KVM: x86: accessors for guest registers
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include "kvm_cache_regs.h"
30
31 #include <asm/io.h>
32 #include <asm/desc.h>
33
34 #define __ex(x) __kvm_handle_fault_on_reboot(x)
35
36 MODULE_AUTHOR("Qumranet");
37 MODULE_LICENSE("GPL");
38
39 static int bypass_guest_pf = 1;
40 module_param(bypass_guest_pf, bool, 0);
41
42 static int enable_vpid = 1;
43 module_param(enable_vpid, bool, 0);
44
45 static int flexpriority_enabled = 1;
46 module_param(flexpriority_enabled, bool, 0);
47
48 static int enable_ept = 1;
49 module_param(enable_ept, bool, 0);
50
51 struct vmcs {
52 u32 revision_id;
53 u32 abort;
54 char data[0];
55 };
56
57 struct vcpu_vmx {
58 struct kvm_vcpu vcpu;
59 struct list_head local_vcpus_link;
60 int launched;
61 u8 fail;
62 u32 idt_vectoring_info;
63 struct kvm_msr_entry *guest_msrs;
64 struct kvm_msr_entry *host_msrs;
65 int nmsrs;
66 int save_nmsrs;
67 int msr_offset_efer;
68 #ifdef CONFIG_X86_64
69 int msr_offset_kernel_gs_base;
70 #endif
71 struct vmcs *vmcs;
72 struct {
73 int loaded;
74 u16 fs_sel, gs_sel, ldt_sel;
75 int gs_ldt_reload_needed;
76 int fs_reload_needed;
77 int guest_efer_loaded;
78 } host_state;
79 struct {
80 struct {
81 bool pending;
82 u8 vector;
83 unsigned rip;
84 } irq;
85 } rmode;
86 int vpid;
87 };
88
89 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
90 {
91 return container_of(vcpu, struct vcpu_vmx, vcpu);
92 }
93
94 static int init_rmode(struct kvm *kvm);
95 static u64 construct_eptp(unsigned long root_hpa);
96
97 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
98 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
99 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
100
101 static struct page *vmx_io_bitmap_a;
102 static struct page *vmx_io_bitmap_b;
103 static struct page *vmx_msr_bitmap;
104
105 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
106 static DEFINE_SPINLOCK(vmx_vpid_lock);
107
108 static struct vmcs_config {
109 int size;
110 int order;
111 u32 revision_id;
112 u32 pin_based_exec_ctrl;
113 u32 cpu_based_exec_ctrl;
114 u32 cpu_based_2nd_exec_ctrl;
115 u32 vmexit_ctrl;
116 u32 vmentry_ctrl;
117 } vmcs_config;
118
119 struct vmx_capability {
120 u32 ept;
121 u32 vpid;
122 } vmx_capability;
123
124 #define VMX_SEGMENT_FIELD(seg) \
125 [VCPU_SREG_##seg] = { \
126 .selector = GUEST_##seg##_SELECTOR, \
127 .base = GUEST_##seg##_BASE, \
128 .limit = GUEST_##seg##_LIMIT, \
129 .ar_bytes = GUEST_##seg##_AR_BYTES, \
130 }
131
132 static struct kvm_vmx_segment_field {
133 unsigned selector;
134 unsigned base;
135 unsigned limit;
136 unsigned ar_bytes;
137 } kvm_vmx_segment_fields[] = {
138 VMX_SEGMENT_FIELD(CS),
139 VMX_SEGMENT_FIELD(DS),
140 VMX_SEGMENT_FIELD(ES),
141 VMX_SEGMENT_FIELD(FS),
142 VMX_SEGMENT_FIELD(GS),
143 VMX_SEGMENT_FIELD(SS),
144 VMX_SEGMENT_FIELD(TR),
145 VMX_SEGMENT_FIELD(LDTR),
146 };
147
148 /*
149 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
150 * away by decrementing the array size.
151 */
152 static const u32 vmx_msr_index[] = {
153 #ifdef CONFIG_X86_64
154 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
155 #endif
156 MSR_EFER, MSR_K6_STAR,
157 };
158 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
159
160 static void load_msrs(struct kvm_msr_entry *e, int n)
161 {
162 int i;
163
164 for (i = 0; i < n; ++i)
165 wrmsrl(e[i].index, e[i].data);
166 }
167
168 static void save_msrs(struct kvm_msr_entry *e, int n)
169 {
170 int i;
171
172 for (i = 0; i < n; ++i)
173 rdmsrl(e[i].index, e[i].data);
174 }
175
176 static inline int is_page_fault(u32 intr_info)
177 {
178 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
179 INTR_INFO_VALID_MASK)) ==
180 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
181 }
182
183 static inline int is_no_device(u32 intr_info)
184 {
185 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
186 INTR_INFO_VALID_MASK)) ==
187 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
188 }
189
190 static inline int is_invalid_opcode(u32 intr_info)
191 {
192 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
193 INTR_INFO_VALID_MASK)) ==
194 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
195 }
196
197 static inline int is_external_interrupt(u32 intr_info)
198 {
199 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
200 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
201 }
202
203 static inline int cpu_has_vmx_msr_bitmap(void)
204 {
205 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
206 }
207
208 static inline int cpu_has_vmx_tpr_shadow(void)
209 {
210 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
211 }
212
213 static inline int vm_need_tpr_shadow(struct kvm *kvm)
214 {
215 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
216 }
217
218 static inline int cpu_has_secondary_exec_ctrls(void)
219 {
220 return (vmcs_config.cpu_based_exec_ctrl &
221 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
222 }
223
224 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
225 {
226 return flexpriority_enabled
227 && (vmcs_config.cpu_based_2nd_exec_ctrl &
228 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
229 }
230
231 static inline int cpu_has_vmx_invept_individual_addr(void)
232 {
233 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
234 }
235
236 static inline int cpu_has_vmx_invept_context(void)
237 {
238 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
239 }
240
241 static inline int cpu_has_vmx_invept_global(void)
242 {
243 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
244 }
245
246 static inline int cpu_has_vmx_ept(void)
247 {
248 return (vmcs_config.cpu_based_2nd_exec_ctrl &
249 SECONDARY_EXEC_ENABLE_EPT);
250 }
251
252 static inline int vm_need_ept(void)
253 {
254 return (cpu_has_vmx_ept() && enable_ept);
255 }
256
257 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
258 {
259 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
260 (irqchip_in_kernel(kvm)));
261 }
262
263 static inline int cpu_has_vmx_vpid(void)
264 {
265 return (vmcs_config.cpu_based_2nd_exec_ctrl &
266 SECONDARY_EXEC_ENABLE_VPID);
267 }
268
269 static inline int cpu_has_virtual_nmis(void)
270 {
271 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
272 }
273
274 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
275 {
276 int i;
277
278 for (i = 0; i < vmx->nmsrs; ++i)
279 if (vmx->guest_msrs[i].index == msr)
280 return i;
281 return -1;
282 }
283
284 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
285 {
286 struct {
287 u64 vpid : 16;
288 u64 rsvd : 48;
289 u64 gva;
290 } operand = { vpid, 0, gva };
291
292 asm volatile (__ex(ASM_VMX_INVVPID)
293 /* CF==1 or ZF==1 --> rc = -1 */
294 "; ja 1f ; ud2 ; 1:"
295 : : "a"(&operand), "c"(ext) : "cc", "memory");
296 }
297
298 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
299 {
300 struct {
301 u64 eptp, gpa;
302 } operand = {eptp, gpa};
303
304 asm volatile (__ex(ASM_VMX_INVEPT)
305 /* CF==1 or ZF==1 --> rc = -1 */
306 "; ja 1f ; ud2 ; 1:\n"
307 : : "a" (&operand), "c" (ext) : "cc", "memory");
308 }
309
310 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
311 {
312 int i;
313
314 i = __find_msr_index(vmx, msr);
315 if (i >= 0)
316 return &vmx->guest_msrs[i];
317 return NULL;
318 }
319
320 static void vmcs_clear(struct vmcs *vmcs)
321 {
322 u64 phys_addr = __pa(vmcs);
323 u8 error;
324
325 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
326 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
327 : "cc", "memory");
328 if (error)
329 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
330 vmcs, phys_addr);
331 }
332
333 static void __vcpu_clear(void *arg)
334 {
335 struct vcpu_vmx *vmx = arg;
336 int cpu = raw_smp_processor_id();
337
338 if (vmx->vcpu.cpu == cpu)
339 vmcs_clear(vmx->vmcs);
340 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
341 per_cpu(current_vmcs, cpu) = NULL;
342 rdtscll(vmx->vcpu.arch.host_tsc);
343 list_del(&vmx->local_vcpus_link);
344 vmx->vcpu.cpu = -1;
345 vmx->launched = 0;
346 }
347
348 static void vcpu_clear(struct vcpu_vmx *vmx)
349 {
350 if (vmx->vcpu.cpu == -1)
351 return;
352 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
353 }
354
355 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
356 {
357 if (vmx->vpid == 0)
358 return;
359
360 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
361 }
362
363 static inline void ept_sync_global(void)
364 {
365 if (cpu_has_vmx_invept_global())
366 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
367 }
368
369 static inline void ept_sync_context(u64 eptp)
370 {
371 if (vm_need_ept()) {
372 if (cpu_has_vmx_invept_context())
373 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
374 else
375 ept_sync_global();
376 }
377 }
378
379 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
380 {
381 if (vm_need_ept()) {
382 if (cpu_has_vmx_invept_individual_addr())
383 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
384 eptp, gpa);
385 else
386 ept_sync_context(eptp);
387 }
388 }
389
390 static unsigned long vmcs_readl(unsigned long field)
391 {
392 unsigned long value;
393
394 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
395 : "=a"(value) : "d"(field) : "cc");
396 return value;
397 }
398
399 static u16 vmcs_read16(unsigned long field)
400 {
401 return vmcs_readl(field);
402 }
403
404 static u32 vmcs_read32(unsigned long field)
405 {
406 return vmcs_readl(field);
407 }
408
409 static u64 vmcs_read64(unsigned long field)
410 {
411 #ifdef CONFIG_X86_64
412 return vmcs_readl(field);
413 #else
414 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
415 #endif
416 }
417
418 static noinline void vmwrite_error(unsigned long field, unsigned long value)
419 {
420 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
421 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
422 dump_stack();
423 }
424
425 static void vmcs_writel(unsigned long field, unsigned long value)
426 {
427 u8 error;
428
429 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
430 : "=q"(error) : "a"(value), "d"(field) : "cc");
431 if (unlikely(error))
432 vmwrite_error(field, value);
433 }
434
435 static void vmcs_write16(unsigned long field, u16 value)
436 {
437 vmcs_writel(field, value);
438 }
439
440 static void vmcs_write32(unsigned long field, u32 value)
441 {
442 vmcs_writel(field, value);
443 }
444
445 static void vmcs_write64(unsigned long field, u64 value)
446 {
447 vmcs_writel(field, value);
448 #ifndef CONFIG_X86_64
449 asm volatile ("");
450 vmcs_writel(field+1, value >> 32);
451 #endif
452 }
453
454 static void vmcs_clear_bits(unsigned long field, u32 mask)
455 {
456 vmcs_writel(field, vmcs_readl(field) & ~mask);
457 }
458
459 static void vmcs_set_bits(unsigned long field, u32 mask)
460 {
461 vmcs_writel(field, vmcs_readl(field) | mask);
462 }
463
464 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
465 {
466 u32 eb;
467
468 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
469 if (!vcpu->fpu_active)
470 eb |= 1u << NM_VECTOR;
471 if (vcpu->guest_debug.enabled)
472 eb |= 1u << 1;
473 if (vcpu->arch.rmode.active)
474 eb = ~0;
475 if (vm_need_ept())
476 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
477 vmcs_write32(EXCEPTION_BITMAP, eb);
478 }
479
480 static void reload_tss(void)
481 {
482 /*
483 * VT restores TR but not its size. Useless.
