Merge branch 'next/drivers' into HEAD
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45
46 #include "trace.h"
47
48 #define __ex(x) __kvm_handle_fault_on_reboot(x)
49 #define __ex_clear(x, reg) \
50 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
51
52 MODULE_AUTHOR("Qumranet");
53 MODULE_LICENSE("GPL");
54
55 static const struct x86_cpu_id vmx_cpu_id[] = {
56 X86_FEATURE_MATCH(X86_FEATURE_VMX),
57 {}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
60
61 static bool __read_mostly enable_vpid = 1;
62 module_param_named(vpid, enable_vpid, bool, 0444);
63
64 static bool __read_mostly flexpriority_enabled = 1;
65 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
66
67 static bool __read_mostly enable_ept = 1;
68 module_param_named(ept, enable_ept, bool, S_IRUGO);
69
70 static bool __read_mostly enable_unrestricted_guest = 1;
71 module_param_named(unrestricted_guest,
72 enable_unrestricted_guest, bool, S_IRUGO);
73
74 static bool __read_mostly enable_ept_ad_bits = 1;
75 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
76
77 static bool __read_mostly emulate_invalid_guest_state = true;
78 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
79
80 static bool __read_mostly vmm_exclusive = 1;
81 module_param(vmm_exclusive, bool, S_IRUGO);
82
83 static bool __read_mostly fasteoi = 1;
84 module_param(fasteoi, bool, S_IRUGO);
85
86 /*
87 * If nested=1, nested virtualization is supported, i.e., guests may use
88 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
89 * use VMX instructions.
90 */
91 static bool __read_mostly nested = 0;
92 module_param(nested, bool, S_IRUGO);
93
94 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
95 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
96 #define KVM_GUEST_CR0_MASK \
97 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
98 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
99 (X86_CR0_WP | X86_CR0_NE)
100 #define KVM_VM_CR0_ALWAYS_ON \
101 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
102 #define KVM_CR4_GUEST_OWNED_BITS \
103 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
104 | X86_CR4_OSXMMEXCPT)
105
106 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
107 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
108
109 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
110
111 /*
112 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
113 * ple_gap: upper bound on the amount of time between two successive
114 * executions of PAUSE in a loop. Also indicate if ple enabled.
115 * According to test, this time is usually smaller than 128 cycles.
116 * ple_window: upper bound on the amount of time a guest is allowed to execute
117 * in a PAUSE loop. Tests indicate that most spinlocks are held for
118 * less than 2^12 cycles
119 * Time is measured based on a counter that runs at the same rate as the TSC,
120 * refer SDM volume 3b section 21.6.13 & 22.1.3.
121 */
122 #define KVM_VMX_DEFAULT_PLE_GAP 128
123 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
124 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
125 module_param(ple_gap, int, S_IRUGO);
126
127 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
128 module_param(ple_window, int, S_IRUGO);
129
130 #define NR_AUTOLOAD_MSRS 8
131 #define VMCS02_POOL_SIZE 1
132
133 struct vmcs {
134 u32 revision_id;
135 u32 abort;
136 char data[0];
137 };
138
139 /*
140 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
141 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
142 * loaded on this CPU (so we can clear them if the CPU goes down).
143 */
144 struct loaded_vmcs {
145 struct vmcs *vmcs;
146 int cpu;
147 int launched;
148 struct list_head loaded_vmcss_on_cpu_link;
149 };
150
151 struct shared_msr_entry {
152 unsigned index;
153 u64 data;
154 u64 mask;
155 };
156
157 /*
158 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
159 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
160 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
161 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
162 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
163 * More than one of these structures may exist, if L1 runs multiple L2 guests.
164 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
165 * underlying hardware which will be used to run L2.
166 * This structure is packed to ensure that its layout is identical across
167 * machines (necessary for live migration).
168 * If there are changes in this struct, VMCS12_REVISION must be changed.
169 */
170 typedef u64 natural_width;
171 struct __packed vmcs12 {
172 /* According to the Intel spec, a VMCS region must start with the
173 * following two fields. Then follow implementation-specific data.
174 */
175 u32 revision_id;
176 u32 abort;
177
178 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
179 u32 padding[7]; /* room for future expansion */
180
181 u64 io_bitmap_a;
182 u64 io_bitmap_b;
183 u64 msr_bitmap;
184 u64 vm_exit_msr_store_addr;
185 u64 vm_exit_msr_load_addr;
186 u64 vm_entry_msr_load_addr;
187 u64 tsc_offset;
188 u64 virtual_apic_page_addr;
189 u64 apic_access_addr;
190 u64 ept_pointer;
191 u64 guest_physical_address;
192 u64 vmcs_link_pointer;
193 u64 guest_ia32_debugctl;
194 u64 guest_ia32_pat;
195 u64 guest_ia32_efer;
196 u64 guest_ia32_perf_global_ctrl;
197 u64 guest_pdptr0;
198 u64 guest_pdptr1;
199 u64 guest_pdptr2;
200 u64 guest_pdptr3;
201 u64 host_ia32_pat;
202 u64 host_ia32_efer;
203 u64 host_ia32_perf_global_ctrl;
204 u64 padding64[8]; /* room for future expansion */
205 /*
206 * To allow migration of L1 (complete with its L2 guests) between
207 * machines of different natural widths (32 or 64 bit), we cannot have
208 * unsigned long fields with no explict size. We use u64 (aliased
209 * natural_width) instead. Luckily, x86 is little-endian.
210 */
211 natural_width cr0_guest_host_mask;
212 natural_width cr4_guest_host_mask;
213 natural_width cr0_read_shadow;
214 natural_width cr4_read_shadow;
215 natural_width cr3_target_value0;
216 natural_width cr3_target_value1;
217 natural_width cr3_target_value2;
218 natural_width cr3_target_value3;
219 natural_width exit_qualification;
220 natural_width guest_linear_address;
221 natural_width guest_cr0;
222 natural_width guest_cr3;
223 natural_width guest_cr4;
224 natural_width guest_es_base;
225 natural_width guest_cs_base;
226 natural_width guest_ss_base;
227 natural_width guest_ds_base;
228 natural_width guest_fs_base;
229 natural_width guest_gs_base;
230 natural_width guest_ldtr_base;
231 natural_width guest_tr_base;
232 natural_width guest_gdtr_base;
233 natural_width guest_idtr_base;
234 natural_width guest_dr7;
235 natural_width guest_rsp;
236 natural_width guest_rip;
237 natural_width guest_rflags;
238 natural_width guest_pending_dbg_exceptions;
239 natural_width guest_sysenter_esp;
240 natural_width guest_sysenter_eip;
241 natural_width host_cr0;
242 natural_width host_cr3;
243 natural_width host_cr4;
244 natural_width host_fs_base;
245 natural_width host_gs_base;
246 natural_width host_tr_base;
247 natural_width host_gdtr_base;
248 natural_width host_idtr_base;
249 natural_width host_ia32_sysenter_esp;
250 natural_width host_ia32_sysenter_eip;
251 natural_width host_rsp;
252 natural_width host_rip;
253 natural_width paddingl[8]; /* room for future expansion */
254 u32 pin_based_vm_exec_control;
255 u32 cpu_based_vm_exec_control;
256 u32 exception_bitmap;
257 u32 page_fault_error_code_mask;
258 u32 page_fault_error_code_match;
259 u32 cr3_target_count;
260 u32 vm_exit_controls;
261 u32 vm_exit_msr_store_count;
262 u32 vm_exit_msr_load_count;
263 u32 vm_entry_controls;
264 u32 vm_entry_msr_load_count;
265 u32 vm_entry_intr_info_field;
266 u32 vm_entry_exception_error_code;
267 u32 vm_entry_instruction_len;
268 u32 tpr_threshold;
269 u32 secondary_vm_exec_control;
270 u32 vm_instruction_error;
271 u32 vm_exit_reason;
272 u32 vm_exit_intr_info;
273 u32 vm_exit_intr_error_code;
274 u32 idt_vectoring_info_field;
275 u32 idt_vectoring_error_code;
276 u32 vm_exit_instruction_len;
277 u32 vmx_instruction_info;
278 u32 guest_es_limit;
279 u32 guest_cs_limit;
280 u32 guest_ss_limit;
281 u32 guest_ds_limit;
282 u32 guest_fs_limit;
283 u32 guest_gs_limit;
284 u32 guest_ldtr_limit;
285 u32 guest_tr_limit;
286 u32 guest_gdtr_limit;
287 u32 guest_idtr_limit;
288 u32 guest_es_ar_bytes;
289 u32 guest_cs_ar_bytes;
290 u32 guest_ss_ar_bytes;
291 u32 guest_ds_ar_bytes;
292 u32 guest_fs_ar_bytes;
293 u32 guest_gs_ar_bytes;
294 u32 guest_ldtr_ar_bytes;
295 u32 guest_tr_ar_bytes;
296 u32 guest_interruptibility_info;
297 u32 guest_activity_state;
298 u32 guest_sysenter_cs;
299 u32 host_ia32_sysenter_cs;
300 u32 padding32[8]; /* room for future expansion */
301 u16 virtual_processor_id;
302 u16 guest_es_selector;
303 u16 guest_cs_selector;
304 u16 guest_ss_selector;
305 u16 guest_ds_selector;
306 u16 guest_fs_selector;
307 u16 guest_gs_selector;
308 u16 guest_ldtr_selector;
309 u16 guest_tr_selector;
310 u16 host_es_selector;
311 u16 host_cs_selector;
312 u16 host_ss_selector;
313 u16 host_ds_selector;
314 u16 host_fs_selector;
315 u16 host_gs_selector;
316 u16 host_tr_selector;
317 };
318
319 /*
320 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
321 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
322 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
323 */
324 #define VMCS12_REVISION 0x11e57ed0
325
326 /*
327 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
328 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
329 * current implementation, 4K are reserved to avoid future complications.
330 */
331 #define VMCS12_SIZE 0x1000
332
333 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
334 struct vmcs02_list {
335 struct list_head list;
336 gpa_t vmptr;
337 struct loaded_vmcs vmcs02;
338 };
339
340 /*
341 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
342 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
343 */
344 struct nested_vmx {
345 /* Has the level1 guest done vmxon? */
346 bool vmxon;
347
348 /* The guest-physical address of the current VMCS L1 keeps for L2 */
349 gpa_t current_vmptr;
350 /* The host-usable pointer to the above */
351 struct page *current_vmcs12_page;
352 struct vmcs12 *current_vmcs12;
353
354 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
355 struct list_head vmcs02_pool;
356 int vmcs02_num;
357 u64 vmcs01_tsc_offset;
358 /* L2 must run next, and mustn't decide to exit to L1. */
359 bool nested_run_pending;
360 /*
361 * Guest pages referred to in vmcs02 with host-physical pointers, so
362 * we must keep them pinned while L2 runs.
363 */
364 struct page *apic_access_page;
365 };
366
367 struct vcpu_vmx {
368 struct kvm_vcpu vcpu;
369 unsigned long host_rsp;
370 u8 fail;
371 u8 cpl;
372 bool nmi_known_unmasked;
373 u32 exit_intr_info;
374 u32 idt_vectoring_info;
375 ulong rflags;
376 struct shared_msr_entry *guest_msrs;
377 int nmsrs;
378 int save_nmsrs;
379 #ifdef CONFIG_X86_64
380 u64 msr_host_kernel_gs_base;
381 u64 msr_guest_kernel_gs_base;
382 #endif
383 /*
384 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
385 * non-nested (L1) guest, it always points to vmcs01. For a nested
386 * guest (L2), it points to a different VMCS.
387 */
388 struct loaded_vmcs vmcs01;
389 struct loaded_vmcs *loaded_vmcs;
390 bool __launched; /* temporary, used in vmx_vcpu_run */
391 struct msr_autoload {
392 unsigned nr;
393 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
394 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
395 } msr_autoload;
396 struct {
397 int loaded;
398 u16 fs_sel, gs_sel, ldt_sel;
399 #ifdef CONFIG_X86_64
400 u16 ds_sel, es_sel;
401 #endif
402 int gs_ldt_reload_needed;
403 int fs_reload_needed;
404 } host_state;
405 struct {
406 int vm86_active;
407 ulong save_rflags;
408 struct kvm_save_segment {
409 u16 selector;
410 unsigned long base;
411 u32 limit;
412 u32 ar;
413 } tr, es, ds, fs, gs;
414 } rmode;
415 struct {
416 u32 bitmask; /* 4 bits per segment (1 bit per field) */
417 struct kvm_save_segment seg[8];
418 } segment_cache;
419 int vpid;
420 bool emulation_required;
421
422 /* Support for vnmi-less CPUs */
423 int soft_vnmi_blocked;
424 ktime_t entry_time;
425 s64 vnmi_blocked_time;
426 u32 exit_reason;
427
428 bool rdtscp_enabled;
429
430 /* Support for a guest hypervisor (nested VMX) */
431 struct nested_vmx nested;
432 };
433
434 enum segment_cache_field {
435 SEG_FIELD_SEL = 0,
436 SEG_FIELD_BASE = 1,
437 SEG_FIELD_LIMIT = 2,
438 SEG_FIELD_AR = 3,
439
440 SEG_FIELD_NR = 4
441 };
442
443 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
444 {
445 return container_of(vcpu, struct vcpu_vmx, vcpu);
446 }
447
448 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
449 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
450 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
451 [number##_HIGH] = VMCS12_OFFSET(name)+4
452
453 static unsigned short vmcs_field_to_offset_table[] = {
454 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
455 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
456 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
457 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
458 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
459 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
460 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
461 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
462 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
463 FIELD(HOST_ES_SELECTOR, host_es_selector),
464 FIELD(HOST_CS_SELECTOR, host_cs_selector),
465 FIELD(HOST_SS_SELECTOR, host_ss_selector),
466 FIELD(HOST_DS_SELECTOR, host_ds_selector),
467 FIELD(HOST_FS_SELECTOR, host_fs_selector),
468 FIELD(HOST_GS_SELECTOR, host_gs_selector),
469 FIELD(HOST_TR_SELECTOR, host_tr_selector),
470 FIELD64(IO_BITMAP_A, io_bitmap_a),
471 FIELD64(IO_BITMAP_B, io_bitmap_b),
472 FIELD64(MSR_BITMAP, msr_bitmap),
473 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
474 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
475 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
476 FIELD64(TSC_OFFSET, tsc_offset),
477 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
478 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
479 FIELD64(EPT_POINTER, ept_pointer),
480 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
481 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
482 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
483 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
484 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
485 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
486 FIELD64(GUEST_PDPTR0, guest_pdptr0),
487 FIELD64(GUEST_PDPTR1, guest_pdptr1),
488 FIELD64(GUEST_PDPTR2, guest_pdptr2),
489 FIELD64(GUEST_PDPTR3, guest_pdptr3),
490 FIELD64(HOST_IA32_PAT, host_ia32_pat),
491 FIELD64(HOST_IA32_EFER, host_ia32_efer),
492 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
493 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
494 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
495 FIELD(EXCEPTION_BITMAP, exception_bitmap),
496 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
497 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
498 FIELD(CR3_TARGET_COUNT, cr3_target_count),
499 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
500 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
501 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
502 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
503 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
504 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
505 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
506 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
507 FIELD(TPR_THRESHOLD, tpr_threshold),
508 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
509 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
510 FIELD(VM_EXIT_REASON, vm_exit_reason),
511 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
512 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
513 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
514 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
515 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
516 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
517 FIELD(GUEST_ES_LIMIT, guest_es_limit),
518 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
519 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
520 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
521 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
522 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
523 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
524 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
525 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
526 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
527 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
528 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
529 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
530 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
531 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
532 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
533 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
534 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
535 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
536 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
537 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
538 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
539 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
540 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
541 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
542 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
543 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
544 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
545 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
546 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
547 FIELD(EXIT_QUALIFICATION, exit_qualification),
548 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
549 FIELD(GUEST_CR0, guest_cr0),
550 FIELD(GUEST_CR3, guest_cr3),
551 FIELD(GUEST_CR4, guest_cr4),
552 FIELD(GUEST_ES_BASE, guest_es_base),
553 FIELD(GUEST_CS_BASE, guest_cs_base),
554 FIELD(GUEST_SS_BASE, guest_ss_base),
555 FIELD(GUEST_DS_BASE, guest_ds_base),
556 FIELD(GUEST_FS_BASE, guest_fs_base),
557 FIELD(GUEST_GS_BASE, guest_gs_base),
558 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
559 FIELD(GUEST_TR_BASE, guest_tr_base),
560 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
561 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
562 FIELD(GUEST_DR7, guest_dr7),
563 FIELD(GUEST_RSP, guest_rsp),
564 FIELD(GUEST_RIP, guest_rip),
565 FIELD(GUEST_RFLAGS, guest_rflags),
566 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
567 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
568 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
569 FIELD(HOST_CR0, host_cr0),
570 FIELD(HOST_CR3, host_cr3),
571 FIELD(HOST_CR4, host_cr4),
572 FIELD(HOST_FS_BASE, host_fs_base),
573 FIELD(HOST_GS_BASE, host_gs_base),
574 FIELD(HOST_TR_BASE, host_tr_base),
575 FIELD(HOST_GDTR_BASE, host_gdtr_base),
576 FIELD(HOST_IDTR_BASE, host_idtr_base),
577 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
578 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
579 FIELD(HOST_RSP, host_rsp),
580 FIELD(HOST_RIP, host_rip),
581 };
582 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
583
584 static inline short vmcs_field_to_offset(unsigned long field)
585 {
586 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
587 return -1;
588 return vmcs_field_to_offset_table[field];
589 }
590
591 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
592 {
593 return to_vmx(vcpu)->nested.current_vmcs12;
594 }
595
596 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
597 {
598 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
599 if (is_error_page(page)) {
600 kvm_release_page_clean(page);
601 return NULL;
602 }
603 return page;
604 }
605
606 static void nested_release_page(struct page *page)
607 {
608 kvm_release_page_dirty(page);
609 }
610
611 static void nested_release_page_clean(struct page *page)
612 {
613 kvm_release_page_clean(page);
614 }
615
616 static u64 construct_eptp(unsigned long root_hpa);
617 static void kvm_cpu_vmxon(u64 addr);
618 static void kvm_cpu_vmxoff(void);
619 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
620 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
621 static void vmx_set_segment(struct kvm_vcpu *vcpu,
622 struct kvm_segment *var, int seg);
623 static void vmx_get_segment(struct kvm_vcpu *vcpu,
624 struct kvm_segment *var, int seg);
625
626 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
627 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
628 /*
629 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
630 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
631 */
632 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
633 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
634
635 static unsigned long *vmx_io_bitmap_a;
636 static unsigned long *vmx_io_bitmap_b;
637 static unsigned long *vmx_msr_bitmap_legacy;
638 static unsigned long *vmx_msr_bitmap_longmode;
639
640 static bool cpu_has_load_ia32_efer;
641 static bool cpu_has_load_perf_global_ctrl;
642
643 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
644 static DEFINE_SPINLOCK(vmx_vpid_lock);
645
646 static struct vmcs_config {
647 int size;
648 int order;
649 u32 revision_id;
650 u32 pin_based_exec_ctrl;
651 u32 cpu_based_exec_ctrl;
652 u32 cpu_based_2nd_exec_ctrl;
653 u32 vmexit_ctrl;
654 u32 vmentry_ctrl;
655 } vmcs_config;
656
657 static struct vmx_capability {
658 u32 ept;
659 u32 vpid;
660 } vmx_capability;
661
662 #define VMX_SEGMENT_FIELD(seg) \
663 [VCPU_SREG_##seg] = { \
664 .selector = GUEST_##seg##_SELECTOR, \
665 .base = GUEST_##seg##_BASE, \
666 .limit = GUEST_##seg##_LIMIT, \
667 .ar_bytes = GUEST_##seg##_AR_BYTES, \
668 }
669
670 static struct kvm_vmx_segment_field {
671 unsigned selector;
672 unsigned base;
673 unsigned limit;
674 unsigned ar_bytes;
675 } kvm_vmx_segment_fields[] = {
676 VMX_SEGMENT_FIELD(CS),
677 VMX_SEGMENT_FIELD(DS),
678 VMX_SEGMENT_FIELD(ES),
679 VMX_SEGMENT_FIELD(FS),
680 VMX_SEGMENT_FIELD(GS),
681 VMX_SEGMENT_FIELD(SS),
682 VMX_SEGMENT_FIELD(TR),
683 VMX_SEGMENT_FIELD(LDTR),
684 };
685
686 static u64 host_efer;
687
688 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
689
690 /*
691 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
692 * away by decrementing the array size.
