KVM: MMU: remove bypass_guest_pf
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 #define __ex_clear(x, reg) \
47 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
48
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
51
52 static int __read_mostly enable_vpid = 1;
53 module_param_named(vpid, enable_vpid, bool, 0444);
54
55 static int __read_mostly flexpriority_enabled = 1;
56 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
57
58 static int __read_mostly enable_ept = 1;
59 module_param_named(ept, enable_ept, bool, S_IRUGO);
60
61 static int __read_mostly enable_unrestricted_guest = 1;
62 module_param_named(unrestricted_guest,
63 enable_unrestricted_guest, bool, S_IRUGO);
64
65 static int __read_mostly emulate_invalid_guest_state = 0;
66 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
67
68 static int __read_mostly vmm_exclusive = 1;
69 module_param(vmm_exclusive, bool, S_IRUGO);
70
71 static int __read_mostly yield_on_hlt = 1;
72 module_param(yield_on_hlt, bool, S_IRUGO);
73
74 /*
75 * If nested=1, nested virtualization is supported, i.e., guests may use
76 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
77 * use VMX instructions.
78 */
79 static int __read_mostly nested = 0;
80 module_param(nested, bool, S_IRUGO);
81
82 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
83 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
84 #define KVM_GUEST_CR0_MASK \
85 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
86 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
87 (X86_CR0_WP | X86_CR0_NE)
88 #define KVM_VM_CR0_ALWAYS_ON \
89 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
90 #define KVM_CR4_GUEST_OWNED_BITS \
91 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
92 | X86_CR4_OSXMMEXCPT)
93
94 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
95 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
96
97 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
98
99 /*
100 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
101 * ple_gap: upper bound on the amount of time between two successive
102 * executions of PAUSE in a loop. Also indicate if ple enabled.
103 * According to test, this time is usually smaller than 128 cycles.
104 * ple_window: upper bound on the amount of time a guest is allowed to execute
105 * in a PAUSE loop. Tests indicate that most spinlocks are held for
106 * less than 2^12 cycles
107 * Time is measured based on a counter that runs at the same rate as the TSC,
108 * refer SDM volume 3b section 21.6.13 & 22.1.3.
109 */
110 #define KVM_VMX_DEFAULT_PLE_GAP 128
111 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
112 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
113 module_param(ple_gap, int, S_IRUGO);
114
115 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
116 module_param(ple_window, int, S_IRUGO);
117
118 #define NR_AUTOLOAD_MSRS 1
119 #define VMCS02_POOL_SIZE 1
120
121 struct vmcs {
122 u32 revision_id;
123 u32 abort;
124 char data[0];
125 };
126
127 /*
128 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
129 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
130 * loaded on this CPU (so we can clear them if the CPU goes down).
131 */
132 struct loaded_vmcs {
133 struct vmcs *vmcs;
134 int cpu;
135 int launched;
136 struct list_head loaded_vmcss_on_cpu_link;
137 };
138
139 struct shared_msr_entry {
140 unsigned index;
141 u64 data;
142 u64 mask;
143 };
144
145 /*
146 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
147 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
148 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
149 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
150 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
151 * More than one of these structures may exist, if L1 runs multiple L2 guests.
152 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
153 * underlying hardware which will be used to run L2.
154 * This structure is packed to ensure that its layout is identical across
155 * machines (necessary for live migration).
156 * If there are changes in this struct, VMCS12_REVISION must be changed.
157 */
158 typedef u64 natural_width;
159 struct __packed vmcs12 {
160 /* According to the Intel spec, a VMCS region must start with the
161 * following two fields. Then follow implementation-specific data.
162 */
163 u32 revision_id;
164 u32 abort;
165
166 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
167 u32 padding[7]; /* room for future expansion */
168
169 u64 io_bitmap_a;
170 u64 io_bitmap_b;
171 u64 msr_bitmap;
172 u64 vm_exit_msr_store_addr;
173 u64 vm_exit_msr_load_addr;
174 u64 vm_entry_msr_load_addr;
175 u64 tsc_offset;
176 u64 virtual_apic_page_addr;
177 u64 apic_access_addr;
178 u64 ept_pointer;
179 u64 guest_physical_address;
180 u64 vmcs_link_pointer;
181 u64 guest_ia32_debugctl;
182 u64 guest_ia32_pat;
183 u64 guest_ia32_efer;
184 u64 guest_ia32_perf_global_ctrl;
185 u64 guest_pdptr0;
186 u64 guest_pdptr1;
187 u64 guest_pdptr2;
188 u64 guest_pdptr3;
189 u64 host_ia32_pat;
190 u64 host_ia32_efer;
191 u64 host_ia32_perf_global_ctrl;
192 u64 padding64[8]; /* room for future expansion */
193 /*
194 * To allow migration of L1 (complete with its L2 guests) between
195 * machines of different natural widths (32 or 64 bit), we cannot have
196 * unsigned long fields with no explict size. We use u64 (aliased
197 * natural_width) instead. Luckily, x86 is little-endian.
198 */
199 natural_width cr0_guest_host_mask;
200 natural_width cr4_guest_host_mask;
201 natural_width cr0_read_shadow;
202 natural_width cr4_read_shadow;
203 natural_width cr3_target_value0;
204 natural_width cr3_target_value1;
205 natural_width cr3_target_value2;
206 natural_width cr3_target_value3;
207 natural_width exit_qualification;
208 natural_width guest_linear_address;
209 natural_width guest_cr0;
210 natural_width guest_cr3;
211 natural_width guest_cr4;
212 natural_width guest_es_base;
213 natural_width guest_cs_base;
214 natural_width guest_ss_base;
215 natural_width guest_ds_base;
216 natural_width guest_fs_base;
217 natural_width guest_gs_base;
218 natural_width guest_ldtr_base;
219 natural_width guest_tr_base;
220 natural_width guest_gdtr_base;
221 natural_width guest_idtr_base;
222 natural_width guest_dr7;
223 natural_width guest_rsp;
224 natural_width guest_rip;
225 natural_width guest_rflags;
226 natural_width guest_pending_dbg_exceptions;
227 natural_width guest_sysenter_esp;
228 natural_width guest_sysenter_eip;
229 natural_width host_cr0;
230 natural_width host_cr3;
231 natural_width host_cr4;
232 natural_width host_fs_base;
233 natural_width host_gs_base;
234 natural_width host_tr_base;
235 natural_width host_gdtr_base;
236 natural_width host_idtr_base;
237 natural_width host_ia32_sysenter_esp;
238 natural_width host_ia32_sysenter_eip;
239 natural_width host_rsp;
240 natural_width host_rip;
241 natural_width paddingl[8]; /* room for future expansion */
242 u32 pin_based_vm_exec_control;
243 u32 cpu_based_vm_exec_control;
244 u32 exception_bitmap;
245 u32 page_fault_error_code_mask;
246 u32 page_fault_error_code_match;
247 u32 cr3_target_count;
248 u32 vm_exit_controls;
249 u32 vm_exit_msr_store_count;
250 u32 vm_exit_msr_load_count;
251 u32 vm_entry_controls;
252 u32 vm_entry_msr_load_count;
253 u32 vm_entry_intr_info_field;
254 u32 vm_entry_exception_error_code;
255 u32 vm_entry_instruction_len;
256 u32 tpr_threshold;
257 u32 secondary_vm_exec_control;
258 u32 vm_instruction_error;
259 u32 vm_exit_reason;
260 u32 vm_exit_intr_info;
261 u32 vm_exit_intr_error_code;
262 u32 idt_vectoring_info_field;
263 u32 idt_vectoring_error_code;
264 u32 vm_exit_instruction_len;
265 u32 vmx_instruction_info;
266 u32 guest_es_limit;
267 u32 guest_cs_limit;
268 u32 guest_ss_limit;
269 u32 guest_ds_limit;
270 u32 guest_fs_limit;
271 u32 guest_gs_limit;
272 u32 guest_ldtr_limit;
273 u32 guest_tr_limit;
274 u32 guest_gdtr_limit;
275 u32 guest_idtr_limit;
276 u32 guest_es_ar_bytes;
277 u32 guest_cs_ar_bytes;
278 u32 guest_ss_ar_bytes;
279 u32 guest_ds_ar_bytes;
280 u32 guest_fs_ar_bytes;
281 u32 guest_gs_ar_bytes;
282 u32 guest_ldtr_ar_bytes;
283 u32 guest_tr_ar_bytes;
284 u32 guest_interruptibility_info;
285 u32 guest_activity_state;
286 u32 guest_sysenter_cs;
287 u32 host_ia32_sysenter_cs;
288 u32 padding32[8]; /* room for future expansion */
289 u16 virtual_processor_id;
290 u16 guest_es_selector;
291 u16 guest_cs_selector;
292 u16 guest_ss_selector;
293 u16 guest_ds_selector;
294 u16 guest_fs_selector;
295 u16 guest_gs_selector;
296 u16 guest_ldtr_selector;
297 u16 guest_tr_selector;
298 u16 host_es_selector;
299 u16 host_cs_selector;
300 u16 host_ss_selector;
301 u16 host_ds_selector;
302 u16 host_fs_selector;
303 u16 host_gs_selector;
304 u16 host_tr_selector;
305 };
306
307 /*
308 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
309 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
310 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
311 */
312 #define VMCS12_REVISION 0x11e57ed0
313
314 /*
315 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
316 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
317 * current implementation, 4K are reserved to avoid future complications.
318 */
319 #define VMCS12_SIZE 0x1000
320
321 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
322 struct vmcs02_list {
323 struct list_head list;
324 gpa_t vmptr;
325 struct loaded_vmcs vmcs02;
326 };
327
328 /*
329 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
330 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
331 */
332 struct nested_vmx {
333 /* Has the level1 guest done vmxon? */
334 bool vmxon;
335
336 /* The guest-physical address of the current VMCS L1 keeps for L2 */
337 gpa_t current_vmptr;
338 /* The host-usable pointer to the above */
339 struct page *current_vmcs12_page;
340 struct vmcs12 *current_vmcs12;
341
342 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
343 struct list_head vmcs02_pool;
344 int vmcs02_num;
345 u64 vmcs01_tsc_offset;
346 /* L2 must run next, and mustn't decide to exit to L1. */
347 bool nested_run_pending;
348 /*
349 * Guest pages referred to in vmcs02 with host-physical pointers, so
350 * we must keep them pinned while L2 runs.
351 */
352 struct page *apic_access_page;
353 };
354
355 struct vcpu_vmx {
356 struct kvm_vcpu vcpu;
357 unsigned long host_rsp;
358 u8 fail;
359 u8 cpl;
360 bool nmi_known_unmasked;
361 u32 exit_intr_info;
362 u32 idt_vectoring_info;
363 ulong rflags;
364 struct shared_msr_entry *guest_msrs;
365 int nmsrs;
366 int save_nmsrs;
367 #ifdef CONFIG_X86_64
368 u64 msr_host_kernel_gs_base;
369 u64 msr_guest_kernel_gs_base;
370 #endif
371 /*
372 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
373 * non-nested (L1) guest, it always points to vmcs01. For a nested
374 * guest (L2), it points to a different VMCS.
375 */
376 struct loaded_vmcs vmcs01;
377 struct loaded_vmcs *loaded_vmcs;
378 bool __launched; /* temporary, used in vmx_vcpu_run */
379 struct msr_autoload {
380 unsigned nr;
381 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
382 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
383 } msr_autoload;
384 struct {
385 int loaded;
386 u16 fs_sel, gs_sel, ldt_sel;
387 int gs_ldt_reload_needed;
388 int fs_reload_needed;
389 } host_state;
390 struct {
391 int vm86_active;
392 ulong save_rflags;
393 struct kvm_save_segment {
394 u16 selector;
395 unsigned long base;
396 u32 limit;
397 u32 ar;
398 } tr, es, ds, fs, gs;
399 } rmode;
400 struct {
401 u32 bitmask; /* 4 bits per segment (1 bit per field) */
402 struct kvm_save_segment seg[8];
403 } segment_cache;
404 int vpid;
405 bool emulation_required;
406
407 /* Support for vnmi-less CPUs */
408 int soft_vnmi_blocked;
409 ktime_t entry_time;
410 s64 vnmi_blocked_time;
411 u32 exit_reason;
412
413 bool rdtscp_enabled;
414
415 /* Support for a guest hypervisor (nested VMX) */
416 struct nested_vmx nested;
417 };
418
419 enum segment_cache_field {
420 SEG_FIELD_SEL = 0,
421 SEG_FIELD_BASE = 1,
422 SEG_FIELD_LIMIT = 2,
423 SEG_FIELD_AR = 3,
424
425 SEG_FIELD_NR = 4
426 };
427
428 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
429 {
430 return container_of(vcpu, struct vcpu_vmx, vcpu);
431 }
432
433 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
434 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
435 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
436 [number##_HIGH] = VMCS12_OFFSET(name)+4
437
438 static unsigned short vmcs_field_to_offset_table[] = {
439 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
440 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
441 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
442 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
443 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
444 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
445 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
446 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
447 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
448 FIELD(HOST_ES_SELECTOR, host_es_selector),
449 FIELD(HOST_CS_SELECTOR, host_cs_selector),
450 FIELD(HOST_SS_SELECTOR, host_ss_selector),
451 FIELD(HOST_DS_SELECTOR, host_ds_selector),
452 FIELD(HOST_FS_SELECTOR, host_fs_selector),
453 FIELD(HOST_GS_SELECTOR, host_gs_selector),
454 FIELD(HOST_TR_SELECTOR, host_tr_selector),
455 FIELD64(IO_BITMAP_A, io_bitmap_a),
456 FIELD64(IO_BITMAP_B, io_bitmap_b),
457 FIELD64(MSR_BITMAP, msr_bitmap),
458 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
459 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
460 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
461 FIELD64(TSC_OFFSET, tsc_offset),
462 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
463 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
464 FIELD64(EPT_POINTER, ept_pointer),
465 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
466 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
467 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
468 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
469 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
470 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
471 FIELD64(GUEST_PDPTR0, guest_pdptr0),
472 FIELD64(GUEST_PDPTR1, guest_pdptr1),
473 FIELD64(GUEST_PDPTR2, guest_pdptr2),
474 FIELD64(GUEST_PDPTR3, guest_pdptr3),
475 FIELD64(HOST_IA32_PAT, host_ia32_pat),
476 FIELD64(HOST_IA32_EFER, host_ia32_efer),
477 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
478 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
479 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
480 FIELD(EXCEPTION_BITMAP, exception_bitmap),
481 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
482 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
483 FIELD(CR3_TARGET_COUNT, cr3_target_count),
484 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
485 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
486 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
487 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
488 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
489 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
490 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
491 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
492 FIELD(TPR_THRESHOLD, tpr_threshold),
493 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
494 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
495 FIELD(VM_EXIT_REASON, vm_exit_reason),
496 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
497 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
498 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
499 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
500 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
501 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
502 FIELD(GUEST_ES_LIMIT, guest_es_limit),
503 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
504 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
505 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
506 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
507 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
508 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
509 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
510 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
511 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
512 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
513 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
514 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
515 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
516 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
517 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
518 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
519 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
520 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
521 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
522 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
523 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
524 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
525 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
526 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
527 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
528 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
529 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
530 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
531 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
532 FIELD(EXIT_QUALIFICATION, exit_qualification),
533 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
534 FIELD(GUEST_CR0, guest_cr0),
535 FIELD(GUEST_CR3, guest_cr3),
536 FIELD(GUEST_CR4, guest_cr4),
537 FIELD(GUEST_ES_BASE, guest_es_base),
538 FIELD(GUEST_CS_BASE, guest_cs_base),
539 FIELD(GUEST_SS_BASE, guest_ss_base),
540 FIELD(GUEST_DS_BASE, guest_ds_base),
541 FIELD(GUEST_FS_BASE, guest_fs_base),
542 FIELD(GUEST_GS_BASE, guest_gs_base),
543 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
544 FIELD(GUEST_TR_BASE, guest_tr_base),
545 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
546 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
547 FIELD(GUEST_DR7, guest_dr7),
548 FIELD(GUEST_RSP, guest_rsp),
549 FIELD(GUEST_RIP, guest_rip),
550 FIELD(GUEST_RFLAGS, guest_rflags),
551 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
552 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
553 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
554 FIELD(HOST_CR0, host_cr0),
555 FIELD(HOST_CR3, host_cr3),
556 FIELD(HOST_CR4, host_cr4),
557 FIELD(HOST_FS_BASE, host_fs_base),
558 FIELD(HOST_GS_BASE, host_gs_base),
559 FIELD(HOST_TR_BASE, host_tr_base),
560 FIELD(HOST_GDTR_BASE, host_gdtr_base),
561 FIELD(HOST_IDTR_BASE, host_idtr_base),
562 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
563 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
564 FIELD(HOST_RSP, host_rsp),
565 FIELD(HOST_RIP, host_rip),
566 };
567 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
568
569 static inline short vmcs_field_to_offset(unsigned long field)
570 {
571 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
572 return -1;
573 return vmcs_field_to_offset_table[field];
574 }
575
576 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
577 {
578 return to_vmx(vcpu)->nested.current_vmcs12;
579 }
580
581 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
582 {
583 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
584 if (is_error_page(page)) {
585 kvm_release_page_clean(page);
586 return NULL;
587 }
588 return page;
589 }
590
591 static void nested_release_page(struct page *page)
592 {
593 kvm_release_page_dirty(page);
594 }
595
596 static void nested_release_page_clean(struct page *page)
597 {
598 kvm_release_page_clean(page);
599 }
600
601 static u64 construct_eptp(unsigned long root_hpa);
602 static void kvm_cpu_vmxon(u64 addr);
603 static void kvm_cpu_vmxoff(void);
604 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
605 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
606
607 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
608 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
609 /*
610 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
611 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
612 */
613 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
614 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
615
616 static unsigned long *vmx_io_bitmap_a;
617 static unsigned long *vmx_io_bitmap_b;
618 static unsigned long *vmx_msr_bitmap_legacy;
619 static unsigned long *vmx_msr_bitmap_longmode;
620
621 static bool cpu_has_load_ia32_efer;
622
623 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
624 static DEFINE_SPINLOCK(vmx_vpid_lock);
625
626 static struct vmcs_config {
627 int size;
628 int order;
629 u32 revision_id;
630 u32 pin_based_exec_ctrl;
631 u32 cpu_based_exec_ctrl;
632 u32 cpu_based_2nd_exec_ctrl;
633 u32 vmexit_ctrl;
634 u32 vmentry_ctrl;
635 } vmcs_config;
636
637 static struct vmx_capability {
638 u32 ept;
639 u32 vpid;
640 } vmx_capability;
641
642 #define VMX_SEGMENT_FIELD(seg) \
643 [VCPU_SREG_##seg] = { \
644 .selector = GUEST_##seg##_SELECTOR, \
645 .base = GUEST_##seg##_BASE, \
646 .limit = GUEST_##seg##_LIMIT, \
647 .ar_bytes = GUEST_##seg##_AR_BYTES, \
648 }
649
650 static struct kvm_vmx_segment_field {
651 unsigned selector;
652 unsigned base;
653 unsigned limit;
654 unsigned ar_bytes;
655 } kvm_vmx_segment_fields[] = {
656 VMX_SEGMENT_FIELD(CS),
657 VMX_SEGMENT_FIELD(DS),
658 VMX_SEGMENT_FIELD(ES),
659 VMX_SEGMENT_FIELD(FS),
660 VMX_SEGMENT_FIELD(GS),
661 VMX_SEGMENT_FIELD(SS),
662 VMX_SEGMENT_FIELD(TR),
663 VMX_SEGMENT_FIELD(LDTR),
664 };
665
666 static u64 host_efer;
667
668 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
669
670 /*
671 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
672 * away by decrementing the array size.