484 */
485 struct descriptor_table gdt;
486 struct desc_struct *descs;
487
488 kvm_get_gdt(&gdt);
489 descs = (void *)gdt.base;
490 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
491 load_TR_desc();
492 }
493
494 static void load_transition_efer(struct vcpu_vmx *vmx)
495 {
496 int efer_offset = vmx->msr_offset_efer;
497 u64 host_efer = vmx->host_msrs[efer_offset].data;
498 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
499 u64 ignore_bits;
500
501 if (efer_offset < 0)
502 return;
503 /*
504 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
505 * outside long mode
506 */
507 ignore_bits = EFER_NX | EFER_SCE;
508 #ifdef CONFIG_X86_64
509 ignore_bits |= EFER_LMA | EFER_LME;
510 /* SCE is meaningful only in long mode on Intel */
511 if (guest_efer & EFER_LMA)
512 ignore_bits &= ~(u64)EFER_SCE;
513 #endif
514 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
515 return;
516
517 vmx->host_state.guest_efer_loaded = 1;
518 guest_efer &= ~ignore_bits;
519 guest_efer |= host_efer & ignore_bits;
520 wrmsrl(MSR_EFER, guest_efer);
521 vmx->vcpu.stat.efer_reload++;
522 }
523
524 static void reload_host_efer(struct vcpu_vmx *vmx)
525 {
526 if (vmx->host_state.guest_efer_loaded) {
527 vmx->host_state.guest_efer_loaded = 0;
528 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
529 }
530 }
531
532 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
533 {
534 struct vcpu_vmx *vmx = to_vmx(vcpu);
535
536 if (vmx->host_state.loaded)
537 return;
538
539 vmx->host_state.loaded = 1;
540 /*
541 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
542 * allow segment selectors with cpl > 0 or ti == 1.
543 */
544 vmx->host_state.ldt_sel = kvm_read_ldt();
545 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
546 vmx->host_state.fs_sel = kvm_read_fs();
547 if (!(vmx->host_state.fs_sel & 7)) {
548 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
549 vmx->host_state.fs_reload_needed = 0;
550 } else {
551 vmcs_write16(HOST_FS_SELECTOR, 0);
552 vmx->host_state.fs_reload_needed = 1;
553 }
554 vmx->host_state.gs_sel = kvm_read_gs();
555 if (!(vmx->host_state.gs_sel & 7))
556 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
557 else {
558 vmcs_write16(HOST_GS_SELECTOR, 0);
559 vmx->host_state.gs_ldt_reload_needed = 1;
560 }
561
562 #ifdef CONFIG_X86_64
563 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
564 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
565 #else
566 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
567 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
568 #endif
569
570 #ifdef CONFIG_X86_64
571 if (is_long_mode(&vmx->vcpu))
572 save_msrs(vmx->host_msrs +
573 vmx->msr_offset_kernel_gs_base, 1);
574
575 #endif
576 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
577 load_transition_efer(vmx);
578 }
579
580 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
581 {
582 unsigned long flags;
583
584 if (!vmx->host_state.loaded)
585 return;
586
587 ++vmx->vcpu.stat.host_state_reload;
588 vmx->host_state.loaded = 0;
589 if (vmx->host_state.fs_reload_needed)
590 kvm_load_fs(vmx->host_state.fs_sel);
591 if (vmx->host_state.gs_ldt_reload_needed) {
592 kvm_load_ldt(vmx->host_state.ldt_sel);
593 /*
594 * If we have to reload gs, we must take care to
595 * preserve our gs base.
596 */
597 local_irq_save(flags);
598 kvm_load_gs(vmx->host_state.gs_sel);
599 #ifdef CONFIG_X86_64
600 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
601 #endif
602 local_irq_restore(flags);
603 }
604 reload_tss();
605 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
606 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
607 reload_host_efer(vmx);
608 }
609
610 static void vmx_load_host_state(struct vcpu_vmx *vmx)
611 {
612 preempt_disable();
613 __vmx_load_host_state(vmx);
614 preempt_enable();
615 }
616
617 /*
618 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
619 * vcpu mutex is already taken.
620 */
621 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
622 {
623 struct vcpu_vmx *vmx = to_vmx(vcpu);
624 u64 phys_addr = __pa(vmx->vmcs);
625 u64 tsc_this, delta, new_offset;
626
627 if (vcpu->cpu != cpu) {
628 vcpu_clear(vmx);
629 kvm_migrate_timers(vcpu);
630 vpid_sync_vcpu_all(vmx);
631 local_irq_disable();
632 list_add(&vmx->local_vcpus_link,
633 &per_cpu(vcpus_on_cpu, cpu));
634 local_irq_enable();
635 }
636
637 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
638 u8 error;
639
640 per_cpu(current_vmcs, cpu) = vmx->vmcs;
641 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
642 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
643 : "cc");
644 if (error)
645 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
646 vmx->vmcs, phys_addr);
647 }
648
649 if (vcpu->cpu != cpu) {
650 struct descriptor_table dt;
651 unsigned long sysenter_esp;
652
653 vcpu->cpu = cpu;
654 /*
655 * Linux uses per-cpu TSS and GDT, so set these when switching
656 * processors.
657 */
658 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
659 kvm_get_gdt(&dt);
660 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
661
662 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
663 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
664
665 /*
666 * Make sure the time stamp counter is monotonous.
667 */
668 rdtscll(tsc_this);
669 if (tsc_this < vcpu->arch.host_tsc) {
670 delta = vcpu->arch.host_tsc - tsc_this;
671 new_offset = vmcs_read64(TSC_OFFSET) + delta;
672 vmcs_write64(TSC_OFFSET, new_offset);
673 }
674 }
675 }
676
677 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
678 {
679 __vmx_load_host_state(to_vmx(vcpu));
680 }
681
682 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
683 {
684 if (vcpu->fpu_active)
685 return;
686 vcpu->fpu_active = 1;
687 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
688 if (vcpu->arch.cr0 & X86_CR0_TS)
689 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
690 update_exception_bitmap(vcpu);
691 }
692
693 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
694 {
695 if (!vcpu->fpu_active)
696 return;
697 vcpu->fpu_active = 0;
698 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
699 update_exception_bitmap(vcpu);
700 }
701
702 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
703 {
704 return vmcs_readl(GUEST_RFLAGS);
705 }
706
707 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
708 {
709 if (vcpu->arch.rmode.active)
710 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
711 vmcs_writel(GUEST_RFLAGS, rflags);
712 }
713
714 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
715 {
716 unsigned long rip;
717 u32 interruptibility;
718
719 rip = kvm_rip_read(vcpu);
720 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
721 kvm_rip_write(vcpu, rip);
722
723 /*
724 * We emulated an instruction, so temporary interrupt blocking
725 * should be removed, if set.
726 */
727 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
728 if (interruptibility & 3)
729 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
730 interruptibility & ~3);
731 vcpu->arch.interrupt_window_open = 1;
732 }
733
734 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
735 bool has_error_code, u32 error_code)
736 {
737 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
738 nr | INTR_TYPE_EXCEPTION
739 | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
740 | INTR_INFO_VALID_MASK);
741 if (has_error_code)
742 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
743 }
744
745 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
746 {
747 struct vcpu_vmx *vmx = to_vmx(vcpu);
748
749 return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
750 }
751
752 /*
753 * Swap MSR entry in host/guest MSR entry array.
754 */
755 #ifdef CONFIG_X86_64
756 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
757 {
758 struct kvm_msr_entry tmp;
759
760 tmp = vmx->guest_msrs[to];
761 vmx->guest_msrs[to] = vmx->guest_msrs[from];
762 vmx->guest_msrs[from] = tmp;
763 tmp = vmx->host_msrs[to];
764 vmx->host_msrs[to] = vmx->host_msrs[from];
765 vmx->host_msrs[from] = tmp;
766 }
767 #endif
768
769 /*
770 * Set up the vmcs to automatically save and restore system
771 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
772 * mode, as fiddling with msrs is very expensive.
773 */
774 static void setup_msrs(struct vcpu_vmx *vmx)
775 {
776 int save_nmsrs;
777
778 vmx_load_host_state(vmx);
779 save_nmsrs = 0;
780 #ifdef CONFIG_X86_64
781 if (is_long_mode(&vmx->vcpu)) {
782 int index;
783
784 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
785 if (index >= 0)
786 move_msr_up(vmx, index, save_nmsrs++);
787 index = __find_msr_index(vmx, MSR_LSTAR);
788 if (index >= 0)
789 move_msr_up(vmx, index, save_nmsrs++);
790 index = __find_msr_index(vmx, MSR_CSTAR);
791 if (index >= 0)
792 move_msr_up(vmx, index, save_nmsrs++);
793 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
794 if (index >= 0)
795 move_msr_up(vmx, index, save_nmsrs++);
796 /*
797 * MSR_K6_STAR is only needed on long mode guests, and only
798 * if efer.sce is enabled.
799 */
800 index = __find_msr_index(vmx, MSR_K6_STAR);
801 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
802 move_msr_up(vmx, index, save_nmsrs++);
803 }
804 #endif
805 vmx->save_nmsrs = save_nmsrs;
806
807 #ifdef CONFIG_X86_64
808 vmx->msr_offset_kernel_gs_base =
809 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
810 #endif
811 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
812 }
813
814 /*
815 * reads and returns guest's timestamp counter "register"
816 * guest_tsc = host_tsc + tsc_offset -- 21.3
817 */
818 static u64 guest_read_tsc(void)
819 {
820 u64 host_tsc, tsc_offset;
821
822 rdtscll(host_tsc);
823 tsc_offset = vmcs_read64(TSC_OFFSET);
824 return host_tsc + tsc_offset;
825 }
826
827 /*
828 * writes 'guest_tsc' into guest's timestamp counter "register"
829 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
830 */
831 static void guest_write_tsc(u64 guest_tsc)
832 {
833 u64 host_tsc;
834
835 rdtscll(host_tsc);
836 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
837 }
838
839 /*
840 * Reads an msr value (of 'msr_index') into 'pdata'.
841 * Returns 0 on success, non-0 otherwise.
842 * Assumes vcpu_load() was already called.
843 */
844 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
845 {
846 u64 data;
847 struct kvm_msr_entry *msr;
848
849 if (!pdata) {
850 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
851 return -EINVAL;
852 }
853
854 switch (msr_index) {
855 #ifdef CONFIG_X86_64
856 case MSR_FS_BASE:
857 data = vmcs_readl(GUEST_FS_BASE);
858 break;
859 case MSR_GS_BASE:
860 data = vmcs_readl(GUEST_GS_BASE);
861 break;
862 case MSR_EFER:
863 return kvm_get_msr_common(vcpu, msr_index, pdata);
864 #endif
865 case MSR_IA32_TIME_STAMP_COUNTER:
866 data = guest_read_tsc();
867 break;
868 case MSR_IA32_SYSENTER_CS:
869 data = vmcs_read32(GUEST_SYSENTER_CS);
870 break;
871 case MSR_IA32_SYSENTER_EIP:
872 data = vmcs_readl(GUEST_SYSENTER_EIP);
873 break;
874 case MSR_IA32_SYSENTER_ESP:
875 data = vmcs_readl(GUEST_SYSENTER_ESP);
876 break;
877 default:
878 msr = find_msr_entry(to_vmx(vcpu), msr_index);
879 if (msr) {
880 data = msr->data;
881 break;
882 }
883 return kvm_get_msr_common(vcpu, msr_index, pdata);
884 }
885
886 *pdata = data;
887 return 0;
888 }
889
890 /*
891 * Writes msr value into into the appropriate "register".
