KVM: x86: Intel MPX vmx and msr handle
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
46
47 #include "trace.h"
48
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id vmx_cpu_id[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_VMX),
58 {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
62 static bool __read_mostly enable_vpid = 1;
63 module_param_named(vpid, enable_vpid, bool, 0444);
64
65 static bool __read_mostly flexpriority_enabled = 1;
66 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
67
68 static bool __read_mostly enable_ept = 1;
69 module_param_named(ept, enable_ept, bool, S_IRUGO);
70
71 static bool __read_mostly enable_unrestricted_guest = 1;
72 module_param_named(unrestricted_guest,
73 enable_unrestricted_guest, bool, S_IRUGO);
74
75 static bool __read_mostly enable_ept_ad_bits = 1;
76 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
78 static bool __read_mostly emulate_invalid_guest_state = true;
79 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
80
81 static bool __read_mostly vmm_exclusive = 1;
82 module_param(vmm_exclusive, bool, S_IRUGO);
83
84 static bool __read_mostly fasteoi = 1;
85 module_param(fasteoi, bool, S_IRUGO);
86
87 static bool __read_mostly enable_apicv = 1;
88 module_param(enable_apicv, bool, S_IRUGO);
89
90 static bool __read_mostly enable_shadow_vmcs = 1;
91 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
92 /*
93 * If nested=1, nested virtualization is supported, i.e., guests may use
94 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95 * use VMX instructions.
96 */
97 static bool __read_mostly nested = 0;
98 module_param(nested, bool, S_IRUGO);
99
100 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
102 #define KVM_VM_CR0_ALWAYS_ON \
103 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
104 #define KVM_CR4_GUEST_OWNED_BITS \
105 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
106 | X86_CR4_OSXMMEXCPT)
107
108 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
110
111 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
112
113 /*
114 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115 * ple_gap: upper bound on the amount of time between two successive
116 * executions of PAUSE in a loop. Also indicate if ple enabled.
117 * According to test, this time is usually smaller than 128 cycles.
118 * ple_window: upper bound on the amount of time a guest is allowed to execute
119 * in a PAUSE loop. Tests indicate that most spinlocks are held for
120 * less than 2^12 cycles
121 * Time is measured based on a counter that runs at the same rate as the TSC,
122 * refer SDM volume 3b section 21.6.13 & 22.1.3.
123 */
124 #define KVM_VMX_DEFAULT_PLE_GAP 128
125 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
127 module_param(ple_gap, int, S_IRUGO);
128
129 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
130 module_param(ple_window, int, S_IRUGO);
131
132 extern const ulong vmx_return;
133
134 #define NR_AUTOLOAD_MSRS 8
135 #define VMCS02_POOL_SIZE 1
136
137 struct vmcs {
138 u32 revision_id;
139 u32 abort;
140 char data[0];
141 };
142
143 /*
144 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146 * loaded on this CPU (so we can clear them if the CPU goes down).
147 */
148 struct loaded_vmcs {
149 struct vmcs *vmcs;
150 int cpu;
151 int launched;
152 struct list_head loaded_vmcss_on_cpu_link;
153 };
154
155 struct shared_msr_entry {
156 unsigned index;
157 u64 data;
158 u64 mask;
159 };
160
161 /*
162 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167 * More than one of these structures may exist, if L1 runs multiple L2 guests.
168 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169 * underlying hardware which will be used to run L2.
170 * This structure is packed to ensure that its layout is identical across
171 * machines (necessary for live migration).
172 * If there are changes in this struct, VMCS12_REVISION must be changed.
173 */
174 typedef u64 natural_width;
175 struct __packed vmcs12 {
176 /* According to the Intel spec, a VMCS region must start with the
177 * following two fields. Then follow implementation-specific data.
178 */
179 u32 revision_id;
180 u32 abort;
181
182 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183 u32 padding[7]; /* room for future expansion */
184
185 u64 io_bitmap_a;
186 u64 io_bitmap_b;
187 u64 msr_bitmap;
188 u64 vm_exit_msr_store_addr;
189 u64 vm_exit_msr_load_addr;
190 u64 vm_entry_msr_load_addr;
191 u64 tsc_offset;
192 u64 virtual_apic_page_addr;
193 u64 apic_access_addr;
194 u64 ept_pointer;
195 u64 guest_physical_address;
196 u64 vmcs_link_pointer;
197 u64 guest_ia32_debugctl;
198 u64 guest_ia32_pat;
199 u64 guest_ia32_efer;
200 u64 guest_ia32_perf_global_ctrl;
201 u64 guest_pdptr0;
202 u64 guest_pdptr1;
203 u64 guest_pdptr2;
204 u64 guest_pdptr3;
205 u64 host_ia32_pat;
206 u64 host_ia32_efer;
207 u64 host_ia32_perf_global_ctrl;
208 u64 padding64[8]; /* room for future expansion */
209 /*
210 * To allow migration of L1 (complete with its L2 guests) between
211 * machines of different natural widths (32 or 64 bit), we cannot have
212 * unsigned long fields with no explict size. We use u64 (aliased
213 * natural_width) instead. Luckily, x86 is little-endian.