673 */
674 static const u32 vmx_msr_index[] = {
675 #ifdef CONFIG_X86_64
676 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
677 #endif
678 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
679 };
680 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
681
682 static inline bool is_page_fault(u32 intr_info)
683 {
684 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
685 INTR_INFO_VALID_MASK)) ==
686 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
687 }
688
689 static inline bool is_no_device(u32 intr_info)
690 {
691 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
692 INTR_INFO_VALID_MASK)) ==
693 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
694 }
695
696 static inline bool is_invalid_opcode(u32 intr_info)
697 {
698 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
699 INTR_INFO_VALID_MASK)) ==
700 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
701 }
702
703 static inline bool is_external_interrupt(u32 intr_info)
704 {
705 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
706 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
707 }
708
709 static inline bool is_machine_check(u32 intr_info)
710 {
711 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
712 INTR_INFO_VALID_MASK)) ==
713 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
714 }
715
716 static inline bool cpu_has_vmx_msr_bitmap(void)
717 {
718 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
719 }
720
721 static inline bool cpu_has_vmx_tpr_shadow(void)
722 {
723 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
724 }
725
726 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
727 {
728 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
729 }
730
731 static inline bool cpu_has_secondary_exec_ctrls(void)
732 {
733 return vmcs_config.cpu_based_exec_ctrl &
734 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
735 }
736
737 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
738 {
739 return vmcs_config.cpu_based_2nd_exec_ctrl &
740 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
741 }
742
743 static inline bool cpu_has_vmx_flexpriority(void)
744 {
745 return cpu_has_vmx_tpr_shadow() &&
746 cpu_has_vmx_virtualize_apic_accesses();
747 }
748
749 static inline bool cpu_has_vmx_ept_execute_only(void)
750 {
751 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
752 }
753
754 static inline bool cpu_has_vmx_eptp_uncacheable(void)
755 {
756 return vmx_capability.ept & VMX_EPTP_UC_BIT;
757 }
758
759 static inline bool cpu_has_vmx_eptp_writeback(void)
760 {
761 return vmx_capability.ept & VMX_EPTP_WB_BIT;
762 }
763
764 static inline bool cpu_has_vmx_ept_2m_page(void)
765 {
766 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
767 }
768
769 static inline bool cpu_has_vmx_ept_1g_page(void)
770 {
771 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
772 }
773
774 static inline bool cpu_has_vmx_ept_4levels(void)
775 {
776 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
777 }
778
779 static inline bool cpu_has_vmx_invept_individual_addr(void)
780 {
781 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
782 }
783
784 static inline bool cpu_has_vmx_invept_context(void)
785 {
786 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
787 }
788
789 static inline bool cpu_has_vmx_invept_global(void)
790 {
791 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
792 }
793
794 static inline bool cpu_has_vmx_invvpid_single(void)
795 {
796 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
797 }
798
799 static inline bool cpu_has_vmx_invvpid_global(void)
800 {
801 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
802 }
803
804 static inline bool cpu_has_vmx_ept(void)
805 {
806 return vmcs_config.cpu_based_2nd_exec_ctrl &
807 SECONDARY_EXEC_ENABLE_EPT;
808 }
809
810 static inline bool cpu_has_vmx_unrestricted_guest(void)
811 {
812 return vmcs_config.cpu_based_2nd_exec_ctrl &
813 SECONDARY_EXEC_UNRESTRICTED_GUEST;
814 }
815
816 static inline bool cpu_has_vmx_ple(void)
817 {
818 return vmcs_config.cpu_based_2nd_exec_ctrl &
819 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
820 }
821
822 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
823 {
824 return flexpriority_enabled && irqchip_in_kernel(kvm);
825 }
826
827 static inline bool cpu_has_vmx_vpid(void)
828 {
829 return vmcs_config.cpu_based_2nd_exec_ctrl &
830 SECONDARY_EXEC_ENABLE_VPID;
831 }
832
833 static inline bool cpu_has_vmx_rdtscp(void)
834 {
835 return vmcs_config.cpu_based_2nd_exec_ctrl &
836 SECONDARY_EXEC_RDTSCP;
837 }
838
839 static inline bool cpu_has_virtual_nmis(void)
840 {
841 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
842 }
843
844 static inline bool cpu_has_vmx_wbinvd_exit(void)
845 {
846 return vmcs_config.cpu_based_2nd_exec_ctrl &
847 SECONDARY_EXEC_WBINVD_EXITING;
848 }
849
850 static inline bool report_flexpriority(void)
851 {
852 return flexpriority_enabled;
853 }
854
855 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
856 {
857 return vmcs12->cpu_based_vm_exec_control & bit;
858 }
859
860 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
861 {
862 return (vmcs12->cpu_based_vm_exec_control &
863 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
864 (vmcs12->secondary_vm_exec_control & bit);
865 }
866
867 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
868 struct kvm_vcpu *vcpu)
869 {
870 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
871 }
872
873 static inline bool is_exception(u32 intr_info)
874 {
875 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
876 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
877 }
878
879 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
880 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
881 struct vmcs12 *vmcs12,
882 u32 reason, unsigned long qualification);
883
884 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
885 {
886 int i;
887
888 for (i = 0; i < vmx->nmsrs; ++i)
889 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
890 return i;
891 return -1;
892 }
893
894 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
895 {
896 struct {
897 u64 vpid : 16;
898 u64 rsvd : 48;
899 u64 gva;
900 } operand = { vpid, 0, gva };
901
902 asm volatile (__ex(ASM_VMX_INVVPID)
903 /* CF==1 or ZF==1 --> rc = -1 */
904 "; ja 1f ; ud2 ; 1:"
905 : : "a"(&operand), "c"(ext) : "cc", "memory");
906 }
907
908 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
909 {
910 struct {
911 u64 eptp, gpa;
912 } operand = {eptp, gpa};
913
914 asm volatile (__ex(ASM_VMX_INVEPT)
915 /* CF==1 or ZF==1 --> rc = -1 */
916 "; ja 1f ; ud2 ; 1:\n"
917 : : "a" (&operand), "c" (ext) : "cc", "memory");
918 }
919
920 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
921 {
922 int i;
923
924 i = __find_msr_index(vmx, msr);
925 if (i >= 0)
926 return &vmx->guest_msrs[i];
927 return NULL;
928 }
929
930 static void vmcs_clear(struct vmcs *vmcs)
931 {
932 u64 phys_addr = __pa(vmcs);
933 u8 error;
934
935 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
936 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
937 : "cc", "memory");
938 if (error)
939 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
940 vmcs, phys_addr);
941 }
942
943 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
944 {
945 vmcs_clear(loaded_vmcs->vmcs);
946 loaded_vmcs->cpu = -1;
947 loaded_vmcs->launched = 0;
948 }
949
950 static void vmcs_load(struct vmcs *vmcs)
951 {
952 u64 phys_addr = __pa(vmcs);
953 u8 error;
954
955 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
956 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
957 : "cc", "memory");
958 if (error)
959 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
960 vmcs, phys_addr);
961 }
962
963 static void __loaded_vmcs_clear(void *arg)
964 {
965 struct loaded_vmcs *loaded_vmcs = arg;
966 int cpu = raw_smp_processor_id();
967
968 if (loaded_vmcs->cpu != cpu)
969 return; /* vcpu migration can race with cpu offline */
970 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
971 per_cpu(current_vmcs, cpu) = NULL;
972 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
973 loaded_vmcs_init(loaded_vmcs);
974 }
975
976 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
977 {
978 if (loaded_vmcs->cpu != -1)
979 smp_call_function_single(
980 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
981 }
982
983 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
984 {
985 if (vmx->vpid == 0)
986 return;
987
988 if (cpu_has_vmx_invvpid_single())
989 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
990 }
991
992 static inline void vpid_sync_vcpu_global(void)
993 {
994 if (cpu_has_vmx_invvpid_global())
995 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
996 }
997
998 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
999 {
1000 if (cpu_has_vmx_invvpid_single())
1001 vpid_sync_vcpu_single(vmx);
1002 else
1003 vpid_sync_vcpu_global();
1004 }
1005
1006 static inline void ept_sync_global(void)
1007 {
1008 if (cpu_has_vmx_invept_global())
1009 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1010 }
1011
1012 static inline void ept_sync_context(u64 eptp)
1013 {
1014 if (enable_ept) {
1015 if (cpu_has_vmx_invept_context())
1016 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1017 else
1018 ept_sync_global();
1019 }
1020 }
1021
1022 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1023 {
1024 if (enable_ept) {
1025 if (cpu_has_vmx_invept_individual_addr())
1026 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1027 eptp, gpa);
1028 else
1029 ept_sync_context(eptp);
1030 }
1031 }
1032
1033 static __always_inline unsigned long vmcs_readl(unsigned long field)
1034 {
1035 unsigned long value;
1036
1037 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1038 : "=a"(value) : "d"(field) : "cc");
1039 return value;
1040 }
1041
1042 static __always_inline u16 vmcs_read16(unsigned long field)
1043 {
1044 return vmcs_readl(field);
1045 }
1046
1047 static __always_inline u32 vmcs_read32(unsigned long field)
1048 {
1049 return vmcs_readl(field);
1050 }
1051
1052 static __always_inline u64 vmcs_read64(unsigned long field)
1053 {
1054 #ifdef CONFIG_X86_64
1055 return vmcs_readl(field);
1056 #else
1057 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1058 #endif
1059 }
1060
1061 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1062 {
1063 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1064 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1065 dump_stack();
1066 }
1067
1068 static void vmcs_writel(unsigned long field, unsigned long value)
1069 {
1070 u8 error;
1071
1072 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1073 : "=q"(error) : "a"(value), "d"(field) : "cc");
1074 if (unlikely(error))
1075 vmwrite_error(field, value);
1076 }
1077
1078 static void vmcs_write16(unsigned long field, u16 value)
1079 {
1080 vmcs_writel(field, value);
1081 }
1082
1083 static void vmcs_write32(unsigned long field, u32 value)
1084 {
1085 vmcs_writel(field, value);
1086 }
1087
1088 static void vmcs_write64(unsigned long field, u64 value)
1089 {
1090 vmcs_writel(field, value);
1091 #ifndef CONFIG_X86_64
1092 asm volatile ("");
1093 vmcs_writel(field+1, value >> 32);
1094 #endif
1095 }
1096
1097 static void vmcs_clear_bits(unsigned long field, u32 mask)
1098 {
1099 vmcs_writel(field, vmcs_readl(field) & ~mask);
1100 }
1101
1102 static void vmcs_set_bits(unsigned long field, u32 mask)
1103 {
1104 vmcs_writel(field, vmcs_readl(field) | mask);
1105 }
1106
1107 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1108 {
1109 vmx->segment_cache.bitmask = 0;
1110 }
1111
1112 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1113 unsigned field)
1114 {
1115 bool ret;
1116 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1117
1118 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1119 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1120 vmx->segment_cache.bitmask = 0;
1121 }
1122 ret = vmx->segment_cache.bitmask & mask;
1123 vmx->segment_cache.bitmask |= mask;
1124 return ret;
1125 }
1126
1127 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1128 {
1129 u16 *p = &vmx->segment_cache.seg[seg].selector;
1130
1131 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1132 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1133 return *p;
1134 }
1135
1136 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1137 {
1138 ulong *p = &vmx->segment_cache.seg[seg].base;
1139
1140 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1141 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1142 return *p;
1143 }
1144
1145 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1146 {
1147 u32 *p = &vmx->segment_cache.seg[seg].limit;
1148
1149 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1150 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1151 return *p;
1152 }
1153
1154 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1155 {
1156 u32 *p = &vmx->segment_cache.seg[seg].ar;
1157
1158 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1159 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1160 return *p;
1161 }
1162
1163 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1164 {
1165 u32 eb;
1166
1167 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1168 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1169 if ((vcpu->guest_debug &
1170 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1171 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1172 eb |= 1u << BP_VECTOR;
1173 if (to_vmx(vcpu)->rmode.vm86_active)
1174 eb = ~0;
1175 if (enable_ept)
1176 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1177 if (vcpu->fpu_active)
1178 eb &= ~(1u << NM_VECTOR);
1179
1180 /* When we are running a nested L2 guest and L1 specified for it a
1181 * certain exception bitmap, we must trap the same exceptions and pass
1182 * them to L1. When running L2, we will only handle the exceptions
1183 * specified above if L1 did not want them.
1184 */
1185 if (is_guest_mode(vcpu))
1186 eb |= get_vmcs12(vcpu)->exception_bitmap;
1187
1188 vmcs_write32(EXCEPTION_BITMAP, eb);
1189 }
1190
1191 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1192 {
1193 unsigned i;
1194 struct msr_autoload *m = &vmx->msr_autoload;
1195
1196 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
1197 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
1198 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
1199 return;
1200 }
1201
1202 for (i = 0; i < m->nr; ++i)
1203 if (m->guest[i].index == msr)
1204 break;
1205
1206 if (i == m->nr)
1207 return;
1208 --m->nr;
1209 m->guest[i] = m->guest[m->nr];
1210 m->host[i] = m->host[m->nr];
1211 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1212 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1213 }
1214
1215 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1216 u64 guest_val, u64 host_val)
1217 {
1218 unsigned i;
1219 struct msr_autoload *m = &vmx->msr_autoload;
1220
1221 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
1222 vmcs_write64(GUEST_IA32_EFER, guest_val);
1223 vmcs_write64(HOST_IA32_EFER, host_val);
1224 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
1225 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
1226 return;
1227 }
1228
1229 for (i = 0; i < m->nr; ++i)
1230 if (m->guest[i].index == msr)
1231 break;
1232
1233 if (i == m->nr) {
1234 ++m->nr;
1235 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1236 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1237 }
1238
1239 m->guest[i].index = msr;
1240 m->guest[i].value = guest_val;
1241 m->host[i].index = msr;
1242 m->host[i].value = host_val;
1243 }
1244
1245 static void reload_tss(void)
1246 {
1247 /*
1248 * VT restores TR but not its size. Useless.
1249 */
1250 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1251 struct desc_struct *descs;
1252
1253 descs = (void *)gdt->address;
1254 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1255 load_TR_desc();
1256 }
1257
1258 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1259 {
1260 u64 guest_efer;
1261 u64 ignore_bits;
1262
1263 guest_efer = vmx->vcpu.arch.efer;
1264
1265 /*
1266 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1267 * outside long mode
1268 */
1269 ignore_bits = EFER_NX | EFER_SCE;
1270 #ifdef CONFIG_X86_64
1271 ignore_bits |= EFER_LMA | EFER_LME;
1272 /* SCE is meaningful only in long mode on Intel */
1273 if (guest_efer & EFER_LMA)
1274 ignore_bits &= ~(u64)EFER_SCE;
1275 #endif
1276 guest_efer &= ~ignore_bits;
1277 guest_efer |= host_efer & ignore_bits;
1278 vmx->guest_msrs[efer_offset].data = guest_efer;
1279 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1280
1281 clear_atomic_switch_msr(vmx, MSR_EFER);
1282 /* On ept, can't emulate nx, and must switch nx atomically */
1283 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1284 guest_efer = vmx->vcpu.arch.efer;
1285 if (!(guest_efer & EFER_LMA))
1286 guest_efer &= ~EFER_LME;
1287 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1288 return false;
1289 }
1290
1291 return true;
1292 }
1293
1294 static unsigned long segment_base(u16 selector)
1295 {
1296 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1297 struct desc_struct *d;
1298 unsigned long table_base;
1299 unsigned long v;
1300
1301 if (!(selector & ~3))
1302 return 0;
1303
1304 table_base = gdt->address;
1305
1306 if (selector & 4) { /* from ldt */
1307 u16 ldt_selector = kvm_read_ldt();
1308
1309 if (!(ldt_selector & ~3))
1310 return 0;
1311
1312 table_base = segment_base(ldt_selector);
1313 }
1314 d = (struct desc_struct *)(table_base + (selector & ~7));
1315 v = get_desc_base(d);
1316 #ifdef CONFIG_X86_64
1317 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1318 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1319 #endif
1320 return v;
1321 }
1322
1323 static inline unsigned long kvm_read_tr_base(void)
1324 {
1325 u16 tr;
1326 asm("str %0" : "=g"(tr));
1327 return segment_base(tr);
1328 }
1329
1330 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1331 {
1332 struct vcpu_vmx *vmx = to_vmx(vcpu);
1333 int i;
1334
1335 if (vmx->host_state.loaded)
1336 return;
1337
1338 vmx->host_state.loaded = 1;
1339 /*
1340 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1341 * allow segment selectors with cpl > 0 or ti == 1.
1342 */
1343 vmx->host_state.ldt_sel = kvm_read_ldt();
1344 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1345 savesegment(fs, vmx->host_state.fs_sel);
1346 if (!(vmx->host_state.fs_sel & 7)) {
1347 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1348 vmx->host_state.fs_reload_needed = 0;
1349 } else {
1350 vmcs_write16(HOST_FS_SELECTOR, 0);
1351 vmx->host_state.fs_reload_needed = 1;
1352 }
1353 savesegment(gs, vmx->host_state.gs_sel);
1354 if (!(vmx->host_state.gs_sel & 7))
1355 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1356 else {
1357 vmcs_write16(HOST_GS_SELECTOR, 0);
1358 vmx->host_state.gs_ldt_reload_needed = 1;
1359 }
1360
1361 #ifdef CONFIG_X86_64
1362 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1363 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1364 #else
1365 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1366 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1367 #endif
1368
1369 #ifdef CONFIG_X86_64
1370 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1371 if (is_long_mode(&vmx->vcpu))
1372 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1373 #endif
1374 for (i = 0; i < vmx->save_nmsrs; ++i)
1375 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1376 vmx->guest_msrs[i].data,
1377 vmx->guest_msrs[i].mask);
1378 }
1379
1380 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1381 {
1382 if (!vmx->host_state.loaded)
1383 return;
1384
1385 ++vmx->vcpu.stat.host_state_reload;
1386 vmx->host_state.loaded = 0;
1387 #ifdef CONFIG_X86_64
1388 if (is_long_mode(&vmx->vcpu))
1389 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1390 #endif
1391 if (vmx->host_state.gs_ldt_reload_needed) {
1392 kvm_load_ldt(vmx->host_state.ldt_sel);
1393 #ifdef CONFIG_X86_64
1394 load_gs_index(vmx->host_state.gs_sel);
1395 #else
1396 loadsegment(gs, vmx->host_state.gs_sel);
1397 #endif
1398 }
1399 if (vmx->host_state.fs_reload_needed)
1400 loadsegment(fs, vmx->host_state.fs_sel);
1401 reload_tss();
1402 #ifdef CONFIG_X86_64
1403 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1404 #endif
1405 if (current_thread_info()->status & TS_USEDFPU)
1406 clts();
1407 load_gdt(&__get_cpu_var(host_gdt));
1408 }
1409
1410 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1411 {
1412 preempt_disable();
1413 __vmx_load_host_state(vmx);
1414 preempt_enable();
1415 }
1416
1417 /*
1418 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1419 * vcpu mutex is already taken.
1420 */
1421 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1422 {
1423 struct vcpu_vmx *vmx = to_vmx(vcpu);
1424 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1425
1426 if (!vmm_exclusive)
1427 kvm_cpu_vmxon(phys_addr);
1428 else if (vmx->loaded_vmcs->cpu != cpu)
1429 loaded_vmcs_clear(vmx->loaded_vmcs);
1430
1431 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1432 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1433 vmcs_load(vmx->loaded_vmcs->vmcs);
1434 }
1435
1436 if (vmx->loaded_vmcs->cpu != cpu) {
1437 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1438 unsigned long sysenter_esp;
1439
1440 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1441 local_irq_disable();
1442 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1443 &per_cpu(loaded_vmcss_on_cpu, cpu));
1444 local_irq_enable();
1445
1446 /*
1447 * Linux uses per-cpu TSS and GDT, so set these when switching
1448 * processors.
1449 */
1450 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1451 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1452
1453 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1454 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1455 vmx->loaded_vmcs->cpu = cpu;
1456 }
1457 }
1458
1459 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1460 {
1461 __vmx_load_host_state(to_vmx(vcpu));
1462 if (!vmm_exclusive) {
1463 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1464 vcpu->cpu = -1;
1465 kvm_cpu_vmxoff();
1466 }
1467 }
1468
1469 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1470 {
1471 ulong cr0;
1472
1473 if (vcpu->fpu_active)
1474 return;
1475 vcpu->fpu_active = 1;
1476 cr0 = vmcs_readl(GUEST_CR0);
1477 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1478 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1479 vmcs_writel(GUEST_CR0, cr0);
1480 update_exception_bitmap(vcpu);
1481 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1482 if (is_guest_mode(vcpu))
1483 vcpu->arch.cr0_guest_owned_bits &=
1484 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1485 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1486 }
1487
1488 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1489
1490 /*
1491 * Return the cr0 value that a nested guest would read. This is a combination
1492 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1493 * its hypervisor (cr0_read_shadow).
1494 */
1495 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1496 {
1497 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1498 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1499 }
1500 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1501 {
1502 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1503 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1504 }
1505
1506 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1507 {
1508 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1509 * set this *before* calling this function.
1510 */
1511 vmx_decache_cr0_guest_bits(vcpu);
1512 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1513 update_exception_bitmap(vcpu);
1514 vcpu->arch.cr0_guest_owned_bits = 0;
1515 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1516 if (is_guest_mode(vcpu)) {
1517 /*
1518 * L1's specified read shadow might not contain the TS bit,
1519 * so now that we turned on shadowing of this bit, we need to
1520 * set this bit of the shadow. Like in nested_vmx_run we need
1521 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1522 * up-to-date here because we just decached cr0.TS (and we'll
1523 * only update vmcs12->guest_cr0 on nested exit).
1524 */
1525 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1526 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1527 (vcpu->arch.cr0 & X86_CR0_TS);
1528 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1529 } else
1530 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1531 }
1532
1533 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1534 {
1535 unsigned long rflags, save_rflags;
1536
1537 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1538 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1539 rflags = vmcs_readl(GUEST_RFLAGS);
1540 if (to_vmx(vcpu)->rmode.vm86_active) {
1541 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1542 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1543 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1544 }
1545 to_vmx(vcpu)->rflags = rflags;
1546 }
1547 return to_vmx(vcpu)->rflags;
1548 }
1549
1550 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1551 {
1552 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1553 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1554 to_vmx(vcpu)->rflags = rflags;
1555 if (to_vmx(vcpu)->rmode.vm86_active) {
1556 to_vmx(vcpu)->rmode.save_rflags = rflags;
1557 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1558 }
1559 vmcs_writel(GUEST_RFLAGS, rflags);
1560 }
1561
1562 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1563 {
1564 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1565 int ret = 0;
1566
1567 if (interruptibility & GUEST_INTR_STATE_STI)
1568 ret |= KVM_X86_SHADOW_INT_STI;
1569 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1570 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1571
1572 return ret & mask;
1573 }
1574
1575 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1576 {
1577 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1578 u32 interruptibility = interruptibility_old;
1579
1580 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1581
1582 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1583 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1584 else if (mask & KVM_X86_SHADOW_INT_STI)
1585 interruptibility |= GUEST_INTR_STATE_STI;
1586
1587 if ((interruptibility != interruptibility_old))
1588 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1589 }
1590
1591 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1592 {
1593 unsigned long rip;
1594
1595 rip = kvm_rip_read(vcpu);
1596 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1597 kvm_rip_write(vcpu, rip);
1598
1599 /* skipping an emulated instruction also counts */
1600 vmx_set_interrupt_shadow(vcpu, 0);
1601 }
1602
1603 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1604 {
1605 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1606 * explicitly skip the instruction because if the HLT state is set, then
1607 * the instruction is already executing and RIP has already been
1608 * advanced. */
1609 if (!yield_on_hlt &&
1610 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1611 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1612 }
1613
1614 /*
1615 * KVM wants to inject page-faults which it got to the guest. This function
1616 * checks whether in a nested guest, we need to inject them to L1 or L2.
1617 * This function assumes it is called with the exit reason in vmcs02 being
1618 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1619 * is running).
1620 */
1621 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1622 {
1623 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1624
1625 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1626 if (!(vmcs12->exception_bitmap & PF_VECTOR))
1627 return 0;
1628
1629 nested_vmx_vmexit(vcpu);
1630 return 1;
1631 }
1632
1633 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1634 bool has_error_code, u32 error_code,
1635 bool reinject)
1636 {
1637 struct vcpu_vmx *vmx = to_vmx(vcpu);
1638 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1639
1640 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1641 nested_pf_handled(vcpu))
1642 return;
1643
1644 if (has_error_code) {
1645 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1646 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1647 }
1648
1649 if (vmx->rmode.vm86_active) {
1650 int inc_eip = 0;
1651 if (kvm_exception_is_soft(nr))
1652 inc_eip = vcpu->arch.event_exit_inst_len;
1653 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1654 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1655 return;
1656 }
1657
1658 if (kvm_exception_is_soft(nr)) {
1659 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1660 vmx->vcpu.arch.event_exit_inst_len);
1661 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1662 } else
1663 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1664
1665 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1666 vmx_clear_hlt(vcpu);
1667 }
1668
1669 static bool vmx_rdtscp_supported(void)
1670 {
1671 return cpu_has_vmx_rdtscp();
1672 }
1673
1674 /*
1675 * Swap MSR entry in host/guest MSR entry array.
1676 */
1677 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1678 {
1679 struct shared_msr_entry tmp;
1680
1681 tmp = vmx->guest_msrs[to];
1682 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1683 vmx->guest_msrs[from] = tmp;
1684 }
1685
1686 /*
1687 * Set up the vmcs to automatically save and restore system
1688 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1689 * mode, as fiddling with msrs is very expensive.
1690 */
1691 static void setup_msrs(struct vcpu_vmx *vmx)
1692 {
1693 int save_nmsrs, index;
1694 unsigned long *msr_bitmap;
1695
1696 vmx_load_host_state(vmx);
1697 save_nmsrs = 0;
1698 #ifdef CONFIG_X86_64
1699 if (is_long_mode(&vmx->vcpu)) {
1700 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1701 if (index >= 0)
1702 move_msr_up(vmx, index, save_nmsrs++);
1703 index = __find_msr_index(vmx, MSR_LSTAR);
1704 if (index >= 0)
1705 move_msr_up(vmx, index, save_nmsrs++);
1706 index = __find_msr_index(vmx, MSR_CSTAR);
1707 if (index >= 0)
1708 move_msr_up(vmx, index, save_nmsrs++);
1709 index = __find_msr_index(vmx, MSR_TSC_AUX);
1710 if (index >= 0 && vmx->rdtscp_enabled)
1711 move_msr_up(vmx, index, save_nmsrs++);
1712 /*
1713 * MSR_STAR is only needed on long mode guests, and only
1714 * if efer.sce is enabled.
1715 */
1716 index = __find_msr_index(vmx, MSR_STAR);
1717 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1718 move_msr_up(vmx, index, save_nmsrs++);
1719 }
1720 #endif
1721 index = __find_msr_index(vmx, MSR_EFER);
1722 if (index >= 0 && update_transition_efer(vmx, index))
1723 move_msr_up(vmx, index, save_nmsrs++);
1724
1725 vmx->save_nmsrs = save_nmsrs;
1726
1727 if (cpu_has_vmx_msr_bitmap()) {
1728 if (is_long_mode(&vmx->vcpu))
1729 msr_bitmap = vmx_msr_bitmap_longmode;
1730 else
1731 msr_bitmap = vmx_msr_bitmap_legacy;
1732
1733 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1734 }
1735 }
1736
1737 /*
1738 * reads and returns guest's timestamp counter "register"
1739 * guest_tsc = host_tsc + tsc_offset -- 21.3
1740 */
1741 static u64 guest_read_tsc(void)
1742 {
1743 u64 host_tsc, tsc_offset;
1744
1745 rdtscll(host_tsc);
1746 tsc_offset = vmcs_read64(TSC_OFFSET);
1747 return host_tsc + tsc_offset;
1748 }
1749
1750 /*
1751 * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1752 * ioctl. In this case the call-back should update internal vmx state to make
1753 * the changes effective.
1754 */
1755 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1756 {
1757 /* Nothing to do here */
1758 }
1759
1760 /*
1761 * writes 'offset' into guest's timestamp counter offset register
1762 */
1763 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1764 {
1765 vmcs_write64(TSC_OFFSET, offset);
1766 if (is_guest_mode(vcpu))
1767 /*
1768 * We're here if L1 chose not to trap the TSC MSR. Since
1769 * prepare_vmcs12() does not copy tsc_offset, we need to also
1770 * set the vmcs12 field here.
1771 */
1772 get_vmcs12(vcpu)->tsc_offset = offset -
1773 to_vmx(vcpu)->nested.vmcs01_tsc_offset;
1774 }
1775
1776 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1777 {
1778 u64 offset = vmcs_read64(TSC_OFFSET);
1779 vmcs_write64(TSC_OFFSET, offset + adjustment);
1780 if (is_guest_mode(vcpu)) {
1781 /* Even when running L2, the adjustment needs to apply to L1 */
1782 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1783 }
1784 }
1785
1786 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1787 {
1788 return target_tsc - native_read_tsc();
1789 }
1790
1791 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1792 {
1793 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1794 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1795 }
1796
1797 /*
1798 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1799 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1800 * all guests if the "nested" module option is off, and can also be disabled
1801 * for a single guest by disabling its VMX cpuid bit.
1802 */
1803 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1804 {
1805 return nested && guest_cpuid_has_vmx(vcpu);
1806 }
1807
1808 /*
1809 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1810 * returned for the various VMX controls MSRs when nested VMX is enabled.
1811 * The same values should also be used to verify that vmcs12 control fields are
1812 * valid during nested entry from L1 to L2.
1813 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1814 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1815 * bit in the high half is on if the corresponding bit in the control field
1816 * may be on. See also vmx_control_verify().
1817 * TODO: allow these variables to be modified (downgraded) by module options
1818 * or other means.
1819 */
1820 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1821 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1822 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1823 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1824 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1825 static __init void nested_vmx_setup_ctls_msrs(void)
1826 {
1827 /*
1828 * Note that as a general rule, the high half of the MSRs (bits in
1829 * the control fields which may be 1) should be initialized by the
1830 * intersection of the underlying hardware's MSR (i.e., features which
1831 * can be supported) and the list of features we want to expose -
1832 * because they are known to be properly supported in our code.
