KVM: MMU: Avoid calling gfn_to_page() in mmu_set_spte()
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "segment_descriptor.h"
21 #include "mmu.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30
31 #include <asm/io.h>
32 #include <asm/desc.h>
33
34 MODULE_AUTHOR("Qumranet");
35 MODULE_LICENSE("GPL");
36
37 static int bypass_guest_pf = 1;
38 module_param(bypass_guest_pf, bool, 0);
39
40 struct vmcs {
41 u32 revision_id;
42 u32 abort;
43 char data[0];
44 };
45
46 struct vcpu_vmx {
47 struct kvm_vcpu vcpu;
48 int launched;
49 u8 fail;
50 u32 idt_vectoring_info;
51 struct kvm_msr_entry *guest_msrs;
52 struct kvm_msr_entry *host_msrs;
53 int nmsrs;
54 int save_nmsrs;
55 int msr_offset_efer;
56 #ifdef CONFIG_X86_64
57 int msr_offset_kernel_gs_base;
58 #endif
59 struct vmcs *vmcs;
60 struct {
61 int loaded;
62 u16 fs_sel, gs_sel, ldt_sel;
63 int gs_ldt_reload_needed;
64 int fs_reload_needed;
65 int guest_efer_loaded;
66 } host_state;
67 struct {
68 struct {
69 bool pending;
70 u8 vector;
71 unsigned rip;
72 } irq;
73 } rmode;
74 };
75
76 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
77 {
78 return container_of(vcpu, struct vcpu_vmx, vcpu);
79 }
80
81 static int init_rmode_tss(struct kvm *kvm);
82
83 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
84 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
85
86 static struct page *vmx_io_bitmap_a;
87 static struct page *vmx_io_bitmap_b;
88
89 static struct vmcs_config {
90 int size;
91 int order;
92 u32 revision_id;
93 u32 pin_based_exec_ctrl;
94 u32 cpu_based_exec_ctrl;
95 u32 cpu_based_2nd_exec_ctrl;
96 u32 vmexit_ctrl;
97 u32 vmentry_ctrl;
98 } vmcs_config;
99
100 #define VMX_SEGMENT_FIELD(seg) \
101 [VCPU_SREG_##seg] = { \
102 .selector = GUEST_##seg##_SELECTOR, \
103 .base = GUEST_##seg##_BASE, \
104 .limit = GUEST_##seg##_LIMIT, \
105 .ar_bytes = GUEST_##seg##_AR_BYTES, \
106 }
107
108 static struct kvm_vmx_segment_field {
109 unsigned selector;
110 unsigned base;
111 unsigned limit;
112 unsigned ar_bytes;
113 } kvm_vmx_segment_fields[] = {
114 VMX_SEGMENT_FIELD(CS),
115 VMX_SEGMENT_FIELD(DS),
116 VMX_SEGMENT_FIELD(ES),
117 VMX_SEGMENT_FIELD(FS),
118 VMX_SEGMENT_FIELD(GS),
119 VMX_SEGMENT_FIELD(SS),
120 VMX_SEGMENT_FIELD(TR),
121 VMX_SEGMENT_FIELD(LDTR),
122 };
123
124 /*
125 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
126 * away by decrementing the array size.
127 */
128 static const u32 vmx_msr_index[] = {
129 #ifdef CONFIG_X86_64
130 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
131 #endif
132 MSR_EFER, MSR_K6_STAR,
133 };
134 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
135
136 static void load_msrs(struct kvm_msr_entry *e, int n)
137 {
138 int i;
139
140 for (i = 0; i < n; ++i)
141 wrmsrl(e[i].index, e[i].data);
142 }
143
144 static void save_msrs(struct kvm_msr_entry *e, int n)
145 {
146 int i;
147
148 for (i = 0; i < n; ++i)
149 rdmsrl(e[i].index, e[i].data);
150 }
151
152 static inline int is_page_fault(u32 intr_info)
153 {
154 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
155 INTR_INFO_VALID_MASK)) ==
156 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
157 }
158
159 static inline int is_no_device(u32 intr_info)
160 {
161 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
162 INTR_INFO_VALID_MASK)) ==
163 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
164 }
165
166 static inline int is_invalid_opcode(u32 intr_info)
167 {
168 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
169 INTR_INFO_VALID_MASK)) ==
170 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
171 }
172
173 static inline int is_external_interrupt(u32 intr_info)
174 {
175 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
176 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
177 }
178
179 static inline int cpu_has_vmx_tpr_shadow(void)
180 {
181 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
182 }
183
184 static inline int vm_need_tpr_shadow(struct kvm *kvm)
185 {
186 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
187 }
188
189 static inline int cpu_has_secondary_exec_ctrls(void)
190 {
191 return (vmcs_config.cpu_based_exec_ctrl &
192 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
193 }
194
195 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
196 {
197 return (vmcs_config.cpu_based_2nd_exec_ctrl &
198 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
199 }
200
201 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
202 {
203 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
204 (irqchip_in_kernel(kvm)));
205 }
206
207 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
208 {
209 int i;
210
211 for (i = 0; i < vmx->nmsrs; ++i)
212 if (vmx->guest_msrs[i].index == msr)
213 return i;
214 return -1;
215 }
216
217 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
218 {
219 int i;
220
221 i = __find_msr_index(vmx, msr);
222 if (i >= 0)
223 return &vmx->guest_msrs[i];
224 return NULL;
225 }
226
227 static void vmcs_clear(struct vmcs *vmcs)
228 {
229 u64 phys_addr = __pa(vmcs);
230 u8 error;
231
232 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
233 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
234 : "cc", "memory");
235 if (error)
236 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
237 vmcs, phys_addr);
238 }
239
240 static void __vcpu_clear(void *arg)
241 {
242 struct vcpu_vmx *vmx = arg;
243 int cpu = raw_smp_processor_id();
244
245 if (vmx->vcpu.cpu == cpu)
246 vmcs_clear(vmx->vmcs);
247 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
248 per_cpu(current_vmcs, cpu) = NULL;
249 rdtscll(vmx->vcpu.arch.host_tsc);
250 }
251
252 static void vcpu_clear(struct vcpu_vmx *vmx)
253 {
254 if (vmx->vcpu.cpu == -1)
255 return;
256 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
257 vmx->launched = 0;
258 }
259
260 static unsigned long vmcs_readl(unsigned long field)
261 {
262 unsigned long value;
263
264 asm volatile (ASM_VMX_VMREAD_RDX_RAX
265 : "=a"(value) : "d"(field) : "cc");
266 return value;
267 }
268
269 static u16 vmcs_read16(unsigned long field)
270 {
271 return vmcs_readl(field);
272 }
273
274 static u32 vmcs_read32(unsigned long field)
275 {
276 return vmcs_readl(field);
277 }
278
279 static u64 vmcs_read64(unsigned long field)
280 {
281 #ifdef CONFIG_X86_64
282 return vmcs_readl(field);
283 #else
284 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
285 #endif
286 }
287
288 static noinline void vmwrite_error(unsigned long field, unsigned long value)
289 {
290 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
291 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
292 dump_stack();
293 }
294
295 static void vmcs_writel(unsigned long field, unsigned long value)
296 {
297 u8 error;
298
299 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
300 : "=q"(error) : "a"(value), "d"(field) : "cc");
301 if (unlikely(error))
302 vmwrite_error(field, value);
303 }
304
305 static void vmcs_write16(unsigned long field, u16 value)
306 {
307 vmcs_writel(field, value);
308 }
309
310 static void vmcs_write32(unsigned long field, u32 value)
311 {
312 vmcs_writel(field, value);
313 }
314
315 static void vmcs_write64(unsigned long field, u64 value)
316 {
317 #ifdef CONFIG_X86_64
318 vmcs_writel(field, value);
319 #else
320 vmcs_writel(field, value);
321 asm volatile ("");
322 vmcs_writel(field+1, value >> 32);
323 #endif
324 }
325
326 static void vmcs_clear_bits(unsigned long field, u32 mask)
327 {
328 vmcs_writel(field, vmcs_readl(field) & ~mask);
329 }
330
331 static void vmcs_set_bits(unsigned long field, u32 mask)
332 {
333 vmcs_writel(field, vmcs_readl(field) | mask);
334 }
335
336 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
337 {
338 u32 eb;
339
340 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
341 if (!vcpu->fpu_active)
342 eb |= 1u << NM_VECTOR;
343 if (vcpu->guest_debug.enabled)
344 eb |= 1u << 1;
345 if (vcpu->arch.rmode.active)
346 eb = ~0;
347 vmcs_write32(EXCEPTION_BITMAP, eb);
348 }
349
350 static void reload_tss(void)
351 {
352 #ifndef CONFIG_X86_64
353
354 /*
355 * VT restores TR but not its size. Useless.