892 * Returns 0 on success, non-0 otherwise.
893 * Assumes vcpu_load() was already called.
894 */
895 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
896 {
897 struct vcpu_vmx *vmx = to_vmx(vcpu);
898 struct kvm_msr_entry *msr;
899 int ret = 0;
900
901 switch (msr_index) {
902 #ifdef CONFIG_X86_64
903 case MSR_EFER:
904 vmx_load_host_state(vmx);
905 ret = kvm_set_msr_common(vcpu, msr_index, data);
906 break;
907 case MSR_FS_BASE:
908 vmcs_writel(GUEST_FS_BASE, data);
909 break;
910 case MSR_GS_BASE:
911 vmcs_writel(GUEST_GS_BASE, data);
912 break;
913 #endif
914 case MSR_IA32_SYSENTER_CS:
915 vmcs_write32(GUEST_SYSENTER_CS, data);
916 break;
917 case MSR_IA32_SYSENTER_EIP:
918 vmcs_writel(GUEST_SYSENTER_EIP, data);
919 break;
920 case MSR_IA32_SYSENTER_ESP:
921 vmcs_writel(GUEST_SYSENTER_ESP, data);
922 break;
923 case MSR_IA32_TIME_STAMP_COUNTER:
924 guest_write_tsc(data);
925 break;
926 case MSR_P6_PERFCTR0:
927 case MSR_P6_PERFCTR1:
928 case MSR_P6_EVNTSEL0:
929 case MSR_P6_EVNTSEL1:
930 /*
931 * Just discard all writes to the performance counters; this
932 * should keep both older linux and windows 64-bit guests
933 * happy
934 */
935 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
936
937 break;
938 default:
939 vmx_load_host_state(vmx);
940 msr = find_msr_entry(vmx, msr_index);
941 if (msr) {
942 msr->data = data;
943 break;
944 }
945 ret = kvm_set_msr_common(vcpu, msr_index, data);
946 }
947
948 return ret;
949 }
950
951 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
952 {
953 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
954 switch (reg) {
955 case VCPU_REGS_RSP:
956 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
957 break;
958 case VCPU_REGS_RIP:
959 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
960 break;
961 default:
962 break;
963 }
964 }
965
966 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
967 {
968 unsigned long dr7 = 0x400;
969 int old_singlestep;
970
971 old_singlestep = vcpu->guest_debug.singlestep;
972
973 vcpu->guest_debug.enabled = dbg->enabled;
974 if (vcpu->guest_debug.enabled) {
975 int i;
976
977 dr7 |= 0x200; /* exact */
978 for (i = 0; i < 4; ++i) {
979 if (!dbg->breakpoints[i].enabled)
980 continue;
981 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
982 dr7 |= 2 << (i*2); /* global enable */
983 dr7 |= 0 << (i*4+16); /* execution breakpoint */
984 }
985
986 vcpu->guest_debug.singlestep = dbg->singlestep;
987 } else
988 vcpu->guest_debug.singlestep = 0;
989
990 if (old_singlestep && !vcpu->guest_debug.singlestep) {
991 unsigned long flags;
992
993 flags = vmcs_readl(GUEST_RFLAGS);
994 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
995 vmcs_writel(GUEST_RFLAGS, flags);
996 }
997
998 update_exception_bitmap(vcpu);
999 vmcs_writel(GUEST_DR7, dr7);
1000
1001 return 0;
1002 }
1003
1004 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1005 {
1006 struct vcpu_vmx *vmx = to_vmx(vcpu);
1007 u32 idtv_info_field;
1008
1009 idtv_info_field = vmx->idt_vectoring_info;
1010 if (idtv_info_field & INTR_INFO_VALID_MASK) {
1011 if (is_external_interrupt(idtv_info_field))
1012 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
1013 else
1014 printk(KERN_DEBUG "pending exception: not handled yet\n");
1015 }
1016 return -1;
1017 }
1018
1019 static __init int cpu_has_kvm_support(void)
1020 {
1021 unsigned long ecx = cpuid_ecx(1);
1022 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
1023 }
1024
1025 static __init int vmx_disabled_by_bios(void)
1026 {
1027 u64 msr;
1028
1029 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1030 return (msr & (IA32_FEATURE_CONTROL_LOCKED_BIT |
1031 IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
1032 == IA32_FEATURE_CONTROL_LOCKED_BIT;
1033 /* locked but not enabled */
1034 }
1035
1036 static void hardware_enable(void *garbage)
1037 {
1038 int cpu = raw_smp_processor_id();
1039 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1040 u64 old;
1041
1042 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1043 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1044 if ((old & (IA32_FEATURE_CONTROL_LOCKED_BIT |
1045 IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
1046 != (IA32_FEATURE_CONTROL_LOCKED_BIT |
1047 IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
1048 /* enable and lock */
1049 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1050 IA32_FEATURE_CONTROL_LOCKED_BIT |
1051 IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT);
1052 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1053 asm volatile (ASM_VMX_VMXON_RAX
1054 : : "a"(&phys_addr), "m"(phys_addr)
1055 : "memory", "cc");
1056 }
1057
1058 static void vmclear_local_vcpus(void)
1059 {
1060 int cpu = raw_smp_processor_id();
1061 struct vcpu_vmx *vmx, *n;
1062
1063 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1064 local_vcpus_link)
1065 __vcpu_clear(vmx);
1066 }
1067
1068 static void hardware_disable(void *garbage)
1069 {
1070 vmclear_local_vcpus();
1071 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1072 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1073 }
1074
1075 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1076 u32 msr, u32 *result)
1077 {
1078 u32 vmx_msr_low, vmx_msr_high;
1079 u32 ctl = ctl_min | ctl_opt;
1080
1081 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1082
1083 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1084 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1085
1086 /* Ensure minimum (required) set of control bits are supported. */
1087 if (ctl_min & ~ctl)
1088 return -EIO;
1089
1090 *result = ctl;
1091 return 0;
1092 }
1093
1094 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1095 {
1096 u32 vmx_msr_low, vmx_msr_high;
1097 u32 min, opt, min2, opt2;
1098 u32 _pin_based_exec_control = 0;
1099 u32 _cpu_based_exec_control = 0;
1100 u32 _cpu_based_2nd_exec_control = 0;
1101 u32 _vmexit_control = 0;
1102 u32 _vmentry_control = 0;
1103
1104 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1105 opt = PIN_BASED_VIRTUAL_NMIS;
1106 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1107 &_pin_based_exec_control) < 0)
1108 return -EIO;
1109
1110 min = CPU_BASED_HLT_EXITING |
1111 #ifdef CONFIG_X86_64
1112 CPU_BASED_CR8_LOAD_EXITING |
1113 CPU_BASED_CR8_STORE_EXITING |
1114 #endif
1115 CPU_BASED_CR3_LOAD_EXITING |
1116 CPU_BASED_CR3_STORE_EXITING |
1117 CPU_BASED_USE_IO_BITMAPS |
1118 CPU_BASED_MOV_DR_EXITING |
1119 CPU_BASED_USE_TSC_OFFSETING;
1120 opt = CPU_BASED_TPR_SHADOW |
1121 CPU_BASED_USE_MSR_BITMAPS |
1122 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1123 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1124 &_cpu_based_exec_control) < 0)
1125 return -EIO;
1126 #ifdef CONFIG_X86_64
1127 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1128 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1129 ~CPU_BASED_CR8_STORE_EXITING;
1130 #endif
1131 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1132 min2 = 0;
1133 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1134 SECONDARY_EXEC_WBINVD_EXITING |
1135 SECONDARY_EXEC_ENABLE_VPID |
1136 SECONDARY_EXEC_ENABLE_EPT;
1137 if (adjust_vmx_controls(min2, opt2,
1138 MSR_IA32_VMX_PROCBASED_CTLS2,
1139 &_cpu_based_2nd_exec_control) < 0)
1140 return -EIO;
1141 }
1142 #ifndef CONFIG_X86_64
1143 if (!(_cpu_based_2nd_exec_control &
1144 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1145 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1146 #endif
1147 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1148 /* CR3 accesses don't need to cause VM Exits when EPT enabled */
1149 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1150 CPU_BASED_CR3_STORE_EXITING);
1151 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1152 &_cpu_based_exec_control) < 0)
1153 return -EIO;
1154 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1155 vmx_capability.ept, vmx_capability.vpid);
1156 }
1157
1158 min = 0;
1159 #ifdef CONFIG_X86_64
1160 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1161 #endif
1162 opt = 0;
1163 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1164 &_vmexit_control) < 0)
1165 return -EIO;
1166
1167 min = opt = 0;
1168 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1169 &_vmentry_control) < 0)
1170 return -EIO;
1171
1172 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1173
1174 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1175 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1176 return -EIO;
1177
1178 #ifdef CONFIG_X86_64
1179 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1180 if (vmx_msr_high & (1u<<16))
1181 return -EIO;
1182 #endif
1183
1184 /* Require Write-Back (WB) memory type for VMCS accesses. */
1185 if (((vmx_msr_high >> 18) & 15) != 6)
1186 return -EIO;
1187
1188 vmcs_conf->size = vmx_msr_high & 0x1fff;
1189 vmcs_conf->order = get_order(vmcs_config.size);
1190 vmcs_conf->revision_id = vmx_msr_low;
1191
1192 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1193 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1194 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1195 vmcs_conf->vmexit_ctrl = _vmexit_control;
1196 vmcs_conf->vmentry_ctrl = _vmentry_control;
1197
1198 return 0;
1199 }
1200
1201 static struct vmcs *alloc_vmcs_cpu(int cpu)
1202 {
1203 int node = cpu_to_node(cpu);
1204 struct page *pages;
1205 struct vmcs *vmcs;
1206
1207 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1208 if (!pages)
1209 return NULL;
1210 vmcs = page_address(pages);
1211 memset(vmcs, 0, vmcs_config.size);
1212 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1213 return vmcs;
1214 }
1215
1216 static struct vmcs *alloc_vmcs(void)
1217 {
1218 return alloc_vmcs_cpu(raw_smp_processor_id());
1219 }
1220
1221 static void free_vmcs(struct vmcs *vmcs)
1222 {
1223 free_pages((unsigned long)vmcs, vmcs_config.order);
1224 }
1225
1226 static void free_kvm_area(void)
1227 {
1228 int cpu;
1229
1230 for_each_online_cpu(cpu)
1231 free_vmcs(per_cpu(vmxarea, cpu));
1232 }
1233
1234 static __init int alloc_kvm_area(void)
1235 {
1236 int cpu;
1237
1238 for_each_online_cpu(cpu) {
1239 struct vmcs *vmcs;
1240
1241 vmcs = alloc_vmcs_cpu(cpu);
1242 if (!vmcs) {
1243 free_kvm_area();
1244 return -ENOMEM;
1245 }
1246
1247 per_cpu(vmxarea, cpu) = vmcs;
1248 }
1249 return 0;
1250 }
1251
1252 static __init int hardware_setup(void)
1253 {
1254 if (setup_vmcs_config(&vmcs_config) < 0)
1255 return -EIO;
1256
1257 if (boot_cpu_has(X86_FEATURE_NX))
1258 kvm_enable_efer_bits(EFER_NX);
1259
1260 return alloc_kvm_area();
1261 }
1262
1263 static __exit void hardware_unsetup(void)
1264 {
1265 free_kvm_area();
1266 }
1267
1268 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1269 {
1270 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1271
1272 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1273 vmcs_write16(sf->selector, save->selector);
1274 vmcs_writel(sf->base, save->base);
1275 vmcs_write32(sf->limit, save->limit);
1276 vmcs_write32(sf->ar_bytes, save->ar);
1277 } else {
1278 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1279 << AR_DPL_SHIFT;
1280 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1281 }
1282 }
1283
1284 static void enter_pmode(struct kvm_vcpu *vcpu)
1285 {
1286 unsigned long flags;
1287
1288 vcpu->arch.rmode.active = 0;
1289
1290 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1291 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1292 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1293
1294 flags = vmcs_readl(GUEST_RFLAGS);
