KVM: switch vcpu context to use SRCU
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34 #include <asm/vmx.h>
35 #include <asm/virtext.h>
36 #include <asm/mce.h>
37
38 #include "trace.h"
39
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
44
45 static int __read_mostly bypass_guest_pf = 1;
46 module_param(bypass_guest_pf, bool, S_IRUGO);
47
48 static int __read_mostly enable_vpid = 1;
49 module_param_named(vpid, enable_vpid, bool, 0444);
50
51 static int __read_mostly flexpriority_enabled = 1;
52 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
53
54 static int __read_mostly enable_ept = 1;
55 module_param_named(ept, enable_ept, bool, S_IRUGO);
56
57 static int __read_mostly enable_unrestricted_guest = 1;
58 module_param_named(unrestricted_guest,
59 enable_unrestricted_guest, bool, S_IRUGO);
60
61 static int __read_mostly emulate_invalid_guest_state = 0;
62 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
63
64 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
65 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
66 #define KVM_GUEST_CR0_MASK \
67 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
68 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
69 (X86_CR0_WP | X86_CR0_NE | X86_CR0_TS | X86_CR0_MP)
70 #define KVM_VM_CR0_ALWAYS_ON \
71 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
72 #define KVM_CR4_GUEST_OWNED_BITS \
73 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
74 | X86_CR4_OSXMMEXCPT)
75
76 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
77 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
78
79 /*
80 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
81 * ple_gap: upper bound on the amount of time between two successive
82 * executions of PAUSE in a loop. Also indicate if ple enabled.
83 * According to test, this time is usually small than 41 cycles.
84 * ple_window: upper bound on the amount of time a guest is allowed to execute
85 * in a PAUSE loop. Tests indicate that most spinlocks are held for
86 * less than 2^12 cycles
87 * Time is measured based on a counter that runs at the same rate as the TSC,
88 * refer SDM volume 3b section 21.6.13 & 22.1.3.
89 */
90 #define KVM_VMX_DEFAULT_PLE_GAP 41
91 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
92 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
93 module_param(ple_gap, int, S_IRUGO);
94
95 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
96 module_param(ple_window, int, S_IRUGO);
97
98 struct vmcs {
99 u32 revision_id;
100 u32 abort;
101 char data[0];
102 };
103
104 struct shared_msr_entry {
105 unsigned index;
106 u64 data;
107 u64 mask;
108 };
109
110 struct vcpu_vmx {
111 struct kvm_vcpu vcpu;
112 struct list_head local_vcpus_link;
113 unsigned long host_rsp;
114 int launched;
115 u8 fail;
116 u32 idt_vectoring_info;
117 struct shared_msr_entry *guest_msrs;
118 int nmsrs;
119 int save_nmsrs;
120 #ifdef CONFIG_X86_64
121 u64 msr_host_kernel_gs_base;
122 u64 msr_guest_kernel_gs_base;
123 #endif
124 struct vmcs *vmcs;
125 struct {
126 int loaded;
127 u16 fs_sel, gs_sel, ldt_sel;
128 int gs_ldt_reload_needed;
129 int fs_reload_needed;
130 } host_state;
131 struct {
132 int vm86_active;
133 u8 save_iopl;
134 struct kvm_save_segment {
135 u16 selector;
136 unsigned long base;
137 u32 limit;
138 u32 ar;
139 } tr, es, ds, fs, gs;
140 struct {
141 bool pending;
142 u8 vector;
143 unsigned rip;
144 } irq;
145 } rmode;
146 int vpid;
147 bool emulation_required;
148
149 /* Support for vnmi-less CPUs */
150 int soft_vnmi_blocked;
151 ktime_t entry_time;
152 s64 vnmi_blocked_time;
153 u32 exit_reason;
154
155 bool rdtscp_enabled;
156 };
157
158 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
159 {
160 return container_of(vcpu, struct vcpu_vmx, vcpu);
161 }
162
163 static int init_rmode(struct kvm *kvm);
164 static u64 construct_eptp(unsigned long root_hpa);
165
166 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
167 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
168 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
169
170 static unsigned long *vmx_io_bitmap_a;
171 static unsigned long *vmx_io_bitmap_b;
172 static unsigned long *vmx_msr_bitmap_legacy;
173 static unsigned long *vmx_msr_bitmap_longmode;
174
175 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
176 static DEFINE_SPINLOCK(vmx_vpid_lock);
177
178 static struct vmcs_config {
179 int size;
180 int order;
181 u32 revision_id;
182 u32 pin_based_exec_ctrl;
183 u32 cpu_based_exec_ctrl;
184 u32 cpu_based_2nd_exec_ctrl;
185 u32 vmexit_ctrl;
186 u32 vmentry_ctrl;
187 } vmcs_config;
188
189 static struct vmx_capability {
190 u32 ept;
191 u32 vpid;
192 } vmx_capability;
193
194 #define VMX_SEGMENT_FIELD(seg) \
195 [VCPU_SREG_##seg] = { \
196 .selector = GUEST_##seg##_SELECTOR, \
197 .base = GUEST_##seg##_BASE, \
198 .limit = GUEST_##seg##_LIMIT, \
199 .ar_bytes = GUEST_##seg##_AR_BYTES, \
200 }
201
202 static struct kvm_vmx_segment_field {
203 unsigned selector;
204 unsigned base;
205 unsigned limit;
206 unsigned ar_bytes;
207 } kvm_vmx_segment_fields[] = {
208 VMX_SEGMENT_FIELD(CS),
209 VMX_SEGMENT_FIELD(DS),
210 VMX_SEGMENT_FIELD(ES),
211 VMX_SEGMENT_FIELD(FS),
212 VMX_SEGMENT_FIELD(GS),
213 VMX_SEGMENT_FIELD(SS),
214 VMX_SEGMENT_FIELD(TR),
215 VMX_SEGMENT_FIELD(LDTR),
216 };
217
218 static u64 host_efer;
219
220 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
221
222 /*
223 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
224 * away by decrementing the array size.
225 */
226 static const u32 vmx_msr_index[] = {
227 #ifdef CONFIG_X86_64
228 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
229 #endif
230 MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
231 };
232 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
233
234 static inline int is_page_fault(u32 intr_info)
235 {
236 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
237 INTR_INFO_VALID_MASK)) ==
238 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
239 }
240
241 static inline int is_no_device(u32 intr_info)
242 {
243 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
244 INTR_INFO_VALID_MASK)) ==
245 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
246 }
247
248 static inline int is_invalid_opcode(u32 intr_info)
249 {
250 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
251 INTR_INFO_VALID_MASK)) ==
252 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
253 }
254
255 static inline int is_external_interrupt(u32 intr_info)
256 {
257 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
258 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
259 }
260
261 static inline int is_machine_check(u32 intr_info)
262 {
263 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
264 INTR_INFO_VALID_MASK)) ==
265 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
266 }
267
268 static inline int cpu_has_vmx_msr_bitmap(void)
269 {
270 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
271 }
272
273 static inline int cpu_has_vmx_tpr_shadow(void)
274 {
275 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
276 }
277
278 static inline int vm_need_tpr_shadow(struct kvm *kvm)
279 {
280 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
281 }
282
283 static inline int cpu_has_secondary_exec_ctrls(void)
284 {
285 return vmcs_config.cpu_based_exec_ctrl &
286 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
287 }
288
289 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
290 {
291 return vmcs_config.cpu_based_2nd_exec_ctrl &
292 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
293 }
294
295 static inline bool cpu_has_vmx_flexpriority(void)
296 {
297 return cpu_has_vmx_tpr_shadow() &&
298 cpu_has_vmx_virtualize_apic_accesses();
299 }
300
301 static inline bool cpu_has_vmx_ept_execute_only(void)
302 {
303 return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
304 }
305
306 static inline bool cpu_has_vmx_eptp_uncacheable(void)
307 {
308 return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
309 }
310
311 static inline bool cpu_has_vmx_eptp_writeback(void)
312 {
313 return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
314 }
315
316 static inline bool cpu_has_vmx_ept_2m_page(void)
317 {
318 return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
319 }
320
321 static inline int cpu_has_vmx_invept_individual_addr(void)
322 {
323 return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
324 }
325
326 static inline int cpu_has_vmx_invept_context(void)
327 {
328 return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
329 }
330
331 static inline int cpu_has_vmx_invept_global(void)
332 {
333 return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
334 }
335
336 static inline int cpu_has_vmx_ept(void)
337 {
338 return vmcs_config.cpu_based_2nd_exec_ctrl &
339 SECONDARY_EXEC_ENABLE_EPT;
340 }
341
342 static inline int cpu_has_vmx_unrestricted_guest(void)
343 {
344 return vmcs_config.cpu_based_2nd_exec_ctrl &
345 SECONDARY_EXEC_UNRESTRICTED_GUEST;
346 }
347
348 static inline int cpu_has_vmx_ple(void)
349 {
350 return vmcs_config.cpu_based_2nd_exec_ctrl &
351 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
352 }
353
354 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
355 {
356 return flexpriority_enabled &&
357 (cpu_has_vmx_virtualize_apic_accesses()) &&
358 (irqchip_in_kernel(kvm));
359 }
360
361 static inline int cpu_has_vmx_vpid(void)
362 {
363 return vmcs_config.cpu_based_2nd_exec_ctrl &
364 SECONDARY_EXEC_ENABLE_VPID;
365 }
366
367 static inline int cpu_has_vmx_rdtscp(void)
368 {
369 return vmcs_config.cpu_based_2nd_exec_ctrl &
370 SECONDARY_EXEC_RDTSCP;
371 }
372
373 static inline int cpu_has_virtual_nmis(void)
374 {
375 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
376 }
377
378 static inline bool report_flexpriority(void)
379 {
380 return flexpriority_enabled;
381 }
382
383 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
384 {
385 int i;
386
387 for (i = 0; i < vmx->nmsrs; ++i)
388 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
389 return i;
390 return -1;
391 }
392
393 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
394 {
395 struct {
396 u64 vpid : 16;
397 u64 rsvd : 48;
398 u64 gva;
399 } operand = { vpid, 0, gva };
400
401 asm volatile (__ex(ASM_VMX_INVVPID)
402 /* CF==1 or ZF==1 --> rc = -1 */
403 "; ja 1f ; ud2 ; 1:"
404 : : "a"(&operand), "c"(ext) : "cc", "memory");
405 }
406
407 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
408 {
409 struct {
410 u64 eptp, gpa;
411 } operand = {eptp, gpa};
412
413 asm volatile (__ex(ASM_VMX_INVEPT)
414 /* CF==1 or ZF==1 --> rc = -1 */
415 "; ja 1f ; ud2 ; 1:\n"
416 : : "a" (&operand), "c" (ext) : "cc", "memory");
417 }
418
419 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
420 {
421 int i;
422
423 i = __find_msr_index(vmx, msr);
424 if (i >= 0)
425 return &vmx->guest_msrs[i];
426 return NULL;
427 }
428
429 static void vmcs_clear(struct vmcs *vmcs)
430 {
431 u64 phys_addr = __pa(vmcs);
432 u8 error;
433
434 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
435 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
436 : "cc", "memory");
437 if (error)
438 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
439 vmcs, phys_addr);
440 }
441
442 static void __vcpu_clear(void *arg)
443 {
444 struct vcpu_vmx *vmx = arg;
445 int cpu = raw_smp_processor_id();
446
447 if (vmx->vcpu.cpu == cpu)
448 vmcs_clear(vmx->vmcs);
449 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
450 per_cpu(current_vmcs, cpu) = NULL;
451 rdtscll(vmx->vcpu.arch.host_tsc);
452 list_del(&vmx->local_vcpus_link);
453 vmx->vcpu.cpu = -1;
454 vmx->launched = 0;
455 }
456
457 static void vcpu_clear(struct vcpu_vmx *vmx)
458 {
459 if (vmx->vcpu.cpu == -1)
460 return;
461 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
462 }
463
464 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
465 {
466 if (vmx->vpid == 0)
467 return;
468
469 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
470 }
471
472 static inline void ept_sync_global(void)
473 {
474 if (cpu_has_vmx_invept_global())
475 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
476 }
477
478 static inline void ept_sync_context(u64 eptp)
479 {
480 if (enable_ept) {
481 if (cpu_has_vmx_invept_context())
482 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
483 else
484 ept_sync_global();
485 }
486 }
487
488 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
489 {
490 if (enable_ept) {
491 if (cpu_has_vmx_invept_individual_addr())
492 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
493 eptp, gpa);
494 else
495 ept_sync_context(eptp);
496 }
497 }
498
499 static unsigned long vmcs_readl(unsigned long field)
500 {
501 unsigned long value;
502
503 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
504 : "=a"(value) : "d"(field) : "cc");
505 return value;
506 }
507
508 static u16 vmcs_read16(unsigned long field)
509 {
510 return vmcs_readl(field);
511 }
512
513 static u32 vmcs_read32(unsigned long field)
514 {
515 return vmcs_readl(field);
516 }
517
518 static u64 vmcs_read64(unsigned long field)
519 {
520 #ifdef CONFIG_X86_64
521 return vmcs_readl(field);
522 #else
523 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
524 #endif
525 }
526
527 static noinline void vmwrite_error(unsigned long field, unsigned long value)
528 {
529 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
530 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
531 dump_stack();
532 }
533
534 static void vmcs_writel(unsigned long field, unsigned long value)
535 {
536 u8 error;
537
538 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
539 : "=q"(error) : "a"(value), "d"(field) : "cc");
540 if (unlikely(error))
541 vmwrite_error(field, value);
542 }
543
544 static void vmcs_write16(unsigned long field, u16 value)
545 {
546 vmcs_writel(field, value);
547 }
548
549 static void vmcs_write32(unsigned long field, u32 value)
550 {
551 vmcs_writel(field, value);
552 }
553
554 static void vmcs_write64(unsigned long field, u64 value)
555 {
556 vmcs_writel(field, value);
557 #ifndef CONFIG_X86_64
558 asm volatile ("");
559 vmcs_writel(field+1, value >> 32);
560 #endif
561 }
562
563 static void vmcs_clear_bits(unsigned long field, u32 mask)
564 {
565 vmcs_writel(field, vmcs_readl(field) & ~mask);
566 }
567
568 static void vmcs_set_bits(unsigned long field, u32 mask)
569 {
570 vmcs_writel(field, vmcs_readl(field) | mask);
571 }
572
573 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
574 {
575 u32 eb;
576
577 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
578 if (!vcpu->fpu_active)
579 eb |= 1u << NM_VECTOR;
580 /*
581 * Unconditionally intercept #DB so we can maintain dr6 without
582 * reading it every exit.
583 */
584 eb |= 1u << DB_VECTOR;
585 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
586 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
587 eb |= 1u << BP_VECTOR;
588 }
589 if (to_vmx(vcpu)->rmode.vm86_active)
590 eb = ~0;
591 if (enable_ept)
592 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
593 vmcs_write32(EXCEPTION_BITMAP, eb);
594 }
595
596 static void reload_tss(void)
597 {
598 /*
599 * VT restores TR but not its size. Useless.
