception,
3467 [SVM_EXIT_WRITE_DR4] = dr_interception,
3468 [SVM_EXIT_WRITE_DR5] = dr_interception,
3469 [SVM_EXIT_WRITE_DR6] = dr_interception,
3470 [SVM_EXIT_WRITE_DR7] = dr_interception,
3471 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3472 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3473 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3474 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3475 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3476 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3477 [SVM_EXIT_INTR] = intr_interception,
3478 [SVM_EXIT_NMI] = nmi_interception,
3479 [SVM_EXIT_SMI] = nop_on_interception,
3480 [SVM_EXIT_INIT] = nop_on_interception,
3481 [SVM_EXIT_VINTR] = interrupt_window_interception,
3482 [SVM_EXIT_RDPMC] = rdpmc_interception,
3483 [SVM_EXIT_CPUID] = cpuid_interception,
3484 [SVM_EXIT_IRET] = iret_interception,
3485 [SVM_EXIT_INVD] = emulate_on_interception,
3486 [SVM_EXIT_PAUSE] = pause_interception,
3487 [SVM_EXIT_HLT] = halt_interception,
3488 [SVM_EXIT_INVLPG] = invlpg_interception,
3489 [SVM_EXIT_INVLPGA] = invlpga_interception,
3490 [SVM_EXIT_IOIO] = io_interception,
3491 [SVM_EXIT_MSR] = msr_interception,
3492 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3493 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3494 [SVM_EXIT_VMRUN] = vmrun_interception,
3495 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3496 [SVM_EXIT_VMLOAD] = vmload_interception,
3497 [SVM_EXIT_VMSAVE] = vmsave_interception,
3498 [SVM_EXIT_STGI] = stgi_interception,
3499 [SVM_EXIT_CLGI] = clgi_interception,
3500 [SVM_EXIT_SKINIT] = skinit_interception,
3501 [SVM_EXIT_WBINVD] = wbinvd_interception,
3502 [SVM_EXIT_MONITOR] = monitor_interception,
3503 [SVM_EXIT_MWAIT] = mwait_interception,
3504 [SVM_EXIT_XSETBV] = xsetbv_interception,
3505 [SVM_EXIT_NPF] = pf_interception,
3506 [SVM_EXIT_RSM] = emulate_on_interception,
3507 };
3508
3509 static void dump_vmcb(struct kvm_vcpu *vcpu)
3510 {
3511 struct vcpu_svm *svm = to_svm(vcpu);
3512 struct vmcb_control_area *control = &svm->vmcb->control;
3513 struct vmcb_save_area *save = &svm->vmcb->save;
3514
3515 pr_err("VMCB Control Area:\n");
3516 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3517 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3518 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3519 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3520 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3521 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3522 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3523 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3524 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3525 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3526 pr_err("%-20s%d\n", "asid:", control->asid);
3527 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3528 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3529 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3530 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3531 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3532 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3533 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3534 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3535 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3536 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3537 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3538 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3539 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3540 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3541 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3542 pr_err("VMCB State Save Area:\n");
3543 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3544 "es:",
3545 save->es.selector, save->es.attrib,
3546 save->es.limit, save->es.base);
3547 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3548 "cs:",
3549 save->cs.selector, save->cs.attrib,
3550 save->cs.limit, save->cs.base);
3551 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3552 "ss:",
3553 save->ss.selector, save->ss.attrib,
3554 save->ss.limit, save->ss.base);
3555 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3556 "ds:",
3557 save->ds.selector, save->ds.attrib,