356 */
357 struct descriptor_table gdt;
358 struct segment_descriptor *descs;
359
360 get_gdt(&gdt);
361 descs = (void *)gdt.base;
362 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
363 load_TR_desc();
364 #endif
365 }
366
367 static void load_transition_efer(struct vcpu_vmx *vmx)
368 {
369 int efer_offset = vmx->msr_offset_efer;
370 u64 host_efer = vmx->host_msrs[efer_offset].data;
371 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
372 u64 ignore_bits;
373
374 if (efer_offset < 0)
375 return;
376 /*
377 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
378 * outside long mode
379 */
380 ignore_bits = EFER_NX | EFER_SCE;
381 #ifdef CONFIG_X86_64
382 ignore_bits |= EFER_LMA | EFER_LME;
383 /* SCE is meaningful only in long mode on Intel */
384 if (guest_efer & EFER_LMA)
385 ignore_bits &= ~(u64)EFER_SCE;
386 #endif
387 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
388 return;
389
390 vmx->host_state.guest_efer_loaded = 1;
391 guest_efer &= ~ignore_bits;
392 guest_efer |= host_efer & ignore_bits;
393 wrmsrl(MSR_EFER, guest_efer);
394 vmx->vcpu.stat.efer_reload++;
395 }
396
397 static void reload_host_efer(struct vcpu_vmx *vmx)
398 {
399 if (vmx->host_state.guest_efer_loaded) {
400 vmx->host_state.guest_efer_loaded = 0;
401 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
402 }
403 }
404
405 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
406 {
407 struct vcpu_vmx *vmx = to_vmx(vcpu);
408
409 if (vmx->host_state.loaded)
410 return;
411
412 vmx->host_state.loaded = 1;
413 /*
414 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
415 * allow segment selectors with cpl > 0 or ti == 1.
416 */
417 vmx->host_state.ldt_sel = read_ldt();
418 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
419 vmx->host_state.fs_sel = read_fs();
420 if (!(vmx->host_state.fs_sel & 7)) {
421 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
422 vmx->host_state.fs_reload_needed = 0;
423 } else {
424 vmcs_write16(HOST_FS_SELECTOR, 0);
425 vmx->host_state.fs_reload_needed = 1;
426 }
427 vmx->host_state.gs_sel = read_gs();
428 if (!(vmx->host_state.gs_sel & 7))
429 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
430 else {
431 vmcs_write16(HOST_GS_SELECTOR, 0);
432 vmx->host_state.gs_ldt_reload_needed = 1;
433 }
434
435 #ifdef CONFIG_X86_64
436 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
437 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
438 #else
439 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
440 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
441 #endif
442
443 #ifdef CONFIG_X86_64
444 if (is_long_mode(&vmx->vcpu))
445 save_msrs(vmx->host_msrs +
446 vmx->msr_offset_kernel_gs_base, 1);
447
448 #endif
449 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
450 load_transition_efer(vmx);
451 }
452
453 static void vmx_load_host_state(struct vcpu_vmx *vmx)
454 {
455 unsigned long flags;
456
457 if (!vmx->host_state.loaded)
458 return;
459
460 ++vmx->vcpu.stat.host_state_reload;
461 vmx->host_state.loaded = 0;
462 if (vmx->host_state.fs_reload_needed)
463 load_fs(vmx->host_state.fs_sel);
464 if (vmx->host_state.gs_ldt_reload_needed) {
465 load_ldt(vmx->host_state.ldt_sel);
466 /*
467 * If we have to reload gs, we must take care to
468 * preserve our gs base.
469 */
470 local_irq_save(flags);
471 load_gs(vmx->host_state.gs_sel);
472 #ifdef CONFIG_X86_64
473 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
474 #endif
475 local_irq_restore(flags);
476 }
477 reload_tss();
478 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
479 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
480 reload_host_efer(vmx);
481 }
482
483 /*
484 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
485 * vcpu mutex is already taken.
486 */
487 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
488 {
489 struct vcpu_vmx *vmx = to_vmx(vcpu);
490 u64 phys_addr = __pa(vmx->vmcs);
491 u64 tsc_this, delta;
492
493 if (vcpu->cpu != cpu) {
494 vcpu_clear(vmx);
495 kvm_migrate_apic_timer(vcpu);
496 }
497
498 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
499 u8 error;
500
501 per_cpu(current_vmcs, cpu) = vmx->vmcs;
502 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
503 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
504 : "cc");
505 if (error)
506 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
507 vmx->vmcs, phys_addr);
508 }
509
510 if (vcpu->cpu != cpu) {
511 struct descriptor_table dt;
512 unsigned long sysenter_esp;
513
514 vcpu->cpu = cpu;
515 /*
516 * Linux uses per-cpu TSS and GDT, so set these when switching
517 * processors.
518 */
519 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
520 get_gdt(&dt);
521 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
522
523 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
524 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
525
526 /*
527 * Make sure the time stamp counter is monotonous.
528 */
529 rdtscll(tsc_this);
530 delta = vcpu->arch.host_tsc - tsc_this;
531 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
532 }
533 }
534
535 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
536 {
537 vmx_load_host_state(to_vmx(vcpu));
538 }
539
540 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
541 {
542 if (vcpu->fpu_active)
543 return;
544 vcpu->fpu_active = 1;
545 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
546 if (vcpu->arch.cr0 & X86_CR0_TS)
547 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
548 update_exception_bitmap(vcpu);
549 }
550
551 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
552 {
553 if (!vcpu->fpu_active)
554 return;
555 vcpu->fpu_active = 0;
556 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
557 update_exception_bitmap(vcpu);
558 }
559
560 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
561 {
562 vcpu_clear(to_vmx(vcpu));
563 }
564
565 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
566 {
567 return vmcs_readl(GUEST_RFLAGS);
568 }
569
570 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
571 {
572 if (vcpu->arch.rmode.active)
573 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
574 vmcs_writel(GUEST_RFLAGS, rflags);
575 }
576
577 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
578 {
579 unsigned long rip;
580 u32 interruptibility;
581
582 rip = vmcs_readl(GUEST_RIP);
583 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
584 vmcs_writel(GUEST_RIP, rip);
585
586 /*
587 * We emulated an instruction, so temporary interrupt blocking
588 * should be removed, if set.
589 */
590 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
591 if (interruptibility & 3)
592 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
593 interruptibility & ~3);
594 vcpu->arch.interrupt_window_open = 1;
595 }
596
597 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
598 bool has_error_code, u32 error_code)
599 {
600 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
601 nr | INTR_TYPE_EXCEPTION
602 | (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0)
603 | INTR_INFO_VALID_MASK);
604 if (has_error_code)
605 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
606 }
607
608 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
609 {
610 struct vcpu_vmx *vmx = to_vmx(vcpu);
611
612 return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
613 }
614
615 /*
616 * Swap MSR entry in host/guest MSR entry array.
617 */
618 #ifdef CONFIG_X86_64
619 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
620 {
621 struct kvm_msr_entry tmp;
622
623 tmp = vmx->guest_msrs[to];
624 vmx->guest_msrs[to] = vmx->guest_msrs[from];
625 vmx->guest_msrs[from] = tmp;
626 tmp = vmx->host_msrs[to];
627 vmx->host_msrs[to] = vmx->host_msrs[from];
628 vmx->host_msrs[from] = tmp;
629 }
630 #endif
631
632 /*
633 * Set up the vmcs to automatically save and restore system
634 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
635 * mode, as fiddling with msrs is very expensive.
636 */
637 static void setup_msrs(struct vcpu_vmx *vmx)
638 {
639 int save_nmsrs;
640
641 save_nmsrs = 0;
642 #ifdef CONFIG_X86_64
643 if (is_long_mode(&vmx->vcpu)) {
644 int index;
645
646 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
647 if (index >= 0)
648 move_msr_up(vmx, index, save_nmsrs++);
649 index = __find_msr_index(vmx, MSR_LSTAR);
650 if (index >= 0)
651 move_msr_up(vmx, index, save_nmsrs++);
652 index = __find_msr_index(vmx, MSR_CSTAR);
653 if (index >= 0)
654 move_msr_up(vmx, index, save_nmsrs++);
655 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
656 if (index >= 0)
657 move_msr_up(vmx, index, save_nmsrs++);
658 /*
659 * MSR_K6_STAR is only needed on long mode guests, and only
660 * if efer.sce is enabled.
661 */
662 index = __find_msr_index(vmx, MSR_K6_STAR);
663 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
664 move_msr_up(vmx, index, save_nmsrs++);
665 }
666 #endif
667 vmx->save_nmsrs = save_nmsrs;
668
669 #ifdef CONFIG_X86_64
670 vmx->msr_offset_kernel_gs_base =
671 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
672 #endif
673 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
674 }
675
676 /*
677 * reads and returns guest's timestamp counter "register"
678 * guest_tsc = host_tsc + tsc_offset -- 21.3
679 */
680 static u64 guest_read_tsc(void)
681 {
682 u64 host_tsc, tsc_offset;
683
684 rdtscll(host_tsc);
685 tsc_offset = vmcs_read64(TSC_OFFSET);
686 return host_tsc + tsc_offset;
687 }
688
689 /*
690 * writes 'guest_tsc' into guest's timestamp counter "register"
691 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
692 */
693 static void guest_write_tsc(u64 guest_tsc)
694 {
695 u64 host_tsc;
696
697 rdtscll(host_tsc);
698 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
699 }
700
701 /*
702 * Reads an msr value (of 'msr_index') into 'pdata'.
703 * Returns 0 on success, non-0 otherwise.
704 * Assumes vcpu_load() was already called.