214 */
215 natural_width cr0_guest_host_mask;
216 natural_width cr4_guest_host_mask;
217 natural_width cr0_read_shadow;
218 natural_width cr4_read_shadow;
219 natural_width cr3_target_value0;
220 natural_width cr3_target_value1;
221 natural_width cr3_target_value2;
222 natural_width cr3_target_value3;
223 natural_width exit_qualification;
224 natural_width guest_linear_address;
225 natural_width guest_cr0;
226 natural_width guest_cr3;
227 natural_width guest_cr4;
228 natural_width guest_es_base;
229 natural_width guest_cs_base;
230 natural_width guest_ss_base;
231 natural_width guest_ds_base;
232 natural_width guest_fs_base;
233 natural_width guest_gs_base;
234 natural_width guest_ldtr_base;
235 natural_width guest_tr_base;
236 natural_width guest_gdtr_base;
237 natural_width guest_idtr_base;
238 natural_width guest_dr7;
239 natural_width guest_rsp;
240 natural_width guest_rip;
241 natural_width guest_rflags;
242 natural_width guest_pending_dbg_exceptions;
243 natural_width guest_sysenter_esp;
244 natural_width guest_sysenter_eip;
245 natural_width host_cr0;
246 natural_width host_cr3;
247 natural_width host_cr4;
248 natural_width host_fs_base;
249 natural_width host_gs_base;
250 natural_width host_tr_base;
251 natural_width host_gdtr_base;
252 natural_width host_idtr_base;
253 natural_width host_ia32_sysenter_esp;
254 natural_width host_ia32_sysenter_eip;
255 natural_width host_rsp;
256 natural_width host_rip;
257 natural_width paddingl[8]; /* room for future expansion */
258 u32 pin_based_vm_exec_control;
259 u32 cpu_based_vm_exec_control;
260 u32 exception_bitmap;
261 u32 page_fault_error_code_mask;
262 u32 page_fault_error_code_match;
263 u32 cr3_target_count;
264 u32 vm_exit_controls;
265 u32 vm_exit_msr_store_count;
266 u32 vm_exit_msr_load_count;
267 u32 vm_entry_controls;
268 u32 vm_entry_msr_load_count;
269 u32 vm_entry_intr_info_field;
270 u32 vm_entry_exception_error_code;
271 u32 vm_entry_instruction_len;
272 u32 tpr_threshold;
273 u32 secondary_vm_exec_control;
274 u32 vm_instruction_error;
275 u32 vm_exit_reason;
276 u32 vm_exit_intr_info;
277 u32 vm_exit_intr_error_code;
278 u32 idt_vectoring_info_field;
279 u32 idt_vectoring_error_code;
280 u32 vm_exit_instruction_len;
281 u32 vmx_instruction_info;
282 u32 guest_es_limit;
283 u32 guest_cs_limit;
284 u32 guest_ss_limit;
285 u32 guest_ds_limit;
286 u32 guest_fs_limit;
287 u32 guest_gs_limit;
288 u32 guest_ldtr_limit;
289 u32 guest_tr_limit;
290 u32 guest_gdtr_limit;
291 u32 guest_idtr_limit;
292 u32 guest_es_ar_bytes;
293 u32 guest_cs_ar_bytes;
294 u32 guest_ss_ar_bytes;
295 u32 guest_ds_ar_bytes;
296 u32 guest_fs_ar_bytes;
297 u32 guest_gs_ar_bytes;
298 u32 guest_ldtr_ar_bytes;
299 u32 guest_tr_ar_bytes;
300 u32 guest_interruptibility_info;
301 u32 guest_activity_state;
302 u32 guest_sysenter_cs;
303 u32 host_ia32_sysenter_cs;
304 u32 vmx_preemption_timer_value;
305 u32 padding32[7]; /* room for future expansion */
306 u16 virtual_processor_id;
307 u16 guest_es_selector;
308 u16 guest_cs_selector;
309 u16 guest_ss_selector;
310 u16 guest_ds_selector;
311 u16 guest_fs_selector;
312 u16 guest_gs_selector;
313 u16 guest_ldtr_selector;
314 u16 guest_tr_selector;
315 u16 host_es_selector;
316 u16 host_cs_selector;
317 u16 host_ss_selector;
318 u16 host_ds_selector;
319 u16 host_fs_selector;
320 u16 host_gs_selector;
321 u16 host_tr_selector;
322 };
323
324 /*
325 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
328 */
329 #define VMCS12_REVISION 0x11e57ed0
330
331 /*
332 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334 * current implementation, 4K are reserved to avoid future complications.
335 */
336 #define VMCS12_SIZE 0x1000
337
338 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
339 struct vmcs02_list {
340 struct list_head list;
341 gpa_t vmptr;
342 struct loaded_vmcs vmcs02;
343 };
344
345 /*
346 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
348 */
349 struct nested_vmx {
350 /* Has the level1 guest done vmxon? */
351 bool vmxon;
352
353 /* The guest-physical address of the current VMCS L1 keeps for L2 */
354 gpa_t current_vmptr;
355 /* The host-usable pointer to the above */
356 struct page *current_vmcs12_page;
357 struct vmcs12 *current_vmcs12;
358 struct vmcs *current_shadow_vmcs;
359 /*
360 * Indicates if the shadow vmcs must be updated with the
361 * data hold by vmcs12
362 */
363 bool sync_shadow_vmcs;
364
365 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
366 struct list_head vmcs02_pool;
367 int vmcs02_num;
368 u64 vmcs01_tsc_offset;
369 /* L2 must run next, and mustn't decide to exit to L1. */
370 bool nested_run_pending;
371 /*
372 * Guest pages referred to in vmcs02 with host-physical pointers, so
373 * we must keep them pinned while L2 runs.
374 */
375 struct page *apic_access_page;
376 u64 msr_ia32_feature_control;
377 };
378
379 #define POSTED_INTR_ON 0
380 /* Posted-Interrupt Descriptor */
381 struct pi_desc {
382 u32 pir[8]; /* Posted interrupt requested */
383 u32 control; /* bit 0 of control is outstanding notification bit */
384 u32 rsvd[7];
385 } __aligned(64);
386
387 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
388 {
389 return test_and_set_bit(POSTED_INTR_ON,
390 (unsigned long *)&pi_desc->control);
391 }
392
393 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
394 {
395 return test_and_clear_bit(POSTED_INTR_ON,
396 (unsigned long *)&pi_desc->control);
397 }
398
399 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
400 {
401 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
402 }
403
404 struct vcpu_vmx {
405 struct kvm_vcpu vcpu;
406 unsigned long host_rsp;
407 u8 fail;
408 u8 cpl;
409 bool nmi_known_unmasked;
410 u32 exit_intr_info;
411 u32 idt_vectoring_info;
412 ulong rflags;
413 struct shared_msr_entry *guest_msrs;
414 int nmsrs;
415 int save_nmsrs;
416 unsigned long host_idt_base;
417 #ifdef CONFIG_X86_64
418 u64 msr_host_kernel_gs_base;
419 u64 msr_guest_kernel_gs_base;
420 #endif
421 u32 vm_entry_controls_shadow;
422 u32 vm_exit_controls_shadow;
423 /*
424 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
425 * non-nested (L1) guest, it always points to vmcs01. For a nested
426 * guest (L2), it points to a different VMCS.