1295 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1296 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1297 vmcs_writel(GUEST_RFLAGS, flags);
1298
1299 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1300 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1301
1302 update_exception_bitmap(vcpu);
1303
1304 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1305 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1306 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1307 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1308
1309 vmcs_write16(GUEST_SS_SELECTOR, 0);
1310 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1311
1312 vmcs_write16(GUEST_CS_SELECTOR,
1313 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1314 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1315 }
1316
1317 static gva_t rmode_tss_base(struct kvm *kvm)
1318 {
1319 if (!kvm->arch.tss_addr) {
1320 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1321 kvm->memslots[0].npages - 3;
1322 return base_gfn << PAGE_SHIFT;
1323 }
1324 return kvm->arch.tss_addr;
1325 }
1326
1327 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1328 {
1329 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1330
1331 save->selector = vmcs_read16(sf->selector);
1332 save->base = vmcs_readl(sf->base);
1333 save->limit = vmcs_read32(sf->limit);
1334 save->ar = vmcs_read32(sf->ar_bytes);
1335 vmcs_write16(sf->selector, save->base >> 4);
1336 vmcs_write32(sf->base, save->base & 0xfffff);
1337 vmcs_write32(sf->limit, 0xffff);
1338 vmcs_write32(sf->ar_bytes, 0xf3);
1339 }
1340
1341 static void enter_rmode(struct kvm_vcpu *vcpu)
1342 {
1343 unsigned long flags;
1344
1345 vcpu->arch.rmode.active = 1;
1346
1347 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1348 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1349
1350 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1351 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1352
1353 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1354 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1355
1356 flags = vmcs_readl(GUEST_RFLAGS);
1357 vcpu->arch.rmode.save_iopl
1358 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1359
1360 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1361
1362 vmcs_writel(GUEST_RFLAGS, flags);
1363 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1364 update_exception_bitmap(vcpu);
1365
1366 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1367 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1368 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1369
1370 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1371 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1372 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1373 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1374 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1375
1376 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1377 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1378 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1379 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1380
1381 kvm_mmu_reset_context(vcpu);
1382 init_rmode(vcpu->kvm);
1383 }
1384
1385 #ifdef CONFIG_X86_64
1386
1387 static void enter_lmode(struct kvm_vcpu *vcpu)
1388 {
1389 u32 guest_tr_ar;
1390
1391 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1392 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1393 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1394 __func__);
1395 vmcs_write32(GUEST_TR_AR_BYTES,
1396 (guest_tr_ar & ~AR_TYPE_MASK)
1397 | AR_TYPE_BUSY_64_TSS);
1398 }
1399
1400 vcpu->arch.shadow_efer |= EFER_LMA;
1401
1402 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1403 vmcs_write32(VM_ENTRY_CONTROLS,
1404 vmcs_read32(VM_ENTRY_CONTROLS)
1405 | VM_ENTRY_IA32E_MODE);
1406 }
1407
1408 static void exit_lmode(struct kvm_vcpu *vcpu)
1409 {
1410 vcpu->arch.shadow_efer &= ~EFER_LMA;
1411
1412 vmcs_write32(VM_ENTRY_CONTROLS,
1413 vmcs_read32(VM_ENTRY_CONTROLS)
1414 & ~VM_ENTRY_IA32E_MODE);
1415 }
1416
1417 #endif
1418
1419 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1420 {
1421 vpid_sync_vcpu_all(to_vmx(vcpu));
1422 if (vm_need_ept())
1423 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1424 }
1425
1426 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1427 {
1428 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1429 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1430 }
1431
1432 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1433 {
1434 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1435 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1436 printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1437 return;
1438 }
1439 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1440 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1441 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1442 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1443 }
1444 }
1445
1446 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1447
1448 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1449 unsigned long cr0,
1450 struct kvm_vcpu *vcpu)
1451 {
1452 if (!(cr0 & X86_CR0_PG)) {
1453 /* From paging/starting to nonpaging */
1454 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1455 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1456 (CPU_BASED_CR3_LOAD_EXITING |
1457 CPU_BASED_CR3_STORE_EXITING));
1458 vcpu->arch.cr0 = cr0;
1459 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1460 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1461 *hw_cr0 &= ~X86_CR0_WP;
1462 } else if (!is_paging(vcpu)) {
1463 /* From nonpaging to paging */
1464 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1465 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1466 ~(CPU_BASED_CR3_LOAD_EXITING |
1467 CPU_BASED_CR3_STORE_EXITING));
1468 vcpu->arch.cr0 = cr0;
1469 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1470 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1471 *hw_cr0 &= ~X86_CR0_WP;
1472 }
1473 }
1474
1475 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1476 struct kvm_vcpu *vcpu)
1477 {
1478 if (!is_paging(vcpu)) {
1479 *hw_cr4 &= ~X86_CR4_PAE;
1480 *hw_cr4 |= X86_CR4_PSE;
1481 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1482 *hw_cr4 &= ~X86_CR4_PAE;
1483 }
1484
1485 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1486 {
1487 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1488 KVM_VM_CR0_ALWAYS_ON;
1489
1490 vmx_fpu_deactivate(vcpu);
1491
1492 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1493 enter_pmode(vcpu);
1494
1495 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1496 enter_rmode(vcpu);
1497
1498 #ifdef CONFIG_X86_64
1499 if (vcpu->arch.shadow_efer & EFER_LME) {
1500 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1501 enter_lmode(vcpu);
1502 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1503 exit_lmode(vcpu);
1504 }
1505 #endif
1506
1507 if (vm_need_ept())
1508 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1509
1510 vmcs_writel(CR0_READ_SHADOW, cr0);
1511 vmcs_writel(GUEST_CR0, hw_cr0);
1512 vcpu->arch.cr0 = cr0;
1513
1514 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1515 vmx_fpu_activate(vcpu);
1516 }
1517
1518 static u64 construct_eptp(unsigned long root_hpa)
1519 {
1520 u64 eptp;
1521
1522 /* TODO write the value reading from MSR */
1523 eptp = VMX_EPT_DEFAULT_MT |
1524 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1525 eptp |= (root_hpa & PAGE_MASK);
1526
1527 return eptp;
1528 }
1529
1530 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1531 {
1532 unsigned long guest_cr3;
1533 u64 eptp;
1534
1535 guest_cr3 = cr3;
1536 if (vm_need_ept()) {
1537 eptp = construct_eptp(cr3);
1538 vmcs_write64(EPT_POINTER, eptp);
1539 ept_sync_context(eptp);
1540 ept_load_pdptrs(vcpu);
1541 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1542 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1543 }
1544
1545 vmx_flush_tlb(vcpu);
1546 vmcs_writel(GUEST_CR3, guest_cr3);
1547 if (vcpu->arch.cr0 & X86_CR0_PE)
1548 vmx_fpu_deactivate(vcpu);
1549 }
1550
1551 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1552 {
1553 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1554 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1555
1556 vcpu->arch.cr4 = cr4;
1557 if (vm_need_ept())
1558 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1559
1560 vmcs_writel(CR4_READ_SHADOW, cr4);
1561 vmcs_writel(GUEST_CR4, hw_cr4);
1562 }
1563
1564 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1565 {
1566 struct vcpu_vmx *vmx = to_vmx(vcpu);
1567 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1568
1569 vcpu->arch.shadow_efer = efer;
1570 if (!msr)
1571 return;
1572 if (efer & EFER_LMA) {
1573 vmcs_write32(VM_ENTRY_CONTROLS,
1574 vmcs_read32(VM_ENTRY_CONTROLS) |
1575 VM_ENTRY_IA32E_MODE);
1576 msr->data = efer;
1577
1578 } else {
1579 vmcs_write32(VM_ENTRY_CONTROLS,
1580 vmcs_read32(VM_ENTRY_CONTROLS) &
1581 ~VM_ENTRY_IA32E_MODE);
1582
1583 msr->data = efer & ~EFER_LME;
1584 }
1585 setup_msrs(vmx);
1586 }
1587
1588 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1589 {
1590 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1591
1592 return vmcs_readl(sf->base);
1593 }
1594
1595 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1596 struct kvm_segment *var, int seg)
1597 {
1598 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1599 u32 ar;
1600
1601 var->base = vmcs_readl(sf->base);
1602 var->limit = vmcs_read32(sf->limit);
1603 var->selector = vmcs_read16(sf->selector);
1604 ar = vmcs_read32(sf->ar_bytes);
1605 if (ar & AR_UNUSABLE_MASK)
1606 ar = 0;
1607 var->type = ar & 15;
1608 var->s = (ar >> 4) & 1;
1609 var->dpl = (ar >> 5) & 3;
1610 var->present = (ar >> 7) & 1;
1611 var->avl = (ar >> 12) & 1;
1612 var->l = (ar >> 13) & 1;
1613 var->db = (ar >> 14) & 1;
1614 var->g = (ar >> 15) & 1;
1615 var->unusable = (ar >> 16) & 1;
1616 }
1617
1618 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1619 {
1620 struct kvm_segment kvm_seg;
1621
1622 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1623 return 0;
1624
1625 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1626 return 3;
1627
1628 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1629 return kvm_seg.selector & 3;
1630 }
1631
1632 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1633 {
1634 u32 ar;
1635
1636 if (var->unusable)
1637 ar = 1 << 16;
1638 else {
1639 ar = var->type & 15;
1640 ar |= (var->s & 1) << 4;
1641 ar |= (var->dpl & 3) << 5;
1642 ar |= (var->present & 1) << 7;
1643 ar |= (var->avl & 1) << 12;
1644 ar |= (var->l & 1) << 13;
1645 ar |= (var->db & 1) << 14;
1646 ar |= (var->g & 1) << 15;
1647 }
1648 if (ar == 0) /* a 0 value means unusable */
1649 ar = AR_UNUSABLE_MASK;
1650
1651 return ar;
1652 }
1653
1654 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1655 struct kvm_segment *var, int seg)
1656 {
1657 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1658 u32 ar;
1659
1660 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1661 vcpu->arch.rmode.tr.selector = var->selector;
1662 vcpu->arch.rmode.tr.base = var->base;
1663 vcpu->arch.rmode.tr.limit = var->limit;
1664 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1665 return;
1666 }
1667 vmcs_writel(sf->base, var->base);
1668 vmcs_write32(sf->limit, var->limit);
1669 vmcs_write16(sf->selector, var->selector);
1670 if (vcpu->arch.rmode.active && var->s) {
1671 /*
1672 * Hack real-mode segments into vm86 compatibility.