600 */
601 struct descriptor_table gdt;
602 struct desc_struct *descs;
603
604 kvm_get_gdt(&gdt);
605 descs = (void *)gdt.base;
606 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
607 load_TR_desc();
608 }
609
610 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
611 {
612 u64 guest_efer;
613 u64 ignore_bits;
614
615 guest_efer = vmx->vcpu.arch.shadow_efer;
616
617 /*
618 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
619 * outside long mode
620 */
621 ignore_bits = EFER_NX | EFER_SCE;
622 #ifdef CONFIG_X86_64
623 ignore_bits |= EFER_LMA | EFER_LME;
624 /* SCE is meaningful only in long mode on Intel */
625 if (guest_efer & EFER_LMA)
626 ignore_bits &= ~(u64)EFER_SCE;
627 #endif
628 guest_efer &= ~ignore_bits;
629 guest_efer |= host_efer & ignore_bits;
630 vmx->guest_msrs[efer_offset].data = guest_efer;
631 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
632 return true;
633 }
634
635 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
636 {
637 struct vcpu_vmx *vmx = to_vmx(vcpu);
638 int i;
639
640 if (vmx->host_state.loaded)
641 return;
642
643 vmx->host_state.loaded = 1;
644 /*
645 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
646 * allow segment selectors with cpl > 0 or ti == 1.
647 */
648 vmx->host_state.ldt_sel = kvm_read_ldt();
649 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
650 vmx->host_state.fs_sel = kvm_read_fs();
651 if (!(vmx->host_state.fs_sel & 7)) {
652 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
653 vmx->host_state.fs_reload_needed = 0;
654 } else {
655 vmcs_write16(HOST_FS_SELECTOR, 0);
656 vmx->host_state.fs_reload_needed = 1;
657 }
658 vmx->host_state.gs_sel = kvm_read_gs();
659 if (!(vmx->host_state.gs_sel & 7))
660 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
661 else {
662 vmcs_write16(HOST_GS_SELECTOR, 0);
663 vmx->host_state.gs_ldt_reload_needed = 1;
664 }
665
666 #ifdef CONFIG_X86_64
667 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
668 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
669 #else
670 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
671 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
672 #endif
673
674 #ifdef CONFIG_X86_64
675 if (is_long_mode(&vmx->vcpu)) {
676 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
677 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
678 }
679 #endif
680 for (i = 0; i < vmx->save_nmsrs; ++i)
681 kvm_set_shared_msr(vmx->guest_msrs[i].index,
682 vmx->guest_msrs[i].data,
683 vmx->guest_msrs[i].mask);
684 }
685
686 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
687 {
688 unsigned long flags;
689
690 if (!vmx->host_state.loaded)
691 return;
692
693 ++vmx->vcpu.stat.host_state_reload;
694 vmx->host_state.loaded = 0;
695 if (vmx->host_state.fs_reload_needed)
696 kvm_load_fs(vmx->host_state.fs_sel);
697 if (vmx->host_state.gs_ldt_reload_needed) {
698 kvm_load_ldt(vmx->host_state.ldt_sel);
699 /*
700 * If we have to reload gs, we must take care to
701 * preserve our gs base.
702 */
703 local_irq_save(flags);
704 kvm_load_gs(vmx->host_state.gs_sel);
705 #ifdef CONFIG_X86_64
706 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
707 #endif
708 local_irq_restore(flags);
709 }
710 reload_tss();
711 #ifdef CONFIG_X86_64
712 if (is_long_mode(&vmx->vcpu)) {
713 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
714 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
715 }
716 #endif
717 }
718
719 static void vmx_load_host_state(struct vcpu_vmx *vmx)
720 {
721 preempt_disable();
722 __vmx_load_host_state(vmx);
723 preempt_enable();
724 }
725
726 /*
727 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
728 * vcpu mutex is already taken.
729 */
730 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
731 {
732 struct vcpu_vmx *vmx = to_vmx(vcpu);
733 u64 phys_addr = __pa(vmx->vmcs);
734 u64 tsc_this, delta, new_offset;
735
736 if (vcpu->cpu != cpu) {
737 vcpu_clear(vmx);
738 kvm_migrate_timers(vcpu);
739 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
740 local_irq_disable();
741 list_add(&vmx->local_vcpus_link,
742 &per_cpu(vcpus_on_cpu, cpu));
743 local_irq_enable();
744 }
745
746 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
747 u8 error;
748
749 per_cpu(current_vmcs, cpu) = vmx->vmcs;
750 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
751 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
752 : "cc");
753 if (error)
754 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
755 vmx->vmcs, phys_addr);
756 }
757
758 if (vcpu->cpu != cpu) {
759 struct descriptor_table dt;
760 unsigned long sysenter_esp;
761
762 vcpu->cpu = cpu;
763 /*
764 * Linux uses per-cpu TSS and GDT, so set these when switching
765 * processors.
766 */
767 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
768 kvm_get_gdt(&dt);
769 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
770
771 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
772 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
773
774 /*
775 * Make sure the time stamp counter is monotonous.
776 */
777 rdtscll(tsc_this);
778 if (tsc_this < vcpu->arch.host_tsc) {
779 delta = vcpu->arch.host_tsc - tsc_this;
780 new_offset = vmcs_read64(TSC_OFFSET) + delta;
781 vmcs_write64(TSC_OFFSET, new_offset);
782 }
783 }
784 }
785
786 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
787 {
788 __vmx_load_host_state(to_vmx(vcpu));
789 }
790
791 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
792 {
793 if (vcpu->fpu_active)
794 return;
795 vcpu->fpu_active = 1;
796 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
797 if (vcpu->arch.cr0 & X86_CR0_TS)
798 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
799 update_exception_bitmap(vcpu);
800 }
801
802 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
803 {
804 if (!vcpu->fpu_active)
805 return;
806 vcpu->fpu_active = 0;
807 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
808 update_exception_bitmap(vcpu);
809 }
810
811 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
812 {
813 unsigned long rflags;
814
815 rflags = vmcs_readl(GUEST_RFLAGS);
816 if (to_vmx(vcpu)->rmode.vm86_active)
817 rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
818 return rflags;
819 }
820
821 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
822 {
823 if (to_vmx(vcpu)->rmode.vm86_active)
824 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
825 vmcs_writel(GUEST_RFLAGS, rflags);
826 }
827
828 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
829 {
830 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
831 int ret = 0;
832
833 if (interruptibility & GUEST_INTR_STATE_STI)
834 ret |= X86_SHADOW_INT_STI;
835 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
836 ret |= X86_SHADOW_INT_MOV_SS;
837
838 return ret & mask;
839 }
840
841 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
842 {
843 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
844 u32 interruptibility = interruptibility_old;
845
846 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
847
848 if (mask & X86_SHADOW_INT_MOV_SS)
849 interruptibility |= GUEST_INTR_STATE_MOV_SS;
850 if (mask & X86_SHADOW_INT_STI)
851 interruptibility |= GUEST_INTR_STATE_STI;
852
853 if ((interruptibility != interruptibility_old))
854 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
855 }
856
857 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
858 {
859 unsigned long rip;
860
861 rip = kvm_rip_read(vcpu);
862 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
863 kvm_rip_write(vcpu, rip);
864
865 /* skipping an emulated instruction also counts */
866 vmx_set_interrupt_shadow(vcpu, 0);
867 }
868
869 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
870 bool has_error_code, u32 error_code)
871 {
872 struct vcpu_vmx *vmx = to_vmx(vcpu);
873 u32 intr_info = nr | INTR_INFO_VALID_MASK;
874
875 if (has_error_code) {
876 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
877 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
878 }
879
880 if (vmx->rmode.vm86_active) {
881 vmx->rmode.irq.pending = true;
882 vmx->rmode.irq.vector = nr;
883 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
884 if (kvm_exception_is_soft(nr))
885 vmx->rmode.irq.rip +=
886 vmx->vcpu.arch.event_exit_inst_len;
887 intr_info |= INTR_TYPE_SOFT_INTR;
888 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
889 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
890 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
891 return;
892 }
893
894 if (kvm_exception_is_soft(nr)) {
895 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
896 vmx->vcpu.arch.event_exit_inst_len);
897 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
898 } else
899 intr_info |= INTR_TYPE_HARD_EXCEPTION;
900
901 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
902 }
903
904 static bool vmx_rdtscp_supported(void)
905 {
906 return cpu_has_vmx_rdtscp();
907 }
908
909 /*
910 * Swap MSR entry in host/guest MSR entry array.
911 */
912 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
913 {
914 struct shared_msr_entry tmp;
915
916 tmp = vmx->guest_msrs[to];
917 vmx->guest_msrs[to] = vmx->guest_msrs[from];
918 vmx->guest_msrs[from] = tmp;
919 }
920
921 /*
922 * Set up the vmcs to automatically save and restore system
923 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
924 * mode, as fiddling with msrs is very expensive.
925 */
926 static void setup_msrs(struct vcpu_vmx *vmx)
927 {
928 int save_nmsrs, index;
929 unsigned long *msr_bitmap;
930
931 vmx_load_host_state(vmx);
932 save_nmsrs = 0;
933 #ifdef CONFIG_X86_64
934 if (is_long_mode(&vmx->vcpu)) {
935 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
936 if (index >= 0)
937 move_msr_up(vmx, index, save_nmsrs++);
938 index = __find_msr_index(vmx, MSR_LSTAR);
939 if (index >= 0)
940 move_msr_up(vmx, index, save_nmsrs++);
941 index = __find_msr_index(vmx, MSR_CSTAR);
942 if (index >= 0)
943 move_msr_up(vmx, index, save_nmsrs++);
944 index = __find_msr_index(vmx, MSR_TSC_AUX);
945 if (index >= 0 && vmx->rdtscp_enabled)
946 move_msr_up(vmx, index, save_nmsrs++);
947 /*
948 * MSR_K6_STAR is only needed on long mode guests, and only
949 * if efer.sce is enabled.
950 */
951 index = __find_msr_index(vmx, MSR_K6_STAR);
952 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
953 move_msr_up(vmx, index, save_nmsrs++);
954 }
955 #endif
956 index = __find_msr_index(vmx, MSR_EFER);
957 if (index >= 0 && update_transition_efer(vmx, index))
958 move_msr_up(vmx, index, save_nmsrs++);
959
960 vmx->save_nmsrs = save_nmsrs;
961
962 if (cpu_has_vmx_msr_bitmap()) {
963 if (is_long_mode(&vmx->vcpu))
964 msr_bitmap = vmx_msr_bitmap_longmode;
965 else
966 msr_bitmap = vmx_msr_bitmap_legacy;
967
968 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
969 }
970 }
971
972 /*
973 * reads and returns guest's timestamp counter "register"
974 * guest_tsc = host_tsc + tsc_offset -- 21.3
975 */
976 static u64 guest_read_tsc(void)
977 {
978 u64 host_tsc, tsc_offset;
979
980 rdtscll(host_tsc);
981 tsc_offset = vmcs_read64(TSC_OFFSET);
982 return host_tsc + tsc_offset;
983 }
984
985 /*
986 * writes 'guest_tsc' into guest's timestamp counter "register"
987 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
988 */
989 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
990 {
991 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
992 }
993
994 /*
995 * Reads an msr value (of 'msr_index') into 'pdata'.
996 * Returns 0 on success, non-0 otherwise.
997 * Assumes vcpu_load() was already called.
998 */
999 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1000 {
1001 u64 data;
1002 struct shared_msr_entry *msr;
1003
1004 if (!pdata) {
1005 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1006 return -EINVAL;
1007 }
1008
1009 switch (msr_index) {
1010 #ifdef CONFIG_X86_64
1011 case MSR_FS_BASE:
1012 data = vmcs_readl(GUEST_FS_BASE);
1013 break;
1014 case MSR_GS_BASE:
1015 data = vmcs_readl(GUEST_GS_BASE);
1016 break;
1017 case MSR_KERNEL_GS_BASE:
1018 vmx_load_host_state(to_vmx(vcpu));
1019 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1020 break;
1021 #endif
1022 case MSR_EFER:
1023 return kvm_get_msr_common(vcpu, msr_index, pdata);
1024 case MSR_IA32_TSC:
1025 data = guest_read_tsc();
1026 break;
1027 case MSR_IA32_SYSENTER_CS:
1028 data = vmcs_read32(GUEST_SYSENTER_CS);
1029 break;
1030 case MSR_IA32_SYSENTER_EIP:
1031 data = vmcs_readl(GUEST_SYSENTER_EIP);
1032 break;
1033 case MSR_IA32_SYSENTER_ESP:
1034 data = vmcs_readl(GUEST_SYSENTER_ESP);
1035 break;
1036 case MSR_TSC_AUX:
1037 if (!to_vmx(vcpu)->rdtscp_enabled)
1038 return 1;
1039 /* Otherwise falls through */
1040 default:
1041 vmx_load_host_state(to_vmx(vcpu));
1042 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1043 if (msr) {
1044 vmx_load_host_state(to_vmx(vcpu));
1045 data = msr->data;
1046 break;
1047 }
1048 return kvm_get_msr_common(vcpu, msr_index, pdata);
1049 }
1050
1051 *pdata = data;
1052 return 0;
1053 }
1054
1055 /*
1056 * Writes msr value into into the appropriate "register".
1057 * Returns 0 on success, non-0 otherwise.
1058 * Assumes vcpu_load() was already called.