3558 save->ds.limit, save->ds.base);
3559 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3560 "fs:",
3561 save->fs.selector, save->fs.attrib,
3562 save->fs.limit, save->fs.base);
3563 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3564 "gs:",
3565 save->gs.selector, save->gs.attrib,
3566 save->gs.limit, save->gs.base);
3567 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3568 "gdtr:",
3569 save->gdtr.selector, save->gdtr.attrib,
3570 save->gdtr.limit, save->gdtr.base);
3571 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3572 "ldtr:",
3573 save->ldtr.selector, save->ldtr.attrib,
3574 save->ldtr.limit, save->ldtr.base);
3575 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3576 "idtr:",
3577 save->idtr.selector, save->idtr.attrib,
3578 save->idtr.limit, save->idtr.base);
3579 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3580 "tr:",
3581 save->tr.selector, save->tr.attrib,
3582 save->tr.limit, save->tr.base);
3583 pr_err("cpl: %d efer: %016llx\n",
3584 save->cpl, save->efer);
3585 pr_err("%-15s %016llx %-13s %016llx\n",
3586 "cr0:", save->cr0, "cr2:", save->cr2);
3587 pr_err("%-15s %016llx %-13s %016llx\n",
3588 "cr3:", save->cr3, "cr4:", save->cr4);
3589 pr_err("%-15s %016llx %-13s %016llx\n",
3590 "dr6:", save->dr6, "dr7:", save->dr7);
3591 pr_err("%-15s %016llx %-13s %016llx\n",
3592 "rip:", save->rip, "rflags:", save->rflags);
3593 pr_err("%-15s %016llx %-13s %016llx\n",
3594 "rsp:", save->rsp, "rax:", save->rax);
3595 pr_err("%-15s %016llx %-13s %016llx\n",
3596 "star:", save->star, "lstar:", save->lstar);
3597 pr_err("%-15s %016llx %-13s %016llx\n",
3598 "cstar:", save->cstar, "sfmask:", save->sfmask);
3599 pr_err("%-15s %016llx %-13s %016llx\n",
3600 "kernel_gs_base:", save->kernel_gs_base,
3601 "sysenter_cs:", save->sysenter_cs);
3602 pr_err("%-15s %016llx %-13s %016llx\n",
3603 "sysenter_esp:", save->sysenter_esp,
3604 "sysenter_eip:", save->sysenter_eip);
3605 pr_err("%-15s %016llx %-13s %016llx\n",
3606 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3607 pr_err("%-15s %016llx %-13s %016llx\n",
3608 "br_from:", save->br_from, "br_to:", save->br_to);
3609 pr_err("%-15s %016llx %-13s %016llx\n",
3610 "excp_from:", save->last_excp_from,
3611 "excp_to:", save->last_excp_to);
3612 }
3613
3614 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3615 {
3616 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3617
3618 *info1 = control->exit_info_1;
3619 *info2 = control->exit_info_2;
3620 }
3621
3622 static int handle_exit(struct kvm_vcpu *vcpu)
3623 {
3624 struct vcpu_svm *svm = to_svm(vcpu);
3625 struct kvm_run *kvm_run = vcpu->run;
3626 u32 exit_code = svm->vmcb->control.exit_code;
3627
3628 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3629 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3630 if (npt_enabled)
3631 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3632
3633 if (unlikely(svm->nested.exit_required)) {
3634 nested_svm_vmexit(svm);
3635 svm->nested.exit_required = false;
3636
3637 return 1;
3638 }
3639
3640 if (is_guest_mode(vcpu)) {
3641 int vmexit;
3642
3643 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3644 svm->vmcb->control.exit_info_1,
3645 svm->vmcb->control.exit_info_2,
3646 svm->vmcb->control.exit_int_info,
3647 svm->vmcb->control.exit_int_info_err,
3648 KVM_ISA_SVM);
3649
3650 vmexit = nested_svm_exit_special(svm);
3651
3652 if (vmexit == NESTED_EXIT_CONTINUE)
3653 vmexit = nested_svm_exit_handled(svm);
3654
3655 if (vmexit == NESTED_EXIT_DONE)
3656 return 1;
3657 }
3658
3659 svm_complete_interrupts(svm);
3660
3661 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3662 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3663 kvm_run->fail_entry.hardware_entry_failure_reason
3664 = svm->vmcb->control.exit_code;
3665 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3666 dump_vmcb(vcpu);
3667 return 0;
3668 }
3669
3670 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3671 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3672 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3673 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3674 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3675 "exit_code 0x%x\n",
3676 __func__, svm->vmcb->control.exit_int_info,
3677 exit_code);
3678