1673 */
1674 if (var->base == 0xffff0000 && var->selector == 0xf000)
1675 vmcs_writel(sf->base, 0xf0000);
1676 ar = 0xf3;
1677 } else
1678 ar = vmx_segment_access_rights(var);
1679 vmcs_write32(sf->ar_bytes, ar);
1680 }
1681
1682 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1683 {
1684 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1685
1686 *db = (ar >> 14) & 1;
1687 *l = (ar >> 13) & 1;
1688 }
1689
1690 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1691 {
1692 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1693 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1694 }
1695
1696 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1697 {
1698 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1699 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1700 }
1701
1702 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1703 {
1704 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1705 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1706 }
1707
1708 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1709 {
1710 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1711 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1712 }
1713
1714 static int init_rmode_tss(struct kvm *kvm)
1715 {
1716 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1717 u16 data = 0;
1718 int ret = 0;
1719 int r;
1720
1721 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1722 if (r < 0)
1723 goto out;
1724 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1725 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1726 if (r < 0)
1727 goto out;
1728 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1729 if (r < 0)
1730 goto out;
1731 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1732 if (r < 0)
1733 goto out;
1734 data = ~0;
1735 r = kvm_write_guest_page(kvm, fn, &data,
1736 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1737 sizeof(u8));
1738 if (r < 0)
1739 goto out;
1740
1741 ret = 1;
1742 out:
1743 return ret;
1744 }
1745
1746 static int init_rmode_identity_map(struct kvm *kvm)
1747 {
1748 int i, r, ret;
1749 pfn_t identity_map_pfn;
1750 u32 tmp;
1751
1752 if (!vm_need_ept())
1753 return 1;
1754 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1755 printk(KERN_ERR "EPT: identity-mapping pagetable "
1756 "haven't been allocated!\n");
1757 return 0;
1758 }
1759 if (likely(kvm->arch.ept_identity_pagetable_done))
1760 return 1;
1761 ret = 0;
1762 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1763 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1764 if (r < 0)
1765 goto out;
1766 /* Set up identity-mapping pagetable for EPT in real mode */
1767 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1768 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
1769 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
1770 r = kvm_write_guest_page(kvm, identity_map_pfn,
1771 &tmp, i * sizeof(tmp), sizeof(tmp));
1772 if (r < 0)
1773 goto out;
1774 }
1775 kvm->arch.ept_identity_pagetable_done = true;
1776 ret = 1;
1777 out:
1778 return ret;
1779 }
1780
1781 static void seg_setup(int seg)
1782 {
1783 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1784
1785 vmcs_write16(sf->selector, 0);
1786 vmcs_writel(sf->base, 0);
1787 vmcs_write32(sf->limit, 0xffff);
1788 vmcs_write32(sf->ar_bytes, 0x93);
1789 }
1790
1791 static int alloc_apic_access_page(struct kvm *kvm)
1792 {
1793 struct kvm_userspace_memory_region kvm_userspace_mem;
1794 int r = 0;
1795
1796 down_write(&kvm->slots_lock);
1797 if (kvm->arch.apic_access_page)
1798 goto out;
1799 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1800 kvm_userspace_mem.flags = 0;
1801 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1802 kvm_userspace_mem.memory_size = PAGE_SIZE;
1803 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1804 if (r)
1805 goto out;
1806
1807 down_read(&current->mm->mmap_sem);
1808 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1809 up_read(&current->mm->mmap_sem);
1810 out:
1811 up_write(&kvm->slots_lock);
1812 return r;
1813 }
1814
1815 static int alloc_identity_pagetable(struct kvm *kvm)
1816 {
1817 struct kvm_userspace_memory_region kvm_userspace_mem;
1818 int r = 0;
1819
1820 down_write(&kvm->slots_lock);
1821 if (kvm->arch.ept_identity_pagetable)
1822 goto out;
1823 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
1824 kvm_userspace_mem.flags = 0;
1825 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1826 kvm_userspace_mem.memory_size = PAGE_SIZE;
1827 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1828 if (r)
1829 goto out;
1830
1831 down_read(&current->mm->mmap_sem);
1832 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
1833 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
1834 up_read(&current->mm->mmap_sem);
1835 out:
1836 up_write(&kvm->slots_lock);
1837 return r;
1838 }
1839
1840 static void allocate_vpid(struct vcpu_vmx *vmx)
1841 {
1842 int vpid;
1843
1844 vmx->vpid = 0;
1845 if (!enable_vpid || !cpu_has_vmx_vpid())
1846 return;
1847 spin_lock(&vmx_vpid_lock);
1848 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
1849 if (vpid < VMX_NR_VPIDS) {
1850 vmx->vpid = vpid;
1851 __set_bit(vpid, vmx_vpid_bitmap);
1852 }
1853 spin_unlock(&vmx_vpid_lock);
1854 }
1855
1856 static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
1857 {
1858 void *va;
1859
1860 if (!cpu_has_vmx_msr_bitmap())
1861 return;
1862
1863 /*
1864 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
1865 * have the write-low and read-high bitmap offsets the wrong way round.
1866 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
1867 */
1868 va = kmap(msr_bitmap);
1869 if (msr <= 0x1fff) {
1870 __clear_bit(msr, va + 0x000); /* read-low */
1871 __clear_bit(msr, va + 0x800); /* write-low */
1872 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1873 msr &= 0x1fff;
1874 __clear_bit(msr, va + 0x400); /* read-high */
1875 __clear_bit(msr, va + 0xc00); /* write-high */
1876 }
1877 kunmap(msr_bitmap);
1878 }
1879
1880 /*
1881 * Sets up the vmcs for emulated real mode.
1882 */
1883 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1884 {
1885 u32 host_sysenter_cs;
1886 u32 junk;
1887 unsigned long a;
1888 struct descriptor_table dt;
1889 int i;
1890 unsigned long kvm_vmx_return;
1891 u32 exec_control;
1892
1893 /* I/O */
1894 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1895 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1896
1897 if (cpu_has_vmx_msr_bitmap())
1898 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
1899
1900 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1901
1902 /* Control */
1903 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1904 vmcs_config.pin_based_exec_ctrl);
1905
1906 exec_control = vmcs_config.cpu_based_exec_ctrl;
1907 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1908 exec_control &= ~CPU_BASED_TPR_SHADOW;
1909 #ifdef CONFIG_X86_64
1910 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1911 CPU_BASED_CR8_LOAD_EXITING;
1912 #endif
1913 }
1914 if (!vm_need_ept())
1915 exec_control |= CPU_BASED_CR3_STORE_EXITING |
1916 CPU_BASED_CR3_LOAD_EXITING;
1917 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1918
1919 if (cpu_has_secondary_exec_ctrls()) {
1920 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1921 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1922 exec_control &=
1923 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1924 if (vmx->vpid == 0)
1925 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
1926 if (!vm_need_ept())
1927 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
1928 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1929 }
1930
1931 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1932 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1933 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1934
1935 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1936 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1937 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1938
1939 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1940 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1941 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1942 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
1943 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
1944 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1945 #ifdef CONFIG_X86_64
1946 rdmsrl(MSR_FS_BASE, a);
1947 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1948 rdmsrl(MSR_GS_BASE, a);
1949 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1950 #else
1951 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1952 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1953 #endif
1954
1955 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1956
1957 kvm_get_idt(&dt);
1958 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1959
1960 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1961 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1962 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1963 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1964 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1965
1966 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1967 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1968 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1969 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1970 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1971 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1972
1973 for (i = 0; i < NR_VMX_MSR; ++i) {
1974 u32 index = vmx_msr_index[i];
1975 u32 data_low, data_high;
1976 u64 data;
1977 int j = vmx->nmsrs;
1978
1979 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1980 continue;
1981 if (wrmsr_safe(index, data_low, data_high) < 0)
1982 continue;
1983 data = data_low | ((u64)data_high << 32);
1984 vmx->host_msrs[j].index = index;
1985 vmx->host_msrs[j].reserved = 0;
1986 vmx->host_msrs[j].data = data;
1987 vmx->guest_msrs[j] = vmx->host_msrs[j];
1988 ++vmx->nmsrs;
1989 }
1990
1991 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1992
1993 /* 22.2.1, 20.8.1 */
1994 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1995
1996 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1997 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1998
1999
2000 return 0;
2001 }
2002
2003 static int init_rmode(struct kvm *kvm)
2004 {
2005 if (!init_rmode_tss(kvm))
2006 return 0;
2007 if (!init_rmode_identity_map(kvm))
2008 return 0;
2009 return 1;
2010 }
2011
2012 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2013 {
2014 struct vcpu_vmx *vmx = to_vmx(vcpu);
2015 u64 msr;
2016 int ret;
2017
2018 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2019 down_read(&vcpu->kvm->slots_lock);
2020 if (!init_rmode(vmx->vcpu.kvm)) {
2021 ret = -ENOMEM;
2022 goto out;
2023 }
2024
2025 vmx->vcpu.arch.rmode.active = 0;
2026
2027 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2028 kvm_set_cr8(&vmx->vcpu, 0);
2029 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2030 if (vmx->vcpu.vcpu_id == 0)
2031 msr |= MSR_IA32_APICBASE_BSP;
2032 kvm_set_apic_base(&vmx->vcpu, msr);
2033
2034 fx_init(&vmx->vcpu);
2035
2036 /*
2037 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2038 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2039 */
2040 if (vmx->vcpu.vcpu_id == 0) {
2041 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2042 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2043 } else {
2044 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2045 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2046 }
2047 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2048 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2049
2050 seg_setup(VCPU_SREG_DS);
2051 seg_setup(VCPU_SREG_ES);
2052 seg_setup(VCPU_SREG_FS);
2053 seg_setup(VCPU_SREG_GS);
2054 seg_setup(VCPU_SREG_SS);
2055
2056 vmcs_write16(GUEST_TR_SELECTOR, 0);
2057 vmcs_writel(GUEST_TR_BASE, 0);
2058 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2059 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2060
2061 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2062 vmcs_writel(GUEST_LDTR_BASE, 0);
2063 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2064 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2065
2066 vmcs_write32(GUEST_SYSENTER_CS, 0);
2067 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2068 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2069
2070 vmcs_writel(GUEST_RFLAGS, 0x02);
2071 if (vmx->vcpu.vcpu_id == 0)
2072 kvm_rip_write(vcpu, 0xfff0);
2073 else
2074 kvm_rip_write(vcpu, 0);
2075 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2076
2077 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2078 vmcs_writel(GUEST_DR7, 0x400);
2079
2080 vmcs_writel(GUEST_GDTR_BASE, 0);
2081 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2082
2083 vmcs_writel(GUEST_IDTR_BASE, 0);
2084 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2085
2086 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2087 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2088 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2089
2090 guest_write_tsc(0);
2091
2092 /* Special registers */
2093 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2094
2095 setup_msrs(vmx);
2096
2097 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2098
2099 if (cpu_has_vmx_tpr_shadow()) {
2100 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2101 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2102 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2103 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2104 vmcs_write32(TPR_THRESHOLD, 0);
2105 }
2106
2107 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2108 vmcs_write64(APIC_ACCESS_ADDR,
2109 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2110
2111 if (vmx->vpid != 0)
2112 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2113
2114 vmx->vcpu.arch.cr0 = 0x60000010;
2115 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2116 vmx_set_cr4(&vmx->vcpu, 0);
2117 vmx_set_efer(&vmx->vcpu, 0);
2118 vmx_fpu_activate(&vmx->vcpu);
2119 update_exception_bitmap(&vmx->vcpu);
2120
2121 vpid_sync_vcpu_all(vmx);
2122
2123 ret = 0;
2124
2125 out:
2126 up_read(&vcpu->kvm->slots_lock);
2127 return ret;
2128 }
2129
2130 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2131 {
2132 struct vcpu_vmx *vmx = to_vmx(vcpu);
2133
2134 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2135
2136 if (vcpu->arch.rmode.active) {
2137 vmx->rmode.irq.pending = true;
2138 vmx->rmode.irq.vector = irq;
2139 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2140 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2141 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2142 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2143 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2144 return;
2145 }
2146 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2147 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2148 }
2149
2150 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2151 {
2152 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2153 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2154 vcpu->arch.nmi_pending = 0;
2155 }
2156
2157 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2158 {
2159 int word_index = __ffs(vcpu->arch.irq_summary);
2160 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2161 int irq = word_index * BITS_PER_LONG + bit_index;
2162
2163 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2164 if (!vcpu->arch.irq_pending[word_index])
2165 clear_bit(word_index, &vcpu->arch.irq_summary);
2166 vmx_inject_irq(vcpu, irq);
2167 }
2168
2169
2170 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2171 struct kvm_run *kvm_run)
2172 {
2173 u32 cpu_based_vm_exec_control;
2174
2175 vcpu->arch.interrupt_window_open =
2176 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2177 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2178
2179 if (vcpu->arch.interrupt_window_open &&
2180 vcpu->arch.irq_summary &&
2181 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
2182 /*
2183 * If interrupts enabled, and not blocked by sti or mov ss. Good.