693 */
694 static const u32 vmx_msr_index[] = {
695 #ifdef CONFIG_X86_64
696 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
697 #endif
698 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
699 };
700 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
701
702 static inline bool is_page_fault(u32 intr_info)
703 {
704 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
705 INTR_INFO_VALID_MASK)) ==
706 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
707 }
708
709 static inline bool is_no_device(u32 intr_info)
710 {
711 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
712 INTR_INFO_VALID_MASK)) ==
713 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
714 }
715
716 static inline bool is_invalid_opcode(u32 intr_info)
717 {
718 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
719 INTR_INFO_VALID_MASK)) ==
720 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
721 }
722
723 static inline bool is_external_interrupt(u32 intr_info)
724 {
725 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
726 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
727 }
728
729 static inline bool is_machine_check(u32 intr_info)
730 {
731 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
732 INTR_INFO_VALID_MASK)) ==
733 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
734 }
735
736 static inline bool cpu_has_vmx_msr_bitmap(void)
737 {
738 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
739 }
740
741 static inline bool cpu_has_vmx_tpr_shadow(void)
742 {
743 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
744 }
745
746 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
747 {
748 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
749 }
750
751 static inline bool cpu_has_secondary_exec_ctrls(void)
752 {
753 return vmcs_config.cpu_based_exec_ctrl &
754 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
755 }
756
757 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
758 {
759 return vmcs_config.cpu_based_2nd_exec_ctrl &
760 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
761 }
762
763 static inline bool cpu_has_vmx_flexpriority(void)
764 {
765 return cpu_has_vmx_tpr_shadow() &&
766 cpu_has_vmx_virtualize_apic_accesses();
767 }
768
769 static inline bool cpu_has_vmx_ept_execute_only(void)
770 {
771 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
772 }
773
774 static inline bool cpu_has_vmx_eptp_uncacheable(void)
775 {
776 return vmx_capability.ept & VMX_EPTP_UC_BIT;
777 }
778
779 static inline bool cpu_has_vmx_eptp_writeback(void)
780 {
781 return vmx_capability.ept & VMX_EPTP_WB_BIT;
782 }
783
784 static inline bool cpu_has_vmx_ept_2m_page(void)
785 {
786 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
787 }
788
789 static inline bool cpu_has_vmx_ept_1g_page(void)
790 {
791 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
792 }
793
794 static inline bool cpu_has_vmx_ept_4levels(void)
795 {
796 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
797 }
798
799 static inline bool cpu_has_vmx_ept_ad_bits(void)
800 {
801 return vmx_capability.ept & VMX_EPT_AD_BIT;
802 }
803
804 static inline bool cpu_has_vmx_invept_individual_addr(void)
805 {
806 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
807 }
808
809 static inline bool cpu_has_vmx_invept_context(void)
810 {
811 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
812 }
813
814 static inline bool cpu_has_vmx_invept_global(void)
815 {
816 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
817 }
818
819 static inline bool cpu_has_vmx_invvpid_single(void)
820 {
821 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
822 }
823
824 static inline bool cpu_has_vmx_invvpid_global(void)
825 {
826 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
827 }
828
829 static inline bool cpu_has_vmx_ept(void)
830 {
831 return vmcs_config.cpu_based_2nd_exec_ctrl &
832 SECONDARY_EXEC_ENABLE_EPT;
833 }
834
835 static inline bool cpu_has_vmx_unrestricted_guest(void)
836 {
837 return vmcs_config.cpu_based_2nd_exec_ctrl &
838 SECONDARY_EXEC_UNRESTRICTED_GUEST;
839 }
840
841 static inline bool cpu_has_vmx_ple(void)
842 {
843 return vmcs_config.cpu_based_2nd_exec_ctrl &
844 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
845 }
846
847 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
848 {
849 return flexpriority_enabled && irqchip_in_kernel(kvm);
850 }
851
852 static inline bool cpu_has_vmx_vpid(void)
853 {
854 return vmcs_config.cpu_based_2nd_exec_ctrl &
855 SECONDARY_EXEC_ENABLE_VPID;
856 }
857
858 static inline bool cpu_has_vmx_rdtscp(void)
859 {
860 return vmcs_config.cpu_based_2nd_exec_ctrl &
861 SECONDARY_EXEC_RDTSCP;
862 }
863
864 static inline bool cpu_has_vmx_invpcid(void)
865 {
866 return vmcs_config.cpu_based_2nd_exec_ctrl &
867 SECONDARY_EXEC_ENABLE_INVPCID;
868 }
869
870 static inline bool cpu_has_virtual_nmis(void)
871 {
872 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
873 }
874
875 static inline bool cpu_has_vmx_wbinvd_exit(void)
876 {
877 return vmcs_config.cpu_based_2nd_exec_ctrl &
878 SECONDARY_EXEC_WBINVD_EXITING;
879 }
880
881 static inline bool report_flexpriority(void)
882 {
883 return flexpriority_enabled;
884 }
885
886 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
887 {
888 return vmcs12->cpu_based_vm_exec_control & bit;
889 }
890
891 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
892 {
893 return (vmcs12->cpu_based_vm_exec_control &
894 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
895 (vmcs12->secondary_vm_exec_control & bit);
896 }
897
898 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
899 struct kvm_vcpu *vcpu)
900 {
901 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
902 }
903
904 static inline bool is_exception(u32 intr_info)
905 {
906 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
907 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
908 }
909
910 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
911 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
912 struct vmcs12 *vmcs12,
913 u32 reason, unsigned long qualification);
914
915 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
916 {
917 int i;
918
919 for (i = 0; i < vmx->nmsrs; ++i)
920 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
921 return i;
922 return -1;
923 }
924
925 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
926 {
927 struct {
928 u64 vpid : 16;
929 u64 rsvd : 48;
930 u64 gva;
931 } operand = { vpid, 0, gva };
932
933 asm volatile (__ex(ASM_VMX_INVVPID)
934 /* CF==1 or ZF==1 --> rc = -1 */
935 "; ja 1f ; ud2 ; 1:"
936 : : "a"(&operand), "c"(ext) : "cc", "memory");
937 }
938
939 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
940 {
941 struct {
942 u64 eptp, gpa;
943 } operand = {eptp, gpa};
944
945 asm volatile (__ex(ASM_VMX_INVEPT)
946 /* CF==1 or ZF==1 --> rc = -1 */
947 "; ja 1f ; ud2 ; 1:\n"
948 : : "a" (&operand), "c" (ext) : "cc", "memory");
949 }
950
951 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
952 {
953 int i;
954
955 i = __find_msr_index(vmx, msr);
956 if (i >= 0)
957 return &vmx->guest_msrs[i];
958 return NULL;
959 }
960
961 static void vmcs_clear(struct vmcs *vmcs)
962 {
963 u64 phys_addr = __pa(vmcs);
964 u8 error;
965
966 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
967 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
968 : "cc", "memory");
969 if (error)
970 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
971 vmcs, phys_addr);
972 }
973
974 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
975 {
976 vmcs_clear(loaded_vmcs->vmcs);
977 loaded_vmcs->cpu = -1;
978 loaded_vmcs->launched = 0;
979 }
980
981 static void vmcs_load(struct vmcs *vmcs)
982 {
983 u64 phys_addr = __pa(vmcs);
984 u8 error;
985
986 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
987 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
988 : "cc", "memory");
989 if (error)
990 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
991 vmcs, phys_addr);
992 }
993
994 static void __loaded_vmcs_clear(void *arg)
995 {
996 struct loaded_vmcs *loaded_vmcs = arg;
997 int cpu = raw_smp_processor_id();
998
999 if (loaded_vmcs->cpu != cpu)
1000 return; /* vcpu migration can race with cpu offline */
1001 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1002 per_cpu(current_vmcs, cpu) = NULL;
1003 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1004 loaded_vmcs_init(loaded_vmcs);
1005 }
1006
1007 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1008 {
1009 if (loaded_vmcs->cpu != -1)
1010 smp_call_function_single(
1011 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
1012 }
1013
1014 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1015 {
1016 if (vmx->vpid == 0)
1017 return;
1018
1019 if (cpu_has_vmx_invvpid_single())
1020 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1021 }
1022
1023 static inline void vpid_sync_vcpu_global(void)
1024 {
1025 if (cpu_has_vmx_invvpid_global())
1026 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1027 }
1028
1029 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1030 {
1031 if (cpu_has_vmx_invvpid_single())
1032 vpid_sync_vcpu_single(vmx);
1033 else
1034 vpid_sync_vcpu_global();
1035 }
1036
1037 static inline void ept_sync_global(void)
1038 {
1039 if (cpu_has_vmx_invept_global())
1040 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1041 }
1042
1043 static inline void ept_sync_context(u64 eptp)
1044 {
1045 if (enable_ept) {
1046 if (cpu_has_vmx_invept_context())
1047 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1048 else
1049 ept_sync_global();
1050 }
1051 }
1052
1053 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1054 {
1055 if (enable_ept) {
1056 if (cpu_has_vmx_invept_individual_addr())
1057 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1058 eptp, gpa);
1059 else
1060 ept_sync_context(eptp);
1061 }
1062 }
1063
1064 static __always_inline unsigned long vmcs_readl(unsigned long field)
1065 {
1066 unsigned long value;
1067
1068 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1069 : "=a"(value) : "d"(field) : "cc");
1070 return value;
1071 }
1072
1073 static __always_inline u16 vmcs_read16(unsigned long field)
1074 {
1075 return vmcs_readl(field);
1076 }
1077
1078 static __always_inline u32 vmcs_read32(unsigned long field)
1079 {
1080 return vmcs_readl(field);
1081 }
1082
1083 static __always_inline u64 vmcs_read64(unsigned long field)
1084 {
1085 #ifdef CONFIG_X86_64
1086 return vmcs_readl(field);
1087 #else
1088 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1089 #endif
1090 }
1091
1092 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1093 {
1094 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1095 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1096 dump_stack();
1097 }
1098
1099 static void vmcs_writel(unsigned long field, unsigned long value)
1100 {
1101 u8 error;
1102
1103 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1104 : "=q"(error) : "a"(value), "d"(field) : "cc");
1105 if (unlikely(error))
1106 vmwrite_error(field, value);
1107 }
1108
1109 static void vmcs_write16(unsigned long field, u16 value)
1110 {
1111 vmcs_writel(field, value);
1112 }
1113
1114 static void vmcs_write32(unsigned long field, u32 value)
1115 {
1116 vmcs_writel(field, value);
1117 }
1118
1119 static void vmcs_write64(unsigned long field, u64 value)
1120 {
1121 vmcs_writel(field, value);
1122 #ifndef CONFIG_X86_64
1123 asm volatile ("");
1124 vmcs_writel(field+1, value >> 32);
1125 #endif
1126 }
1127
1128 static void vmcs_clear_bits(unsigned long field, u32 mask)
1129 {
1130 vmcs_writel(field, vmcs_readl(field) & ~mask);
1131 }
1132
1133 static void vmcs_set_bits(unsigned long field, u32 mask)
1134 {
1135 vmcs_writel(field, vmcs_readl(field) | mask);
1136 }
1137
1138 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1139 {
1140 vmx->segment_cache.bitmask = 0;
1141 }
1142
1143 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1144 unsigned field)
1145 {
1146 bool ret;
1147 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1148
1149 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1150 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1151 vmx->segment_cache.bitmask = 0;
1152 }
1153 ret = vmx->segment_cache.bitmask & mask;
1154 vmx->segment_cache.bitmask |= mask;
1155 return ret;
1156 }
1157
1158 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1159 {
1160 u16 *p = &vmx->segment_cache.seg[seg].selector;
1161
1162 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1163 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1164 return *p;
1165 }
1166
1167 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1168 {
1169 ulong *p = &vmx->segment_cache.seg[seg].base;
1170
1171 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1172 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1173 return *p;
1174 }
1175
1176 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1177 {
1178 u32 *p = &vmx->segment_cache.seg[seg].limit;
1179
1180 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1181 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1182 return *p;
1183 }
1184
1185 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1186 {
1187 u32 *p = &vmx->segment_cache.seg[seg].ar;
1188
1189 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1190 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1191 return *p;
1192 }
1193
1194 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1195 {
1196 u32 eb;
1197
1198 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1199 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1200 if ((vcpu->guest_debug &
1201 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1202 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1203 eb |= 1u << BP_VECTOR;
1204 if (to_vmx(vcpu)->rmode.vm86_active)
1205 eb = ~0;
1206 if (enable_ept)
1207 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1208 if (vcpu->fpu_active)
1209 eb &= ~(1u << NM_VECTOR);
1210
1211 /* When we are running a nested L2 guest and L1 specified for it a
1212 * certain exception bitmap, we must trap the same exceptions and pass
1213 * them to L1. When running L2, we will only handle the exceptions
1214 * specified above if L1 did not want them.
1215 */
1216 if (is_guest_mode(vcpu))
1217 eb |= get_vmcs12(vcpu)->exception_bitmap;
1218
1219 vmcs_write32(EXCEPTION_BITMAP, eb);
1220 }
1221
1222 static void clear_atomic_switch_msr_special(unsigned long entry,
1223 unsigned long exit)
1224 {
1225 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1226 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1227 }
1228
1229 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1230 {
1231 unsigned i;
1232 struct msr_autoload *m = &vmx->msr_autoload;
1233
1234 switch (msr) {
1235 case MSR_EFER:
1236 if (cpu_has_load_ia32_efer) {
1237 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1238 VM_EXIT_LOAD_IA32_EFER);
1239 return;
1240 }
1241 break;
1242 case MSR_CORE_PERF_GLOBAL_CTRL:
1243 if (cpu_has_load_perf_global_ctrl) {
1244 clear_atomic_switch_msr_special(
1245 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1246 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1247 return;
1248 }
1249 break;
1250 }
1251
1252 for (i = 0; i < m->nr; ++i)
1253 if (m->guest[i].index == msr)
1254 break;
1255
1256 if (i == m->nr)
1257 return;
1258 --m->nr;
1259 m->guest[i] = m->guest[m->nr];
1260 m->host[i] = m->host[m->nr];
1261 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1262 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1263 }
1264
1265 static void add_atomic_switch_msr_special(unsigned long entry,
1266 unsigned long exit, unsigned long guest_val_vmcs,
1267 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1268 {
1269 vmcs_write64(guest_val_vmcs, guest_val);
1270 vmcs_write64(host_val_vmcs, host_val);
1271 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1272 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1273 }
1274
1275 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1276 u64 guest_val, u64 host_val)
1277 {
1278 unsigned i;
1279 struct msr_autoload *m = &vmx->msr_autoload;
1280
1281 switch (msr) {
1282 case MSR_EFER:
1283 if (cpu_has_load_ia32_efer) {
1284 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1285 VM_EXIT_LOAD_IA32_EFER,
1286 GUEST_IA32_EFER,
1287 HOST_IA32_EFER,
1288 guest_val, host_val);
1289 return;
1290 }
1291 break;
1292 case MSR_CORE_PERF_GLOBAL_CTRL:
1293 if (cpu_has_load_perf_global_ctrl) {
1294 add_atomic_switch_msr_special(
1295 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1296 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1297 GUEST_IA32_PERF_GLOBAL_CTRL,
1298 HOST_IA32_PERF_GLOBAL_CTRL,
1299 guest_val, host_val);
1300 return;
1301 }
1302 break;
1303 }
1304
1305 for (i = 0; i < m->nr; ++i)
1306 if (m->guest[i].index == msr)
1307 break;
1308
1309 if (i == NR_AUTOLOAD_MSRS) {
1310 printk_once(KERN_WARNING"Not enough mst switch entries. "
1311 "Can't add msr %x\n", msr);
1312 return;
1313 } else if (i == m->nr) {
1314 ++m->nr;
1315 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1316 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1317 }
1318
1319 m->guest[i].index = msr;
1320 m->guest[i].value = guest_val;
1321 m->host[i].index = msr;
1322 m->host[i].value = host_val;
1323 }
1324
1325 static void reload_tss(void)
1326 {
1327 /*
1328 * VT restores TR but not its size. Useless.
1329 */
1330 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1331 struct desc_struct *descs;
1332
1333 descs = (void *)gdt->address;
1334 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1335 load_TR_desc();
1336 }
1337
1338 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1339 {
1340 u64 guest_efer;
1341 u64 ignore_bits;
1342
1343 guest_efer = vmx->vcpu.arch.efer;
1344
1345 /*
1346 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1347 * outside long mode
1348 */
1349 ignore_bits = EFER_NX | EFER_SCE;
1350 #ifdef CONFIG_X86_64
1351 ignore_bits |= EFER_LMA | EFER_LME;
1352 /* SCE is meaningful only in long mode on Intel */
1353 if (guest_efer & EFER_LMA)
1354 ignore_bits &= ~(u64)EFER_SCE;
1355 #endif
1356 guest_efer &= ~ignore_bits;
1357 guest_efer |= host_efer & ignore_bits;
1358 vmx->guest_msrs[efer_offset].data = guest_efer;
1359 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1360
1361 clear_atomic_switch_msr(vmx, MSR_EFER);
1362 /* On ept, can't emulate nx, and must switch nx atomically */
1363 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1364 guest_efer = vmx->vcpu.arch.efer;
1365 if (!(guest_efer & EFER_LMA))
1366 guest_efer &= ~EFER_LME;
1367 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1368 return false;
1369 }
1370
1371 return true;
1372 }
1373
1374 static unsigned long segment_base(u16 selector)
1375 {
1376 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1377 struct desc_struct *d;
1378 unsigned long table_base;
1379 unsigned long v;
1380
1381 if (!(selector & ~3))
1382 return 0;
1383
1384 table_base = gdt->address;
1385
1386 if (selector & 4) { /* from ldt */
1387 u16 ldt_selector = kvm_read_ldt();
1388
1389 if (!(ldt_selector & ~3))
1390 return 0;
1391
1392 table_base = segment_base(ldt_selector);
1393 }
1394 d = (struct desc_struct *)(table_base + (selector & ~7));
1395 v = get_desc_base(d);
1396 #ifdef CONFIG_X86_64
1397 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1398 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1399 #endif
1400 return v;
1401 }
1402
1403 static inline unsigned long kvm_read_tr_base(void)
1404 {
1405 u16 tr;
1406 asm("str %0" : "=g"(tr));
1407 return segment_base(tr);
1408 }
1409
1410 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1411 {
1412 struct vcpu_vmx *vmx = to_vmx(vcpu);
1413 int i;
1414
1415 if (vmx->host_state.loaded)
1416 return;
1417
1418 vmx->host_state.loaded = 1;
1419 /*
1420 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1421 * allow segment selectors with cpl > 0 or ti == 1.
1422 */
1423 vmx->host_state.ldt_sel = kvm_read_ldt();
1424 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1425 savesegment(fs, vmx->host_state.fs_sel);
1426 if (!(vmx->host_state.fs_sel & 7)) {
1427 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1428 vmx->host_state.fs_reload_needed = 0;
1429 } else {
1430 vmcs_write16(HOST_FS_SELECTOR, 0);
1431 vmx->host_state.fs_reload_needed = 1;
1432 }
1433 savesegment(gs, vmx->host_state.gs_sel);
1434 if (!(vmx->host_state.gs_sel & 7))
1435 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1436 else {
1437 vmcs_write16(HOST_GS_SELECTOR, 0);
1438 vmx->host_state.gs_ldt_reload_needed = 1;
1439 }
1440
1441 #ifdef CONFIG_X86_64
1442 savesegment(ds, vmx->host_state.ds_sel);
1443 savesegment(es, vmx->host_state.es_sel);
1444 #endif
1445
1446 #ifdef CONFIG_X86_64
1447 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1448 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1449 #else
1450 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1451 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1452 #endif
1453
1454 #ifdef CONFIG_X86_64
1455 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1456 if (is_long_mode(&vmx->vcpu))
1457 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1458 #endif
1459 for (i = 0; i < vmx->save_nmsrs; ++i)
1460 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1461 vmx->guest_msrs[i].data,
1462 vmx->guest_msrs[i].mask);
1463 }
1464
1465 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1466 {
1467 if (!vmx->host_state.loaded)
1468 return;
1469
1470 ++vmx->vcpu.stat.host_state_reload;
1471 vmx->host_state.loaded = 0;
1472 #ifdef CONFIG_X86_64
1473 if (is_long_mode(&vmx->vcpu))
1474 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1475 #endif
1476 if (vmx->host_state.gs_ldt_reload_needed) {
1477 kvm_load_ldt(vmx->host_state.ldt_sel);
1478 #ifdef CONFIG_X86_64
1479 load_gs_index(vmx->host_state.gs_sel);
1480 #else
1481 loadsegment(gs, vmx->host_state.gs_sel);
1482 #endif
1483 }
1484 if (vmx->host_state.fs_reload_needed)
1485 loadsegment(fs, vmx->host_state.fs_sel);
1486 #ifdef CONFIG_X86_64
1487 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1488 loadsegment(ds, vmx->host_state.ds_sel);
1489 loadsegment(es, vmx->host_state.es_sel);
1490 }
1491 #endif
1492 reload_tss();
1493 #ifdef CONFIG_X86_64
1494 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1495 #endif
1496 /*
1497 * If the FPU is not active (through the host task or
1498 * the guest vcpu), then restore the cr0.TS bit.
1499 */
1500 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1501 stts();
1502 load_gdt(&__get_cpu_var(host_gdt));
1503 }
1504
1505 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1506 {
1507 preempt_disable();
1508 __vmx_load_host_state(vmx);
1509 preempt_enable();
1510 }
1511
1512 /*
1513 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1514 * vcpu mutex is already taken.
1515 */
1516 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1517 {
1518 struct vcpu_vmx *vmx = to_vmx(vcpu);
1519 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1520
1521 if (!vmm_exclusive)
1522 kvm_cpu_vmxon(phys_addr);
1523 else if (vmx->loaded_vmcs->cpu != cpu)
1524 loaded_vmcs_clear(vmx->loaded_vmcs);
1525
1526 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1527 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1528 vmcs_load(vmx->loaded_vmcs->vmcs);
1529 }
1530
1531 if (vmx->loaded_vmcs->cpu != cpu) {
1532 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1533 unsigned long sysenter_esp;
1534
1535 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1536 local_irq_disable();
1537 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1538 &per_cpu(loaded_vmcss_on_cpu, cpu));
1539 local_irq_enable();
1540
1541 /*
1542 * Linux uses per-cpu TSS and GDT, so set these when switching
1543 * processors.
1544 */
1545 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1546 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1547
1548 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1549 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1550 vmx->loaded_vmcs->cpu = cpu;
1551 }
1552 }
1553
1554 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1555 {
1556 __vmx_load_host_state(to_vmx(vcpu));
1557 if (!vmm_exclusive) {
1558 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1559 vcpu->cpu = -1;
1560 kvm_cpu_vmxoff();
1561 }
1562 }
1563
1564 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1565 {
1566 ulong cr0;
1567
1568 if (vcpu->fpu_active)
1569 return;
1570 vcpu->fpu_active = 1;
1571 cr0 = vmcs_readl(GUEST_CR0);
1572 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1573 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1574 vmcs_writel(GUEST_CR0, cr0);
1575 update_exception_bitmap(vcpu);
1576 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1577 if (is_guest_mode(vcpu))
1578 vcpu->arch.cr0_guest_owned_bits &=
1579 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1580 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1581 }
1582
1583 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1584
1585 /*
1586 * Return the cr0 value that a nested guest would read. This is a combination
1587 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1588 * its hypervisor (cr0_read_shadow).
1589 */
1590 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1591 {
1592 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1593 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1594 }
1595 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1596 {
1597 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1598 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1599 }
1600
1601 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1602 {
1603 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1604 * set this *before* calling this function.
1605 */
1606 vmx_decache_cr0_guest_bits(vcpu);
1607 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1608 update_exception_bitmap(vcpu);
1609 vcpu->arch.cr0_guest_owned_bits = 0;
1610 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1611 if (is_guest_mode(vcpu)) {
1612 /*
1613 * L1's specified read shadow might not contain the TS bit,
1614 * so now that we turned on shadowing of this bit, we need to
1615 * set this bit of the shadow. Like in nested_vmx_run we need
1616 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1617 * up-to-date here because we just decached cr0.TS (and we'll
1618 * only update vmcs12->guest_cr0 on nested exit).
1619 */
1620 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1621 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1622 (vcpu->arch.cr0 & X86_CR0_TS);
1623 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1624 } else
1625 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1626 }
1627
1628 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1629 {
1630 unsigned long rflags, save_rflags;
1631
1632 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1633 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1634 rflags = vmcs_readl(GUEST_RFLAGS);
1635 if (to_vmx(vcpu)->rmode.vm86_active) {
1636 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1637 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1638 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1639 }
1640 to_vmx(vcpu)->rflags = rflags;
1641 }
1642 return to_vmx(vcpu)->rflags;
1643 }
1644
1645 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1646 {
1647 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1648 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1649 to_vmx(vcpu)->rflags = rflags;
1650 if (to_vmx(vcpu)->rmode.vm86_active) {
1651 to_vmx(vcpu)->rmode.save_rflags = rflags;
1652 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1653 }
1654 vmcs_writel(GUEST_RFLAGS, rflags);
1655 }
1656
1657 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1658 {
1659 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1660 int ret = 0;
1661
1662 if (interruptibility & GUEST_INTR_STATE_STI)
1663 ret |= KVM_X86_SHADOW_INT_STI;
1664 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1665 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1666
1667 return ret & mask;
1668 }
1669
1670 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1671 {
1672 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1673 u32 interruptibility = interruptibility_old;
1674
1675 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1676
1677 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1678 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1679 else if (mask & KVM_X86_SHADOW_INT_STI)
1680 interruptibility |= GUEST_INTR_STATE_STI;
1681
1682 if ((interruptibility != interruptibility_old))
1683 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1684 }
1685
1686 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1687 {
1688 unsigned long rip;
1689
1690 rip = kvm_rip_read(vcpu);
1691 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1692 kvm_rip_write(vcpu, rip);
1693
1694 /* skipping an emulated instruction also counts */
1695 vmx_set_interrupt_shadow(vcpu, 0);
1696 }
1697
1698 /*
1699 * KVM wants to inject page-faults which it got to the guest. This function
1700 * checks whether in a nested guest, we need to inject them to L1 or L2.
1701 * This function assumes it is called with the exit reason in vmcs02 being
1702 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1703 * is running).
1704 */
1705 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1706 {
1707 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1708
1709 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1710 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1711 return 0;
1712
1713 nested_vmx_vmexit(vcpu);
1714 return 1;
1715 }
1716
1717 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1718 bool has_error_code, u32 error_code,
1719 bool reinject)
1720 {
1721 struct vcpu_vmx *vmx = to_vmx(vcpu);
1722 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1723
1724 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1725 nested_pf_handled(vcpu))
1726 return;
1727
1728 if (has_error_code) {
1729 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1730 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1731 }
1732
1733 if (vmx->rmode.vm86_active) {
1734 int inc_eip = 0;
1735 if (kvm_exception_is_soft(nr))
1736 inc_eip = vcpu->arch.event_exit_inst_len;
1737 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1738 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1739 return;
1740 }
1741
1742 if (kvm_exception_is_soft(nr)) {
1743 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1744 vmx->vcpu.arch.event_exit_inst_len);
1745 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1746 } else
1747 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1748
1749 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1750 }
1751
1752 static bool vmx_rdtscp_supported(void)
1753 {
1754 return cpu_has_vmx_rdtscp();
1755 }
1756
1757 static bool vmx_invpcid_supported(void)
1758 {
1759 return cpu_has_vmx_invpcid() && enable_ept;
1760 }
1761
1762 /*
1763 * Swap MSR entry in host/guest MSR entry array.
1764 */
1765 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1766 {
1767 struct shared_msr_entry tmp;
1768
1769 tmp = vmx->guest_msrs[to];
1770 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1771 vmx->guest_msrs[from] = tmp;
1772 }
1773
1774 /*
1775 * Set up the vmcs to automatically save and restore system
1776 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1777 * mode, as fiddling with msrs is very expensive.
1778 */
1779 static void setup_msrs(struct vcpu_vmx *vmx)
1780 {
1781 int save_nmsrs, index;
1782 unsigned long *msr_bitmap;
1783
1784 save_nmsrs = 0;
1785 #ifdef CONFIG_X86_64
1786 if (is_long_mode(&vmx->vcpu)) {
1787 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1788 if (index >= 0)
1789 move_msr_up(vmx, index, save_nmsrs++);
1790 index = __find_msr_index(vmx, MSR_LSTAR);
1791 if (index >= 0)
1792 move_msr_up(vmx, index, save_nmsrs++);
1793 index = __find_msr_index(vmx, MSR_CSTAR);
1794 if (index >= 0)
1795 move_msr_up(vmx, index, save_nmsrs++);
1796 index = __find_msr_index(vmx, MSR_TSC_AUX);
1797 if (index >= 0 && vmx->rdtscp_enabled)
1798 move_msr_up(vmx, index, save_nmsrs++);
1799 /*
1800 * MSR_STAR is only needed on long mode guests, and only
1801 * if efer.sce is enabled.
1802 */
1803 index = __find_msr_index(vmx, MSR_STAR);
1804 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1805 move_msr_up(vmx, index, save_nmsrs++);
1806 }
1807 #endif
1808 index = __find_msr_index(vmx, MSR_EFER);
1809 if (index >= 0 && update_transition_efer(vmx, index))
1810 move_msr_up(vmx, index, save_nmsrs++);
1811
1812 vmx->save_nmsrs = save_nmsrs;
1813
1814 if (cpu_has_vmx_msr_bitmap()) {
1815 if (is_long_mode(&vmx->vcpu))
1816 msr_bitmap = vmx_msr_bitmap_longmode;
1817 else
1818 msr_bitmap = vmx_msr_bitmap_legacy;
1819
1820 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1821 }
1822 }
1823
1824 /*
1825 * reads and returns guest's timestamp counter "register"
1826 * guest_tsc = host_tsc + tsc_offset -- 21.3
1827 */
1828 static u64 guest_read_tsc(void)
1829 {
1830 u64 host_tsc, tsc_offset;
1831
1832 rdtscll(host_tsc);
1833 tsc_offset = vmcs_read64(TSC_OFFSET);
1834 return host_tsc + tsc_offset;
1835 }
1836
1837 /*
1838 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1839 * counter, even if a nested guest (L2) is currently running.
1840 */
1841 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1842 {
1843 u64 host_tsc, tsc_offset;
1844
1845 rdtscll(host_tsc);
1846 tsc_offset = is_guest_mode(vcpu) ?
1847 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1848 vmcs_read64(TSC_OFFSET);
1849 return host_tsc + tsc_offset;
1850 }
1851
1852 /*
1853 * Engage any workarounds for mis-matched TSC rates. Currently limited to
1854 * software catchup for faster rates on slower CPUs.
1855 */
1856 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1857 {
1858 if (!scale)
1859 return;
1860
1861 if (user_tsc_khz > tsc_khz) {
1862 vcpu->arch.tsc_catchup = 1;
1863 vcpu->arch.tsc_always_catchup = 1;
1864 } else
1865 WARN(1, "user requested TSC rate below hardware speed\n");
1866 }
1867
1868 /*
1869 * writes 'offset' into guest's timestamp counter offset register
1870 */
1871 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1872 {
1873 if (is_guest_mode(vcpu)) {
1874 /*
1875 * We're here if L1 chose not to trap WRMSR to TSC. According
1876 * to the spec, this should set L1's TSC; The offset that L1
1877 * set for L2 remains unchanged, and still needs to be added
1878 * to the newly set TSC to get L2's TSC.