3679 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3680 || !svm_exit_handlers[exit_code]) {
3681 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3682 kvm_queue_exception(vcpu, UD_VECTOR);
3683 return 1;
3684 }
3685
3686 return svm_exit_handlers[exit_code](svm);
3687 }
3688
3689 static void reload_tss(struct kvm_vcpu *vcpu)
3690 {
3691 int cpu = raw_smp_processor_id();
3692
3693 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3694 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3695 load_TR_desc();
3696 }
3697
3698 static void pre_svm_run(struct vcpu_svm *svm)
3699 {
3700 int cpu = raw_smp_processor_id();
3701
3702 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3703
3704 /* FIXME: handle wraparound of asid_generation */
3705 if (svm->asid_generation != sd->asid_generation)
3706 new_asid(svm, sd);
3707 }
3708
3709 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3710 {
3711 struct vcpu_svm *svm = to_svm(vcpu);
3712
3713 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3714 vcpu->arch.hflags |= HF_NMI_MASK;
3715 set_intercept(svm, INTERCEPT_IRET);
3716 ++vcpu->stat.nmi_injections;
3717 }
3718
3719 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3720 {
3721 struct vmcb_control_area *control;
3722
3723 control = &svm->vmcb->control;
3724 control->int_vector = irq;
3725 control->int_ctl &= ~V_INTR_PRIO_MASK;
3726 control->int_ctl |= V_IRQ_MASK |
3727 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3728 mark_dirty(svm->vmcb, VMCB_INTR);
3729 }
3730
3731 static void svm_set_irq(struct kvm_vcpu *vcpu)
3732 {
3733 struct vcpu_svm *svm = to_svm(vcpu);
3734
3735 BUG_ON(!(gif_set(svm)));
3736
3737 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3738 ++vcpu->stat.irq_injections;
3739
3740 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3741 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3742 }
3743
3744 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3745 {
3746 struct vcpu_svm *svm = to_svm(vcpu);
3747
3748 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3749 return;
3750
3751 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3752
3753 if (irr == -1)
3754 return;
3755
3756 if (tpr >= irr)
3757 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3758 }
3759
3760 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3761 {
3762 return;
3763 }
3764
3765 static int svm_vm_has_apicv(struct kvm *kvm)
3766 {
3767 return 0;
3768 }
3769
3770 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3771 {
3772 return;
3773 }
3774
3775 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3776 {
3777 return;
3778 }
3779
3780 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3781 {
3782 struct vcpu_svm *svm = to_svm(vcpu);
3783 struct vmcb *vmcb = svm->vmcb;
3784 int ret;
3785 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3786 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3787 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3788
3789 return ret;
3790 }
3791
3792 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3793 {
3794 struct vcpu_svm *svm = to_svm(vcpu);
3795
3796 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3797 }
3798
3799 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3800 {
3801 struct vcpu_svm *svm = to_svm(vcpu);
3802
3803 if (masked) {
3804 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3805 set_intercept(svm, INTERCEPT_IRET);
3806 } else {
3807 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3808 clr_intercept(svm, INTERCEPT_IRET);
3809 }
3810 }
3811
3812 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3813 {
3814 struct vcpu_svm *svm = to_svm(vcpu);
3815 struct vmcb *vmcb = svm->vmcb;
3816 int ret;
3817
3818 if (!gif_set(svm) ||
3819 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3820 return 0;
3821
3822 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3823
3824 if (is_guest_mode(vcpu))
3825 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3826
3827 return ret;
3828 }
3829
3830 static void enable_irq_window(struct kvm_vcpu *vcpu)
3831 {
3832 struct vcpu_svm *svm = to_svm(vcpu);
3833
3834 /*
3835 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3836 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3837 * get that intercept, this function will be called again though and
3838 * we'll get the vintr intercept.