1059 */
1060 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1061 {
1062 struct vcpu_vmx *vmx = to_vmx(vcpu);
1063 struct shared_msr_entry *msr;
1064 u64 host_tsc;
1065 int ret = 0;
1066
1067 switch (msr_index) {
1068 case MSR_EFER:
1069 vmx_load_host_state(vmx);
1070 ret = kvm_set_msr_common(vcpu, msr_index, data);
1071 break;
1072 #ifdef CONFIG_X86_64
1073 case MSR_FS_BASE:
1074 vmcs_writel(GUEST_FS_BASE, data);
1075 break;
1076 case MSR_GS_BASE:
1077 vmcs_writel(GUEST_GS_BASE, data);
1078 break;
1079 case MSR_KERNEL_GS_BASE:
1080 vmx_load_host_state(vmx);
1081 vmx->msr_guest_kernel_gs_base = data;
1082 break;
1083 #endif
1084 case MSR_IA32_SYSENTER_CS:
1085 vmcs_write32(GUEST_SYSENTER_CS, data);
1086 break;
1087 case MSR_IA32_SYSENTER_EIP:
1088 vmcs_writel(GUEST_SYSENTER_EIP, data);
1089 break;
1090 case MSR_IA32_SYSENTER_ESP:
1091 vmcs_writel(GUEST_SYSENTER_ESP, data);
1092 break;
1093 case MSR_IA32_TSC:
1094 rdtscll(host_tsc);
1095 guest_write_tsc(data, host_tsc);
1096 break;
1097 case MSR_IA32_CR_PAT:
1098 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1099 vmcs_write64(GUEST_IA32_PAT, data);
1100 vcpu->arch.pat = data;
1101 break;
1102 }
1103 ret = kvm_set_msr_common(vcpu, msr_index, data);
1104 break;
1105 case MSR_TSC_AUX:
1106 if (!vmx->rdtscp_enabled)
1107 return 1;
1108 /* Check reserved bit, higher 32 bits should be zero */
1109 if ((data >> 32) != 0)
1110 return 1;
1111 /* Otherwise falls through */
1112 default:
1113 msr = find_msr_entry(vmx, msr_index);
1114 if (msr) {
1115 vmx_load_host_state(vmx);
1116 msr->data = data;
1117 break;
1118 }
1119 ret = kvm_set_msr_common(vcpu, msr_index, data);
1120 }
1121
1122 return ret;
1123 }
1124
1125 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1126 {
1127 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1128 switch (reg) {
1129 case VCPU_REGS_RSP:
1130 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1131 break;
1132 case VCPU_REGS_RIP:
1133 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1134 break;
1135 case VCPU_EXREG_PDPTR:
1136 if (enable_ept)
1137 ept_save_pdptrs(vcpu);
1138 break;
1139 default:
1140 break;
1141 }
1142 }
1143
1144 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1145 {
1146 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1147 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1148 else
1149 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1150
1151 update_exception_bitmap(vcpu);
1152 }
1153
1154 static __init int cpu_has_kvm_support(void)
1155 {
1156 return cpu_has_vmx();
1157 }
1158
1159 static __init int vmx_disabled_by_bios(void)
1160 {
1161 u64 msr;
1162
1163 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1164 return (msr & (FEATURE_CONTROL_LOCKED |
1165 FEATURE_CONTROL_VMXON_ENABLED))
1166 == FEATURE_CONTROL_LOCKED;
1167 /* locked but not enabled */
1168 }
1169
1170 static int hardware_enable(void *garbage)
1171 {
1172 int cpu = raw_smp_processor_id();
1173 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1174 u64 old;
1175
1176 if (read_cr4() & X86_CR4_VMXE)
1177 return -EBUSY;
1178
1179 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1180 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1181 if ((old & (FEATURE_CONTROL_LOCKED |
1182 FEATURE_CONTROL_VMXON_ENABLED))
1183 != (FEATURE_CONTROL_LOCKED |
1184 FEATURE_CONTROL_VMXON_ENABLED))
1185 /* enable and lock */
1186 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1187 FEATURE_CONTROL_LOCKED |
1188 FEATURE_CONTROL_VMXON_ENABLED);
1189 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1190 asm volatile (ASM_VMX_VMXON_RAX
1191 : : "a"(&phys_addr), "m"(phys_addr)
1192 : "memory", "cc");
1193
1194 ept_sync_global();
1195
1196 return 0;
1197 }
1198
1199 static void vmclear_local_vcpus(void)
1200 {
1201 int cpu = raw_smp_processor_id();
1202 struct vcpu_vmx *vmx, *n;
1203
1204 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1205 local_vcpus_link)
1206 __vcpu_clear(vmx);
1207 }
1208
1209
1210 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1211 * tricks.
1212 */
1213 static void kvm_cpu_vmxoff(void)
1214 {
1215 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1216 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1217 }
1218
1219 static void hardware_disable(void *garbage)
1220 {
1221 vmclear_local_vcpus();
1222 kvm_cpu_vmxoff();
1223 }
1224
1225 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1226 u32 msr, u32 *result)
1227 {
1228 u32 vmx_msr_low, vmx_msr_high;
1229 u32 ctl = ctl_min | ctl_opt;
1230
1231 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1232
1233 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1234 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1235
1236 /* Ensure minimum (required) set of control bits are supported. */
1237 if (ctl_min & ~ctl)
1238 return -EIO;
1239
1240 *result = ctl;
1241 return 0;
1242 }
1243
1244 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1245 {
1246 u32 vmx_msr_low, vmx_msr_high;
1247 u32 min, opt, min2, opt2;
1248 u32 _pin_based_exec_control = 0;
1249 u32 _cpu_based_exec_control = 0;
1250 u32 _cpu_based_2nd_exec_control = 0;
1251 u32 _vmexit_control = 0;
1252 u32 _vmentry_control = 0;
1253
1254 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1255 opt = PIN_BASED_VIRTUAL_NMIS;
1256 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1257 &_pin_based_exec_control) < 0)
1258 return -EIO;
1259
1260 min = CPU_BASED_HLT_EXITING |
1261 #ifdef CONFIG_X86_64
1262 CPU_BASED_CR8_LOAD_EXITING |
1263 CPU_BASED_CR8_STORE_EXITING |
1264 #endif
1265 CPU_BASED_CR3_LOAD_EXITING |
1266 CPU_BASED_CR3_STORE_EXITING |
1267 CPU_BASED_USE_IO_BITMAPS |
1268 CPU_BASED_MOV_DR_EXITING |
1269 CPU_BASED_USE_TSC_OFFSETING |
1270 CPU_BASED_MWAIT_EXITING |
1271 CPU_BASED_MONITOR_EXITING |
1272 CPU_BASED_INVLPG_EXITING;
1273 opt = CPU_BASED_TPR_SHADOW |
1274 CPU_BASED_USE_MSR_BITMAPS |
1275 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1276 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1277 &_cpu_based_exec_control) < 0)
1278 return -EIO;
1279 #ifdef CONFIG_X86_64
1280 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1281 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1282 ~CPU_BASED_CR8_STORE_EXITING;
1283 #endif
1284 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1285 min2 = 0;
1286 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1287 SECONDARY_EXEC_WBINVD_EXITING |
1288 SECONDARY_EXEC_ENABLE_VPID |
1289 SECONDARY_EXEC_ENABLE_EPT |
1290 SECONDARY_EXEC_UNRESTRICTED_GUEST |
1291 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1292 SECONDARY_EXEC_RDTSCP;
1293 if (adjust_vmx_controls(min2, opt2,
1294 MSR_IA32_VMX_PROCBASED_CTLS2,
1295 &_cpu_based_2nd_exec_control) < 0)
1296 return -EIO;
1297 }
1298 #ifndef CONFIG_X86_64
1299 if (!(_cpu_based_2nd_exec_control &
1300 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1301 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1302 #endif
1303 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1304 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1305 enabled */
1306 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1307 CPU_BASED_CR3_STORE_EXITING |
1308 CPU_BASED_INVLPG_EXITING);
1309 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1310 vmx_capability.ept, vmx_capability.vpid);
1311 }
1312
1313 min = 0;
1314 #ifdef CONFIG_X86_64
1315 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1316 #endif
1317 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1318 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1319 &_vmexit_control) < 0)
1320 return -EIO;
1321
1322 min = 0;
1323 opt = VM_ENTRY_LOAD_IA32_PAT;
1324 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1325 &_vmentry_control) < 0)
1326 return -EIO;
1327
1328 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1329
1330 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1331 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1332 return -EIO;
1333
1334 #ifdef CONFIG_X86_64
1335 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1336 if (vmx_msr_high & (1u<<16))
1337 return -EIO;
1338 #endif
1339
1340 /* Require Write-Back (WB) memory type for VMCS accesses. */
1341 if (((vmx_msr_high >> 18) & 15) != 6)
1342 return -EIO;
1343
1344 vmcs_conf->size = vmx_msr_high & 0x1fff;
1345 vmcs_conf->order = get_order(vmcs_config.size);
1346 vmcs_conf->revision_id = vmx_msr_low;
1347
1348 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1349 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1350 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1351 vmcs_conf->vmexit_ctrl = _vmexit_control;
1352 vmcs_conf->vmentry_ctrl = _vmentry_control;
1353
1354 return 0;
1355 }
1356
1357 static struct vmcs *alloc_vmcs_cpu(int cpu)
1358 {
1359 int node = cpu_to_node(cpu);
1360 struct page *pages;
1361 struct vmcs *vmcs;
1362
1363 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1364 if (!pages)
1365 return NULL;
1366 vmcs = page_address(pages);
1367 memset(vmcs, 0, vmcs_config.size);
1368 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1369 return vmcs;
1370 }
1371
1372 static struct vmcs *alloc_vmcs(void)
1373 {
1374 return alloc_vmcs_cpu(raw_smp_processor_id());
1375 }
1376
1377 static void free_vmcs(struct vmcs *vmcs)
1378 {
1379 free_pages((unsigned long)vmcs, vmcs_config.order);
1380 }
1381
1382 static void free_kvm_area(void)
1383 {
1384 int cpu;
1385
1386 for_each_possible_cpu(cpu) {
1387 free_vmcs(per_cpu(vmxarea, cpu));
1388 per_cpu(vmxarea, cpu) = NULL;
1389 }
1390 }
1391
1392 static __init int alloc_kvm_area(void)
1393 {
1394 int cpu;
1395
1396 for_each_possible_cpu(cpu) {
1397 struct vmcs *vmcs;
1398
1399 vmcs = alloc_vmcs_cpu(cpu);
1400 if (!vmcs) {
1401 free_kvm_area();
1402 return -ENOMEM;
1403 }
1404
1405 per_cpu(vmxarea, cpu) = vmcs;
1406 }
1407 return 0;
1408 }
1409
1410 static __init int hardware_setup(void)
1411 {
1412 if (setup_vmcs_config(&vmcs_config) < 0)
1413 return -EIO;
1414
1415 if (boot_cpu_has(X86_FEATURE_NX))
1416 kvm_enable_efer_bits(EFER_NX);
1417
1418 if (!cpu_has_vmx_vpid())
1419 enable_vpid = 0;
1420
1421 if (!cpu_has_vmx_ept()) {
1422 enable_ept = 0;
1423 enable_unrestricted_guest = 0;
1424 }
1425
1426 if (!cpu_has_vmx_unrestricted_guest())
1427 enable_unrestricted_guest = 0;
1428
1429 if (!cpu_has_vmx_flexpriority())
1430 flexpriority_enabled = 0;
1431
1432 if (!cpu_has_vmx_tpr_shadow())
1433 kvm_x86_ops->update_cr8_intercept = NULL;
1434
1435 if (enable_ept && !cpu_has_vmx_ept_2m_page())
1436 kvm_disable_largepages();
1437
1438 if (!cpu_has_vmx_ple())
1439 ple_gap = 0;
1440
1441 return alloc_kvm_area();
1442 }
1443
1444 static __exit void hardware_unsetup(void)
1445 {
1446 free_kvm_area();
1447 }
1448
1449 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1450 {
1451 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1452
1453 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1454 vmcs_write16(sf->selector, save->selector);
1455 vmcs_writel(sf->base, save->base);
1456 vmcs_write32(sf->limit, save->limit);
1457 vmcs_write32(sf->ar_bytes, save->ar);
1458 } else {
1459 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1460 << AR_DPL_SHIFT;
1461 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1462 }
1463 }
1464
1465 static void enter_pmode(struct kvm_vcpu *vcpu)
1466 {
1467 unsigned long flags;
1468 struct vcpu_vmx *vmx = to_vmx(vcpu);
1469
1470 vmx->emulation_required = 1;
1471 vmx->rmode.vm86_active = 0;
1472
1473 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1474 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1475 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1476
1477 flags = vmcs_readl(GUEST_RFLAGS);
1478 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1479 flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1480 vmcs_writel(GUEST_RFLAGS, flags);
1481
1482 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1483 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1484
1485 update_exception_bitmap(vcpu);
1486
1487 if (emulate_invalid_guest_state)
1488 return;
1489
1490 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1491 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1492 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1493 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1494
1495 vmcs_write16(GUEST_SS_SELECTOR, 0);
1496 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1497
1498 vmcs_write16(GUEST_CS_SELECTOR,
1499 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1500 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1501 }
1502
1503 static gva_t rmode_tss_base(struct kvm *kvm)
1504 {
1505 if (!kvm->arch.tss_addr) {
1506 struct kvm_memslots *slots;
1507 gfn_t base_gfn;
1508
1509 slots = rcu_dereference(kvm->memslots);
1510 base_gfn = kvm->memslots->memslots[0].base_gfn +
1511 kvm->memslots->memslots[0].npages - 3;
1512 return base_gfn << PAGE_SHIFT;
1513 }
1514 return kvm->arch.tss_addr;
1515 }
1516
1517 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1518 {
1519 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1520
1521 save->selector = vmcs_read16(sf->selector);
1522 save->base = vmcs_readl(sf->base);
1523 save->limit = vmcs_read32(sf->limit);
1524 save->ar = vmcs_read32(sf->ar_bytes);
1525 vmcs_write16(sf->selector, save->base >> 4);
1526 vmcs_write32(sf->base, save->base & 0xfffff);
1527 vmcs_write32(sf->limit, 0xffff);
1528 vmcs_write32(sf->ar_bytes, 0xf3);
1529 }
1530
1531 static void enter_rmode(struct kvm_vcpu *vcpu)
1532 {
1533 unsigned long flags;
1534 struct vcpu_vmx *vmx = to_vmx(vcpu);
1535
1536 if (enable_unrestricted_guest)
1537 return;
1538
1539 vmx->emulation_required = 1;
1540 vmx->rmode.vm86_active = 1;
1541
1542 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1543 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1544
1545 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1546 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1547
1548 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1549 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1550
1551 flags = vmcs_readl(GUEST_RFLAGS);
1552 vmx->rmode.save_iopl
1553 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1554
1555 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1556
1557 vmcs_writel(GUEST_RFLAGS, flags);
1558 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1559 update_exception_bitmap(vcpu);
1560
1561 if (emulate_invalid_guest_state)
1562 goto continue_rmode;
1563
1564 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1565 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1566 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1567
1568 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1569 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1570 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1571 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1572 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1573
1574 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1575 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1576 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1577 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1578
1579 continue_rmode:
1580 kvm_mmu_reset_context(vcpu);
1581 init_rmode(vcpu->kvm);
1582 }
1583
1584 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1585 {
1586 struct vcpu_vmx *vmx = to_vmx(vcpu);
1587 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1588
1589 if (!msr)
1590 return;
1591
1592 /*
1593 * Force kernel_gs_base reloading before EFER changes, as control
1594 * of this msr depends on is_long_mode().