1833 * Also, usually, the low half of the MSRs (bits which must be 1) can
1834 * be set to 0, meaning that L1 may turn off any of these bits. The
1835 * reason is that if one of these bits is necessary, it will appear
1836 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1837 * fields of vmcs01 and vmcs02, will turn these bits off - and
1838 * nested_vmx_exit_handled() will not pass related exits to L1.
1839 * These rules have exceptions below.
1840 */
1841
1842 /* pin-based controls */
1843 /*
1844 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1845 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1846 */
1847 nested_vmx_pinbased_ctls_low = 0x16 ;
1848 nested_vmx_pinbased_ctls_high = 0x16 |
1849 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1850 PIN_BASED_VIRTUAL_NMIS;
1851
1852 /* exit controls */
1853 nested_vmx_exit_ctls_low = 0;
1854 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1855 #ifdef CONFIG_X86_64
1856 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1857 #else
1858 nested_vmx_exit_ctls_high = 0;
1859 #endif
1860
1861 /* entry controls */
1862 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1863 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1864 nested_vmx_entry_ctls_low = 0;
1865 nested_vmx_entry_ctls_high &=
1866 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1867
1868 /* cpu-based controls */
1869 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1870 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1871 nested_vmx_procbased_ctls_low = 0;
1872 nested_vmx_procbased_ctls_high &=
1873 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1874 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1875 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1876 CPU_BASED_CR3_STORE_EXITING |
1877 #ifdef CONFIG_X86_64
1878 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1879 #endif
1880 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1881 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1882 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1883 /*
1884 * We can allow some features even when not supported by the
1885 * hardware. For example, L1 can specify an MSR bitmap - and we
1886 * can use it to avoid exits to L1 - even when L0 runs L2
1887 * without MSR bitmaps.
1888 */
1889 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1890
1891 /* secondary cpu-based controls */
1892 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1893 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1894 nested_vmx_secondary_ctls_low = 0;
1895 nested_vmx_secondary_ctls_high &=
1896 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1897 }
1898
1899 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1900 {
1901 /*
1902 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1903 */
1904 return ((control & high) | low) == control;
1905 }
1906
1907 static inline u64 vmx_control_msr(u32 low, u32 high)
1908 {
1909 return low | ((u64)high << 32);
1910 }
1911
1912 /*
1913 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1914 * also let it use VMX-specific MSRs.
1915 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1916 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1917 * like all other MSRs).
1918 */
1919 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1920 {
1921 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1922 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1923 /*
1924 * According to the spec, processors which do not support VMX
1925 * should throw a #GP(0) when VMX capability MSRs are read.
1926 */
1927 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1928 return 1;
1929 }
1930
1931 switch (msr_index) {
1932 case MSR_IA32_FEATURE_CONTROL:
1933 *pdata = 0;
1934 break;
1935 case MSR_IA32_VMX_BASIC:
1936 /*
1937 * This MSR reports some information about VMX support. We
1938 * should return information about the VMX we emulate for the
1939 * guest, and the VMCS structure we give it - not about the
1940 * VMX support of the underlying hardware.
1941 */
1942 *pdata = VMCS12_REVISION |
1943 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
1944 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
1945 break;
1946 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1947 case MSR_IA32_VMX_PINBASED_CTLS:
1948 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
1949 nested_vmx_pinbased_ctls_high);
1950 break;
1951 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1952 case MSR_IA32_VMX_PROCBASED_CTLS:
1953 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
1954 nested_vmx_procbased_ctls_high);
1955 break;
1956 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1957 case MSR_IA32_VMX_EXIT_CTLS:
1958 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
1959 nested_vmx_exit_ctls_high);
1960 break;
1961 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1962 case MSR_IA32_VMX_ENTRY_CTLS:
1963 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
1964 nested_vmx_entry_ctls_high);
1965 break;
1966 case MSR_IA32_VMX_MISC:
1967 *pdata = 0;
1968 break;
1969 /*
1970 * These MSRs specify bits which the guest must keep fixed (on or off)
1971 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
1972 * We picked the standard core2 setting.
1973 */
1974 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
1975 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
1976 case MSR_IA32_VMX_CR0_FIXED0:
1977 *pdata = VMXON_CR0_ALWAYSON;
1978 break;
1979 case MSR_IA32_VMX_CR0_FIXED1:
1980 *pdata = -1ULL;
1981 break;
1982 case MSR_IA32_VMX_CR4_FIXED0:
1983 *pdata = VMXON_CR4_ALWAYSON;
1984 break;
1985 case MSR_IA32_VMX_CR4_FIXED1:
1986 *pdata = -1ULL;
1987 break;
1988 case MSR_IA32_VMX_VMCS_ENUM:
1989 *pdata = 0x1f;
1990 break;
1991 case MSR_IA32_VMX_PROCBASED_CTLS2:
1992 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
1993 nested_vmx_secondary_ctls_high);
1994 break;
1995 case MSR_IA32_VMX_EPT_VPID_CAP:
1996 /* Currently, no nested ept or nested vpid */
1997 *pdata = 0;
1998 break;
1999 default:
2000 return 0;
2001 }
2002
2003 return 1;
2004 }
2005
2006 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2007 {
2008 if (!nested_vmx_allowed(vcpu))
2009 return 0;
2010
2011 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2012 /* TODO: the right thing. */
2013 return 1;
2014 /*
2015 * No need to treat VMX capability MSRs specially: If we don't handle
2016 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2017 */
2018 return 0;
2019 }
2020
2021 /*
2022 * Reads an msr value (of 'msr_index') into 'pdata'.
2023 * Returns 0 on success, non-0 otherwise.
2024 * Assumes vcpu_load() was already called.
2025 */
2026 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2027 {
2028 u64 data;
2029 struct shared_msr_entry *msr;
2030
2031 if (!pdata) {
2032 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2033 return -EINVAL;
2034 }
2035
2036 switch (msr_index) {
2037 #ifdef CONFIG_X86_64
2038 case MSR_FS_BASE:
2039 data = vmcs_readl(GUEST_FS_BASE);
2040 break;
2041 case MSR_GS_BASE:
2042 data = vmcs_readl(GUEST_GS_BASE);
2043 break;
2044 case MSR_KERNEL_GS_BASE:
2045 vmx_load_host_state(to_vmx(vcpu));
2046 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2047 break;
2048 #endif
2049 case MSR_EFER:
2050 return kvm_get_msr_common(vcpu, msr_index, pdata);
2051 case MSR_IA32_TSC:
2052 data = guest_read_tsc();
2053 break;
2054 case MSR_IA32_SYSENTER_CS:
2055 data = vmcs_read32(GUEST_SYSENTER_CS);
2056 break;
2057 case MSR_IA32_SYSENTER_EIP:
2058 data = vmcs_readl(GUEST_SYSENTER_EIP);
2059 break;
2060 case MSR_IA32_SYSENTER_ESP:
2061 data = vmcs_readl(GUEST_SYSENTER_ESP);
2062 break;
2063 case MSR_TSC_AUX:
2064 if (!to_vmx(vcpu)->rdtscp_enabled)
2065 return 1;
2066 /* Otherwise falls through */
2067 default:
2068 vmx_load_host_state(to_vmx(vcpu));
2069 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2070 return 0;
2071 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2072 if (msr) {
2073 vmx_load_host_state(to_vmx(vcpu));
2074 data = msr->data;
2075 break;
2076 }
2077 return kvm_get_msr_common(vcpu, msr_index, pdata);
2078 }
2079
2080 *pdata = data;
2081 return 0;
2082 }
2083
2084 /*
2085 * Writes msr value into into the appropriate "register".
2086 * Returns 0 on success, non-0 otherwise.
2087 * Assumes vcpu_load() was already called.
2088 */
2089 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2090 {
2091 struct vcpu_vmx *vmx = to_vmx(vcpu);
2092 struct shared_msr_entry *msr;
2093 int ret = 0;
2094
2095 switch (msr_index) {
2096 case MSR_EFER:
2097 vmx_load_host_state(vmx);
2098 ret = kvm_set_msr_common(vcpu, msr_index, data);
2099 break;
2100 #ifdef CONFIG_X86_64
2101 case MSR_FS_BASE:
2102 vmx_segment_cache_clear(vmx);
2103 vmcs_writel(GUEST_FS_BASE, data);
2104 break;
2105 case MSR_GS_BASE:
2106 vmx_segment_cache_clear(vmx);
2107 vmcs_writel(GUEST_GS_BASE, data);
2108 break;
2109 case MSR_KERNEL_GS_BASE:
2110 vmx_load_host_state(vmx);
2111 vmx->msr_guest_kernel_gs_base = data;
2112 break;
2113 #endif
2114 case MSR_IA32_SYSENTER_CS:
2115 vmcs_write32(GUEST_SYSENTER_CS, data);
2116 break;
2117 case MSR_IA32_SYSENTER_EIP:
2118 vmcs_writel(GUEST_SYSENTER_EIP, data);
2119 break;
2120 case MSR_IA32_SYSENTER_ESP:
2121 vmcs_writel(GUEST_SYSENTER_ESP, data);
2122 break;
2123 case MSR_IA32_TSC:
2124 kvm_write_tsc(vcpu, data);
2125 break;
2126 case MSR_IA32_CR_PAT:
2127 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2128 vmcs_write64(GUEST_IA32_PAT, data);
2129 vcpu->arch.pat = data;
2130 break;
2131 }
2132 ret = kvm_set_msr_common(vcpu, msr_index, data);
2133 break;
2134 case MSR_TSC_AUX:
2135 if (!vmx->rdtscp_enabled)
2136 return 1;
2137 /* Check reserved bit, higher 32 bits should be zero */
2138 if ((data >> 32) != 0)
2139 return 1;
2140 /* Otherwise falls through */
2141 default:
2142 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2143 break;
2144 msr = find_msr_entry(vmx, msr_index);
2145 if (msr) {
2146 vmx_load_host_state(vmx);
2147 msr->data = data;
2148 break;
2149 }
2150 ret = kvm_set_msr_common(vcpu, msr_index, data);
2151 }
2152
2153 return ret;
2154 }
2155
2156 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2157 {
2158 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2159 switch (reg) {
2160 case VCPU_REGS_RSP:
2161 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2162 break;
2163 case VCPU_REGS_RIP:
2164 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2165 break;
2166 case VCPU_EXREG_PDPTR:
2167 if (enable_ept)
2168 ept_save_pdptrs(vcpu);
2169 break;
2170 default:
2171 break;
2172 }
2173 }
2174
2175 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
2176 {
2177 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2178 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2179 else
2180 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2181
2182 update_exception_bitmap(vcpu);
2183 }
2184
2185 static __init int cpu_has_kvm_support(void)
2186 {
2187 return cpu_has_vmx();
2188 }
2189
2190 static __init int vmx_disabled_by_bios(void)
2191 {
2192 u64 msr;
2193
2194 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2195 if (msr & FEATURE_CONTROL_LOCKED) {
2196 /* launched w/ TXT and VMX disabled */
2197 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2198 && tboot_enabled())
2199 return 1;
2200 /* launched w/o TXT and VMX only enabled w/ TXT */
2201 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2202 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2203 && !tboot_enabled()) {
2204 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2205 "activate TXT before enabling KVM\n");
2206 return 1;
2207 }
2208 /* launched w/o TXT and VMX disabled */
2209 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2210 && !tboot_enabled())
2211 return 1;
2212 }
2213
2214 return 0;
2215 }
2216
2217 static void kvm_cpu_vmxon(u64 addr)
2218 {
2219 asm volatile (ASM_VMX_VMXON_RAX
2220 : : "a"(&addr), "m"(addr)
2221 : "memory", "cc");
2222 }
2223
2224 static int hardware_enable(void *garbage)
2225 {
2226 int cpu = raw_smp_processor_id();
2227 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2228 u64 old, test_bits;
2229
2230 if (read_cr4() & X86_CR4_VMXE)
2231 return -EBUSY;
2232
2233 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2234 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2235
2236 test_bits = FEATURE_CONTROL_LOCKED;
2237 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2238 if (tboot_enabled())
2239 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2240
2241 if ((old & test_bits) != test_bits) {
2242 /* enable and lock */
2243 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2244 }
2245 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2246
2247 if (vmm_exclusive) {
2248 kvm_cpu_vmxon(phys_addr);
2249 ept_sync_global();
2250 }
2251
2252 store_gdt(&__get_cpu_var(host_gdt));
2253
2254 return 0;
2255 }
2256
2257 static void vmclear_local_loaded_vmcss(void)
2258 {
2259 int cpu = raw_smp_processor_id();
2260 struct loaded_vmcs *v, *n;
2261
2262 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2263 loaded_vmcss_on_cpu_link)
2264 __loaded_vmcs_clear(v);
2265 }
2266
2267
2268 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2269 * tricks.
2270 */
2271 static void kvm_cpu_vmxoff(void)
2272 {
2273 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2274 }
2275
2276 static void hardware_disable(void *garbage)
2277 {
2278 if (vmm_exclusive) {
2279 vmclear_local_loaded_vmcss();
2280 kvm_cpu_vmxoff();
2281 }
2282 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2283 }
2284
2285 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2286 u32 msr, u32 *result)
2287 {
2288 u32 vmx_msr_low, vmx_msr_high;
2289 u32 ctl = ctl_min | ctl_opt;
2290
2291 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2292
2293 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2294 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2295
2296 /* Ensure minimum (required) set of control bits are supported. */
2297 if (ctl_min & ~ctl)
2298 return -EIO;
2299
2300 *result = ctl;
2301 return 0;
2302 }
2303
2304 static __init bool allow_1_setting(u32 msr, u32 ctl)
2305 {
2306 u32 vmx_msr_low, vmx_msr_high;
2307
2308 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2309 return vmx_msr_high & ctl;
2310 }
2311
2312 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2313 {
2314 u32 vmx_msr_low, vmx_msr_high;
2315 u32 min, opt, min2, opt2;
2316 u32 _pin_based_exec_control = 0;
2317 u32 _cpu_based_exec_control = 0;
2318 u32 _cpu_based_2nd_exec_control = 0;
2319 u32 _vmexit_control = 0;
2320 u32 _vmentry_control = 0;
2321
2322 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2323 opt = PIN_BASED_VIRTUAL_NMIS;
2324 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2325 &_pin_based_exec_control) < 0)
2326 return -EIO;
2327
2328 min =
2329 #ifdef CONFIG_X86_64
2330 CPU_BASED_CR8_LOAD_EXITING |
2331 CPU_BASED_CR8_STORE_EXITING |
2332 #endif
2333 CPU_BASED_CR3_LOAD_EXITING |
2334 CPU_BASED_CR3_STORE_EXITING |
2335 CPU_BASED_USE_IO_BITMAPS |
2336 CPU_BASED_MOV_DR_EXITING |
2337 CPU_BASED_USE_TSC_OFFSETING |
2338 CPU_BASED_MWAIT_EXITING |
2339 CPU_BASED_MONITOR_EXITING |
2340 CPU_BASED_INVLPG_EXITING;
2341
2342 if (yield_on_hlt)
2343 min |= CPU_BASED_HLT_EXITING;
2344
2345 opt = CPU_BASED_TPR_SHADOW |
2346 CPU_BASED_USE_MSR_BITMAPS |
2347 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2348 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2349 &_cpu_based_exec_control) < 0)
2350 return -EIO;
2351 #ifdef CONFIG_X86_64
2352 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2353 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2354 ~CPU_BASED_CR8_STORE_EXITING;
2355 #endif
2356 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2357 min2 = 0;
2358 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2359 SECONDARY_EXEC_WBINVD_EXITING |
2360 SECONDARY_EXEC_ENABLE_VPID |
2361 SECONDARY_EXEC_ENABLE_EPT |
2362 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2363 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2364 SECONDARY_EXEC_RDTSCP;
2365 if (adjust_vmx_controls(min2, opt2,
2366 MSR_IA32_VMX_PROCBASED_CTLS2,
2367 &_cpu_based_2nd_exec_control) < 0)
2368 return -EIO;
2369 }
2370 #ifndef CONFIG_X86_64
2371 if (!(_cpu_based_2nd_exec_control &
2372 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2373 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2374 #endif
2375 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2376 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2377 enabled */
2378 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2379 CPU_BASED_CR3_STORE_EXITING |
2380 CPU_BASED_INVLPG_EXITING);
2381 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2382 vmx_capability.ept, vmx_capability.vpid);
2383 }
2384
2385 min = 0;
2386 #ifdef CONFIG_X86_64
2387 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2388 #endif
2389 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2390 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2391 &_vmexit_control) < 0)
2392 return -EIO;
2393
2394 min = 0;
2395 opt = VM_ENTRY_LOAD_IA32_PAT;
2396 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2397 &_vmentry_control) < 0)
2398 return -EIO;
2399
2400 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2401
2402 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2403 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2404 return -EIO;
2405
2406 #ifdef CONFIG_X86_64
2407 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2408 if (vmx_msr_high & (1u<<16))
2409 return -EIO;
2410 #endif
2411
2412 /* Require Write-Back (WB) memory type for VMCS accesses. */
2413 if (((vmx_msr_high >> 18) & 15) != 6)
2414 return -EIO;
2415
2416 vmcs_conf->size = vmx_msr_high & 0x1fff;
2417 vmcs_conf->order = get_order(vmcs_config.size);
2418 vmcs_conf->revision_id = vmx_msr_low;
2419
2420 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2421 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2422 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2423 vmcs_conf->vmexit_ctrl = _vmexit_control;
2424 vmcs_conf->vmentry_ctrl = _vmentry_control;
2425
2426 cpu_has_load_ia32_efer =
2427 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2428 VM_ENTRY_LOAD_IA32_EFER)
2429 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2430 VM_EXIT_LOAD_IA32_EFER);
2431
2432 return 0;
2433 }
2434
2435 static struct vmcs *alloc_vmcs_cpu(int cpu)
2436 {
2437 int node = cpu_to_node(cpu);
2438 struct page *pages;
2439 struct vmcs *vmcs;
2440
2441 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2442 if (!pages)
2443 return NULL;
2444 vmcs = page_address(pages);
2445 memset(vmcs, 0, vmcs_config.size);
2446 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2447 return vmcs;
2448 }
2449
2450 static struct vmcs *alloc_vmcs(void)
2451 {
2452 return alloc_vmcs_cpu(raw_smp_processor_id());
2453 }
2454
2455 static void free_vmcs(struct vmcs *vmcs)
2456 {
2457 free_pages((unsigned long)vmcs, vmcs_config.order);
2458 }
2459
2460 /*
2461 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2462 */
2463 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2464 {
2465 if (!loaded_vmcs->vmcs)
2466 return;
2467 loaded_vmcs_clear(loaded_vmcs);
2468 free_vmcs(loaded_vmcs->vmcs);
2469 loaded_vmcs->vmcs = NULL;
2470 }
2471
2472 static void free_kvm_area(void)
2473 {
2474 int cpu;
2475
2476 for_each_possible_cpu(cpu) {
2477 free_vmcs(per_cpu(vmxarea, cpu));
2478 per_cpu(vmxarea, cpu) = NULL;
2479 }
2480 }
2481
2482 static __init int alloc_kvm_area(void)
2483 {
2484 int cpu;
2485
2486 for_each_possible_cpu(cpu) {
2487 struct vmcs *vmcs;
2488
2489 vmcs = alloc_vmcs_cpu(cpu);
2490 if (!vmcs) {
2491 free_kvm_area();
2492 return -ENOMEM;
2493 }
2494
2495 per_cpu(vmxarea, cpu) = vmcs;
2496 }
2497 return 0;
2498 }
2499
2500 static __init int hardware_setup(void)
2501 {
2502 if (setup_vmcs_config(&vmcs_config) < 0)
2503 return -EIO;
2504
2505 if (boot_cpu_has(X86_FEATURE_NX))
2506 kvm_enable_efer_bits(EFER_NX);
2507
2508 if (!cpu_has_vmx_vpid())
2509 enable_vpid = 0;
2510
2511 if (!cpu_has_vmx_ept() ||
2512 !cpu_has_vmx_ept_4levels()) {
2513 enable_ept = 0;
2514 enable_unrestricted_guest = 0;
2515 }
2516
2517 if (!cpu_has_vmx_unrestricted_guest())
2518 enable_unrestricted_guest = 0;
2519
2520 if (!cpu_has_vmx_flexpriority())
2521 flexpriority_enabled = 0;
2522
2523 if (!cpu_has_vmx_tpr_shadow())
2524 kvm_x86_ops->update_cr8_intercept = NULL;
2525
2526 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2527 kvm_disable_largepages();
2528
2529 if (!cpu_has_vmx_ple())
2530 ple_gap = 0;
2531
2532 if (nested)
2533 nested_vmx_setup_ctls_msrs();
2534
2535 return alloc_kvm_area();
2536 }
2537
2538 static __exit void hardware_unsetup(void)
2539 {
2540 free_kvm_area();
2541 }
2542
2543 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2544 {
2545 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2546
2547 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2548 vmcs_write16(sf->selector, save->selector);
2549 vmcs_writel(sf->base, save->base);
2550 vmcs_write32(sf->limit, save->limit);
2551 vmcs_write32(sf->ar_bytes, save->ar);
2552 } else {
2553 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2554 << AR_DPL_SHIFT;
2555 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2556 }
2557 }
2558
2559 static void enter_pmode(struct kvm_vcpu *vcpu)
2560 {
2561 unsigned long flags;
2562 struct vcpu_vmx *vmx = to_vmx(vcpu);
2563
2564 vmx->emulation_required = 1;
2565 vmx->rmode.vm86_active = 0;
2566
2567 vmx_segment_cache_clear(vmx);
2568
2569 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2570 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2571 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2572 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2573
2574 flags = vmcs_readl(GUEST_RFLAGS);
2575 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2576 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2577 vmcs_writel(GUEST_RFLAGS, flags);
2578
2579 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2580 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2581
2582 update_exception_bitmap(vcpu);
2583
2584 if (emulate_invalid_guest_state)
2585 return;
2586
2587 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2588 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2589 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2590 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2591
2592 vmx_segment_cache_clear(vmx);
2593
2594 vmcs_write16(GUEST_SS_SELECTOR, 0);
2595 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2596
2597 vmcs_write16(GUEST_CS_SELECTOR,
2598 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2599 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2600 }
2601
2602 static gva_t rmode_tss_base(struct kvm *kvm)
2603 {
2604 if (!kvm->arch.tss_addr) {
2605 struct kvm_memslots *slots;
2606 gfn_t base_gfn;
2607
2608 slots = kvm_memslots(kvm);
2609 base_gfn = slots->memslots[0].base_gfn +
2610 kvm->memslots->memslots[0].npages - 3;
2611 return base_gfn << PAGE_SHIFT;
2612 }
2613 return kvm->arch.tss_addr;
2614 }
2615
2616 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2617 {
2618 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2619
2620 save->selector = vmcs_read16(sf->selector);
2621 save->base = vmcs_readl(sf->base);
2622 save->limit = vmcs_read32(sf->limit);
2623 save->ar = vmcs_read32(sf->ar_bytes);
2624 vmcs_write16(sf->selector, save->base >> 4);
2625 vmcs_write32(sf->base, save->base & 0xffff0);
2626 vmcs_write32(sf->limit, 0xffff);
2627 vmcs_write32(sf->ar_bytes, 0xf3);
2628 if (save->base & 0xf)
2629 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2630 " aligned when entering protected mode (seg=%d)",
2631 seg);
2632 }
2633
2634 static void enter_rmode(struct kvm_vcpu *vcpu)
2635 {
2636 unsigned long flags;
2637 struct vcpu_vmx *vmx = to_vmx(vcpu);
2638
2639 if (enable_unrestricted_guest)
2640 return;
2641
2642 vmx->emulation_required = 1;
2643 vmx->rmode.vm86_active = 1;
2644
2645 /*
2646 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2647 * vcpu. Call it here with phys address pointing 16M below 4G.
2648 */
2649 if (!vcpu->kvm->arch.tss_addr) {
2650 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2651 "called before entering vcpu\n");
2652 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2653 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2654 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2655 }
2656
2657 vmx_segment_cache_clear(vmx);
2658
2659 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2660 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2661 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2662
2663 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2664 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2665
2666 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2667 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2668
2669 flags = vmcs_readl(GUEST_RFLAGS);
2670 vmx->rmode.save_rflags = flags;
2671
2672 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2673
2674 vmcs_writel(GUEST_RFLAGS, flags);
2675 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2676 update_exception_bitmap(vcpu);
2677
2678 if (emulate_invalid_guest_state)
2679 goto continue_rmode;
2680
2681 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2682 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2683 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2684
2685 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2686 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2687 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2688 vmcs_writel(GUEST_CS_BASE, 0xf0000);
2689 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2690
2691 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2692 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2693 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2694 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2695
2696 continue_rmode:
2697 kvm_mmu_reset_context(vcpu);
2698 }
2699
2700 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2701 {
2702 struct vcpu_vmx *vmx = to_vmx(vcpu);
2703 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2704
2705 if (!msr)
2706 return;
2707
2708 /*
2709 * Force kernel_gs_base reloading before EFER changes, as control
2710 * of this msr depends on is_long_mode().