3839 */
3840 if (gif_set(svm) && nested_svm_intr(svm)) {
3841 svm_set_vintr(svm);
3842 svm_inject_irq(svm, 0x0);
3843 }
3844 }
3845
3846 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3847 {
3848 struct vcpu_svm *svm = to_svm(vcpu);
3849
3850 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3851 == HF_NMI_MASK)
3852 return; /* IRET will cause a vm exit */
3853
3854 /*
3855 * Something prevents NMI from been injected. Single step over possible
3856 * problem (IRET or exception injection or interrupt shadow)
3857 */
3858 svm->nmi_singlestep = true;
3859 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3860 update_db_bp_intercept(vcpu);
3861 }
3862
3863 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3864 {
3865 return 0;
3866 }
3867
3868 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3869 {
3870 struct vcpu_svm *svm = to_svm(vcpu);
3871
3872 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3873 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3874 else
3875 svm->asid_generation--;
3876 }
3877
3878 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3879 {
3880 }
3881
3882 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3883 {
3884 struct vcpu_svm *svm = to_svm(vcpu);
3885
3886 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3887 return;
3888
3889 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3890 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3891 kvm_set_cr8(vcpu, cr8);
3892 }
3893 }
3894
3895 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3896 {
3897 struct vcpu_svm *svm = to_svm(vcpu);
3898 u64 cr8;
3899
3900 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3901 return;
3902
3903 cr8 = kvm_get_cr8(vcpu);
3904 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3905 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3906 }
3907
3908 static void svm_complete_interrupts(struct vcpu_svm *svm)
3909 {
3910 u8 vector;
3911 int type;
3912 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3913 unsigned int3_injected = svm->int3_injected;
3914
3915 svm->int3_injected = 0;
3916
3917 /*
3918 * If we've made progress since setting HF_IRET_MASK, we've
3919 * executed an IRET and can allow NMI injection.
3920 */
3921 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3922 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3923 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3924 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3925 }
3926
3927 svm->vcpu.arch.nmi_injected = false;
3928 kvm_clear_exception_queue(&svm->vcpu);
3929 kvm_clear_interrupt_queue(&svm->vcpu);
3930
3931 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3932 return;
3933
3934 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3935
3936 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3937 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3938
3939 switch (type) {
3940 case SVM_EXITINTINFO_TYPE_NMI:
3941 svm->vcpu.arch.nmi_injected = true;
3942 break;
3943 case SVM_EXITINTINFO_TYPE_EXEPT:
3944 /*
3945 * In case of software exceptions, do not reinject the vector,
3946 * but re-execute the instruction instead. Rewind RIP first
3947 * if we emulated INT3 before.
3948 */
3949 if (kvm_exception_is_soft(vector)) {
3950 if (vector == BP_VECTOR && int3_injected &&
3951 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3952 kvm_rip_write(&svm->vcpu,
3953 kvm_rip_read(&svm->vcpu) -
3954 int3_injected);
3955 break;
3956 }
3957 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3958 u32 err = svm->vmcb->control.exit_int_info_err;
3959 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3960
3961 } else
3962 kvm_requeue_exception(&svm->vcpu, vector);
3963 break;
3964 case SVM_EXITINTINFO_TYPE_INTR:
3965 kvm_queue_interrupt(&svm->vcpu, vector, false);
3966 break;
3967 default:
3968 break;
3969 }
3970 }
3971
3972 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3973 {
3974 struct vcpu_svm *svm = to_svm(vcpu);
3975 struct vmcb_control_area *control = &svm->vmcb->control;
3976
3977 control->exit_int_info = control->event_inj;
3978 control->exit_int_info_err = control->event_inj_err;
3979 control->event_inj = 0;
3980 svm_complete_interrupts(svm);
3981 }
3982
3983 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3984 {
3985 struct vcpu_svm *svm = to_svm(vcpu);
3986
3987 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3988 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3989 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3990
3991 /*
3992 * A vmexit emulation is required before the vcpu can be executed
3993 * again.