1595 */
1596 vmx_load_host_state(to_vmx(vcpu));
1597 vcpu->arch.shadow_efer = efer;
1598 if (!msr)
1599 return;
1600 if (efer & EFER_LMA) {
1601 vmcs_write32(VM_ENTRY_CONTROLS,
1602 vmcs_read32(VM_ENTRY_CONTROLS) |
1603 VM_ENTRY_IA32E_MODE);
1604 msr->data = efer;
1605 } else {
1606 vmcs_write32(VM_ENTRY_CONTROLS,
1607 vmcs_read32(VM_ENTRY_CONTROLS) &
1608 ~VM_ENTRY_IA32E_MODE);
1609
1610 msr->data = efer & ~EFER_LME;
1611 }
1612 setup_msrs(vmx);
1613 }
1614
1615 #ifdef CONFIG_X86_64
1616
1617 static void enter_lmode(struct kvm_vcpu *vcpu)
1618 {
1619 u32 guest_tr_ar;
1620
1621 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1622 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1623 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1624 __func__);
1625 vmcs_write32(GUEST_TR_AR_BYTES,
1626 (guest_tr_ar & ~AR_TYPE_MASK)
1627 | AR_TYPE_BUSY_64_TSS);
1628 }
1629 vcpu->arch.shadow_efer |= EFER_LMA;
1630 vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1631 }
1632
1633 static void exit_lmode(struct kvm_vcpu *vcpu)
1634 {
1635 vcpu->arch.shadow_efer &= ~EFER_LMA;
1636
1637 vmcs_write32(VM_ENTRY_CONTROLS,
1638 vmcs_read32(VM_ENTRY_CONTROLS)
1639 & ~VM_ENTRY_IA32E_MODE);
1640 }
1641
1642 #endif
1643
1644 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1645 {
1646 vpid_sync_vcpu_all(to_vmx(vcpu));
1647 if (enable_ept)
1648 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1649 }
1650
1651 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1652 {
1653 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1654
1655 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1656 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1657 }
1658
1659 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1660 {
1661 if (!test_bit(VCPU_EXREG_PDPTR,
1662 (unsigned long *)&vcpu->arch.regs_dirty))
1663 return;
1664
1665 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1666 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1667 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1668 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1669 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1670 }
1671 }
1672
1673 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1674 {
1675 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1676 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1677 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1678 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1679 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1680 }
1681
1682 __set_bit(VCPU_EXREG_PDPTR,
1683 (unsigned long *)&vcpu->arch.regs_avail);
1684 __set_bit(VCPU_EXREG_PDPTR,
1685 (unsigned long *)&vcpu->arch.regs_dirty);
1686 }
1687
1688 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1689
1690 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1691 unsigned long cr0,
1692 struct kvm_vcpu *vcpu)
1693 {
1694 if (!(cr0 & X86_CR0_PG)) {
1695 /* From paging/starting to nonpaging */
1696 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1697 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1698 (CPU_BASED_CR3_LOAD_EXITING |
1699 CPU_BASED_CR3_STORE_EXITING));
1700 vcpu->arch.cr0 = cr0;
1701 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1702 } else if (!is_paging(vcpu)) {
1703 /* From nonpaging to paging */
1704 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1705 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1706 ~(CPU_BASED_CR3_LOAD_EXITING |
1707 CPU_BASED_CR3_STORE_EXITING));
1708 vcpu->arch.cr0 = cr0;
1709 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1710 }
1711
1712 if (!(cr0 & X86_CR0_WP))
1713 *hw_cr0 &= ~X86_CR0_WP;
1714 }
1715
1716 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1717 {
1718 struct vcpu_vmx *vmx = to_vmx(vcpu);
1719 unsigned long hw_cr0;
1720
1721 if (enable_unrestricted_guest)
1722 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1723 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1724 else
1725 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1726
1727 vmx_fpu_deactivate(vcpu);
1728
1729 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1730 enter_pmode(vcpu);
1731
1732 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1733 enter_rmode(vcpu);
1734
1735 #ifdef CONFIG_X86_64
1736 if (vcpu->arch.shadow_efer & EFER_LME) {
1737 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1738 enter_lmode(vcpu);
1739 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1740 exit_lmode(vcpu);
1741 }
1742 #endif
1743
1744 if (enable_ept)
1745 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1746
1747 vmcs_writel(CR0_READ_SHADOW, cr0);
1748 vmcs_writel(GUEST_CR0, hw_cr0);
1749 vcpu->arch.cr0 = cr0;
1750
1751 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1752 vmx_fpu_activate(vcpu);
1753 }
1754
1755 static u64 construct_eptp(unsigned long root_hpa)
1756 {
1757 u64 eptp;
1758
1759 /* TODO write the value reading from MSR */
1760 eptp = VMX_EPT_DEFAULT_MT |
1761 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1762 eptp |= (root_hpa & PAGE_MASK);
1763
1764 return eptp;
1765 }
1766
1767 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1768 {
1769 unsigned long guest_cr3;
1770 u64 eptp;
1771
1772 guest_cr3 = cr3;
1773 if (enable_ept) {
1774 eptp = construct_eptp(cr3);
1775 vmcs_write64(EPT_POINTER, eptp);
1776 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1777 vcpu->kvm->arch.ept_identity_map_addr;
1778 ept_load_pdptrs(vcpu);
1779 }
1780
1781 vmx_flush_tlb(vcpu);
1782 vmcs_writel(GUEST_CR3, guest_cr3);
1783 if (vcpu->arch.cr0 & X86_CR0_PE)
1784 vmx_fpu_deactivate(vcpu);
1785 }
1786
1787 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1788 {
1789 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1790 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1791
1792 vcpu->arch.cr4 = cr4;
1793 if (enable_ept) {
1794 if (!is_paging(vcpu)) {
1795 hw_cr4 &= ~X86_CR4_PAE;
1796 hw_cr4 |= X86_CR4_PSE;
1797 } else if (!(cr4 & X86_CR4_PAE)) {
1798 hw_cr4 &= ~X86_CR4_PAE;
1799 }
1800 }
1801
1802 vmcs_writel(CR4_READ_SHADOW, cr4);
1803 vmcs_writel(GUEST_CR4, hw_cr4);
1804 }
1805
1806 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1807 {
1808 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1809
1810 return vmcs_readl(sf->base);
1811 }
1812
1813 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1814 struct kvm_segment *var, int seg)
1815 {
1816 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1817 u32 ar;
1818
1819 var->base = vmcs_readl(sf->base);
1820 var->limit = vmcs_read32(sf->limit);
1821 var->selector = vmcs_read16(sf->selector);
1822 ar = vmcs_read32(sf->ar_bytes);
1823 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1824 ar = 0;
1825 var->type = ar & 15;
1826 var->s = (ar >> 4) & 1;
1827 var->dpl = (ar >> 5) & 3;
1828 var->present = (ar >> 7) & 1;
1829 var->avl = (ar >> 12) & 1;
1830 var->l = (ar >> 13) & 1;
1831 var->db = (ar >> 14) & 1;
1832 var->g = (ar >> 15) & 1;
1833 var->unusable = (ar >> 16) & 1;
1834 }
1835
1836 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1837 {
1838 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1839 return 0;
1840
1841 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1842 return 3;
1843
1844 return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1845 }
1846
1847 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1848 {
1849 u32 ar;
1850
1851 if (var->unusable)
1852 ar = 1 << 16;
1853 else {
1854 ar = var->type & 15;
1855 ar |= (var->s & 1) << 4;
1856 ar |= (var->dpl & 3) << 5;
1857 ar |= (var->present & 1) << 7;
1858 ar |= (var->avl & 1) << 12;
1859 ar |= (var->l & 1) << 13;
1860 ar |= (var->db & 1) << 14;
1861 ar |= (var->g & 1) << 15;
1862 }
1863 if (ar == 0) /* a 0 value means unusable */
1864 ar = AR_UNUSABLE_MASK;
1865
1866 return ar;
1867 }
1868
1869 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1870 struct kvm_segment *var, int seg)
1871 {
1872 struct vcpu_vmx *vmx = to_vmx(vcpu);
1873 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1874 u32 ar;
1875
1876 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1877 vmx->rmode.tr.selector = var->selector;
1878 vmx->rmode.tr.base = var->base;
1879 vmx->rmode.tr.limit = var->limit;
1880 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1881 return;
1882 }
1883 vmcs_writel(sf->base, var->base);
1884 vmcs_write32(sf->limit, var->limit);
1885 vmcs_write16(sf->selector, var->selector);
1886 if (vmx->rmode.vm86_active && var->s) {
1887 /*
1888 * Hack real-mode segments into vm86 compatibility.
1889 */
1890 if (var->base == 0xffff0000 && var->selector == 0xf000)
1891 vmcs_writel(sf->base, 0xf0000);
1892 ar = 0xf3;
1893 } else
1894 ar = vmx_segment_access_rights(var);
1895
1896 /*
1897 * Fix the "Accessed" bit in AR field of segment registers for older
1898 * qemu binaries.
1899 * IA32 arch specifies that at the time of processor reset the
1900 * "Accessed" bit in the AR field of segment registers is 1. And qemu
1901 * is setting it to 0 in the usedland code. This causes invalid guest
1902 * state vmexit when "unrestricted guest" mode is turned on.
1903 * Fix for this setup issue in cpu_reset is being pushed in the qemu
1904 * tree. Newer qemu binaries with that qemu fix would not need this
1905 * kvm hack.
1906 */
1907 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1908 ar |= 0x1; /* Accessed */
1909
1910 vmcs_write32(sf->ar_bytes, ar);
1911 }
1912
1913 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1914 {
1915 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1916
1917 *db = (ar >> 14) & 1;
1918 *l = (ar >> 13) & 1;
1919 }
1920
1921 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1922 {
1923 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1924 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1925 }
1926
1927 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1928 {
1929 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1930 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1931 }
1932
1933 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1934 {
1935 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1936 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1937 }
1938
1939 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1940 {
1941 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1942 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1943 }
1944
1945 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1946 {
1947 struct kvm_segment var;
1948 u32 ar;
1949
1950 vmx_get_segment(vcpu, &var, seg);
1951 ar = vmx_segment_access_rights(&var);
1952
1953 if (var.base != (var.selector << 4))
1954 return false;
1955 if (var.limit != 0xffff)
1956 return false;
1957 if (ar != 0xf3)
1958 return false;
1959
1960 return true;
1961 }
1962
1963 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1964 {
1965 struct kvm_segment cs;
1966 unsigned int cs_rpl;
1967
1968 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1969 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1970
1971 if (cs.unusable)
1972 return false;
1973 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1974 return false;
1975 if (!cs.s)
1976 return false;
1977 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1978 if (cs.dpl > cs_rpl)
1979 return false;
1980 } else {
1981 if (cs.dpl != cs_rpl)
1982 return false;
1983 }
1984 if (!cs.present)
1985 return false;
1986
1987 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1988 return true;
1989 }
1990
1991 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1992 {
1993 struct kvm_segment ss;
1994 unsigned int ss_rpl;
1995
1996 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1997 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1998
1999 if (ss.unusable)
2000 return true;
2001 if (ss.type != 3 && ss.type != 7)
2002 return false;
2003 if (!ss.s)
2004 return false;
2005 if (ss.dpl != ss_rpl) /* DPL != RPL */
2006 return false;
2007 if (!ss.present)
2008 return false;
2009
2010 return true;
2011 }
2012
2013 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2014 {
2015 struct kvm_segment var;
2016 unsigned int rpl;
2017
2018 vmx_get_segment(vcpu, &var, seg);
2019 rpl = var.selector & SELECTOR_RPL_MASK;
2020
2021 if (var.unusable)
2022 return true;
2023 if (!var.s)
2024 return false;
2025 if (!var.present)
2026 return false;
2027 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2028 if (var.dpl < rpl) /* DPL < RPL */
2029 return false;
2030 }
2031
2032 /* TODO: Add other members to kvm_segment_field to allow checking for other access
2033 * rights flags
2034 */
2035 return true;
2036 }
2037
2038 static bool tr_valid(struct kvm_vcpu *vcpu)
2039 {
2040 struct kvm_segment tr;
2041
2042 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2043
2044 if (tr.unusable)
2045 return false;
2046 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2047 return false;
2048 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2049 return false;
2050 if (!tr.present)
2051 return false;
2052
2053 return true;
2054 }
2055
2056 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2057 {
2058 struct kvm_segment ldtr;
2059
2060 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2061
2062 if (ldtr.unusable)
2063 return true;
2064 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2065 return false;
2066 if (ldtr.type != 2)
2067 return false;
2068 if (!ldtr.present)
2069 return false;
2070
2071 return true;
2072 }
2073
2074 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2075 {
2076 struct kvm_segment cs, ss;
2077
2078 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2079 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2080
2081 return ((cs.selector & SELECTOR_RPL_MASK) ==
2082 (ss.selector & SELECTOR_RPL_MASK));
2083 }
2084
2085 /*
2086 * Check if guest state is valid. Returns true if valid, false if
2087 * not.