705 */
706 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
707 {
708 u64 data;
709 struct kvm_msr_entry *msr;
710
711 if (!pdata) {
712 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
713 return -EINVAL;
714 }
715
716 switch (msr_index) {
717 #ifdef CONFIG_X86_64
718 case MSR_FS_BASE:
719 data = vmcs_readl(GUEST_FS_BASE);
720 break;
721 case MSR_GS_BASE:
722 data = vmcs_readl(GUEST_GS_BASE);
723 break;
724 case MSR_EFER:
725 return kvm_get_msr_common(vcpu, msr_index, pdata);
726 #endif
727 case MSR_IA32_TIME_STAMP_COUNTER:
728 data = guest_read_tsc();
729 break;
730 case MSR_IA32_SYSENTER_CS:
731 data = vmcs_read32(GUEST_SYSENTER_CS);
732 break;
733 case MSR_IA32_SYSENTER_EIP:
734 data = vmcs_readl(GUEST_SYSENTER_EIP);
735 break;
736 case MSR_IA32_SYSENTER_ESP:
737 data = vmcs_readl(GUEST_SYSENTER_ESP);
738 break;
739 default:
740 msr = find_msr_entry(to_vmx(vcpu), msr_index);
741 if (msr) {
742 data = msr->data;
743 break;
744 }
745 return kvm_get_msr_common(vcpu, msr_index, pdata);
746 }
747
748 *pdata = data;
749 return 0;
750 }
751
752 /*
753 * Writes msr value into into the appropriate "register".
754 * Returns 0 on success, non-0 otherwise.
755 * Assumes vcpu_load() was already called.
756 */
757 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
758 {
759 struct vcpu_vmx *vmx = to_vmx(vcpu);
760 struct kvm_msr_entry *msr;
761 int ret = 0;
762
763 switch (msr_index) {
764 #ifdef CONFIG_X86_64
765 case MSR_EFER:
766 ret = kvm_set_msr_common(vcpu, msr_index, data);
767 if (vmx->host_state.loaded) {
768 reload_host_efer(vmx);
769 load_transition_efer(vmx);
770 }
771 break;
772 case MSR_FS_BASE:
773 vmcs_writel(GUEST_FS_BASE, data);
774 break;
775 case MSR_GS_BASE:
776 vmcs_writel(GUEST_GS_BASE, data);
777 break;
778 #endif
779 case MSR_IA32_SYSENTER_CS:
780 vmcs_write32(GUEST_SYSENTER_CS, data);
781 break;
782 case MSR_IA32_SYSENTER_EIP:
783 vmcs_writel(GUEST_SYSENTER_EIP, data);
784 break;
785 case MSR_IA32_SYSENTER_ESP:
786 vmcs_writel(GUEST_SYSENTER_ESP, data);
787 break;
788 case MSR_IA32_TIME_STAMP_COUNTER:
789 guest_write_tsc(data);
790 break;
791 default:
792 msr = find_msr_entry(vmx, msr_index);
793 if (msr) {
794 msr->data = data;
795 if (vmx->host_state.loaded)
796 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
797 break;
798 }
799 ret = kvm_set_msr_common(vcpu, msr_index, data);
800 }
801
802 return ret;
803 }
804
805 /*
806 * Sync the rsp and rip registers into the vcpu structure. This allows
807 * registers to be accessed by indexing vcpu->arch.regs.
808 */
809 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
810 {
811 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
812 vcpu->arch.rip = vmcs_readl(GUEST_RIP);
813 }
814
815 /*
816 * Syncs rsp and rip back into the vmcs. Should be called after possible
817 * modification.
818 */
819 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
820 {
821 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
822 vmcs_writel(GUEST_RIP, vcpu->arch.rip);
823 }
824
825 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
826 {
827 unsigned long dr7 = 0x400;
828 int old_singlestep;
829
830 old_singlestep = vcpu->guest_debug.singlestep;
831
832 vcpu->guest_debug.enabled = dbg->enabled;
833 if (vcpu->guest_debug.enabled) {
834 int i;
835
836 dr7 |= 0x200; /* exact */
837 for (i = 0; i < 4; ++i) {
838 if (!dbg->breakpoints[i].enabled)
839 continue;
840 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
841 dr7 |= 2 << (i*2); /* global enable */
842 dr7 |= 0 << (i*4+16); /* execution breakpoint */
843 }
844
845 vcpu->guest_debug.singlestep = dbg->singlestep;
846 } else
847 vcpu->guest_debug.singlestep = 0;
848
849 if (old_singlestep && !vcpu->guest_debug.singlestep) {
850 unsigned long flags;
851
852 flags = vmcs_readl(GUEST_RFLAGS);
853 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
854 vmcs_writel(GUEST_RFLAGS, flags);
855 }
856
857 update_exception_bitmap(vcpu);
858 vmcs_writel(GUEST_DR7, dr7);
859
860 return 0;
861 }
862
863 static int vmx_get_irq(struct kvm_vcpu *vcpu)
864 {
865 struct vcpu_vmx *vmx = to_vmx(vcpu);
866 u32 idtv_info_field;
867
868 idtv_info_field = vmx->idt_vectoring_info;
869 if (idtv_info_field & INTR_INFO_VALID_MASK) {
870 if (is_external_interrupt(idtv_info_field))
871 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
872 else
873 printk(KERN_DEBUG "pending exception: not handled yet\n");
874 }
875 return -1;
876 }
877
878 static __init int cpu_has_kvm_support(void)
879 {
880 unsigned long ecx = cpuid_ecx(1);
881 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
882 }
883
884 static __init int vmx_disabled_by_bios(void)
885 {
886 u64 msr;
887
888 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
889 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
890 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
891 == MSR_IA32_FEATURE_CONTROL_LOCKED;
892 /* locked but not enabled */
893 }
894
895 static void hardware_enable(void *garbage)
896 {
897 int cpu = raw_smp_processor_id();
898 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
899 u64 old;
900
901 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
902 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
903 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
904 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
905 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
906 /* enable and lock */
907 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
908 MSR_IA32_FEATURE_CONTROL_LOCKED |
909 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
910 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
911 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
912 : "memory", "cc");
913 }
914
915 static void hardware_disable(void *garbage)
916 {
917 asm volatile (ASM_VMX_VMXOFF : : : "cc");
918 }
919
920 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
921 u32 msr, u32 *result)
922 {
923 u32 vmx_msr_low, vmx_msr_high;
924 u32 ctl = ctl_min | ctl_opt;
925
926 rdmsr(msr, vmx_msr_low, vmx_msr_high);
927
928 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
929 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
930
931 /* Ensure minimum (required) set of control bits are supported. */
932 if (ctl_min & ~ctl)
933 return -EIO;
934
935 *result = ctl;
936 return 0;
937 }
938
939 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
940 {
941 u32 vmx_msr_low, vmx_msr_high;
942 u32 min, opt;
943 u32 _pin_based_exec_control = 0;
944 u32 _cpu_based_exec_control = 0;
945 u32 _cpu_based_2nd_exec_control = 0;
946 u32 _vmexit_control = 0;
947 u32 _vmentry_control = 0;
948
949 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
950 opt = 0;
951 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
952 &_pin_based_exec_control) < 0)
953 return -EIO;
954
955 min = CPU_BASED_HLT_EXITING |
956 #ifdef CONFIG_X86_64
957 CPU_BASED_CR8_LOAD_EXITING |
958 CPU_BASED_CR8_STORE_EXITING |
959 #endif
960 CPU_BASED_USE_IO_BITMAPS |
961 CPU_BASED_MOV_DR_EXITING |
962 CPU_BASED_USE_TSC_OFFSETING;
963 opt = CPU_BASED_TPR_SHADOW |
964 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
965 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
966 &_cpu_based_exec_control) < 0)
967 return -EIO;
968 #ifdef CONFIG_X86_64
969 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
970 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
971 ~CPU_BASED_CR8_STORE_EXITING;
972 #endif
973 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
974 min = 0;
975 opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
976 SECONDARY_EXEC_WBINVD_EXITING;
977 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
978 &_cpu_based_2nd_exec_control) < 0)
979 return -EIO;
980 }
981 #ifndef CONFIG_X86_64
982 if (!(_cpu_based_2nd_exec_control &
983 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
984 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
985 #endif
986
987 min = 0;
988 #ifdef CONFIG_X86_64
989 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
990 #endif
991 opt = 0;
992 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
993 &_vmexit_control) < 0)
994 return -EIO;
995
996 min = opt = 0;
997 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
998 &_vmentry_control) < 0)
999 return -EIO;
1000
1001 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1002
1003 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1004 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1005 return -EIO;
1006
1007 #ifdef CONFIG_X86_64
1008 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1009 if (vmx_msr_high & (1u<<16))
1010 return -EIO;
1011 #endif
1012
1013 /* Require Write-Back (WB) memory type for VMCS accesses. */
1014 if (((vmx_msr_high >> 18) & 15) != 6)
1015 return -EIO;
1016
1017 vmcs_conf->size = vmx_msr_high & 0x1fff;
1018 vmcs_conf->order = get_order(vmcs_config.size);
1019 vmcs_conf->revision_id = vmx_msr_low;
1020
1021 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1022 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1023 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1024 vmcs_conf->vmexit_ctrl = _vmexit_control;
1025 vmcs_conf->vmentry_ctrl = _vmentry_control;
1026
1027 return 0;
1028 }
1029
1030 static struct vmcs *alloc_vmcs_cpu(int cpu)
1031 {
1032 int node = cpu_to_node(cpu);
1033 struct page *pages;
1034 struct vmcs *vmcs;
1035
1036 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1037 if (!pages)
1038 return NULL;
1039 vmcs = page_address(pages);
1040 memset(vmcs, 0, vmcs_config.size);
1041 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1042 return vmcs;
1043 }
1044
1045 static struct vmcs *alloc_vmcs(void)
1046 {
1047 return alloc_vmcs_cpu(raw_smp_processor_id());
1048 }
1049
1050 static void free_vmcs(struct vmcs *vmcs)
1051 {
1052 free_pages((unsigned long)vmcs, vmcs_config.order);