2711 */
2712 vmx_load_host_state(to_vmx(vcpu));
2713 vcpu->arch.efer = efer;
2714 if (efer & EFER_LMA) {
2715 vmcs_write32(VM_ENTRY_CONTROLS,
2716 vmcs_read32(VM_ENTRY_CONTROLS) |
2717 VM_ENTRY_IA32E_MODE);
2718 msr->data = efer;
2719 } else {
2720 vmcs_write32(VM_ENTRY_CONTROLS,
2721 vmcs_read32(VM_ENTRY_CONTROLS) &
2722 ~VM_ENTRY_IA32E_MODE);
2723
2724 msr->data = efer & ~EFER_LME;
2725 }
2726 setup_msrs(vmx);
2727 }
2728
2729 #ifdef CONFIG_X86_64
2730
2731 static void enter_lmode(struct kvm_vcpu *vcpu)
2732 {
2733 u32 guest_tr_ar;
2734
2735 vmx_segment_cache_clear(to_vmx(vcpu));
2736
2737 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2738 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2739 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
2740 __func__);
2741 vmcs_write32(GUEST_TR_AR_BYTES,
2742 (guest_tr_ar & ~AR_TYPE_MASK)
2743 | AR_TYPE_BUSY_64_TSS);
2744 }
2745 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2746 }
2747
2748 static void exit_lmode(struct kvm_vcpu *vcpu)
2749 {
2750 vmcs_write32(VM_ENTRY_CONTROLS,
2751 vmcs_read32(VM_ENTRY_CONTROLS)
2752 & ~VM_ENTRY_IA32E_MODE);
2753 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2754 }
2755
2756 #endif
2757
2758 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2759 {
2760 vpid_sync_context(to_vmx(vcpu));
2761 if (enable_ept) {
2762 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2763 return;
2764 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2765 }
2766 }
2767
2768 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2769 {
2770 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2771
2772 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2773 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2774 }
2775
2776 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2777 {
2778 if (enable_ept && is_paging(vcpu))
2779 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2780 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2781 }
2782
2783 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2784 {
2785 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2786
2787 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2788 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2789 }
2790
2791 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2792 {
2793 if (!test_bit(VCPU_EXREG_PDPTR,
2794 (unsigned long *)&vcpu->arch.regs_dirty))
2795 return;
2796
2797 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2798 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2799 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2800 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2801 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2802 }
2803 }
2804
2805 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2806 {
2807 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2808 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2809 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2810 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2811 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2812 }
2813
2814 __set_bit(VCPU_EXREG_PDPTR,
2815 (unsigned long *)&vcpu->arch.regs_avail);
2816 __set_bit(VCPU_EXREG_PDPTR,
2817 (unsigned long *)&vcpu->arch.regs_dirty);
2818 }
2819
2820 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2821
2822 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2823 unsigned long cr0,
2824 struct kvm_vcpu *vcpu)
2825 {
2826 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2827 vmx_decache_cr3(vcpu);
2828 if (!(cr0 & X86_CR0_PG)) {
2829 /* From paging/starting to nonpaging */
2830 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2831 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2832 (CPU_BASED_CR3_LOAD_EXITING |
2833 CPU_BASED_CR3_STORE_EXITING));
2834 vcpu->arch.cr0 = cr0;
2835 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2836 } else if (!is_paging(vcpu)) {
2837 /* From nonpaging to paging */
2838 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2839 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2840 ~(CPU_BASED_CR3_LOAD_EXITING |
2841 CPU_BASED_CR3_STORE_EXITING));
2842 vcpu->arch.cr0 = cr0;
2843 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2844 }
2845
2846 if (!(cr0 & X86_CR0_WP))
2847 *hw_cr0 &= ~X86_CR0_WP;
2848 }
2849
2850 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2851 {
2852 struct vcpu_vmx *vmx = to_vmx(vcpu);
2853 unsigned long hw_cr0;
2854
2855 if (enable_unrestricted_guest)
2856 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2857 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2858 else
2859 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2860
2861 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2862 enter_pmode(vcpu);
2863
2864 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2865 enter_rmode(vcpu);
2866
2867 #ifdef CONFIG_X86_64
2868 if (vcpu->arch.efer & EFER_LME) {
2869 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2870 enter_lmode(vcpu);
2871 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2872 exit_lmode(vcpu);
2873 }
2874 #endif
2875
2876 if (enable_ept)
2877 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2878
2879 if (!vcpu->fpu_active)
2880 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2881
2882 vmcs_writel(CR0_READ_SHADOW, cr0);
2883 vmcs_writel(GUEST_CR0, hw_cr0);
2884 vcpu->arch.cr0 = cr0;
2885 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2886 }
2887
2888 static u64 construct_eptp(unsigned long root_hpa)
2889 {
2890 u64 eptp;
2891
2892 /* TODO write the value reading from MSR */
2893 eptp = VMX_EPT_DEFAULT_MT |
2894 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2895 eptp |= (root_hpa & PAGE_MASK);
2896
2897 return eptp;
2898 }
2899
2900 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2901 {
2902 unsigned long guest_cr3;
2903 u64 eptp;
2904
2905 guest_cr3 = cr3;
2906 if (enable_ept) {
2907 eptp = construct_eptp(cr3);
2908 vmcs_write64(EPT_POINTER, eptp);
2909 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2910 vcpu->kvm->arch.ept_identity_map_addr;
2911 ept_load_pdptrs(vcpu);
2912 }
2913
2914 vmx_flush_tlb(vcpu);
2915 vmcs_writel(GUEST_CR3, guest_cr3);
2916 }
2917
2918 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2919 {
2920 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2921 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2922
2923 if (cr4 & X86_CR4_VMXE) {
2924 /*
2925 * To use VMXON (and later other VMX instructions), a guest
2926 * must first be able to turn on cr4.VMXE (see handle_vmon()).
2927 * So basically the check on whether to allow nested VMX
2928 * is here.
2929 */
2930 if (!nested_vmx_allowed(vcpu))
2931 return 1;
2932 } else if (to_vmx(vcpu)->nested.vmxon)
2933 return 1;
2934
2935 vcpu->arch.cr4 = cr4;
2936 if (enable_ept) {
2937 if (!is_paging(vcpu)) {
2938 hw_cr4 &= ~X86_CR4_PAE;
2939 hw_cr4 |= X86_CR4_PSE;
2940 } else if (!(cr4 & X86_CR4_PAE)) {
2941 hw_cr4 &= ~X86_CR4_PAE;
2942 }
2943 }
2944
2945 vmcs_writel(CR4_READ_SHADOW, cr4);
2946 vmcs_writel(GUEST_CR4, hw_cr4);
2947 return 0;
2948 }
2949
2950 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2951 struct kvm_segment *var, int seg)
2952 {
2953 struct vcpu_vmx *vmx = to_vmx(vcpu);
2954 struct kvm_save_segment *save;
2955 u32 ar;
2956
2957 if (vmx->rmode.vm86_active
2958 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2959 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2960 || seg == VCPU_SREG_GS)
2961 && !emulate_invalid_guest_state) {
2962 switch (seg) {
2963 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2964 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2965 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2966 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2967 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2968 default: BUG();
2969 }
2970 var->selector = save->selector;
2971 var->base = save->base;
2972 var->limit = save->limit;
2973 ar = save->ar;
2974 if (seg == VCPU_SREG_TR
2975 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2976 goto use_saved_rmode_seg;
2977 }
2978 var->base = vmx_read_guest_seg_base(vmx, seg);
2979 var->limit = vmx_read_guest_seg_limit(vmx, seg);
2980 var->selector = vmx_read_guest_seg_selector(vmx, seg);
2981 ar = vmx_read_guest_seg_ar(vmx, seg);
2982 use_saved_rmode_seg:
2983 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2984 ar = 0;
2985 var->type = ar & 15;
2986 var->s = (ar >> 4) & 1;
2987 var->dpl = (ar >> 5) & 3;
2988 var->present = (ar >> 7) & 1;
2989 var->avl = (ar >> 12) & 1;
2990 var->l = (ar >> 13) & 1;
2991 var->db = (ar >> 14) & 1;
2992 var->g = (ar >> 15) & 1;
2993 var->unusable = (ar >> 16) & 1;
2994 }
2995
2996 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2997 {
2998 struct kvm_segment s;
2999
3000 if (to_vmx(vcpu)->rmode.vm86_active) {
3001 vmx_get_segment(vcpu, &s, seg);
3002 return s.base;
3003 }
3004 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3005 }
3006
3007 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3008 {
3009 if (!is_protmode(vcpu))
3010 return 0;
3011
3012 if (!is_long_mode(vcpu)
3013 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3014 return 3;
3015
3016 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3017 }
3018
3019 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3020 {
3021 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3022 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3023 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3024 }
3025 return to_vmx(vcpu)->cpl;
3026 }
3027
3028
3029 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3030 {
3031 u32 ar;
3032
3033 if (var->unusable)
3034 ar = 1 << 16;
3035 else {
3036 ar = var->type & 15;
3037 ar |= (var->s & 1) << 4;
3038 ar |= (var->dpl & 3) << 5;
3039 ar |= (var->present & 1) << 7;
3040 ar |= (var->avl & 1) << 12;
3041 ar |= (var->l & 1) << 13;
3042 ar |= (var->db & 1) << 14;
3043 ar |= (var->g & 1) << 15;
3044 }
3045 if (ar == 0) /* a 0 value means unusable */
3046 ar = AR_UNUSABLE_MASK;
3047
3048 return ar;
3049 }
3050
3051 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3052 struct kvm_segment *var, int seg)
3053 {
3054 struct vcpu_vmx *vmx = to_vmx(vcpu);
3055 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3056 u32 ar;
3057
3058 vmx_segment_cache_clear(vmx);
3059
3060 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3061 vmcs_write16(sf->selector, var->selector);
3062 vmx->rmode.tr.selector = var->selector;
3063 vmx->rmode.tr.base = var->base;
3064 vmx->rmode.tr.limit = var->limit;
3065 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
3066 return;
3067 }
3068 vmcs_writel(sf->base, var->base);
3069 vmcs_write32(sf->limit, var->limit);
3070 vmcs_write16(sf->selector, var->selector);
3071 if (vmx->rmode.vm86_active && var->s) {
3072 /*
3073 * Hack real-mode segments into vm86 compatibility.
3074 */
3075 if (var->base == 0xffff0000 && var->selector == 0xf000)
3076 vmcs_writel(sf->base, 0xf0000);
3077 ar = 0xf3;
3078 } else
3079 ar = vmx_segment_access_rights(var);
3080
3081 /*
3082 * Fix the "Accessed" bit in AR field of segment registers for older
3083 * qemu binaries.
3084 * IA32 arch specifies that at the time of processor reset the
3085 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3086 * is setting it to 0 in the usedland code. This causes invalid guest
3087 * state vmexit when "unrestricted guest" mode is turned on.
3088 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3089 * tree. Newer qemu binaries with that qemu fix would not need this
3090 * kvm hack.
3091 */
3092 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3093 ar |= 0x1; /* Accessed */
3094
3095 vmcs_write32(sf->ar_bytes, ar);
3096 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3097 }
3098
3099 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3100 {
3101 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3102
3103 *db = (ar >> 14) & 1;
3104 *l = (ar >> 13) & 1;
3105 }
3106
3107 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3108 {
3109 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3110 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3111 }
3112
3113 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3114 {
3115 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3116 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3117 }
3118
3119 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3120 {
3121 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3122 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3123 }
3124
3125 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3126 {
3127 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3128 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3129 }
3130
3131 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3132 {
3133 struct kvm_segment var;
3134 u32 ar;
3135
3136 vmx_get_segment(vcpu, &var, seg);
3137 ar = vmx_segment_access_rights(&var);
3138
3139 if (var.base != (var.selector << 4))
3140 return false;
3141 if (var.limit != 0xffff)
3142 return false;
3143 if (ar != 0xf3)
3144 return false;
3145
3146 return true;
3147 }
3148
3149 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3150 {
3151 struct kvm_segment cs;
3152 unsigned int cs_rpl;
3153
3154 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3155 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3156
3157 if (cs.unusable)
3158 return false;
3159 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3160 return false;
3161 if (!cs.s)
3162 return false;
3163 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3164 if (cs.dpl > cs_rpl)
3165 return false;
3166 } else {
3167 if (cs.dpl != cs_rpl)
3168 return false;
3169 }
3170 if (!cs.present)
3171 return false;
3172
3173 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3174 return true;
3175 }
3176
3177 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3178 {
3179 struct kvm_segment ss;
3180 unsigned int ss_rpl;
3181
3182 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3183 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3184
3185 if (ss.unusable)
3186 return true;
3187 if (ss.type != 3 && ss.type != 7)
3188 return false;
3189 if (!ss.s)
3190 return false;
3191 if (ss.dpl != ss_rpl) /* DPL != RPL */
3192 return false;
3193 if (!ss.present)
3194 return false;
3195
3196 return true;
3197 }
3198
3199 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3200 {
3201 struct kvm_segment var;
3202 unsigned int rpl;
3203
3204 vmx_get_segment(vcpu, &var, seg);
3205 rpl = var.selector & SELECTOR_RPL_MASK;
3206
3207 if (var.unusable)
3208 return true;
3209 if (!var.s)
3210 return false;
3211 if (!var.present)
3212 return false;
3213 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3214 if (var.dpl < rpl) /* DPL < RPL */
3215 return false;
3216 }
3217
3218 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3219 * rights flags
3220 */
3221 return true;
3222 }
3223
3224 static bool tr_valid(struct kvm_vcpu *vcpu)
3225 {
3226 struct kvm_segment tr;
3227
3228 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3229
3230 if (tr.unusable)
3231 return false;
3232 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3233 return false;
3234 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3235 return false;
3236 if (!tr.present)
3237 return false;
3238
3239 return true;
3240 }
3241
3242 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3243 {
3244 struct kvm_segment ldtr;
3245
3246 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3247
3248 if (ldtr.unusable)
3249 return true;
3250 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3251 return false;
3252 if (ldtr.type != 2)
3253 return false;
3254 if (!ldtr.present)
3255 return false;
3256
3257 return true;
3258 }
3259
3260 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3261 {
3262 struct kvm_segment cs, ss;
3263
3264 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3265 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3266
3267 return ((cs.selector & SELECTOR_RPL_MASK) ==
3268 (ss.selector & SELECTOR_RPL_MASK));
3269 }
3270
3271 /*
3272 * Check if guest state is valid. Returns true if valid, false if
3273 * not.
3274 * We assume that registers are always usable
3275 */
3276 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3277 {
3278 /* real mode guest state checks */
3279 if (!is_protmode(vcpu)) {
3280 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3281 return false;
3282 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3283 return false;
3284 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3285 return false;
3286 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3287 return false;
3288 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3289 return false;
3290 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3291 return false;
3292 } else {
3293 /* protected mode guest state checks */
3294 if (!cs_ss_rpl_check(vcpu))
3295 return false;
3296 if (!code_segment_valid(vcpu))
3297 return false;
3298 if (!stack_segment_valid(vcpu))
3299 return false;
3300 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3301 return false;
3302 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3303 return false;
3304 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3305 return false;
3306 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3307 return false;
3308 if (!tr_valid(vcpu))
3309 return false;
3310 if (!ldtr_valid(vcpu))
3311 return false;
3312 }
3313 /* TODO:
3314 * - Add checks on RIP
3315 * - Add checks on RFLAGS
3316 */
3317
3318 return true;
3319 }
3320
3321 static int init_rmode_tss(struct kvm *kvm)
3322 {
3323 gfn_t fn;
3324 u16 data = 0;
3325 int r, idx, ret = 0;
3326
3327 idx = srcu_read_lock(&kvm->srcu);
3328 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3329 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3330 if (r < 0)
3331 goto out;
3332 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3333 r = kvm_write_guest_page(kvm, fn++, &data,
3334 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3335 if (r < 0)
3336 goto out;
3337 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3338 if (r < 0)
3339 goto out;
3340 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3341 if (r < 0)
3342 goto out;
3343 data = ~0;
3344 r = kvm_write_guest_page(kvm, fn, &data,
3345 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3346 sizeof(u8));
3347 if (r < 0)
3348 goto out;
3349
3350 ret = 1;
3351 out:
3352 srcu_read_unlock(&kvm->srcu, idx);
3353 return ret;
3354 }
3355
3356 static int init_rmode_identity_map(struct kvm *kvm)
3357 {
3358 int i, idx, r, ret;
3359 pfn_t identity_map_pfn;
3360 u32 tmp;
3361
3362 if (!enable_ept)
3363 return 1;
3364 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3365 printk(KERN_ERR "EPT: identity-mapping pagetable "
3366 "haven't been allocated!\n");
3367 return 0;
3368 }
3369 if (likely(kvm->arch.ept_identity_pagetable_done))
3370 return 1;
3371 ret = 0;
3372 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3373 idx = srcu_read_lock(&kvm->srcu);
3374 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3375 if (r < 0)
3376 goto out;
3377 /* Set up identity-mapping pagetable for EPT in real mode */
3378 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3379 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3380 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3381 r = kvm_write_guest_page(kvm, identity_map_pfn,
3382 &tmp, i * sizeof(tmp), sizeof(tmp));
3383 if (r < 0)
3384 goto out;
3385 }
3386 kvm->arch.ept_identity_pagetable_done = true;
3387 ret = 1;
3388 out:
3389 srcu_read_unlock(&kvm->srcu, idx);
3390 return ret;
3391 }
3392
3393 static void seg_setup(int seg)
3394 {
3395 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3396 unsigned int ar;
3397
3398 vmcs_write16(sf->selector, 0);
3399 vmcs_writel(sf->base, 0);
3400 vmcs_write32(sf->limit, 0xffff);
3401 if (enable_unrestricted_guest) {
3402 ar = 0x93;
3403 if (seg == VCPU_SREG_CS)
3404 ar |= 0x08; /* code segment */
3405 } else
3406 ar = 0xf3;
3407
3408 vmcs_write32(sf->ar_bytes, ar);
3409 }
3410
3411 static int alloc_apic_access_page(struct kvm *kvm)
3412 {
3413 struct kvm_userspace_memory_region kvm_userspace_mem;
3414 int r = 0;
3415
3416 mutex_lock(&kvm->slots_lock);
3417 if (kvm->arch.apic_access_page)
3418 goto out;
3419 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3420 kvm_userspace_mem.flags = 0;
3421 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3422 kvm_userspace_mem.memory_size = PAGE_SIZE;
3423 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3424 if (r)
3425 goto out;
3426
3427 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3428 out:
3429 mutex_unlock(&kvm->slots_lock);
3430 return r;
3431 }
3432
3433 static int alloc_identity_pagetable(struct kvm *kvm)
3434 {
3435 struct kvm_userspace_memory_region kvm_userspace_mem;
3436 int r = 0;
3437
3438 mutex_lock(&kvm->slots_lock);
3439 if (kvm->arch.ept_identity_pagetable)
3440 goto out;
3441 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3442 kvm_userspace_mem.flags = 0;
3443 kvm_userspace_mem.guest_phys_addr =
3444 kvm->arch.ept_identity_map_addr;
3445 kvm_userspace_mem.memory_size = PAGE_SIZE;
3446 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3447 if (r)
3448 goto out;
3449
3450 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3451 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3452 out:
3453 mutex_unlock(&kvm->slots_lock);
3454 return r;
3455 }
3456
3457 static void allocate_vpid(struct vcpu_vmx *vmx)
3458 {
3459 int vpid;
3460
3461 vmx->vpid = 0;
3462 if (!enable_vpid)
3463 return;
3464 spin_lock(&vmx_vpid_lock);
3465 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3466 if (vpid < VMX_NR_VPIDS) {
3467 vmx->vpid = vpid;
3468 __set_bit(vpid, vmx_vpid_bitmap);
3469 }
3470 spin_unlock(&vmx_vpid_lock);
3471 }
3472
3473 static void free_vpid(struct vcpu_vmx *vmx)
3474 {
3475 if (!enable_vpid)
3476 return;
3477 spin_lock(&vmx_vpid_lock);
3478 if (vmx->vpid != 0)
3479 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3480 spin_unlock(&vmx_vpid_lock);
3481 }
3482
3483 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3484 {
3485 int f = sizeof(unsigned long);
3486
3487 if (!cpu_has_vmx_msr_bitmap())
3488 return;
3489
3490 /*
3491 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3492 * have the write-low and read-high bitmap offsets the wrong way round.
3493 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3494 */
3495 if (msr <= 0x1fff) {
3496 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3497 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3498 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3499 msr &= 0x1fff;
3500 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3501 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3502 }
3503 }
3504
3505 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3506 {
3507 if (!longmode_only)
3508 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3509 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3510 }
3511
3512 /*
3513 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3514 * will not change in the lifetime of the guest.
3515 * Note that host-state that does change is set elsewhere. E.g., host-state
3516 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3517 */
3518 static void vmx_set_constant_host_state(void)
3519 {
3520 u32 low32, high32;
3521 unsigned long tmpl;
3522 struct desc_ptr dt;
3523
3524 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3525 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3526 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3527
3528 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3529 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3530 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3531 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3532 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3533
3534 native_store_idt(&dt);
3535 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3536
3537 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3538 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3539
3540 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3541 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3542 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3543 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3544
3545 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3546 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3547 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3548 }
3549 }
3550
3551 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3552 {
3553 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3554 if (enable_ept)
3555 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3556 if (is_guest_mode(&vmx->vcpu))
3557 vmx->vcpu.arch.cr4_guest_owned_bits &=
3558 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3559 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3560 }
3561
3562 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3563 {
3564 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3565 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3566 exec_control &= ~CPU_BASED_TPR_SHADOW;
3567 #ifdef CONFIG_X86_64
3568 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3569 CPU_BASED_CR8_LOAD_EXITING;
3570 #endif
3571 }
3572 if (!enable_ept)
3573 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3574 CPU_BASED_CR3_LOAD_EXITING |
3575 CPU_BASED_INVLPG_EXITING;
3576 return exec_control;
3577 }
3578
3579 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3580 {
3581 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3582 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3583 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3584 if (vmx->vpid == 0)
3585 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3586 if (!enable_ept) {
3587 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3588 enable_unrestricted_guest = 0;
3589 }
3590 if (!enable_unrestricted_guest)
3591 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3592 if (!ple_gap)
3593 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3594 return exec_control;
3595 }
3596
3597 /*
3598 * Sets up the vmcs for emulated real mode.