2088 * We assume that registers are always usable
2089 */
2090 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2091 {
2092 /* real mode guest state checks */
2093 if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2094 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2095 return false;
2096 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2097 return false;
2098 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2099 return false;
2100 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2101 return false;
2102 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2103 return false;
2104 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2105 return false;
2106 } else {
2107 /* protected mode guest state checks */
2108 if (!cs_ss_rpl_check(vcpu))
2109 return false;
2110 if (!code_segment_valid(vcpu))
2111 return false;
2112 if (!stack_segment_valid(vcpu))
2113 return false;
2114 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2115 return false;
2116 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2117 return false;
2118 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2119 return false;
2120 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2121 return false;
2122 if (!tr_valid(vcpu))
2123 return false;
2124 if (!ldtr_valid(vcpu))
2125 return false;
2126 }
2127 /* TODO:
2128 * - Add checks on RIP
2129 * - Add checks on RFLAGS
2130 */
2131
2132 return true;
2133 }
2134
2135 static int init_rmode_tss(struct kvm *kvm)
2136 {
2137 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2138 u16 data = 0;
2139 int ret = 0;
2140 int r;
2141
2142 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2143 if (r < 0)
2144 goto out;
2145 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2146 r = kvm_write_guest_page(kvm, fn++, &data,
2147 TSS_IOPB_BASE_OFFSET, sizeof(u16));
2148 if (r < 0)
2149 goto out;
2150 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2151 if (r < 0)
2152 goto out;
2153 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2154 if (r < 0)
2155 goto out;
2156 data = ~0;
2157 r = kvm_write_guest_page(kvm, fn, &data,
2158 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2159 sizeof(u8));
2160 if (r < 0)
2161 goto out;
2162
2163 ret = 1;
2164 out:
2165 return ret;
2166 }
2167
2168 static int init_rmode_identity_map(struct kvm *kvm)
2169 {
2170 int i, r, ret;
2171 pfn_t identity_map_pfn;
2172 u32 tmp;
2173
2174 if (!enable_ept)
2175 return 1;
2176 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2177 printk(KERN_ERR "EPT: identity-mapping pagetable "
2178 "haven't been allocated!\n");
2179 return 0;
2180 }
2181 if (likely(kvm->arch.ept_identity_pagetable_done))
2182 return 1;
2183 ret = 0;
2184 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2185 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2186 if (r < 0)
2187 goto out;
2188 /* Set up identity-mapping pagetable for EPT in real mode */
2189 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2190 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2191 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2192 r = kvm_write_guest_page(kvm, identity_map_pfn,
2193 &tmp, i * sizeof(tmp), sizeof(tmp));
2194 if (r < 0)
2195 goto out;
2196 }
2197 kvm->arch.ept_identity_pagetable_done = true;
2198 ret = 1;
2199 out:
2200 return ret;
2201 }
2202
2203 static void seg_setup(int seg)
2204 {
2205 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2206 unsigned int ar;
2207
2208 vmcs_write16(sf->selector, 0);
2209 vmcs_writel(sf->base, 0);
2210 vmcs_write32(sf->limit, 0xffff);
2211 if (enable_unrestricted_guest) {
2212 ar = 0x93;
2213 if (seg == VCPU_SREG_CS)
2214 ar |= 0x08; /* code segment */
2215 } else
2216 ar = 0xf3;
2217
2218 vmcs_write32(sf->ar_bytes, ar);
2219 }
2220
2221 static int alloc_apic_access_page(struct kvm *kvm)
2222 {
2223 struct kvm_userspace_memory_region kvm_userspace_mem;
2224 int r = 0;
2225
2226 down_write(&kvm->slots_lock);
2227 if (kvm->arch.apic_access_page)
2228 goto out;
2229 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2230 kvm_userspace_mem.flags = 0;
2231 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2232 kvm_userspace_mem.memory_size = PAGE_SIZE;
2233 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2234 if (r)
2235 goto out;
2236
2237 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2238 out:
2239 up_write(&kvm->slots_lock);
2240 return r;
2241 }
2242
2243 static int alloc_identity_pagetable(struct kvm *kvm)
2244 {
2245 struct kvm_userspace_memory_region kvm_userspace_mem;
2246 int r = 0;
2247
2248 down_write(&kvm->slots_lock);
2249 if (kvm->arch.ept_identity_pagetable)
2250 goto out;
2251 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2252 kvm_userspace_mem.flags = 0;
2253 kvm_userspace_mem.guest_phys_addr =
2254 kvm->arch.ept_identity_map_addr;
2255 kvm_userspace_mem.memory_size = PAGE_SIZE;
2256 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2257 if (r)
2258 goto out;
2259
2260 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2261 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2262 out:
2263 up_write(&kvm->slots_lock);
2264 return r;
2265 }
2266
2267 static void allocate_vpid(struct vcpu_vmx *vmx)
2268 {
2269 int vpid;
2270
2271 vmx->vpid = 0;
2272 if (!enable_vpid)
2273 return;
2274 spin_lock(&vmx_vpid_lock);
2275 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2276 if (vpid < VMX_NR_VPIDS) {
2277 vmx->vpid = vpid;
2278 __set_bit(vpid, vmx_vpid_bitmap);
2279 }
2280 spin_unlock(&vmx_vpid_lock);
2281 }
2282
2283 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2284 {
2285 int f = sizeof(unsigned long);
2286
2287 if (!cpu_has_vmx_msr_bitmap())
2288 return;
2289
2290 /*
2291 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2292 * have the write-low and read-high bitmap offsets the wrong way round.
2293 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2294 */
2295 if (msr <= 0x1fff) {
2296 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2297 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2298 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2299 msr &= 0x1fff;
2300 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2301 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2302 }
2303 }
2304
2305 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2306 {
2307 if (!longmode_only)
2308 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2309 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2310 }
2311
2312 /*
2313 * Sets up the vmcs for emulated real mode.
2314 */
2315 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2316 {
2317 u32 host_sysenter_cs, msr_low, msr_high;
2318 u32 junk;
2319 u64 host_pat, tsc_this, tsc_base;
2320 unsigned long a;
2321 struct descriptor_table dt;
2322 int i;
2323 unsigned long kvm_vmx_return;
2324 u32 exec_control;
2325
2326 /* I/O */
2327 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2328 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2329
2330 if (cpu_has_vmx_msr_bitmap())
2331 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2332
2333 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2334
2335 /* Control */
2336 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2337 vmcs_config.pin_based_exec_ctrl);
2338
2339 exec_control = vmcs_config.cpu_based_exec_ctrl;
2340 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2341 exec_control &= ~CPU_BASED_TPR_SHADOW;
2342 #ifdef CONFIG_X86_64
2343 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2344 CPU_BASED_CR8_LOAD_EXITING;
2345 #endif
2346 }
2347 if (!enable_ept)
2348 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2349 CPU_BASED_CR3_LOAD_EXITING |
2350 CPU_BASED_INVLPG_EXITING;
2351 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2352
2353 if (cpu_has_secondary_exec_ctrls()) {
2354 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2355 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2356 exec_control &=
2357 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2358 if (vmx->vpid == 0)
2359 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2360 if (!enable_ept) {
2361 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2362 enable_unrestricted_guest = 0;
2363 }
2364 if (!enable_unrestricted_guest)
2365 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2366 if (!ple_gap)
2367 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2368 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2369 }
2370
2371 if (ple_gap) {
2372 vmcs_write32(PLE_GAP, ple_gap);
2373 vmcs_write32(PLE_WINDOW, ple_window);
2374 }
2375
2376 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2377 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2378 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2379
2380 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2381 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2382 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2383
2384 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2385 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2386 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2387 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2388 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2389 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2390 #ifdef CONFIG_X86_64
2391 rdmsrl(MSR_FS_BASE, a);
2392 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2393 rdmsrl(MSR_GS_BASE, a);
2394 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2395 #else
2396 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2397 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2398 #endif
2399
2400 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2401
2402 kvm_get_idt(&dt);
2403 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
2404
2405 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2406 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2407 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2408 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2409 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2410
2411 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2412 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2413 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2414 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2415 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2416 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2417
2418 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2419 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2420 host_pat = msr_low | ((u64) msr_high << 32);
2421 vmcs_write64(HOST_IA32_PAT, host_pat);
2422 }
2423 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2424 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2425 host_pat = msr_low | ((u64) msr_high << 32);
2426 /* Write the default value follow host pat */
2427 vmcs_write64(GUEST_IA32_PAT, host_pat);
2428 /* Keep arch.pat sync with GUEST_IA32_PAT */
2429 vmx->vcpu.arch.pat = host_pat;
2430 }
2431
2432 for (i = 0; i < NR_VMX_MSR; ++i) {
2433 u32 index = vmx_msr_index[i];
2434 u32 data_low, data_high;
2435 int j = vmx->nmsrs;
2436
2437 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2438 continue;
2439 if (wrmsr_safe(index, data_low, data_high) < 0)
2440 continue;
2441 vmx->guest_msrs[j].index = i;
2442 vmx->guest_msrs[j].data = 0;
2443 vmx->guest_msrs[j].mask = -1ull;
2444 ++vmx->nmsrs;
2445 }
2446
2447 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2448
2449 /* 22.2.1, 20.8.1 */
2450 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2451
2452 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2453 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2454 if (enable_ept)
2455 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2456 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2457
2458 tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2459 rdtscll(tsc_this);
2460 if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2461 tsc_base = tsc_this;
2462
2463 guest_write_tsc(0, tsc_base);
2464
2465 return 0;
2466 }
2467
2468 static int init_rmode(struct kvm *kvm)
2469 {
2470 if (!init_rmode_tss(kvm))
2471 return 0;
2472 if (!init_rmode_identity_map(kvm))
2473 return 0;
2474 return 1;
2475 }
2476
2477 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2478 {
2479 struct vcpu_vmx *vmx = to_vmx(vcpu);
2480 u64 msr;
2481 int ret, idx;
2482
2483 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2484 idx = srcu_read_lock(&vcpu->kvm->srcu);
2485 if (!init_rmode(vmx->vcpu.kvm)) {
2486 ret = -ENOMEM;
2487 goto out;
2488 }
2489
2490 vmx->rmode.vm86_active = 0;
2491
2492 vmx->soft_vnmi_blocked = 0;
2493
2494 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2495 kvm_set_cr8(&vmx->vcpu, 0);
2496 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2497 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2498 msr |= MSR_IA32_APICBASE_BSP;
2499 kvm_set_apic_base(&vmx->vcpu, msr);
2500
2501 fx_init(&vmx->vcpu);
2502
2503 seg_setup(VCPU_SREG_CS);
2504 /*
2505 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2506 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2507 */
2508 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2509 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2510 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2511 } else {
2512 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2513 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2514 }
2515
2516 seg_setup(VCPU_SREG_DS);
2517 seg_setup(VCPU_SREG_ES);
2518 seg_setup(VCPU_SREG_FS);
2519 seg_setup(VCPU_SREG_GS);
2520 seg_setup(VCPU_SREG_SS);
2521
2522 vmcs_write16(GUEST_TR_SELECTOR, 0);
2523 vmcs_writel(GUEST_TR_BASE, 0);
2524 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2525 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2526
2527 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2528 vmcs_writel(GUEST_LDTR_BASE, 0);
2529 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2530 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2531
2532 vmcs_write32(GUEST_SYSENTER_CS, 0);
2533 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2534 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2535
2536 vmcs_writel(GUEST_RFLAGS, 0x02);
2537 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2538 kvm_rip_write(vcpu, 0xfff0);
2539 else
2540 kvm_rip_write(vcpu, 0);
2541 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2542
2543 vmcs_writel(GUEST_DR7, 0x400);
2544
2545 vmcs_writel(GUEST_GDTR_BASE, 0);
2546 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2547
2548 vmcs_writel(GUEST_IDTR_BASE, 0);
2549 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2550
2551 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2552 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2553 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2554
2555 /* Special registers */
2556 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2557
2558 setup_msrs(vmx);
2559
2560 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2561
2562 if (cpu_has_vmx_tpr_shadow()) {
2563 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2564 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2565 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2566 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2567 vmcs_write32(TPR_THRESHOLD, 0);
2568 }
2569
2570 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2571 vmcs_write64(APIC_ACCESS_ADDR,
2572 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2573
2574 if (vmx->vpid != 0)
2575 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2576
2577 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2578 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2579 vmx_set_cr4(&vmx->vcpu, 0);
2580 vmx_set_efer(&vmx->vcpu, 0);
2581 vmx_fpu_activate(&vmx->vcpu);
2582 update_exception_bitmap(&vmx->vcpu);
2583
2584 vpid_sync_vcpu_all(vmx);
2585
2586 ret = 0;
2587
2588 /* HACK: Don't enable emulation on guest boot/reset */
2589 vmx->emulation_required = 0;
2590
2591 out:
2592 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2593 return ret;
2594 }
2595
2596 static void enable_irq_window(struct kvm_vcpu *vcpu)
2597 {
2598 u32 cpu_based_vm_exec_control;
2599
2600 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2601 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2602 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2603 }
2604
2605 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2606 {
2607 u32 cpu_based_vm_exec_control;
2608
2609 if (!cpu_has_virtual_nmis()) {
2610 enable_irq_window(vcpu);
2611 return;
2612 }
2613
2614 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2615 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2616 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2617 }
2618
2619 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2620 {
2621 struct vcpu_vmx *vmx = to_vmx(vcpu);
2622 uint32_t intr;
2623 int irq = vcpu->arch.interrupt.nr;
2624
2625 trace_kvm_inj_virq(irq);
2626
2627 ++vcpu->stat.irq_injections;
2628 if (vmx->rmode.vm86_active) {
2629 vmx->rmode.irq.pending = true;
2630 vmx->rmode.irq.vector = irq;
2631 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2632 if (vcpu->arch.interrupt.soft)
2633 vmx->rmode.irq.rip +=
2634 vmx->vcpu.arch.event_exit_inst_len;
2635 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2636 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2637 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2638 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2639 return;
2640 }
2641 intr = irq | INTR_INFO_VALID_MASK;
2642 if (vcpu->arch.interrupt.soft) {
2643 intr |= INTR_TYPE_SOFT_INTR;
2644 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2645 vmx->vcpu.arch.event_exit_inst_len);
2646 } else
2647 intr |= INTR_TYPE_EXT_INTR;
2648 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2649 }
2650
2651 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2652 {
2653 struct vcpu_vmx *vmx = to_vmx(vcpu);
2654
2655 if (!cpu_has_virtual_nmis()) {
2656 /*
2657 * Tracking the NMI-blocked state in software is built upon
2658 * finding the next open IRQ window. This, in turn, depends on
2659 * well-behaving guests: They have to keep IRQs disabled at
2660 * least as long as the NMI handler runs. Otherwise we may
2661 * cause NMI nesting, maybe breaking the guest. But as this is
2662 * highly unlikely, we can live with the residual risk.
2663 */
2664 vmx->soft_vnmi_blocked = 1;
2665 vmx->vnmi_blocked_time = 0;
2666 }
2667
2668 ++vcpu->stat.nmi_injections;
2669 if (vmx->rmode.vm86_active) {
2670 vmx->rmode.irq.pending = true;
2671 vmx->rmode.irq.vector = NMI_VECTOR;
2672 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2673 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2674 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2675 INTR_INFO_VALID_MASK);
2676 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2677 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2678 return;
2679 }
2680 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2681 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2682 }
2683
2684 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2685 {
2686 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2687 return 0;
2688
2689 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2690 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2691 GUEST_INTR_STATE_NMI));
2692 }
2693
2694 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2695 {
2696 if (!cpu_has_virtual_nmis())
2697 return to_vmx(vcpu)->soft_vnmi_blocked;
2698 else
2699 return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2700 GUEST_INTR_STATE_NMI);
2701 }
2702
2703 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2704 {
2705 struct vcpu_vmx *vmx = to_vmx(vcpu);
2706
2707 if (!cpu_has_virtual_nmis()) {
2708 if (vmx->soft_vnmi_blocked != masked) {
2709 vmx->soft_vnmi_blocked = masked;
2710 vmx->vnmi_blocked_time = 0;
2711 }
2712 } else {
2713 if (masked)
2714 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2715 GUEST_INTR_STATE_NMI);
2716 else
2717 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2718 GUEST_INTR_STATE_NMI);
2719 }
2720 }
2721
2722 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2723 {
2724 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2725 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2726 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2727 }
2728
2729 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2730 {
2731 int ret;
2732 struct kvm_userspace_memory_region tss_mem = {
2733 .slot = TSS_PRIVATE_MEMSLOT,
2734 .guest_phys_addr = addr,
2735 .memory_size = PAGE_SIZE * 3,
2736 .flags = 0,
2737 };
2738
2739 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2740 if (ret)
2741 return ret;
2742 kvm->arch.tss_addr = addr;
2743 return 0;
2744 }
2745
2746 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2747 int vec, u32 err_code)
2748 {
2749 /*
2750 * Instruction with address size override prefix opcode 0x67
2751 * Cause the #SS fault with 0 error code in VM86 mode.
2752 */
2753 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2754 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2755 return 1;
2756 /*
2757 * Forward all other exceptions that are valid in real mode.
2758 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2759 * the required debugging infrastructure rework.