1879 */
1880 struct vmcs12 *vmcs12;
1881 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1882 /* recalculate vmcs02.TSC_OFFSET: */
1883 vmcs12 = get_vmcs12(vcpu);
1884 vmcs_write64(TSC_OFFSET, offset +
1885 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1886 vmcs12->tsc_offset : 0));
1887 } else {
1888 vmcs_write64(TSC_OFFSET, offset);
1889 }
1890 }
1891
1892 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1893 {
1894 u64 offset = vmcs_read64(TSC_OFFSET);
1895 vmcs_write64(TSC_OFFSET, offset + adjustment);
1896 if (is_guest_mode(vcpu)) {
1897 /* Even when running L2, the adjustment needs to apply to L1 */
1898 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1899 }
1900 }
1901
1902 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1903 {
1904 return target_tsc - native_read_tsc();
1905 }
1906
1907 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1908 {
1909 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1910 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1911 }
1912
1913 /*
1914 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1915 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1916 * all guests if the "nested" module option is off, and can also be disabled
1917 * for a single guest by disabling its VMX cpuid bit.
1918 */
1919 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1920 {
1921 return nested && guest_cpuid_has_vmx(vcpu);
1922 }
1923
1924 /*
1925 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1926 * returned for the various VMX controls MSRs when nested VMX is enabled.
1927 * The same values should also be used to verify that vmcs12 control fields are
1928 * valid during nested entry from L1 to L2.
1929 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1930 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1931 * bit in the high half is on if the corresponding bit in the control field
1932 * may be on. See also vmx_control_verify().
1933 * TODO: allow these variables to be modified (downgraded) by module options
1934 * or other means.
1935 */
1936 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1937 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1938 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1939 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1940 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1941 static __init void nested_vmx_setup_ctls_msrs(void)
1942 {
1943 /*
1944 * Note that as a general rule, the high half of the MSRs (bits in
1945 * the control fields which may be 1) should be initialized by the
1946 * intersection of the underlying hardware's MSR (i.e., features which
1947 * can be supported) and the list of features we want to expose -
1948 * because they are known to be properly supported in our code.
1949 * Also, usually, the low half of the MSRs (bits which must be 1) can
1950 * be set to 0, meaning that L1 may turn off any of these bits. The
1951 * reason is that if one of these bits is necessary, it will appear
1952 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1953 * fields of vmcs01 and vmcs02, will turn these bits off - and
1954 * nested_vmx_exit_handled() will not pass related exits to L1.
1955 * These rules have exceptions below.
1956 */
1957
1958 /* pin-based controls */
1959 /*
1960 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1961 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1962 */
1963 nested_vmx_pinbased_ctls_low = 0x16 ;
1964 nested_vmx_pinbased_ctls_high = 0x16 |
1965 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1966 PIN_BASED_VIRTUAL_NMIS;
1967
1968 /* exit controls */
1969 nested_vmx_exit_ctls_low = 0;
1970 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1971 #ifdef CONFIG_X86_64
1972 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1973 #else
1974 nested_vmx_exit_ctls_high = 0;
1975 #endif
1976
1977 /* entry controls */
1978 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1979 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1980 nested_vmx_entry_ctls_low = 0;
1981 nested_vmx_entry_ctls_high &=
1982 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1983
1984 /* cpu-based controls */
1985 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1986 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1987 nested_vmx_procbased_ctls_low = 0;
1988 nested_vmx_procbased_ctls_high &=
1989 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1990 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1991 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1992 CPU_BASED_CR3_STORE_EXITING |
1993 #ifdef CONFIG_X86_64
1994 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1995 #endif
1996 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1997 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1998 CPU_BASED_RDPMC_EXITING |
1999 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2000 /*
2001 * We can allow some features even when not supported by the
2002 * hardware. For example, L1 can specify an MSR bitmap - and we
2003 * can use it to avoid exits to L1 - even when L0 runs L2
2004 * without MSR bitmaps.
2005 */
2006 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2007
2008 /* secondary cpu-based controls */
2009 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2010 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2011 nested_vmx_secondary_ctls_low = 0;
2012 nested_vmx_secondary_ctls_high &=
2013 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2014 }
2015
2016 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2017 {
2018 /*
2019 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2020 */
2021 return ((control & high) | low) == control;
2022 }
2023
2024 static inline u64 vmx_control_msr(u32 low, u32 high)
2025 {
2026 return low | ((u64)high << 32);
2027 }
2028
2029 /*
2030 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2031 * also let it use VMX-specific MSRs.
2032 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2033 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2034 * like all other MSRs).
2035 */
2036 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2037 {
2038 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2039 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2040 /*
2041 * According to the spec, processors which do not support VMX
2042 * should throw a #GP(0) when VMX capability MSRs are read.
2043 */
2044 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2045 return 1;
2046 }
2047
2048 switch (msr_index) {
2049 case MSR_IA32_FEATURE_CONTROL:
2050 *pdata = 0;
2051 break;
2052 case MSR_IA32_VMX_BASIC:
2053 /*
2054 * This MSR reports some information about VMX support. We
2055 * should return information about the VMX we emulate for the
2056 * guest, and the VMCS structure we give it - not about the
2057 * VMX support of the underlying hardware.
2058 */
2059 *pdata = VMCS12_REVISION |
2060 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2061 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2062 break;
2063 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2064 case MSR_IA32_VMX_PINBASED_CTLS:
2065 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2066 nested_vmx_pinbased_ctls_high);
2067 break;
2068 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2069 case MSR_IA32_VMX_PROCBASED_CTLS:
2070 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2071 nested_vmx_procbased_ctls_high);
2072 break;
2073 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2074 case MSR_IA32_VMX_EXIT_CTLS:
2075 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2076 nested_vmx_exit_ctls_high);
2077 break;
2078 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2079 case MSR_IA32_VMX_ENTRY_CTLS:
2080 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2081 nested_vmx_entry_ctls_high);
2082 break;
2083 case MSR_IA32_VMX_MISC:
2084 *pdata = 0;
2085 break;
2086 /*
2087 * These MSRs specify bits which the guest must keep fixed (on or off)
2088 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2089 * We picked the standard core2 setting.
2090 */
2091 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2092 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2093 case MSR_IA32_VMX_CR0_FIXED0:
2094 *pdata = VMXON_CR0_ALWAYSON;
2095 break;
2096 case MSR_IA32_VMX_CR0_FIXED1:
2097 *pdata = -1ULL;
2098 break;
2099 case MSR_IA32_VMX_CR4_FIXED0:
2100 *pdata = VMXON_CR4_ALWAYSON;
2101 break;
2102 case MSR_IA32_VMX_CR4_FIXED1:
2103 *pdata = -1ULL;
2104 break;
2105 case MSR_IA32_VMX_VMCS_ENUM:
2106 *pdata = 0x1f;
2107 break;
2108 case MSR_IA32_VMX_PROCBASED_CTLS2:
2109 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2110 nested_vmx_secondary_ctls_high);
2111 break;
2112 case MSR_IA32_VMX_EPT_VPID_CAP:
2113 /* Currently, no nested ept or nested vpid */
2114 *pdata = 0;
2115 break;
2116 default:
2117 return 0;
2118 }
2119
2120 return 1;
2121 }
2122
2123 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2124 {
2125 if (!nested_vmx_allowed(vcpu))
2126 return 0;
2127
2128 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2129 /* TODO: the right thing. */
2130 return 1;
2131 /*
2132 * No need to treat VMX capability MSRs specially: If we don't handle
2133 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2134 */
2135 return 0;
2136 }
2137
2138 /*
2139 * Reads an msr value (of 'msr_index') into 'pdata'.
2140 * Returns 0 on success, non-0 otherwise.
2141 * Assumes vcpu_load() was already called.
2142 */
2143 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2144 {
2145 u64 data;
2146 struct shared_msr_entry *msr;
2147
2148 if (!pdata) {
2149 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2150 return -EINVAL;
2151 }
2152
2153 switch (msr_index) {
2154 #ifdef CONFIG_X86_64
2155 case MSR_FS_BASE:
2156 data = vmcs_readl(GUEST_FS_BASE);
2157 break;
2158 case MSR_GS_BASE:
2159 data = vmcs_readl(GUEST_GS_BASE);
2160 break;
2161 case MSR_KERNEL_GS_BASE:
2162 vmx_load_host_state(to_vmx(vcpu));
2163 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2164 break;
2165 #endif
2166 case MSR_EFER:
2167 return kvm_get_msr_common(vcpu, msr_index, pdata);
2168 case MSR_IA32_TSC:
2169 data = guest_read_tsc();
2170 break;
2171 case MSR_IA32_SYSENTER_CS:
2172 data = vmcs_read32(GUEST_SYSENTER_CS);
2173 break;
2174 case MSR_IA32_SYSENTER_EIP:
2175 data = vmcs_readl(GUEST_SYSENTER_EIP);
2176 break;
2177 case MSR_IA32_SYSENTER_ESP:
2178 data = vmcs_readl(GUEST_SYSENTER_ESP);
2179 break;
2180 case MSR_TSC_AUX:
2181 if (!to_vmx(vcpu)->rdtscp_enabled)
2182 return 1;
2183 /* Otherwise falls through */
2184 default:
2185 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2186 return 0;
2187 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2188 if (msr) {
2189 data = msr->data;
2190 break;
2191 }
2192 return kvm_get_msr_common(vcpu, msr_index, pdata);
2193 }
2194
2195 *pdata = data;
2196 return 0;
2197 }
2198
2199 /*
2200 * Writes msr value into into the appropriate "register".
2201 * Returns 0 on success, non-0 otherwise.
2202 * Assumes vcpu_load() was already called.
2203 */
2204 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2205 {
2206 struct vcpu_vmx *vmx = to_vmx(vcpu);
2207 struct shared_msr_entry *msr;
2208 int ret = 0;
2209
2210 switch (msr_index) {
2211 case MSR_EFER:
2212 ret = kvm_set_msr_common(vcpu, msr_index, data);
2213 break;
2214 #ifdef CONFIG_X86_64
2215 case MSR_FS_BASE:
2216 vmx_segment_cache_clear(vmx);
2217 vmcs_writel(GUEST_FS_BASE, data);
2218 break;
2219 case MSR_GS_BASE:
2220 vmx_segment_cache_clear(vmx);
2221 vmcs_writel(GUEST_GS_BASE, data);
2222 break;
2223 case MSR_KERNEL_GS_BASE:
2224 vmx_load_host_state(vmx);
2225 vmx->msr_guest_kernel_gs_base = data;
2226 break;
2227 #endif
2228 case MSR_IA32_SYSENTER_CS:
2229 vmcs_write32(GUEST_SYSENTER_CS, data);
2230 break;
2231 case MSR_IA32_SYSENTER_EIP:
2232 vmcs_writel(GUEST_SYSENTER_EIP, data);
2233 break;
2234 case MSR_IA32_SYSENTER_ESP:
2235 vmcs_writel(GUEST_SYSENTER_ESP, data);
2236 break;
2237 case MSR_IA32_TSC:
2238 kvm_write_tsc(vcpu, data);
2239 break;
2240 case MSR_IA32_CR_PAT:
2241 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2242 vmcs_write64(GUEST_IA32_PAT, data);
2243 vcpu->arch.pat = data;
2244 break;
2245 }
2246 ret = kvm_set_msr_common(vcpu, msr_index, data);
2247 break;
2248 case MSR_TSC_AUX:
2249 if (!vmx->rdtscp_enabled)
2250 return 1;
2251 /* Check reserved bit, higher 32 bits should be zero */
2252 if ((data >> 32) != 0)
2253 return 1;
2254 /* Otherwise falls through */
2255 default:
2256 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2257 break;
2258 msr = find_msr_entry(vmx, msr_index);
2259 if (msr) {
2260 msr->data = data;
2261 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2262 preempt_disable();
2263 kvm_set_shared_msr(msr->index, msr->data,
2264 msr->mask);
2265 preempt_enable();
2266 }
2267 break;
2268 }
2269 ret = kvm_set_msr_common(vcpu, msr_index, data);
2270 }
2271
2272 return ret;
2273 }
2274
2275 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2276 {
2277 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2278 switch (reg) {
2279 case VCPU_REGS_RSP:
2280 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2281 break;
2282 case VCPU_REGS_RIP:
2283 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2284 break;
2285 case VCPU_EXREG_PDPTR:
2286 if (enable_ept)
2287 ept_save_pdptrs(vcpu);
2288 break;
2289 default:
2290 break;
2291 }
2292 }
2293
2294 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
2295 {
2296 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2297 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2298 else
2299 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2300
2301 update_exception_bitmap(vcpu);
2302 }
2303
2304 static __init int cpu_has_kvm_support(void)
2305 {
2306 return cpu_has_vmx();
2307 }
2308
2309 static __init int vmx_disabled_by_bios(void)
2310 {
2311 u64 msr;
2312
2313 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2314 if (msr & FEATURE_CONTROL_LOCKED) {
2315 /* launched w/ TXT and VMX disabled */
2316 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2317 && tboot_enabled())
2318 return 1;
2319 /* launched w/o TXT and VMX only enabled w/ TXT */
2320 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2321 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2322 && !tboot_enabled()) {
2323 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2324 "activate TXT before enabling KVM\n");
2325 return 1;
2326 }
2327 /* launched w/o TXT and VMX disabled */
2328 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2329 && !tboot_enabled())
2330 return 1;
2331 }
2332
2333 return 0;
2334 }
2335
2336 static void kvm_cpu_vmxon(u64 addr)
2337 {
2338 asm volatile (ASM_VMX_VMXON_RAX
2339 : : "a"(&addr), "m"(addr)
2340 : "memory", "cc");
2341 }
2342
2343 static int hardware_enable(void *garbage)
2344 {
2345 int cpu = raw_smp_processor_id();
2346 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2347 u64 old, test_bits;
2348
2349 if (read_cr4() & X86_CR4_VMXE)
2350 return -EBUSY;
2351
2352 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2353 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2354
2355 test_bits = FEATURE_CONTROL_LOCKED;
2356 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2357 if (tboot_enabled())
2358 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2359
2360 if ((old & test_bits) != test_bits) {
2361 /* enable and lock */
2362 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2363 }
2364 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2365
2366 if (vmm_exclusive) {
2367 kvm_cpu_vmxon(phys_addr);
2368 ept_sync_global();
2369 }
2370
2371 store_gdt(&__get_cpu_var(host_gdt));
2372
2373 return 0;
2374 }
2375
2376 static void vmclear_local_loaded_vmcss(void)
2377 {
2378 int cpu = raw_smp_processor_id();
2379 struct loaded_vmcs *v, *n;
2380
2381 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2382 loaded_vmcss_on_cpu_link)
2383 __loaded_vmcs_clear(v);
2384 }
2385
2386
2387 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2388 * tricks.
2389 */
2390 static void kvm_cpu_vmxoff(void)
2391 {
2392 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2393 }
2394
2395 static void hardware_disable(void *garbage)
2396 {
2397 if (vmm_exclusive) {
2398 vmclear_local_loaded_vmcss();
2399 kvm_cpu_vmxoff();
2400 }
2401 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2402 }
2403
2404 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2405 u32 msr, u32 *result)
2406 {
2407 u32 vmx_msr_low, vmx_msr_high;
2408 u32 ctl = ctl_min | ctl_opt;
2409
2410 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2411
2412 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2413 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2414
2415 /* Ensure minimum (required) set of control bits are supported. */
2416 if (ctl_min & ~ctl)
2417 return -EIO;
2418
2419 *result = ctl;
2420 return 0;
2421 }
2422
2423 static __init bool allow_1_setting(u32 msr, u32 ctl)
2424 {
2425 u32 vmx_msr_low, vmx_msr_high;
2426
2427 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2428 return vmx_msr_high & ctl;
2429 }
2430
2431 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2432 {
2433 u32 vmx_msr_low, vmx_msr_high;
2434 u32 min, opt, min2, opt2;
2435 u32 _pin_based_exec_control = 0;
2436 u32 _cpu_based_exec_control = 0;
2437 u32 _cpu_based_2nd_exec_control = 0;
2438 u32 _vmexit_control = 0;
2439 u32 _vmentry_control = 0;
2440
2441 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2442 opt = PIN_BASED_VIRTUAL_NMIS;
2443 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2444 &_pin_based_exec_control) < 0)
2445 return -EIO;
2446
2447 min = CPU_BASED_HLT_EXITING |
2448 #ifdef CONFIG_X86_64
2449 CPU_BASED_CR8_LOAD_EXITING |
2450 CPU_BASED_CR8_STORE_EXITING |
2451 #endif
2452 CPU_BASED_CR3_LOAD_EXITING |
2453 CPU_BASED_CR3_STORE_EXITING |
2454 CPU_BASED_USE_IO_BITMAPS |
2455 CPU_BASED_MOV_DR_EXITING |
2456 CPU_BASED_USE_TSC_OFFSETING |
2457 CPU_BASED_MWAIT_EXITING |
2458 CPU_BASED_MONITOR_EXITING |
2459 CPU_BASED_INVLPG_EXITING |
2460 CPU_BASED_RDPMC_EXITING;
2461
2462 opt = CPU_BASED_TPR_SHADOW |
2463 CPU_BASED_USE_MSR_BITMAPS |
2464 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2465 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2466 &_cpu_based_exec_control) < 0)
2467 return -EIO;
2468 #ifdef CONFIG_X86_64
2469 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2470 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2471 ~CPU_BASED_CR8_STORE_EXITING;
2472 #endif
2473 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2474 min2 = 0;
2475 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2476 SECONDARY_EXEC_WBINVD_EXITING |
2477 SECONDARY_EXEC_ENABLE_VPID |
2478 SECONDARY_EXEC_ENABLE_EPT |
2479 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2480 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2481 SECONDARY_EXEC_RDTSCP |
2482 SECONDARY_EXEC_ENABLE_INVPCID;
2483 if (adjust_vmx_controls(min2, opt2,
2484 MSR_IA32_VMX_PROCBASED_CTLS2,
2485 &_cpu_based_2nd_exec_control) < 0)
2486 return -EIO;
2487 }
2488 #ifndef CONFIG_X86_64
2489 if (!(_cpu_based_2nd_exec_control &
2490 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2491 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2492 #endif
2493 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2494 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2495 enabled */
2496 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2497 CPU_BASED_CR3_STORE_EXITING |
2498 CPU_BASED_INVLPG_EXITING);
2499 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2500 vmx_capability.ept, vmx_capability.vpid);
2501 }
2502
2503 min = 0;
2504 #ifdef CONFIG_X86_64
2505 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2506 #endif
2507 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2508 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2509 &_vmexit_control) < 0)
2510 return -EIO;
2511
2512 min = 0;
2513 opt = VM_ENTRY_LOAD_IA32_PAT;
2514 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2515 &_vmentry_control) < 0)
2516 return -EIO;
2517
2518 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2519
2520 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2521 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2522 return -EIO;
2523
2524 #ifdef CONFIG_X86_64
2525 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2526 if (vmx_msr_high & (1u<<16))
2527 return -EIO;
2528 #endif
2529
2530 /* Require Write-Back (WB) memory type for VMCS accesses. */
2531 if (((vmx_msr_high >> 18) & 15) != 6)
2532 return -EIO;
2533
2534 vmcs_conf->size = vmx_msr_high & 0x1fff;
2535 vmcs_conf->order = get_order(vmcs_config.size);
2536 vmcs_conf->revision_id = vmx_msr_low;
2537
2538 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2539 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2540 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2541 vmcs_conf->vmexit_ctrl = _vmexit_control;
2542 vmcs_conf->vmentry_ctrl = _vmentry_control;
2543
2544 cpu_has_load_ia32_efer =
2545 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2546 VM_ENTRY_LOAD_IA32_EFER)
2547 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2548 VM_EXIT_LOAD_IA32_EFER);
2549
2550 cpu_has_load_perf_global_ctrl =
2551 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2552 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2553 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2554 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2555
2556 /*
2557 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2558 * but due to arrata below it can't be used. Workaround is to use
2559 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2560 *
2561 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2562 *
2563 * AAK155 (model 26)
2564 * AAP115 (model 30)
2565 * AAT100 (model 37)
2566 * BC86,AAY89,BD102 (model 44)
2567 * BA97 (model 46)
2568 *
2569 */
2570 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2571 switch (boot_cpu_data.x86_model) {
2572 case 26:
2573 case 30:
2574 case 37:
2575 case 44:
2576 case 46:
2577 cpu_has_load_perf_global_ctrl = false;
2578 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2579 "does not work properly. Using workaround\n");
2580 break;
2581 default:
2582 break;
2583 }
2584 }
2585
2586 return 0;
2587 }
2588
2589 static struct vmcs *alloc_vmcs_cpu(int cpu)
2590 {
2591 int node = cpu_to_node(cpu);
2592 struct page *pages;
2593 struct vmcs *vmcs;
2594
2595 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2596 if (!pages)
2597 return NULL;
2598 vmcs = page_address(pages);
2599 memset(vmcs, 0, vmcs_config.size);
2600 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2601 return vmcs;
2602 }
2603
2604 static struct vmcs *alloc_vmcs(void)
2605 {
2606 return alloc_vmcs_cpu(raw_smp_processor_id());
2607 }
2608
2609 static void free_vmcs(struct vmcs *vmcs)
2610 {
2611 free_pages((unsigned long)vmcs, vmcs_config.order);
2612 }
2613
2614 /*
2615 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2616 */
2617 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2618 {
2619 if (!loaded_vmcs->vmcs)
2620 return;
2621 loaded_vmcs_clear(loaded_vmcs);
2622 free_vmcs(loaded_vmcs->vmcs);
2623 loaded_vmcs->vmcs = NULL;
2624 }
2625
2626 static void free_kvm_area(void)
2627 {
2628 int cpu;
2629
2630 for_each_possible_cpu(cpu) {
2631 free_vmcs(per_cpu(vmxarea, cpu));
2632 per_cpu(vmxarea, cpu) = NULL;
2633 }
2634 }
2635
2636 static __init int alloc_kvm_area(void)
2637 {
2638 int cpu;
2639
2640 for_each_possible_cpu(cpu) {
2641 struct vmcs *vmcs;
2642
2643 vmcs = alloc_vmcs_cpu(cpu);
2644 if (!vmcs) {
2645 free_kvm_area();
2646 return -ENOMEM;
2647 }
2648
2649 per_cpu(vmxarea, cpu) = vmcs;
2650 }
2651 return 0;
2652 }
2653
2654 static __init int hardware_setup(void)
2655 {
2656 if (setup_vmcs_config(&vmcs_config) < 0)
2657 return -EIO;
2658
2659 if (boot_cpu_has(X86_FEATURE_NX))
2660 kvm_enable_efer_bits(EFER_NX);
2661
2662 if (!cpu_has_vmx_vpid())
2663 enable_vpid = 0;
2664
2665 if (!cpu_has_vmx_ept() ||
2666 !cpu_has_vmx_ept_4levels()) {
2667 enable_ept = 0;
2668 enable_unrestricted_guest = 0;
2669 enable_ept_ad_bits = 0;
2670 }
2671
2672 if (!cpu_has_vmx_ept_ad_bits())
2673 enable_ept_ad_bits = 0;
2674
2675 if (!cpu_has_vmx_unrestricted_guest())
2676 enable_unrestricted_guest = 0;
2677
2678 if (!cpu_has_vmx_flexpriority())
2679 flexpriority_enabled = 0;
2680
2681 if (!cpu_has_vmx_tpr_shadow())
2682 kvm_x86_ops->update_cr8_intercept = NULL;
2683
2684 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2685 kvm_disable_largepages();
2686
2687 if (!cpu_has_vmx_ple())
2688 ple_gap = 0;
2689
2690 if (nested)
2691 nested_vmx_setup_ctls_msrs();
2692
2693 return alloc_kvm_area();
2694 }
2695
2696 static __exit void hardware_unsetup(void)
2697 {
2698 free_kvm_area();
2699 }
2700
2701 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2702 {
2703 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2704
2705 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2706 vmcs_write16(sf->selector, save->selector);
2707 vmcs_writel(sf->base, save->base);
2708 vmcs_write32(sf->limit, save->limit);
2709 vmcs_write32(sf->ar_bytes, save->ar);
2710 } else {
2711 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2712 << AR_DPL_SHIFT;
2713 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2714 }
2715 }
2716
2717 static void enter_pmode(struct kvm_vcpu *vcpu)
2718 {
2719 unsigned long flags;
2720 struct vcpu_vmx *vmx = to_vmx(vcpu);
2721
2722 vmx->emulation_required = 1;
2723 vmx->rmode.vm86_active = 0;
2724
2725 vmx_segment_cache_clear(vmx);
2726
2727 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2728 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2729 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2730 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2731
2732 flags = vmcs_readl(GUEST_RFLAGS);
2733 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2734 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2735 vmcs_writel(GUEST_RFLAGS, flags);
2736
2737 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2738 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2739
2740 update_exception_bitmap(vcpu);
2741
2742 if (emulate_invalid_guest_state)
2743 return;
2744
2745 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2746 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2747 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2748 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2749
2750 vmx_segment_cache_clear(vmx);
2751
2752 vmcs_write16(GUEST_SS_SELECTOR, 0);
2753 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2754
2755 vmcs_write16(GUEST_CS_SELECTOR,
2756 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2757 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2758 }
2759
2760 static gva_t rmode_tss_base(struct kvm *kvm)
2761 {
2762 if (!kvm->arch.tss_addr) {
2763 struct kvm_memslots *slots;
2764 struct kvm_memory_slot *slot;
2765 gfn_t base_gfn;
2766
2767 slots = kvm_memslots(kvm);
2768 slot = id_to_memslot(slots, 0);
2769 base_gfn = slot->base_gfn + slot->npages - 3;
2770
2771 return base_gfn << PAGE_SHIFT;
2772 }
2773 return kvm->arch.tss_addr;
2774 }
2775
2776 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2777 {
2778 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2779
2780 save->selector = vmcs_read16(sf->selector);
2781 save->base = vmcs_readl(sf->base);
2782 save->limit = vmcs_read32(sf->limit);
2783 save->ar = vmcs_read32(sf->ar_bytes);
2784 vmcs_write16(sf->selector, save->base >> 4);
2785 vmcs_write32(sf->base, save->base & 0xffff0);
2786 vmcs_write32(sf->limit, 0xffff);
2787 vmcs_write32(sf->ar_bytes, 0xf3);
2788 if (save->base & 0xf)
2789 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2790 " aligned when entering protected mode (seg=%d)",
2791 seg);
2792 }
2793
2794 static void enter_rmode(struct kvm_vcpu *vcpu)
2795 {
2796 unsigned long flags;
2797 struct vcpu_vmx *vmx = to_vmx(vcpu);
2798 struct kvm_segment var;
2799
2800 if (enable_unrestricted_guest)
2801 return;
2802
2803 vmx->emulation_required = 1;
2804 vmx->rmode.vm86_active = 1;
2805
2806 /*
2807 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2808 * vcpu. Call it here with phys address pointing 16M below 4G.