427 */
428 struct loaded_vmcs vmcs01;
429 struct loaded_vmcs *loaded_vmcs;
430 bool __launched; /* temporary, used in vmx_vcpu_run */
431 struct msr_autoload {
432 unsigned nr;
433 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
434 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
435 } msr_autoload;
436 struct {
437 int loaded;
438 u16 fs_sel, gs_sel, ldt_sel;
439 #ifdef CONFIG_X86_64
440 u16 ds_sel, es_sel;
441 #endif
442 int gs_ldt_reload_needed;
443 int fs_reload_needed;
444 u64 msr_host_bndcfgs;
445 } host_state;
446 struct {
447 int vm86_active;
448 ulong save_rflags;
449 struct kvm_segment segs[8];
450 } rmode;
451 struct {
452 u32 bitmask; /* 4 bits per segment (1 bit per field) */
453 struct kvm_save_segment {
454 u16 selector;
455 unsigned long base;
456 u32 limit;
457 u32 ar;
458 } seg[8];
459 } segment_cache;
460 int vpid;
461 bool emulation_required;
462
463 /* Support for vnmi-less CPUs */
464 int soft_vnmi_blocked;
465 ktime_t entry_time;
466 s64 vnmi_blocked_time;
467 u32 exit_reason;
468
469 bool rdtscp_enabled;
470
471 /* Posted interrupt descriptor */
472 struct pi_desc pi_desc;
473
474 /* Support for a guest hypervisor (nested VMX) */
475 struct nested_vmx nested;
476 };
477
478 enum segment_cache_field {
479 SEG_FIELD_SEL = 0,
480 SEG_FIELD_BASE = 1,
481 SEG_FIELD_LIMIT = 2,
482 SEG_FIELD_AR = 3,
483
484 SEG_FIELD_NR = 4
485 };
486
487 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
488 {
489 return container_of(vcpu, struct vcpu_vmx, vcpu);
490 }
491
492 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
493 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
494 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
495 [number##_HIGH] = VMCS12_OFFSET(name)+4
496
497
498 static const unsigned long shadow_read_only_fields[] = {
499 /*
500 * We do NOT shadow fields that are modified when L0
501 * traps and emulates any vmx instruction (e.g. VMPTRLD,
502 * VMXON...) executed by L1.
503 * For example, VM_INSTRUCTION_ERROR is read
504 * by L1 if a vmx instruction fails (part of the error path).
505 * Note the code assumes this logic. If for some reason
506 * we start shadowing these fields then we need to
507 * force a shadow sync when L0 emulates vmx instructions
508 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
509 * by nested_vmx_failValid)
510 */
511 VM_EXIT_REASON,
512 VM_EXIT_INTR_INFO,
513 VM_EXIT_INSTRUCTION_LEN,
514 IDT_VECTORING_INFO_FIELD,
515 IDT_VECTORING_ERROR_CODE,
516 VM_EXIT_INTR_ERROR_CODE,
517 EXIT_QUALIFICATION,
518 GUEST_LINEAR_ADDRESS,
519 GUEST_PHYSICAL_ADDRESS
520 };
521 static const int max_shadow_read_only_fields =
522 ARRAY_SIZE(shadow_read_only_fields);
523
524 static const unsigned long shadow_read_write_fields[] = {
525 GUEST_RIP,
526 GUEST_RSP,
527 GUEST_CR0,
528 GUEST_CR3,
529 GUEST_CR4,
530 GUEST_INTERRUPTIBILITY_INFO,
531 GUEST_RFLAGS,
532 GUEST_CS_SELECTOR,
533 GUEST_CS_AR_BYTES,
534 GUEST_CS_LIMIT,
535 GUEST_CS_BASE,
536 GUEST_ES_BASE,
537 CR0_GUEST_HOST_MASK,
538 CR0_READ_SHADOW,
539 CR4_READ_SHADOW,
540 TSC_OFFSET,
541 EXCEPTION_BITMAP,
542 CPU_BASED_VM_EXEC_CONTROL,
543 VM_ENTRY_EXCEPTION_ERROR_CODE,
544 VM_ENTRY_INTR_INFO_FIELD,
545 VM_ENTRY_INSTRUCTION_LEN,
546 VM_ENTRY_EXCEPTION_ERROR_CODE,
547 HOST_FS_BASE,
548 HOST_GS_BASE,
549 HOST_FS_SELECTOR,
550 HOST_GS_SELECTOR
551 };
552 static const int max_shadow_read_write_fields =
553 ARRAY_SIZE(shadow_read_write_fields);
554
555 static const unsigned short vmcs_field_to_offset_table[] = {
556 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
557 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
558 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
559 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
560 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
561 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
562 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
563 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
564 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
565 FIELD(HOST_ES_SELECTOR, host_es_selector),
566 FIELD(HOST_CS_SELECTOR, host_cs_selector),
567 FIELD(HOST_SS_SELECTOR, host_ss_selector),
568 FIELD(HOST_DS_SELECTOR, host_ds_selector),
569 FIELD(HOST_FS_SELECTOR, host_fs_selector),
570 FIELD(HOST_GS_SELECTOR, host_gs_selector),
571 FIELD(HOST_TR_SELECTOR, host_tr_selector),
572 FIELD64(IO_BITMAP_A, io_bitmap_a),
573 FIELD64(IO_BITMAP_B, io_bitmap_b),
574 FIELD64(MSR_BITMAP, msr_bitmap),
575 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
576 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
577 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
578 FIELD64(TSC_OFFSET, tsc_offset),
579 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
580 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
581 FIELD64(EPT_POINTER, ept_pointer),
582 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
583 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
584 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
585 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
586 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
587 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
588 FIELD64(GUEST_PDPTR0, guest_pdptr0),
589 FIELD64(GUEST_PDPTR1, guest_pdptr1),
590 FIELD64(GUEST_PDPTR2, guest_pdptr2),
591 FIELD64(GUEST_PDPTR3, guest_pdptr3),
592 FIELD64(HOST_IA32_PAT, host_ia32_pat),
593 FIELD64(HOST_IA32_EFER, host_ia32_efer),
594 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
595 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
596 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
597 FIELD(EXCEPTION_BITMAP, exception_bitmap),
598 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
599 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
600 FIELD(CR3_TARGET_COUNT, cr3_target_count),
601 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
602 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
603 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
604 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
605 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
606 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
607 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
608 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
609 FIELD(TPR_THRESHOLD, tpr_threshold),
610 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
611 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
612 FIELD(VM_EXIT_REASON, vm_exit_reason),
613 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
614 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
615 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
616 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
617 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
618 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
619 FIELD(GUEST_ES_LIMIT, guest_es_limit),