2760 */
2761 switch (vec) {
2762 case DB_VECTOR:
2763 if (vcpu->guest_debug &
2764 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2765 return 0;
2766 kvm_queue_exception(vcpu, vec);
2767 return 1;
2768 case BP_VECTOR:
2769 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2770 return 0;
2771 /* fall through */
2772 case DE_VECTOR:
2773 case OF_VECTOR:
2774 case BR_VECTOR:
2775 case UD_VECTOR:
2776 case DF_VECTOR:
2777 case SS_VECTOR:
2778 case GP_VECTOR:
2779 case MF_VECTOR:
2780 kvm_queue_exception(vcpu, vec);
2781 return 1;
2782 }
2783 return 0;
2784 }
2785
2786 /*
2787 * Trigger machine check on the host. We assume all the MSRs are already set up
2788 * by the CPU and that we still run on the same CPU as the MCE occurred on.
2789 * We pass a fake environment to the machine check handler because we want
2790 * the guest to be always treated like user space, no matter what context
2791 * it used internally.
2792 */
2793 static void kvm_machine_check(void)
2794 {
2795 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2796 struct pt_regs regs = {
2797 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2798 .flags = X86_EFLAGS_IF,
2799 };
2800
2801 do_machine_check(&regs, 0);
2802 #endif
2803 }
2804
2805 static int handle_machine_check(struct kvm_vcpu *vcpu)
2806 {
2807 /* already handled by vcpu_run */
2808 return 1;
2809 }
2810
2811 static int handle_exception(struct kvm_vcpu *vcpu)
2812 {
2813 struct vcpu_vmx *vmx = to_vmx(vcpu);
2814 struct kvm_run *kvm_run = vcpu->run;
2815 u32 intr_info, ex_no, error_code;
2816 unsigned long cr2, rip, dr6;
2817 u32 vect_info;
2818 enum emulation_result er;
2819
2820 vect_info = vmx->idt_vectoring_info;
2821 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2822
2823 if (is_machine_check(intr_info))
2824 return handle_machine_check(vcpu);
2825
2826 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2827 !is_page_fault(intr_info)) {
2828 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2829 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
2830 vcpu->run->internal.ndata = 2;
2831 vcpu->run->internal.data[0] = vect_info;
2832 vcpu->run->internal.data[1] = intr_info;
2833 return 0;
2834 }
2835
2836 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2837 return 1; /* already handled by vmx_vcpu_run() */
2838
2839 if (is_no_device(intr_info)) {
2840 vmx_fpu_activate(vcpu);
2841 return 1;
2842 }
2843
2844 if (is_invalid_opcode(intr_info)) {
2845 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
2846 if (er != EMULATE_DONE)
2847 kvm_queue_exception(vcpu, UD_VECTOR);
2848 return 1;
2849 }
2850
2851 error_code = 0;
2852 rip = kvm_rip_read(vcpu);
2853 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2854 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2855 if (is_page_fault(intr_info)) {
2856 /* EPT won't cause page fault directly */
2857 if (enable_ept)
2858 BUG();
2859 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2860 trace_kvm_page_fault(cr2, error_code);
2861
2862 if (kvm_event_needs_reinjection(vcpu))
2863 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2864 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2865 }
2866
2867 if (vmx->rmode.vm86_active &&
2868 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2869 error_code)) {
2870 if (vcpu->arch.halt_request) {
2871 vcpu->arch.halt_request = 0;
2872 return kvm_emulate_halt(vcpu);
2873 }
2874 return 1;
2875 }
2876
2877 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2878 switch (ex_no) {
2879 case DB_VECTOR:
2880 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2881 if (!(vcpu->guest_debug &
2882 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2883 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2884 kvm_queue_exception(vcpu, DB_VECTOR);
2885 return 1;
2886 }
2887 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2888 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2889 /* fall through */
2890 case BP_VECTOR:
2891 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2892 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2893 kvm_run->debug.arch.exception = ex_no;
2894 break;
2895 default:
2896 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2897 kvm_run->ex.exception = ex_no;
2898 kvm_run->ex.error_code = error_code;
2899 break;
2900 }
2901 return 0;
2902 }
2903
2904 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
2905 {
2906 ++vcpu->stat.irq_exits;
2907 return 1;
2908 }
2909
2910 static int handle_triple_fault(struct kvm_vcpu *vcpu)
2911 {
2912 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2913 return 0;
2914 }
2915
2916 static int handle_io(struct kvm_vcpu *vcpu)
2917 {
2918 unsigned long exit_qualification;
2919 int size, in, string;
2920 unsigned port;
2921
2922 ++vcpu->stat.io_exits;
2923 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2924 string = (exit_qualification & 16) != 0;
2925
2926 if (string) {
2927 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
2928 return 0;
2929 return 1;
2930 }
2931
2932 size = (exit_qualification & 7) + 1;
2933 in = (exit_qualification & 8) != 0;
2934 port = exit_qualification >> 16;
2935
2936 skip_emulated_instruction(vcpu);
2937 return kvm_emulate_pio(vcpu, in, size, port);
2938 }
2939
2940 static void
2941 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2942 {
2943 /*
2944 * Patch in the VMCALL instruction:
2945 */
2946 hypercall[0] = 0x0f;
2947 hypercall[1] = 0x01;
2948 hypercall[2] = 0xc1;
2949 }
2950
2951 static int handle_cr(struct kvm_vcpu *vcpu)
2952 {
2953 unsigned long exit_qualification, val;
2954 int cr;
2955 int reg;
2956
2957 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2958 cr = exit_qualification & 15;
2959 reg = (exit_qualification >> 8) & 15;
2960 switch ((exit_qualification >> 4) & 3) {
2961 case 0: /* mov to cr */
2962 val = kvm_register_read(vcpu, reg);
2963 trace_kvm_cr_write(cr, val);
2964 switch (cr) {
2965 case 0:
2966 kvm_set_cr0(vcpu, val);
2967 skip_emulated_instruction(vcpu);
2968 return 1;
2969 case 3:
2970 kvm_set_cr3(vcpu, val);
2971 skip_emulated_instruction(vcpu);
2972 return 1;
2973 case 4:
2974 kvm_set_cr4(vcpu, val);
2975 skip_emulated_instruction(vcpu);
2976 return 1;
2977 case 8: {
2978 u8 cr8_prev = kvm_get_cr8(vcpu);
2979 u8 cr8 = kvm_register_read(vcpu, reg);
2980 kvm_set_cr8(vcpu, cr8);
2981 skip_emulated_instruction(vcpu);
2982 if (irqchip_in_kernel(vcpu->kvm))
2983 return 1;
2984 if (cr8_prev <= cr8)
2985 return 1;
2986 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2987 return 0;
2988 }
2989 };
2990 break;
2991 case 2: /* clts */
2992 vmx_fpu_deactivate(vcpu);
2993 vcpu->arch.cr0 &= ~X86_CR0_TS;
2994 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2995 vmx_fpu_activate(vcpu);
2996 skip_emulated_instruction(vcpu);
2997 return 1;
2998 case 1: /*mov from cr*/
2999 switch (cr) {
3000 case 3:
3001 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
3002 trace_kvm_cr_read(cr, vcpu->arch.cr3);
3003 skip_emulated_instruction(vcpu);
3004 return 1;
3005 case 8:
3006 val = kvm_get_cr8(vcpu);
3007 kvm_register_write(vcpu, reg, val);
3008 trace_kvm_cr_read(cr, val);
3009 skip_emulated_instruction(vcpu);
3010 return 1;
3011 }
3012 break;
3013 case 3: /* lmsw */
3014 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
3015
3016 skip_emulated_instruction(vcpu);
3017 return 1;
3018 default:
3019 break;
3020 }
3021 vcpu->run->exit_reason = 0;
3022 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3023 (int)(exit_qualification >> 4) & 3, cr);
3024 return 0;
3025 }
3026
3027 static int handle_dr(struct kvm_vcpu *vcpu)
3028 {
3029 unsigned long exit_qualification;
3030 unsigned long val;
3031 int dr, reg;
3032
3033 if (!kvm_require_cpl(vcpu, 0))
3034 return 1;
3035 dr = vmcs_readl(GUEST_DR7);
3036 if (dr & DR7_GD) {
3037 /*
3038 * As the vm-exit takes precedence over the debug trap, we
3039 * need to emulate the latter, either for the host or the
3040 * guest debugging itself.
3041 */
3042 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3043 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3044 vcpu->run->debug.arch.dr7 = dr;
3045 vcpu->run->debug.arch.pc =
3046 vmcs_readl(GUEST_CS_BASE) +
3047 vmcs_readl(GUEST_RIP);
3048 vcpu->run->debug.arch.exception = DB_VECTOR;
3049 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3050 return 0;
3051 } else {
3052 vcpu->arch.dr7 &= ~DR7_GD;
3053 vcpu->arch.dr6 |= DR6_BD;
3054 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3055 kvm_queue_exception(vcpu, DB_VECTOR);
3056 return 1;
3057 }
3058 }
3059
3060 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3061 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3062 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3063 if (exit_qualification & TYPE_MOV_FROM_DR) {
3064 switch (dr) {
3065 case 0 ... 3:
3066 val = vcpu->arch.db[dr];
3067 break;
3068 case 6:
3069 val = vcpu->arch.dr6;
3070 break;
3071 case 7:
3072 val = vcpu->arch.dr7;
3073 break;
3074 default:
3075 val = 0;
3076 }
3077 kvm_register_write(vcpu, reg, val);
3078 } else {
3079 val = vcpu->arch.regs[reg];
3080 switch (dr) {
3081 case 0 ... 3:
3082 vcpu->arch.db[dr] = val;
3083 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
3084 vcpu->arch.eff_db[dr] = val;
3085 break;
3086 case 4 ... 5:
3087 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
3088 kvm_queue_exception(vcpu, UD_VECTOR);
3089 break;
3090 case 6:
3091 if (val & 0xffffffff00000000ULL) {
3092 kvm_queue_exception(vcpu, GP_VECTOR);
3093 break;
3094 }
3095 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
3096 break;
3097 case 7:
3098 if (val & 0xffffffff00000000ULL) {
3099 kvm_queue_exception(vcpu, GP_VECTOR);
3100 break;
3101 }
3102 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3103 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3104 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3105 vcpu->arch.switch_db_regs =
3106 (val & DR7_BP_EN_MASK);
3107 }
3108 break;
3109 }
3110 }
3111 skip_emulated_instruction(vcpu);
3112 return 1;
3113 }
3114
3115 static int handle_cpuid(struct kvm_vcpu *vcpu)
3116 {
3117 kvm_emulate_cpuid(vcpu);
3118 return 1;
3119 }
3120
3121 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3122 {
3123 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3124 u64 data;
3125
3126 if (vmx_get_msr(vcpu, ecx, &data)) {
3127 kvm_inject_gp(vcpu, 0);
3128 return 1;
3129 }
3130
3131 trace_kvm_msr_read(ecx, data);
3132
3133 /* FIXME: handling of bits 32:63 of rax, rdx */
3134 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3135 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3136 skip_emulated_instruction(vcpu);
3137 return 1;
3138 }
3139
3140 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3141 {
3142 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3143 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3144 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3145
3146 trace_kvm_msr_write(ecx, data);
3147
3148 if (vmx_set_msr(vcpu, ecx, data) != 0) {
3149 kvm_inject_gp(vcpu, 0);
3150 return 1;
3151 }
3152
3153 skip_emulated_instruction(vcpu);
3154 return 1;
3155 }
3156
3157 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3158 {
3159 return 1;
3160 }
3161
3162 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3163 {
3164 u32 cpu_based_vm_exec_control;
3165
3166 /* clear pending irq */
3167 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3168 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3169 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3170
3171 ++vcpu->stat.irq_window_exits;
3172
3173 /*
3174 * If the user space waits to inject interrupts, exit as soon as
3175 * possible
3176 */
3177 if (!irqchip_in_kernel(vcpu->kvm) &&
3178 vcpu->run->request_interrupt_window &&
3179 !kvm_cpu_has_interrupt(vcpu)) {
3180 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3181 return 0;
3182 }
3183 return 1;
3184 }
3185
3186 static int handle_halt(struct kvm_vcpu *vcpu)
3187 {
3188 skip_emulated_instruction(vcpu);
3189 return kvm_emulate_halt(vcpu);
3190 }
3191
3192 static int handle_vmcall(struct kvm_vcpu *vcpu)
3193 {
3194 skip_emulated_instruction(vcpu);
3195 kvm_emulate_hypercall(vcpu);
3196 return 1;
3197 }
3198
3199 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3200 {
3201 kvm_queue_exception(vcpu, UD_VECTOR);
3202 return 1;
3203 }
3204
3205 static int handle_invlpg(struct kvm_vcpu *vcpu)
3206 {
3207 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3208
3209 kvm_mmu_invlpg(vcpu, exit_qualification);
3210 skip_emulated_instruction(vcpu);
3211 return 1;
3212 }
3213
3214 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3215 {
3216 skip_emulated_instruction(vcpu);
3217 /* TODO: Add support for VT-d/pass-through device */
3218 return 1;
3219 }
3220
3221 static int handle_apic_access(struct kvm_vcpu *vcpu)
3222 {
3223 unsigned long exit_qualification;
3224 enum emulation_result er;
3225 unsigned long offset;
3226
3227 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3228 offset = exit_qualification & 0xffful;
3229
3230 er = emulate_instruction(vcpu, 0, 0, 0);
3231
3232 if (er != EMULATE_DONE) {
3233 printk(KERN_ERR
3234 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3235 offset);
3236 return -ENOEXEC;
3237 }
3238 return 1;
3239 }
3240
3241 static int handle_task_switch(struct kvm_vcpu *vcpu)
3242 {
3243 struct vcpu_vmx *vmx = to_vmx(vcpu);
3244 unsigned long exit_qualification;
3245 u16 tss_selector;
3246 int reason, type, idt_v;
3247
3248 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3249 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3250
3251 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3252
3253 reason = (u32)exit_qualification >> 30;
3254 if (reason == TASK_SWITCH_GATE && idt_v) {
3255 switch (type) {
3256 case INTR_TYPE_NMI_INTR:
3257 vcpu->arch.nmi_injected = false;
3258 if (cpu_has_virtual_nmis())
3259 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3260 GUEST_INTR_STATE_NMI);
3261 break;
3262 case INTR_TYPE_EXT_INTR:
3263 case INTR_TYPE_SOFT_INTR:
3264 kvm_clear_interrupt_queue(vcpu);
3265 break;
3266 case INTR_TYPE_HARD_EXCEPTION:
3267 case INTR_TYPE_SOFT_EXCEPTION:
3268 kvm_clear_exception_queue(vcpu);
3269 break;
3270 default:
3271 break;
3272 }
3273 }
3274 tss_selector = exit_qualification;
3275
3276 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3277 type != INTR_TYPE_EXT_INTR &&
3278 type != INTR_TYPE_NMI_INTR))
3279 skip_emulated_instruction(vcpu);
3280
3281 if (!kvm_task_switch(vcpu, tss_selector, reason))
3282 return 0;
3283
3284 /* clear all local breakpoint enable flags */
3285 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3286
3287 /*
3288 * TODO: What about debug traps on tss switch?