2809 */
2810 if (!vcpu->kvm->arch.tss_addr) {
2811 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2812 "called before entering vcpu\n");
2813 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2814 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2815 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2816 }
2817
2818 vmx_segment_cache_clear(vmx);
2819
2820 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2821 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2822 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2823
2824 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2825 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2826
2827 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2828 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2829
2830 flags = vmcs_readl(GUEST_RFLAGS);
2831 vmx->rmode.save_rflags = flags;
2832
2833 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2834
2835 vmcs_writel(GUEST_RFLAGS, flags);
2836 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2837 update_exception_bitmap(vcpu);
2838
2839 if (emulate_invalid_guest_state)
2840 goto continue_rmode;
2841
2842 vmx_get_segment(vcpu, &var, VCPU_SREG_SS);
2843 vmx_set_segment(vcpu, &var, VCPU_SREG_SS);
2844
2845 vmx_get_segment(vcpu, &var, VCPU_SREG_CS);
2846 vmx_set_segment(vcpu, &var, VCPU_SREG_CS);
2847
2848 vmx_get_segment(vcpu, &var, VCPU_SREG_ES);
2849 vmx_set_segment(vcpu, &var, VCPU_SREG_ES);
2850
2851 vmx_get_segment(vcpu, &var, VCPU_SREG_DS);
2852 vmx_set_segment(vcpu, &var, VCPU_SREG_DS);
2853
2854 vmx_get_segment(vcpu, &var, VCPU_SREG_GS);
2855 vmx_set_segment(vcpu, &var, VCPU_SREG_GS);
2856
2857 vmx_get_segment(vcpu, &var, VCPU_SREG_FS);
2858 vmx_set_segment(vcpu, &var, VCPU_SREG_FS);
2859
2860 continue_rmode:
2861 kvm_mmu_reset_context(vcpu);
2862 }
2863
2864 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2865 {
2866 struct vcpu_vmx *vmx = to_vmx(vcpu);
2867 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2868
2869 if (!msr)
2870 return;
2871
2872 /*
2873 * Force kernel_gs_base reloading before EFER changes, as control
2874 * of this msr depends on is_long_mode().
2875 */
2876 vmx_load_host_state(to_vmx(vcpu));
2877 vcpu->arch.efer = efer;
2878 if (efer & EFER_LMA) {
2879 vmcs_write32(VM_ENTRY_CONTROLS,
2880 vmcs_read32(VM_ENTRY_CONTROLS) |
2881 VM_ENTRY_IA32E_MODE);
2882 msr->data = efer;
2883 } else {
2884 vmcs_write32(VM_ENTRY_CONTROLS,
2885 vmcs_read32(VM_ENTRY_CONTROLS) &
2886 ~VM_ENTRY_IA32E_MODE);
2887
2888 msr->data = efer & ~EFER_LME;
2889 }
2890 setup_msrs(vmx);
2891 }
2892
2893 #ifdef CONFIG_X86_64
2894
2895 static void enter_lmode(struct kvm_vcpu *vcpu)
2896 {
2897 u32 guest_tr_ar;
2898
2899 vmx_segment_cache_clear(to_vmx(vcpu));
2900
2901 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2902 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2903 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2904 __func__);
2905 vmcs_write32(GUEST_TR_AR_BYTES,
2906 (guest_tr_ar & ~AR_TYPE_MASK)
2907 | AR_TYPE_BUSY_64_TSS);
2908 }
2909 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2910 }
2911
2912 static void exit_lmode(struct kvm_vcpu *vcpu)
2913 {
2914 vmcs_write32(VM_ENTRY_CONTROLS,
2915 vmcs_read32(VM_ENTRY_CONTROLS)
2916 & ~VM_ENTRY_IA32E_MODE);
2917 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2918 }
2919
2920 #endif
2921
2922 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2923 {
2924 vpid_sync_context(to_vmx(vcpu));
2925 if (enable_ept) {
2926 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2927 return;
2928 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2929 }
2930 }
2931
2932 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2933 {
2934 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2935
2936 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2937 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2938 }
2939
2940 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2941 {
2942 if (enable_ept && is_paging(vcpu))
2943 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2944 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2945 }
2946
2947 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2948 {
2949 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2950
2951 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2952 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2953 }
2954
2955 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2956 {
2957 if (!test_bit(VCPU_EXREG_PDPTR,
2958 (unsigned long *)&vcpu->arch.regs_dirty))
2959 return;
2960
2961 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2962 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2963 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2964 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2965 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2966 }
2967 }
2968
2969 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2970 {
2971 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2972 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2973 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2974 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2975 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2976 }
2977
2978 __set_bit(VCPU_EXREG_PDPTR,
2979 (unsigned long *)&vcpu->arch.regs_avail);
2980 __set_bit(VCPU_EXREG_PDPTR,
2981 (unsigned long *)&vcpu->arch.regs_dirty);
2982 }
2983
2984 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2985
2986 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2987 unsigned long cr0,
2988 struct kvm_vcpu *vcpu)
2989 {
2990 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2991 vmx_decache_cr3(vcpu);
2992 if (!(cr0 & X86_CR0_PG)) {
2993 /* From paging/starting to nonpaging */
2994 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2995 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2996 (CPU_BASED_CR3_LOAD_EXITING |
2997 CPU_BASED_CR3_STORE_EXITING));
2998 vcpu->arch.cr0 = cr0;
2999 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3000 } else if (!is_paging(vcpu)) {
3001 /* From nonpaging to paging */
3002 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3003 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3004 ~(CPU_BASED_CR3_LOAD_EXITING |
3005 CPU_BASED_CR3_STORE_EXITING));
3006 vcpu->arch.cr0 = cr0;
3007 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3008 }
3009
3010 if (!(cr0 & X86_CR0_WP))
3011 *hw_cr0 &= ~X86_CR0_WP;
3012 }
3013
3014 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3015 {
3016 struct vcpu_vmx *vmx = to_vmx(vcpu);
3017 unsigned long hw_cr0;
3018
3019 if (enable_unrestricted_guest)
3020 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
3021 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3022 else
3023 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
3024
3025 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3026 enter_pmode(vcpu);
3027
3028 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3029 enter_rmode(vcpu);
3030
3031 #ifdef CONFIG_X86_64
3032 if (vcpu->arch.efer & EFER_LME) {
3033 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3034 enter_lmode(vcpu);
3035 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3036 exit_lmode(vcpu);
3037 }
3038 #endif
3039
3040 if (enable_ept)
3041 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3042
3043 if (!vcpu->fpu_active)
3044 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3045
3046 vmcs_writel(CR0_READ_SHADOW, cr0);
3047 vmcs_writel(GUEST_CR0, hw_cr0);
3048 vcpu->arch.cr0 = cr0;
3049 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3050 }
3051
3052 static u64 construct_eptp(unsigned long root_hpa)
3053 {
3054 u64 eptp;
3055
3056 /* TODO write the value reading from MSR */
3057 eptp = VMX_EPT_DEFAULT_MT |
3058 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3059 if (enable_ept_ad_bits)
3060 eptp |= VMX_EPT_AD_ENABLE_BIT;
3061 eptp |= (root_hpa & PAGE_MASK);
3062
3063 return eptp;
3064 }
3065
3066 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3067 {
3068 unsigned long guest_cr3;
3069 u64 eptp;
3070
3071 guest_cr3 = cr3;
3072 if (enable_ept) {
3073 eptp = construct_eptp(cr3);
3074 vmcs_write64(EPT_POINTER, eptp);
3075 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3076 vcpu->kvm->arch.ept_identity_map_addr;
3077 ept_load_pdptrs(vcpu);
3078 }
3079
3080 vmx_flush_tlb(vcpu);
3081 vmcs_writel(GUEST_CR3, guest_cr3);
3082 }
3083
3084 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3085 {
3086 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3087 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3088
3089 if (cr4 & X86_CR4_VMXE) {
3090 /*
3091 * To use VMXON (and later other VMX instructions), a guest
3092 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3093 * So basically the check on whether to allow nested VMX
3094 * is here.
3095 */
3096 if (!nested_vmx_allowed(vcpu))
3097 return 1;
3098 } else if (to_vmx(vcpu)->nested.vmxon)
3099 return 1;
3100
3101 vcpu->arch.cr4 = cr4;
3102 if (enable_ept) {
3103 if (!is_paging(vcpu)) {
3104 hw_cr4 &= ~X86_CR4_PAE;
3105 hw_cr4 |= X86_CR4_PSE;
3106 } else if (!(cr4 & X86_CR4_PAE)) {
3107 hw_cr4 &= ~X86_CR4_PAE;
3108 }
3109 }
3110
3111 vmcs_writel(CR4_READ_SHADOW, cr4);
3112 vmcs_writel(GUEST_CR4, hw_cr4);
3113 return 0;
3114 }
3115
3116 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3117 struct kvm_segment *var, int seg)
3118 {
3119 struct vcpu_vmx *vmx = to_vmx(vcpu);
3120 struct kvm_save_segment *save;
3121 u32 ar;
3122
3123 if (vmx->rmode.vm86_active
3124 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3125 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3126 || seg == VCPU_SREG_GS)
3127 && !emulate_invalid_guest_state) {
3128 switch (seg) {
3129 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3130 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3131 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3132 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3133 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3134 default: BUG();
3135 }
3136 var->selector = save->selector;
3137 var->base = save->base;
3138 var->limit = save->limit;
3139 ar = save->ar;
3140 if (seg == VCPU_SREG_TR
3141 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3142 goto use_saved_rmode_seg;
3143 }
3144 var->base = vmx_read_guest_seg_base(vmx, seg);
3145 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3146 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3147 ar = vmx_read_guest_seg_ar(vmx, seg);
3148 use_saved_rmode_seg:
3149 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
3150 ar = 0;
3151 var->type = ar & 15;
3152 var->s = (ar >> 4) & 1;
3153 var->dpl = (ar >> 5) & 3;
3154 var->present = (ar >> 7) & 1;
3155 var->avl = (ar >> 12) & 1;
3156 var->l = (ar >> 13) & 1;
3157 var->db = (ar >> 14) & 1;
3158 var->g = (ar >> 15) & 1;
3159 var->unusable = (ar >> 16) & 1;
3160 }
3161
3162 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3163 {
3164 struct kvm_segment s;
3165
3166 if (to_vmx(vcpu)->rmode.vm86_active) {
3167 vmx_get_segment(vcpu, &s, seg);
3168 return s.base;
3169 }
3170 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3171 }
3172
3173 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3174 {
3175 if (!is_protmode(vcpu))
3176 return 0;
3177
3178 if (!is_long_mode(vcpu)
3179 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3180 return 3;
3181
3182 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3183 }
3184
3185 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3186 {
3187 struct vcpu_vmx *vmx = to_vmx(vcpu);
3188
3189 /*
3190 * If we enter real mode with cs.sel & 3 != 0, the normal CPL calculations
3191 * fail; use the cache instead.
3192 */
3193 if (unlikely(vmx->emulation_required && emulate_invalid_guest_state)) {
3194 return vmx->cpl;
3195 }
3196
3197 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3198 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3199 vmx->cpl = __vmx_get_cpl(vcpu);
3200 }
3201
3202 return vmx->cpl;
3203 }
3204
3205
3206 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3207 {
3208 u32 ar;
3209
3210 if (var->unusable || !var->present)
3211 ar = 1 << 16;
3212 else {
3213 ar = var->type & 15;
3214 ar |= (var->s & 1) << 4;
3215 ar |= (var->dpl & 3) << 5;
3216 ar |= (var->present & 1) << 7;
3217 ar |= (var->avl & 1) << 12;
3218 ar |= (var->l & 1) << 13;
3219 ar |= (var->db & 1) << 14;
3220 ar |= (var->g & 1) << 15;
3221 }
3222
3223 return ar;
3224 }
3225
3226 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3227 struct kvm_segment *var, int seg)
3228 {
3229 struct vcpu_vmx *vmx = to_vmx(vcpu);
3230 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3231 u32 ar;
3232
3233 vmx_segment_cache_clear(vmx);
3234
3235 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3236 vmcs_write16(sf->selector, var->selector);
3237 vmx->rmode.tr.selector = var->selector;
3238 vmx->rmode.tr.base = var->base;
3239 vmx->rmode.tr.limit = var->limit;
3240 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
3241 return;
3242 }
3243 vmcs_writel(sf->base, var->base);
3244 vmcs_write32(sf->limit, var->limit);
3245 vmcs_write16(sf->selector, var->selector);
3246 if (vmx->rmode.vm86_active && var->s) {
3247 /*
3248 * Hack real-mode segments into vm86 compatibility.
3249 */
3250 if (var->base == 0xffff0000 && var->selector == 0xf000)
3251 vmcs_writel(sf->base, 0xf0000);
3252 ar = 0xf3;
3253 } else
3254 ar = vmx_segment_access_rights(var);
3255
3256 /*
3257 * Fix the "Accessed" bit in AR field of segment registers for older
3258 * qemu binaries.
3259 * IA32 arch specifies that at the time of processor reset the
3260 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3261 * is setting it to 0 in the usedland code. This causes invalid guest
3262 * state vmexit when "unrestricted guest" mode is turned on.
3263 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3264 * tree. Newer qemu binaries with that qemu fix would not need this
3265 * kvm hack.
3266 */
3267 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3268 ar |= 0x1; /* Accessed */
3269
3270 vmcs_write32(sf->ar_bytes, ar);
3271 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3272
3273 /*
3274 * Fix segments for real mode guest in hosts that don't have
3275 * "unrestricted_mode" or it was disabled.
3276 * This is done to allow migration of the guests from hosts with
3277 * unrestricted guest like Westmere to older host that don't have
3278 * unrestricted guest like Nehelem.
3279 */
3280 if (!enable_unrestricted_guest && vmx->rmode.vm86_active) {
3281 switch (seg) {
3282 case VCPU_SREG_CS:
3283 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
3284 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
3285 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
3286 vmcs_writel(GUEST_CS_BASE, 0xf0000);
3287 vmcs_write16(GUEST_CS_SELECTOR,
3288 vmcs_readl(GUEST_CS_BASE) >> 4);
3289 break;
3290 case VCPU_SREG_ES:
3291 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
3292 break;
3293 case VCPU_SREG_DS:
3294 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
3295 break;
3296 case VCPU_SREG_GS:
3297 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
3298 break;
3299 case VCPU_SREG_FS:
3300 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
3301 break;
3302 case VCPU_SREG_SS:
3303 vmcs_write16(GUEST_SS_SELECTOR,
3304 vmcs_readl(GUEST_SS_BASE) >> 4);
3305 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
3306 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
3307 break;
3308 }
3309 }
3310 }
3311
3312 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3313 {
3314 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3315
3316 *db = (ar >> 14) & 1;
3317 *l = (ar >> 13) & 1;
3318 }
3319
3320 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3321 {
3322 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3323 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3324 }
3325
3326 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3327 {
3328 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3329 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3330 }
3331
3332 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3333 {
3334 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3335 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3336 }
3337
3338 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3339 {
3340 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3341 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3342 }
3343
3344 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3345 {
3346 struct kvm_segment var;
3347 u32 ar;
3348
3349 vmx_get_segment(vcpu, &var, seg);
3350 ar = vmx_segment_access_rights(&var);
3351
3352 if (var.base != (var.selector << 4))
3353 return false;
3354 if (var.limit != 0xffff)
3355 return false;
3356 if (ar != 0xf3)
3357 return false;
3358
3359 return true;
3360 }
3361
3362 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3363 {
3364 struct kvm_segment cs;
3365 unsigned int cs_rpl;
3366
3367 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3368 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3369
3370 if (cs.unusable)
3371 return false;
3372 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3373 return false;
3374 if (!cs.s)
3375 return false;
3376 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3377 if (cs.dpl > cs_rpl)
3378 return false;
3379 } else {
3380 if (cs.dpl != cs_rpl)
3381 return false;
3382 }
3383 if (!cs.present)
3384 return false;
3385
3386 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3387 return true;
3388 }
3389
3390 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3391 {
3392 struct kvm_segment ss;
3393 unsigned int ss_rpl;
3394
3395 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3396 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3397
3398 if (ss.unusable)
3399 return true;
3400 if (ss.type != 3 && ss.type != 7)
3401 return false;
3402 if (!ss.s)
3403 return false;
3404 if (ss.dpl != ss_rpl) /* DPL != RPL */
3405 return false;
3406 if (!ss.present)
3407 return false;
3408
3409 return true;
3410 }
3411
3412 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3413 {
3414 struct kvm_segment var;
3415 unsigned int rpl;
3416
3417 vmx_get_segment(vcpu, &var, seg);
3418 rpl = var.selector & SELECTOR_RPL_MASK;
3419
3420 if (var.unusable)
3421 return true;
3422 if (!var.s)
3423 return false;
3424 if (!var.present)
3425 return false;
3426 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3427 if (var.dpl < rpl) /* DPL < RPL */
3428 return false;
3429 }
3430
3431 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3432 * rights flags
3433 */
3434 return true;
3435 }
3436
3437 static bool tr_valid(struct kvm_vcpu *vcpu)
3438 {
3439 struct kvm_segment tr;
3440
3441 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3442
3443 if (tr.unusable)
3444 return false;
3445 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3446 return false;
3447 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3448 return false;
3449 if (!tr.present)
3450 return false;
3451
3452 return true;
3453 }
3454
3455 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3456 {
3457 struct kvm_segment ldtr;
3458
3459 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3460
3461 if (ldtr.unusable)
3462 return true;
3463 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3464 return false;
3465 if (ldtr.type != 2)
3466 return false;
3467 if (!ldtr.present)
3468 return false;
3469
3470 return true;
3471 }
3472
3473 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3474 {
3475 struct kvm_segment cs, ss;
3476
3477 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3478 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3479
3480 return ((cs.selector & SELECTOR_RPL_MASK) ==
3481 (ss.selector & SELECTOR_RPL_MASK));
3482 }
3483
3484 /*
3485 * Check if guest state is valid. Returns true if valid, false if
3486 * not.
3487 * We assume that registers are always usable
3488 */
3489 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3490 {
3491 /* real mode guest state checks */
3492 if (!is_protmode(vcpu)) {
3493 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3494 return false;
3495 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3496 return false;
3497 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3498 return false;
3499 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3500 return false;
3501 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3502 return false;
3503 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3504 return false;
3505 } else {
3506 /* protected mode guest state checks */
3507 if (!cs_ss_rpl_check(vcpu))
3508 return false;
3509 if (!code_segment_valid(vcpu))
3510 return false;
3511 if (!stack_segment_valid(vcpu))
3512 return false;
3513 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3514 return false;
3515 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3516 return false;
3517 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3518 return false;
3519 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3520 return false;
3521 if (!tr_valid(vcpu))
3522 return false;
3523 if (!ldtr_valid(vcpu))
3524 return false;
3525 }
3526 /* TODO:
3527 * - Add checks on RIP
3528 * - Add checks on RFLAGS
3529 */
3530
3531 return true;
3532 }
3533
3534 static int init_rmode_tss(struct kvm *kvm)
3535 {
3536 gfn_t fn;
3537 u16 data = 0;
3538 int r, idx, ret = 0;
3539
3540 idx = srcu_read_lock(&kvm->srcu);
3541 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3542 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3543 if (r < 0)
3544 goto out;
3545 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3546 r = kvm_write_guest_page(kvm, fn++, &data,
3547 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3548 if (r < 0)
3549 goto out;
3550 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3551 if (r < 0)
3552 goto out;
3553 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3554 if (r < 0)
3555 goto out;
3556 data = ~0;
3557 r = kvm_write_guest_page(kvm, fn, &data,
3558 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3559 sizeof(u8));
3560 if (r < 0)
3561 goto out;
3562
3563 ret = 1;
3564 out:
3565 srcu_read_unlock(&kvm->srcu, idx);
3566 return ret;
3567 }
3568
3569 static int init_rmode_identity_map(struct kvm *kvm)
3570 {
3571 int i, idx, r, ret;
3572 pfn_t identity_map_pfn;
3573 u32 tmp;
3574
3575 if (!enable_ept)
3576 return 1;
3577 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3578 printk(KERN_ERR "EPT: identity-mapping pagetable "
3579 "haven't been allocated!\n");
3580 return 0;
3581 }
3582 if (likely(kvm->arch.ept_identity_pagetable_done))
3583 return 1;
3584 ret = 0;
3585 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3586 idx = srcu_read_lock(&kvm->srcu);
3587 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3588 if (r < 0)
3589 goto out;
3590 /* Set up identity-mapping pagetable for EPT in real mode */
3591 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3592 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3593 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3594 r = kvm_write_guest_page(kvm, identity_map_pfn,
3595 &tmp, i * sizeof(tmp), sizeof(tmp));
3596 if (r < 0)
3597 goto out;
3598 }
3599 kvm->arch.ept_identity_pagetable_done = true;
3600 ret = 1;
3601 out:
3602 srcu_read_unlock(&kvm->srcu, idx);
3603 return ret;
3604 }
3605
3606 static void seg_setup(int seg)
3607 {
3608 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3609 unsigned int ar;
3610
3611 vmcs_write16(sf->selector, 0);
3612 vmcs_writel(sf->base, 0);
3613 vmcs_write32(sf->limit, 0xffff);
3614 if (enable_unrestricted_guest) {
3615 ar = 0x93;
3616 if (seg == VCPU_SREG_CS)
3617 ar |= 0x08; /* code segment */
3618 } else
3619 ar = 0xf3;
3620
3621 vmcs_write32(sf->ar_bytes, ar);
3622 }
3623
3624 static int alloc_apic_access_page(struct kvm *kvm)
3625 {
3626 struct page *page;
3627 struct kvm_userspace_memory_region kvm_userspace_mem;
3628 int r = 0;
3629
3630 mutex_lock(&kvm->slots_lock);
3631 if (kvm->arch.apic_access_page)
3632 goto out;
3633 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3634 kvm_userspace_mem.flags = 0;
3635 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3636 kvm_userspace_mem.memory_size = PAGE_SIZE;
3637 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3638 if (r)
3639 goto out;
3640
3641 page = gfn_to_page(kvm, 0xfee00);
3642 if (is_error_page(page)) {
3643 r = -EFAULT;
3644 goto out;
3645 }
3646
3647 kvm->arch.apic_access_page = page;
3648 out:
3649 mutex_unlock(&kvm->slots_lock);
3650 return r;
3651 }
3652
3653 static int alloc_identity_pagetable(struct kvm *kvm)
3654 {
3655 struct page *page;
3656 struct kvm_userspace_memory_region kvm_userspace_mem;
3657 int r = 0;
3658
3659 mutex_lock(&kvm->slots_lock);
3660 if (kvm->arch.ept_identity_pagetable)
3661 goto out;
3662 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3663 kvm_userspace_mem.flags = 0;
3664 kvm_userspace_mem.guest_phys_addr =
3665 kvm->arch.ept_identity_map_addr;
3666 kvm_userspace_mem.memory_size = PAGE_SIZE;
3667 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3668 if (r)
3669 goto out;
3670
3671 page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3672 if (is_error_page(page)) {
3673 r = -EFAULT;
3674 goto out;
3675 }
3676
3677 kvm->arch.ept_identity_pagetable = page;
3678 out:
3679 mutex_unlock(&kvm->slots_lock);
3680 return r;
3681 }
3682
3683 static void allocate_vpid(struct vcpu_vmx *vmx)
3684 {
3685 int vpid;
3686
3687 vmx->vpid = 0;
3688 if (!enable_vpid)
3689 return;
3690 spin_lock(&vmx_vpid_lock);
3691 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3692 if (vpid < VMX_NR_VPIDS) {
3693 vmx->vpid = vpid;
3694 __set_bit(vpid, vmx_vpid_bitmap);
3695 }
3696 spin_unlock(&vmx_vpid_lock);
3697 }
3698
3699 static void free_vpid(struct vcpu_vmx *vmx)
3700 {
3701 if (!enable_vpid)
3702 return;
3703 spin_lock(&vmx_vpid_lock);
3704 if (vmx->vpid != 0)
3705 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3706 spin_unlock(&vmx_vpid_lock);
3707 }
3708
3709 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3710 {
3711 int f = sizeof(unsigned long);
3712
3713 if (!cpu_has_vmx_msr_bitmap())
3714 return;
3715
3716 /*
3717 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3718 * have the write-low and read-high bitmap offsets the wrong way round.
3719 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3720 */
3721 if (msr <= 0x1fff) {
3722 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3723 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3724 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3725 msr &= 0x1fff;
3726 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3727 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3728 }
3729 }
3730
3731 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3732 {
3733 if (!longmode_only)
3734 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3735 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3736 }
3737
3738 /*
3739 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3740 * will not change in the lifetime of the guest.
3741 * Note that host-state that does change is set elsewhere. E.g., host-state
3742 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3743 */
3744 static void vmx_set_constant_host_state(void)
3745 {
3746 u32 low32, high32;
3747 unsigned long tmpl;
3748 struct desc_ptr dt;
3749
3750 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
3751 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3752 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3753
3754 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3755 #ifdef CONFIG_X86_64
3756 /*
3757 * Load null selectors, so we can avoid reloading them in
3758 * __vmx_load_host_state(), in case userspace uses the null selectors
3759 * too (the expected case).