3599 */
3600 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3601 {
3602 #ifdef CONFIG_X86_64
3603 unsigned long a;
3604 #endif
3605 int i;
3606
3607 /* I/O */
3608 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3609 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3610
3611 if (cpu_has_vmx_msr_bitmap())
3612 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3613
3614 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3615
3616 /* Control */
3617 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3618 vmcs_config.pin_based_exec_ctrl);
3619
3620 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3621
3622 if (cpu_has_secondary_exec_ctrls()) {
3623 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3624 vmx_secondary_exec_control(vmx));
3625 }
3626
3627 if (ple_gap) {
3628 vmcs_write32(PLE_GAP, ple_gap);
3629 vmcs_write32(PLE_WINDOW, ple_window);
3630 }
3631
3632 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3633 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
3634 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3635
3636 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3637 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
3638 vmx_set_constant_host_state();
3639 #ifdef CONFIG_X86_64
3640 rdmsrl(MSR_FS_BASE, a);
3641 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3642 rdmsrl(MSR_GS_BASE, a);
3643 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3644 #else
3645 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3646 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3647 #endif
3648
3649 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3650 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3651 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3652 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3653 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3654
3655 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3656 u32 msr_low, msr_high;
3657 u64 host_pat;
3658 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3659 host_pat = msr_low | ((u64) msr_high << 32);
3660 /* Write the default value follow host pat */
3661 vmcs_write64(GUEST_IA32_PAT, host_pat);
3662 /* Keep arch.pat sync with GUEST_IA32_PAT */
3663 vmx->vcpu.arch.pat = host_pat;
3664 }
3665
3666 for (i = 0; i < NR_VMX_MSR; ++i) {
3667 u32 index = vmx_msr_index[i];
3668 u32 data_low, data_high;
3669 int j = vmx->nmsrs;
3670
3671 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3672 continue;
3673 if (wrmsr_safe(index, data_low, data_high) < 0)
3674 continue;
3675 vmx->guest_msrs[j].index = i;
3676 vmx->guest_msrs[j].data = 0;
3677 vmx->guest_msrs[j].mask = -1ull;
3678 ++vmx->nmsrs;
3679 }
3680
3681 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3682
3683 /* 22.2.1, 20.8.1 */
3684 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3685
3686 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3687 set_cr4_guest_host_mask(vmx);
3688
3689 kvm_write_tsc(&vmx->vcpu, 0);
3690
3691 return 0;
3692 }
3693
3694 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3695 {
3696 struct vcpu_vmx *vmx = to_vmx(vcpu);
3697 u64 msr;
3698 int ret;
3699
3700 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3701
3702 vmx->rmode.vm86_active = 0;
3703
3704 vmx->soft_vnmi_blocked = 0;
3705
3706 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3707 kvm_set_cr8(&vmx->vcpu, 0);
3708 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3709 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3710 msr |= MSR_IA32_APICBASE_BSP;
3711 kvm_set_apic_base(&vmx->vcpu, msr);
3712
3713 ret = fx_init(&vmx->vcpu);
3714 if (ret != 0)
3715 goto out;
3716
3717 vmx_segment_cache_clear(vmx);
3718
3719 seg_setup(VCPU_SREG_CS);
3720 /*
3721 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3722 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3723 */
3724 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3725 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3726 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3727 } else {
3728 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3729 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3730 }
3731
3732 seg_setup(VCPU_SREG_DS);
3733 seg_setup(VCPU_SREG_ES);
3734 seg_setup(VCPU_SREG_FS);
3735 seg_setup(VCPU_SREG_GS);
3736 seg_setup(VCPU_SREG_SS);
3737
3738 vmcs_write16(GUEST_TR_SELECTOR, 0);
3739 vmcs_writel(GUEST_TR_BASE, 0);
3740 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3741 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3742
3743 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3744 vmcs_writel(GUEST_LDTR_BASE, 0);
3745 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3746 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3747
3748 vmcs_write32(GUEST_SYSENTER_CS, 0);
3749 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3750 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3751
3752 vmcs_writel(GUEST_RFLAGS, 0x02);
3753 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3754 kvm_rip_write(vcpu, 0xfff0);
3755 else
3756 kvm_rip_write(vcpu, 0);
3757 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3758
3759 vmcs_writel(GUEST_DR7, 0x400);
3760
3761 vmcs_writel(GUEST_GDTR_BASE, 0);
3762 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3763
3764 vmcs_writel(GUEST_IDTR_BASE, 0);
3765 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3766
3767 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3768 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3769 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3770
3771 /* Special registers */
3772 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3773
3774 setup_msrs(vmx);
3775
3776 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3777
3778 if (cpu_has_vmx_tpr_shadow()) {
3779 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3780 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3781 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3782 __pa(vmx->vcpu.arch.apic->regs));
3783 vmcs_write32(TPR_THRESHOLD, 0);
3784 }
3785
3786 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3787 vmcs_write64(APIC_ACCESS_ADDR,
3788 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3789
3790 if (vmx->vpid != 0)
3791 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3792
3793 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3794 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3795 vmx_set_cr4(&vmx->vcpu, 0);
3796 vmx_set_efer(&vmx->vcpu, 0);
3797 vmx_fpu_activate(&vmx->vcpu);
3798 update_exception_bitmap(&vmx->vcpu);
3799
3800 vpid_sync_context(vmx);
3801
3802 ret = 0;
3803
3804 /* HACK: Don't enable emulation on guest boot/reset */
3805 vmx->emulation_required = 0;
3806
3807 out:
3808 return ret;
3809 }
3810
3811 /*
3812 * In nested virtualization, check if L1 asked to exit on external interrupts.
3813 * For most existing hypervisors, this will always return true.
3814 */
3815 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3816 {
3817 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3818 PIN_BASED_EXT_INTR_MASK;
3819 }
3820
3821 static void enable_irq_window(struct kvm_vcpu *vcpu)
3822 {
3823 u32 cpu_based_vm_exec_control;
3824 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
3825 /* We can get here when nested_run_pending caused
3826 * vmx_interrupt_allowed() to return false. In this case, do
3827 * nothing - the interrupt will be injected later.
3828 */
3829 return;
3830
3831 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3832 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3833 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3834 }
3835
3836 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3837 {
3838 u32 cpu_based_vm_exec_control;
3839
3840 if (!cpu_has_virtual_nmis()) {
3841 enable_irq_window(vcpu);
3842 return;
3843 }
3844
3845 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3846 enable_irq_window(vcpu);
3847 return;
3848 }
3849 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3850 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3851 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3852 }
3853
3854 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3855 {
3856 struct vcpu_vmx *vmx = to_vmx(vcpu);
3857 uint32_t intr;
3858 int irq = vcpu->arch.interrupt.nr;
3859
3860 trace_kvm_inj_virq(irq);
3861
3862 ++vcpu->stat.irq_injections;
3863 if (vmx->rmode.vm86_active) {
3864 int inc_eip = 0;
3865 if (vcpu->arch.interrupt.soft)
3866 inc_eip = vcpu->arch.event_exit_inst_len;
3867 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
3868 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3869 return;
3870 }
3871 intr = irq | INTR_INFO_VALID_MASK;
3872 if (vcpu->arch.interrupt.soft) {
3873 intr |= INTR_TYPE_SOFT_INTR;
3874 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3875 vmx->vcpu.arch.event_exit_inst_len);
3876 } else
3877 intr |= INTR_TYPE_EXT_INTR;
3878 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
3879 vmx_clear_hlt(vcpu);
3880 }
3881
3882 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
3883 {
3884 struct vcpu_vmx *vmx = to_vmx(vcpu);
3885
3886 if (is_guest_mode(vcpu))
3887 return;
3888
3889 if (!cpu_has_virtual_nmis()) {
3890 /*
3891 * Tracking the NMI-blocked state in software is built upon
3892 * finding the next open IRQ window. This, in turn, depends on
3893 * well-behaving guests: They have to keep IRQs disabled at
3894 * least as long as the NMI handler runs. Otherwise we may
3895 * cause NMI nesting, maybe breaking the guest. But as this is
3896 * highly unlikely, we can live with the residual risk.
3897 */
3898 vmx->soft_vnmi_blocked = 1;
3899 vmx->vnmi_blocked_time = 0;
3900 }
3901
3902 ++vcpu->stat.nmi_injections;
3903 vmx->nmi_known_unmasked = false;
3904 if (vmx->rmode.vm86_active) {
3905 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
3906 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3907 return;
3908 }
3909 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
3910 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
3911 vmx_clear_hlt(vcpu);
3912 }
3913
3914 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
3915 {
3916 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
3917 return 0;
3918
3919 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3920 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
3921 | GUEST_INTR_STATE_NMI));
3922 }
3923
3924 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
3925 {
3926 if (!cpu_has_virtual_nmis())
3927 return to_vmx(vcpu)->soft_vnmi_blocked;
3928 if (to_vmx(vcpu)->nmi_known_unmasked)
3929 return false;
3930 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3931 }
3932
3933 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3934 {
3935 struct vcpu_vmx *vmx = to_vmx(vcpu);
3936
3937 if (!cpu_has_virtual_nmis()) {
3938 if (vmx->soft_vnmi_blocked != masked) {
3939 vmx->soft_vnmi_blocked = masked;
3940 vmx->vnmi_blocked_time = 0;
3941 }
3942 } else {
3943 vmx->nmi_known_unmasked = !masked;
3944 if (masked)
3945 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3946 GUEST_INTR_STATE_NMI);
3947 else
3948 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3949 GUEST_INTR_STATE_NMI);
3950 }
3951 }
3952
3953 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
3954 {
3955 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
3956 struct vmcs12 *vmcs12;
3957 if (to_vmx(vcpu)->nested.nested_run_pending)
3958 return 0;
3959 nested_vmx_vmexit(vcpu);
3960 vmcs12 = get_vmcs12(vcpu);
3961 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
3962 vmcs12->vm_exit_intr_info = 0;
3963 /* fall through to normal code, but now in L1, not L2 */
3964 }
3965
3966 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
3967 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3968 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
3969 }
3970
3971 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
3972 {
3973 int ret;
3974 struct kvm_userspace_memory_region tss_mem = {
3975 .slot = TSS_PRIVATE_MEMSLOT,
3976 .guest_phys_addr = addr,
3977 .memory_size = PAGE_SIZE * 3,
3978 .flags = 0,
3979 };
3980
3981 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
3982 if (ret)
3983 return ret;
3984 kvm->arch.tss_addr = addr;
3985 if (!init_rmode_tss(kvm))
3986 return -ENOMEM;
3987
3988 return 0;
3989 }
3990
3991 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
3992 int vec, u32 err_code)
3993 {
3994 /*
3995 * Instruction with address size override prefix opcode 0x67
3996 * Cause the #SS fault with 0 error code in VM86 mode.
3997 */
3998 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
3999 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
4000 return 1;
4001 /*
4002 * Forward all other exceptions that are valid in real mode.
4003 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4004 * the required debugging infrastructure rework.
4005 */
4006 switch (vec) {
4007 case DB_VECTOR:
4008 if (vcpu->guest_debug &
4009 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4010 return 0;
4011 kvm_queue_exception(vcpu, vec);
4012 return 1;
4013 case BP_VECTOR:
4014 /*
4015 * Update instruction length as we may reinject the exception
4016 * from user space while in guest debugging mode.
4017 */
4018 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4019 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4020 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4021 return 0;
4022 /* fall through */
4023 case DE_VECTOR:
4024 case OF_VECTOR:
4025 case BR_VECTOR:
4026 case UD_VECTOR:
4027 case DF_VECTOR:
4028 case SS_VECTOR:
4029 case GP_VECTOR:
4030 case MF_VECTOR:
4031 kvm_queue_exception(vcpu, vec);
4032 return 1;
4033 }
4034 return 0;
4035 }
4036
4037 /*
4038 * Trigger machine check on the host. We assume all the MSRs are already set up
4039 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4040 * We pass a fake environment to the machine check handler because we want
4041 * the guest to be always treated like user space, no matter what context
4042 * it used internally.
4043 */
4044 static void kvm_machine_check(void)
4045 {
4046 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4047 struct pt_regs regs = {
4048 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4049 .flags = X86_EFLAGS_IF,
4050 };
4051
4052 do_machine_check(&regs, 0);
4053 #endif
4054 }
4055
4056 static int handle_machine_check(struct kvm_vcpu *vcpu)
4057 {
4058 /* already handled by vcpu_run */
4059 return 1;
4060 }
4061
4062 static int handle_exception(struct kvm_vcpu *vcpu)
4063 {
4064 struct vcpu_vmx *vmx = to_vmx(vcpu);
4065 struct kvm_run *kvm_run = vcpu->run;
4066 u32 intr_info, ex_no, error_code;
4067 unsigned long cr2, rip, dr6;
4068 u32 vect_info;
4069 enum emulation_result er;
4070
4071 vect_info = vmx->idt_vectoring_info;
4072 intr_info = vmx->exit_intr_info;
4073
4074 if (is_machine_check(intr_info))
4075 return handle_machine_check(vcpu);
4076
4077 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4078 !is_page_fault(intr_info)) {
4079 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4080 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4081 vcpu->run->internal.ndata = 2;
4082 vcpu->run->internal.data[0] = vect_info;
4083 vcpu->run->internal.data[1] = intr_info;
4084 return 0;
4085 }
4086
4087 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4088 return 1; /* already handled by vmx_vcpu_run() */
4089
4090 if (is_no_device(intr_info)) {
4091 vmx_fpu_activate(vcpu);
4092 return 1;
4093 }
4094
4095 if (is_invalid_opcode(intr_info)) {
4096 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4097 if (er != EMULATE_DONE)
4098 kvm_queue_exception(vcpu, UD_VECTOR);
4099 return 1;
4100 }
4101
4102 error_code = 0;
4103 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4104 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4105 if (is_page_fault(intr_info)) {
4106 /* EPT won't cause page fault directly */
4107 if (enable_ept)
4108 BUG();
4109 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4110 trace_kvm_page_fault(cr2, error_code);
4111
4112 if (kvm_event_needs_reinjection(vcpu))
4113 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4114 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4115 }
4116
4117 if (vmx->rmode.vm86_active &&
4118 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4119 error_code)) {
4120 if (vcpu->arch.halt_request) {
4121 vcpu->arch.halt_request = 0;
4122 return kvm_emulate_halt(vcpu);
4123 }
4124 return 1;
4125 }
4126
4127 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4128 switch (ex_no) {
4129 case DB_VECTOR:
4130 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4131 if (!(vcpu->guest_debug &
4132 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4133 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4134 kvm_queue_exception(vcpu, DB_VECTOR);
4135 return 1;
4136 }
4137 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4138 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4139 /* fall through */
4140 case BP_VECTOR:
4141 /*
4142 * Update instruction length as we may reinject #BP from
4143 * user space while in guest debugging mode. Reading it for
4144 * #DB as well causes no harm, it is not used in that case.
4145 */
4146 vmx->vcpu.arch.event_exit_inst_len =
4147 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4148 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4149 rip = kvm_rip_read(vcpu);
4150 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4151 kvm_run->debug.arch.exception = ex_no;
4152 break;
4153 default:
4154 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4155 kvm_run->ex.exception = ex_no;
4156 kvm_run->ex.error_code = error_code;
4157 break;
4158 }
4159 return 0;
4160 }
4161
4162 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4163 {
4164 ++vcpu->stat.irq_exits;
4165 return 1;
4166 }
4167
4168 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4169 {
4170 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4171 return 0;
4172 }
4173
4174 static int handle_io(struct kvm_vcpu *vcpu)
4175 {
4176 unsigned long exit_qualification;
4177 int size, in, string;
4178 unsigned port;
4179
4180 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4181 string = (exit_qualification & 16) != 0;
4182 in = (exit_qualification & 8) != 0;
4183
4184 ++vcpu->stat.io_exits;
4185
4186 if (string || in)
4187 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4188
4189 port = exit_qualification >> 16;
4190 size = (exit_qualification & 7) + 1;
4191 skip_emulated_instruction(vcpu);
4192
4193 return kvm_fast_pio_out(vcpu, size, port);
4194 }
4195
4196 static void
4197 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4198 {
4199 /*
4200 * Patch in the VMCALL instruction:
4201 */
4202 hypercall[0] = 0x0f;
4203 hypercall[1] = 0x01;
4204 hypercall[2] = 0xc1;
4205 }
4206
4207 /* called to set cr0 as approriate for a mov-to-cr0 exit. */
4208 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4209 {
4210 if (to_vmx(vcpu)->nested.vmxon &&
4211 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4212 return 1;
4213
4214 if (is_guest_mode(vcpu)) {
4215 /*
4216 * We get here when L2 changed cr0 in a way that did not change
4217 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4218 * but did change L0 shadowed bits. This can currently happen
4219 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4220 * loading) while pretending to allow the guest to change it.
4221 */
4222 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4223 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4224 return 1;
4225 vmcs_writel(CR0_READ_SHADOW, val);
4226 return 0;
4227 } else
4228 return kvm_set_cr0(vcpu, val);
4229 }
4230
4231 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4232 {
4233 if (is_guest_mode(vcpu)) {
4234 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4235 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4236 return 1;
4237 vmcs_writel(CR4_READ_SHADOW, val);
4238 return 0;
4239 } else
4240 return kvm_set_cr4(vcpu, val);
4241 }
4242
4243 /* called to set cr0 as approriate for clts instruction exit. */
4244 static void handle_clts(struct kvm_vcpu *vcpu)
4245 {
4246 if (is_guest_mode(vcpu)) {
4247 /*
4248 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4249 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4250 * just pretend it's off (also in arch.cr0 for fpu_activate).
4251 */
4252 vmcs_writel(CR0_READ_SHADOW,
4253 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4254 vcpu->arch.cr0 &= ~X86_CR0_TS;
4255 } else
4256 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4257 }
4258
4259 static int handle_cr(struct kvm_vcpu *vcpu)
4260 {
4261 unsigned long exit_qualification, val;
4262 int cr;
4263 int reg;
4264 int err;
4265
4266 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4267 cr = exit_qualification & 15;
4268 reg = (exit_qualification >> 8) & 15;
4269 switch ((exit_qualification >> 4) & 3) {
4270 case 0: /* mov to cr */
4271 val = kvm_register_read(vcpu, reg);
4272 trace_kvm_cr_write(cr, val);
4273 switch (cr) {
4274 case 0:
4275 err = handle_set_cr0(vcpu, val);
4276 kvm_complete_insn_gp(vcpu, err);
4277 return 1;
4278 case 3:
4279 err = kvm_set_cr3(vcpu, val);
4280 kvm_complete_insn_gp(vcpu, err);
4281 return 1;
4282 case 4:
4283 err = handle_set_cr4(vcpu, val);
4284 kvm_complete_insn_gp(vcpu, err);
4285 return 1;
4286 case 8: {
4287 u8 cr8_prev = kvm_get_cr8(vcpu);
4288 u8 cr8 = kvm_register_read(vcpu, reg);
4289 err = kvm_set_cr8(vcpu, cr8);
4290 kvm_complete_insn_gp(vcpu, err);
4291 if (irqchip_in_kernel(vcpu->kvm))
4292 return 1;
4293 if (cr8_prev <= cr8)
4294 return 1;
4295 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4296 return 0;
4297 }
4298 };
4299 break;
4300 case 2: /* clts */
4301 handle_clts(vcpu);
4302 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4303 skip_emulated_instruction(vcpu);
4304 vmx_fpu_activate(vcpu);
4305 return 1;
4306 case 1: /*mov from cr*/
4307 switch (cr) {
4308 case 3:
4309 val = kvm_read_cr3(vcpu);
4310 kvm_register_write(vcpu, reg, val);
4311 trace_kvm_cr_read(cr, val);
4312 skip_emulated_instruction(vcpu);
4313 return 1;
4314 case 8:
4315 val = kvm_get_cr8(vcpu);
4316 kvm_register_write(vcpu, reg, val);
4317 trace_kvm_cr_read(cr, val);
4318 skip_emulated_instruction(vcpu);
4319 return 1;
4320 }
4321 break;
4322 case 3: /* lmsw */
4323 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4324 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4325 kvm_lmsw(vcpu, val);
4326
4327 skip_emulated_instruction(vcpu);
4328 return 1;
4329 default:
4330 break;
4331 }
4332 vcpu->run->exit_reason = 0;
4333 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4334 (int)(exit_qualification >> 4) & 3, cr);
4335 return 0;
4336 }
4337
4338 static int handle_dr(struct kvm_vcpu *vcpu)
4339 {
4340 unsigned long exit_qualification;
4341 int dr, reg;
4342
4343 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4344 if (!kvm_require_cpl(vcpu, 0))
4345 return 1;
4346 dr = vmcs_readl(GUEST_DR7);
4347 if (dr & DR7_GD) {
4348 /*
4349 * As the vm-exit takes precedence over the debug trap, we
4350 * need to emulate the latter, either for the host or the
4351 * guest debugging itself.
4352 */
4353 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4354 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4355 vcpu->run->debug.arch.dr7 = dr;
4356 vcpu->run->debug.arch.pc =
4357 vmcs_readl(GUEST_CS_BASE) +
4358 vmcs_readl(GUEST_RIP);
4359 vcpu->run->debug.arch.exception = DB_VECTOR;
4360 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4361 return 0;
4362 } else {
4363 vcpu->arch.dr7 &= ~DR7_GD;
4364 vcpu->arch.dr6 |= DR6_BD;
4365 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4366 kvm_queue_exception(vcpu, DB_VECTOR);
4367 return 1;
4368 }
4369 }
4370
4371 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4372 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4373 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4374 if (exit_qualification & TYPE_MOV_FROM_DR) {
4375 unsigned long val;
4376 if (!kvm_get_dr(vcpu, dr, &val))
4377 kvm_register_write(vcpu, reg, val);
4378 } else
4379 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4380 skip_emulated_instruction(vcpu);
4381 return 1;
4382 }
4383
4384 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4385 {
4386 vmcs_writel(GUEST_DR7, val);
4387 }
4388
4389 static int handle_cpuid(struct kvm_vcpu *vcpu)
4390 {
4391 kvm_emulate_cpuid(vcpu);
4392 return 1;
4393 }
4394
4395 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4396 {
4397 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4398 u64 data;
4399
4400 if (vmx_get_msr(vcpu, ecx, &data)) {
4401 trace_kvm_msr_read_ex(ecx);
4402 kvm_inject_gp(vcpu, 0);
4403 return 1;
4404 }
4405
4406 trace_kvm_msr_read(ecx, data);
4407
4408 /* FIXME: handling of bits 32:63 of rax, rdx */
4409 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4410 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4411 skip_emulated_instruction(vcpu);
4412 return 1;
4413 }
4414
4415 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4416 {
4417 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4418 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4419 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4420
4421 if (vmx_set_msr(vcpu, ecx, data) != 0) {
4422 trace_kvm_msr_write_ex(ecx, data);
4423 kvm_inject_gp(vcpu, 0);
4424 return 1;
4425 }
4426
4427 trace_kvm_msr_write(ecx, data);
4428 skip_emulated_instruction(vcpu);
4429 return 1;
4430 }
4431
4432 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4433 {
4434 kvm_make_request(KVM_REQ_EVENT, vcpu);
4435 return 1;
4436 }
4437
4438 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4439 {
4440 u32 cpu_based_vm_exec_control;
4441
4442 /* clear pending irq */
4443 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4444 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4445 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4446
4447 kvm_make_request(KVM_REQ_EVENT, vcpu);
4448
4449 ++vcpu->stat.irq_window_exits;
4450
4451 /*
4452 * If the user space waits to inject interrupts, exit as soon as
4453 * possible
4454 */
4455 if (!irqchip_in_kernel(vcpu->kvm) &&
4456 vcpu->run->request_interrupt_window &&
4457 !kvm_cpu_has_interrupt(vcpu)) {
4458 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4459 return 0;
4460 }
4461 return 1;
4462 }
4463
4464 static int handle_halt(struct kvm_vcpu *vcpu)
4465 {
4466 skip_emulated_instruction(vcpu);
4467 return kvm_emulate_halt(vcpu);
4468 }
4469
4470 static int handle_vmcall(struct kvm_vcpu *vcpu)
4471 {
4472 skip_emulated_instruction(vcpu);
4473 kvm_emulate_hypercall(vcpu);
4474 return 1;
4475 }
4476
4477 static int handle_invd(struct kvm_vcpu *vcpu)
4478 {
4479 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4480 }
4481
4482 static int handle_invlpg(struct kvm_vcpu *vcpu)
4483 {
4484 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4485
4486 kvm_mmu_invlpg(vcpu, exit_qualification);
4487 skip_emulated_instruction(vcpu);
4488 return 1;
4489 }
4490
4491 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4492 {
4493 skip_emulated_instruction(vcpu);
4494 kvm_emulate_wbinvd(vcpu);
4495 return 1;
4496 }
4497
4498 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4499 {
4500 u64 new_bv = kvm_read_edx_eax(vcpu);
4501 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4502
4503 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4504 skip_emulated_instruction(vcpu);
4505 return 1;
4506 }
4507
4508 static int handle_apic_access(struct kvm_vcpu *vcpu)
4509 {
4510 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4511 }
4512
4513 static int handle_task_switch(struct kvm_vcpu *vcpu)
4514 {
4515 struct vcpu_vmx *vmx = to_vmx(vcpu);
4516 unsigned long exit_qualification;
4517 bool has_error_code = false;
4518 u32 error_code = 0;
4519 u16 tss_selector;
4520 int reason, type, idt_v;
4521
4522 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4523 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4524
4525 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4526
4527 reason = (u32)exit_qualification >> 30;
4528 if (reason == TASK_SWITCH_GATE && idt_v) {
4529 switch (type) {
4530 case INTR_TYPE_NMI_INTR:
4531 vcpu->arch.nmi_injected = false;
4532 vmx_set_nmi_mask(vcpu, true);
4533 break;
4534 case INTR_TYPE_EXT_INTR:
4535 case INTR_TYPE_SOFT_INTR:
4536 kvm_clear_interrupt_queue(vcpu);
4537 break;
4538 case INTR_TYPE_HARD_EXCEPTION:
4539 if (vmx->idt_vectoring_info &
4540 VECTORING_INFO_DELIVER_CODE_MASK) {
4541 has_error_code = true;
4542 error_code =
4543 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4544 }
4545 /* fall through */
4546 case INTR_TYPE_SOFT_EXCEPTION:
4547 kvm_clear_exception_queue(vcpu);
4548 break;
4549 default:
4550 break;
4551 }
4552 }
4553 tss_selector = exit_qualification;
4554
4555 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4556 type != INTR_TYPE_EXT_INTR &&
4557 type != INTR_TYPE_NMI_INTR))
4558 skip_emulated_instruction(vcpu);
4559
4560 if (kvm_task_switch(vcpu, tss_selector, reason,
4561 has_error_code, error_code) == EMULATE_FAIL) {
4562 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4563 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4564 vcpu->run->internal.ndata = 0;
4565 return 0;
4566 }
4567
4568 /* clear all local breakpoint enable flags */
4569 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4570
4571 /*
4572 * TODO: What about debug traps on tss switch?
4573 * Are we supposed to inject them and update dr6?