620 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
621 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
622 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
623 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
624 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
625 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
626 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
627 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
628 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
629 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
630 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
631 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
632 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
633 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
634 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
635 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
636 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
637 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
638 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
639 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
640 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
641 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
642 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
643 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
644 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
645 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
646 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
647 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
648 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
649 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
650 FIELD(EXIT_QUALIFICATION, exit_qualification),
651 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
652 FIELD(GUEST_CR0, guest_cr0),
653 FIELD(GUEST_CR3, guest_cr3),
654 FIELD(GUEST_CR4, guest_cr4),
655 FIELD(GUEST_ES_BASE, guest_es_base),
656 FIELD(GUEST_CS_BASE, guest_cs_base),
657 FIELD(GUEST_SS_BASE, guest_ss_base),
658 FIELD(GUEST_DS_BASE, guest_ds_base),
659 FIELD(GUEST_FS_BASE, guest_fs_base),
660 FIELD(GUEST_GS_BASE, guest_gs_base),
661 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
662 FIELD(GUEST_TR_BASE, guest_tr_base),
663 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
664 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
665 FIELD(GUEST_DR7, guest_dr7),
666 FIELD(GUEST_RSP, guest_rsp),
667 FIELD(GUEST_RIP, guest_rip),
668 FIELD(GUEST_RFLAGS, guest_rflags),
669 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
670 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
671 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
672 FIELD(HOST_CR0, host_cr0),
673 FIELD(HOST_CR3, host_cr3),
674 FIELD(HOST_CR4, host_cr4),
675 FIELD(HOST_FS_BASE, host_fs_base),
676 FIELD(HOST_GS_BASE, host_gs_base),
677 FIELD(HOST_TR_BASE, host_tr_base),
678 FIELD(HOST_GDTR_BASE, host_gdtr_base),
679 FIELD(HOST_IDTR_BASE, host_idtr_base),
680 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
681 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
682 FIELD(HOST_RSP, host_rsp),
683 FIELD(HOST_RIP, host_rip),
684 };
685 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
686
687 static inline short vmcs_field_to_offset(unsigned long field)
688 {
689 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
690 return -1;
691 return vmcs_field_to_offset_table[field];
692 }
693
694 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
695 {
696 return to_vmx(vcpu)->nested.current_vmcs12;
697 }
698
699 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
700 {
701 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
702 if (is_error_page(page))
703 return NULL;
704
705 return page;
706 }
707
708 static void nested_release_page(struct page *page)
709 {
710 kvm_release_page_dirty(page);
711 }
712
713 static void nested_release_page_clean(struct page *page)
714 {
715 kvm_release_page_clean(page);
716 }
717
718 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
719 static u64 construct_eptp(unsigned long root_hpa);
720 static void kvm_cpu_vmxon(u64 addr);
721 static void kvm_cpu_vmxoff(void);
722 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
723 static void vmx_set_segment(struct kvm_vcpu *vcpu,
724 struct kvm_segment *var, int seg);
725 static void vmx_get_segment(struct kvm_vcpu *vcpu,
726 struct kvm_segment *var, int seg);
727 static bool guest_state_valid(struct kvm_vcpu *vcpu);
728 static u32 vmx_segment_access_rights(struct kvm_segment *var);
729 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
730 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
731 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
732
733 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
734 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
735 /*
736 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
737 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
738 */
739 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
740 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
741
742 static unsigned long *vmx_io_bitmap_a;
743 static unsigned long *vmx_io_bitmap_b;
744 static unsigned long *vmx_msr_bitmap_legacy;
745 static unsigned long *vmx_msr_bitmap_longmode;
746 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
747 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
748 static unsigned long *vmx_vmread_bitmap;
749 static unsigned long *vmx_vmwrite_bitmap;
750
751 static bool cpu_has_load_ia32_efer;
752 static bool cpu_has_load_perf_global_ctrl;
753
754 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
755 static DEFINE_SPINLOCK(vmx_vpid_lock);
756
757 static struct vmcs_config {
758 int size;
759 int order;
760 u32 revision_id;
761 u32 pin_based_exec_ctrl;
762 u32 cpu_based_exec_ctrl;
763 u32 cpu_based_2nd_exec_ctrl;
764 u32 vmexit_ctrl;
765 u32 vmentry_ctrl;
766 } vmcs_config;
767
768 static struct vmx_capability {
769 u32 ept;
770 u32 vpid;
771 } vmx_capability;
772
773 #define VMX_SEGMENT_FIELD(seg) \
774 [VCPU_SREG_##seg] = { \
775 .selector = GUEST_##seg##_SELECTOR, \
776 .base = GUEST_##seg##_BASE, \
777 .limit = GUEST_##seg##_LIMIT, \
778 .ar_bytes = GUEST_##seg##_AR_BYTES, \
779 }
780
781 static const struct kvm_vmx_segment_field {
782 unsigned selector;
783 unsigned base;
784 unsigned limit;
785 unsigned ar_bytes;
786 } kvm_vmx_segment_fields[] = {
787 VMX_SEGMENT_FIELD(CS),
788 VMX_SEGMENT_FIELD(DS),
789 VMX_SEGMENT_FIELD(ES),
790 VMX_SEGMENT_FIELD(FS),
791 VMX_SEGMENT_FIELD(GS),
792 VMX_SEGMENT_FIELD(SS),
793 VMX_SEGMENT_FIELD(TR),
794 VMX_SEGMENT_FIELD(LDTR),
795 };
796
797 static u64 host_efer;
798
799 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
800
801 /*
802 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
803 * away by decrementing the array size.