3289 * Are we supposed to inject them and update dr6?
3290 */
3291
3292 return 1;
3293 }
3294
3295 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3296 {
3297 unsigned long exit_qualification;
3298 gpa_t gpa;
3299 int gla_validity;
3300
3301 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3302
3303 if (exit_qualification & (1 << 6)) {
3304 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3305 return -EINVAL;
3306 }
3307
3308 gla_validity = (exit_qualification >> 7) & 0x3;
3309 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3310 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3311 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3312 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3313 vmcs_readl(GUEST_LINEAR_ADDRESS));
3314 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3315 (long unsigned int)exit_qualification);
3316 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3317 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3318 return 0;
3319 }
3320
3321 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3322 trace_kvm_page_fault(gpa, exit_qualification);
3323 return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3324 }
3325
3326 static u64 ept_rsvd_mask(u64 spte, int level)
3327 {
3328 int i;
3329 u64 mask = 0;
3330
3331 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3332 mask |= (1ULL << i);
3333
3334 if (level > 2)
3335 /* bits 7:3 reserved */
3336 mask |= 0xf8;
3337 else if (level == 2) {
3338 if (spte & (1ULL << 7))
3339 /* 2MB ref, bits 20:12 reserved */
3340 mask |= 0x1ff000;
3341 else
3342 /* bits 6:3 reserved */
3343 mask |= 0x78;
3344 }
3345
3346 return mask;
3347 }
3348
3349 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3350 int level)
3351 {
3352 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3353
3354 /* 010b (write-only) */
3355 WARN_ON((spte & 0x7) == 0x2);
3356
3357 /* 110b (write/execute) */
3358 WARN_ON((spte & 0x7) == 0x6);
3359
3360 /* 100b (execute-only) and value not supported by logical processor */
3361 if (!cpu_has_vmx_ept_execute_only())
3362 WARN_ON((spte & 0x7) == 0x4);
3363
3364 /* not 000b */
3365 if ((spte & 0x7)) {
3366 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3367
3368 if (rsvd_bits != 0) {
3369 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3370 __func__, rsvd_bits);
3371 WARN_ON(1);
3372 }
3373
3374 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3375 u64 ept_mem_type = (spte & 0x38) >> 3;
3376
3377 if (ept_mem_type == 2 || ept_mem_type == 3 ||
3378 ept_mem_type == 7) {
3379 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3380 __func__, ept_mem_type);
3381 WARN_ON(1);
3382 }
3383 }
3384 }
3385 }
3386
3387 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3388 {
3389 u64 sptes[4];
3390 int nr_sptes, i;
3391 gpa_t gpa;
3392
3393 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3394
3395 printk(KERN_ERR "EPT: Misconfiguration.\n");
3396 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3397
3398 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3399
3400 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3401 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3402
3403 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3404 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3405
3406 return 0;
3407 }
3408
3409 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3410 {
3411 u32 cpu_based_vm_exec_control;
3412
3413 /* clear pending NMI */
3414 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3415 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3416 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3417 ++vcpu->stat.nmi_window_exits;
3418
3419 return 1;
3420 }
3421
3422 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3423 {
3424 struct vcpu_vmx *vmx = to_vmx(vcpu);
3425 enum emulation_result err = EMULATE_DONE;
3426 int ret = 1;
3427
3428 while (!guest_state_valid(vcpu)) {
3429 err = emulate_instruction(vcpu, 0, 0, 0);
3430
3431 if (err == EMULATE_DO_MMIO) {
3432 ret = 0;
3433 goto out;
3434 }
3435
3436 if (err != EMULATE_DONE) {
3437 kvm_report_emulation_failure(vcpu, "emulation failure");
3438 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3439 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3440 vcpu->run->internal.ndata = 0;
3441 ret = 0;
3442 goto out;
3443 }
3444
3445 if (signal_pending(current))
3446 goto out;
3447 if (need_resched())
3448 schedule();
3449 }
3450
3451 vmx->emulation_required = 0;
3452 out:
3453 return ret;
3454 }
3455
3456 /*
3457 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3458 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3459 */
3460 static int handle_pause(struct kvm_vcpu *vcpu)
3461 {
3462 skip_emulated_instruction(vcpu);
3463 kvm_vcpu_on_spin(vcpu);
3464
3465 return 1;
3466 }
3467
3468 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3469 {
3470 kvm_queue_exception(vcpu, UD_VECTOR);
3471 return 1;
3472 }
3473
3474 /*
3475 * The exit handlers return 1 if the exit was handled fully and guest execution
3476 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3477 * to be done to userspace and return 0.
3478 */
3479 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3480 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3481 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3482 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3483 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3484 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3485 [EXIT_REASON_CR_ACCESS] = handle_cr,
3486 [EXIT_REASON_DR_ACCESS] = handle_dr,
3487 [EXIT_REASON_CPUID] = handle_cpuid,
3488 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3489 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3490 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3491 [EXIT_REASON_HLT] = handle_halt,
3492 [EXIT_REASON_INVLPG] = handle_invlpg,
3493 [EXIT_REASON_VMCALL] = handle_vmcall,
3494 [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
3495 [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
3496 [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
3497 [EXIT_REASON_VMPTRST] = handle_vmx_insn,
3498 [EXIT_REASON_VMREAD] = handle_vmx_insn,
3499 [EXIT_REASON_VMRESUME] = handle_vmx_insn,
3500 [EXIT_REASON_VMWRITE] = handle_vmx_insn,
3501 [EXIT_REASON_VMOFF] = handle_vmx_insn,
3502 [EXIT_REASON_VMON] = handle_vmx_insn,
3503 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3504 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3505 [EXIT_REASON_WBINVD] = handle_wbinvd,
3506 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3507 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
3508 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3509 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
3510 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
3511 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
3512 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
3513 };
3514
3515 static const int kvm_vmx_max_exit_handlers =
3516 ARRAY_SIZE(kvm_vmx_exit_handlers);
3517
3518 /*
3519 * The guest has exited. See if we can fix it or if we need userspace
3520 * assistance.
3521 */
3522 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3523 {
3524 struct vcpu_vmx *vmx = to_vmx(vcpu);
3525 u32 exit_reason = vmx->exit_reason;
3526 u32 vectoring_info = vmx->idt_vectoring_info;
3527
3528 trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
3529
3530 /* If guest state is invalid, start emulating */
3531 if (vmx->emulation_required && emulate_invalid_guest_state)
3532 return handle_invalid_guest_state(vcpu);
3533
3534 /* Access CR3 don't cause VMExit in paging mode, so we need
3535 * to sync with guest real CR3. */
3536 if (enable_ept && is_paging(vcpu))
3537 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3538
3539 if (unlikely(vmx->fail)) {
3540 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3541 vcpu->run->fail_entry.hardware_entry_failure_reason
3542 = vmcs_read32(VM_INSTRUCTION_ERROR);
3543 return 0;
3544 }
3545
3546 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3547 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3548 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3549 exit_reason != EXIT_REASON_TASK_SWITCH))
3550 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3551 "(0x%x) and exit reason is 0x%x\n",
3552 __func__, vectoring_info, exit_reason);
3553
3554 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3555 if (vmx_interrupt_allowed(vcpu)) {
3556 vmx->soft_vnmi_blocked = 0;
3557 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3558 vcpu->arch.nmi_pending) {
3559 /*
3560 * This CPU don't support us in finding the end of an
3561 * NMI-blocked window if the guest runs with IRQs
3562 * disabled. So we pull the trigger after 1 s of
3563 * futile waiting, but inform the user about this.
3564 */
3565 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3566 "state on VCPU %d after 1 s timeout\n",
3567 __func__, vcpu->vcpu_id);
3568 vmx->soft_vnmi_blocked = 0;
3569 }
3570 }
3571
3572 if (exit_reason < kvm_vmx_max_exit_handlers
3573 && kvm_vmx_exit_handlers[exit_reason])
3574 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3575 else {
3576 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3577 vcpu->run->hw.hardware_exit_reason = exit_reason;
3578 }
3579 return 0;
3580 }
3581
3582 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3583 {
3584 if (irr == -1 || tpr < irr) {
3585 vmcs_write32(TPR_THRESHOLD, 0);
3586 return;
3587 }
3588
3589 vmcs_write32(TPR_THRESHOLD, irr);
3590 }
3591
3592 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3593 {
3594 u32 exit_intr_info;
3595 u32 idt_vectoring_info = vmx->idt_vectoring_info;
3596 bool unblock_nmi;
3597 u8 vector;
3598 int type;
3599 bool idtv_info_valid;
3600
3601 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3602
3603 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3604
3605 /* Handle machine checks before interrupts are enabled */
3606 if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3607 || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3608 && is_machine_check(exit_intr_info)))
3609 kvm_machine_check();
3610
3611 /* We need to handle NMIs before interrupts are enabled */
3612 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3613 (exit_intr_info & INTR_INFO_VALID_MASK))
3614 asm("int $2");
3615
3616 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3617
3618 if (cpu_has_virtual_nmis()) {
3619 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3620 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3621 /*
3622 * SDM 3: 27.7.1.2 (September 2008)
3623 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3624 * a guest IRET fault.
3625 * SDM 3: 23.2.2 (September 2008)
3626 * Bit 12 is undefined in any of the following cases:
3627 * If the VM exit sets the valid bit in the IDT-vectoring
3628 * information field.
3629 * If the VM exit is due to a double fault.
3630 */
3631 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3632 vector != DF_VECTOR && !idtv_info_valid)
3633 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3634 GUEST_INTR_STATE_NMI);
3635 } else if (unlikely(vmx->soft_vnmi_blocked))
3636 vmx->vnmi_blocked_time +=
3637 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3638
3639 vmx->vcpu.arch.nmi_injected = false;
3640 kvm_clear_exception_queue(&vmx->vcpu);
3641 kvm_clear_interrupt_queue(&vmx->vcpu);
3642
3643 if (!idtv_info_valid)
3644 return;
3645
3646 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3647 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3648
3649 switch (type) {
3650 case INTR_TYPE_NMI_INTR:
3651 vmx->vcpu.arch.nmi_injected = true;
3652 /*
3653 * SDM 3: 27.7.1.2 (September 2008)
3654 * Clear bit "block by NMI" before VM entry if a NMI
3655 * delivery faulted.
3656 */
3657 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3658 GUEST_INTR_STATE_NMI);
3659 break;
3660 case INTR_TYPE_SOFT_EXCEPTION:
3661 vmx->vcpu.arch.event_exit_inst_len =
3662 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3663 /* fall through */
3664 case INTR_TYPE_HARD_EXCEPTION:
3665 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3666 u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3667 kvm_queue_exception_e(&vmx->vcpu, vector, err);
3668 } else
3669 kvm_queue_exception(&vmx->vcpu, vector);
3670 break;
3671 case INTR_TYPE_SOFT_INTR:
3672 vmx->vcpu.arch.event_exit_inst_len =
3673 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3674 /* fall through */
3675 case INTR_TYPE_EXT_INTR:
3676 kvm_queue_interrupt(&vmx->vcpu, vector,
3677 type == INTR_TYPE_SOFT_INTR);
3678 break;
3679 default:
3680 break;
3681 }
3682 }
3683
3684 /*
3685 * Failure to inject an interrupt should give us the information
3686 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3687 * when fetching the interrupt redirection bitmap in the real-mode
3688 * tss, this doesn't happen. So we do it ourselves.