3760 */
3761 vmcs_write16(HOST_DS_SELECTOR, 0);
3762 vmcs_write16(HOST_ES_SELECTOR, 0);
3763 #else
3764 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3765 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3766 #endif
3767 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3768 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3769
3770 native_store_idt(&dt);
3771 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3772
3773 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3774 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3775
3776 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3777 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3778 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3779 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3780
3781 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3782 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3783 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3784 }
3785 }
3786
3787 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3788 {
3789 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3790 if (enable_ept)
3791 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3792 if (is_guest_mode(&vmx->vcpu))
3793 vmx->vcpu.arch.cr4_guest_owned_bits &=
3794 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3795 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3796 }
3797
3798 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3799 {
3800 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3801 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3802 exec_control &= ~CPU_BASED_TPR_SHADOW;
3803 #ifdef CONFIG_X86_64
3804 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3805 CPU_BASED_CR8_LOAD_EXITING;
3806 #endif
3807 }
3808 if (!enable_ept)
3809 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3810 CPU_BASED_CR3_LOAD_EXITING |
3811 CPU_BASED_INVLPG_EXITING;
3812 return exec_control;
3813 }
3814
3815 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3816 {
3817 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3818 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3819 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3820 if (vmx->vpid == 0)
3821 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3822 if (!enable_ept) {
3823 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3824 enable_unrestricted_guest = 0;
3825 /* Enable INVPCID for non-ept guests may cause performance regression. */
3826 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3827 }
3828 if (!enable_unrestricted_guest)
3829 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3830 if (!ple_gap)
3831 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3832 return exec_control;
3833 }
3834
3835 static void ept_set_mmio_spte_mask(void)
3836 {
3837 /*
3838 * EPT Misconfigurations can be generated if the value of bits 2:0
3839 * of an EPT paging-structure entry is 110b (write/execute).
3840 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3841 * spte.
3842 */
3843 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3844 }
3845
3846 /*
3847 * Sets up the vmcs for emulated real mode.
3848 */
3849 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3850 {
3851 #ifdef CONFIG_X86_64
3852 unsigned long a;
3853 #endif
3854 int i;
3855
3856 /* I/O */
3857 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3858 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3859
3860 if (cpu_has_vmx_msr_bitmap())
3861 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3862
3863 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3864
3865 /* Control */
3866 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3867 vmcs_config.pin_based_exec_ctrl);
3868
3869 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3870
3871 if (cpu_has_secondary_exec_ctrls()) {
3872 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3873 vmx_secondary_exec_control(vmx));
3874 }
3875
3876 if (ple_gap) {
3877 vmcs_write32(PLE_GAP, ple_gap);
3878 vmcs_write32(PLE_WINDOW, ple_window);
3879 }
3880
3881 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3882 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
3883 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3884
3885 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3886 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
3887 vmx_set_constant_host_state();
3888 #ifdef CONFIG_X86_64
3889 rdmsrl(MSR_FS_BASE, a);
3890 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3891 rdmsrl(MSR_GS_BASE, a);
3892 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3893 #else
3894 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3895 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3896 #endif
3897
3898 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3899 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3900 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3901 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3902 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3903
3904 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3905 u32 msr_low, msr_high;
3906 u64 host_pat;
3907 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3908 host_pat = msr_low | ((u64) msr_high << 32);
3909 /* Write the default value follow host pat */
3910 vmcs_write64(GUEST_IA32_PAT, host_pat);
3911 /* Keep arch.pat sync with GUEST_IA32_PAT */
3912 vmx->vcpu.arch.pat = host_pat;
3913 }
3914
3915 for (i = 0; i < NR_VMX_MSR; ++i) {
3916 u32 index = vmx_msr_index[i];
3917 u32 data_low, data_high;
3918 int j = vmx->nmsrs;
3919
3920 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3921 continue;
3922 if (wrmsr_safe(index, data_low, data_high) < 0)
3923 continue;
3924 vmx->guest_msrs[j].index = i;
3925 vmx->guest_msrs[j].data = 0;
3926 vmx->guest_msrs[j].mask = -1ull;
3927 ++vmx->nmsrs;
3928 }
3929
3930 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3931
3932 /* 22.2.1, 20.8.1 */
3933 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3934
3935 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3936 set_cr4_guest_host_mask(vmx);
3937
3938 kvm_write_tsc(&vmx->vcpu, 0);
3939
3940 return 0;
3941 }
3942
3943 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3944 {
3945 struct vcpu_vmx *vmx = to_vmx(vcpu);
3946 u64 msr;
3947 int ret;
3948
3949 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3950
3951 vmx->rmode.vm86_active = 0;
3952
3953 vmx->soft_vnmi_blocked = 0;
3954
3955 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3956 kvm_set_cr8(&vmx->vcpu, 0);
3957 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3958 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3959 msr |= MSR_IA32_APICBASE_BSP;
3960 kvm_set_apic_base(&vmx->vcpu, msr);
3961
3962 ret = fx_init(&vmx->vcpu);
3963 if (ret != 0)
3964 goto out;
3965
3966 vmx_segment_cache_clear(vmx);
3967
3968 seg_setup(VCPU_SREG_CS);
3969 /*
3970 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3971 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3972 */
3973 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3974 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3975 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3976 } else {
3977 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3978 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3979 }
3980
3981 seg_setup(VCPU_SREG_DS);
3982 seg_setup(VCPU_SREG_ES);
3983 seg_setup(VCPU_SREG_FS);
3984 seg_setup(VCPU_SREG_GS);
3985 seg_setup(VCPU_SREG_SS);
3986
3987 vmcs_write16(GUEST_TR_SELECTOR, 0);
3988 vmcs_writel(GUEST_TR_BASE, 0);
3989 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3990 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3991
3992 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3993 vmcs_writel(GUEST_LDTR_BASE, 0);
3994 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3995 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3996
3997 vmcs_write32(GUEST_SYSENTER_CS, 0);
3998 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3999 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4000
4001 vmcs_writel(GUEST_RFLAGS, 0x02);
4002 if (kvm_vcpu_is_bsp(&vmx->vcpu))
4003 kvm_rip_write(vcpu, 0xfff0);
4004 else
4005 kvm_rip_write(vcpu, 0);
4006 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
4007
4008 vmcs_writel(GUEST_DR7, 0x400);
4009
4010 vmcs_writel(GUEST_GDTR_BASE, 0);
4011 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4012
4013 vmcs_writel(GUEST_IDTR_BASE, 0);
4014 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4015
4016 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4017 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4018 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4019
4020 /* Special registers */
4021 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4022
4023 setup_msrs(vmx);
4024
4025 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4026
4027 if (cpu_has_vmx_tpr_shadow()) {
4028 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4029 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4030 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4031 __pa(vmx->vcpu.arch.apic->regs));
4032 vmcs_write32(TPR_THRESHOLD, 0);
4033 }
4034
4035 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4036 vmcs_write64(APIC_ACCESS_ADDR,
4037 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4038
4039 if (vmx->vpid != 0)
4040 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4041
4042 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4043 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4044 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4045 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4046 vmx_set_cr4(&vmx->vcpu, 0);
4047 vmx_set_efer(&vmx->vcpu, 0);
4048 vmx_fpu_activate(&vmx->vcpu);
4049 update_exception_bitmap(&vmx->vcpu);
4050
4051 vpid_sync_context(vmx);
4052
4053 ret = 0;
4054
4055 /* HACK: Don't enable emulation on guest boot/reset */
4056 vmx->emulation_required = 0;
4057
4058 out:
4059 return ret;
4060 }
4061
4062 /*
4063 * In nested virtualization, check if L1 asked to exit on external interrupts.
4064 * For most existing hypervisors, this will always return true.
4065 */
4066 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4067 {
4068 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4069 PIN_BASED_EXT_INTR_MASK;
4070 }
4071
4072 static void enable_irq_window(struct kvm_vcpu *vcpu)
4073 {
4074 u32 cpu_based_vm_exec_control;
4075 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4076 /*
4077 * We get here if vmx_interrupt_allowed() said we can't
4078 * inject to L1 now because L2 must run. Ask L2 to exit
4079 * right after entry, so we can inject to L1 more promptly.
4080 */
4081 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
4082 return;
4083 }
4084
4085 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4086 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4087 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4088 }
4089
4090 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4091 {
4092 u32 cpu_based_vm_exec_control;
4093
4094 if (!cpu_has_virtual_nmis()) {
4095 enable_irq_window(vcpu);
4096 return;
4097 }
4098
4099 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4100 enable_irq_window(vcpu);
4101 return;
4102 }
4103 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4104 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4105 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4106 }
4107
4108 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4109 {
4110 struct vcpu_vmx *vmx = to_vmx(vcpu);
4111 uint32_t intr;
4112 int irq = vcpu->arch.interrupt.nr;
4113
4114 trace_kvm_inj_virq(irq);
4115
4116 ++vcpu->stat.irq_injections;
4117 if (vmx->rmode.vm86_active) {
4118 int inc_eip = 0;
4119 if (vcpu->arch.interrupt.soft)
4120 inc_eip = vcpu->arch.event_exit_inst_len;
4121 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4122 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4123 return;
4124 }
4125 intr = irq | INTR_INFO_VALID_MASK;
4126 if (vcpu->arch.interrupt.soft) {
4127 intr |= INTR_TYPE_SOFT_INTR;
4128 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4129 vmx->vcpu.arch.event_exit_inst_len);
4130 } else
4131 intr |= INTR_TYPE_EXT_INTR;
4132 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4133 }
4134
4135 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4136 {
4137 struct vcpu_vmx *vmx = to_vmx(vcpu);
4138
4139 if (is_guest_mode(vcpu))
4140 return;
4141
4142 if (!cpu_has_virtual_nmis()) {
4143 /*
4144 * Tracking the NMI-blocked state in software is built upon
4145 * finding the next open IRQ window. This, in turn, depends on
4146 * well-behaving guests: They have to keep IRQs disabled at
4147 * least as long as the NMI handler runs. Otherwise we may
4148 * cause NMI nesting, maybe breaking the guest. But as this is
4149 * highly unlikely, we can live with the residual risk.
4150 */
4151 vmx->soft_vnmi_blocked = 1;
4152 vmx->vnmi_blocked_time = 0;
4153 }
4154
4155 ++vcpu->stat.nmi_injections;
4156 vmx->nmi_known_unmasked = false;
4157 if (vmx->rmode.vm86_active) {
4158 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4159 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4160 return;
4161 }
4162 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4163 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4164 }
4165
4166 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4167 {
4168 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4169 return 0;
4170
4171 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4172 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4173 | GUEST_INTR_STATE_NMI));
4174 }
4175
4176 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4177 {
4178 if (!cpu_has_virtual_nmis())
4179 return to_vmx(vcpu)->soft_vnmi_blocked;
4180 if (to_vmx(vcpu)->nmi_known_unmasked)
4181 return false;
4182 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4183 }
4184
4185 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4186 {
4187 struct vcpu_vmx *vmx = to_vmx(vcpu);
4188
4189 if (!cpu_has_virtual_nmis()) {
4190 if (vmx->soft_vnmi_blocked != masked) {
4191 vmx->soft_vnmi_blocked = masked;
4192 vmx->vnmi_blocked_time = 0;
4193 }
4194 } else {
4195 vmx->nmi_known_unmasked = !masked;
4196 if (masked)
4197 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4198 GUEST_INTR_STATE_NMI);
4199 else
4200 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4201 GUEST_INTR_STATE_NMI);
4202 }
4203 }
4204
4205 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4206 {
4207 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4208 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4209 if (to_vmx(vcpu)->nested.nested_run_pending ||
4210 (vmcs12->idt_vectoring_info_field &
4211 VECTORING_INFO_VALID_MASK))
4212 return 0;
4213 nested_vmx_vmexit(vcpu);
4214 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4215 vmcs12->vm_exit_intr_info = 0;
4216 /* fall through to normal code, but now in L1, not L2 */
4217 }
4218
4219 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4220 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4221 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4222 }
4223
4224 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4225 {
4226 int ret;
4227 struct kvm_userspace_memory_region tss_mem = {
4228 .slot = TSS_PRIVATE_MEMSLOT,
4229 .guest_phys_addr = addr,
4230 .memory_size = PAGE_SIZE * 3,
4231 .flags = 0,
4232 };
4233
4234 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4235 if (ret)
4236 return ret;
4237 kvm->arch.tss_addr = addr;
4238 if (!init_rmode_tss(kvm))
4239 return -ENOMEM;
4240
4241 return 0;
4242 }
4243
4244 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4245 int vec, u32 err_code)
4246 {
4247 /*
4248 * Instruction with address size override prefix opcode 0x67
4249 * Cause the #SS fault with 0 error code in VM86 mode.
4250 */
4251 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
4252 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
4253 return 1;
4254 /*
4255 * Forward all other exceptions that are valid in real mode.
4256 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4257 * the required debugging infrastructure rework.
4258 */
4259 switch (vec) {
4260 case DB_VECTOR:
4261 if (vcpu->guest_debug &
4262 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4263 return 0;
4264 kvm_queue_exception(vcpu, vec);
4265 return 1;
4266 case BP_VECTOR:
4267 /*
4268 * Update instruction length as we may reinject the exception
4269 * from user space while in guest debugging mode.
4270 */
4271 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4272 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4273 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4274 return 0;
4275 /* fall through */
4276 case DE_VECTOR:
4277 case OF_VECTOR:
4278 case BR_VECTOR:
4279 case UD_VECTOR:
4280 case DF_VECTOR:
4281 case SS_VECTOR:
4282 case GP_VECTOR:
4283 case MF_VECTOR:
4284 kvm_queue_exception(vcpu, vec);
4285 return 1;
4286 }
4287 return 0;
4288 }
4289
4290 /*
4291 * Trigger machine check on the host. We assume all the MSRs are already set up
4292 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4293 * We pass a fake environment to the machine check handler because we want
4294 * the guest to be always treated like user space, no matter what context
4295 * it used internally.
4296 */
4297 static void kvm_machine_check(void)
4298 {
4299 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4300 struct pt_regs regs = {
4301 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4302 .flags = X86_EFLAGS_IF,
4303 };
4304
4305 do_machine_check(&regs, 0);
4306 #endif
4307 }
4308
4309 static int handle_machine_check(struct kvm_vcpu *vcpu)
4310 {
4311 /* already handled by vcpu_run */
4312 return 1;
4313 }
4314
4315 static int handle_exception(struct kvm_vcpu *vcpu)
4316 {
4317 struct vcpu_vmx *vmx = to_vmx(vcpu);
4318 struct kvm_run *kvm_run = vcpu->run;
4319 u32 intr_info, ex_no, error_code;
4320 unsigned long cr2, rip, dr6;
4321 u32 vect_info;
4322 enum emulation_result er;
4323
4324 vect_info = vmx->idt_vectoring_info;
4325 intr_info = vmx->exit_intr_info;
4326
4327 if (is_machine_check(intr_info))
4328 return handle_machine_check(vcpu);
4329
4330 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4331 !is_page_fault(intr_info)) {
4332 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4333 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4334 vcpu->run->internal.ndata = 2;
4335 vcpu->run->internal.data[0] = vect_info;
4336 vcpu->run->internal.data[1] = intr_info;
4337 return 0;
4338 }
4339
4340 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4341 return 1; /* already handled by vmx_vcpu_run() */
4342
4343 if (is_no_device(intr_info)) {
4344 vmx_fpu_activate(vcpu);
4345 return 1;
4346 }
4347
4348 if (is_invalid_opcode(intr_info)) {
4349 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4350 if (er != EMULATE_DONE)
4351 kvm_queue_exception(vcpu, UD_VECTOR);
4352 return 1;
4353 }
4354
4355 error_code = 0;
4356 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4357 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4358 if (is_page_fault(intr_info)) {
4359 /* EPT won't cause page fault directly */
4360 BUG_ON(enable_ept);
4361 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4362 trace_kvm_page_fault(cr2, error_code);
4363
4364 if (kvm_event_needs_reinjection(vcpu))
4365 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4366 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4367 }
4368
4369 if (vmx->rmode.vm86_active &&
4370 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4371 error_code)) {
4372 if (vcpu->arch.halt_request) {
4373 vcpu->arch.halt_request = 0;
4374 return kvm_emulate_halt(vcpu);
4375 }
4376 return 1;
4377 }
4378
4379 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4380 switch (ex_no) {
4381 case DB_VECTOR:
4382 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4383 if (!(vcpu->guest_debug &
4384 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4385 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4386 kvm_queue_exception(vcpu, DB_VECTOR);
4387 return 1;
4388 }
4389 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4390 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4391 /* fall through */
4392 case BP_VECTOR:
4393 /*
4394 * Update instruction length as we may reinject #BP from
4395 * user space while in guest debugging mode. Reading it for
4396 * #DB as well causes no harm, it is not used in that case.
4397 */
4398 vmx->vcpu.arch.event_exit_inst_len =
4399 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4400 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4401 rip = kvm_rip_read(vcpu);
4402 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4403 kvm_run->debug.arch.exception = ex_no;
4404 break;
4405 default:
4406 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4407 kvm_run->ex.exception = ex_no;
4408 kvm_run->ex.error_code = error_code;
4409 break;
4410 }
4411 return 0;
4412 }
4413
4414 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4415 {
4416 ++vcpu->stat.irq_exits;
4417 return 1;
4418 }
4419
4420 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4421 {
4422 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4423 return 0;
4424 }
4425
4426 static int handle_io(struct kvm_vcpu *vcpu)
4427 {
4428 unsigned long exit_qualification;
4429 int size, in, string;
4430 unsigned port;
4431
4432 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4433 string = (exit_qualification & 16) != 0;
4434 in = (exit_qualification & 8) != 0;
4435
4436 ++vcpu->stat.io_exits;
4437
4438 if (string || in)
4439 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4440
4441 port = exit_qualification >> 16;
4442 size = (exit_qualification & 7) + 1;
4443 skip_emulated_instruction(vcpu);
4444
4445 return kvm_fast_pio_out(vcpu, size, port);
4446 }
4447
4448 static void
4449 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4450 {
4451 /*
4452 * Patch in the VMCALL instruction:
4453 */
4454 hypercall[0] = 0x0f;
4455 hypercall[1] = 0x01;
4456 hypercall[2] = 0xc1;
4457 }
4458
4459 /* called to set cr0 as approriate for a mov-to-cr0 exit. */
4460 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4461 {
4462 if (to_vmx(vcpu)->nested.vmxon &&
4463 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4464 return 1;
4465
4466 if (is_guest_mode(vcpu)) {
4467 /*
4468 * We get here when L2 changed cr0 in a way that did not change
4469 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4470 * but did change L0 shadowed bits. This can currently happen
4471 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4472 * loading) while pretending to allow the guest to change it.
4473 */
4474 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4475 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4476 return 1;
4477 vmcs_writel(CR0_READ_SHADOW, val);
4478 return 0;
4479 } else
4480 return kvm_set_cr0(vcpu, val);
4481 }
4482
4483 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4484 {
4485 if (is_guest_mode(vcpu)) {
4486 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4487 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4488 return 1;
4489 vmcs_writel(CR4_READ_SHADOW, val);
4490 return 0;
4491 } else
4492 return kvm_set_cr4(vcpu, val);
4493 }
4494
4495 /* called to set cr0 as approriate for clts instruction exit. */
4496 static void handle_clts(struct kvm_vcpu *vcpu)
4497 {
4498 if (is_guest_mode(vcpu)) {
4499 /*
4500 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4501 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4502 * just pretend it's off (also in arch.cr0 for fpu_activate).
4503 */
4504 vmcs_writel(CR0_READ_SHADOW,
4505 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4506 vcpu->arch.cr0 &= ~X86_CR0_TS;
4507 } else
4508 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4509 }
4510
4511 static int handle_cr(struct kvm_vcpu *vcpu)
4512 {
4513 unsigned long exit_qualification, val;
4514 int cr;
4515 int reg;
4516 int err;
4517
4518 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4519 cr = exit_qualification & 15;
4520 reg = (exit_qualification >> 8) & 15;
4521 switch ((exit_qualification >> 4) & 3) {
4522 case 0: /* mov to cr */
4523 val = kvm_register_read(vcpu, reg);
4524 trace_kvm_cr_write(cr, val);
4525 switch (cr) {
4526 case 0:
4527 err = handle_set_cr0(vcpu, val);
4528 kvm_complete_insn_gp(vcpu, err);
4529 return 1;
4530 case 3:
4531 err = kvm_set_cr3(vcpu, val);
4532 kvm_complete_insn_gp(vcpu, err);
4533 return 1;
4534 case 4:
4535 err = handle_set_cr4(vcpu, val);
4536 kvm_complete_insn_gp(vcpu, err);
4537 return 1;
4538 case 8: {
4539 u8 cr8_prev = kvm_get_cr8(vcpu);
4540 u8 cr8 = kvm_register_read(vcpu, reg);
4541 err = kvm_set_cr8(vcpu, cr8);
4542 kvm_complete_insn_gp(vcpu, err);
4543 if (irqchip_in_kernel(vcpu->kvm))
4544 return 1;
4545 if (cr8_prev <= cr8)
4546 return 1;
4547 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4548 return 0;
4549 }
4550 }
4551 break;
4552 case 2: /* clts */
4553 handle_clts(vcpu);
4554 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4555 skip_emulated_instruction(vcpu);
4556 vmx_fpu_activate(vcpu);
4557 return 1;
4558 case 1: /*mov from cr*/
4559 switch (cr) {
4560 case 3:
4561 val = kvm_read_cr3(vcpu);
4562 kvm_register_write(vcpu, reg, val);
4563 trace_kvm_cr_read(cr, val);
4564 skip_emulated_instruction(vcpu);
4565 return 1;
4566 case 8:
4567 val = kvm_get_cr8(vcpu);
4568 kvm_register_write(vcpu, reg, val);
4569 trace_kvm_cr_read(cr, val);
4570 skip_emulated_instruction(vcpu);
4571 return 1;
4572 }
4573 break;
4574 case 3: /* lmsw */
4575 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4576 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4577 kvm_lmsw(vcpu, val);
4578
4579 skip_emulated_instruction(vcpu);
4580 return 1;
4581 default:
4582 break;
4583 }
4584 vcpu->run->exit_reason = 0;
4585 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4586 (int)(exit_qualification >> 4) & 3, cr);
4587 return 0;
4588 }
4589
4590 static int handle_dr(struct kvm_vcpu *vcpu)
4591 {
4592 unsigned long exit_qualification;
4593 int dr, reg;
4594
4595 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4596 if (!kvm_require_cpl(vcpu, 0))
4597 return 1;
4598 dr = vmcs_readl(GUEST_DR7);
4599 if (dr & DR7_GD) {
4600 /*
4601 * As the vm-exit takes precedence over the debug trap, we
4602 * need to emulate the latter, either for the host or the
4603 * guest debugging itself.
4604 */
4605 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4606 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4607 vcpu->run->debug.arch.dr7 = dr;
4608 vcpu->run->debug.arch.pc =
4609 vmcs_readl(GUEST_CS_BASE) +
4610 vmcs_readl(GUEST_RIP);
4611 vcpu->run->debug.arch.exception = DB_VECTOR;
4612 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4613 return 0;
4614 } else {
4615 vcpu->arch.dr7 &= ~DR7_GD;
4616 vcpu->arch.dr6 |= DR6_BD;
4617 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4618 kvm_queue_exception(vcpu, DB_VECTOR);
4619 return 1;
4620 }
4621 }
4622
4623 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4624 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4625 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4626 if (exit_qualification & TYPE_MOV_FROM_DR) {
4627 unsigned long val;
4628 if (!kvm_get_dr(vcpu, dr, &val))
4629 kvm_register_write(vcpu, reg, val);
4630 } else
4631 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4632 skip_emulated_instruction(vcpu);
4633 return 1;
4634 }
4635
4636 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4637 {
4638 vmcs_writel(GUEST_DR7, val);
4639 }
4640
4641 static int handle_cpuid(struct kvm_vcpu *vcpu)
4642 {
4643 kvm_emulate_cpuid(vcpu);
4644 return 1;
4645 }
4646
4647 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4648 {
4649 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4650 u64 data;
4651
4652 if (vmx_get_msr(vcpu, ecx, &data)) {
4653 trace_kvm_msr_read_ex(ecx);
4654 kvm_inject_gp(vcpu, 0);
4655 return 1;
4656 }
4657
4658 trace_kvm_msr_read(ecx, data);
4659
4660 /* FIXME: handling of bits 32:63 of rax, rdx */
4661 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4662 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4663 skip_emulated_instruction(vcpu);
4664 return 1;
4665 }
4666
4667 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4668 {
4669 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4670 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4671 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4672
4673 if (vmx_set_msr(vcpu, ecx, data) != 0) {
4674 trace_kvm_msr_write_ex(ecx, data);
4675 kvm_inject_gp(vcpu, 0);
4676 return 1;
4677 }
4678
4679 trace_kvm_msr_write(ecx, data);
4680 skip_emulated_instruction(vcpu);
4681 return 1;
4682 }
4683
4684 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4685 {
4686 kvm_make_request(KVM_REQ_EVENT, vcpu);
4687 return 1;
4688 }
4689
4690 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4691 {
4692 u32 cpu_based_vm_exec_control;
4693
4694 /* clear pending irq */
4695 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4696 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4697 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4698
4699 kvm_make_request(KVM_REQ_EVENT, vcpu);
4700
4701 ++vcpu->stat.irq_window_exits;
4702
4703 /*
4704 * If the user space waits to inject interrupts, exit as soon as
4705 * possible
4706 */
4707 if (!irqchip_in_kernel(vcpu->kvm) &&
4708 vcpu->run->request_interrupt_window &&
4709 !kvm_cpu_has_interrupt(vcpu)) {
4710 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4711 return 0;
4712 }
4713 return 1;
4714 }
4715
4716 static int handle_halt(struct kvm_vcpu *vcpu)
4717 {
4718 skip_emulated_instruction(vcpu);
4719 return kvm_emulate_halt(vcpu);
4720 }
4721
4722 static int handle_vmcall(struct kvm_vcpu *vcpu)
4723 {
4724 skip_emulated_instruction(vcpu);
4725 kvm_emulate_hypercall(vcpu);
4726 return 1;
4727 }
4728
4729 static int handle_invd(struct kvm_vcpu *vcpu)
4730 {
4731 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4732 }
4733
4734 static int handle_invlpg(struct kvm_vcpu *vcpu)
4735 {
4736 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4737
4738 kvm_mmu_invlpg(vcpu, exit_qualification);
4739 skip_emulated_instruction(vcpu);
4740 return 1;
4741 }
4742
4743 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4744 {
4745 int err;
4746
4747 err = kvm_rdpmc(vcpu);
4748 kvm_complete_insn_gp(vcpu, err);
4749
4750 return 1;
4751 }
4752
4753 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4754 {
4755 skip_emulated_instruction(vcpu);
4756 kvm_emulate_wbinvd(vcpu);
4757 return 1;
4758 }
4759
4760 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4761 {
4762 u64 new_bv = kvm_read_edx_eax(vcpu);
4763 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4764
4765 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4766 skip_emulated_instruction(vcpu);
4767 return 1;
4768 }
4769
4770 static int handle_apic_access(struct kvm_vcpu *vcpu)
4771 {
4772 if (likely(fasteoi)) {
4773 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4774 int access_type, offset;
4775
4776 access_type = exit_qualification & APIC_ACCESS_TYPE;
4777 offset = exit_qualification & APIC_ACCESS_OFFSET;
4778 /*
4779 * Sane guest uses MOV to write EOI, with written value
4780 * not cared. So make a short-circuit here by avoiding
4781 * heavy instruction emulation.