3994 */
3995 if (unlikely(svm->nested.exit_required))
3996 return;
3997
3998 pre_svm_run(svm);
3999
4000 sync_lapic_to_cr8(vcpu);
4001
4002 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4003
4004 clgi();
4005
4006 local_irq_enable();
4007
4008 asm volatile (
4009 "push %%" _ASM_BP "; \n\t"
4010 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4011 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4012 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4013 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4014 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4015 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4016 #ifdef CONFIG_X86_64
4017 "mov %c[r8](%[svm]), %%r8 \n\t"
4018 "mov %c[r9](%[svm]), %%r9 \n\t"
4019 "mov %c[r10](%[svm]), %%r10 \n\t"
4020 "mov %c[r11](%[svm]), %%r11 \n\t"
4021 "mov %c[r12](%[svm]), %%r12 \n\t"
4022 "mov %c[r13](%[svm]), %%r13 \n\t"
4023 "mov %c[r14](%[svm]), %%r14 \n\t"
4024 "mov %c[r15](%[svm]), %%r15 \n\t"
4025 #endif
4026
4027 /* Enter guest mode */
4028 "push %%" _ASM_AX " \n\t"
4029 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4030 __ex(SVM_VMLOAD) "\n\t"
4031 __ex(SVM_VMRUN) "\n\t"
4032 __ex(SVM_VMSAVE) "\n\t"
4033 "pop %%" _ASM_AX " \n\t"
4034
4035 /* Save guest registers, load host registers */
4036 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4037 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4038 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4039 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4040 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4041 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4042 #ifdef CONFIG_X86_64
4043 "mov %%r8, %c[r8](%[svm]) \n\t"
4044 "mov %%r9, %c[r9](%[svm]) \n\t"
4045 "mov %%r10, %c[r10](%[svm]) \n\t"
4046 "mov %%r11, %c[r11](%[svm]) \n\t"
4047 "mov %%r12, %c[r12](%[svm]) \n\t"
4048 "mov %%r13, %c[r13](%[svm]) \n\t"
4049 "mov %%r14, %c[r14](%[svm]) \n\t"
4050 "mov %%r15, %c[r15](%[svm]) \n\t"
4051 #endif
4052 "pop %%" _ASM_BP
4053 :
4054 : [svm]"a"(svm),
4055 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4056 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4057 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4058 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4059 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4060 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4061 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4062 #ifdef CONFIG_X86_64
4063 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4064 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4065 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4066 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4067 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4068 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4069 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4070 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4071 #endif
4072 : "cc", "memory"
4073 #ifdef CONFIG_X86_64
4074 , "rbx", "rcx", "rdx", "rsi", "rdi"
4075 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4076 #else
4077 , "ebx", "ecx", "edx", "esi", "edi"
4078 #endif
4079 );
4080
4081 #ifdef CONFIG_X86_64
4082 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4083 #else
4084 loadsegment(fs, svm->host.fs);
4085 #ifndef CONFIG_X86_32_LAZY_GS
4086 loadsegment(gs, svm->host.gs);
4087 #endif
4088 #endif
4089
4090 reload_tss(vcpu);
4091
4092 local_irq_disable();
4093
4094 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4095 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4096 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4097 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4098
4099 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
4100
4101 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4102 kvm_before_handle_nmi(&svm->vcpu);
4103
4104 stgi();
4105
4106 /* Any pending NMI will happen here */
4107
4108 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4109 kvm_after_handle_nmi(&svm->vcpu);
4110
4111 sync_cr8_to_lapic(vcpu);
4112
4113 svm->next_rip = 0;
4114
4115 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4116
4117 /* if exit due to PF check for async PF */
4118 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4119 svm->apf_reason = kvm_read_and_reset_pf_reason();
4120
4121 if (npt_enabled) {
4122 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4123 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4124 }
4125
4126 /*
4127 * We need to handle MC intercepts here before the vcpu has a chance to
4128 * change the physical cpu