2184 */
2185 kvm_do_inject_irq(vcpu);
2186
2187 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2188 if (!vcpu->arch.interrupt_window_open &&
2189 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2190 /*
2191 * Interrupts blocked. Wait for unblock.
2192 */
2193 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2194 else
2195 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2196 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2197 }
2198
2199 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2200 {
2201 int ret;
2202 struct kvm_userspace_memory_region tss_mem = {
2203 .slot = 8,
2204 .guest_phys_addr = addr,
2205 .memory_size = PAGE_SIZE * 3,
2206 .flags = 0,
2207 };
2208
2209 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2210 if (ret)
2211 return ret;
2212 kvm->arch.tss_addr = addr;
2213 return 0;
2214 }
2215
2216 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2217 {
2218 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2219
2220 set_debugreg(dbg->bp[0], 0);
2221 set_debugreg(dbg->bp[1], 1);
2222 set_debugreg(dbg->bp[2], 2);
2223 set_debugreg(dbg->bp[3], 3);
2224
2225 if (dbg->singlestep) {
2226 unsigned long flags;
2227
2228 flags = vmcs_readl(GUEST_RFLAGS);
2229 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2230 vmcs_writel(GUEST_RFLAGS, flags);
2231 }
2232 }
2233
2234 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2235 int vec, u32 err_code)
2236 {
2237 if (!vcpu->arch.rmode.active)
2238 return 0;
2239
2240 /*
2241 * Instruction with address size override prefix opcode 0x67
2242 * Cause the #SS fault with 0 error code in VM86 mode.
2243 */
2244 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2245 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2246 return 1;
2247 return 0;
2248 }
2249
2250 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2251 {
2252 struct vcpu_vmx *vmx = to_vmx(vcpu);
2253 u32 intr_info, error_code;
2254 unsigned long cr2, rip;
2255 u32 vect_info;
2256 enum emulation_result er;
2257
2258 vect_info = vmx->idt_vectoring_info;
2259 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2260
2261 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2262 !is_page_fault(intr_info))
2263 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2264 "intr info 0x%x\n", __func__, vect_info, intr_info);
2265
2266 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2267 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2268 set_bit(irq, vcpu->arch.irq_pending);
2269 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2270 }
2271
2272 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2273 return 1; /* already handled by vmx_vcpu_run() */
2274
2275 if (is_no_device(intr_info)) {
2276 vmx_fpu_activate(vcpu);
2277 return 1;
2278 }
2279
2280 if (is_invalid_opcode(intr_info)) {
2281 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2282 if (er != EMULATE_DONE)
2283 kvm_queue_exception(vcpu, UD_VECTOR);
2284 return 1;
2285 }
2286
2287 error_code = 0;
2288 rip = kvm_rip_read(vcpu);
2289 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2290 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2291 if (is_page_fault(intr_info)) {
2292 /* EPT won't cause page fault directly */
2293 if (vm_need_ept())
2294 BUG();
2295 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2296 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2297 (u32)((u64)cr2 >> 32), handler);
2298 if (vect_info & VECTORING_INFO_VALID_MASK)
2299 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2300 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2301 }
2302
2303 if (vcpu->arch.rmode.active &&
2304 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2305 error_code)) {
2306 if (vcpu->arch.halt_request) {
2307 vcpu->arch.halt_request = 0;
2308 return kvm_emulate_halt(vcpu);
2309 }
2310 return 1;
2311 }
2312
2313 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2314 (INTR_TYPE_EXCEPTION | 1)) {
2315 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2316 return 0;
2317 }
2318 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2319 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2320 kvm_run->ex.error_code = error_code;
2321 return 0;
2322 }
2323
2324 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2325 struct kvm_run *kvm_run)
2326 {
2327 ++vcpu->stat.irq_exits;
2328 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2329 return 1;
2330 }
2331
2332 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2333 {
2334 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2335 return 0;
2336 }
2337
2338 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2339 {
2340 unsigned long exit_qualification;
2341 int size, down, in, string, rep;
2342 unsigned port;
2343
2344 ++vcpu->stat.io_exits;
2345 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2346 string = (exit_qualification & 16) != 0;
2347
2348 if (string) {
2349 if (emulate_instruction(vcpu,
2350 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2351 return 0;
2352 return 1;
2353 }
2354
2355 size = (exit_qualification & 7) + 1;
2356 in = (exit_qualification & 8) != 0;
2357 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2358 rep = (exit_qualification & 32) != 0;
2359 port = exit_qualification >> 16;
2360
2361 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2362 }
2363
2364 static void
2365 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2366 {
2367 /*
2368 * Patch in the VMCALL instruction:
2369 */
2370 hypercall[0] = 0x0f;
2371 hypercall[1] = 0x01;
2372 hypercall[2] = 0xc1;
2373 }
2374
2375 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2376 {
2377 unsigned long exit_qualification;
2378 int cr;
2379 int reg;
2380
2381 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2382 cr = exit_qualification & 15;
2383 reg = (exit_qualification >> 8) & 15;
2384 switch ((exit_qualification >> 4) & 3) {
2385 case 0: /* mov to cr */
2386 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2387 (u32)kvm_register_read(vcpu, reg),
2388 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2389 handler);
2390 switch (cr) {
2391 case 0:
2392 kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2393 skip_emulated_instruction(vcpu);
2394 return 1;
2395 case 3:
2396 kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2397 skip_emulated_instruction(vcpu);
2398 return 1;
2399 case 4:
2400 kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2401 skip_emulated_instruction(vcpu);
2402 return 1;
2403 case 8:
2404 kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
2405 skip_emulated_instruction(vcpu);
2406 if (irqchip_in_kernel(vcpu->kvm))
2407 return 1;
2408 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2409 return 0;
2410 };
2411 break;
2412 case 2: /* clts */
2413 vmx_fpu_deactivate(vcpu);
2414 vcpu->arch.cr0 &= ~X86_CR0_TS;
2415 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2416 vmx_fpu_activate(vcpu);
2417 KVMTRACE_0D(CLTS, vcpu, handler);
2418 skip_emulated_instruction(vcpu);
2419 return 1;
2420 case 1: /*mov from cr*/
2421 switch (cr) {
2422 case 3:
2423 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2424 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2425 (u32)kvm_register_read(vcpu, reg),
2426 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2427 handler);
2428 skip_emulated_instruction(vcpu);
2429 return 1;
2430 case 8:
2431 kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2432 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2433 (u32)kvm_register_read(vcpu, reg), handler);
2434 skip_emulated_instruction(vcpu);
2435 return 1;
2436 }
2437 break;
2438 case 3: /* lmsw */
2439 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2440
2441 skip_emulated_instruction(vcpu);
2442 return 1;
2443 default:
2444 break;
2445 }
2446 kvm_run->exit_reason = 0;
2447 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2448 (int)(exit_qualification >> 4) & 3, cr);
2449 return 0;
2450 }
2451
2452 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2453 {
2454 unsigned long exit_qualification;
2455 unsigned long val;
2456 int dr, reg;
2457
2458 /*
2459 * FIXME: this code assumes the host is debugging the guest.
2460 * need to deal with guest debugging itself too.
2461 */
2462 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2463 dr = exit_qualification & 7;
2464 reg = (exit_qualification >> 8) & 15;
2465 if (exit_qualification & 16) {
2466 /* mov from dr */
2467 switch (dr) {
2468 case 6:
2469 val = 0xffff0ff0;
2470 break;
2471 case 7:
2472 val = 0x400;
2473 break;
2474 default:
2475 val = 0;
2476 }
2477 kvm_register_write(vcpu, reg, val);
2478 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2479 } else {
2480 /* mov to dr */
2481 }
2482 skip_emulated_instruction(vcpu);
2483 return 1;
2484 }
2485
2486 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2487 {
2488 kvm_emulate_cpuid(vcpu);
2489 return 1;
2490 }
2491
2492 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2493 {
2494 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2495 u64 data;
2496
2497 if (vmx_get_msr(vcpu, ecx, &data)) {
2498 kvm_inject_gp(vcpu, 0);
2499 return 1;
2500 }
2501
2502 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2503 handler);
2504
2505 /* FIXME: handling of bits 32:63 of rax, rdx */
2506 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2507 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2508 skip_emulated_instruction(vcpu);
2509 return 1;
2510 }
2511
2512 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2513 {
2514 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2515 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2516 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2517
2518 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2519 handler);
2520
2521 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2522 kvm_inject_gp(vcpu, 0);
2523 return 1;
2524 }
2525
2526 skip_emulated_instruction(vcpu);
2527 return 1;
2528 }
2529
2530 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2531 struct kvm_run *kvm_run)
2532 {
2533 return 1;
2534 }
2535
2536 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2537 struct kvm_run *kvm_run)
2538 {
2539 u32 cpu_based_vm_exec_control;
2540
2541 /* clear pending irq */
2542 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2543 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2544 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2545
2546 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2547
2548 /*
2549 * If the user space waits to inject interrupts, exit as soon as
2550 * possible
2551 */
2552 if (kvm_run->request_interrupt_window &&
2553 !vcpu->arch.irq_summary) {
2554 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2555 ++vcpu->stat.irq_window_exits;
2556 return 0;
2557 }
2558 return 1;
2559 }
2560
2561 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2562 {
2563 skip_emulated_instruction(vcpu);
2564 return kvm_emulate_halt(vcpu);
2565 }
2566
2567 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2568 {
2569 skip_emulated_instruction(vcpu);
2570 kvm_emulate_hypercall(vcpu);
2571 return 1;
2572 }
2573
2574 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2575 {
2576 skip_emulated_instruction(vcpu);
2577 /* TODO: Add support for VT-d/pass-through device */
2578 return 1;
2579 }
2580
2581 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2582 {
2583 u64 exit_qualification;
2584 enum emulation_result er;
2585 unsigned long offset;
2586
2587 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2588 offset = exit_qualification & 0xffful;
2589
2590 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2591
2592 if (er != EMULATE_DONE) {
2593 printk(KERN_ERR
2594 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2595 offset);
2596 return -ENOTSUPP;
2597 }
2598 return 1;
2599 }
2600
2601 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2602 {
2603 unsigned long exit_qualification;
2604 u16 tss_selector;
2605 int reason;
2606
2607 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2608
2609 reason = (u32)exit_qualification >> 30;
2610 tss_selector = exit_qualification;
2611
2612 return kvm_task_switch(vcpu, tss_selector, reason);
2613 }
2614
2615 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2616 {
2617 u64 exit_qualification;
2618 enum emulation_result er;
2619 gpa_t gpa;
2620 unsigned long hva;
2621 int gla_validity;
2622 int r;
2623
2624 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2625
2626 if (exit_qualification & (1 << 6)) {
2627 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
2628 return -ENOTSUPP;
2629 }
2630
2631 gla_validity = (exit_qualification >> 7) & 0x3;
2632 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
2633 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
2634 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2635 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2636 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2637 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2638 (long unsigned int)exit_qualification);
2639 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2640 kvm_run->hw.hardware_exit_reason = 0;
2641 return -ENOTSUPP;
2642 }
2643
2644 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
2645 hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
2646 if (!kvm_is_error_hva(hva)) {
2647 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
2648 if (r < 0) {
2649 printk(KERN_ERR "EPT: Not enough memory!\n");
2650 return -ENOMEM;
2651 }
2652 return 1;
2653 } else {
2654 /* must be MMIO */
2655 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2656
2657 if (er == EMULATE_FAIL) {
2658 printk(KERN_ERR
2659 "EPT: Fail to handle EPT violation vmexit!er is %d\n",
2660 er);
2661 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2662 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2663 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2664 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2665 (long unsigned int)exit_qualification);
2666 return -ENOTSUPP;
2667 } else if (er == EMULATE_DO_MMIO)
2668 return 0;
2669 }
2670 return 1;
2671 }
2672
2673 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2674 {
2675 u32 cpu_based_vm_exec_control;
2676
2677 /* clear pending NMI */
2678 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2679 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2680 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2681 ++vcpu->stat.nmi_window_exits;
2682
2683 return 1;
2684 }
2685
2686 /*
2687 * The exit handlers return 1 if the exit was handled fully and guest execution
2688 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2689 * to be done to userspace and return 0.