4782 */
4783 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4784 (offset == APIC_EOI)) {
4785 kvm_lapic_set_eoi(vcpu);
4786 skip_emulated_instruction(vcpu);
4787 return 1;
4788 }
4789 }
4790 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4791 }
4792
4793 static int handle_task_switch(struct kvm_vcpu *vcpu)
4794 {
4795 struct vcpu_vmx *vmx = to_vmx(vcpu);
4796 unsigned long exit_qualification;
4797 bool has_error_code = false;
4798 u32 error_code = 0;
4799 u16 tss_selector;
4800 int reason, type, idt_v, idt_index;
4801
4802 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4803 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
4804 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4805
4806 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4807
4808 reason = (u32)exit_qualification >> 30;
4809 if (reason == TASK_SWITCH_GATE && idt_v) {
4810 switch (type) {
4811 case INTR_TYPE_NMI_INTR:
4812 vcpu->arch.nmi_injected = false;
4813 vmx_set_nmi_mask(vcpu, true);
4814 break;
4815 case INTR_TYPE_EXT_INTR:
4816 case INTR_TYPE_SOFT_INTR:
4817 kvm_clear_interrupt_queue(vcpu);
4818 break;
4819 case INTR_TYPE_HARD_EXCEPTION:
4820 if (vmx->idt_vectoring_info &
4821 VECTORING_INFO_DELIVER_CODE_MASK) {
4822 has_error_code = true;
4823 error_code =
4824 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4825 }
4826 /* fall through */
4827 case INTR_TYPE_SOFT_EXCEPTION:
4828 kvm_clear_exception_queue(vcpu);
4829 break;
4830 default:
4831 break;
4832 }
4833 }
4834 tss_selector = exit_qualification;
4835
4836 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4837 type != INTR_TYPE_EXT_INTR &&
4838 type != INTR_TYPE_NMI_INTR))
4839 skip_emulated_instruction(vcpu);
4840
4841 if (kvm_task_switch(vcpu, tss_selector,
4842 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
4843 has_error_code, error_code) == EMULATE_FAIL) {
4844 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4845 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4846 vcpu->run->internal.ndata = 0;
4847 return 0;
4848 }
4849
4850 /* clear all local breakpoint enable flags */
4851 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4852
4853 /*
4854 * TODO: What about debug traps on tss switch?
4855 * Are we supposed to inject them and update dr6?
4856 */
4857
4858 return 1;
4859 }
4860
4861 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4862 {
4863 unsigned long exit_qualification;
4864 gpa_t gpa;
4865 u32 error_code;
4866 int gla_validity;
4867
4868 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4869
4870 if (exit_qualification & (1 << 6)) {
4871 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4872 return -EINVAL;
4873 }
4874
4875 gla_validity = (exit_qualification >> 7) & 0x3;
4876 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4877 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4878 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4879 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4880 vmcs_readl(GUEST_LINEAR_ADDRESS));
4881 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4882 (long unsigned int)exit_qualification);
4883 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4884 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4885 return 0;
4886 }
4887
4888 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4889 trace_kvm_page_fault(gpa, exit_qualification);
4890
4891 /* It is a write fault? */
4892 error_code = exit_qualification & (1U << 1);
4893 /* ept page table is present? */
4894 error_code |= (exit_qualification >> 3) & 0x1;
4895
4896 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
4897 }
4898
4899 static u64 ept_rsvd_mask(u64 spte, int level)
4900 {
4901 int i;
4902 u64 mask = 0;
4903
4904 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4905 mask |= (1ULL << i);
4906
4907 if (level > 2)
4908 /* bits 7:3 reserved */
4909 mask |= 0xf8;
4910 else if (level == 2) {
4911 if (spte & (1ULL << 7))
4912 /* 2MB ref, bits 20:12 reserved */
4913 mask |= 0x1ff000;
4914 else
4915 /* bits 6:3 reserved */
4916 mask |= 0x78;
4917 }
4918
4919 return mask;
4920 }
4921
4922 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4923 int level)
4924 {
4925 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4926
4927 /* 010b (write-only) */
4928 WARN_ON((spte & 0x7) == 0x2);
4929
4930 /* 110b (write/execute) */
4931 WARN_ON((spte & 0x7) == 0x6);
4932
4933 /* 100b (execute-only) and value not supported by logical processor */
4934 if (!cpu_has_vmx_ept_execute_only())
4935 WARN_ON((spte & 0x7) == 0x4);
4936
4937 /* not 000b */
4938 if ((spte & 0x7)) {
4939 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4940
4941 if (rsvd_bits != 0) {
4942 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4943 __func__, rsvd_bits);
4944 WARN_ON(1);
4945 }
4946
4947 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4948 u64 ept_mem_type = (spte & 0x38) >> 3;
4949
4950 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4951 ept_mem_type == 7) {
4952 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4953 __func__, ept_mem_type);
4954 WARN_ON(1);
4955 }
4956 }
4957 }
4958 }
4959
4960 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4961 {
4962 u64 sptes[4];
4963 int nr_sptes, i, ret;
4964 gpa_t gpa;
4965
4966 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4967
4968 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4969 if (likely(ret == 1))
4970 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4971 EMULATE_DONE;
4972 if (unlikely(!ret))
4973 return 1;
4974
4975 /* It is the real ept misconfig */
4976 printk(KERN_ERR "EPT: Misconfiguration.\n");
4977 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4978
4979 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4980
4981 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4982 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4983
4984 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4985 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4986
4987 return 0;
4988 }
4989
4990 static int handle_nmi_window(struct kvm_vcpu *vcpu)
4991 {
4992 u32 cpu_based_vm_exec_control;
4993
4994 /* clear pending NMI */
4995 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4996 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4997 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4998 ++vcpu->stat.nmi_window_exits;
4999 kvm_make_request(KVM_REQ_EVENT, vcpu);
5000
5001 return 1;
5002 }
5003
5004 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5005 {
5006 struct vcpu_vmx *vmx = to_vmx(vcpu);
5007 enum emulation_result err = EMULATE_DONE;
5008 int ret = 1;
5009 u32 cpu_exec_ctrl;
5010 bool intr_window_requested;
5011 unsigned count = 130;
5012
5013 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5014 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5015
5016 while (!guest_state_valid(vcpu) && count-- != 0) {
5017 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5018 return handle_interrupt_window(&vmx->vcpu);
5019
5020 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5021 return 1;
5022
5023 err = emulate_instruction(vcpu, 0);
5024
5025 if (err == EMULATE_DO_MMIO) {
5026 ret = 0;
5027 goto out;
5028 }
5029
5030 if (err != EMULATE_DONE) {
5031 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5032 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5033 vcpu->run->internal.ndata = 0;
5034 return 0;
5035 }
5036
5037 if (signal_pending(current))
5038 goto out;
5039 if (need_resched())
5040 schedule();
5041 }
5042
5043 vmx->emulation_required = !guest_state_valid(vcpu);
5044 out:
5045 return ret;
5046 }
5047
5048 /*
5049 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5050 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5051 */
5052 static int handle_pause(struct kvm_vcpu *vcpu)
5053 {
5054 skip_emulated_instruction(vcpu);
5055 kvm_vcpu_on_spin(vcpu);
5056
5057 return 1;
5058 }
5059
5060 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5061 {
5062 kvm_queue_exception(vcpu, UD_VECTOR);
5063 return 1;
5064 }
5065
5066 /*
5067 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5068 * We could reuse a single VMCS for all the L2 guests, but we also want the
5069 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5070 * allows keeping them loaded on the processor, and in the future will allow
5071 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5072 * every entry if they never change.
5073 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5074 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5075 *
5076 * The following functions allocate and free a vmcs02 in this pool.
5077 */
5078
5079 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5080 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5081 {
5082 struct vmcs02_list *item;
5083 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5084 if (item->vmptr == vmx->nested.current_vmptr) {
5085 list_move(&item->list, &vmx->nested.vmcs02_pool);
5086 return &item->vmcs02;
5087 }
5088
5089 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5090 /* Recycle the least recently used VMCS. */
5091 item = list_entry(vmx->nested.vmcs02_pool.prev,
5092 struct vmcs02_list, list);
5093 item->vmptr = vmx->nested.current_vmptr;
5094 list_move(&item->list, &vmx->nested.vmcs02_pool);
5095 return &item->vmcs02;
5096 }
5097
5098 /* Create a new VMCS */
5099 item = (struct vmcs02_list *)
5100 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5101 if (!item)
5102 return NULL;
5103 item->vmcs02.vmcs = alloc_vmcs();
5104 if (!item->vmcs02.vmcs) {
5105 kfree(item);
5106 return NULL;
5107 }
5108 loaded_vmcs_init(&item->vmcs02);
5109 item->vmptr = vmx->nested.current_vmptr;
5110 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5111 vmx->nested.vmcs02_num++;
5112 return &item->vmcs02;
5113 }
5114
5115 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5116 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5117 {
5118 struct vmcs02_list *item;
5119 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5120 if (item->vmptr == vmptr) {
5121 free_loaded_vmcs(&item->vmcs02);
5122 list_del(&item->list);
5123 kfree(item);
5124 vmx->nested.vmcs02_num--;
5125 return;
5126 }
5127 }
5128
5129 /*
5130 * Free all VMCSs saved for this vcpu, except the one pointed by
5131 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5132 * currently used, if running L2), and vmcs01 when running L2.
5133 */
5134 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5135 {
5136 struct vmcs02_list *item, *n;
5137 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5138 if (vmx->loaded_vmcs != &item->vmcs02)
5139 free_loaded_vmcs(&item->vmcs02);
5140 list_del(&item->list);
5141 kfree(item);
5142 }
5143 vmx->nested.vmcs02_num = 0;
5144
5145 if (vmx->loaded_vmcs != &vmx->vmcs01)
5146 free_loaded_vmcs(&vmx->vmcs01);
5147 }
5148
5149 /*
5150 * Emulate the VMXON instruction.
5151 * Currently, we just remember that VMX is active, and do not save or even
5152 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5153 * do not currently need to store anything in that guest-allocated memory
5154 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5155 * argument is different from the VMXON pointer (which the spec says they do).
5156 */
5157 static int handle_vmon(struct kvm_vcpu *vcpu)
5158 {
5159 struct kvm_segment cs;
5160 struct vcpu_vmx *vmx = to_vmx(vcpu);
5161
5162 /* The Intel VMX Instruction Reference lists a bunch of bits that
5163 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5164 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5165 * Otherwise, we should fail with #UD. We test these now:
5166 */
5167 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5168 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5169 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5170 kvm_queue_exception(vcpu, UD_VECTOR);
5171 return 1;
5172 }
5173
5174 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5175 if (is_long_mode(vcpu) && !cs.l) {
5176 kvm_queue_exception(vcpu, UD_VECTOR);
5177 return 1;
5178 }
5179
5180 if (vmx_get_cpl(vcpu)) {
5181 kvm_inject_gp(vcpu, 0);
5182 return 1;
5183 }
5184
5185 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5186 vmx->nested.vmcs02_num = 0;
5187
5188 vmx->nested.vmxon = true;
5189
5190 skip_emulated_instruction(vcpu);
5191 return 1;
5192 }
5193
5194 /*
5195 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5196 * for running VMX instructions (except VMXON, whose prerequisites are
5197 * slightly different). It also specifies what exception to inject otherwise.
5198 */
5199 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5200 {
5201 struct kvm_segment cs;
5202 struct vcpu_vmx *vmx = to_vmx(vcpu);
5203
5204 if (!vmx->nested.vmxon) {
5205 kvm_queue_exception(vcpu, UD_VECTOR);
5206 return 0;
5207 }
5208
5209 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5210 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5211 (is_long_mode(vcpu) && !cs.l)) {
5212 kvm_queue_exception(vcpu, UD_VECTOR);
5213 return 0;
5214 }
5215
5216 if (vmx_get_cpl(vcpu)) {
5217 kvm_inject_gp(vcpu, 0);
5218 return 0;
5219 }
5220
5221 return 1;
5222 }
5223
5224 /*
5225 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5226 * just stops using VMX.
5227 */
5228 static void free_nested(struct vcpu_vmx *vmx)
5229 {
5230 if (!vmx->nested.vmxon)
5231 return;
5232 vmx->nested.vmxon = false;
5233 if (vmx->nested.current_vmptr != -1ull) {
5234 kunmap(vmx->nested.current_vmcs12_page);
5235 nested_release_page(vmx->nested.current_vmcs12_page);
5236 vmx->nested.current_vmptr = -1ull;
5237 vmx->nested.current_vmcs12 = NULL;
5238 }
5239 /* Unpin physical memory we referred to in current vmcs02 */
5240 if (vmx->nested.apic_access_page) {
5241 nested_release_page(vmx->nested.apic_access_page);
5242 vmx->nested.apic_access_page = 0;
5243 }
5244
5245 nested_free_all_saved_vmcss(vmx);
5246 }
5247
5248 /* Emulate the VMXOFF instruction */
5249 static int handle_vmoff(struct kvm_vcpu *vcpu)
5250 {
5251 if (!nested_vmx_check_permission(vcpu))
5252 return 1;
5253 free_nested(to_vmx(vcpu));
5254 skip_emulated_instruction(vcpu);
5255 return 1;
5256 }
5257
5258 /*
5259 * Decode the memory-address operand of a vmx instruction, as recorded on an
5260 * exit caused by such an instruction (run by a guest hypervisor).
5261 * On success, returns 0. When the operand is invalid, returns 1 and throws
5262 * #UD or #GP.
5263 */
5264 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5265 unsigned long exit_qualification,
5266 u32 vmx_instruction_info, gva_t *ret)
5267 {
5268 /*
5269 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5270 * Execution", on an exit, vmx_instruction_info holds most of the
5271 * addressing components of the operand. Only the displacement part
5272 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5273 * For how an actual address is calculated from all these components,
5274 * refer to Vol. 1, "Operand Addressing".
5275 */
5276 int scaling = vmx_instruction_info & 3;
5277 int addr_size = (vmx_instruction_info >> 7) & 7;
5278 bool is_reg = vmx_instruction_info & (1u << 10);
5279 int seg_reg = (vmx_instruction_info >> 15) & 7;
5280 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5281 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5282 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5283 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5284
5285 if (is_reg) {
5286 kvm_queue_exception(vcpu, UD_VECTOR);
5287 return 1;
5288 }
5289
5290 /* Addr = segment_base + offset */
5291 /* offset = base + [index * scale] + displacement */
5292 *ret = vmx_get_segment_base(vcpu, seg_reg);
5293 if (base_is_valid)
5294 *ret += kvm_register_read(vcpu, base_reg);
5295 if (index_is_valid)
5296 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5297 *ret += exit_qualification; /* holds the displacement */
5298
5299 if (addr_size == 1) /* 32 bit */
5300 *ret &= 0xffffffff;
5301
5302 /*
5303 * TODO: throw #GP (and return 1) in various cases that the VM*
5304 * instructions require it - e.g., offset beyond segment limit,
5305 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5306 * address, and so on. Currently these are not checked.
5307 */
5308 return 0;
5309 }
5310
5311 /*
5312 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5313 * set the success or error code of an emulated VMX instruction, as specified
5314 * by Vol 2B, VMX Instruction Reference, "Conventions".
5315 */
5316 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5317 {
5318 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5319 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5320 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5321 }
5322
5323 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5324 {
5325 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5326 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5327 X86_EFLAGS_SF | X86_EFLAGS_OF))
5328 | X86_EFLAGS_CF);
5329 }
5330
5331 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5332 u32 vm_instruction_error)
5333 {
5334 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5335 /*
5336 * failValid writes the error number to the current VMCS, which
5337 * can't be done there isn't a current VMCS.
5338 */
5339 nested_vmx_failInvalid(vcpu);
5340 return;
5341 }
5342 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5343 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5344 X86_EFLAGS_SF | X86_EFLAGS_OF))
5345 | X86_EFLAGS_ZF);
5346 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5347 }
5348
5349 /* Emulate the VMCLEAR instruction */
5350 static int handle_vmclear(struct kvm_vcpu *vcpu)
5351 {
5352 struct vcpu_vmx *vmx = to_vmx(vcpu);
5353 gva_t gva;
5354 gpa_t vmptr;
5355 struct vmcs12 *vmcs12;
5356 struct page *page;
5357 struct x86_exception e;
5358
5359 if (!nested_vmx_check_permission(vcpu))
5360 return 1;
5361
5362 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5363 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5364 return 1;
5365
5366 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5367 sizeof(vmptr), &e)) {
5368 kvm_inject_page_fault(vcpu, &e);
5369 return 1;
5370 }
5371
5372 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5373 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5374 skip_emulated_instruction(vcpu);
5375 return 1;
5376 }
5377
5378 if (vmptr == vmx->nested.current_vmptr) {
5379 kunmap(vmx->nested.current_vmcs12_page);
5380 nested_release_page(vmx->nested.current_vmcs12_page);
5381 vmx->nested.current_vmptr = -1ull;
5382 vmx->nested.current_vmcs12 = NULL;
5383 }
5384
5385 page = nested_get_page(vcpu, vmptr);
5386 if (page == NULL) {
5387 /*
5388 * For accurate processor emulation, VMCLEAR beyond available
5389 * physical memory should do nothing at all. However, it is
5390 * possible that a nested vmx bug, not a guest hypervisor bug,
5391 * resulted in this case, so let's shut down before doing any
5392 * more damage:
5393 */
5394 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5395 return 1;
5396 }
5397 vmcs12 = kmap(page);
5398 vmcs12->launch_state = 0;
5399 kunmap(page);
5400 nested_release_page(page);
5401
5402 nested_free_vmcs02(vmx, vmptr);
5403
5404 skip_emulated_instruction(vcpu);
5405 nested_vmx_succeed(vcpu);
5406 return 1;
5407 }
5408
5409 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5410
5411 /* Emulate the VMLAUNCH instruction */
5412 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5413 {
5414 return nested_vmx_run(vcpu, true);
5415 }
5416
5417 /* Emulate the VMRESUME instruction */
5418 static int handle_vmresume(struct kvm_vcpu *vcpu)
5419 {
5420
5421 return nested_vmx_run(vcpu, false);
5422 }
5423
5424 enum vmcs_field_type {
5425 VMCS_FIELD_TYPE_U16 = 0,
5426 VMCS_FIELD_TYPE_U64 = 1,
5427 VMCS_FIELD_TYPE_U32 = 2,
5428 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5429 };
5430
5431 static inline int vmcs_field_type(unsigned long field)
5432 {
5433 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5434 return VMCS_FIELD_TYPE_U32;
5435 return (field >> 13) & 0x3 ;
5436 }
5437
5438 static inline int vmcs_field_readonly(unsigned long field)
5439 {
5440 return (((field >> 10) & 0x3) == 1);
5441 }
5442
5443 /*
5444 * Read a vmcs12 field. Since these can have varying lengths and we return
5445 * one type, we chose the biggest type (u64) and zero-extend the return value
5446 * to that size. Note that the caller, handle_vmread, might need to use only
5447 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5448 * 64-bit fields are to be returned).
5449 */
5450 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5451 unsigned long field, u64 *ret)
5452 {
5453 short offset = vmcs_field_to_offset(field);
5454 char *p;
5455
5456 if (offset < 0)
5457 return 0;
5458
5459 p = ((char *)(get_vmcs12(vcpu))) + offset;
5460
5461 switch (vmcs_field_type(field)) {
5462 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5463 *ret = *((natural_width *)p);
5464 return 1;
5465 case VMCS_FIELD_TYPE_U16:
5466 *ret = *((u16 *)p);
5467 return 1;
5468 case VMCS_FIELD_TYPE_U32:
5469 *ret = *((u32 *)p);
5470 return 1;
5471 case VMCS_FIELD_TYPE_U64:
5472 *ret = *((u64 *)p);
5473 return 1;
5474 default:
5475 return 0; /* can never happen. */
5476 }
5477 }
5478
5479 /*
5480 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5481 * used before) all generate the same failure when it is missing.
5482 */
5483 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5484 {
5485 struct vcpu_vmx *vmx = to_vmx(vcpu);
5486 if (vmx->nested.current_vmptr == -1ull) {
5487 nested_vmx_failInvalid(vcpu);
5488 skip_emulated_instruction(vcpu);
5489 return 0;
5490 }
5491 return 1;
5492 }
5493
5494 static int handle_vmread(struct kvm_vcpu *vcpu)
5495 {
5496 unsigned long field;
5497 u64 field_value;
5498 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5499 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5500 gva_t gva = 0;
5501
5502 if (!nested_vmx_check_permission(vcpu) ||
5503 !nested_vmx_check_vmcs12(vcpu))
5504 return 1;
5505
5506 /* Decode instruction info and find the field to read */
5507 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5508 /* Read the field, zero-extended to a u64 field_value */
5509 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5510 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5511 skip_emulated_instruction(vcpu);
5512 return 1;
5513 }
5514 /*
5515 * Now copy part of this value to register or memory, as requested.
5516 * Note that the number of bits actually copied is 32 or 64 depending
5517 * on the guest's mode (32 or 64 bit), not on the given field's length.
5518 */
5519 if (vmx_instruction_info & (1u << 10)) {
5520 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5521 field_value);
5522 } else {
5523 if (get_vmx_mem_address(vcpu, exit_qualification,
5524 vmx_instruction_info, &gva))
5525 return 1;
5526 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5527 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5528 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5529 }
5530
5531 nested_vmx_succeed(vcpu);
5532 skip_emulated_instruction(vcpu);
5533 return 1;
5534 }
5535
5536
5537 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5538 {
5539 unsigned long field;
5540 gva_t gva;
5541 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5542 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5543 char *p;
5544 short offset;
5545 /* The value to write might be 32 or 64 bits, depending on L1's long
5546 * mode, and eventually we need to write that into a field of several
5547 * possible lengths. The code below first zero-extends the value to 64
5548 * bit (field_value), and then copies only the approriate number of
5549 * bits into the vmcs12 field.
5550 */
5551 u64 field_value = 0;
5552 struct x86_exception e;
5553
5554 if (!nested_vmx_check_permission(vcpu) ||
5555 !nested_vmx_check_vmcs12(vcpu))
5556 return 1;
5557
5558 if (vmx_instruction_info & (1u << 10))
5559 field_value = kvm_register_read(vcpu,
5560 (((vmx_instruction_info) >> 3) & 0xf));
5561 else {
5562 if (get_vmx_mem_address(vcpu, exit_qualification,
5563 vmx_instruction_info, &gva))
5564 return 1;
5565 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5566 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5567 kvm_inject_page_fault(vcpu, &e);
5568 return 1;
5569 }
5570 }
5571
5572
5573 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5574 if (vmcs_field_readonly(field)) {
5575 nested_vmx_failValid(vcpu,
5576 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5577 skip_emulated_instruction(vcpu);
5578 return 1;
5579 }
5580
5581 offset = vmcs_field_to_offset(field);
5582 if (offset < 0) {
5583 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5584 skip_emulated_instruction(vcpu);
5585 return 1;
5586 }
5587 p = ((char *) get_vmcs12(vcpu)) + offset;
5588
5589 switch (vmcs_field_type(field)) {
5590 case VMCS_FIELD_TYPE_U16:
5591 *(u16 *)p = field_value;
5592 break;
5593 case VMCS_FIELD_TYPE_U32:
5594 *(u32 *)p = field_value;
5595 break;
5596 case VMCS_FIELD_TYPE_U64:
5597 *(u64 *)p = field_value;
5598 break;
5599 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5600 *(natural_width *)p = field_value;
5601 break;
5602 default:
5603 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5604 skip_emulated_instruction(vcpu);
5605 return 1;
5606 }
5607
5608 nested_vmx_succeed(vcpu);
5609 skip_emulated_instruction(vcpu);
5610 return 1;
5611 }
5612
5613 /* Emulate the VMPTRLD instruction */
5614 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5615 {
5616 struct vcpu_vmx *vmx = to_vmx(vcpu);
5617 gva_t gva;
5618 gpa_t vmptr;
5619 struct x86_exception e;
5620
5621 if (!nested_vmx_check_permission(vcpu))
5622 return 1;
5623
5624 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5625 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5626 return 1;
5627
5628 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5629 sizeof(vmptr), &e)) {
5630 kvm_inject_page_fault(vcpu, &e);
5631 return 1;
5632 }
5633
5634 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5635 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5636 skip_emulated_instruction(vcpu);
5637 return 1;
5638 }
5639
5640 if (vmx->nested.current_vmptr != vmptr) {
5641 struct vmcs12 *new_vmcs12;
5642 struct page *page;
5643 page = nested_get_page(vcpu, vmptr);
5644 if (page == NULL) {
5645 nested_vmx_failInvalid(vcpu);
5646 skip_emulated_instruction(vcpu);
5647 return 1;
5648 }
5649 new_vmcs12 = kmap(page);
5650 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5651 kunmap(page);
5652 nested_release_page_clean(page);
5653 nested_vmx_failValid(vcpu,
5654 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5655 skip_emulated_instruction(vcpu);
5656 return 1;
5657 }
5658 if (vmx->nested.current_vmptr != -1ull) {
5659 kunmap(vmx->nested.current_vmcs12_page);
5660 nested_release_page(vmx->nested.current_vmcs12_page);
5661 }
5662
5663 vmx->nested.current_vmptr = vmptr;
5664 vmx->nested.current_vmcs12 = new_vmcs12;
5665 vmx->nested.current_vmcs12_page = page;
5666 }
5667
5668 nested_vmx_succeed(vcpu);
5669 skip_emulated_instruction(vcpu);
5670 return 1;
5671 }
5672
5673 /* Emulate the VMPTRST instruction */
5674 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5675 {
5676 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5677 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5678 gva_t vmcs_gva;
5679 struct x86_exception e;
5680
5681 if (!nested_vmx_check_permission(vcpu))
5682 return 1;
5683
5684 if (get_vmx_mem_address(vcpu, exit_qualification,
5685 vmx_instruction_info, &vmcs_gva))
5686 return 1;
5687 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5688 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5689 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5690 sizeof(u64), &e)) {
5691 kvm_inject_page_fault(vcpu, &e);
5692 return 1;
5693 }
5694 nested_vmx_succeed(vcpu);
5695 skip_emulated_instruction(vcpu);
5696 return 1;
5697 }
5698
5699 /*
5700 * The exit handlers return 1 if the exit was handled fully and guest execution
5701 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5702 * to be done to userspace and return 0.