4574 */
4575
4576 return 1;
4577 }
4578
4579 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4580 {
4581 unsigned long exit_qualification;
4582 gpa_t gpa;
4583 int gla_validity;
4584
4585 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4586
4587 if (exit_qualification & (1 << 6)) {
4588 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4589 return -EINVAL;
4590 }
4591
4592 gla_validity = (exit_qualification >> 7) & 0x3;
4593 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4594 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4595 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4596 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4597 vmcs_readl(GUEST_LINEAR_ADDRESS));
4598 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4599 (long unsigned int)exit_qualification);
4600 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4601 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4602 return 0;
4603 }
4604
4605 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4606 trace_kvm_page_fault(gpa, exit_qualification);
4607 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
4608 }
4609
4610 static u64 ept_rsvd_mask(u64 spte, int level)
4611 {
4612 int i;
4613 u64 mask = 0;
4614
4615 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4616 mask |= (1ULL << i);
4617
4618 if (level > 2)
4619 /* bits 7:3 reserved */
4620 mask |= 0xf8;
4621 else if (level == 2) {
4622 if (spte & (1ULL << 7))
4623 /* 2MB ref, bits 20:12 reserved */
4624 mask |= 0x1ff000;
4625 else
4626 /* bits 6:3 reserved */
4627 mask |= 0x78;
4628 }
4629
4630 return mask;
4631 }
4632
4633 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4634 int level)
4635 {
4636 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4637
4638 /* 010b (write-only) */
4639 WARN_ON((spte & 0x7) == 0x2);
4640
4641 /* 110b (write/execute) */
4642 WARN_ON((spte & 0x7) == 0x6);
4643
4644 /* 100b (execute-only) and value not supported by logical processor */
4645 if (!cpu_has_vmx_ept_execute_only())
4646 WARN_ON((spte & 0x7) == 0x4);
4647
4648 /* not 000b */
4649 if ((spte & 0x7)) {
4650 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4651
4652 if (rsvd_bits != 0) {
4653 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4654 __func__, rsvd_bits);
4655 WARN_ON(1);
4656 }
4657
4658 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4659 u64 ept_mem_type = (spte & 0x38) >> 3;
4660
4661 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4662 ept_mem_type == 7) {
4663 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4664 __func__, ept_mem_type);
4665 WARN_ON(1);
4666 }
4667 }
4668 }
4669 }
4670
4671 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4672 {
4673 u64 sptes[4];
4674 int nr_sptes, i;
4675 gpa_t gpa;
4676
4677 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4678
4679 printk(KERN_ERR "EPT: Misconfiguration.\n");
4680 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4681
4682 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4683
4684 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4685 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4686
4687 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4688 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4689
4690 return 0;
4691 }
4692
4693 static int handle_nmi_window(struct kvm_vcpu *vcpu)
4694 {
4695 u32 cpu_based_vm_exec_control;
4696
4697 /* clear pending NMI */
4698 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4699 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4700 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4701 ++vcpu->stat.nmi_window_exits;
4702 kvm_make_request(KVM_REQ_EVENT, vcpu);
4703
4704 return 1;
4705 }
4706
4707 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4708 {
4709 struct vcpu_vmx *vmx = to_vmx(vcpu);
4710 enum emulation_result err = EMULATE_DONE;
4711 int ret = 1;
4712 u32 cpu_exec_ctrl;
4713 bool intr_window_requested;
4714
4715 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4716 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4717
4718 while (!guest_state_valid(vcpu)) {
4719 if (intr_window_requested
4720 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4721 return handle_interrupt_window(&vmx->vcpu);
4722
4723 err = emulate_instruction(vcpu, 0);
4724
4725 if (err == EMULATE_DO_MMIO) {
4726 ret = 0;
4727 goto out;
4728 }
4729
4730 if (err != EMULATE_DONE)
4731 return 0;
4732
4733 if (signal_pending(current))
4734 goto out;
4735 if (need_resched())
4736 schedule();
4737 }
4738
4739 vmx->emulation_required = 0;
4740 out:
4741 return ret;
4742 }
4743
4744 /*
4745 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4746 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4747 */
4748 static int handle_pause(struct kvm_vcpu *vcpu)
4749 {
4750 skip_emulated_instruction(vcpu);
4751 kvm_vcpu_on_spin(vcpu);
4752
4753 return 1;
4754 }
4755
4756 static int handle_invalid_op(struct kvm_vcpu *vcpu)
4757 {
4758 kvm_queue_exception(vcpu, UD_VECTOR);
4759 return 1;
4760 }
4761
4762 /*
4763 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4764 * We could reuse a single VMCS for all the L2 guests, but we also want the
4765 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4766 * allows keeping them loaded on the processor, and in the future will allow
4767 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4768 * every entry if they never change.
4769 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4770 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4771 *
4772 * The following functions allocate and free a vmcs02 in this pool.
4773 */
4774
4775 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4776 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4777 {
4778 struct vmcs02_list *item;
4779 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4780 if (item->vmptr == vmx->nested.current_vmptr) {
4781 list_move(&item->list, &vmx->nested.vmcs02_pool);
4782 return &item->vmcs02;
4783 }
4784
4785 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4786 /* Recycle the least recently used VMCS. */
4787 item = list_entry(vmx->nested.vmcs02_pool.prev,
4788 struct vmcs02_list, list);
4789 item->vmptr = vmx->nested.current_vmptr;
4790 list_move(&item->list, &vmx->nested.vmcs02_pool);
4791 return &item->vmcs02;
4792 }
4793
4794 /* Create a new VMCS */
4795 item = (struct vmcs02_list *)
4796 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4797 if (!item)
4798 return NULL;
4799 item->vmcs02.vmcs = alloc_vmcs();
4800 if (!item->vmcs02.vmcs) {
4801 kfree(item);
4802 return NULL;
4803 }
4804 loaded_vmcs_init(&item->vmcs02);
4805 item->vmptr = vmx->nested.current_vmptr;
4806 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4807 vmx->nested.vmcs02_num++;
4808 return &item->vmcs02;
4809 }
4810
4811 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4812 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4813 {
4814 struct vmcs02_list *item;
4815 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4816 if (item->vmptr == vmptr) {
4817 free_loaded_vmcs(&item->vmcs02);
4818 list_del(&item->list);
4819 kfree(item);
4820 vmx->nested.vmcs02_num--;
4821 return;
4822 }
4823 }
4824
4825 /*
4826 * Free all VMCSs saved for this vcpu, except the one pointed by
4827 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4828 * currently used, if running L2), and vmcs01 when running L2.
4829 */
4830 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4831 {
4832 struct vmcs02_list *item, *n;
4833 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4834 if (vmx->loaded_vmcs != &item->vmcs02)
4835 free_loaded_vmcs(&item->vmcs02);
4836 list_del(&item->list);
4837 kfree(item);
4838 }
4839 vmx->nested.vmcs02_num = 0;
4840
4841 if (vmx->loaded_vmcs != &vmx->vmcs01)
4842 free_loaded_vmcs(&vmx->vmcs01);
4843 }
4844
4845 /*
4846 * Emulate the VMXON instruction.
4847 * Currently, we just remember that VMX is active, and do not save or even
4848 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4849 * do not currently need to store anything in that guest-allocated memory
4850 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4851 * argument is different from the VMXON pointer (which the spec says they do).
4852 */
4853 static int handle_vmon(struct kvm_vcpu *vcpu)
4854 {
4855 struct kvm_segment cs;
4856 struct vcpu_vmx *vmx = to_vmx(vcpu);
4857
4858 /* The Intel VMX Instruction Reference lists a bunch of bits that
4859 * are prerequisite to running VMXON, most notably cr4.VMXE must be
4860 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
4861 * Otherwise, we should fail with #UD. We test these now:
4862 */
4863 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
4864 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
4865 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4866 kvm_queue_exception(vcpu, UD_VECTOR);
4867 return 1;
4868 }
4869
4870 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4871 if (is_long_mode(vcpu) && !cs.l) {
4872 kvm_queue_exception(vcpu, UD_VECTOR);
4873 return 1;
4874 }
4875
4876 if (vmx_get_cpl(vcpu)) {
4877 kvm_inject_gp(vcpu, 0);
4878 return 1;
4879 }
4880
4881 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
4882 vmx->nested.vmcs02_num = 0;
4883
4884 vmx->nested.vmxon = true;
4885
4886 skip_emulated_instruction(vcpu);
4887 return 1;
4888 }
4889
4890 /*
4891 * Intel's VMX Instruction Reference specifies a common set of prerequisites
4892 * for running VMX instructions (except VMXON, whose prerequisites are
4893 * slightly different). It also specifies what exception to inject otherwise.
4894 */
4895 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
4896 {
4897 struct kvm_segment cs;
4898 struct vcpu_vmx *vmx = to_vmx(vcpu);
4899
4900 if (!vmx->nested.vmxon) {
4901 kvm_queue_exception(vcpu, UD_VECTOR);
4902 return 0;
4903 }
4904
4905 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4906 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
4907 (is_long_mode(vcpu) && !cs.l)) {
4908 kvm_queue_exception(vcpu, UD_VECTOR);
4909 return 0;
4910 }
4911
4912 if (vmx_get_cpl(vcpu)) {
4913 kvm_inject_gp(vcpu, 0);
4914 return 0;
4915 }
4916
4917 return 1;
4918 }
4919
4920 /*
4921 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
4922 * just stops using VMX.
4923 */
4924 static void free_nested(struct vcpu_vmx *vmx)
4925 {
4926 if (!vmx->nested.vmxon)
4927 return;
4928 vmx->nested.vmxon = false;
4929 if (vmx->nested.current_vmptr != -1ull) {
4930 kunmap(vmx->nested.current_vmcs12_page);
4931 nested_release_page(vmx->nested.current_vmcs12_page);
4932 vmx->nested.current_vmptr = -1ull;
4933 vmx->nested.current_vmcs12 = NULL;
4934 }
4935 /* Unpin physical memory we referred to in current vmcs02 */
4936 if (vmx->nested.apic_access_page) {
4937 nested_release_page(vmx->nested.apic_access_page);
4938 vmx->nested.apic_access_page = 0;
4939 }
4940
4941 nested_free_all_saved_vmcss(vmx);
4942 }
4943
4944 /* Emulate the VMXOFF instruction */
4945 static int handle_vmoff(struct kvm_vcpu *vcpu)
4946 {
4947 if (!nested_vmx_check_permission(vcpu))
4948 return 1;
4949 free_nested(to_vmx(vcpu));
4950 skip_emulated_instruction(vcpu);
4951 return 1;
4952 }
4953
4954 /*
4955 * Decode the memory-address operand of a vmx instruction, as recorded on an
4956 * exit caused by such an instruction (run by a guest hypervisor).
4957 * On success, returns 0. When the operand is invalid, returns 1 and throws
4958 * #UD or #GP.
4959 */
4960 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
4961 unsigned long exit_qualification,
4962 u32 vmx_instruction_info, gva_t *ret)
4963 {
4964 /*
4965 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4966 * Execution", on an exit, vmx_instruction_info holds most of the
4967 * addressing components of the operand. Only the displacement part
4968 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4969 * For how an actual address is calculated from all these components,
4970 * refer to Vol. 1, "Operand Addressing".
4971 */
4972 int scaling = vmx_instruction_info & 3;
4973 int addr_size = (vmx_instruction_info >> 7) & 7;
4974 bool is_reg = vmx_instruction_info & (1u << 10);
4975 int seg_reg = (vmx_instruction_info >> 15) & 7;
4976 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4977 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4978 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4979 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4980
4981 if (is_reg) {
4982 kvm_queue_exception(vcpu, UD_VECTOR);
4983 return 1;
4984 }
4985
4986 /* Addr = segment_base + offset */
4987 /* offset = base + [index * scale] + displacement */
4988 *ret = vmx_get_segment_base(vcpu, seg_reg);
4989 if (base_is_valid)
4990 *ret += kvm_register_read(vcpu, base_reg);
4991 if (index_is_valid)
4992 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
4993 *ret += exit_qualification; /* holds the displacement */
4994
4995 if (addr_size == 1) /* 32 bit */
4996 *ret &= 0xffffffff;
4997
4998 /*
4999 * TODO: throw #GP (and return 1) in various cases that the VM*
5000 * instructions require it - e.g., offset beyond segment limit,
5001 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5002 * address, and so on. Currently these are not checked.
5003 */
5004 return 0;
5005 }
5006
5007 /*
5008 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5009 * set the success or error code of an emulated VMX instruction, as specified
5010 * by Vol 2B, VMX Instruction Reference, "Conventions".
5011 */
5012 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5013 {
5014 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5015 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5016 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5017 }
5018
5019 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5020 {
5021 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5022 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5023 X86_EFLAGS_SF | X86_EFLAGS_OF))
5024 | X86_EFLAGS_CF);
5025 }
5026
5027 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5028 u32 vm_instruction_error)
5029 {
5030 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5031 /*
5032 * failValid writes the error number to the current VMCS, which
5033 * can't be done there isn't a current VMCS.
5034 */
5035 nested_vmx_failInvalid(vcpu);
5036 return;
5037 }
5038 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5039 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5040 X86_EFLAGS_SF | X86_EFLAGS_OF))
5041 | X86_EFLAGS_ZF);
5042 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5043 }
5044
5045 /* Emulate the VMCLEAR instruction */
5046 static int handle_vmclear(struct kvm_vcpu *vcpu)
5047 {
5048 struct vcpu_vmx *vmx = to_vmx(vcpu);
5049 gva_t gva;
5050 gpa_t vmptr;
5051 struct vmcs12 *vmcs12;
5052 struct page *page;
5053 struct x86_exception e;
5054
5055 if (!nested_vmx_check_permission(vcpu))
5056 return 1;
5057
5058 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5059 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5060 return 1;
5061
5062 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5063 sizeof(vmptr), &e)) {
5064 kvm_inject_page_fault(vcpu, &e);
5065 return 1;
5066 }
5067
5068 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5069 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5070 skip_emulated_instruction(vcpu);
5071 return 1;
5072 }
5073
5074 if (vmptr == vmx->nested.current_vmptr) {
5075 kunmap(vmx->nested.current_vmcs12_page);
5076 nested_release_page(vmx->nested.current_vmcs12_page);
5077 vmx->nested.current_vmptr = -1ull;
5078 vmx->nested.current_vmcs12 = NULL;
5079 }
5080
5081 page = nested_get_page(vcpu, vmptr);
5082 if (page == NULL) {
5083 /*
5084 * For accurate processor emulation, VMCLEAR beyond available
5085 * physical memory should do nothing at all. However, it is
5086 * possible that a nested vmx bug, not a guest hypervisor bug,
5087 * resulted in this case, so let's shut down before doing any
5088 * more damage:
5089 */
5090 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5091 return 1;
5092 }
5093 vmcs12 = kmap(page);
5094 vmcs12->launch_state = 0;
5095 kunmap(page);
5096 nested_release_page(page);
5097
5098 nested_free_vmcs02(vmx, vmptr);
5099
5100 skip_emulated_instruction(vcpu);
5101 nested_vmx_succeed(vcpu);
5102 return 1;
5103 }
5104
5105 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5106
5107 /* Emulate the VMLAUNCH instruction */
5108 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5109 {
5110 return nested_vmx_run(vcpu, true);
5111 }
5112
5113 /* Emulate the VMRESUME instruction */
5114 static int handle_vmresume(struct kvm_vcpu *vcpu)
5115 {
5116
5117 return nested_vmx_run(vcpu, false);
5118 }
5119
5120 enum vmcs_field_type {
5121 VMCS_FIELD_TYPE_U16 = 0,
5122 VMCS_FIELD_TYPE_U64 = 1,
5123 VMCS_FIELD_TYPE_U32 = 2,
5124 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5125 };
5126
5127 static inline int vmcs_field_type(unsigned long field)
5128 {
5129 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5130 return VMCS_FIELD_TYPE_U32;
5131 return (field >> 13) & 0x3 ;
5132 }
5133
5134 static inline int vmcs_field_readonly(unsigned long field)
5135 {
5136 return (((field >> 10) & 0x3) == 1);
5137 }
5138
5139 /*
5140 * Read a vmcs12 field. Since these can have varying lengths and we return
5141 * one type, we chose the biggest type (u64) and zero-extend the return value
5142 * to that size. Note that the caller, handle_vmread, might need to use only
5143 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5144 * 64-bit fields are to be returned).
5145 */
5146 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5147 unsigned long field, u64 *ret)
5148 {
5149 short offset = vmcs_field_to_offset(field);
5150 char *p;
5151
5152 if (offset < 0)
5153 return 0;
5154
5155 p = ((char *)(get_vmcs12(vcpu))) + offset;
5156
5157 switch (vmcs_field_type(field)) {
5158 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5159 *ret = *((natural_width *)p);
5160 return 1;
5161 case VMCS_FIELD_TYPE_U16:
5162 *ret = *((u16 *)p);
5163 return 1;
5164 case VMCS_FIELD_TYPE_U32:
5165 *ret = *((u32 *)p);
5166 return 1;
5167 case VMCS_FIELD_TYPE_U64:
5168 *ret = *((u64 *)p);
5169 return 1;
5170 default:
5171 return 0; /* can never happen. */
5172 }
5173 }
5174
5175 /*
5176 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5177 * used before) all generate the same failure when it is missing.
5178 */
5179 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5180 {
5181 struct vcpu_vmx *vmx = to_vmx(vcpu);
5182 if (vmx->nested.current_vmptr == -1ull) {
5183 nested_vmx_failInvalid(vcpu);
5184 skip_emulated_instruction(vcpu);
5185 return 0;
5186 }
5187 return 1;
5188 }
5189
5190 static int handle_vmread(struct kvm_vcpu *vcpu)
5191 {
5192 unsigned long field;
5193 u64 field_value;
5194 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5195 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5196 gva_t gva = 0;
5197
5198 if (!nested_vmx_check_permission(vcpu) ||
5199 !nested_vmx_check_vmcs12(vcpu))
5200 return 1;
5201
5202 /* Decode instruction info and find the field to read */
5203 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5204 /* Read the field, zero-extended to a u64 field_value */
5205 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5206 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5207 skip_emulated_instruction(vcpu);
5208 return 1;
5209 }
5210 /*
5211 * Now copy part of this value to register or memory, as requested.
5212 * Note that the number of bits actually copied is 32 or 64 depending
5213 * on the guest's mode (32 or 64 bit), not on the given field's length.
5214 */
5215 if (vmx_instruction_info & (1u << 10)) {
5216 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5217 field_value);
5218 } else {
5219 if (get_vmx_mem_address(vcpu, exit_qualification,
5220 vmx_instruction_info, &gva))
5221 return 1;
5222 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5223 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5224 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5225 }
5226
5227 nested_vmx_succeed(vcpu);
5228 skip_emulated_instruction(vcpu);
5229 return 1;
5230 }
5231
5232
5233 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5234 {
5235 unsigned long field;
5236 gva_t gva;
5237 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5238 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5239 char *p;
5240 short offset;
5241 /* The value to write might be 32 or 64 bits, depending on L1's long
5242 * mode, and eventually we need to write that into a field of several
5243 * possible lengths. The code below first zero-extends the value to 64
5244 * bit (field_value), and then copies only the approriate number of
5245 * bits into the vmcs12 field.
5246 */
5247 u64 field_value = 0;
5248 struct x86_exception e;
5249
5250 if (!nested_vmx_check_permission(vcpu) ||
5251 !nested_vmx_check_vmcs12(vcpu))
5252 return 1;
5253
5254 if (vmx_instruction_info & (1u << 10))
5255 field_value = kvm_register_read(vcpu,
5256 (((vmx_instruction_info) >> 3) & 0xf));
5257 else {
5258 if (get_vmx_mem_address(vcpu, exit_qualification,
5259 vmx_instruction_info, &gva))
5260 return 1;
5261 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5262 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5263 kvm_inject_page_fault(vcpu, &e);
5264 return 1;
5265 }
5266 }
5267
5268
5269 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5270 if (vmcs_field_readonly(field)) {
5271 nested_vmx_failValid(vcpu,
5272 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5273 skip_emulated_instruction(vcpu);
5274 return 1;
5275 }
5276
5277 offset = vmcs_field_to_offset(field);
5278 if (offset < 0) {
5279 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5280 skip_emulated_instruction(vcpu);
5281 return 1;
5282 }
5283 p = ((char *) get_vmcs12(vcpu)) + offset;
5284
5285 switch (vmcs_field_type(field)) {
5286 case VMCS_FIELD_TYPE_U16:
5287 *(u16 *)p = field_value;
5288 break;
5289 case VMCS_FIELD_TYPE_U32:
5290 *(u32 *)p = field_value;
5291 break;
5292 case VMCS_FIELD_TYPE_U64:
5293 *(u64 *)p = field_value;
5294 break;
5295 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5296 *(natural_width *)p = field_value;
5297 break;
5298 default:
5299 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5300 skip_emulated_instruction(vcpu);
5301 return 1;
5302 }
5303
5304 nested_vmx_succeed(vcpu);
5305 skip_emulated_instruction(vcpu);
5306 return 1;
5307 }
5308
5309 /* Emulate the VMPTRLD instruction */
5310 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5311 {
5312 struct vcpu_vmx *vmx = to_vmx(vcpu);
5313 gva_t gva;
5314 gpa_t vmptr;
5315 struct x86_exception e;
5316
5317 if (!nested_vmx_check_permission(vcpu))
5318 return 1;
5319
5320 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5321 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5322 return 1;
5323
5324 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5325 sizeof(vmptr), &e)) {
5326 kvm_inject_page_fault(vcpu, &e);
5327 return 1;
5328 }
5329
5330 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5331 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5332 skip_emulated_instruction(vcpu);
5333 return 1;
5334 }
5335
5336 if (vmx->nested.current_vmptr != vmptr) {
5337 struct vmcs12 *new_vmcs12;
5338 struct page *page;
5339 page = nested_get_page(vcpu, vmptr);
5340 if (page == NULL) {
5341 nested_vmx_failInvalid(vcpu);
5342 skip_emulated_instruction(vcpu);
5343 return 1;
5344 }
5345 new_vmcs12 = kmap(page);
5346 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5347 kunmap(page);
5348 nested_release_page_clean(page);
5349 nested_vmx_failValid(vcpu,
5350 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5351 skip_emulated_instruction(vcpu);
5352 return 1;
5353 }
5354 if (vmx->nested.current_vmptr != -1ull) {
5355 kunmap(vmx->nested.current_vmcs12_page);
5356 nested_release_page(vmx->nested.current_vmcs12_page);
5357 }
5358
5359 vmx->nested.current_vmptr = vmptr;
5360 vmx->nested.current_vmcs12 = new_vmcs12;
5361 vmx->nested.current_vmcs12_page = page;
5362 }
5363
5364 nested_vmx_succeed(vcpu);
5365 skip_emulated_instruction(vcpu);
5366 return 1;
5367 }
5368
5369 /* Emulate the VMPTRST instruction */
5370 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5371 {
5372 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5373 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5374 gva_t vmcs_gva;
5375 struct x86_exception e;
5376
5377 if (!nested_vmx_check_permission(vcpu))
5378 return 1;
5379
5380 if (get_vmx_mem_address(vcpu, exit_qualification,
5381 vmx_instruction_info, &vmcs_gva))
5382 return 1;
5383 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5384 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5385 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5386 sizeof(u64), &e)) {
5387 kvm_inject_page_fault(vcpu, &e);
5388 return 1;
5389 }
5390 nested_vmx_succeed(vcpu);
5391 skip_emulated_instruction(vcpu);
5392 return 1;
5393 }
5394
5395 /*
5396 * The exit handlers return 1 if the exit was handled fully and guest execution
5397 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5398 * to be done to userspace and return 0.
5399 */
5400 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5401 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5402 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5403 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5404 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5405 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5406 [EXIT_REASON_CR_ACCESS] = handle_cr,
5407 [EXIT_REASON_DR_ACCESS] = handle_dr,
5408 [EXIT_REASON_CPUID] = handle_cpuid,
5409 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5410 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5411 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5412 [EXIT_REASON_HLT] = handle_halt,
5413 [EXIT_REASON_INVD] = handle_invd,
5414 [EXIT_REASON_INVLPG] = handle_invlpg,
5415 [EXIT_REASON_VMCALL] = handle_vmcall,
5416 [EXIT_REASON_VMCLEAR] = handle_vmclear,
5417 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
5418 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
5419 [EXIT_REASON_VMPTRST] = handle_vmptrst,
5420 [EXIT_REASON_VMREAD] = handle_vmread,
5421 [EXIT_REASON_VMRESUME] = handle_vmresume,
5422 [EXIT_REASON_VMWRITE] = handle_vmwrite,
5423 [EXIT_REASON_VMOFF] = handle_vmoff,
5424 [EXIT_REASON_VMON] = handle_vmon,
5425 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5426 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5427 [EXIT_REASON_WBINVD] = handle_wbinvd,
5428 [EXIT_REASON_XSETBV] = handle_xsetbv,
5429 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5430 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5431 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5432 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5433 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5434 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5435 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
5436 };
5437
5438 static const int kvm_vmx_max_exit_handlers =
5439 ARRAY_SIZE(kvm_vmx_exit_handlers);
5440
5441 /*
5442 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5443 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5444 * disinterest in the current event (read or write a specific MSR) by using an
5445 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5446 */
5447 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5448 struct vmcs12 *vmcs12, u32 exit_reason)
5449 {
5450 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5451 gpa_t bitmap;
5452
5453 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5454 return 1;
5455
5456 /*
5457 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5458 * for the four combinations of read/write and low/high MSR numbers.