2690 */
2691 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2692 struct kvm_run *kvm_run) = {
2693 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2694 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2695 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2696 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
2697 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2698 [EXIT_REASON_CR_ACCESS] = handle_cr,
2699 [EXIT_REASON_DR_ACCESS] = handle_dr,
2700 [EXIT_REASON_CPUID] = handle_cpuid,
2701 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2702 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2703 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2704 [EXIT_REASON_HLT] = handle_halt,
2705 [EXIT_REASON_VMCALL] = handle_vmcall,
2706 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2707 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2708 [EXIT_REASON_WBINVD] = handle_wbinvd,
2709 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
2710 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
2711 };
2712
2713 static const int kvm_vmx_max_exit_handlers =
2714 ARRAY_SIZE(kvm_vmx_exit_handlers);
2715
2716 /*
2717 * The guest has exited. See if we can fix it or if we need userspace
2718 * assistance.
2719 */
2720 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2721 {
2722 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2723 struct vcpu_vmx *vmx = to_vmx(vcpu);
2724 u32 vectoring_info = vmx->idt_vectoring_info;
2725
2726 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
2727 (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
2728
2729 /* Access CR3 don't cause VMExit in paging mode, so we need
2730 * to sync with guest real CR3. */
2731 if (vm_need_ept() && is_paging(vcpu)) {
2732 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2733 ept_load_pdptrs(vcpu);
2734 }
2735
2736 if (unlikely(vmx->fail)) {
2737 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2738 kvm_run->fail_entry.hardware_entry_failure_reason
2739 = vmcs_read32(VM_INSTRUCTION_ERROR);
2740 return 0;
2741 }
2742
2743 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2744 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
2745 exit_reason != EXIT_REASON_EPT_VIOLATION))
2746 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2747 "exit reason is 0x%x\n", __func__, exit_reason);
2748 if (exit_reason < kvm_vmx_max_exit_handlers
2749 && kvm_vmx_exit_handlers[exit_reason])
2750 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2751 else {
2752 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2753 kvm_run->hw.hardware_exit_reason = exit_reason;
2754 }
2755 return 0;
2756 }
2757
2758 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2759 {
2760 int max_irr, tpr;
2761
2762 if (!vm_need_tpr_shadow(vcpu->kvm))
2763 return;
2764
2765 if (!kvm_lapic_enabled(vcpu) ||
2766 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2767 vmcs_write32(TPR_THRESHOLD, 0);
2768 return;
2769 }
2770
2771 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2772 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2773 }
2774
2775 static void enable_irq_window(struct kvm_vcpu *vcpu)
2776 {
2777 u32 cpu_based_vm_exec_control;
2778
2779 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2780 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2781 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2782 }
2783
2784 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2785 {
2786 u32 cpu_based_vm_exec_control;
2787
2788 if (!cpu_has_virtual_nmis())
2789 return;
2790
2791 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2792 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2793 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2794 }
2795
2796 static int vmx_nmi_enabled(struct kvm_vcpu *vcpu)
2797 {
2798 u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2799 return !(guest_intr & (GUEST_INTR_STATE_NMI |
2800 GUEST_INTR_STATE_MOV_SS |
2801 GUEST_INTR_STATE_STI));
2802 }
2803
2804 static int vmx_irq_enabled(struct kvm_vcpu *vcpu)
2805 {
2806 u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2807 return (!(guest_intr & (GUEST_INTR_STATE_MOV_SS |
2808 GUEST_INTR_STATE_STI)) &&
2809 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
2810 }
2811
2812 static void enable_intr_window(struct kvm_vcpu *vcpu)
2813 {
2814 if (vcpu->arch.nmi_pending)
2815 enable_nmi_window(vcpu);
2816 else if (kvm_cpu_has_interrupt(vcpu))
2817 enable_irq_window(vcpu);
2818 }
2819
2820 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2821 {
2822 struct vcpu_vmx *vmx = to_vmx(vcpu);
2823 u32 idtv_info_field, intr_info_field, exit_intr_info_field;
2824 int vector;
2825
2826 update_tpr_threshold(vcpu);
2827
2828 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2829 exit_intr_info_field = vmcs_read32(VM_EXIT_INTR_INFO);
2830 idtv_info_field = vmx->idt_vectoring_info;
2831 if (intr_info_field & INTR_INFO_VALID_MASK) {
2832 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2833 /* TODO: fault when IDT_Vectoring */
2834 if (printk_ratelimit())
2835 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2836 }
2837 enable_intr_window(vcpu);
2838 return;
2839 }
2840 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2841 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2842 == INTR_TYPE_EXT_INTR
2843 && vcpu->arch.rmode.active) {
2844 u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2845
2846 vmx_inject_irq(vcpu, vect);
2847 enable_intr_window(vcpu);
2848 return;
2849 }
2850
2851 KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
2852
2853 /*
2854 * SDM 3: 25.7.1.2
2855 * Clear bit "block by NMI" before VM entry if a NMI delivery
2856 * faulted.
2857 */
2858 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2859 == INTR_TYPE_NMI_INTR && cpu_has_virtual_nmis())
2860 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2861 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2862 ~GUEST_INTR_STATE_NMI);
2863
2864 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field
2865 & ~INTR_INFO_RESVD_BITS_MASK);
2866 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2867 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2868
2869 if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
2870 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2871 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2872 enable_intr_window(vcpu);
2873 return;
2874 }
2875 if (cpu_has_virtual_nmis()) {
2876 /*
2877 * SDM 3: 25.7.1.2
2878 * Re-set bit "block by NMI" before VM entry if vmexit caused by
2879 * a guest IRET fault.
2880 */
2881 if ((exit_intr_info_field & INTR_INFO_UNBLOCK_NMI) &&
2882 (exit_intr_info_field & INTR_INFO_VECTOR_MASK) != 8)
2883 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2884 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) |
2885 GUEST_INTR_STATE_NMI);
2886 else if (vcpu->arch.nmi_pending) {
2887 if (vmx_nmi_enabled(vcpu))
2888 vmx_inject_nmi(vcpu);
2889 enable_intr_window(vcpu);
2890 return;
2891 }
2892
2893 }
2894 if (!kvm_cpu_has_interrupt(vcpu))
2895 return;
2896 if (vmx_irq_enabled(vcpu)) {
2897 vector = kvm_cpu_get_interrupt(vcpu);
2898 vmx_inject_irq(vcpu, vector);
2899 kvm_timer_intr_post(vcpu, vector);
2900 } else
2901 enable_irq_window(vcpu);
2902 }
2903
2904 /*
2905 * Failure to inject an interrupt should give us the information
2906 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2907 * when fetching the interrupt redirection bitmap in the real-mode
2908 * tss, this doesn't happen. So we do it ourselves.