804 */
805 static const u32 vmx_msr_index[] = {
806 #ifdef CONFIG_X86_64
807 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
808 #endif
809 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
810 };
811 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
812
813 static inline bool is_page_fault(u32 intr_info)
814 {
815 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
816 INTR_INFO_VALID_MASK)) ==
817 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
818 }
819
820 static inline bool is_no_device(u32 intr_info)
821 {
822 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
823 INTR_INFO_VALID_MASK)) ==
824 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
825 }
826
827 static inline bool is_invalid_opcode(u32 intr_info)
828 {
829 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
830 INTR_INFO_VALID_MASK)) ==
831 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
832 }
833
834 static inline bool is_external_interrupt(u32 intr_info)
835 {
836 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
837 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
838 }
839
840 static inline bool is_machine_check(u32 intr_info)
841 {
842 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
843 INTR_INFO_VALID_MASK)) ==
844 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
845 }
846
847 static inline bool cpu_has_vmx_msr_bitmap(void)
848 {
849 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
850 }
851
852 static inline bool cpu_has_vmx_tpr_shadow(void)
853 {
854 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
855 }
856
857 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
858 {
859 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
860 }
861
862 static inline bool cpu_has_secondary_exec_ctrls(void)
863 {
864 return vmcs_config.cpu_based_exec_ctrl &
865 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
866 }
867
868 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
869 {
870 return vmcs_config.cpu_based_2nd_exec_ctrl &
871 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
872 }
873
874 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
875 {
876 return vmcs_config.cpu_based_2nd_exec_ctrl &
877 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
878 }
879
880 static inline bool cpu_has_vmx_apic_register_virt(void)
881 {
882 return vmcs_config.cpu_based_2nd_exec_ctrl &
883 SECONDARY_EXEC_APIC_REGISTER_VIRT;
884 }
885
886 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
887 {
888 return vmcs_config.cpu_based_2nd_exec_ctrl &
889 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
890 }
891
892 static inline bool cpu_has_vmx_posted_intr(void)
893 {
894 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
895 }
896
897 static inline bool cpu_has_vmx_apicv(void)
898 {
899 return cpu_has_vmx_apic_register_virt() &&
900 cpu_has_vmx_virtual_intr_delivery() &&
901 cpu_has_vmx_posted_intr();
902 }
903
904 static inline bool cpu_has_vmx_flexpriority(void)
905 {
906 return cpu_has_vmx_tpr_shadow() &&
907 cpu_has_vmx_virtualize_apic_accesses();
908 }
909
910 static inline bool cpu_has_vmx_ept_execute_only(void)
911 {
912 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
913 }
914
915 static inline bool cpu_has_vmx_eptp_uncacheable(void)
916 {
917 return vmx_capability.ept & VMX_EPTP_UC_BIT;
918 }
919
920 static inline bool cpu_has_vmx_eptp_writeback(void)
921 {
922 return vmx_capability.ept & VMX_EPTP_WB_BIT;
923 }
924
925 static inline bool cpu_has_vmx_ept_2m_page(void)
926 {
927 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
928 }
929
930 static inline bool cpu_has_vmx_ept_1g_page(void)
931 {
932 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
933 }
934
935 static inline bool cpu_has_vmx_ept_4levels(void)
936 {
937 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
938 }
939
940 static inline bool cpu_has_vmx_ept_ad_bits(void)
941 {
942 return vmx_capability.ept & VMX_EPT_AD_BIT;
943 }
944
945 static inline bool cpu_has_vmx_invept_context(void)
946 {
947 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
948 }
949
950 static inline bool cpu_has_vmx_invept_global(void)
951 {
952 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
953 }
954
955 static inline bool cpu_has_vmx_invvpid_single(void)
956 {
957 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
958 }
959
960 static inline bool cpu_has_vmx_invvpid_global(void)
961 {
962 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
963 }
964
965 static inline bool cpu_has_vmx_ept(void)
966 {
967 return vmcs_config.cpu_based_2nd_exec_ctrl &
968 SECONDARY_EXEC_ENABLE_EPT;
969 }
970
971 static inline bool cpu_has_vmx_unrestricted_guest(void)
972 {
973 return vmcs_config.cpu_based_2nd_exec_ctrl &
974 SECONDARY_EXEC_UNRESTRICTED_GUEST;
975 }
976
977 static inline bool cpu_has_vmx_ple(void)
978 {
979 return vmcs_config.cpu_based_2nd_exec_ctrl &
980 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
981 }
982
983 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
984 {
985 return flexpriority_enabled && irqchip_in_kernel(kvm);
986 }
987
988 static inline bool cpu_has_vmx_vpid(void)
989 {
990 return vmcs_config.cpu_based_2nd_exec_ctrl &
991 SECONDARY_EXEC_ENABLE_VPID;
992 }
993
994 static inline bool cpu_has_vmx_rdtscp(void)
995 {
996 return vmcs_config.cpu_based_2nd_exec_ctrl &
997 SECONDARY_EXEC_RDTSCP;
998 }
999
1000 static inline bool cpu_has_vmx_invpcid(void)
1001 {
1002 return vmcs_config.cpu_based_2nd_exec_ctrl &
1003 SECONDARY_EXEC_ENABLE_INVPCID;
1004 }
1005
1006 static inline bool cpu_has_virtual_nmis(void)
1007 {
1008 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1009 }
1010
1011 static inline bool cpu_has_vmx_wbinvd_exit(void)
1012 {
1013 return vmcs_config.cpu_based_2nd_exec_ctrl &
1014 SECONDARY_EXEC_WBINVD_EXITING;
1015 }
1016
1017 static inline bool cpu_has_vmx_shadow_vmcs(void)
1018 {
1019 u64 vmx_msr;
1020 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1021 /* check if the cpu supports writing r/o exit information fields */
1022 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1023 return false;
1024
1025 return vmcs_config.cpu_based_2nd_exec_ctrl &
1026 SECONDARY_EXEC_SHADOW_VMCS;
1027 }
1028
1029 static inline bool report_flexpriority(void)
1030 {
1031 return flexpriority_enabled;
1032 }
1033
1034 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1035 {
1036 return vmcs12->cpu_based_vm_exec_control & bit;
1037 }
1038
1039 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1040 {
1041 return (vmcs12->cpu_based_vm_exec_control &
1042 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1043 (vmcs12->secondary_vm_exec_control & bit);
1044 }
1045
1046 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1047 {
1048 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1049 }
1050
1051 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1052 {
1053 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1054 }
1055
1056 static inline bool is_exception(u32 intr_info)
1057 {
1058 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1059 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1060 }
1061