5703 */
5704 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5705 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5706 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5707 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5708 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5709 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5710 [EXIT_REASON_CR_ACCESS] = handle_cr,
5711 [EXIT_REASON_DR_ACCESS] = handle_dr,
5712 [EXIT_REASON_CPUID] = handle_cpuid,
5713 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5714 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5715 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5716 [EXIT_REASON_HLT] = handle_halt,
5717 [EXIT_REASON_INVD] = handle_invd,
5718 [EXIT_REASON_INVLPG] = handle_invlpg,
5719 [EXIT_REASON_RDPMC] = handle_rdpmc,
5720 [EXIT_REASON_VMCALL] = handle_vmcall,
5721 [EXIT_REASON_VMCLEAR] = handle_vmclear,
5722 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
5723 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
5724 [EXIT_REASON_VMPTRST] = handle_vmptrst,
5725 [EXIT_REASON_VMREAD] = handle_vmread,
5726 [EXIT_REASON_VMRESUME] = handle_vmresume,
5727 [EXIT_REASON_VMWRITE] = handle_vmwrite,
5728 [EXIT_REASON_VMOFF] = handle_vmoff,
5729 [EXIT_REASON_VMON] = handle_vmon,
5730 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5731 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5732 [EXIT_REASON_WBINVD] = handle_wbinvd,
5733 [EXIT_REASON_XSETBV] = handle_xsetbv,
5734 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5735 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5736 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5737 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5738 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5739 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5740 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
5741 };
5742
5743 static const int kvm_vmx_max_exit_handlers =
5744 ARRAY_SIZE(kvm_vmx_exit_handlers);
5745
5746 /*
5747 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5748 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5749 * disinterest in the current event (read or write a specific MSR) by using an
5750 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5751 */
5752 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5753 struct vmcs12 *vmcs12, u32 exit_reason)
5754 {
5755 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5756 gpa_t bitmap;
5757
5758 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5759 return 1;
5760
5761 /*
5762 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5763 * for the four combinations of read/write and low/high MSR numbers.
5764 * First we need to figure out which of the four to use:
5765 */
5766 bitmap = vmcs12->msr_bitmap;
5767 if (exit_reason == EXIT_REASON_MSR_WRITE)
5768 bitmap += 2048;
5769 if (msr_index >= 0xc0000000) {
5770 msr_index -= 0xc0000000;
5771 bitmap += 1024;
5772 }
5773
5774 /* Then read the msr_index'th bit from this bitmap: */
5775 if (msr_index < 1024*8) {
5776 unsigned char b;
5777 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5778 return 1 & (b >> (msr_index & 7));
5779 } else
5780 return 1; /* let L1 handle the wrong parameter */
5781 }
5782
5783 /*
5784 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5785 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5786 * intercept (via guest_host_mask etc.) the current event.
5787 */
5788 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5789 struct vmcs12 *vmcs12)
5790 {
5791 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5792 int cr = exit_qualification & 15;
5793 int reg = (exit_qualification >> 8) & 15;
5794 unsigned long val = kvm_register_read(vcpu, reg);
5795
5796 switch ((exit_qualification >> 4) & 3) {
5797 case 0: /* mov to cr */
5798 switch (cr) {
5799 case 0:
5800 if (vmcs12->cr0_guest_host_mask &
5801 (val ^ vmcs12->cr0_read_shadow))
5802 return 1;
5803 break;
5804 case 3:
5805 if ((vmcs12->cr3_target_count >= 1 &&
5806 vmcs12->cr3_target_value0 == val) ||
5807 (vmcs12->cr3_target_count >= 2 &&
5808 vmcs12->cr3_target_value1 == val) ||
5809 (vmcs12->cr3_target_count >= 3 &&
5810 vmcs12->cr3_target_value2 == val) ||
5811 (vmcs12->cr3_target_count >= 4 &&
5812 vmcs12->cr3_target_value3 == val))
5813 return 0;
5814 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5815 return 1;
5816 break;
5817 case 4:
5818 if (vmcs12->cr4_guest_host_mask &
5819 (vmcs12->cr4_read_shadow ^ val))
5820 return 1;
5821 break;
5822 case 8:
5823 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5824 return 1;
5825 break;
5826 }
5827 break;
5828 case 2: /* clts */
5829 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5830 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5831 return 1;
5832 break;
5833 case 1: /* mov from cr */
5834 switch (cr) {
5835 case 3:
5836 if (vmcs12->cpu_based_vm_exec_control &
5837 CPU_BASED_CR3_STORE_EXITING)
5838 return 1;
5839 break;
5840 case 8:
5841 if (vmcs12->cpu_based_vm_exec_control &
5842 CPU_BASED_CR8_STORE_EXITING)
5843 return 1;
5844 break;
5845 }
5846 break;
5847 case 3: /* lmsw */
5848 /*
5849 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5850 * cr0. Other attempted changes are ignored, with no exit.
5851 */
5852 if (vmcs12->cr0_guest_host_mask & 0xe &
5853 (val ^ vmcs12->cr0_read_shadow))
5854 return 1;
5855 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5856 !(vmcs12->cr0_read_shadow & 0x1) &&
5857 (val & 0x1))
5858 return 1;
5859 break;
5860 }
5861 return 0;
5862 }
5863
5864 /*
5865 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5866 * should handle it ourselves in L0 (and then continue L2). Only call this
5867 * when in is_guest_mode (L2).
5868 */
5869 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5870 {
5871 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5872 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5873 struct vcpu_vmx *vmx = to_vmx(vcpu);
5874 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5875
5876 if (vmx->nested.nested_run_pending)
5877 return 0;
5878
5879 if (unlikely(vmx->fail)) {
5880 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5881 vmcs_read32(VM_INSTRUCTION_ERROR));
5882 return 1;
5883 }
5884
5885 switch (exit_reason) {
5886 case EXIT_REASON_EXCEPTION_NMI:
5887 if (!is_exception(intr_info))
5888 return 0;
5889 else if (is_page_fault(intr_info))
5890 return enable_ept;
5891 return vmcs12->exception_bitmap &
5892 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5893 case EXIT_REASON_EXTERNAL_INTERRUPT:
5894 return 0;
5895 case EXIT_REASON_TRIPLE_FAULT:
5896 return 1;
5897 case EXIT_REASON_PENDING_INTERRUPT:
5898 case EXIT_REASON_NMI_WINDOW:
5899 /*
5900 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5901 * (aka Interrupt Window Exiting) only when L1 turned it on,
5902 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5903 * Same for NMI Window Exiting.
5904 */
5905 return 1;
5906 case EXIT_REASON_TASK_SWITCH:
5907 return 1;
5908 case EXIT_REASON_CPUID:
5909 return 1;
5910 case EXIT_REASON_HLT:
5911 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5912 case EXIT_REASON_INVD:
5913 return 1;
5914 case EXIT_REASON_INVLPG:
5915 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5916 case EXIT_REASON_RDPMC:
5917 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5918 case EXIT_REASON_RDTSC:
5919 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5920 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5921 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5922 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5923 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5924 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5925 /*
5926 * VMX instructions trap unconditionally. This allows L1 to
5927 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5928 */
5929 return 1;
5930 case EXIT_REASON_CR_ACCESS:
5931 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5932 case EXIT_REASON_DR_ACCESS:
5933 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5934 case EXIT_REASON_IO_INSTRUCTION:
5935 /* TODO: support IO bitmaps */
5936 return 1;
5937 case EXIT_REASON_MSR_READ:
5938 case EXIT_REASON_MSR_WRITE:
5939 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5940 case EXIT_REASON_INVALID_STATE:
5941 return 1;
5942 case EXIT_REASON_MWAIT_INSTRUCTION:
5943 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5944 case EXIT_REASON_MONITOR_INSTRUCTION:
5945 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5946 case EXIT_REASON_PAUSE_INSTRUCTION:
5947 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5948 nested_cpu_has2(vmcs12,
5949 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5950 case EXIT_REASON_MCE_DURING_VMENTRY:
5951 return 0;
5952 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5953 return 1;
5954 case EXIT_REASON_APIC_ACCESS:
5955 return nested_cpu_has2(vmcs12,
5956 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5957 case EXIT_REASON_EPT_VIOLATION:
5958 case EXIT_REASON_EPT_MISCONFIG:
5959 return 0;
5960 case EXIT_REASON_WBINVD:
5961 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5962 case EXIT_REASON_XSETBV:
5963 return 1;
5964 default:
5965 return 1;
5966 }
5967 }
5968
5969 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5970 {
5971 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5972 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5973 }
5974
5975 /*
5976 * The guest has exited. See if we can fix it or if we need userspace
5977 * assistance.
5978 */
5979 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5980 {
5981 struct vcpu_vmx *vmx = to_vmx(vcpu);
5982 u32 exit_reason = vmx->exit_reason;
5983 u32 vectoring_info = vmx->idt_vectoring_info;
5984
5985 /* If guest state is invalid, start emulating */
5986 if (vmx->emulation_required && emulate_invalid_guest_state)
5987 return handle_invalid_guest_state(vcpu);
5988
5989 /*
5990 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5991 * we did not inject a still-pending event to L1 now because of
5992 * nested_run_pending, we need to re-enable this bit.
5993 */
5994 if (vmx->nested.nested_run_pending)
5995 kvm_make_request(KVM_REQ_EVENT, vcpu);
5996
5997 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5998 exit_reason == EXIT_REASON_VMRESUME))
5999 vmx->nested.nested_run_pending = 1;
6000 else
6001 vmx->nested.nested_run_pending = 0;
6002
6003 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6004 nested_vmx_vmexit(vcpu);
6005 return 1;
6006 }
6007
6008 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6009 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6010 vcpu->run->fail_entry.hardware_entry_failure_reason
6011 = exit_reason;
6012 return 0;
6013 }
6014
6015 if (unlikely(vmx->fail)) {
6016 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6017 vcpu->run->fail_entry.hardware_entry_failure_reason
6018 = vmcs_read32(VM_INSTRUCTION_ERROR);
6019 return 0;
6020 }
6021
6022 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6023 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6024 exit_reason != EXIT_REASON_EPT_VIOLATION &&
6025 exit_reason != EXIT_REASON_TASK_SWITCH))
6026 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
6027 "(0x%x) and exit reason is 0x%x\n",
6028 __func__, vectoring_info, exit_reason);
6029
6030 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6031 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6032 get_vmcs12(vcpu), vcpu)))) {
6033 if (vmx_interrupt_allowed(vcpu)) {
6034 vmx->soft_vnmi_blocked = 0;
6035 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6036 vcpu->arch.nmi_pending) {
6037 /*
6038 * This CPU don't support us in finding the end of an
6039 * NMI-blocked window if the guest runs with IRQs
6040 * disabled. So we pull the trigger after 1 s of
6041 * futile waiting, but inform the user about this.
6042 */
6043 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6044 "state on VCPU %d after 1 s timeout\n",
6045 __func__, vcpu->vcpu_id);
6046 vmx->soft_vnmi_blocked = 0;
6047 }
6048 }
6049
6050 if (exit_reason < kvm_vmx_max_exit_handlers
6051 && kvm_vmx_exit_handlers[exit_reason])
6052 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6053 else {
6054 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6055 vcpu->run->hw.hardware_exit_reason = exit_reason;
6056 }
6057 return 0;
6058 }
6059
6060 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6061 {
6062 if (irr == -1 || tpr < irr) {
6063 vmcs_write32(TPR_THRESHOLD, 0);
6064 return;
6065 }
6066
6067 vmcs_write32(TPR_THRESHOLD, irr);
6068 }
6069
6070 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6071 {
6072 u32 exit_intr_info;
6073
6074 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6075 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6076 return;
6077
6078 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6079 exit_intr_info = vmx->exit_intr_info;
6080
6081 /* Handle machine checks before interrupts are enabled */
6082 if (is_machine_check(exit_intr_info))
6083 kvm_machine_check();
6084
6085 /* We need to handle NMIs before interrupts are enabled */
6086 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6087 (exit_intr_info & INTR_INFO_VALID_MASK)) {
6088 kvm_before_handle_nmi(&vmx->vcpu);
6089 asm("int $2");
6090 kvm_after_handle_nmi(&vmx->vcpu);
6091 }
6092 }
6093
6094 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6095 {
6096 u32 exit_intr_info;
6097 bool unblock_nmi;
6098 u8 vector;
6099 bool idtv_info_valid;
6100
6101 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6102
6103 if (cpu_has_virtual_nmis()) {
6104 if (vmx->nmi_known_unmasked)
6105 return;
6106 /*
6107 * Can't use vmx->exit_intr_info since we're not sure what
6108 * the exit reason is.
6109 */
6110 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6111 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6112 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6113 /*
6114 * SDM 3: 27.7.1.2 (September 2008)
6115 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6116 * a guest IRET fault.
6117 * SDM 3: 23.2.2 (September 2008)
6118 * Bit 12 is undefined in any of the following cases:
6119 * If the VM exit sets the valid bit in the IDT-vectoring
6120 * information field.
6121 * If the VM exit is due to a double fault.
6122 */
6123 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6124 vector != DF_VECTOR && !idtv_info_valid)
6125 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6126 GUEST_INTR_STATE_NMI);
6127 else
6128 vmx->nmi_known_unmasked =
6129 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6130 & GUEST_INTR_STATE_NMI);
6131 } else if (unlikely(vmx->soft_vnmi_blocked))
6132 vmx->vnmi_blocked_time +=
6133 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
6134 }
6135
6136 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
6137 u32 idt_vectoring_info,
6138 int instr_len_field,
6139 int error_code_field)
6140 {
6141 u8 vector;
6142 int type;
6143 bool idtv_info_valid;
6144
6145 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6146
6147 vmx->vcpu.arch.nmi_injected = false;
6148 kvm_clear_exception_queue(&vmx->vcpu);
6149 kvm_clear_interrupt_queue(&vmx->vcpu);
6150
6151 if (!idtv_info_valid)
6152 return;
6153
6154 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6155
6156 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6157 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6158
6159 switch (type) {
6160 case INTR_TYPE_NMI_INTR:
6161 vmx->vcpu.arch.nmi_injected = true;
6162 /*
6163 * SDM 3: 27.7.1.2 (September 2008)
6164 * Clear bit "block by NMI" before VM entry if a NMI
6165 * delivery faulted.
6166 */
6167 vmx_set_nmi_mask(&vmx->vcpu, false);
6168 break;
6169 case INTR_TYPE_SOFT_EXCEPTION:
6170 vmx->vcpu.arch.event_exit_inst_len =
6171 vmcs_read32(instr_len_field);
6172 /* fall through */
6173 case INTR_TYPE_HARD_EXCEPTION:
6174 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6175 u32 err = vmcs_read32(error_code_field);
6176 kvm_queue_exception_e(&vmx->vcpu, vector, err);
6177 } else
6178 kvm_queue_exception(&vmx->vcpu, vector);
6179 break;
6180 case INTR_TYPE_SOFT_INTR:
6181 vmx->vcpu.arch.event_exit_inst_len =
6182 vmcs_read32(instr_len_field);
6183 /* fall through */
6184 case INTR_TYPE_EXT_INTR:
6185 kvm_queue_interrupt(&vmx->vcpu, vector,
6186 type == INTR_TYPE_SOFT_INTR);
6187 break;
6188 default:
6189 break;
6190 }
6191 }
6192
6193 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6194 {
6195 if (is_guest_mode(&vmx->vcpu))
6196 return;
6197 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6198 VM_EXIT_INSTRUCTION_LEN,
6199 IDT_VECTORING_ERROR_CODE);
6200 }
6201
6202 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6203 {
6204 if (is_guest_mode(vcpu))
6205 return;
6206 __vmx_complete_interrupts(to_vmx(vcpu),
6207 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6208 VM_ENTRY_INSTRUCTION_LEN,
6209 VM_ENTRY_EXCEPTION_ERROR_CODE);
6210
6211 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6212 }
6213
6214 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6215 {
6216 int i, nr_msrs;
6217 struct perf_guest_switch_msr *msrs;
6218
6219 msrs = perf_guest_get_msrs(&nr_msrs);
6220
6221 if (!msrs)
6222 return;
6223
6224 for (i = 0; i < nr_msrs; i++)
6225 if (msrs[i].host == msrs[i].guest)
6226 clear_atomic_switch_msr(vmx, msrs[i].msr);
6227 else
6228 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6229 msrs[i].host);
6230 }
6231
6232 #ifdef CONFIG_X86_64
6233 #define R "r"
6234 #define Q "q"
6235 #else
6236 #define R "e"
6237 #define Q "l"
6238 #endif
6239
6240 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6241 {
6242 struct vcpu_vmx *vmx = to_vmx(vcpu);
6243
6244 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6245 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6246 if (vmcs12->idt_vectoring_info_field &
6247 VECTORING_INFO_VALID_MASK) {
6248 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6249 vmcs12->idt_vectoring_info_field);
6250 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6251 vmcs12->vm_exit_instruction_len);
6252 if (vmcs12->idt_vectoring_info_field &
6253 VECTORING_INFO_DELIVER_CODE_MASK)
6254 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6255 vmcs12->idt_vectoring_error_code);
6256 }
6257 }
6258
6259 /* Record the guest's net vcpu time for enforced NMI injections. */
6260 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6261 vmx->entry_time = ktime_get();
6262
6263 /* Don't enter VMX if guest state is invalid, let the exit handler
6264 start emulation until we arrive back to a valid state */
6265 if (vmx->emulation_required && emulate_invalid_guest_state)
6266 return;
6267
6268 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6269 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6270 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6271 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6272
6273 /* When single-stepping over STI and MOV SS, we must clear the
6274 * corresponding interruptibility bits in the guest state. Otherwise
6275 * vmentry fails as it then expects bit 14 (BS) in pending debug
6276 * exceptions being set, but that's not correct for the guest debugging
6277 * case. */
6278 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6279 vmx_set_interrupt_shadow(vcpu, 0);
6280
6281 atomic_switch_perf_msrs(vmx);
6282
6283 vmx->__launched = vmx->loaded_vmcs->launched;
6284 asm(
6285 /* Store host registers */
6286 "push %%"R"dx; push %%"R"bp;"
6287 "push %%"R"cx \n\t" /* placeholder for guest rcx */
6288 "push %%"R"cx \n\t"
6289 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6290 "je 1f \n\t"
6291 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
6292 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6293 "1: \n\t"
6294 /* Reload cr2 if changed */
6295 "mov %c[cr2](%0), %%"R"ax \n\t"
6296 "mov %%cr2, %%"R"dx \n\t"
6297 "cmp %%"R"ax, %%"R"dx \n\t"
6298 "je 2f \n\t"
6299 "mov %%"R"ax, %%cr2 \n\t"
6300 "2: \n\t"
6301 /* Check if vmlaunch of vmresume is needed */
6302 "cmpl $0, %c[launched](%0) \n\t"
6303 /* Load guest registers. Don't clobber flags. */
6304 "mov %c[rax](%0), %%"R"ax \n\t"
6305 "mov %c[rbx](%0), %%"R"bx \n\t"
6306 "mov %c[rdx](%0), %%"R"dx \n\t"
6307 "mov %c[rsi](%0), %%"R"si \n\t"
6308 "mov %c[rdi](%0), %%"R"di \n\t"
6309 "mov %c[rbp](%0), %%"R"bp \n\t"
6310 #ifdef CONFIG_X86_64
6311 "mov %c[r8](%0), %%r8 \n\t"
6312 "mov %c[r9](%0), %%r9 \n\t"
6313 "mov %c[r10](%0), %%r10 \n\t"
6314 "mov %c[r11](%0), %%r11 \n\t"
6315 "mov %c[r12](%0), %%r12 \n\t"
6316 "mov %c[r13](%0), %%r13 \n\t"
6317 "mov %c[r14](%0), %%r14 \n\t"
6318 "mov %c[r15](%0), %%r15 \n\t"
6319 #endif
6320 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6321
6322 /* Enter guest mode */
6323 "jne .Llaunched \n\t"
6324 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6325 "jmp .Lkvm_vmx_return \n\t"
6326 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
6327 ".Lkvm_vmx_return: "
6328 /* Save guest registers, load host registers, keep flags */
6329 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6330 "pop %0 \n\t"
6331 "mov %%"R"ax, %c[rax](%0) \n\t"
6332 "mov %%"R"bx, %c[rbx](%0) \n\t"
6333 "pop"Q" %c[rcx](%0) \n\t"
6334 "mov %%"R"dx, %c[rdx](%0) \n\t"
6335 "mov %%"R"si, %c[rsi](%0) \n\t"
6336 "mov %%"R"di, %c[rdi](%0) \n\t"
6337 "mov %%"R"bp, %c[rbp](%0) \n\t"
6338 #ifdef CONFIG_X86_64
6339 "mov %%r8, %c[r8](%0) \n\t"
6340 "mov %%r9, %c[r9](%0) \n\t"
6341 "mov %%r10, %c[r10](%0) \n\t"
6342 "mov %%r11, %c[r11](%0) \n\t"
6343 "mov %%r12, %c[r12](%0) \n\t"
6344 "mov %%r13, %c[r13](%0) \n\t"
6345 "mov %%r14, %c[r14](%0) \n\t"
6346 "mov %%r15, %c[r15](%0) \n\t"
6347 #endif
6348 "mov %%cr2, %%"R"ax \n\t"
6349 "mov %%"R"ax, %c[cr2](%0) \n\t"
6350
6351 "pop %%"R"bp; pop %%"R"dx \n\t"
6352 "setbe %c[fail](%0) \n\t"
6353 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6354 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6355 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6356 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6357 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6358 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6359 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6360 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6361 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6362 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6363 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6364 #ifdef CONFIG_X86_64
6365 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6366 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6367 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6368 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6369 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6370 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6371 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6372 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6373 #endif
6374 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6375 [wordsize]"i"(sizeof(ulong))
6376 : "cc", "memory"
6377 , R"ax", R"bx", R"di", R"si"
6378 #ifdef CONFIG_X86_64
6379 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6380 #endif
6381 );
6382
6383 #ifndef CONFIG_X86_64
6384 /*
6385 * The sysexit path does not restore ds/es, so we must set them to
6386 * a reasonable value ourselves.
6387 *
6388 * We can't defer this to vmx_load_host_state() since that function
6389 * may be executed in interrupt context, which saves and restore segments
6390 * around it, nullifying its effect.
6391 */
6392 loadsegment(ds, __USER_DS);
6393 loadsegment(es, __USER_DS);
6394 #endif
6395
6396 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6397 | (1 << VCPU_EXREG_RFLAGS)
6398 | (1 << VCPU_EXREG_CPL)
6399 | (1 << VCPU_EXREG_PDPTR)
6400 | (1 << VCPU_EXREG_SEGMENTS)
6401 | (1 << VCPU_EXREG_CR3));
6402 vcpu->arch.regs_dirty = 0;
6403
6404 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6405
6406 if (is_guest_mode(vcpu)) {
6407 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6408 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6409 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6410 vmcs12->idt_vectoring_error_code =
6411 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6412 vmcs12->vm_exit_instruction_len =
6413 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6414 }
6415 }
6416
6417 vmx->loaded_vmcs->launched = 1;
6418
6419 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6420 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6421
6422 vmx_complete_atomic_exit(vmx);
6423 vmx_recover_nmi_blocking(vmx);
6424 vmx_complete_interrupts(vmx);
6425 }
6426
6427 #undef R
6428 #undef Q
6429
6430 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6431 {
6432 struct vcpu_vmx *vmx = to_vmx(vcpu);
6433
6434 free_vpid(vmx);
6435 free_nested(vmx);
6436 free_loaded_vmcs(vmx->loaded_vmcs);
6437 kfree(vmx->guest_msrs);
6438 kvm_vcpu_uninit(vcpu);
6439 kmem_cache_free(kvm_vcpu_cache, vmx);
6440 }
6441
6442 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6443 {
6444 int err;
6445 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6446 int cpu;
6447
6448 if (!vmx)
6449 return ERR_PTR(-ENOMEM);
6450
6451 allocate_vpid(vmx);
6452
6453 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6454 if (err)
6455 goto free_vcpu;
6456
6457 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6458 err = -ENOMEM;
6459 if (!vmx->guest_msrs) {
6460 goto uninit_vcpu;
6461 }
6462
6463 vmx->loaded_vmcs = &vmx->vmcs01;
6464 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6465 if (!vmx->loaded_vmcs->vmcs)
6466 goto free_msrs;
6467 if (!vmm_exclusive)
6468 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6469 loaded_vmcs_init(vmx->loaded_vmcs);
6470 if (!vmm_exclusive)
6471 kvm_cpu_vmxoff();
6472
6473 cpu = get_cpu();
6474 vmx_vcpu_load(&vmx->vcpu, cpu);
6475 vmx->vcpu.cpu = cpu;
6476 err = vmx_vcpu_setup(vmx);
6477 vmx_vcpu_put(&vmx->vcpu);
6478 put_cpu();
6479 if (err)
6480 goto free_vmcs;
6481 if (vm_need_virtualize_apic_accesses(kvm))
6482 err = alloc_apic_access_page(kvm);
6483 if (err)
6484 goto free_vmcs;
6485
6486 if (enable_ept) {
6487 if (!kvm->arch.ept_identity_map_addr)
6488 kvm->arch.ept_identity_map_addr =
6489 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6490 err = -ENOMEM;
6491 if (alloc_identity_pagetable(kvm) != 0)
6492 goto free_vmcs;
6493 if (!init_rmode_identity_map(kvm))
6494 goto free_vmcs;
6495 }
6496
6497 vmx->nested.current_vmptr = -1ull;
6498 vmx->nested.current_vmcs12 = NULL;
6499
6500 return &vmx->vcpu;
6501
6502 free_vmcs:
6503 free_loaded_vmcs(vmx->loaded_vmcs);
6504 free_msrs:
6505 kfree(vmx->guest_msrs);
6506 uninit_vcpu:
6507 kvm_vcpu_uninit(&vmx->vcpu);
6508 free_vcpu:
6509 free_vpid(vmx);
6510 kmem_cache_free(kvm_vcpu_cache, vmx);
6511 return ERR_PTR(err);
6512 }
6513
6514 static void __init vmx_check_processor_compat(void *rtn)
6515 {
6516 struct vmcs_config vmcs_conf;
6517
6518 *(int *)rtn = 0;
6519 if (setup_vmcs_config(&vmcs_conf) < 0)
6520 *(int *)rtn = -EIO;
6521 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6522 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6523 smp_processor_id());
6524 *(int *)rtn = -EIO;
6525 }
6526 }
6527
6528 static int get_ept_level(void)
6529 {
6530 return VMX_EPT_DEFAULT_GAW + 1;
6531 }
6532
6533 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6534 {
6535 u64 ret;
6536
6537 /* For VT-d and EPT combination
6538 * 1. MMIO: always map as UC
6539 * 2. EPT with VT-d:
6540 * a. VT-d without snooping control feature: can't guarantee the
6541 * result, try to trust guest.