1053 }
1054
1055 static void free_kvm_area(void)
1056 {
1057 int cpu;
1058
1059 for_each_online_cpu(cpu)
1060 free_vmcs(per_cpu(vmxarea, cpu));
1061 }
1062
1063 static __init int alloc_kvm_area(void)
1064 {
1065 int cpu;
1066
1067 for_each_online_cpu(cpu) {
1068 struct vmcs *vmcs;
1069
1070 vmcs = alloc_vmcs_cpu(cpu);
1071 if (!vmcs) {
1072 free_kvm_area();
1073 return -ENOMEM;
1074 }
1075
1076 per_cpu(vmxarea, cpu) = vmcs;
1077 }
1078 return 0;
1079 }
1080
1081 static __init int hardware_setup(void)
1082 {
1083 if (setup_vmcs_config(&vmcs_config) < 0)
1084 return -EIO;
1085 return alloc_kvm_area();
1086 }
1087
1088 static __exit void hardware_unsetup(void)
1089 {
1090 free_kvm_area();
1091 }
1092
1093 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1094 {
1095 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1096
1097 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1098 vmcs_write16(sf->selector, save->selector);
1099 vmcs_writel(sf->base, save->base);
1100 vmcs_write32(sf->limit, save->limit);
1101 vmcs_write32(sf->ar_bytes, save->ar);
1102 } else {
1103 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1104 << AR_DPL_SHIFT;
1105 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1106 }
1107 }
1108
1109 static void enter_pmode(struct kvm_vcpu *vcpu)
1110 {
1111 unsigned long flags;
1112
1113 vcpu->arch.rmode.active = 0;
1114
1115 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1116 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1117 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1118
1119 flags = vmcs_readl(GUEST_RFLAGS);
1120 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1121 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1122 vmcs_writel(GUEST_RFLAGS, flags);
1123
1124 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1125 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1126
1127 update_exception_bitmap(vcpu);
1128
1129 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1130 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1131 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1132 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1133
1134 vmcs_write16(GUEST_SS_SELECTOR, 0);
1135 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1136
1137 vmcs_write16(GUEST_CS_SELECTOR,
1138 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1139 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1140 }
1141
1142 static gva_t rmode_tss_base(struct kvm *kvm)
1143 {
1144 if (!kvm->arch.tss_addr) {
1145 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1146 kvm->memslots[0].npages - 3;
1147 return base_gfn << PAGE_SHIFT;
1148 }
1149 return kvm->arch.tss_addr;
1150 }
1151
1152 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1153 {
1154 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1155
1156 save->selector = vmcs_read16(sf->selector);
1157 save->base = vmcs_readl(sf->base);
1158 save->limit = vmcs_read32(sf->limit);
1159 save->ar = vmcs_read32(sf->ar_bytes);
1160 vmcs_write16(sf->selector, save->base >> 4);
1161 vmcs_write32(sf->base, save->base & 0xfffff);
1162 vmcs_write32(sf->limit, 0xffff);
1163 vmcs_write32(sf->ar_bytes, 0xf3);
1164 }
1165
1166 static void enter_rmode(struct kvm_vcpu *vcpu)
1167 {
1168 unsigned long flags;
1169
1170 vcpu->arch.rmode.active = 1;
1171
1172 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1173 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1174
1175 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1176 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1177
1178 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1179 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1180
1181 flags = vmcs_readl(GUEST_RFLAGS);
1182 vcpu->arch.rmode.save_iopl
1183 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1184
1185 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1186
1187 vmcs_writel(GUEST_RFLAGS, flags);
1188 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1189 update_exception_bitmap(vcpu);
1190
1191 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1192 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1193 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1194
1195 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1196 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1197 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1198 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1199 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1200
1201 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1202 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1203 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1204 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1205
1206 kvm_mmu_reset_context(vcpu);
1207 init_rmode_tss(vcpu->kvm);
1208 }
1209
1210 #ifdef CONFIG_X86_64
1211
1212 static void enter_lmode(struct kvm_vcpu *vcpu)
1213 {
1214 u32 guest_tr_ar;
1215
1216 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1217 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1218 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1219 __FUNCTION__);
1220 vmcs_write32(GUEST_TR_AR_BYTES,
1221 (guest_tr_ar & ~AR_TYPE_MASK)
1222 | AR_TYPE_BUSY_64_TSS);
1223 }
1224
1225 vcpu->arch.shadow_efer |= EFER_LMA;
1226
1227 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1228 vmcs_write32(VM_ENTRY_CONTROLS,
1229 vmcs_read32(VM_ENTRY_CONTROLS)
1230 | VM_ENTRY_IA32E_MODE);
1231 }
1232
1233 static void exit_lmode(struct kvm_vcpu *vcpu)
1234 {
1235 vcpu->arch.shadow_efer &= ~EFER_LMA;
1236
1237 vmcs_write32(VM_ENTRY_CONTROLS,
1238 vmcs_read32(VM_ENTRY_CONTROLS)
1239 & ~VM_ENTRY_IA32E_MODE);
1240 }
1241
1242 #endif
1243
1244 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1245 {
1246 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1247 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1248 }
1249
1250 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1251 {
1252 vmx_fpu_deactivate(vcpu);
1253
1254 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1255 enter_pmode(vcpu);
1256
1257 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1258 enter_rmode(vcpu);
1259
1260 #ifdef CONFIG_X86_64
1261 if (vcpu->arch.shadow_efer & EFER_LME) {
1262 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1263 enter_lmode(vcpu);
1264 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1265 exit_lmode(vcpu);
1266 }
1267 #endif
1268
1269 vmcs_writel(CR0_READ_SHADOW, cr0);
1270 vmcs_writel(GUEST_CR0,
1271 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1272 vcpu->arch.cr0 = cr0;
1273
1274 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1275 vmx_fpu_activate(vcpu);
1276 }
1277
1278 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1279 {
1280 vmcs_writel(GUEST_CR3, cr3);
1281 if (vcpu->arch.cr0 & X86_CR0_PE)
1282 vmx_fpu_deactivate(vcpu);
1283 }
1284
1285 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1286 {
1287 vmcs_writel(CR4_READ_SHADOW, cr4);
1288 vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
1289 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1290 vcpu->arch.cr4 = cr4;
1291 }
1292
1293 #ifdef CONFIG_X86_64
1294
1295 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1296 {
1297 struct vcpu_vmx *vmx = to_vmx(vcpu);
1298 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1299
1300 vcpu->arch.shadow_efer = efer;
1301 if (efer & EFER_LMA) {
1302 vmcs_write32(VM_ENTRY_CONTROLS,
1303 vmcs_read32(VM_ENTRY_CONTROLS) |
1304 VM_ENTRY_IA32E_MODE);
1305 msr->data = efer;
1306
1307 } else {
1308 vmcs_write32(VM_ENTRY_CONTROLS,
1309 vmcs_read32(VM_ENTRY_CONTROLS) &
1310 ~VM_ENTRY_IA32E_MODE);
1311
1312 msr->data = efer & ~EFER_LME;
1313 }
1314 setup_msrs(vmx);
1315 }
1316
1317 #endif
1318
1319 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1320 {
1321 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1322
1323 return vmcs_readl(sf->base);
1324 }
1325
1326 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1327 struct kvm_segment *var, int seg)
1328 {
1329 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1330 u32 ar;
1331
1332 var->base = vmcs_readl(sf->base);
1333 var->limit = vmcs_read32(sf->limit);
1334 var->selector = vmcs_read16(sf->selector);
1335 ar = vmcs_read32(sf->ar_bytes);
1336 if (ar & AR_UNUSABLE_MASK)
1337 ar = 0;
1338 var->type = ar & 15;
1339 var->s = (ar >> 4) & 1;
1340 var->dpl = (ar >> 5) & 3;
1341 var->present = (ar >> 7) & 1;
1342 var->avl = (ar >> 12) & 1;
1343 var->l = (ar >> 13) & 1;
1344 var->db = (ar >> 14) & 1;
1345 var->g = (ar >> 15) & 1;
1346 var->unusable = (ar >> 16) & 1;
1347 }
1348
1349 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1350 {
1351 u32 ar;
1352
1353 if (var->unusable)
1354 ar = 1 << 16;
1355 else {
1356 ar = var->type & 15;
1357 ar |= (var->s & 1) << 4;
1358 ar |= (var->dpl & 3) << 5;
1359 ar |= (var->present & 1) << 7;
1360 ar |= (var->avl & 1) << 12;
1361 ar |= (var->l & 1) << 13;
1362 ar |= (var->db & 1) << 14;
1363 ar |= (var->g & 1) << 15;
1364 }
1365 if (ar == 0) /* a 0 value means unusable */
1366 ar = AR_UNUSABLE_MASK;
1367
1368 return ar;
1369 }
1370
1371 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1372 struct kvm_segment *var, int seg)
1373 {
1374 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1375 u32 ar;
1376
1377 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1378 vcpu->arch.rmode.tr.selector = var->selector;
1379 vcpu->arch.rmode.tr.base = var->base;
1380 vcpu->arch.rmode.tr.limit = var->limit;
1381 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1382 return;
1383 }
1384 vmcs_writel(sf->base, var->base);
1385 vmcs_write32(sf->limit, var->limit);
1386 vmcs_write16(sf->selector, var->selector);
1387 if (vcpu->arch.rmode.active && var->s) {
1388 /*
1389 * Hack real-mode segments into vm86 compatibility.