1062 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1063 u32 exit_intr_info,
1064 unsigned long exit_qualification);
1065 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1066 struct vmcs12 *vmcs12,
1067 u32 reason, unsigned long qualification);
1068
1069 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1070 {
1071 int i;
1072
1073 for (i = 0; i < vmx->nmsrs; ++i)
1074 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1075 return i;
1076 return -1;
1077 }
1078
1079 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1080 {
1081 struct {
1082 u64 vpid : 16;
1083 u64 rsvd : 48;
1084 u64 gva;
1085 } operand = { vpid, 0, gva };
1086
1087 asm volatile (__ex(ASM_VMX_INVVPID)
1088 /* CF==1 or ZF==1 --> rc = -1 */
1089 "; ja 1f ; ud2 ; 1:"
1090 : : "a"(&operand), "c"(ext) : "cc", "memory");
1091 }
1092
1093 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1094 {
1095 struct {
1096 u64 eptp, gpa;
1097 } operand = {eptp, gpa};
1098
1099 asm volatile (__ex(ASM_VMX_INVEPT)
1100 /* CF==1 or ZF==1 --> rc = -1 */
1101 "; ja 1f ; ud2 ; 1:\n"
1102 : : "a" (&operand), "c" (ext) : "cc", "memory");
1103 }
1104
1105 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1106 {
1107 int i;
1108
1109 i = __find_msr_index(vmx, msr);
1110 if (i >= 0)
1111 return &vmx->guest_msrs[i];
1112 return NULL;
1113 }
1114
1115 static void vmcs_clear(struct vmcs *vmcs)
1116 {
1117 u64 phys_addr = __pa(vmcs);
1118 u8 error;
1119
1120 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1121 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1122 : "cc", "memory");
1123 if (error)
1124 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1125 vmcs, phys_addr);
1126 }
1127
1128 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1129 {
1130 vmcs_clear(loaded_vmcs->vmcs);
1131 loaded_vmcs->cpu = -1;
1132 loaded_vmcs->launched = 0;
1133 }
1134
1135 static void vmcs_load(struct vmcs *vmcs)
1136 {
1137 u64 phys_addr = __pa(vmcs);
1138 u8 error;
1139
1140 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1141 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1142 : "cc", "memory");
1143 if (error)
1144 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1145 vmcs, phys_addr);
1146 }
1147
1148 #ifdef CONFIG_KEXEC
1149 /*
1150 * This bitmap is used to indicate whether the vmclear
1151 * operation is enabled on all cpus. All disabled by
1152 * default.
1153 */
1154 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1155
1156 static inline void crash_enable_local_vmclear(int cpu)
1157 {
1158 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1159 }
1160
1161 static inline void crash_disable_local_vmclear(int cpu)
1162 {
1163 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1164 }
1165
1166 static inline int crash_local_vmclear_enabled(int cpu)
1167 {
1168 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1169 }
1170
1171 static void crash_vmclear_local_loaded_vmcss(void)
1172 {
1173 int cpu = raw_smp_processor_id();
1174 struct loaded_vmcs *v;
1175
1176 if (!crash_local_vmclear_enabled(cpu))
1177 return;
1178
1179 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1180 loaded_vmcss_on_cpu_link)
1181 vmcs_clear(v->vmcs);
1182 }
1183 #else
1184 static inline void crash_enable_local_vmclear(int cpu) { }
1185 static inline void crash_disable_local_vmclear(int cpu) { }
1186 #endif /* CONFIG_KEXEC */
1187
1188 static void __loaded_vmcs_clear(void *arg)
1189 {
1190 struct loaded_vmcs *loaded_vmcs = arg;
1191 int cpu = raw_smp_processor_id();
1192
1193 if (loaded_vmcs->cpu != cpu)
1194 return; /* vcpu migration can race with cpu offline */
1195 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1196 per_cpu(current_vmcs, cpu) = NULL;
1197 crash_disable_local_vmclear(cpu);
1198 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1199
1200 /*
1201 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1202 * is before setting loaded_vmcs->vcpu to -1 which is done in
1203 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1204 * then adds the vmcs into percpu list before it is deleted.
1205 */
1206 smp_wmb();
1207
1208 loaded_vmcs_init(loaded_vmcs);
1209 crash_enable_local_vmclear(cpu);
1210 }
1211
1212 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1213 {
1214 int cpu = loaded_vmcs->cpu;
1215
1216 if (cpu != -1)
1217 smp_call_function_single(cpu,
1218 __loaded_vmcs_clear, loaded_vmcs, 1);
1219 }
1220
1221 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1222 {
1223 if (vmx->vpid == 0)
1224 return;
1225
1226 if (cpu_has_vmx_invvpid_single())
1227 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1228 }
1229
1230 static inline void vpid_sync_vcpu_global(void)
1231 {
1232 if (cpu_has_vmx_invvpid_global())
1233 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1234 }
1235
1236 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1237 {
1238 if (cpu_has_vmx_invvpid_single())
1239 vpid_sync_vcpu_single(vmx);
1240 else
1241 vpid_sync_vcpu_global();
1242 }
1243
1244 static inline void ept_sync_global(void)
1245 {
1246 if (cpu_has_vmx_invept_global())
1247 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1248 }
1249
1250 static inline void ept_sync_context(u64 eptp)
1251 {
1252 if (enable_ept) {
1253 if (cpu_has_vmx_invept_context())
1254 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1255 else
1256 ept_sync_global();
1257 }
1258 }
1259
1260 static __always_inline unsigned long vmcs_readl(unsigned long field)
1261 {
1262 unsigned long value;
1263
1264 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1265 : "=a"(value) : "d"(field) : "cc");
1266 return value;
1267 }
1268
1269 static __always_inline u16 vmcs_read16(unsigned long field)
1270 {
1271 return vmcs_readl(field);
1272 }
1273
1274 static __always_inline u32 vmcs_read32(unsigned long field)
1275 {
1276 return vmcs_readl(field);
1277 }
1278
1279 static __always_inline u64 vmcs_read64(unsigned long field)
1280 {
1281 #ifdef CONFIG_X86_64
1282 return vmcs_readl(field);
1283 #else
1284 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1285 #endif
1286 }
1287
1288 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1289 {
1290 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1291 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1292 dump_stack();
1293 }
1294
1295 static void vmcs_writel(unsigned long field, unsigned long value)
1296 {
1297 u8 error;
1298
1299 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1300 : "=q"(error) : "a"(value), "d"(field) : "cc");
1301 if (unlikely(error))
1302 vmwrite_error(field, value);
1303 }
1304
1305 static void vmcs_write16(unsigned long field, u16 value)
1306 {
1307 vmcs_writel(field, value);
1308 }
1309
1310 static void vmcs_write32(unsigned long field, u32 value)
1311 {
1312 vmcs_writel(field, value);
1313 }
1314
1315 static void vmcs_write64(unsigned long field, u64 value)
1316 {
1317 vmcs_writel(field, value);
1318 #ifndef CONFIG_X86_64
1319 asm volatile ("");
1320 vmcs_writel(field+1, value >> 32);
1321 #endif
1322 }
1323
1324 static void vmcs_clear_bits(unsigned long field, u32 mask)
1325 {
1326 vmcs_writel(field, vmcs_readl(field) & ~mask);
1327 }
1328
1329 static void vmcs_set_bits(unsigned long field, u32 mask)