5459 * First we need to figure out which of the four to use:
5460 */
5461 bitmap = vmcs12->msr_bitmap;
5462 if (exit_reason == EXIT_REASON_MSR_WRITE)
5463 bitmap += 2048;
5464 if (msr_index >= 0xc0000000) {
5465 msr_index -= 0xc0000000;
5466 bitmap += 1024;
5467 }
5468
5469 /* Then read the msr_index'th bit from this bitmap: */
5470 if (msr_index < 1024*8) {
5471 unsigned char b;
5472 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5473 return 1 & (b >> (msr_index & 7));
5474 } else
5475 return 1; /* let L1 handle the wrong parameter */
5476 }
5477
5478 /*
5479 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5480 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5481 * intercept (via guest_host_mask etc.) the current event.
5482 */
5483 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5484 struct vmcs12 *vmcs12)
5485 {
5486 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5487 int cr = exit_qualification & 15;
5488 int reg = (exit_qualification >> 8) & 15;
5489 unsigned long val = kvm_register_read(vcpu, reg);
5490
5491 switch ((exit_qualification >> 4) & 3) {
5492 case 0: /* mov to cr */
5493 switch (cr) {
5494 case 0:
5495 if (vmcs12->cr0_guest_host_mask &
5496 (val ^ vmcs12->cr0_read_shadow))
5497 return 1;
5498 break;
5499 case 3:
5500 if ((vmcs12->cr3_target_count >= 1 &&
5501 vmcs12->cr3_target_value0 == val) ||
5502 (vmcs12->cr3_target_count >= 2 &&
5503 vmcs12->cr3_target_value1 == val) ||
5504 (vmcs12->cr3_target_count >= 3 &&
5505 vmcs12->cr3_target_value2 == val) ||
5506 (vmcs12->cr3_target_count >= 4 &&
5507 vmcs12->cr3_target_value3 == val))
5508 return 0;
5509 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5510 return 1;
5511 break;
5512 case 4:
5513 if (vmcs12->cr4_guest_host_mask &
5514 (vmcs12->cr4_read_shadow ^ val))
5515 return 1;
5516 break;
5517 case 8:
5518 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5519 return 1;
5520 break;
5521 }
5522 break;
5523 case 2: /* clts */
5524 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5525 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5526 return 1;
5527 break;
5528 case 1: /* mov from cr */
5529 switch (cr) {
5530 case 3:
5531 if (vmcs12->cpu_based_vm_exec_control &
5532 CPU_BASED_CR3_STORE_EXITING)
5533 return 1;
5534 break;
5535 case 8:
5536 if (vmcs12->cpu_based_vm_exec_control &
5537 CPU_BASED_CR8_STORE_EXITING)
5538 return 1;
5539 break;
5540 }
5541 break;
5542 case 3: /* lmsw */
5543 /*
5544 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5545 * cr0. Other attempted changes are ignored, with no exit.
5546 */
5547 if (vmcs12->cr0_guest_host_mask & 0xe &
5548 (val ^ vmcs12->cr0_read_shadow))
5549 return 1;
5550 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5551 !(vmcs12->cr0_read_shadow & 0x1) &&
5552 (val & 0x1))
5553 return 1;
5554 break;
5555 }
5556 return 0;
5557 }
5558
5559 /*
5560 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5561 * should handle it ourselves in L0 (and then continue L2). Only call this
5562 * when in is_guest_mode (L2).
5563 */
5564 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5565 {
5566 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5567 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5568 struct vcpu_vmx *vmx = to_vmx(vcpu);
5569 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5570
5571 if (vmx->nested.nested_run_pending)
5572 return 0;
5573
5574 if (unlikely(vmx->fail)) {
5575 printk(KERN_INFO "%s failed vm entry %x\n",
5576 __func__, vmcs_read32(VM_INSTRUCTION_ERROR));
5577 return 1;
5578 }
5579
5580 switch (exit_reason) {
5581 case EXIT_REASON_EXCEPTION_NMI:
5582 if (!is_exception(intr_info))
5583 return 0;
5584 else if (is_page_fault(intr_info))
5585 return enable_ept;
5586 return vmcs12->exception_bitmap &
5587 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5588 case EXIT_REASON_EXTERNAL_INTERRUPT:
5589 return 0;
5590 case EXIT_REASON_TRIPLE_FAULT:
5591 return 1;
5592 case EXIT_REASON_PENDING_INTERRUPT:
5593 case EXIT_REASON_NMI_WINDOW:
5594 /*
5595 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5596 * (aka Interrupt Window Exiting) only when L1 turned it on,
5597 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5598 * Same for NMI Window Exiting.
5599 */
5600 return 1;
5601 case EXIT_REASON_TASK_SWITCH:
5602 return 1;
5603 case EXIT_REASON_CPUID:
5604 return 1;
5605 case EXIT_REASON_HLT:
5606 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5607 case EXIT_REASON_INVD:
5608 return 1;
5609 case EXIT_REASON_INVLPG:
5610 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5611 case EXIT_REASON_RDPMC:
5612 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5613 case EXIT_REASON_RDTSC:
5614 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5615 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5616 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5617 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5618 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5619 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5620 /*
5621 * VMX instructions trap unconditionally. This allows L1 to
5622 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5623 */
5624 return 1;
5625 case EXIT_REASON_CR_ACCESS:
5626 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5627 case EXIT_REASON_DR_ACCESS:
5628 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5629 case EXIT_REASON_IO_INSTRUCTION:
5630 /* TODO: support IO bitmaps */
5631 return 1;
5632 case EXIT_REASON_MSR_READ:
5633 case EXIT_REASON_MSR_WRITE:
5634 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5635 case EXIT_REASON_INVALID_STATE:
5636 return 1;
5637 case EXIT_REASON_MWAIT_INSTRUCTION:
5638 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5639 case EXIT_REASON_MONITOR_INSTRUCTION:
5640 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5641 case EXIT_REASON_PAUSE_INSTRUCTION:
5642 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5643 nested_cpu_has2(vmcs12,
5644 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5645 case EXIT_REASON_MCE_DURING_VMENTRY:
5646 return 0;
5647 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5648 return 1;
5649 case EXIT_REASON_APIC_ACCESS:
5650 return nested_cpu_has2(vmcs12,
5651 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5652 case EXIT_REASON_EPT_VIOLATION:
5653 case EXIT_REASON_EPT_MISCONFIG:
5654 return 0;
5655 case EXIT_REASON_WBINVD:
5656 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5657 case EXIT_REASON_XSETBV:
5658 return 1;
5659 default:
5660 return 1;
5661 }
5662 }
5663
5664 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5665 {
5666 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5667 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5668 }
5669
5670 /*
5671 * The guest has exited. See if we can fix it or if we need userspace
5672 * assistance.
5673 */
5674 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5675 {
5676 struct vcpu_vmx *vmx = to_vmx(vcpu);
5677 u32 exit_reason = vmx->exit_reason;
5678 u32 vectoring_info = vmx->idt_vectoring_info;
5679
5680 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5681
5682 /* If guest state is invalid, start emulating */
5683 if (vmx->emulation_required && emulate_invalid_guest_state)
5684 return handle_invalid_guest_state(vcpu);
5685
5686 /*
5687 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5688 * we did not inject a still-pending event to L1 now because of
5689 * nested_run_pending, we need to re-enable this bit.
5690 */
5691 if (vmx->nested.nested_run_pending)
5692 kvm_make_request(KVM_REQ_EVENT, vcpu);
5693
5694 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5695 exit_reason == EXIT_REASON_VMRESUME))
5696 vmx->nested.nested_run_pending = 1;
5697 else
5698 vmx->nested.nested_run_pending = 0;
5699
5700 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5701 nested_vmx_vmexit(vcpu);
5702 return 1;
5703 }
5704
5705 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5706 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5707 vcpu->run->fail_entry.hardware_entry_failure_reason
5708 = exit_reason;
5709 return 0;
5710 }
5711
5712 if (unlikely(vmx->fail)) {
5713 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5714 vcpu->run->fail_entry.hardware_entry_failure_reason
5715 = vmcs_read32(VM_INSTRUCTION_ERROR);
5716 return 0;
5717 }
5718
5719 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5720 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5721 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5722 exit_reason != EXIT_REASON_TASK_SWITCH))
5723 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5724 "(0x%x) and exit reason is 0x%x\n",
5725 __func__, vectoring_info, exit_reason);
5726
5727 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5728 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5729 get_vmcs12(vcpu), vcpu)))) {
5730 if (vmx_interrupt_allowed(vcpu)) {
5731 vmx->soft_vnmi_blocked = 0;
5732 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
5733 vcpu->arch.nmi_pending) {
5734 /*
5735 * This CPU don't support us in finding the end of an
5736 * NMI-blocked window if the guest runs with IRQs
5737 * disabled. So we pull the trigger after 1 s of
5738 * futile waiting, but inform the user about this.
5739 */
5740 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5741 "state on VCPU %d after 1 s timeout\n",
5742 __func__, vcpu->vcpu_id);
5743 vmx->soft_vnmi_blocked = 0;
5744 }
5745 }
5746
5747 if (exit_reason < kvm_vmx_max_exit_handlers
5748 && kvm_vmx_exit_handlers[exit_reason])
5749 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5750 else {
5751 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5752 vcpu->run->hw.hardware_exit_reason = exit_reason;
5753 }
5754 return 0;
5755 }
5756
5757 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5758 {
5759 if (irr == -1 || tpr < irr) {
5760 vmcs_write32(TPR_THRESHOLD, 0);
5761 return;
5762 }
5763
5764 vmcs_write32(TPR_THRESHOLD, irr);
5765 }
5766
5767 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
5768 {
5769 u32 exit_intr_info;
5770
5771 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5772 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5773 return;
5774
5775 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5776 exit_intr_info = vmx->exit_intr_info;
5777
5778 /* Handle machine checks before interrupts are enabled */
5779 if (is_machine_check(exit_intr_info))
5780 kvm_machine_check();
5781
5782 /* We need to handle NMIs before interrupts are enabled */
5783 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
5784 (exit_intr_info & INTR_INFO_VALID_MASK)) {
5785 kvm_before_handle_nmi(&vmx->vcpu);
5786 asm("int $2");
5787 kvm_after_handle_nmi(&vmx->vcpu);
5788 }
5789 }
5790
5791 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5792 {
5793 u32 exit_intr_info;
5794 bool unblock_nmi;
5795 u8 vector;
5796 bool idtv_info_valid;
5797
5798 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5799
5800 if (cpu_has_virtual_nmis()) {
5801 if (vmx->nmi_known_unmasked)
5802 return;
5803 /*
5804 * Can't use vmx->exit_intr_info since we're not sure what
5805 * the exit reason is.
5806 */
5807 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5808 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5809 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5810 /*
5811 * SDM 3: 27.7.1.2 (September 2008)
5812 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5813 * a guest IRET fault.
5814 * SDM 3: 23.2.2 (September 2008)
5815 * Bit 12 is undefined in any of the following cases:
5816 * If the VM exit sets the valid bit in the IDT-vectoring
5817 * information field.
5818 * If the VM exit is due to a double fault.
5819 */
5820 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5821 vector != DF_VECTOR && !idtv_info_valid)
5822 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5823 GUEST_INTR_STATE_NMI);
5824 else
5825 vmx->nmi_known_unmasked =
5826 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5827 & GUEST_INTR_STATE_NMI);
5828 } else if (unlikely(vmx->soft_vnmi_blocked))
5829 vmx->vnmi_blocked_time +=
5830 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
5831 }
5832
5833 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5834 u32 idt_vectoring_info,
5835 int instr_len_field,
5836 int error_code_field)
5837 {
5838 u8 vector;
5839 int type;
5840 bool idtv_info_valid;
5841
5842 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5843
5844 vmx->vcpu.arch.nmi_injected = false;
5845 kvm_clear_exception_queue(&vmx->vcpu);
5846 kvm_clear_interrupt_queue(&vmx->vcpu);
5847
5848 if (!idtv_info_valid)
5849 return;
5850
5851 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5852
5853 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
5854 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
5855
5856 switch (type) {
5857 case INTR_TYPE_NMI_INTR:
5858 vmx->vcpu.arch.nmi_injected = true;
5859 /*
5860 * SDM 3: 27.7.1.2 (September 2008)
5861 * Clear bit "block by NMI" before VM entry if a NMI
5862 * delivery faulted.
5863 */
5864 vmx_set_nmi_mask(&vmx->vcpu, false);
5865 break;
5866 case INTR_TYPE_SOFT_EXCEPTION:
5867 vmx->vcpu.arch.event_exit_inst_len =
5868 vmcs_read32(instr_len_field);
5869 /* fall through */
5870 case INTR_TYPE_HARD_EXCEPTION:
5871 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
5872 u32 err = vmcs_read32(error_code_field);
5873 kvm_queue_exception_e(&vmx->vcpu, vector, err);
5874 } else
5875 kvm_queue_exception(&vmx->vcpu, vector);
5876 break;
5877 case INTR_TYPE_SOFT_INTR:
5878 vmx->vcpu.arch.event_exit_inst_len =
5879 vmcs_read32(instr_len_field);
5880 /* fall through */
5881 case INTR_TYPE_EXT_INTR:
5882 kvm_queue_interrupt(&vmx->vcpu, vector,
5883 type == INTR_TYPE_SOFT_INTR);
5884 break;
5885 default:
5886 break;
5887 }
5888 }
5889
5890 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
5891 {
5892 if (is_guest_mode(&vmx->vcpu))
5893 return;
5894 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
5895 VM_EXIT_INSTRUCTION_LEN,
5896 IDT_VECTORING_ERROR_CODE);
5897 }
5898
5899 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
5900 {
5901 if (is_guest_mode(vcpu))
5902 return;
5903 __vmx_complete_interrupts(to_vmx(vcpu),
5904 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5905 VM_ENTRY_INSTRUCTION_LEN,
5906 VM_ENTRY_EXCEPTION_ERROR_CODE);
5907
5908 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
5909 }
5910
5911 #ifdef CONFIG_X86_64
5912 #define R "r"
5913 #define Q "q"
5914 #else
5915 #define R "e"
5916 #define Q "l"
5917 #endif
5918
5919 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
5920 {
5921 struct vcpu_vmx *vmx = to_vmx(vcpu);
5922
5923 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
5924 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5925 if (vmcs12->idt_vectoring_info_field &
5926 VECTORING_INFO_VALID_MASK) {
5927 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5928 vmcs12->idt_vectoring_info_field);
5929 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5930 vmcs12->vm_exit_instruction_len);
5931 if (vmcs12->idt_vectoring_info_field &
5932 VECTORING_INFO_DELIVER_CODE_MASK)
5933 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
5934 vmcs12->idt_vectoring_error_code);
5935 }
5936 }
5937
5938 /* Record the guest's net vcpu time for enforced NMI injections. */
5939 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
5940 vmx->entry_time = ktime_get();
5941
5942 /* Don't enter VMX if guest state is invalid, let the exit handler
5943 start emulation until we arrive back to a valid state */
5944 if (vmx->emulation_required && emulate_invalid_guest_state)
5945 return;
5946
5947 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
5948 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
5949 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
5950 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
5951
5952 /* When single-stepping over STI and MOV SS, we must clear the
5953 * corresponding interruptibility bits in the guest state. Otherwise
5954 * vmentry fails as it then expects bit 14 (BS) in pending debug
5955 * exceptions being set, but that's not correct for the guest debugging
5956 * case. */
5957 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5958 vmx_set_interrupt_shadow(vcpu, 0);
5959
5960 vmx->__launched = vmx->loaded_vmcs->launched;
5961 asm(
5962 /* Store host registers */
5963 "push %%"R"dx; push %%"R"bp;"
5964 "push %%"R"cx \n\t" /* placeholder for guest rcx */
5965 "push %%"R"cx \n\t"
5966 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
5967 "je 1f \n\t"
5968 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
5969 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
5970 "1: \n\t"
5971 /* Reload cr2 if changed */
5972 "mov %c[cr2](%0), %%"R"ax \n\t"
5973 "mov %%cr2, %%"R"dx \n\t"
5974 "cmp %%"R"ax, %%"R"dx \n\t"
5975 "je 2f \n\t"
5976 "mov %%"R"ax, %%cr2 \n\t"
5977 "2: \n\t"
5978 /* Check if vmlaunch of vmresume is needed */
5979 "cmpl $0, %c[launched](%0) \n\t"
5980 /* Load guest registers. Don't clobber flags. */
5981 "mov %c[rax](%0), %%"R"ax \n\t"
5982 "mov %c[rbx](%0), %%"R"bx \n\t"
5983 "mov %c[rdx](%0), %%"R"dx \n\t"
5984 "mov %c[rsi](%0), %%"R"si \n\t"
5985 "mov %c[rdi](%0), %%"R"di \n\t"
5986 "mov %c[rbp](%0), %%"R"bp \n\t"
5987 #ifdef CONFIG_X86_64
5988 "mov %c[r8](%0), %%r8 \n\t"
5989 "mov %c[r9](%0), %%r9 \n\t"
5990 "mov %c[r10](%0), %%r10 \n\t"
5991 "mov %c[r11](%0), %%r11 \n\t"
5992 "mov %c[r12](%0), %%r12 \n\t"
5993 "mov %c[r13](%0), %%r13 \n\t"
5994 "mov %c[r14](%0), %%r14 \n\t"
5995 "mov %c[r15](%0), %%r15 \n\t"
5996 #endif
5997 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
5998
5999 /* Enter guest mode */
6000 "jne .Llaunched \n\t"
6001 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6002 "jmp .Lkvm_vmx_return \n\t"
6003 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
6004 ".Lkvm_vmx_return: "
6005 /* Save guest registers, load host registers, keep flags */
6006 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6007 "pop %0 \n\t"
6008 "mov %%"R"ax, %c[rax](%0) \n\t"
6009 "mov %%"R"bx, %c[rbx](%0) \n\t"
6010 "pop"Q" %c[rcx](%0) \n\t"
6011 "mov %%"R"dx, %c[rdx](%0) \n\t"
6012 "mov %%"R"si, %c[rsi](%0) \n\t"
6013 "mov %%"R"di, %c[rdi](%0) \n\t"
6014 "mov %%"R"bp, %c[rbp](%0) \n\t"
6015 #ifdef CONFIG_X86_64
6016 "mov %%r8, %c[r8](%0) \n\t"
6017 "mov %%r9, %c[r9](%0) \n\t"
6018 "mov %%r10, %c[r10](%0) \n\t"
6019 "mov %%r11, %c[r11](%0) \n\t"
6020 "mov %%r12, %c[r12](%0) \n\t"
6021 "mov %%r13, %c[r13](%0) \n\t"
6022 "mov %%r14, %c[r14](%0) \n\t"
6023 "mov %%r15, %c[r15](%0) \n\t"
6024 #endif
6025 "mov %%cr2, %%"R"ax \n\t"
6026 "mov %%"R"ax, %c[cr2](%0) \n\t"
6027
6028 "pop %%"R"bp; pop %%"R"dx \n\t"
6029 "setbe %c[fail](%0) \n\t"
6030 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6031 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6032 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6033 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6034 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6035 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6036 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6037 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6038 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6039 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6040 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6041 #ifdef CONFIG_X86_64
6042 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6043 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6044 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6045 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6046 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6047 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6048 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6049 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6050 #endif
6051 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6052 [wordsize]"i"(sizeof(ulong))
6053 : "cc", "memory"
6054 , R"ax", R"bx", R"di", R"si"
6055 #ifdef CONFIG_X86_64
6056 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6057 #endif
6058 );
6059
6060 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6061 | (1 << VCPU_EXREG_RFLAGS)
6062 | (1 << VCPU_EXREG_CPL)
6063 | (1 << VCPU_EXREG_PDPTR)
6064 | (1 << VCPU_EXREG_SEGMENTS)
6065 | (1 << VCPU_EXREG_CR3));
6066 vcpu->arch.regs_dirty = 0;
6067
6068 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6069
6070 if (is_guest_mode(vcpu)) {
6071 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6072 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6073 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6074 vmcs12->idt_vectoring_error_code =
6075 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6076 vmcs12->vm_exit_instruction_len =
6077 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6078 }
6079 }
6080
6081 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
6082 vmx->loaded_vmcs->launched = 1;
6083
6084 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6085
6086 vmx_complete_atomic_exit(vmx);
6087 vmx_recover_nmi_blocking(vmx);
6088 vmx_complete_interrupts(vmx);
6089 }
6090
6091 #undef R
6092 #undef Q
6093
6094 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6095 {
6096 struct vcpu_vmx *vmx = to_vmx(vcpu);
6097
6098 free_vpid(vmx);
6099 free_nested(vmx);
6100 free_loaded_vmcs(vmx->loaded_vmcs);
6101 kfree(vmx->guest_msrs);
6102 kvm_vcpu_uninit(vcpu);
6103 kmem_cache_free(kvm_vcpu_cache, vmx);
6104 }
6105
6106 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6107 {
6108 int err;
6109 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6110 int cpu;
6111
6112 if (!vmx)
6113 return ERR_PTR(-ENOMEM);
6114
6115 allocate_vpid(vmx);
6116
6117 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6118 if (err)
6119 goto free_vcpu;
6120
6121 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6122 err = -ENOMEM;
6123 if (!vmx->guest_msrs) {
6124 goto uninit_vcpu;
6125 }
6126
6127 vmx->loaded_vmcs = &vmx->vmcs01;
6128 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6129 if (!vmx->loaded_vmcs->vmcs)
6130 goto free_msrs;
6131 if (!vmm_exclusive)
6132 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6133 loaded_vmcs_init(vmx->loaded_vmcs);
6134 if (!vmm_exclusive)
6135 kvm_cpu_vmxoff();
6136
6137 cpu = get_cpu();
6138 vmx_vcpu_load(&vmx->vcpu, cpu);
6139 vmx->vcpu.cpu = cpu;
6140 err = vmx_vcpu_setup(vmx);
6141 vmx_vcpu_put(&vmx->vcpu);
6142 put_cpu();
6143 if (err)
6144 goto free_vmcs;
6145 if (vm_need_virtualize_apic_accesses(kvm))
6146 err = alloc_apic_access_page(kvm);
6147 if (err)
6148 goto free_vmcs;
6149
6150 if (enable_ept) {
6151 if (!kvm->arch.ept_identity_map_addr)
6152 kvm->arch.ept_identity_map_addr =
6153 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6154 err = -ENOMEM;
6155 if (alloc_identity_pagetable(kvm) != 0)
6156 goto free_vmcs;
6157 if (!init_rmode_identity_map(kvm))
6158 goto free_vmcs;
6159 }
6160
6161 vmx->nested.current_vmptr = -1ull;
6162 vmx->nested.current_vmcs12 = NULL;
6163
6164 return &vmx->vcpu;
6165
6166 free_vmcs:
6167 free_vmcs(vmx->loaded_vmcs->vmcs);
6168 free_msrs:
6169 kfree(vmx->guest_msrs);
6170 uninit_vcpu:
6171 kvm_vcpu_uninit(&vmx->vcpu);
6172 free_vcpu:
6173 free_vpid(vmx);
6174 kmem_cache_free(kvm_vcpu_cache, vmx);
6175 return ERR_PTR(err);
6176 }
6177
6178 static void __init vmx_check_processor_compat(void *rtn)
6179 {
6180 struct vmcs_config vmcs_conf;
6181
6182 *(int *)rtn = 0;
6183 if (setup_vmcs_config(&vmcs_conf) < 0)
6184 *(int *)rtn = -EIO;
6185 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6186 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6187 smp_processor_id());
6188 *(int *)rtn = -EIO;
6189 }
6190 }
6191
6192 static int get_ept_level(void)
6193 {
6194 return VMX_EPT_DEFAULT_GAW + 1;
6195 }
6196
6197 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6198 {
6199 u64 ret;
6200
6201 /* For VT-d and EPT combination
6202 * 1. MMIO: always map as UC
6203 * 2. EPT with VT-d:
6204 * a. VT-d without snooping control feature: can't guarantee the
6205 * result, try to trust guest.
6206 * b. VT-d with snooping control feature: snooping control feature of
6207 * VT-d engine can guarantee the cache correctness. Just set it
6208 * to WB to keep consistent with host. So the same as item 3.