4129 */
4130 if (unlikely(svm->vmcb->control.exit_code ==
4131 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4132 svm_handle_mce(svm);
4133
4134 mark_all_clean(svm->vmcb);
4135 }
4136
4137 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4138 {
4139 struct vcpu_svm *svm = to_svm(vcpu);
4140
4141 svm->vmcb->save.cr3 = root;
4142 mark_dirty(svm->vmcb, VMCB_CR);
4143 svm_flush_tlb(vcpu);
4144 }
4145
4146 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4147 {
4148 struct vcpu_svm *svm = to_svm(vcpu);
4149
4150 svm->vmcb->control.nested_cr3 = root;
4151 mark_dirty(svm->vmcb, VMCB_NPT);
4152
4153 /* Also sync guest cr3 here in case we live migrate */
4154 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4155 mark_dirty(svm->vmcb, VMCB_CR);
4156
4157 svm_flush_tlb(vcpu);
4158 }
4159
4160 static int is_disabled(void)
4161 {
4162 u64 vm_cr;
4163
4164 rdmsrl(MSR_VM_CR, vm_cr);
4165 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4166 return 1;
4167
4168 return 0;
4169 }
4170
4171 static void
4172 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4173 {
4174 /*
4175 * Patch in the VMMCALL instruction:
4176 */
4177 hypercall[0] = 0x0f;
4178 hypercall[1] = 0x01;
4179 hypercall[2] = 0xd9;
4180 }
4181
4182 static void svm_check_processor_compat(void *rtn)
4183 {
4184 *(int *)rtn = 0;
4185 }
4186
4187 static bool svm_cpu_has_accelerated_tpr(void)
4188 {
4189 return false;
4190 }
4191
4192 static bool svm_has_high_real_mode_segbase(void)
4193 {
4194 return true;
4195 }
4196
4197 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4198 {
4199 }
4200
4201 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4202 {
4203 switch (func) {
4204 case 0x80000001:
4205 if (nested)
4206 entry->ecx |= (1 << 2); /* Set SVM bit */
4207 break;
4208 case 0x8000000A:
4209 entry->eax = 1; /* SVM revision 1 */
4210 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4211 ASID emulation to nested SVM */
4212 entry->ecx = 0; /* Reserved */
4213 entry->edx = 0; /* Per default do not support any
4214 additional features */
4215
4216 /* Support next_rip if host supports it */
4217 if (boot_cpu_has(X86_FEATURE_NRIPS))
4218 entry->edx |= SVM_FEATURE_NRIP;
4219
4220 /* Support NPT for the guest if enabled */
4221 if (npt_enabled)
4222 entry->edx |= SVM_FEATURE_NPT;
4223
4224 break;
4225 }
4226 }
4227
4228 static int svm_get_lpage_level(void)
4229 {
4230 return PT_PDPE_LEVEL;
4231 }
4232
4233 static bool svm_rdtscp_supported(void)
4234 {
4235 return false;
4236 }
4237
4238 static bool svm_invpcid_supported(void)
4239 {
4240 return false;
4241 }
4242
4243 static bool svm_mpx_supported(void)
4244 {
4245 return false;
4246 }
4247
4248 static bool svm_xsaves_supported(void)
4249 {
4250 return false;
4251 }
4252
4253 static bool svm_has_wbinvd_exit(void)
4254 {
4255 return true;
4256 }
4257
4258 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4259 {
4260 struct vcpu_svm *svm = to_svm(vcpu);
4261
4262 set_exception_intercept(svm, NM_VECTOR);
4263 update_cr0_intercept(svm);
4264 }
4265
4266 #define PRE_EX(exit) { .exit_code = (exit), \
4267 .stage = X86_ICPT_PRE_EXCEPT, }
4268 #define POST_EX(exit) { .exit_code = (exit), \
4269 .stage = X86_ICPT_POST_EXCEPT, }
4270 #define POST_MEM(exit) { .exit_code = (exit), \
4271 .stage = X86_ICPT_POST_MEMACCESS, }
4272
4273 static const struct __x86_intercept {
4274 u32 exit_code;
4275 enum x86_intercept_stage stage;
4276 } x86_intercept_map[] = {
4277 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4278 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4279 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4280 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4281 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4282 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4283 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4284 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4285 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4286 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4287 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4288 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4289 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4290 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4291 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4292 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4293 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4294 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4295 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4296 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4297 