1330 {
1331 vmcs_writel(field, vmcs_readl(field) | mask);
1332 }
1333
1334 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1335 {
1336 vmcs_write32(VM_ENTRY_CONTROLS, val);
1337 vmx->vm_entry_controls_shadow = val;
1338 }
1339
1340 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1341 {
1342 if (vmx->vm_entry_controls_shadow != val)
1343 vm_entry_controls_init(vmx, val);
1344 }
1345
1346 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1347 {
1348 return vmx->vm_entry_controls_shadow;
1349 }
1350
1351
1352 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1353 {
1354 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1355 }
1356
1357 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1358 {
1359 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1360 }
1361
1362 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1363 {
1364 vmcs_write32(VM_EXIT_CONTROLS, val);
1365 vmx->vm_exit_controls_shadow = val;
1366 }
1367
1368 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1369 {
1370 if (vmx->vm_exit_controls_shadow != val)
1371 vm_exit_controls_init(vmx, val);
1372 }
1373
1374 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1375 {
1376 return vmx->vm_exit_controls_shadow;
1377 }
1378
1379
1380 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1381 {
1382 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1383 }
1384
1385 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1386 {
1387 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1388 }
1389
1390 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1391 {
1392 vmx->segment_cache.bitmask = 0;
1393 }
1394
1395 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1396 unsigned field)
1397 {
1398 bool ret;
1399 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1400
1401 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1402 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1403 vmx->segment_cache.bitmask = 0;
1404 }
1405 ret = vmx->segment_cache.bitmask & mask;
1406 vmx->segment_cache.bitmask |= mask;
1407 return ret;
1408 }
1409
1410 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1411 {
1412 u16 *p = &vmx->segment_cache.seg[seg].selector;
1413
1414 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1415 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1416 return *p;
1417 }
1418
1419 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1420 {
1421 ulong *p = &vmx->segment_cache.seg[seg].base;
1422
1423 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1424 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1425 return *p;
1426 }
1427
1428 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1429 {
1430 u32 *p = &vmx->segment_cache.seg[seg].limit;
1431
1432 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1433 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1434 return *p;
1435 }
1436
1437 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1438 {
1439 u32 *p = &vmx->segment_cache.seg[seg].ar;
1440
1441 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1442 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1443 return *p;
1444 }
1445
1446 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1447 {
1448 u32 eb;
1449
1450 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1451 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1452 if ((vcpu->guest_debug &
1453 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1454 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1455 eb |= 1u << BP_VECTOR;
1456 if (to_vmx(vcpu)->rmode.vm86_active)
1457 eb = ~0;
1458 if (enable_ept)
1459 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1460 if (vcpu->fpu_active)
1461 eb &= ~(1u << NM_VECTOR);
1462
1463 /* When we are running a nested L2 guest and L1 specified for it a
1464 * certain exception bitmap, we must trap the same exceptions and pass
1465 * them to L1. When running L2, we will only handle the exceptions
1466 * specified above if L1 did not want them.
1467 */
1468 if (is_guest_mode(vcpu))
1469 eb |= get_vmcs12(vcpu)->exception_bitmap;
1470
1471 vmcs_write32(EXCEPTION_BITMAP, eb);
1472 }
1473
1474 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1475 unsigned long entry, unsigned long exit)
1476 {
1477 vm_entry_controls_clearbit(vmx, entry);
1478 vm_exit_controls_clearbit(vmx, exit);
1479 }
1480
1481 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1482 {
1483 unsigned i;
1484 struct msr_autoload *m = &vmx->msr_autoload;
1485
1486 switch (msr) {
1487 case MSR_EFER:
1488 if (cpu_has_load_ia32_efer) {
1489 clear_atomic_switch_msr_special(vmx,
1490 VM_ENTRY_LOAD_IA32_EFER,
1491 VM_EXIT_LOAD_IA32_EFER);
1492 return;
1493 }
1494 break;
1495 case MSR_CORE_PERF_GLOBAL_CTRL:
1496 if (cpu_has_load_perf_global_ctrl) {
1497 clear_atomic_switch_msr_special(vmx,
1498 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1499 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1500 return;
1501 }
1502 break;
1503 }
1504
1505 for (i = 0; i < m->nr; ++i)
1506 if (m->guest[i].index == msr)
1507 break;
1508
1509 if (i == m->nr)
1510 return;
1511 --m->nr;
1512 m->guest[i] = m->guest[m->nr];
1513 m->host[i] = m->host[m->nr];
1514 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1515 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1516 }
1517
1518 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1519 unsigned long entry, unsigned long exit,
1520 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1521 u64 guest_val, u64 host_val)
1522 {
1523 vmcs_write64(guest_val_vmcs, guest_val);
1524 vmcs_write64(host_val_vmcs, host_val);
1525 vm_entry_controls_setbit(vmx, entry);
1526 vm_exit_controls_setbit(vmx, exit);
1527 }
1528
1529 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1530 u64 guest_val, u64 host_val)
1531 {
1532 unsigned i;
1533 struct msr_autoload *m = &vmx->msr_autoload;
1534
1535 switch (msr) {
1536 case MSR_EFER:
1537 if (cpu_has_load_ia32_efer) {
1538 add_atomic_switch_msr_special(vmx,
1539 VM_ENTRY_LOAD_IA32_EFER,
1540 VM_EXIT_LOAD_IA32_EFER,
1541 GUEST_IA32_EFER,
1542 HOST_IA32_EFER,
1543 guest_val, host_val);
1544 return;
1545 }
1546 break;
1547 case MSR_CORE_PERF_GLOBAL_CTRL:
1548 if (cpu_has_load_perf_global_ctrl) {
1549 add_atomic_switch_msr_special(vmx,
1550 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1551 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1552 GUEST_IA32_PERF_GLOBAL_CTRL,
1553 HOST_IA32_PERF_GLOBAL_CTRL,
1554 guest_val, host_val);
1555 return;
1556 }
1557 break;
1558 }
1559
1560 for (i = 0; i < m->nr; ++i)
1561 if (m->guest[i].index == msr)
1562 break;
1563
1564 if (i == NR_AUTOLOAD_MSRS) {
1565 printk_once(KERN_WARNING "Not enough msr switch entries. "
1566 "Can't add msr %x\n", msr);
1567 return;
1568 } else if (i == m->nr) {
1569 ++m->nr;
1570 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1571 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1572 }
1573
1574 m->guest[i].index = msr;
1575 m->guest[i].value = guest_val;
1576 m->host[i].index = msr;
1577 m->host[i].value = host_val;
1578 }
1579
1580 static void reload_tss(void)
1581 {
1582 /*
1583 * VT restores TR but not its size. Useless.