6209 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6210 * consistent with host MTRR
6211 */
6212 if (is_mmio)
6213 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6214 else if (vcpu->kvm->arch.iommu_domain &&
6215 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6216 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6217 VMX_EPT_MT_EPTE_SHIFT;
6218 else
6219 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6220 | VMX_EPT_IPAT_BIT;
6221
6222 return ret;
6223 }
6224
6225 #define _ER(x) { EXIT_REASON_##x, #x }
6226
6227 static const struct trace_print_flags vmx_exit_reasons_str[] = {
6228 _ER(EXCEPTION_NMI),
6229 _ER(EXTERNAL_INTERRUPT),
6230 _ER(TRIPLE_FAULT),
6231 _ER(PENDING_INTERRUPT),
6232 _ER(NMI_WINDOW),
6233 _ER(TASK_SWITCH),
6234 _ER(CPUID),
6235 _ER(HLT),
6236 _ER(INVLPG),
6237 _ER(RDPMC),
6238 _ER(RDTSC),
6239 _ER(VMCALL),
6240 _ER(VMCLEAR),
6241 _ER(VMLAUNCH),
6242 _ER(VMPTRLD),
6243 _ER(VMPTRST),
6244 _ER(VMREAD),
6245 _ER(VMRESUME),
6246 _ER(VMWRITE),
6247 _ER(VMOFF),
6248 _ER(VMON),
6249 _ER(CR_ACCESS),
6250 _ER(DR_ACCESS),
6251 _ER(IO_INSTRUCTION),
6252 _ER(MSR_READ),
6253 _ER(MSR_WRITE),
6254 _ER(MWAIT_INSTRUCTION),
6255 _ER(MONITOR_INSTRUCTION),
6256 _ER(PAUSE_INSTRUCTION),
6257 _ER(MCE_DURING_VMENTRY),
6258 _ER(TPR_BELOW_THRESHOLD),
6259 _ER(APIC_ACCESS),
6260 _ER(EPT_VIOLATION),
6261 _ER(EPT_MISCONFIG),
6262 _ER(WBINVD),
6263 { -1, NULL }
6264 };
6265
6266 #undef _ER
6267
6268 static int vmx_get_lpage_level(void)
6269 {
6270 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6271 return PT_DIRECTORY_LEVEL;
6272 else
6273 /* For shadow and EPT supported 1GB page */
6274 return PT_PDPE_LEVEL;
6275 }
6276
6277 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6278 {
6279 struct kvm_cpuid_entry2 *best;
6280 struct vcpu_vmx *vmx = to_vmx(vcpu);
6281 u32 exec_control;
6282
6283 vmx->rdtscp_enabled = false;
6284 if (vmx_rdtscp_supported()) {
6285 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6286 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6287 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6288 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6289 vmx->rdtscp_enabled = true;
6290 else {
6291 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6292 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6293 exec_control);
6294 }
6295 }
6296 }
6297 }
6298
6299 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6300 {
6301 if (func == 1 && nested)
6302 entry->ecx |= bit(X86_FEATURE_VMX);
6303 }
6304
6305 /*
6306 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6307 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6308 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6309 * guest in a way that will both be appropriate to L1's requests, and our
6310 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6311 * function also has additional necessary side-effects, like setting various
6312 * vcpu->arch fields.
6313 */
6314 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6315 {
6316 struct vcpu_vmx *vmx = to_vmx(vcpu);
6317 u32 exec_control;
6318
6319 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6320 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6321 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6322 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6323 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6324 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6325 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6326 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6327 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6328 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6329 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6330 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6331 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6332 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6333 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6334 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6335 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6336 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6337 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6338 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6339 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6340 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6341 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6342 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6343 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6344 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6345 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6346 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6347 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6348 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6349 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6350 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6351 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6352 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6353 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6354 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6355
6356 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6357 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6358 vmcs12->vm_entry_intr_info_field);
6359 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6360 vmcs12->vm_entry_exception_error_code);
6361 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6362 vmcs12->vm_entry_instruction_len);
6363 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6364 vmcs12->guest_interruptibility_info);
6365 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6366 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6367 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6368 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6369 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6370 vmcs12->guest_pending_dbg_exceptions);
6371 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6372 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6373
6374 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6375
6376 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6377 (vmcs_config.pin_based_exec_ctrl |
6378 vmcs12->pin_based_vm_exec_control));
6379
6380 /*
6381 * Whether page-faults are trapped is determined by a combination of
6382 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6383 * If enable_ept, L0 doesn't care about page faults and we should
6384 * set all of these to L1's desires. However, if !enable_ept, L0 does
6385 * care about (at least some) page faults, and because it is not easy
6386 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6387 * to exit on each and every L2 page fault. This is done by setting
6388 * MASK=MATCH=0 and (see below) EB.PF=1.
6389 * Note that below we don't need special code to set EB.PF beyond the
6390 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6391 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6392 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6393 *
6394 * A problem with this approach (when !enable_ept) is that L1 may be
6395 * injected with more page faults than it asked for. This could have
6396 * caused problems, but in practice existing hypervisors don't care.
6397 * To fix this, we will need to emulate the PFEC checking (on the L1
6398 * page tables), using walk_addr(), when injecting PFs to L1.
6399 */
6400 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6401 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6402 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6403 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6404
6405 if (cpu_has_secondary_exec_ctrls()) {
6406 u32 exec_control = vmx_secondary_exec_control(vmx);
6407 if (!vmx->rdtscp_enabled)
6408 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6409 /* Take the following fields only from vmcs12 */
6410 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6411 if (nested_cpu_has(vmcs12,
6412 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6413 exec_control |= vmcs12->secondary_vm_exec_control;
6414
6415 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6416 /*
6417 * Translate L1 physical address to host physical
6418 * address for vmcs02. Keep the page pinned, so this
6419 * physical address remains valid. We keep a reference
6420 * to it so we can release it later.
6421 */
6422 if (vmx->nested.apic_access_page) /* shouldn't happen */
6423 nested_release_page(vmx->nested.apic_access_page);
6424 vmx->nested.apic_access_page =
6425 nested_get_page(vcpu, vmcs12->apic_access_addr);
6426 /*
6427 * If translation failed, no matter: This feature asks
6428 * to exit when accessing the given address, and if it
6429 * can never be accessed, this feature won't do
6430 * anything anyway.
6431 */
6432 if (!vmx->nested.apic_access_page)
6433 exec_control &=
6434 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6435 else
6436 vmcs_write64(APIC_ACCESS_ADDR,
6437 page_to_phys(vmx->nested.apic_access_page));
6438 }
6439
6440 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6441 }
6442
6443
6444 /*
6445 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6446 * Some constant fields are set here by vmx_set_constant_host_state().
6447 * Other fields are different per CPU, and will be set later when
6448 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6449 */
6450 vmx_set_constant_host_state();
6451
6452 /*
6453 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6454 * entry, but only if the current (host) sp changed from the value
6455 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6456 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6457 * here we just force the write to happen on entry.
6458 */
6459 vmx->host_rsp = 0;
6460
6461 exec_control = vmx_exec_control(vmx); /* L0's desires */
6462 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6463 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6464 exec_control &= ~CPU_BASED_TPR_SHADOW;
6465 exec_control |= vmcs12->cpu_based_vm_exec_control;
6466 /*
6467 * Merging of IO and MSR bitmaps not currently supported.
6468 * Rather, exit every time.
6469 */
6470 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6471 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6472 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6473
6474 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6475
6476 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6477 * bitwise-or of what L1 wants to trap for L2, and what we want to
6478 * trap. Note that CR0.TS also needs updating - we do this later.
6479 */
6480 update_exception_bitmap(vcpu);
6481 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6482 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6483
6484 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6485 vmcs_write32(VM_EXIT_CONTROLS,
6486 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6487 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6488 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6489
6490 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6491 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6492 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6493 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6494
6495
6496 set_cr4_guest_host_mask(vmx);
6497
6498 vmcs_write64(TSC_OFFSET,
6499 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6500
6501 if (enable_vpid) {
6502 /*
6503 * Trivially support vpid by letting L2s share their parent
6504 * L1's vpid. TODO: move to a more elaborate solution, giving
6505 * each L2 its own vpid and exposing the vpid feature to L1.
6506 */
6507 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6508 vmx_flush_tlb(vcpu);
6509 }
6510
6511 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6512 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6513 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6514 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6515 else
6516 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6517 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6518 vmx_set_efer(vcpu, vcpu->arch.efer);
6519
6520 /*
6521 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6522 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6523 * The CR0_READ_SHADOW is what L2 should have expected to read given
6524 * the specifications by L1; It's not enough to take
6525 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6526 * have more bits than L1 expected.
6527 */
6528 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6529 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6530
6531 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6532 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6533
6534 /* shadow page tables on either EPT or shadow page tables */
6535 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6536 kvm_mmu_reset_context(vcpu);
6537
6538 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6539 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6540 }
6541
6542 /*
6543 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6544 * for running an L2 nested guest.
6545 */
6546 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6547 {
6548 struct vmcs12 *vmcs12;
6549 struct vcpu_vmx *vmx = to_vmx(vcpu);
6550 int cpu;
6551 struct loaded_vmcs *vmcs02;
6552
6553 if (!nested_vmx_check_permission(vcpu) ||
6554 !nested_vmx_check_vmcs12(vcpu))
6555 return 1;
6556
6557 skip_emulated_instruction(vcpu);
6558 vmcs12 = get_vmcs12(vcpu);
6559
6560 /*
6561 * The nested entry process starts with enforcing various prerequisites
6562 * on vmcs12 as required by the Intel SDM, and act appropriately when
6563 * they fail: As the SDM explains, some conditions should cause the
6564 * instruction to fail, while others will cause the instruction to seem
6565 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6566 * To speed up the normal (success) code path, we should avoid checking
6567 * for misconfigurations which will anyway be caught by the processor
6568 * when using the merged vmcs02.
6569 */
6570 if (vmcs12->launch_state == launch) {
6571 nested_vmx_failValid(vcpu,
6572 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6573 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6574 return 1;
6575 }
6576
6577 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6578 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6579 /*TODO: Also verify bits beyond physical address width are 0*/
6580 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6581 return 1;
6582 }
6583
6584 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6585 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6586 /*TODO: Also verify bits beyond physical address width are 0*/
6587 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6588 return 1;
6589 }
6590
6591 if (vmcs12->vm_entry_msr_load_count > 0 ||
6592 vmcs12->vm_exit_msr_load_count > 0 ||
6593 vmcs12->vm_exit_msr_store_count > 0) {
6594 if (printk_ratelimit())
6595 printk(KERN_WARNING
6596 "%s: VMCS MSR_{LOAD,STORE} unsupported\n", __func__);
6597 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6598 return 1;
6599 }
6600
6601 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6602 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6603 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6604 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6605 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6606 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6607 !vmx_control_verify(vmcs12->vm_exit_controls,
6608 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6609 !vmx_control_verify(vmcs12->vm_entry_controls,
6610 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6611 {
6612 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6613 return 1;
6614 }
6615
6616 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6617 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6618 nested_vmx_failValid(vcpu,
6619 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6620 return 1;
6621 }
6622
6623 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6624 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6625 nested_vmx_entry_failure(vcpu, vmcs12,
6626 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6627 return 1;
6628 }
6629 if (vmcs12->vmcs_link_pointer != -1ull) {
6630 nested_vmx_entry_failure(vcpu, vmcs12,
6631 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6632 return 1;
6633 }
6634
6635 /*
6636 * We're finally done with prerequisite checking, and can start with
6637 * the nested entry.
6638 */
6639
6640 vmcs02 = nested_get_current_vmcs02(vmx);
6641 if (!vmcs02)
6642 return -ENOMEM;
6643
6644 enter_guest_mode(vcpu);
6645
6646 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6647
6648 cpu = get_cpu();
6649 vmx->loaded_vmcs = vmcs02;
6650 vmx_vcpu_put(vcpu);
6651 vmx_vcpu_load(vcpu, cpu);
6652 vcpu->cpu = cpu;
6653 put_cpu();
6654
6655 vmcs12->launch_state = 1;
6656
6657 prepare_vmcs02(vcpu, vmcs12);
6658
6659 /*
6660 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6661 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6662 * returned as far as L1 is concerned. It will only return (and set
6663 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6664 */
6665 return 1;
6666 }
6667
6668 /*
6669 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6670 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6671 * This function returns the new value we should put in vmcs12.guest_cr0.
6672 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6673 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6674 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6675 * didn't trap the bit, because if L1 did, so would L0).
6676 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6677 * been modified by L2, and L1 knows it. So just leave the old value of
6678 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6679 * isn't relevant, because if L0 traps this bit it can set it to anything.
6680 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6681 * changed these bits, and therefore they need to be updated, but L0
6682 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6683 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6684 */
6685 static inline unsigned long
6686 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6687 {
6688 return
6689 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6690 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6691 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6692 vcpu->arch.cr0_guest_owned_bits));
6693 }
6694
6695 static inline unsigned long
6696 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6697 {
6698 return
6699 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6700 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6701 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6702 vcpu->arch.cr4_guest_owned_bits));
6703 }
6704
6705 /*
6706 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6707 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6708 * and this function updates it to reflect the changes to the guest state while
6709 * L2 was running (and perhaps made some exits which were handled directly by L0
6710 * without going back to L1), and to reflect the exit reason.
6711 * Note that we do not have to copy here all VMCS fields, just those that
6712 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6713 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6714 * which already writes to vmcs12 directly.
6715 */
6716 void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6717 {
6718 /* update guest state fields: */
6719 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6720 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6721
6722 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6723 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6724 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6725 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6726
6727 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6728 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6729 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6730 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6731 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6732 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6733 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6734 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6735 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6736 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6737 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6738 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6739 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6740 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6741 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6742 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6743 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6744 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6745 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6746 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6747 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6748 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6749 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6750 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6751 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6752 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6753 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6754 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6755 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6756 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6757 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6758 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6759 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6760 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6761 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6762 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6763
6764 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6765 vmcs12->guest_interruptibility_info =
6766 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6767 vmcs12->guest_pending_dbg_exceptions =
6768 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6769
6770 /* TODO: These cannot have changed unless we have MSR bitmaps and
6771 * the relevant bit asks not to trap the change */
6772 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6773 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6774 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6775 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6776 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6777 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6778
6779 /* update exit information fields: */
6780
6781 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
6782 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6783
6784 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6785 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6786 vmcs12->idt_vectoring_info_field =
6787 vmcs_read32(IDT_VECTORING_INFO_FIELD);
6788 vmcs12->idt_vectoring_error_code =
6789 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6790 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6791 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6792
6793 /* clear vm-entry fields which are to be cleared on exit */
6794 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6795 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6796 }
6797
6798 /*
6799 * A part of what we need to when the nested L2 guest exits and we want to
6800 * run its L1 parent, is to reset L1's guest state to the host state specified
6801 * in vmcs12.
6802 * This function is to be called not only on normal nested exit, but also on
6803 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6804 * Failures During or After Loading Guest State").
6805 * This function should be called when the active VMCS is L1's (vmcs01).
6806 */
6807 void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6808 {
6809 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6810 vcpu->arch.efer = vmcs12->host_ia32_efer;
6811 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6812 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6813 else
6814 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6815 vmx_set_efer(vcpu, vcpu->arch.efer);
6816
6817 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6818 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6819 /*
6820 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6821 * actually changed, because it depends on the current state of
6822 * fpu_active (which may have changed).
6823 * Note that vmx_set_cr0 refers to efer set above.
6824 */
6825 kvm_set_cr0(vcpu, vmcs12->host_cr0);
6826 /*
6827 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6828 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6829 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6830 */
6831 update_exception_bitmap(vcpu);
6832 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6833 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6834
6835 /*
6836 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6837 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6838 */
6839 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6840 kvm_set_cr4(vcpu, vmcs12->host_cr4);
6841
6842 /* shadow page tables on either EPT or shadow page tables */
6843 kvm_set_cr3(vcpu, vmcs12->host_cr3);
6844 kvm_mmu_reset_context(vcpu);
6845
6846 if (enable_vpid) {
6847 /*
6848 * Trivially support vpid by letting L2s share their parent
6849 * L1's vpid. TODO: move to a more elaborate solution, giving
6850 * each L2 its own vpid and exposing the vpid feature to L1.
6851 */
6852 vmx_flush_tlb(vcpu);
6853 }
6854
6855
6856 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
6857 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
6858 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
6859 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
6860 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
6861 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
6862 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
6863 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
6864 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
6865 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
6866 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
6867 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
6868 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
6869 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
6870 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
6871
6872 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
6873 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
6874 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6875 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
6876 vmcs12->host_ia32_perf_global_ctrl);
6877 }
6878
6879 /*
6880 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
6881 * and modify vmcs12 to make it see what it would expect to see there if
6882 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
6883 */
6884 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
6885 {
6886 struct vcpu_vmx *vmx = to_vmx(vcpu);
6887 int cpu;
6888 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6889
6890 leave_guest_mode(vcpu);
6891 prepare_vmcs12(vcpu, vmcs12);
6892
6893 cpu = get_cpu();
6894 vmx->loaded_vmcs = &vmx->vmcs01;
6895 vmx_vcpu_put(vcpu);
6896 vmx_vcpu_load(vcpu, cpu);
6897 vcpu->cpu = cpu;
6898 put_cpu();
6899
6900 /* if no vmcs02 cache requested, remove the one we used */
6901 if (VMCS02_POOL_SIZE == 0)
6902 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
6903
6904 load_vmcs12_host_state(vcpu, vmcs12);
6905
6906 /* Update TSC_OFFSET if vmx_adjust_tsc_offset() was used while L2 ran */
6907 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6908
6909 /* This is needed for same reason as it was needed in prepare_vmcs02 */
6910 vmx->host_rsp = 0;
6911
6912 /* Unpin physical memory we referred to in vmcs02 */
6913 if (vmx->nested.apic_access_page) {
6914 nested_release_page(vmx->nested.apic_access_page);
6915 vmx->nested.apic_access_page = 0;
6916 }
6917
6918 /*
6919 * Exiting from L2 to L1, we're now back to L1 which thinks it just
6920 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
6921 * success or failure flag accordingly.
6922 */
6923 if (unlikely(vmx->fail)) {
6924 vmx->fail = 0;
6925 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
6926 } else
6927 nested_vmx_succeed(vcpu);
6928 }
6929
6930 /*
6931 * L1's failure to enter L2 is a subset of a normal exit, as explained in
6932 * 23.7 "VM-entry failures during or after loading guest state" (this also
6933 * lists the acceptable exit-reason and exit-qualification parameters).
6934 * It should only be called before L2 actually succeeded to run, and when
6935 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
6936 */
6937 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
6938 struct vmcs12 *vmcs12,
6939 u32 reason, unsigned long qualification)
6940 {
6941 load_vmcs12_host_state(vcpu, vmcs12);
6942 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
6943 vmcs12->exit_qualification = qualification;
6944 nested_vmx_succeed(vcpu);
6945 }
6946
6947 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
6948 struct x86_instruction_info *info,
6949 enum x86_intercept_stage stage)
6950 {
6951 return X86EMUL_CONTINUE;
6952 }
6953
6954 static struct kvm_x86_ops vmx_x86_ops = {
6955 .cpu_has_kvm_support = cpu_has_kvm_support,
6956 .disabled_by_bios = vmx_disabled_by_bios,
6957 .hardware_setup = hardware_setup,
6958 .hardware_unsetup = hardware_unsetup,
6959 .check_processor_compatibility = vmx_check_processor_compat,
6960 .hardware_enable = hardware_enable,
6961 .hardware_disable = hardware_disable,
6962 .cpu_has_accelerated_tpr = report_flexpriority,
6963
6964 .vcpu_create = vmx_create_vcpu,
6965 .vcpu_free = vmx_free_vcpu,
6966 .vcpu_reset = vmx_vcpu_reset,
6967
6968 .prepare_guest_switch = vmx_save_host_state,
6969 .vcpu_load = vmx_vcpu_load,
6970 .vcpu_put = vmx_vcpu_put,
6971
6972 .set_guest_debug = set_guest_debug,
6973 .get_msr = vmx_get_msr,
6974 .set_msr = vmx_set_msr,
6975 .get_segment_base = vmx_get_segment_base,
6976 .get_segment = vmx_get_segment,
6977 .set_segment = vmx_set_segment,
6978 .get_cpl = vmx_get_cpl,
6979 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
6980 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
6981 .decache_cr3 = vmx_decache_cr3,
6982 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6983 .set_cr0 = vmx_set_cr0,
6984 .set_cr3 = vmx_set_cr3,
6985 .set_cr4 = vmx_set_cr4,
6986 .set_efer = vmx_set_efer,
6987 .get_idt = vmx_get_idt,
6988 .set_idt = vmx_set_idt,
6989 .get_gdt = vmx_get_gdt,
6990 .set_gdt = vmx_set_gdt,
6991 .set_dr7 = vmx_set_dr7,
6992 .cache_reg = vmx_cache_reg,
6993 .get_rflags = vmx_get_rflags,
6994 .set_rflags = vmx_set_rflags,
6995 .fpu_activate = vmx_fpu_activate,
6996 .fpu_deactivate = vmx_fpu_deactivate,
6997
6998 .tlb_flush = vmx_flush_tlb,
6999
7000 .run = vmx_vcpu_run,
7001 .handle_exit = vmx_handle_exit,
7002 .skip_emulated_instruction = skip_emulated_instruction,
7003 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7004 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7005 .patch_hypercall = vmx_patch_hypercall,
7006 .set_irq = vmx_inject_irq,
7007 .set_nmi = vmx_inject_nmi,
7008 .queue_exception = vmx_queue_exception,
7009 .cancel_injection = vmx_cancel_injection,
7010 .interrupt_allowed = vmx_interrupt_allowed,
7011 .nmi_allowed = vmx_nmi_allowed,
7012 .get_nmi_mask = vmx_get_nmi_mask,
7013 .set_nmi_mask = vmx_set_nmi_mask,
7014 .enable_nmi_window = enable_nmi_window,
7015 .enable_irq_window = enable_irq_window,
7016 .update_cr8_intercept = update_cr8_intercept,
7017
7018 .set_tss_addr = vmx_set_tss_addr,
7019 .get_tdp_level = get_ept_level,
7020 .get_mt_mask = vmx_get_mt_mask,
7021
7022 .get_exit_info = vmx_get_exit_info,
7023 .exit_reasons_str = vmx_exit_reasons_str,
7024
7025 .get_lpage_level = vmx_get_lpage_level,
7026
7027 .cpuid_update = vmx_cpuid_update,
7028
7029 .rdtscp_supported = vmx_rdtscp_supported,
7030
7031 .set_supported_cpuid = vmx_set_supported_cpuid,
7032
7033 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7034
7035 .set_tsc_khz = vmx_set_tsc_khz,
7036 .write_tsc_offset = vmx_write_tsc_offset,
7037 .adjust_tsc_offset = vmx_adjust_tsc_offset,
7038 .compute_tsc_offset = vmx_compute_tsc_offset,
7039
7040 .set_tdp_cr3 = vmx_set_cr3,
7041
7042 .check_intercept = vmx_check_intercept,
7043 };
7044
7045 static int __init vmx_init(void)
7046 {
7047 int r, i;
7048
7049 rdmsrl_safe(MSR_EFER, &host_efer);
7050
7051 for (i = 0; i < NR_VMX_MSR; ++i)
7052 kvm_define_shared_msr(i, vmx_msr_index[i]);
7053
7054 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7055 if (!vmx_io_bitmap_a)
7056 return -ENOMEM;
7057
7058 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7059 if (!vmx_io_bitmap_b) {
7060 r = -ENOMEM;
7061 goto out;
7062 }
7063
7064 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7065 if (!vmx_msr_bitmap_legacy) {
7066 r = -ENOMEM;
7067 goto out1;
7068 }
7069
7070 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7071 if (!vmx_msr_bitmap_longmode) {
7072 r = -ENOMEM;
7073 goto out2;
7074 }
7075
7076 /*
7077 * Allow direct access to the PC debug port (it is often used for I/O
7078 * delays, but the vmexits simply slow things down).
7079 */
7080 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7081 clear_bit(0x80, vmx_io_bitmap_a);
7082
7083 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7084
7085 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7086 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7087
7088 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7089
7090 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7091 __alignof__(struct vcpu_vmx), THIS_MODULE);
7092 if (r)
7093 goto out3;
7094
7095 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7096 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7097 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7098 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7099 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7100 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7101
7102 if (enable_ept) {
7103 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
7104 VMX_EPT_EXECUTABLE_MASK);
7105 kvm_enable_tdp();
7106 } else
7107 kvm_disable_tdp();
7108
7109 return 0;
7110
7111 out3:
7112 free_page((unsigned long)vmx_msr_bitmap_longmode);
7113 out2:
7114 free_page((unsigned long)vmx_msr_bitmap_legacy);
7115 out1:
7116 free_page((unsigned long)vmx_io_bitmap_b);
7117 out:
7118 free_page((unsigned long)vmx_io_bitmap_a);
7119 return r;
7120 }
7121
7122 static void __exit vmx_exit(void)
7123 {
7124 free_page((unsigned long)vmx_msr_bitmap_legacy);
7125 free_page((unsigned long)vmx_msr_bitmap_longmode);
7126 free_page((unsigned long)vmx_io_bitmap_b);
7127 free_page((unsigned long)vmx_io_bitmap_a);
7128
7129 kvm_exit();
7130 }
7131
7132 module_init(vmx_init)
7133 module_exit(vmx_exit)
This page took 0.315698 seconds and 5 git commands to generate.