2909 */
2910 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2911 {
2912 vmx->rmode.irq.pending = 0;
2913 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
2914 return;
2915 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
2916 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2917 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2918 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2919 return;
2920 }
2921 vmx->idt_vectoring_info =
2922 VECTORING_INFO_VALID_MASK
2923 | INTR_TYPE_EXT_INTR
2924 | vmx->rmode.irq.vector;
2925 }
2926
2927 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2928 {
2929 struct vcpu_vmx *vmx = to_vmx(vcpu);
2930 u32 intr_info;
2931
2932 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
2933 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
2934 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
2935 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
2936
2937 /*
2938 * Loading guest fpu may have cleared host cr0.ts
2939 */
2940 vmcs_writel(HOST_CR0, read_cr0());
2941
2942 asm(
2943 /* Store host registers */
2944 #ifdef CONFIG_X86_64
2945 "push %%rdx; push %%rbp;"
2946 "push %%rcx \n\t"
2947 #else
2948 "push %%edx; push %%ebp;"
2949 "push %%ecx \n\t"
2950 #endif
2951 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
2952 /* Check if vmlaunch of vmresume is needed */
2953 "cmpl $0, %c[launched](%0) \n\t"
2954 /* Load guest registers. Don't clobber flags. */
2955 #ifdef CONFIG_X86_64
2956 "mov %c[cr2](%0), %%rax \n\t"
2957 "mov %%rax, %%cr2 \n\t"
2958 "mov %c[rax](%0), %%rax \n\t"
2959 "mov %c[rbx](%0), %%rbx \n\t"
2960 "mov %c[rdx](%0), %%rdx \n\t"
2961 "mov %c[rsi](%0), %%rsi \n\t"
2962 "mov %c[rdi](%0), %%rdi \n\t"
2963 "mov %c[rbp](%0), %%rbp \n\t"
2964 "mov %c[r8](%0), %%r8 \n\t"
2965 "mov %c[r9](%0), %%r9 \n\t"
2966 "mov %c[r10](%0), %%r10 \n\t"
2967 "mov %c[r11](%0), %%r11 \n\t"
2968 "mov %c[r12](%0), %%r12 \n\t"
2969 "mov %c[r13](%0), %%r13 \n\t"
2970 "mov %c[r14](%0), %%r14 \n\t"
2971 "mov %c[r15](%0), %%r15 \n\t"
2972 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2973 #else
2974 "mov %c[cr2](%0), %%eax \n\t"
2975 "mov %%eax, %%cr2 \n\t"
2976 "mov %c[rax](%0), %%eax \n\t"
2977 "mov %c[rbx](%0), %%ebx \n\t"
2978 "mov %c[rdx](%0), %%edx \n\t"
2979 "mov %c[rsi](%0), %%esi \n\t"
2980 "mov %c[rdi](%0), %%edi \n\t"
2981 "mov %c[rbp](%0), %%ebp \n\t"
2982 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2983 #endif
2984 /* Enter guest mode */
2985 "jne .Llaunched \n\t"
2986 __ex(ASM_VMX_VMLAUNCH) "\n\t"
2987 "jmp .Lkvm_vmx_return \n\t"
2988 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
2989 ".Lkvm_vmx_return: "
2990 /* Save guest registers, load host registers, keep flags */
2991 #ifdef CONFIG_X86_64
2992 "xchg %0, (%%rsp) \n\t"
2993 "mov %%rax, %c[rax](%0) \n\t"
2994 "mov %%rbx, %c[rbx](%0) \n\t"
2995 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2996 "mov %%rdx, %c[rdx](%0) \n\t"
2997 "mov %%rsi, %c[rsi](%0) \n\t"
2998 "mov %%rdi, %c[rdi](%0) \n\t"
2999 "mov %%rbp, %c[rbp](%0) \n\t"
3000 "mov %%r8, %c[r8](%0) \n\t"
3001 "mov %%r9, %c[r9](%0) \n\t"
3002 "mov %%r10, %c[r10](%0) \n\t"
3003 "mov %%r11, %c[r11](%0) \n\t"
3004 "mov %%r12, %c[r12](%0) \n\t"
3005 "mov %%r13, %c[r13](%0) \n\t"
3006 "mov %%r14, %c[r14](%0) \n\t"
3007 "mov %%r15, %c[r15](%0) \n\t"
3008 "mov %%cr2, %%rax \n\t"
3009 "mov %%rax, %c[cr2](%0) \n\t"
3010
3011 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
3012 #else
3013 "xchg %0, (%%esp) \n\t"
3014 "mov %%eax, %c[rax](%0) \n\t"
3015 "mov %%ebx, %c[rbx](%0) \n\t"
3016 "pushl (%%esp); popl %c[rcx](%0) \n\t"
3017 "mov %%edx, %c[rdx](%0) \n\t"
3018 "mov %%esi, %c[rsi](%0) \n\t"
3019 "mov %%edi, %c[rdi](%0) \n\t"
3020 "mov %%ebp, %c[rbp](%0) \n\t"
3021 "mov %%cr2, %%eax \n\t"
3022 "mov %%eax, %c[cr2](%0) \n\t"
3023
3024 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
3025 #endif
3026 "setbe %c[fail](%0) \n\t"
3027 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3028 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3029 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3030 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3031 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3032 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3033 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3034 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3035 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3036 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3037 #ifdef CONFIG_X86_64
3038 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3039 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3040 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3041 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3042 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3043 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3044 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3045 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3046 #endif
3047 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3048 : "cc", "memory"
3049 #ifdef CONFIG_X86_64
3050 , "rbx", "rdi", "rsi"
3051 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3052 #else
3053 , "ebx", "edi", "rsi"
3054 #endif
3055 );
3056
3057 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3058 vcpu->arch.regs_dirty = 0;
3059
3060 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3061 if (vmx->rmode.irq.pending)
3062 fixup_rmode_irq(vmx);
3063
3064 vcpu->arch.interrupt_window_open =
3065 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3066 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)) == 0;
3067
3068 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3069 vmx->launched = 1;
3070
3071 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3072
3073 /* We need to handle NMIs before interrupts are enabled */
3074 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200 &&
3075 (intr_info & INTR_INFO_VALID_MASK)) {
3076 KVMTRACE_0D(NMI, vcpu, handler);
3077 asm("int $2");
3078 }
3079 }
3080
3081 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3082 {
3083 struct vcpu_vmx *vmx = to_vmx(vcpu);
3084
3085 if (vmx->vmcs) {
3086 vcpu_clear(vmx);
3087 free_vmcs(vmx->vmcs);
3088 vmx->vmcs = NULL;
3089 }
3090 }
3091
3092 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3093 {
3094 struct vcpu_vmx *vmx = to_vmx(vcpu);
3095
3096 spin_lock(&vmx_vpid_lock);
3097 if (vmx->vpid != 0)
3098 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3099 spin_unlock(&vmx_vpid_lock);
3100 vmx_free_vmcs(vcpu);
3101 kfree(vmx->host_msrs);
3102 kfree(vmx->guest_msrs);
3103 kvm_vcpu_uninit(vcpu);
3104 kmem_cache_free(kvm_vcpu_cache, vmx);
3105 }
3106
3107 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3108 {
3109 int err;
3110 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3111 int cpu;
3112
3113 if (!vmx)
3114 return ERR_PTR(-ENOMEM);
3115
3116 allocate_vpid(vmx);
3117
3118 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3119 if (err)
3120 goto free_vcpu;
3121
3122 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3123 if (!vmx->guest_msrs) {
3124 err = -ENOMEM;
3125 goto uninit_vcpu;
3126 }
3127
3128 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3129 if (!vmx->host_msrs)
3130 goto free_guest_msrs;
3131
3132 vmx->vmcs = alloc_vmcs();
3133 if (!vmx->vmcs)
3134 goto free_msrs;
3135
3136 vmcs_clear(vmx->vmcs);
3137
3138 cpu = get_cpu();
3139 vmx_vcpu_load(&vmx->vcpu, cpu);
3140 err = vmx_vcpu_setup(vmx);
3141 vmx_vcpu_put(&vmx->vcpu);
3142 put_cpu();
3143 if (err)
3144 goto free_vmcs;
3145 if (vm_need_virtualize_apic_accesses(kvm))
3146 if (alloc_apic_access_page(kvm) != 0)
3147 goto free_vmcs;
3148
3149 if (vm_need_ept())
3150 if (alloc_identity_pagetable(kvm) != 0)
3151 goto free_vmcs;
3152
3153 return &vmx->vcpu;
3154
3155 free_vmcs:
3156 free_vmcs(vmx->vmcs);
3157 free_msrs:
3158 kfree(vmx->host_msrs);
3159 free_guest_msrs:
3160 kfree(vmx->guest_msrs);
3161 uninit_vcpu:
3162 kvm_vcpu_uninit(&vmx->vcpu);
3163 free_vcpu:
3164 kmem_cache_free(kvm_vcpu_cache, vmx);
3165 return ERR_PTR(err);
3166 }
3167
3168 static void __init vmx_check_processor_compat(void *rtn)
3169 {
3170 struct vmcs_config vmcs_conf;
3171
3172 *(int *)rtn = 0;
3173 if (setup_vmcs_config(&vmcs_conf) < 0)
3174 *(int *)rtn = -EIO;
3175 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3176 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3177 smp_processor_id());
3178 *(int *)rtn = -EIO;
3179 }
3180 }
3181
3182 static int get_ept_level(void)
3183 {
3184 return VMX_EPT_DEFAULT_GAW + 1;
3185 }
3186
3187 static struct kvm_x86_ops vmx_x86_ops = {
3188 .cpu_has_kvm_support = cpu_has_kvm_support,
3189 .disabled_by_bios = vmx_disabled_by_bios,
3190 .hardware_setup = hardware_setup,
3191 .hardware_unsetup = hardware_unsetup,
3192 .check_processor_compatibility = vmx_check_processor_compat,
3193 .hardware_enable = hardware_enable,
3194 .hardware_disable = hardware_disable,
3195 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3196
3197 .vcpu_create = vmx_create_vcpu,
3198 .vcpu_free = vmx_free_vcpu,
3199 .vcpu_reset = vmx_vcpu_reset,
3200
3201 .prepare_guest_switch = vmx_save_host_state,
3202 .vcpu_load = vmx_vcpu_load,
3203 .vcpu_put = vmx_vcpu_put,
3204
3205 .set_guest_debug = set_guest_debug,
3206 .guest_debug_pre = kvm_guest_debug_pre,
3207 .get_msr = vmx_get_msr,
3208 .set_msr = vmx_set_msr,
3209 .get_segment_base = vmx_get_segment_base,
3210 .get_segment = vmx_get_segment,
3211 .set_segment = vmx_set_segment,
3212 .get_cpl = vmx_get_cpl,
3213 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3214 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3215 .set_cr0 = vmx_set_cr0,
3216 .set_cr3 = vmx_set_cr3,
3217 .set_cr4 = vmx_set_cr4,
3218 .set_efer = vmx_set_efer,
3219 .get_idt = vmx_get_idt,
3220 .set_idt = vmx_set_idt,
3221 .get_gdt = vmx_get_gdt,
3222 .set_gdt = vmx_set_gdt,
3223 .cache_reg = vmx_cache_reg,
3224 .get_rflags = vmx_get_rflags,
3225 .set_rflags = vmx_set_rflags,
3226
3227 .tlb_flush = vmx_flush_tlb,
3228
3229 .run = vmx_vcpu_run,
3230 .handle_exit = kvm_handle_exit,
3231 .skip_emulated_instruction = skip_emulated_instruction,
3232 .patch_hypercall = vmx_patch_hypercall,
3233 .get_irq = vmx_get_irq,
3234 .set_irq = vmx_inject_irq,
3235 .queue_exception = vmx_queue_exception,
3236 .exception_injected = vmx_exception_injected,
3237 .inject_pending_irq = vmx_intr_assist,
3238 .inject_pending_vectors = do_interrupt_requests,
3239
3240 .set_tss_addr = vmx_set_tss_addr,
3241 .get_tdp_level = get_ept_level,
3242 };
3243
3244 static int __init vmx_init(void)
3245 {
3246 void *va;
3247 int r;
3248
3249 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3250 if (!vmx_io_bitmap_a)
3251 return -ENOMEM;
3252
3253 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3254 if (!vmx_io_bitmap_b) {
3255 r = -ENOMEM;
3256 goto out;
3257 }
3258
3259 vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3260 if (!vmx_msr_bitmap) {
3261 r = -ENOMEM;
3262 goto out1;
3263 }
3264
3265 /*
3266 * Allow direct access to the PC debug port (it is often used for I/O
3267 * delays, but the vmexits simply slow things down).
3268 */
3269 va = kmap(vmx_io_bitmap_a);
3270 memset(va, 0xff, PAGE_SIZE);
3271 clear_bit(0x80, va);
3272 kunmap(vmx_io_bitmap_a);
3273
3274 va = kmap(vmx_io_bitmap_b);
3275 memset(va, 0xff, PAGE_SIZE);
3276 kunmap(vmx_io_bitmap_b);
3277
3278 va = kmap(vmx_msr_bitmap);
3279 memset(va, 0xff, PAGE_SIZE);
3280 kunmap(vmx_msr_bitmap);
3281
3282 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3283
3284 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3285 if (r)
3286 goto out2;
3287
3288 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3289 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3290 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3291 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3292 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3293
3294 if (vm_need_ept()) {
3295 bypass_guest_pf = 0;
3296 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3297 VMX_EPT_WRITABLE_MASK |
3298 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3299 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3300 VMX_EPT_EXECUTABLE_MASK);
3301 kvm_enable_tdp();
3302 } else
3303 kvm_disable_tdp();
3304
3305 if (bypass_guest_pf)
3306 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3307
3308 ept_sync_global();
3309
3310 return 0;
3311
3312 out2:
3313 __free_page(vmx_msr_bitmap);
3314 out1:
3315 __free_page(vmx_io_bitmap_b);
3316 out:
3317 __free_page(vmx_io_bitmap_a);
3318 return r;
3319 }
3320
3321 static void __exit vmx_exit(void)
3322 {
3323 __free_page(vmx_msr_bitmap);
3324 __free_page(vmx_io_bitmap_b);
3325 __free_page(vmx_io_bitmap_a);
3326
3327 kvm_exit();
3328 }
3329
3330 module_init(vmx_init)
3331 module_exit(vmx_exit)
This page took 0.182217 seconds and 5 git commands to generate.