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4298 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4299 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4300 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4301 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4302 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4303 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4304 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4305 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4306 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4307 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4308 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4309 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4310 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4311 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4312 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4313 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4314 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4315 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4316 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4317 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4318 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4319 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4320 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4321 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4322 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4323 };
4324
4325 #undef PRE_EX
4326 #undef POST_EX
4327 #undef POST_MEM
4328
4329 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4330 struct x86_instruction_info *info,
4331 enum x86_intercept_stage stage)
4332 {
4333 struct vcpu_svm *svm = to_svm(vcpu);
4334 int vmexit, ret = X86EMUL_CONTINUE;
4335 struct __x86_intercept icpt_info;
4336 struct vmcb *vmcb = svm->vmcb;
4337
4338 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4339 goto out;
4340
4341 icpt_info = x86_intercept_map[info->intercept];
4342
4343 if (stage != icpt_info.stage)
4344 goto out;
4345
4346 switch (icpt_info.exit_code) {
4347 case SVM_EXIT_READ_CR0:
4348 if (info->intercept == x86_intercept_cr_read)
4349 icpt_info.exit_code += info->modrm_reg;
4350 break;
4351 case SVM_EXIT_WRITE_CR0: {
4352 unsigned long cr0, val;
4353 u64 intercept;
4354
4355 if (info->intercept == x86_intercept_cr_write)
4356 icpt_info.exit_code += info->modrm_reg;
4357
4358 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4359 info->intercept == x86_intercept_clts)
4360 break;
4361
4362 intercept = svm->nested.intercept;
4363
4364 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4365 break;
4366
4367 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4368 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4369
4370 if (info->intercept == x86_intercept_lmsw) {
4371 cr0 &= 0xfUL;
4372 val &= 0xfUL;
4373 /* lmsw can't clear PE - catch this here */
4374 if (cr0 & X86_CR0_PE)
4375 val |= X86_CR0_PE;
4376 }
4377
4378 if (cr0 ^ val)
4379 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4380
4381 break;
4382 }
4383 case SVM_EXIT_READ_DR0:
4384 case SVM_EXIT_WRITE_DR0:
4385 icpt_info.exit_code += info->modrm_reg;
4386 break;
4387 case SVM_EXIT_MSR:
4388 if (info->intercept == x86_intercept_wrmsr)
4389 vmcb->control.exit_info_1 = 1;
4390 else
4391 vmcb->control.exit_info_1 = 0;
4392 break;
4393 case SVM_EXIT_PAUSE:
4394 /*
4395 * We get this for NOP only, but pause
4396 * is rep not, check this here
4397 */
4398 if (info->rep_prefix != REPE_PREFIX)
4399 goto out;
4400 case SVM_EXIT_IOIO: {
4401 u64 exit_info;
4402 u32 bytes;
4403
4404 if (info->intercept == x86_intercept_in ||
4405 info->intercept == x86_intercept_ins) {
4406 exit_info = ((info->src_val & 0xffff) << 16) |
4407 SVM_IOIO_TYPE_MASK;
4408 bytes = info->dst_bytes;
4409 } else {
4410 exit_info = (info->dst_val & 0xffff) << 16;
4411 bytes = info->src_bytes;
4412 }
4413
4414 if (info->intercept == x86_intercept_outs ||
4415 info->intercept == x86_intercept_ins)
4416 exit_info |= SVM_IOIO_STR_MASK;
4417
4418 if (info->rep_prefix)
4419 exit_info |= SVM_IOIO_REP_MASK;
4420
4421 bytes = min(bytes, 4u);
4422
4423 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4424
4425 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4426
4427 vmcb->control.exit_info_1 = exit_info;
4428 vmcb->control.exit_info_2 = info->next_rip;
4429
4430 break;
4431 }
4432 default:
4433 break;
4434 }
4435
4436 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4437 if (static_cpu_has(X86_FEATURE_NRIPS))