3689 */
3690 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3691 {
3692 vmx->rmode.irq.pending = 0;
3693 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3694 return;
3695 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3696 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3697 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3698 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3699 return;
3700 }
3701 vmx->idt_vectoring_info =
3702 VECTORING_INFO_VALID_MASK
3703 | INTR_TYPE_EXT_INTR
3704 | vmx->rmode.irq.vector;
3705 }
3706
3707 #ifdef CONFIG_X86_64
3708 #define R "r"
3709 #define Q "q"
3710 #else
3711 #define R "e"
3712 #define Q "l"
3713 #endif
3714
3715 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3716 {
3717 struct vcpu_vmx *vmx = to_vmx(vcpu);
3718
3719 /* Record the guest's net vcpu time for enforced NMI injections. */
3720 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3721 vmx->entry_time = ktime_get();
3722
3723 /* Don't enter VMX if guest state is invalid, let the exit handler
3724 start emulation until we arrive back to a valid state */
3725 if (vmx->emulation_required && emulate_invalid_guest_state)
3726 return;
3727
3728 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3729 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3730 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3731 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3732
3733 /* When single-stepping over STI and MOV SS, we must clear the
3734 * corresponding interruptibility bits in the guest state. Otherwise
3735 * vmentry fails as it then expects bit 14 (BS) in pending debug
3736 * exceptions being set, but that's not correct for the guest debugging
3737 * case. */
3738 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3739 vmx_set_interrupt_shadow(vcpu, 0);
3740
3741 /*
3742 * Loading guest fpu may have cleared host cr0.ts
3743 */
3744 vmcs_writel(HOST_CR0, read_cr0());
3745
3746 if (vcpu->arch.switch_db_regs)
3747 set_debugreg(vcpu->arch.dr6, 6);
3748
3749 asm(
3750 /* Store host registers */
3751 "push %%"R"dx; push %%"R"bp;"
3752 "push %%"R"cx \n\t"
3753 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3754 "je 1f \n\t"
3755 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3756 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3757 "1: \n\t"
3758 /* Reload cr2 if changed */
3759 "mov %c[cr2](%0), %%"R"ax \n\t"
3760 "mov %%cr2, %%"R"dx \n\t"
3761 "cmp %%"R"ax, %%"R"dx \n\t"
3762 "je 2f \n\t"
3763 "mov %%"R"ax, %%cr2 \n\t"
3764 "2: \n\t"
3765 /* Check if vmlaunch of vmresume is needed */
3766 "cmpl $0, %c[launched](%0) \n\t"
3767 /* Load guest registers. Don't clobber flags. */
3768 "mov %c[rax](%0), %%"R"ax \n\t"
3769 "mov %c[rbx](%0), %%"R"bx \n\t"
3770 "mov %c[rdx](%0), %%"R"dx \n\t"
3771 "mov %c[rsi](%0), %%"R"si \n\t"
3772 "mov %c[rdi](%0), %%"R"di \n\t"
3773 "mov %c[rbp](%0), %%"R"bp \n\t"
3774 #ifdef CONFIG_X86_64
3775 "mov %c[r8](%0), %%r8 \n\t"
3776 "mov %c[r9](%0), %%r9 \n\t"
3777 "mov %c[r10](%0), %%r10 \n\t"
3778 "mov %c[r11](%0), %%r11 \n\t"
3779 "mov %c[r12](%0), %%r12 \n\t"
3780 "mov %c[r13](%0), %%r13 \n\t"
3781 "mov %c[r14](%0), %%r14 \n\t"
3782 "mov %c[r15](%0), %%r15 \n\t"
3783 #endif
3784 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3785
3786 /* Enter guest mode */
3787 "jne .Llaunched \n\t"
3788 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3789 "jmp .Lkvm_vmx_return \n\t"
3790 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3791 ".Lkvm_vmx_return: "
3792 /* Save guest registers, load host registers, keep flags */
3793 "xchg %0, (%%"R"sp) \n\t"
3794 "mov %%"R"ax, %c[rax](%0) \n\t"
3795 "mov %%"R"bx, %c[rbx](%0) \n\t"
3796 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3797 "mov %%"R"dx, %c[rdx](%0) \n\t"
3798 "mov %%"R"si, %c[rsi](%0) \n\t"
3799 "mov %%"R"di, %c[rdi](%0) \n\t"
3800 "mov %%"R"bp, %c[rbp](%0) \n\t"
3801 #ifdef CONFIG_X86_64
3802 "mov %%r8, %c[r8](%0) \n\t"
3803 "mov %%r9, %c[r9](%0) \n\t"
3804 "mov %%r10, %c[r10](%0) \n\t"
3805 "mov %%r11, %c[r11](%0) \n\t"
3806 "mov %%r12, %c[r12](%0) \n\t"
3807 "mov %%r13, %c[r13](%0) \n\t"
3808 "mov %%r14, %c[r14](%0) \n\t"
3809 "mov %%r15, %c[r15](%0) \n\t"
3810 #endif
3811 "mov %%cr2, %%"R"ax \n\t"
3812 "mov %%"R"ax, %c[cr2](%0) \n\t"
3813
3814 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3815 "setbe %c[fail](%0) \n\t"
3816 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3817 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3818 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3819 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3820 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3821 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3822 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3823 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3824 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3825 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3826 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3827 #ifdef CONFIG_X86_64
3828 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3829 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3830 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3831 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3832 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3833 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3834 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3835 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3836 #endif
3837 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3838 : "cc", "memory"
3839 , R"bx", R"di", R"si"
3840 #ifdef CONFIG_X86_64
3841 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3842 #endif
3843 );
3844
3845 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3846 | (1 << VCPU_EXREG_PDPTR));
3847 vcpu->arch.regs_dirty = 0;
3848
3849 if (vcpu->arch.switch_db_regs)
3850 get_debugreg(vcpu->arch.dr6, 6);
3851
3852 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3853 if (vmx->rmode.irq.pending)
3854 fixup_rmode_irq(vmx);
3855
3856 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3857 vmx->launched = 1;
3858
3859 vmx_complete_interrupts(vmx);
3860 }
3861
3862 #undef R
3863 #undef Q
3864
3865 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3866 {
3867 struct vcpu_vmx *vmx = to_vmx(vcpu);
3868
3869 if (vmx->vmcs) {
3870 vcpu_clear(vmx);
3871 free_vmcs(vmx->vmcs);
3872 vmx->vmcs = NULL;
3873 }
3874 }
3875
3876 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3877 {
3878 struct vcpu_vmx *vmx = to_vmx(vcpu);
3879
3880 spin_lock(&vmx_vpid_lock);
3881 if (vmx->vpid != 0)
3882 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3883 spin_unlock(&vmx_vpid_lock);
3884 vmx_free_vmcs(vcpu);
3885 kfree(vmx->guest_msrs);
3886 kvm_vcpu_uninit(vcpu);
3887 kmem_cache_free(kvm_vcpu_cache, vmx);
3888 }
3889
3890 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3891 {
3892 int err;
3893 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3894 int cpu;
3895
3896 if (!vmx)
3897 return ERR_PTR(-ENOMEM);
3898
3899 allocate_vpid(vmx);
3900
3901 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3902 if (err)
3903 goto free_vcpu;
3904
3905 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3906 if (!vmx->guest_msrs) {
3907 err = -ENOMEM;
3908 goto uninit_vcpu;
3909 }
3910
3911 vmx->vmcs = alloc_vmcs();
3912 if (!vmx->vmcs)
3913 goto free_msrs;
3914
3915 vmcs_clear(vmx->vmcs);
3916
3917 cpu = get_cpu();
3918 vmx_vcpu_load(&vmx->vcpu, cpu);
3919 err = vmx_vcpu_setup(vmx);
3920 vmx_vcpu_put(&vmx->vcpu);
3921 put_cpu();
3922 if (err)
3923 goto free_vmcs;
3924 if (vm_need_virtualize_apic_accesses(kvm))
3925 if (alloc_apic_access_page(kvm) != 0)
3926 goto free_vmcs;
3927
3928 if (enable_ept) {
3929 if (!kvm->arch.ept_identity_map_addr)
3930 kvm->arch.ept_identity_map_addr =
3931 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3932 if (alloc_identity_pagetable(kvm) != 0)
3933 goto free_vmcs;
3934 }
3935
3936 return &vmx->vcpu;
3937
3938 free_vmcs:
3939 free_vmcs(vmx->vmcs);
3940 free_msrs:
3941 kfree(vmx->guest_msrs);
3942 uninit_vcpu:
3943 kvm_vcpu_uninit(&vmx->vcpu);
3944 free_vcpu:
3945 kmem_cache_free(kvm_vcpu_cache, vmx);
3946 return ERR_PTR(err);
3947 }
3948
3949 static void __init vmx_check_processor_compat(void *rtn)
3950 {
3951 struct vmcs_config vmcs_conf;
3952
3953 *(int *)rtn = 0;
3954 if (setup_vmcs_config(&vmcs_conf) < 0)
3955 *(int *)rtn = -EIO;
3956 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3957 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3958 smp_processor_id());
3959 *(int *)rtn = -EIO;
3960 }
3961 }
3962
3963 static int get_ept_level(void)
3964 {
3965 return VMX_EPT_DEFAULT_GAW + 1;
3966 }
3967
3968 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3969 {
3970 u64 ret;
3971
3972 /* For VT-d and EPT combination
3973 * 1. MMIO: always map as UC
3974 * 2. EPT with VT-d:
3975 * a. VT-d without snooping control feature: can't guarantee the
3976 * result, try to trust guest.
3977 * b. VT-d with snooping control feature: snooping control feature of
3978 * VT-d engine can guarantee the cache correctness. Just set it
3979 * to WB to keep consistent with host. So the same as item 3.
3980 * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3981 * consistent with host MTRR
3982 */
3983 if (is_mmio)
3984 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3985 else if (vcpu->kvm->arch.iommu_domain &&
3986 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3987 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3988 VMX_EPT_MT_EPTE_SHIFT;
3989 else
3990 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3991 | VMX_EPT_IGMT_BIT;
3992
3993 return ret;
3994 }
3995
3996 static const struct trace_print_flags vmx_exit_reasons_str[] = {
3997 { EXIT_REASON_EXCEPTION_NMI, "exception" },
3998 { EXIT_REASON_EXTERNAL_INTERRUPT, "ext_irq" },
3999 { EXIT_REASON_TRIPLE_FAULT, "triple_fault" },
4000 { EXIT_REASON_NMI_WINDOW, "nmi_window" },
4001 { EXIT_REASON_IO_INSTRUCTION, "io_instruction" },
4002 { EXIT_REASON_CR_ACCESS, "cr_access" },
4003 { EXIT_REASON_DR_ACCESS, "dr_access" },
4004 { EXIT_REASON_CPUID, "cpuid" },
4005 { EXIT_REASON_MSR_READ, "rdmsr" },
4006 { EXIT_REASON_MSR_WRITE, "wrmsr" },
4007 { EXIT_REASON_PENDING_INTERRUPT, "interrupt_window" },
4008 { EXIT_REASON_HLT, "halt" },
4009 { EXIT_REASON_INVLPG, "invlpg" },
4010 { EXIT_REASON_VMCALL, "hypercall" },
4011 { EXIT_REASON_TPR_BELOW_THRESHOLD, "tpr_below_thres" },
4012 { EXIT_REASON_APIC_ACCESS, "apic_access" },
4013 { EXIT_REASON_WBINVD, "wbinvd" },
4014 { EXIT_REASON_TASK_SWITCH, "task_switch" },
4015 { EXIT_REASON_EPT_VIOLATION, "ept_violation" },
4016 { -1, NULL }
4017 };
4018
4019 static bool vmx_gb_page_enable(void)
4020 {
4021 return false;
4022 }
4023
4024 static inline u32 bit(int bitno)
4025 {
4026 return 1 << (bitno & 31);
4027 }
4028
4029 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4030 {
4031 struct kvm_cpuid_entry2 *best;
4032 struct vcpu_vmx *vmx = to_vmx(vcpu);
4033 u32 exec_control;
4034
4035 vmx->rdtscp_enabled = false;
4036 if (vmx_rdtscp_supported()) {
4037 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4038 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4039 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4040 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4041 vmx->rdtscp_enabled = true;
4042 else {
4043 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4044 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4045 exec_control);
4046 }
4047 }
4048 }
4049 }
4050
4051 static struct kvm_x86_ops vmx_x86_ops = {
4052 .cpu_has_kvm_support = cpu_has_kvm_support,
4053 .disabled_by_bios = vmx_disabled_by_bios,
4054 .hardware_setup = hardware_setup,
4055 .hardware_unsetup = hardware_unsetup,
4056 .check_processor_compatibility = vmx_check_processor_compat,
4057 .hardware_enable = hardware_enable,
4058 .hardware_disable = hardware_disable,
4059 .cpu_has_accelerated_tpr = report_flexpriority,
4060
4061 .vcpu_create = vmx_create_vcpu,
4062 .vcpu_free = vmx_free_vcpu,
4063 .vcpu_reset = vmx_vcpu_reset,
4064
4065 .prepare_guest_switch = vmx_save_host_state,
4066 .vcpu_load = vmx_vcpu_load,
4067 .vcpu_put = vmx_vcpu_put,
4068
4069 .set_guest_debug = set_guest_debug,
4070 .get_msr = vmx_get_msr,
4071 .set_msr = vmx_set_msr,
4072 .get_segment_base = vmx_get_segment_base,
4073 .get_segment = vmx_get_segment,
4074 .set_segment = vmx_set_segment,
4075 .get_cpl = vmx_get_cpl,
4076 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4077 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4078 .set_cr0 = vmx_set_cr0,
4079 .set_cr3 = vmx_set_cr3,
4080 .set_cr4 = vmx_set_cr4,
4081 .set_efer = vmx_set_efer,
4082 .get_idt = vmx_get_idt,
4083 .set_idt = vmx_set_idt,
4084 .get_gdt = vmx_get_gdt,
4085 .set_gdt = vmx_set_gdt,
4086 .cache_reg = vmx_cache_reg,
4087 .get_rflags = vmx_get_rflags,
4088 .set_rflags = vmx_set_rflags,
4089
4090 .tlb_flush = vmx_flush_tlb,
4091
4092 .run = vmx_vcpu_run,
4093 .handle_exit = vmx_handle_exit,
4094 .skip_emulated_instruction = skip_emulated_instruction,
4095 .set_interrupt_shadow = vmx_set_interrupt_shadow,
4096 .get_interrupt_shadow = vmx_get_interrupt_shadow,
4097 .patch_hypercall = vmx_patch_hypercall,
4098 .set_irq = vmx_inject_irq,
4099 .set_nmi = vmx_inject_nmi,
4100 .queue_exception = vmx_queue_exception,
4101 .interrupt_allowed = vmx_interrupt_allowed,
4102 .nmi_allowed = vmx_nmi_allowed,
4103 .get_nmi_mask = vmx_get_nmi_mask,
4104 .set_nmi_mask = vmx_set_nmi_mask,
4105 .enable_nmi_window = enable_nmi_window,
4106 .enable_irq_window = enable_irq_window,
4107 .update_cr8_intercept = update_cr8_intercept,
4108
4109 .set_tss_addr = vmx_set_tss_addr,
4110 .get_tdp_level = get_ept_level,
4111 .get_mt_mask = vmx_get_mt_mask,
4112
4113 .exit_reasons_str = vmx_exit_reasons_str,
4114 .gb_page_enable = vmx_gb_page_enable,
4115
4116 .cpuid_update = vmx_cpuid_update,
4117
4118 .rdtscp_supported = vmx_rdtscp_supported,
4119 };
4120
4121 static int __init vmx_init(void)
4122 {
4123 int r, i;
4124
4125 rdmsrl_safe(MSR_EFER, &host_efer);
4126
4127 for (i = 0; i < NR_VMX_MSR; ++i)
4128 kvm_define_shared_msr(i, vmx_msr_index[i]);
4129
4130 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4131 if (!vmx_io_bitmap_a)
4132 return -ENOMEM;
4133
4134 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4135 if (!vmx_io_bitmap_b) {
4136 r = -ENOMEM;
4137 goto out;
4138 }
4139
4140 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4141 if (!vmx_msr_bitmap_legacy) {
4142 r = -ENOMEM;
4143 goto out1;
4144 }
4145
4146 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4147 if (!vmx_msr_bitmap_longmode) {
4148 r = -ENOMEM;
4149 goto out2;
4150 }
4151
4152 /*
4153 * Allow direct access to the PC debug port (it is often used for I/O
4154 * delays, but the vmexits simply slow things down).
4155 */
4156 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4157 clear_bit(0x80, vmx_io_bitmap_a);
4158
4159 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4160
4161 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4162 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4163
4164 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4165
4166 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4167 if (r)
4168 goto out3;
4169
4170 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4171 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4172 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4173 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4174 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4175 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4176
4177 if (enable_ept) {
4178 bypass_guest_pf = 0;
4179 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4180 VMX_EPT_WRITABLE_MASK);
4181 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4182 VMX_EPT_EXECUTABLE_MASK);
4183 kvm_enable_tdp();
4184 } else
4185 kvm_disable_tdp();
4186
4187 if (bypass_guest_pf)
4188 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4189
4190 return 0;
4191
4192 out3:
4193 free_page((unsigned long)vmx_msr_bitmap_longmode);
4194 out2:
4195 free_page((unsigned long)vmx_msr_bitmap_legacy);
4196 out1:
4197 free_page((unsigned long)vmx_io_bitmap_b);
4198 out:
4199 free_page((unsigned long)vmx_io_bitmap_a);
4200 return r;
4201 }
4202
4203 static void __exit vmx_exit(void)
4204 {
4205 free_page((unsigned long)vmx_msr_bitmap_legacy);
4206 free_page((unsigned long)vmx_msr_bitmap_longmode);
4207 free_page((unsigned long)vmx_io_bitmap_b);
4208 free_page((unsigned long)vmx_io_bitmap_a);
4209
4210 kvm_exit();
4211 }
4212
4213 module_init(vmx_init)
4214 module_exit(vmx_exit)
This page took 0.12153 seconds and 5 git commands to generate.