6542 * b. VT-d with snooping control feature: snooping control feature of
6543 * VT-d engine can guarantee the cache correctness. Just set it
6544 * to WB to keep consistent with host. So the same as item 3.
6545 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6546 * consistent with host MTRR
6547 */
6548 if (is_mmio)
6549 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6550 else if (vcpu->kvm->arch.iommu_domain &&
6551 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6552 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6553 VMX_EPT_MT_EPTE_SHIFT;
6554 else
6555 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6556 | VMX_EPT_IPAT_BIT;
6557
6558 return ret;
6559 }
6560
6561 static int vmx_get_lpage_level(void)
6562 {
6563 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6564 return PT_DIRECTORY_LEVEL;
6565 else
6566 /* For shadow and EPT supported 1GB page */
6567 return PT_PDPE_LEVEL;
6568 }
6569
6570 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6571 {
6572 struct kvm_cpuid_entry2 *best;
6573 struct vcpu_vmx *vmx = to_vmx(vcpu);
6574 u32 exec_control;
6575
6576 vmx->rdtscp_enabled = false;
6577 if (vmx_rdtscp_supported()) {
6578 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6579 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6580 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6581 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6582 vmx->rdtscp_enabled = true;
6583 else {
6584 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6585 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6586 exec_control);
6587 }
6588 }
6589 }
6590
6591 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6592 /* Exposing INVPCID only when PCID is exposed */
6593 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6594 if (vmx_invpcid_supported() &&
6595 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
6596 guest_cpuid_has_pcid(vcpu)) {
6597 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
6598 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6599 exec_control);
6600 } else {
6601 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
6602 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6603 exec_control);
6604 if (best)
6605 best->ebx &= ~bit(X86_FEATURE_INVPCID);
6606 }
6607 }
6608
6609 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6610 {
6611 if (func == 1 && nested)
6612 entry->ecx |= bit(X86_FEATURE_VMX);
6613 }
6614
6615 /*
6616 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6617 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6618 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6619 * guest in a way that will both be appropriate to L1's requests, and our
6620 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6621 * function also has additional necessary side-effects, like setting various
6622 * vcpu->arch fields.
6623 */
6624 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6625 {
6626 struct vcpu_vmx *vmx = to_vmx(vcpu);
6627 u32 exec_control;
6628
6629 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6630 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6631 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6632 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6633 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6634 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6635 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6636 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6637 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6638 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6639 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6640 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6641 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6642 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6643 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6644 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6645 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6646 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6647 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6648 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6649 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6650 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6651 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6652 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6653 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6654 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6655 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6656 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6657 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6658 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6659 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6660 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6661 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6662 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6663 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6664 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6665
6666 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6667 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6668 vmcs12->vm_entry_intr_info_field);
6669 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6670 vmcs12->vm_entry_exception_error_code);
6671 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6672 vmcs12->vm_entry_instruction_len);
6673 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6674 vmcs12->guest_interruptibility_info);
6675 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6676 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6677 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6678 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6679 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6680 vmcs12->guest_pending_dbg_exceptions);
6681 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6682 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6683
6684 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6685
6686 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6687 (vmcs_config.pin_based_exec_ctrl |
6688 vmcs12->pin_based_vm_exec_control));
6689
6690 /*
6691 * Whether page-faults are trapped is determined by a combination of
6692 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6693 * If enable_ept, L0 doesn't care about page faults and we should
6694 * set all of these to L1's desires. However, if !enable_ept, L0 does
6695 * care about (at least some) page faults, and because it is not easy
6696 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6697 * to exit on each and every L2 page fault. This is done by setting
6698 * MASK=MATCH=0 and (see below) EB.PF=1.
6699 * Note that below we don't need special code to set EB.PF beyond the
6700 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6701 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6702 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6703 *
6704 * A problem with this approach (when !enable_ept) is that L1 may be
6705 * injected with more page faults than it asked for. This could have
6706 * caused problems, but in practice existing hypervisors don't care.
6707 * To fix this, we will need to emulate the PFEC checking (on the L1
6708 * page tables), using walk_addr(), when injecting PFs to L1.
6709 */
6710 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6711 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6712 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6713 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6714
6715 if (cpu_has_secondary_exec_ctrls()) {
6716 u32 exec_control = vmx_secondary_exec_control(vmx);
6717 if (!vmx->rdtscp_enabled)
6718 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6719 /* Take the following fields only from vmcs12 */
6720 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6721 if (nested_cpu_has(vmcs12,
6722 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6723 exec_control |= vmcs12->secondary_vm_exec_control;
6724
6725 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6726 /*
6727 * Translate L1 physical address to host physical
6728 * address for vmcs02. Keep the page pinned, so this
6729 * physical address remains valid. We keep a reference
6730 * to it so we can release it later.
6731 */
6732 if (vmx->nested.apic_access_page) /* shouldn't happen */
6733 nested_release_page(vmx->nested.apic_access_page);
6734 vmx->nested.apic_access_page =
6735 nested_get_page(vcpu, vmcs12->apic_access_addr);
6736 /*
6737 * If translation failed, no matter: This feature asks
6738 * to exit when accessing the given address, and if it
6739 * can never be accessed, this feature won't do
6740 * anything anyway.
6741 */
6742 if (!vmx->nested.apic_access_page)
6743 exec_control &=
6744 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6745 else
6746 vmcs_write64(APIC_ACCESS_ADDR,
6747 page_to_phys(vmx->nested.apic_access_page));
6748 }
6749
6750 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6751 }
6752
6753
6754 /*
6755 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6756 * Some constant fields are set here by vmx_set_constant_host_state().
6757 * Other fields are different per CPU, and will be set later when
6758 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6759 */
6760 vmx_set_constant_host_state();
6761
6762 /*
6763 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6764 * entry, but only if the current (host) sp changed from the value
6765 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6766 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6767 * here we just force the write to happen on entry.
6768 */
6769 vmx->host_rsp = 0;
6770
6771 exec_control = vmx_exec_control(vmx); /* L0's desires */
6772 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6773 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6774 exec_control &= ~CPU_BASED_TPR_SHADOW;
6775 exec_control |= vmcs12->cpu_based_vm_exec_control;
6776 /*
6777 * Merging of IO and MSR bitmaps not currently supported.
6778 * Rather, exit every time.
6779 */
6780 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6781 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6782 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6783
6784 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6785
6786 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6787 * bitwise-or of what L1 wants to trap for L2, and what we want to
6788 * trap. Note that CR0.TS also needs updating - we do this later.
6789 */
6790 update_exception_bitmap(vcpu);
6791 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6792 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6793
6794 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6795 vmcs_write32(VM_EXIT_CONTROLS,
6796 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6797 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6798 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6799
6800 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6801 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6802 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6803 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6804
6805
6806 set_cr4_guest_host_mask(vmx);
6807
6808 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6809 vmcs_write64(TSC_OFFSET,
6810 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6811 else
6812 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6813
6814 if (enable_vpid) {
6815 /*
6816 * Trivially support vpid by letting L2s share their parent
6817 * L1's vpid. TODO: move to a more elaborate solution, giving
6818 * each L2 its own vpid and exposing the vpid feature to L1.
6819 */
6820 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6821 vmx_flush_tlb(vcpu);
6822 }
6823
6824 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6825 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6826 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6827 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6828 else
6829 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6830 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6831 vmx_set_efer(vcpu, vcpu->arch.efer);
6832
6833 /*
6834 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6835 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6836 * The CR0_READ_SHADOW is what L2 should have expected to read given
6837 * the specifications by L1; It's not enough to take
6838 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6839 * have more bits than L1 expected.
6840 */
6841 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6842 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6843
6844 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6845 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6846
6847 /* shadow page tables on either EPT or shadow page tables */
6848 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6849 kvm_mmu_reset_context(vcpu);
6850
6851 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6852 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6853 }
6854
6855 /*
6856 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6857 * for running an L2 nested guest.
6858 */
6859 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6860 {
6861 struct vmcs12 *vmcs12;
6862 struct vcpu_vmx *vmx = to_vmx(vcpu);
6863 int cpu;
6864 struct loaded_vmcs *vmcs02;
6865
6866 if (!nested_vmx_check_permission(vcpu) ||
6867 !nested_vmx_check_vmcs12(vcpu))
6868 return 1;
6869
6870 skip_emulated_instruction(vcpu);
6871 vmcs12 = get_vmcs12(vcpu);
6872
6873 /*
6874 * The nested entry process starts with enforcing various prerequisites
6875 * on vmcs12 as required by the Intel SDM, and act appropriately when
6876 * they fail: As the SDM explains, some conditions should cause the
6877 * instruction to fail, while others will cause the instruction to seem
6878 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6879 * To speed up the normal (success) code path, we should avoid checking
6880 * for misconfigurations which will anyway be caught by the processor
6881 * when using the merged vmcs02.
6882 */
6883 if (vmcs12->launch_state == launch) {
6884 nested_vmx_failValid(vcpu,
6885 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6886 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6887 return 1;
6888 }
6889
6890 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6891 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6892 /*TODO: Also verify bits beyond physical address width are 0*/
6893 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6894 return 1;
6895 }
6896
6897 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6898 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6899 /*TODO: Also verify bits beyond physical address width are 0*/
6900 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6901 return 1;
6902 }
6903
6904 if (vmcs12->vm_entry_msr_load_count > 0 ||
6905 vmcs12->vm_exit_msr_load_count > 0 ||
6906 vmcs12->vm_exit_msr_store_count > 0) {
6907 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6908 __func__);
6909 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6910 return 1;
6911 }
6912
6913 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6914 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6915 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6916 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6917 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6918 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6919 !vmx_control_verify(vmcs12->vm_exit_controls,
6920 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6921 !vmx_control_verify(vmcs12->vm_entry_controls,
6922 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6923 {
6924 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6925 return 1;
6926 }
6927
6928 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6929 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6930 nested_vmx_failValid(vcpu,
6931 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6932 return 1;
6933 }
6934
6935 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6936 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6937 nested_vmx_entry_failure(vcpu, vmcs12,
6938 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6939 return 1;
6940 }
6941 if (vmcs12->vmcs_link_pointer != -1ull) {
6942 nested_vmx_entry_failure(vcpu, vmcs12,
6943 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6944 return 1;
6945 }
6946
6947 /*
6948 * We're finally done with prerequisite checking, and can start with
6949 * the nested entry.
6950 */
6951
6952 vmcs02 = nested_get_current_vmcs02(vmx);
6953 if (!vmcs02)
6954 return -ENOMEM;
6955
6956 enter_guest_mode(vcpu);
6957
6958 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6959
6960 cpu = get_cpu();
6961 vmx->loaded_vmcs = vmcs02;
6962 vmx_vcpu_put(vcpu);
6963 vmx_vcpu_load(vcpu, cpu);
6964 vcpu->cpu = cpu;
6965 put_cpu();
6966
6967 vmcs12->launch_state = 1;
6968
6969 prepare_vmcs02(vcpu, vmcs12);
6970
6971 /*
6972 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6973 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6974 * returned as far as L1 is concerned. It will only return (and set
6975 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6976 */
6977 return 1;
6978 }
6979
6980 /*
6981 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6982 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6983 * This function returns the new value we should put in vmcs12.guest_cr0.
6984 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6985 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6986 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6987 * didn't trap the bit, because if L1 did, so would L0).
6988 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6989 * been modified by L2, and L1 knows it. So just leave the old value of
6990 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6991 * isn't relevant, because if L0 traps this bit it can set it to anything.
6992 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6993 * changed these bits, and therefore they need to be updated, but L0
6994 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6995 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6996 */
6997 static inline unsigned long
6998 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6999 {
7000 return
7001 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7002 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7003 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7004 vcpu->arch.cr0_guest_owned_bits));
7005 }
7006
7007 static inline unsigned long
7008 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7009 {
7010 return
7011 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7012 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7013 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7014 vcpu->arch.cr4_guest_owned_bits));
7015 }
7016
7017 /*
7018 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7019 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7020 * and this function updates it to reflect the changes to the guest state while
7021 * L2 was running (and perhaps made some exits which were handled directly by L0
7022 * without going back to L1), and to reflect the exit reason.
7023 * Note that we do not have to copy here all VMCS fields, just those that
7024 * could have changed by the L2 guest or the exit - i.e., the guest-state and
7025 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7026 * which already writes to vmcs12 directly.
7027 */
7028 void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7029 {
7030 /* update guest state fields: */
7031 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7032 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7033
7034 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7035 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7036 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7037 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7038
7039 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7040 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7041 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7042 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7043 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7044 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7045 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7046 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7047 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7048 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7049 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7050 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7051 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7052 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7053 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7054 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7055 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7056 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7057 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7058 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7059 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7060 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7061 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7062 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7063 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7064 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7065 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7066 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7067 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7068 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7069 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7070 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7071 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7072 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7073 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7074 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7075
7076 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
7077 vmcs12->guest_interruptibility_info =
7078 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7079 vmcs12->guest_pending_dbg_exceptions =
7080 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7081
7082 /* TODO: These cannot have changed unless we have MSR bitmaps and
7083 * the relevant bit asks not to trap the change */
7084 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
7085 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
7086 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7087 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7088 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7089 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7090
7091 /* update exit information fields: */
7092
7093 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
7094 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7095
7096 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7097 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7098 vmcs12->idt_vectoring_info_field =
7099 vmcs_read32(IDT_VECTORING_INFO_FIELD);
7100 vmcs12->idt_vectoring_error_code =
7101 vmcs_read32(IDT_VECTORING_ERROR_CODE);
7102 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7103 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7104
7105 /* clear vm-entry fields which are to be cleared on exit */
7106 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
7107 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
7108 }
7109
7110 /*
7111 * A part of what we need to when the nested L2 guest exits and we want to
7112 * run its L1 parent, is to reset L1's guest state to the host state specified
7113 * in vmcs12.
7114 * This function is to be called not only on normal nested exit, but also on
7115 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7116 * Failures During or After Loading Guest State").
7117 * This function should be called when the active VMCS is L1's (vmcs01).
7118 */
7119 void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7120 {
7121 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7122 vcpu->arch.efer = vmcs12->host_ia32_efer;
7123 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7124 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7125 else
7126 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7127 vmx_set_efer(vcpu, vcpu->arch.efer);
7128
7129 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7130 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
7131 /*
7132 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7133 * actually changed, because it depends on the current state of
7134 * fpu_active (which may have changed).
7135 * Note that vmx_set_cr0 refers to efer set above.
7136 */
7137 kvm_set_cr0(vcpu, vmcs12->host_cr0);
7138 /*
7139 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7140 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7141 * but we also need to update cr0_guest_host_mask and exception_bitmap.
7142 */
7143 update_exception_bitmap(vcpu);
7144 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7145 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7146
7147 /*
7148 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7149 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7150 */
7151 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7152 kvm_set_cr4(vcpu, vmcs12->host_cr4);
7153
7154 /* shadow page tables on either EPT or shadow page tables */
7155 kvm_set_cr3(vcpu, vmcs12->host_cr3);
7156 kvm_mmu_reset_context(vcpu);
7157
7158 if (enable_vpid) {
7159 /*
7160 * Trivially support vpid by letting L2s share their parent
7161 * L1's vpid. TODO: move to a more elaborate solution, giving
7162 * each L2 its own vpid and exposing the vpid feature to L1.
7163 */
7164 vmx_flush_tlb(vcpu);
7165 }
7166
7167
7168 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7169 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7170 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7171 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7172 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7173 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7174 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7175 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7176 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7177 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7178 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7179 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7180 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7181 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7182 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7183
7184 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7185 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7186 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7187 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7188 vmcs12->host_ia32_perf_global_ctrl);
7189 }
7190
7191 /*
7192 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7193 * and modify vmcs12 to make it see what it would expect to see there if
7194 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7195 */
7196 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7197 {
7198 struct vcpu_vmx *vmx = to_vmx(vcpu);
7199 int cpu;
7200 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7201
7202 leave_guest_mode(vcpu);
7203 prepare_vmcs12(vcpu, vmcs12);
7204
7205 cpu = get_cpu();
7206 vmx->loaded_vmcs = &vmx->vmcs01;
7207 vmx_vcpu_put(vcpu);
7208 vmx_vcpu_load(vcpu, cpu);
7209 vcpu->cpu = cpu;
7210 put_cpu();
7211
7212 /* if no vmcs02 cache requested, remove the one we used */
7213 if (VMCS02_POOL_SIZE == 0)
7214 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7215
7216 load_vmcs12_host_state(vcpu, vmcs12);
7217
7218 /* Update TSC_OFFSET if TSC was changed while L2 ran */
7219 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7220
7221 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7222 vmx->host_rsp = 0;
7223
7224 /* Unpin physical memory we referred to in vmcs02 */
7225 if (vmx->nested.apic_access_page) {
7226 nested_release_page(vmx->nested.apic_access_page);
7227 vmx->nested.apic_access_page = 0;
7228 }
7229
7230 /*
7231 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7232 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7233 * success or failure flag accordingly.
7234 */
7235 if (unlikely(vmx->fail)) {
7236 vmx->fail = 0;
7237 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7238 } else
7239 nested_vmx_succeed(vcpu);
7240 }
7241
7242 /*
7243 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7244 * 23.7 "VM-entry failures during or after loading guest state" (this also
7245 * lists the acceptable exit-reason and exit-qualification parameters).
7246 * It should only be called before L2 actually succeeded to run, and when
7247 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7248 */
7249 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7250 struct vmcs12 *vmcs12,
7251 u32 reason, unsigned long qualification)
7252 {
7253 load_vmcs12_host_state(vcpu, vmcs12);
7254 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7255 vmcs12->exit_qualification = qualification;
7256 nested_vmx_succeed(vcpu);
7257 }
7258
7259 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7260 struct x86_instruction_info *info,
7261 enum x86_intercept_stage stage)
7262 {
7263 return X86EMUL_CONTINUE;
7264 }
7265
7266 static struct kvm_x86_ops vmx_x86_ops = {
7267 .cpu_has_kvm_support = cpu_has_kvm_support,
7268 .disabled_by_bios = vmx_disabled_by_bios,
7269 .hardware_setup = hardware_setup,
7270 .hardware_unsetup = hardware_unsetup,
7271 .check_processor_compatibility = vmx_check_processor_compat,
7272 .hardware_enable = hardware_enable,
7273 .hardware_disable = hardware_disable,
7274 .cpu_has_accelerated_tpr = report_flexpriority,
7275
7276 .vcpu_create = vmx_create_vcpu,
7277 .vcpu_free = vmx_free_vcpu,
7278 .vcpu_reset = vmx_vcpu_reset,
7279
7280 .prepare_guest_switch = vmx_save_host_state,
7281 .vcpu_load = vmx_vcpu_load,
7282 .vcpu_put = vmx_vcpu_put,
7283
7284 .set_guest_debug = set_guest_debug,
7285 .get_msr = vmx_get_msr,
7286 .set_msr = vmx_set_msr,
7287 .get_segment_base = vmx_get_segment_base,
7288 .get_segment = vmx_get_segment,
7289 .set_segment = vmx_set_segment,
7290 .get_cpl = vmx_get_cpl,
7291 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7292 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7293 .decache_cr3 = vmx_decache_cr3,
7294 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7295 .set_cr0 = vmx_set_cr0,
7296 .set_cr3 = vmx_set_cr3,
7297 .set_cr4 = vmx_set_cr4,
7298 .set_efer = vmx_set_efer,
7299 .get_idt = vmx_get_idt,
7300 .set_idt = vmx_set_idt,
7301 .get_gdt = vmx_get_gdt,
7302 .set_gdt = vmx_set_gdt,
7303 .set_dr7 = vmx_set_dr7,
7304 .cache_reg = vmx_cache_reg,
7305 .get_rflags = vmx_get_rflags,
7306 .set_rflags = vmx_set_rflags,
7307 .fpu_activate = vmx_fpu_activate,
7308 .fpu_deactivate = vmx_fpu_deactivate,
7309
7310 .tlb_flush = vmx_flush_tlb,
7311
7312 .run = vmx_vcpu_run,
7313 .handle_exit = vmx_handle_exit,
7314 .skip_emulated_instruction = skip_emulated_instruction,
7315 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7316 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7317 .patch_hypercall = vmx_patch_hypercall,
7318 .set_irq = vmx_inject_irq,
7319 .set_nmi = vmx_inject_nmi,
7320 .queue_exception = vmx_queue_exception,
7321 .cancel_injection = vmx_cancel_injection,
7322 .interrupt_allowed = vmx_interrupt_allowed,
7323 .nmi_allowed = vmx_nmi_allowed,
7324 .get_nmi_mask = vmx_get_nmi_mask,
7325 .set_nmi_mask = vmx_set_nmi_mask,
7326 .enable_nmi_window = enable_nmi_window,
7327 .enable_irq_window = enable_irq_window,
7328 .update_cr8_intercept = update_cr8_intercept,
7329
7330 .set_tss_addr = vmx_set_tss_addr,
7331 .get_tdp_level = get_ept_level,
7332 .get_mt_mask = vmx_get_mt_mask,
7333
7334 .get_exit_info = vmx_get_exit_info,
7335
7336 .get_lpage_level = vmx_get_lpage_level,
7337
7338 .cpuid_update = vmx_cpuid_update,
7339
7340 .rdtscp_supported = vmx_rdtscp_supported,
7341 .invpcid_supported = vmx_invpcid_supported,
7342
7343 .set_supported_cpuid = vmx_set_supported_cpuid,
7344
7345 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7346
7347 .set_tsc_khz = vmx_set_tsc_khz,
7348 .write_tsc_offset = vmx_write_tsc_offset,
7349 .adjust_tsc_offset = vmx_adjust_tsc_offset,
7350 .compute_tsc_offset = vmx_compute_tsc_offset,
7351 .read_l1_tsc = vmx_read_l1_tsc,
7352
7353 .set_tdp_cr3 = vmx_set_cr3,
7354
7355 .check_intercept = vmx_check_intercept,
7356 };
7357
7358 static int __init vmx_init(void)
7359 {
7360 int r, i;
7361
7362 rdmsrl_safe(MSR_EFER, &host_efer);
7363
7364 for (i = 0; i < NR_VMX_MSR; ++i)
7365 kvm_define_shared_msr(i, vmx_msr_index[i]);
7366
7367 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7368 if (!vmx_io_bitmap_a)
7369 return -ENOMEM;
7370
7371 r = -ENOMEM;
7372
7373 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7374 if (!vmx_io_bitmap_b)
7375 goto out;
7376
7377 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7378 if (!vmx_msr_bitmap_legacy)
7379 goto out1;
7380
7381
7382 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7383 if (!vmx_msr_bitmap_longmode)
7384 goto out2;
7385
7386
7387 /*
7388 * Allow direct access to the PC debug port (it is often used for I/O
7389 * delays, but the vmexits simply slow things down).
7390 */
7391 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7392 clear_bit(0x80, vmx_io_bitmap_a);
7393
7394 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7395
7396 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7397 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7398
7399 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7400
7401 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7402 __alignof__(struct vcpu_vmx), THIS_MODULE);
7403 if (r)
7404 goto out3;
7405
7406 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7407 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7408 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7409 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7410 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7411 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7412
7413 if (enable_ept) {
7414 kvm_mmu_set_mask_ptes(0ull,
7415 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
7416 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
7417 0ull, VMX_EPT_EXECUTABLE_MASK);
7418 ept_set_mmio_spte_mask();
7419 kvm_enable_tdp();
7420 } else
7421 kvm_disable_tdp();
7422
7423 return 0;
7424
7425 out3:
7426 free_page((unsigned long)vmx_msr_bitmap_longmode);
7427 out2:
7428 free_page((unsigned long)vmx_msr_bitmap_legacy);
7429 out1:
7430 free_page((unsigned long)vmx_io_bitmap_b);
7431 out:
7432 free_page((unsigned long)vmx_io_bitmap_a);
7433 return r;
7434 }
7435
7436 static void __exit vmx_exit(void)
7437 {
7438 free_page((unsigned long)vmx_msr_bitmap_legacy);
7439 free_page((unsigned long)vmx_msr_bitmap_longmode);
7440 free_page((unsigned long)vmx_io_bitmap_b);
7441 free_page((unsigned long)vmx_io_bitmap_a);
7442
7443 kvm_exit();
7444 }
7445
7446 module_init(vmx_init)
7447 module_exit(vmx_exit)
This page took 0.203723 seconds and 5 git commands to generate.