1390 */
1391 if (var->base == 0xffff0000 && var->selector == 0xf000)
1392 vmcs_writel(sf->base, 0xf0000);
1393 ar = 0xf3;
1394 } else
1395 ar = vmx_segment_access_rights(var);
1396 vmcs_write32(sf->ar_bytes, ar);
1397 }
1398
1399 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1400 {
1401 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1402
1403 *db = (ar >> 14) & 1;
1404 *l = (ar >> 13) & 1;
1405 }
1406
1407 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1408 {
1409 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1410 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1411 }
1412
1413 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1414 {
1415 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1416 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1417 }
1418
1419 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1420 {
1421 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1422 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1423 }
1424
1425 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1426 {
1427 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1428 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1429 }
1430
1431 static int init_rmode_tss(struct kvm *kvm)
1432 {
1433 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1434 u16 data = 0;
1435 int ret = 0;
1436 int r;
1437
1438 down_read(&current->mm->mmap_sem);
1439 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1440 if (r < 0)
1441 goto out;
1442 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1443 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1444 if (r < 0)
1445 goto out;
1446 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1447 if (r < 0)
1448 goto out;
1449 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1450 if (r < 0)
1451 goto out;
1452 data = ~0;
1453 r = kvm_write_guest_page(kvm, fn, &data,
1454 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1455 sizeof(u8));
1456 if (r < 0)
1457 goto out;
1458
1459 ret = 1;
1460 out:
1461 up_read(&current->mm->mmap_sem);
1462 return ret;
1463 }
1464
1465 static void seg_setup(int seg)
1466 {
1467 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1468
1469 vmcs_write16(sf->selector, 0);
1470 vmcs_writel(sf->base, 0);
1471 vmcs_write32(sf->limit, 0xffff);
1472 vmcs_write32(sf->ar_bytes, 0x93);
1473 }
1474
1475 static int alloc_apic_access_page(struct kvm *kvm)
1476 {
1477 struct kvm_userspace_memory_region kvm_userspace_mem;
1478 int r = 0;
1479
1480 mutex_lock(&kvm->lock);
1481 down_write(&current->mm->mmap_sem);
1482 if (kvm->arch.apic_access_page)
1483 goto out;
1484 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1485 kvm_userspace_mem.flags = 0;
1486 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1487 kvm_userspace_mem.memory_size = PAGE_SIZE;
1488 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1489 if (r)
1490 goto out;
1491 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1492 out:
1493 up_write(&current->mm->mmap_sem);
1494 mutex_unlock(&kvm->lock);
1495 return r;
1496 }
1497
1498 /*
1499 * Sets up the vmcs for emulated real mode.
1500 */
1501 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1502 {
1503 u32 host_sysenter_cs;
1504 u32 junk;
1505 unsigned long a;
1506 struct descriptor_table dt;
1507 int i;
1508 unsigned long kvm_vmx_return;
1509 u32 exec_control;
1510
1511 /* I/O */
1512 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1513 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1514
1515 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1516
1517 /* Control */
1518 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1519 vmcs_config.pin_based_exec_ctrl);
1520
1521 exec_control = vmcs_config.cpu_based_exec_ctrl;
1522 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1523 exec_control &= ~CPU_BASED_TPR_SHADOW;
1524 #ifdef CONFIG_X86_64
1525 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1526 CPU_BASED_CR8_LOAD_EXITING;
1527 #endif
1528 }
1529 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1530
1531 if (cpu_has_secondary_exec_ctrls()) {
1532 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1533 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1534 exec_control &=
1535 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1536 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1537 }
1538
1539 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1540 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1541 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1542
1543 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1544 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1545 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1546
1547 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1548 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1549 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1550 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1551 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1552 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1553 #ifdef CONFIG_X86_64
1554 rdmsrl(MSR_FS_BASE, a);
1555 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1556 rdmsrl(MSR_GS_BASE, a);
1557 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1558 #else
1559 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1560 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1561 #endif
1562
1563 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1564
1565 get_idt(&dt);
1566 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1567
1568 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1569 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1570 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1571 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1572 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1573
1574 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1575 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1576 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1577 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1578 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1579 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1580
1581 for (i = 0; i < NR_VMX_MSR; ++i) {
1582 u32 index = vmx_msr_index[i];
1583 u32 data_low, data_high;
1584 u64 data;
1585 int j = vmx->nmsrs;
1586
1587 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1588 continue;
1589 if (wrmsr_safe(index, data_low, data_high) < 0)
1590 continue;
1591 data = data_low | ((u64)data_high << 32);
1592 vmx->host_msrs[j].index = index;
1593 vmx->host_msrs[j].reserved = 0;
1594 vmx->host_msrs[j].data = data;
1595 vmx->guest_msrs[j] = vmx->host_msrs[j];
1596 ++vmx->nmsrs;
1597 }
1598
1599 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1600
1601 /* 22.2.1, 20.8.1 */
1602 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1603
1604 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1605 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1606
1607 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1608 if (alloc_apic_access_page(vmx->vcpu.kvm) != 0)
1609 return -ENOMEM;
1610
1611 return 0;
1612 }
1613
1614 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1615 {
1616 struct vcpu_vmx *vmx = to_vmx(vcpu);
1617 u64 msr;
1618 int ret;
1619
1620 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1621 ret = -ENOMEM;
1622 goto out;
1623 }
1624
1625 vmx->vcpu.arch.rmode.active = 0;
1626
1627 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1628 set_cr8(&vmx->vcpu, 0);
1629 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1630 if (vmx->vcpu.vcpu_id == 0)
1631 msr |= MSR_IA32_APICBASE_BSP;
1632 kvm_set_apic_base(&vmx->vcpu, msr);
1633
1634 fx_init(&vmx->vcpu);
1635
1636 /*
1637 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1638 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1639 */
1640 if (vmx->vcpu.vcpu_id == 0) {
1641 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1642 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1643 } else {
1644 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
1645 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
1646 }
1647 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1648 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1649
1650 seg_setup(VCPU_SREG_DS);
1651 seg_setup(VCPU_SREG_ES);
1652 seg_setup(VCPU_SREG_FS);
1653 seg_setup(VCPU_SREG_GS);
1654 seg_setup(VCPU_SREG_SS);
1655
1656 vmcs_write16(GUEST_TR_SELECTOR, 0);
1657 vmcs_writel(GUEST_TR_BASE, 0);
1658 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1659 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1660
1661 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1662 vmcs_writel(GUEST_LDTR_BASE, 0);
1663 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1664 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1665
1666 vmcs_write32(GUEST_SYSENTER_CS, 0);
1667 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1668 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1669
1670 vmcs_writel(GUEST_RFLAGS, 0x02);
1671 if (vmx->vcpu.vcpu_id == 0)
1672 vmcs_writel(GUEST_RIP, 0xfff0);
1673 else
1674 vmcs_writel(GUEST_RIP, 0);
1675 vmcs_writel(GUEST_RSP, 0);
1676
1677 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
1678 vmcs_writel(GUEST_DR7, 0x400);
1679
1680 vmcs_writel(GUEST_GDTR_BASE, 0);
1681 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1682
1683 vmcs_writel(GUEST_IDTR_BASE, 0);
1684 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1685
1686 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1687 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1688 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1689
1690 guest_write_tsc(0);
1691
1692 /* Special registers */
1693 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1694
1695 setup_msrs(vmx);
1696
1697 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1698
1699 if (cpu_has_vmx_tpr_shadow()) {
1700 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1701 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1702 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1703 page_to_phys(vmx->vcpu.arch.apic->regs_page));
1704 vmcs_write32(TPR_THRESHOLD, 0);
1705 }
1706
1707 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1708 vmcs_write64(APIC_ACCESS_ADDR,
1709 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
1710
1711 vmx->vcpu.arch.cr0 = 0x60000010;
1712 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
1713 vmx_set_cr4(&vmx->vcpu, 0);
1714 #ifdef CONFIG_X86_64
1715 vmx_set_efer(&vmx->vcpu, 0);
1716 #endif
1717 vmx_fpu_activate(&vmx->vcpu);
1718 update_exception_bitmap(&vmx->vcpu);
1719
1720 return 0;
1721
1722 out:
1723 return ret;
1724 }
1725
1726 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1727 {
1728 struct vcpu_vmx *vmx = to_vmx(vcpu);
1729
1730 if (vcpu->arch.rmode.active) {
1731 vmx->rmode.irq.pending = true;
1732 vmx->rmode.irq.vector = irq;
1733 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
1734 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1735 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
1736 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1737 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
1738 return;
1739 }
1740 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1741 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1742 }
1743
1744 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1745 {
1746 int word_index = __ffs(vcpu->arch.irq_summary);
1747 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1748 int irq = word_index * BITS_PER_LONG + bit_index;
1749
1750 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1751 if (!vcpu->arch.irq_pending[word_index])
1752 clear_bit(word_index, &vcpu->arch.irq_summary);
1753 vmx_inject_irq(vcpu, irq);
1754 }
1755
1756
1757 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1758 struct kvm_run *kvm_run)
1759 {
1760 u32 cpu_based_vm_exec_control;
1761
1762 vcpu->arch.interrupt_window_open =
1763 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1764 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1765
1766 if (vcpu->arch.interrupt_window_open &&
1767 vcpu->arch.irq_summary &&
1768 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1769 /*
1770 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1771 */
1772 kvm_do_inject_irq(vcpu);
1773
1774 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1775 if (!vcpu->arch.interrupt_window_open &&
1776 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
1777 /*
1778 * Interrupts blocked. Wait for unblock.