4438 vmcb->control.next_rip = info->next_rip;
4439 vmcb->control.exit_code = icpt_info.exit_code;
4440 vmexit = nested_svm_exit_handled(svm);
4441
4442 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4443 : X86EMUL_CONTINUE;
4444
4445 out:
4446 return ret;
4447 }
4448
4449 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4450 {
4451 local_irq_enable();
4452 }
4453
4454 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4455 {
4456 }
4457
4458 static struct kvm_x86_ops svm_x86_ops = {
4459 .cpu_has_kvm_support = has_svm,
4460 .disabled_by_bios = is_disabled,
4461 .hardware_setup = svm_hardware_setup,
4462 .hardware_unsetup = svm_hardware_unsetup,
4463 .check_processor_compatibility = svm_check_processor_compat,
4464 .hardware_enable = svm_hardware_enable,
4465 .hardware_disable = svm_hardware_disable,
4466 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4467 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4468
4469 .vcpu_create = svm_create_vcpu,
4470 .vcpu_free = svm_free_vcpu,
4471 .vcpu_reset = svm_vcpu_reset,
4472
4473 .prepare_guest_switch = svm_prepare_guest_switch,
4474 .vcpu_load = svm_vcpu_load,
4475 .vcpu_put = svm_vcpu_put,
4476
4477 .update_db_bp_intercept = update_db_bp_intercept,
4478 .get_msr = svm_get_msr,
4479 .set_msr = svm_set_msr,
4480 .get_segment_base = svm_get_segment_base,
4481 .get_segment = svm_get_segment,
4482 .set_segment = svm_set_segment,
4483 .get_cpl = svm_get_cpl,
4484 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4485 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4486 .decache_cr3 = svm_decache_cr3,
4487 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4488 .set_cr0 = svm_set_cr0,
4489 .set_cr3 = svm_set_cr3,
4490 .set_cr4 = svm_set_cr4,
4491 .set_efer = svm_set_efer,
4492 .get_idt = svm_get_idt,
4493 .set_idt = svm_set_idt,
4494 .get_gdt = svm_get_gdt,
4495 .set_gdt = svm_set_gdt,
4496 .get_dr6 = svm_get_dr6,
4497 .set_dr6 = svm_set_dr6,
4498 .set_dr7 = svm_set_dr7,
4499 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4500 .cache_reg = svm_cache_reg,
4501 .get_rflags = svm_get_rflags,
4502 .set_rflags = svm_set_rflags,
4503 .fpu_activate = svm_fpu_activate,
4504 .fpu_deactivate = svm_fpu_deactivate,
4505
4506 .tlb_flush = svm_flush_tlb,
4507
4508 .run = svm_vcpu_run,
4509 .handle_exit = handle_exit,
4510 .skip_emulated_instruction = skip_emulated_instruction,
4511 .set_interrupt_shadow = svm_set_interrupt_shadow,
4512 .get_interrupt_shadow = svm_get_interrupt_shadow,
4513 .patch_hypercall = svm_patch_hypercall,
4514 .set_irq = svm_set_irq,
4515 .set_nmi = svm_inject_nmi,
4516 .queue_exception = svm_queue_exception,
4517 .cancel_injection = svm_cancel_injection,
4518 .interrupt_allowed = svm_interrupt_allowed,
4519 .nmi_allowed = svm_nmi_allowed,
4520 .get_nmi_mask = svm_get_nmi_mask,
4521 .set_nmi_mask = svm_set_nmi_mask,
4522 .enable_nmi_window = enable_nmi_window,
4523 .enable_irq_window = enable_irq_window,
4524 .update_cr8_intercept = update_cr8_intercept,
4525 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4526 .vm_has_apicv = svm_vm_has_apicv,
4527 .load_eoi_exitmap = svm_load_eoi_exitmap,
4528 .sync_pir_to_irr = svm_sync_pir_to_irr,
4529
4530 .set_tss_addr = svm_set_tss_addr,
4531 .get_tdp_level = get_npt_level,
4532 .get_mt_mask = svm_get_mt_mask,
4533
4534 .get_exit_info = svm_get_exit_info,
4535
4536 .get_lpage_level = svm_get_lpage_level,
4537
4538 .cpuid_update = svm_cpuid_update,
4539
4540 .rdtscp_supported = svm_rdtscp_supported,
4541 .invpcid_supported = svm_invpcid_supported,
4542 .mpx_supported = svm_mpx_supported,
4543 .xsaves_supported = svm_xsaves_supported,
4544
4545 .set_supported_cpuid = svm_set_supported_cpuid,
4546
4547 .has_wbinvd_exit = svm_has_wbinvd_exit,
4548
4549 .set_tsc_khz = svm_set_tsc_khz,
4550 .read_tsc_offset = svm_read_tsc_offset,
4551 .write_tsc_offset = svm_write_tsc_offset,
4552 .adjust_tsc_offset = svm_adjust_tsc_offset,
4553 .compute_tsc_offset = svm_compute_tsc_offset,
4554 .read_l1_tsc = svm_read_l1_tsc,
4555
4556 .set_tdp_cr3 = set_tdp_cr3,
4557
4558 .check_intercept = svm_check_intercept,
4559 .handle_external_intr = svm_handle_external_intr,
4560
4561 .sched_in = svm_sched_in,
4562
4563 .pmu_ops = &amd_pmu_ops,
4564 };
4565
4566 static int __init svm_init(void)
4567 {
4568 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4569 __alignof__(struct vcpu_svm), THIS_MODULE);
4570 }
4571
4572 static void __exit svm_exit(void)
4573 {
4574 kvm_exit();
4575 }
4576
4577 module_init(svm_init)
4578 module_exit(svm_exit)
This page took 0.121297 seconds and 6 git commands to generate.