1779 */
1780 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1781 else
1782 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1783 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1784 }
1785
1786 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
1787 {
1788 int ret;
1789 struct kvm_userspace_memory_region tss_mem = {
1790 .slot = 8,
1791 .guest_phys_addr = addr,
1792 .memory_size = PAGE_SIZE * 3,
1793 .flags = 0,
1794 };
1795
1796 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
1797 if (ret)
1798 return ret;
1799 kvm->arch.tss_addr = addr;
1800 return 0;
1801 }
1802
1803 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1804 {
1805 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1806
1807 set_debugreg(dbg->bp[0], 0);
1808 set_debugreg(dbg->bp[1], 1);
1809 set_debugreg(dbg->bp[2], 2);
1810 set_debugreg(dbg->bp[3], 3);
1811
1812 if (dbg->singlestep) {
1813 unsigned long flags;
1814
1815 flags = vmcs_readl(GUEST_RFLAGS);
1816 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1817 vmcs_writel(GUEST_RFLAGS, flags);
1818 }
1819 }
1820
1821 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1822 int vec, u32 err_code)
1823 {
1824 if (!vcpu->arch.rmode.active)
1825 return 0;
1826
1827 /*
1828 * Instruction with address size override prefix opcode 0x67
1829 * Cause the #SS fault with 0 error code in VM86 mode.
1830 */
1831 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1832 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
1833 return 1;
1834 return 0;
1835 }
1836
1837 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1838 {
1839 struct vcpu_vmx *vmx = to_vmx(vcpu);
1840 u32 intr_info, error_code;
1841 unsigned long cr2, rip;
1842 u32 vect_info;
1843 enum emulation_result er;
1844
1845 vect_info = vmx->idt_vectoring_info;
1846 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1847
1848 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1849 !is_page_fault(intr_info))
1850 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1851 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1852
1853 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1854 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1855 set_bit(irq, vcpu->arch.irq_pending);
1856 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1857 }
1858
1859 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1860 return 1; /* already handled by vmx_vcpu_run() */
1861
1862 if (is_no_device(intr_info)) {
1863 vmx_fpu_activate(vcpu);
1864 return 1;
1865 }
1866
1867 if (is_invalid_opcode(intr_info)) {
1868 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
1869 if (er != EMULATE_DONE)
1870 kvm_queue_exception(vcpu, UD_VECTOR);
1871 return 1;
1872 }
1873
1874 error_code = 0;
1875 rip = vmcs_readl(GUEST_RIP);
1876 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1877 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1878 if (is_page_fault(intr_info)) {
1879 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1880 return kvm_mmu_page_fault(vcpu, cr2, error_code);
1881 }
1882
1883 if (vcpu->arch.rmode.active &&
1884 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1885 error_code)) {
1886 if (vcpu->arch.halt_request) {
1887 vcpu->arch.halt_request = 0;
1888 return kvm_emulate_halt(vcpu);
1889 }
1890 return 1;
1891 }
1892
1893 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
1894 (INTR_TYPE_EXCEPTION | 1)) {
1895 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1896 return 0;
1897 }
1898 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1899 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1900 kvm_run->ex.error_code = error_code;
1901 return 0;
1902 }
1903
1904 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1905 struct kvm_run *kvm_run)
1906 {
1907 ++vcpu->stat.irq_exits;
1908 return 1;
1909 }
1910
1911 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1912 {
1913 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1914 return 0;
1915 }
1916
1917 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1918 {
1919 unsigned long exit_qualification;
1920 int size, down, in, string, rep;
1921 unsigned port;
1922
1923 ++vcpu->stat.io_exits;
1924 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1925 string = (exit_qualification & 16) != 0;
1926
1927 if (string) {
1928 if (emulate_instruction(vcpu,
1929 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1930 return 0;
1931 return 1;
1932 }
1933
1934 size = (exit_qualification & 7) + 1;
1935 in = (exit_qualification & 8) != 0;
1936 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1937 rep = (exit_qualification & 32) != 0;
1938 port = exit_qualification >> 16;
1939
1940 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1941 }
1942
1943 static void
1944 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1945 {
1946 /*
1947 * Patch in the VMCALL instruction:
1948 */
1949 hypercall[0] = 0x0f;
1950 hypercall[1] = 0x01;
1951 hypercall[2] = 0xc1;
1952 }
1953
1954 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1955 {
1956 unsigned long exit_qualification;
1957 int cr;
1958 int reg;
1959
1960 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1961 cr = exit_qualification & 15;
1962 reg = (exit_qualification >> 8) & 15;
1963 switch ((exit_qualification >> 4) & 3) {
1964 case 0: /* mov to cr */
1965 switch (cr) {
1966 case 0:
1967 vcpu_load_rsp_rip(vcpu);
1968 set_cr0(vcpu, vcpu->arch.regs[reg]);
1969 skip_emulated_instruction(vcpu);
1970 return 1;
1971 case 3:
1972 vcpu_load_rsp_rip(vcpu);
1973 set_cr3(vcpu, vcpu->arch.regs[reg]);
1974 skip_emulated_instruction(vcpu);
1975 return 1;
1976 case 4:
1977 vcpu_load_rsp_rip(vcpu);
1978 set_cr4(vcpu, vcpu->arch.regs[reg]);
1979 skip_emulated_instruction(vcpu);
1980 return 1;
1981 case 8:
1982 vcpu_load_rsp_rip(vcpu);
1983 set_cr8(vcpu, vcpu->arch.regs[reg]);
1984 skip_emulated_instruction(vcpu);
1985 if (irqchip_in_kernel(vcpu->kvm))
1986 return 1;
1987 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1988 return 0;
1989 };
1990 break;
1991 case 2: /* clts */
1992 vcpu_load_rsp_rip(vcpu);
1993 vmx_fpu_deactivate(vcpu);
1994 vcpu->arch.cr0 &= ~X86_CR0_TS;
1995 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1996 vmx_fpu_activate(vcpu);
1997 skip_emulated_instruction(vcpu);
1998 return 1;
1999 case 1: /*mov from cr*/
2000 switch (cr) {
2001 case 3:
2002 vcpu_load_rsp_rip(vcpu);
2003 vcpu->arch.regs[reg] = vcpu->arch.cr3;
2004 vcpu_put_rsp_rip(vcpu);
2005 skip_emulated_instruction(vcpu);
2006 return 1;
2007 case 8:
2008 vcpu_load_rsp_rip(vcpu);
2009 vcpu->arch.regs[reg] = get_cr8(vcpu);
2010 vcpu_put_rsp_rip(vcpu);
2011 skip_emulated_instruction(vcpu);
2012 return 1;
2013 }
2014 break;
2015 case 3: /* lmsw */
2016 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2017
2018 skip_emulated_instruction(vcpu);
2019 return 1;
2020 default:
2021 break;
2022 }
2023 kvm_run->exit_reason = 0;
2024 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2025 (int)(exit_qualification >> 4) & 3, cr);
2026 return 0;
2027 }
2028
2029 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2030 {
2031 unsigned long exit_qualification;
2032 unsigned long val;
2033 int dr, reg;
2034
2035 /*
2036 * FIXME: this code assumes the host is debugging the guest.
2037 * need to deal with guest debugging itself too.
2038 */
2039 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2040 dr = exit_qualification & 7;
2041 reg = (exit_qualification >> 8) & 15;
2042 vcpu_load_rsp_rip(vcpu);
2043 if (exit_qualification & 16) {
2044 /* mov from dr */
2045 switch (dr) {
2046 case 6:
2047 val = 0xffff0ff0;
2048 break;
2049 case 7:
2050 val = 0x400;
2051 break;
2052 default:
2053 val = 0;
2054 }
2055 vcpu->arch.regs[reg] = val;
2056 } else {
2057 /* mov to dr */
2058 }
2059 vcpu_put_rsp_rip(vcpu);
2060 skip_emulated_instruction(vcpu);
2061 return 1;
2062 }
2063
2064 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2065 {
2066 kvm_emulate_cpuid(vcpu);
2067 return 1;
2068 }
2069
2070 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2071 {
2072 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2073 u64 data;
2074
2075 if (vmx_get_msr(vcpu, ecx, &data)) {
2076 kvm_inject_gp(vcpu, 0);
2077 return 1;
2078 }
2079
2080 /* FIXME: handling of bits 32:63 of rax, rdx */
2081 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2082 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2083 skip_emulated_instruction(vcpu);
2084 return 1;
2085 }
2086
2087 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2088 {
2089 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2090 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2091 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2092
2093 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2094 kvm_inject_gp(vcpu, 0);
2095 return 1;
2096 }
2097
2098 skip_emulated_instruction(vcpu);
2099 return 1;
2100 }
2101
2102 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2103 struct kvm_run *kvm_run)
2104 {
2105 return 1;
2106 }
2107
2108 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2109 struct kvm_run *kvm_run)
2110 {
2111 u32 cpu_based_vm_exec_control;
2112
2113 /* clear pending irq */
2114 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2115 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2116 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2117 /*
2118 * If the user space waits to inject interrupts, exit as soon as
2119 * possible
2120 */
2121 if (kvm_run->request_interrupt_window &&
2122 !vcpu->arch.irq_summary) {
2123 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2124 ++vcpu->stat.irq_window_exits;
2125 return 0;
2126 }
2127 return 1;
2128 }
2129
2130 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2131 {
2132 skip_emulated_instruction(vcpu);
2133 return kvm_emulate_halt(vcpu);
2134 }
2135
2136 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2137 {
2138 skip_emulated_instruction(vcpu);
2139 kvm_emulate_hypercall(vcpu);
2140 return 1;
2141 }
2142
2143 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2144 {
2145 skip_emulated_instruction(vcpu);
2146 /* TODO: Add support for VT-d/pass-through device */
2147 return 1;
2148 }
2149
2150 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2151 {
2152 u64 exit_qualification;
2153 enum emulation_result er;
2154 unsigned long offset;
2155
2156 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2157 offset = exit_qualification & 0xffful;
2158
2159 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2160
2161 if (er != EMULATE_DONE) {
2162 printk(KERN_ERR
2163 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2164 offset);
2165 return -ENOTSUPP;
2166 }
2167 return 1;
2168 }
2169
2170 /*
2171 * The exit handlers return 1 if the exit was handled fully and guest execution
2172 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2173 * to be done to userspace and return 0.
2174 */
2175 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2176 struct kvm_run *kvm_run) = {
2177 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2178 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2179 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2180 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2181 [EXIT_REASON_CR_ACCESS] = handle_cr,
2182 [EXIT_REASON_DR_ACCESS] = handle_dr,
2183 [EXIT_REASON_CPUID] = handle_cpuid,
2184 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2185 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2186 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2187 [EXIT_REASON_HLT] = handle_halt,
2188 [EXIT_REASON_VMCALL] = handle_vmcall,
2189 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2190 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2191 [EXIT_REASON_WBINVD] = handle_wbinvd,
2192 };
2193
2194 static const int kvm_vmx_max_exit_handlers =
2195 ARRAY_SIZE(kvm_vmx_exit_handlers);
2196
2197 /*
2198 * The guest has exited. See if we can fix it or if we need userspace
2199 * assistance.
2200 */
2201 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2202 {
2203 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2204 struct vcpu_vmx *vmx = to_vmx(vcpu);
2205 u32 vectoring_info = vmx->idt_vectoring_info;
2206
2207 if (unlikely(vmx->fail)) {
2208 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2209 kvm_run->fail_entry.hardware_entry_failure_reason
2210 = vmcs_read32(VM_INSTRUCTION_ERROR);
2211 return 0;
2212 }
2213
2214 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2215 exit_reason != EXIT_REASON_EXCEPTION_NMI)
2216 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2217 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2218 if (exit_reason < kvm_vmx_max_exit_handlers
2219 && kvm_vmx_exit_handlers[exit_reason])
2220 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2221 else {
2222 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2223 kvm_run->hw.hardware_exit_reason = exit_reason;
2224 }
2225 return 0;
2226 }
2227
2228 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2229 {
2230 }
2231
2232 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2233 {
2234 int max_irr, tpr;
2235
2236 if (!vm_need_tpr_shadow(vcpu->kvm))
2237 return;
2238
2239 if (!kvm_lapic_enabled(vcpu) ||
2240 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2241 vmcs_write32(TPR_THRESHOLD, 0);
2242 return;
2243 }
2244
2245 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2246 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2247 }
2248
2249 static void enable_irq_window(struct kvm_vcpu *vcpu)
2250 {
2251 u32 cpu_based_vm_exec_control;
2252
2253 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2254 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2255 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2256 }
2257
2258 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2259 {
2260 struct vcpu_vmx *vmx = to_vmx(vcpu);
2261 u32 idtv_info_field, intr_info_field;
2262 int has_ext_irq, interrupt_window_open;
2263 int vector;
2264
2265 update_tpr_threshold(vcpu);
2266
2267 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2268 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2269 idtv_info_field = vmx->idt_vectoring_info;
2270 if (intr_info_field & INTR_INFO_VALID_MASK) {
2271 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2272 /* TODO: fault when IDT_Vectoring */
2273 if (printk_ratelimit())
2274 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2275 }
2276 if (has_ext_irq)
2277 enable_irq_window(vcpu);
2278 return;
2279 }
2280 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2281 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2282 == INTR_TYPE_EXT_INTR
2283 && vcpu->arch.rmode.active) {
2284 u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2285
2286 vmx_inject_irq(vcpu, vect);
2287 if (unlikely(has_ext_irq))
2288 enable_irq_window(vcpu);
2289 return;
2290 }
2291
2292 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2293 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2294 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2295
2296 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2297 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2298 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2299 if (unlikely(has_ext_irq))
2300 enable_irq_window(vcpu);
2301 return;
2302 }
2303 if (!has_ext_irq)
2304 return;
2305 interrupt_window_open =
2306 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2307 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2308 if (interrupt_window_open) {
2309 vector = kvm_cpu_get_interrupt(vcpu);
2310 vmx_inject_irq(vcpu, vector);
2311 kvm_timer_intr_post(vcpu, vector);
2312 } else
2313 enable_irq_window(vcpu);
2314 }
2315
2316 /*
2317 * Failure to inject an interrupt should give us the information
2318 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2319 * when fetching the interrupt redirection bitmap in the real-mode
2320 * tss, this doesn't happen. So we do it ourselves.
2321 */
2322 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2323 {
2324 vmx->rmode.irq.pending = 0;
2325 if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2326 return;
2327 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2328 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2329 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2330 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2331 return;
2332 }
2333 vmx->idt_vectoring_info =
2334 VECTORING_INFO_VALID_MASK
2335 | INTR_TYPE_EXT_INTR
2336 | vmx->rmode.irq.vector;
2337 }
2338
2339 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2340 {
2341 struct vcpu_vmx *vmx = to_vmx(vcpu);
2342 u32 intr_info;
2343
2344 /*
2345 * Loading guest fpu may have cleared host cr0.ts
2346 */
2347 vmcs_writel(HOST_CR0, read_cr0());
2348
2349 asm(
2350 /* Store host registers */
2351 #ifdef CONFIG_X86_64
2352 "push %%rdx; push %%rbp;"
2353 "push %%rcx \n\t"
2354 #else
2355 "push %%edx; push %%ebp;"
2356 "push %%ecx \n\t"
2357 #endif
2358 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2359 /* Check if vmlaunch of vmresume is needed */
2360 "cmpl $0, %c[launched](%0) \n\t"
2361 /* Load guest registers. Don't clobber flags. */
2362 #ifdef CONFIG_X86_64
2363 "mov %c[cr2](%0), %%rax \n\t"
2364 "mov %%rax, %%cr2 \n\t"
2365 "mov %c[rax](%0), %%rax \n\t"
2366 "mov %c[rbx](%0), %%rbx \n\t"
2367 "mov %c[rdx](%0), %%rdx \n\t"
2368 "mov %c[rsi](%0), %%rsi \n\t"
2369 "mov %c[rdi](%0), %%rdi \n\t"
2370 "mov %c[rbp](%0), %%rbp \n\t"
2371 "mov %c[r8](%0), %%r8 \n\t"
2372 "mov %c[r9](%0), %%r9 \n\t"
2373 "mov %c[r10](%0), %%r10 \n\t"
2374 "mov %c[r11](%0), %%r11 \n\t"
2375 "mov %c[r12](%0), %%r12 \n\t"
2376 "mov %c[r13](%0), %%r13 \n\t"
2377 "mov %c[r14](%0), %%r14 \n\t"
2378 "mov %c[r15](%0), %%r15 \n\t"
2379 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2380 #else
2381 "mov %c[cr2](%0), %%eax \n\t"
2382 "mov %%eax, %%cr2 \n\t"
2383 "mov %c[rax](%0), %%eax \n\t"
2384 "mov %c[rbx](%0), %%ebx \n\t"
2385 "mov %c[rdx](%0), %%edx \n\t"
2386 "mov %c[rsi](%0), %%esi \n\t"
2387 "mov %c[rdi](%0), %%edi \n\t"
2388 "mov %c[rbp](%0), %%ebp \n\t"
2389 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2390 #endif
2391 /* Enter guest mode */
2392 "jne .Llaunched \n\t"
2393 ASM_VMX_VMLAUNCH "\n\t"
2394 "jmp .Lkvm_vmx_return \n\t"
2395 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2396 ".Lkvm_vmx_return: "
2397 /* Save guest registers, load host registers, keep flags */
2398 #ifdef CONFIG_X86_64
2399 "xchg %0, (%%rsp) \n\t"
2400 "mov %%rax, %c[rax](%0) \n\t"
2401 "mov %%rbx, %c[rbx](%0) \n\t"
2402 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2403 "mov %%rdx, %c[rdx](%0) \n\t"
2404 "mov %%rsi, %c[rsi](%0) \n\t"
2405 "mov %%rdi, %c[rdi](%0) \n\t"
2406 "mov %%rbp, %c[rbp](%0) \n\t"
2407 "mov %%r8, %c[r8](%0) \n\t"
2408 "mov %%r9, %c[r9](%0) \n\t"
2409 "mov %%r10, %c[r10](%0) \n\t"
2410 "mov %%r11, %c[r11](%0) \n\t"
2411 "mov %%r12, %c[r12](%0) \n\t"
2412 "mov %%r13, %c[r13](%0) \n\t"
2413 "mov %%r14, %c[r14](%0) \n\t"
2414 "mov %%r15, %c[r15](%0) \n\t"
2415 "mov %%cr2, %%rax \n\t"
2416 "mov %%rax, %c[cr2](%0) \n\t"
2417
2418 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
2419 #else
2420 "xchg %0, (%%esp) \n\t"
2421 "mov %%eax, %c[rax](%0) \n\t"
2422 "mov %%ebx, %c[rbx](%0) \n\t"
2423 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2424 "mov %%edx, %c[rdx](%0) \n\t"
2425 "mov %%esi, %c[rsi](%0) \n\t"
2426 "mov %%edi, %c[rdi](%0) \n\t"
2427 "mov %%ebp, %c[rbp](%0) \n\t"
2428 "mov %%cr2, %%eax \n\t"
2429 "mov %%eax, %c[cr2](%0) \n\t"
2430
2431 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2432 #endif
2433 "setbe %c[fail](%0) \n\t"
2434 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2435 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2436 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2437 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
2438 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
2439 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
2440 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
2441 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
2442 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
2443 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
2444 #ifdef CONFIG_X86_64
2445 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
2446 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
2447 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
2448 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
2449 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
2450 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
2451 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
2452 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
2453 #endif
2454 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
2455 : "cc", "memory"
2456 #ifdef CONFIG_X86_64
2457 , "rbx", "rdi", "rsi"
2458 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2459 #else
2460 , "ebx", "edi", "rsi"
2461 #endif
2462 );
2463
2464 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2465 if (vmx->rmode.irq.pending)
2466 fixup_rmode_irq(vmx);
2467
2468 vcpu->arch.interrupt_window_open =
2469 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2470
2471 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2472 vmx->launched = 1;
2473
2474 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2475
2476 /* We need to handle NMIs before interrupts are enabled */
2477 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2478 asm("int $2");
2479 }
2480
2481 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2482 {
2483 struct vcpu_vmx *vmx = to_vmx(vcpu);
2484
2485 if (vmx->vmcs) {
2486 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2487 free_vmcs(vmx->vmcs);
2488 vmx->vmcs = NULL;
2489 }
2490 }
2491
2492 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2493 {
2494 struct vcpu_vmx *vmx = to_vmx(vcpu);
2495
2496 vmx_free_vmcs(vcpu);
2497 kfree(vmx->host_msrs);
2498 kfree(vmx->guest_msrs);
2499 kvm_vcpu_uninit(vcpu);
2500 kmem_cache_free(kvm_vcpu_cache, vmx);
2501 }
2502
2503 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2504 {
2505 int err;
2506 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2507 int cpu;
2508
2509 if (!vmx)
2510 return ERR_PTR(-ENOMEM);
2511
2512 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2513 if (err)
2514 goto free_vcpu;
2515
2516 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2517 if (!vmx->guest_msrs) {
2518 err = -ENOMEM;
2519 goto uninit_vcpu;
2520 }
2521
2522 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2523 if (!vmx->host_msrs)
2524 goto free_guest_msrs;
2525
2526 vmx->vmcs = alloc_vmcs();
2527 if (!vmx->vmcs)
2528 goto free_msrs;
2529
2530 vmcs_clear(vmx->vmcs);
2531
2532 cpu = get_cpu();
2533 vmx_vcpu_load(&vmx->vcpu, cpu);
2534 err = vmx_vcpu_setup(vmx);
2535 vmx_vcpu_put(&vmx->vcpu);
2536 put_cpu();
2537 if (err)
2538 goto free_vmcs;
2539
2540 return &vmx->vcpu;
2541
2542 free_vmcs:
2543 free_vmcs(vmx->vmcs);
2544 free_msrs:
2545 kfree(vmx->host_msrs);
2546 free_guest_msrs:
2547 kfree(vmx->guest_msrs);
2548 uninit_vcpu:
2549 kvm_vcpu_uninit(&vmx->vcpu);
2550 free_vcpu:
2551 kmem_cache_free(kvm_vcpu_cache, vmx);
2552 return ERR_PTR(err);
2553 }
2554
2555 static void __init vmx_check_processor_compat(void *rtn)
2556 {
2557 struct vmcs_config vmcs_conf;
2558
2559 *(int *)rtn = 0;
2560 if (setup_vmcs_config(&vmcs_conf) < 0)
2561 *(int *)rtn = -EIO;
2562 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2563 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2564 smp_processor_id());
2565 *(int *)rtn = -EIO;
2566 }
2567 }
2568
2569 static struct kvm_x86_ops vmx_x86_ops = {
2570 .cpu_has_kvm_support = cpu_has_kvm_support,
2571 .disabled_by_bios = vmx_disabled_by_bios,
2572 .hardware_setup = hardware_setup,
2573 .hardware_unsetup = hardware_unsetup,
2574 .check_processor_compatibility = vmx_check_processor_compat,
2575 .hardware_enable = hardware_enable,
2576 .hardware_disable = hardware_disable,
2577 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
2578
2579 .vcpu_create = vmx_create_vcpu,
2580 .vcpu_free = vmx_free_vcpu,
2581 .vcpu_reset = vmx_vcpu_reset,
2582
2583 .prepare_guest_switch = vmx_save_host_state,
2584 .vcpu_load = vmx_vcpu_load,
2585 .vcpu_put = vmx_vcpu_put,
2586 .vcpu_decache = vmx_vcpu_decache,
2587
2588 .set_guest_debug = set_guest_debug,
2589 .guest_debug_pre = kvm_guest_debug_pre,
2590 .get_msr = vmx_get_msr,
2591 .set_msr = vmx_set_msr,
2592 .get_segment_base = vmx_get_segment_base,
2593 .get_segment = vmx_get_segment,
2594 .set_segment = vmx_set_segment,
2595 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2596 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2597 .set_cr0 = vmx_set_cr0,
2598 .set_cr3 = vmx_set_cr3,
2599 .set_cr4 = vmx_set_cr4,
2600 #ifdef CONFIG_X86_64
2601 .set_efer = vmx_set_efer,
2602 #endif
2603 .get_idt = vmx_get_idt,
2604 .set_idt = vmx_set_idt,
2605 .get_gdt = vmx_get_gdt,
2606 .set_gdt = vmx_set_gdt,
2607 .cache_regs = vcpu_load_rsp_rip,
2608 .decache_regs = vcpu_put_rsp_rip,
2609 .get_rflags = vmx_get_rflags,
2610 .set_rflags = vmx_set_rflags,
2611
2612 .tlb_flush = vmx_flush_tlb,
2613
2614 .run = vmx_vcpu_run,
2615 .handle_exit = kvm_handle_exit,
2616 .skip_emulated_instruction = skip_emulated_instruction,
2617 .patch_hypercall = vmx_patch_hypercall,
2618 .get_irq = vmx_get_irq,
2619 .set_irq = vmx_inject_irq,
2620 .queue_exception = vmx_queue_exception,
2621 .exception_injected = vmx_exception_injected,
2622 .inject_pending_irq = vmx_intr_assist,
2623 .inject_pending_vectors = do_interrupt_requests,
2624
2625 .set_tss_addr = vmx_set_tss_addr,
2626 };
2627
2628 static int __init vmx_init(void)
2629 {
2630 void *iova;
2631 int r;
2632
2633 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2634 if (!vmx_io_bitmap_a)
2635 return -ENOMEM;
2636
2637 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2638 if (!vmx_io_bitmap_b) {
2639 r = -ENOMEM;
2640 goto out;
2641 }
2642
2643 /*
2644 * Allow direct access to the PC debug port (it is often used for I/O
2645 * delays, but the vmexits simply slow things down).
2646 */
2647 iova = kmap(vmx_io_bitmap_a);
2648 memset(iova, 0xff, PAGE_SIZE);
2649 clear_bit(0x80, iova);
2650 kunmap(vmx_io_bitmap_a);
2651
2652 iova = kmap(vmx_io_bitmap_b);
2653 memset(iova, 0xff, PAGE_SIZE);
2654 kunmap(vmx_io_bitmap_b);
2655
2656 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2657 if (r)
2658 goto out1;
2659
2660 if (bypass_guest_pf)
2661 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2662
2663 return 0;
2664
2665 out1:
2666 __free_page(vmx_io_bitmap_b);
2667 out:
2668 __free_page(vmx_io_bitmap_a);
2669 return r;
2670 }
2671
2672 static void __exit vmx_exit(void)
2673 {
2674 __free_page(vmx_io_bitmap_b);
2675 __free_page(vmx_io_bitmap_a);
2676
2677 kvm_exit();
2678 }
2679
2680 module_init(vmx_init)
2681 module_exit(vmx_exit)
This page took 0.095207 seconds and 5 git commands to generate.