1584 */
1585 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1586 struct desc_struct *descs;
1587
1588 descs = (void *)gdt->address;
1589 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1590 load_TR_desc();
1591 }
1592
1593 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1594 {
1595 u64 guest_efer;
1596 u64 ignore_bits;
1597
1598 guest_efer = vmx->vcpu.arch.efer;
1599
1600 /*
1601 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1602 * outside long mode
1603 */
1604 ignore_bits = EFER_NX | EFER_SCE;
1605 #ifdef CONFIG_X86_64
1606 ignore_bits |= EFER_LMA | EFER_LME;
1607 /* SCE is meaningful only in long mode on Intel */
1608 if (guest_efer & EFER_LMA)
1609 ignore_bits &= ~(u64)EFER_SCE;
1610 #endif
1611 guest_efer &= ~ignore_bits;
1612 guest_efer |= host_efer & ignore_bits;
1613 vmx->guest_msrs[efer_offset].data = guest_efer;
1614 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1615
1616 clear_atomic_switch_msr(vmx, MSR_EFER);
1617 /* On ept, can't emulate nx, and must switch nx atomically */
1618 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1619 guest_efer = vmx->vcpu.arch.efer;
1620 if (!(guest_efer & EFER_LMA))
1621 guest_efer &= ~EFER_LME;
1622 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1623 return false;
1624 }
1625
1626 return true;
1627 }
1628
1629 static unsigned long segment_base(u16 selector)
1630 {
1631 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1632 struct desc_struct *d;
1633 unsigned long table_base;
1634 unsigned long v;
1635
1636 if (!(selector & ~3))
1637 return 0;
1638
1639 table_base = gdt->address;
1640
1641 if (selector & 4) { /* from ldt */
1642 u16 ldt_selector = kvm_read_ldt();
1643
1644 if (!(ldt_selector & ~3))
1645 return 0;
1646
1647 table_base = segment_base(ldt_selector);
1648 }
1649 d = (struct desc_struct *)(table_base + (selector & ~7));
1650 v = get_desc_base(d);
1651 #ifdef CONFIG_X86_64
1652 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1653 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1654 #endif
1655 return v;
1656 }
1657
1658 static inline unsigned long kvm_read_tr_base(void)
1659 {
1660 u16 tr;
1661 asm("str %0" : "=g"(tr));
1662 return segment_base(tr);
1663 }
1664
1665 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1666 {
1667 struct vcpu_vmx *vmx = to_vmx(vcpu);
1668 int i;
1669
1670 if (vmx->host_state.loaded)
1671 return;
1672
1673 vmx->host_state.loaded = 1;
1674 /*
1675 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1676 * allow segment selectors with cpl > 0 or ti == 1.
1677 */
1678 vmx->host_state.ldt_sel = kvm_read_ldt();
1679 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1680 savesegment(fs, vmx->host_state.fs_sel);
1681 if (!(vmx->host_state.fs_sel & 7)) {
1682 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1683 vmx->host_state.fs_reload_needed = 0;
1684 } else {
1685 vmcs_write16(HOST_FS_SELECTOR, 0);
1686 vmx->host_state.fs_reload_needed = 1;
1687 }
1688 savesegment(gs, vmx->host_state.gs_sel);
1689 if (!(vmx->host_state.gs_sel & 7))
1690 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1691 else {
1692 vmcs_write16(HOST_GS_SELECTOR, 0);
1693 vmx->host_state.gs_ldt_reload_needed = 1;
1694 }
1695
1696 #ifdef CONFIG_X86_64
1697 savesegment(ds, vmx->host_state.ds_sel);
1698 savesegment(es, vmx->host_state.es_sel);
1699 #endif
1700
1701 #ifdef CONFIG_X86_64
1702 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1703 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1704 #else
1705 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1706 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1707 #endif
1708
1709 #ifdef CONFIG_X86_64
1710 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1711 if (is_long_mode(&vmx->vcpu))
1712 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1713 #endif
1714 if (boot_cpu_has(X86_FEATURE_MPX))
1715 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1716 for (i = 0; i < vmx->save_nmsrs; ++i)
1717 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1718 vmx->guest_msrs[i].data,
1719 vmx->guest_msrs[i].mask);
1720 }
1721
1722 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1723 {
1724 if (!vmx->host_state.loaded)
1725 return;
1726
1727 ++vmx->vcpu.stat.host_state_reload;
1728 vmx->host_state.loaded = 0;
1729 #ifdef CONFIG_X86_64
1730 if (is_long_mode(&vmx->vcpu))
1731 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1732 #endif
1733 if (vmx->host_state.gs_ldt_reload_needed) {
1734 kvm_load_ldt(vmx->host_state.ldt_sel);
1735 #ifdef CONFIG_X86_64
1736 load_gs_index(vmx->host_state.gs_sel);
1737 #else
1738 loadsegment(gs, vmx->host_state.gs_sel);
1739 #endif
1740 }
1741 if (vmx->host_state.fs_reload_needed)
1742 loadsegment(fs, vmx->host_state.fs_sel);
1743 #ifdef CONFIG_X86_64
1744 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1745 loadsegment(ds, vmx->host_state.ds_sel);
1746 loadsegment(es, vmx->host_state.es_sel);
1747 }
1748 #endif
1749 reload_tss();
1750 #ifdef CONFIG_X86_64
1751 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1752 #endif
1753 if (vmx->host_state.msr_host_bndcfgs)
1754 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1755 /*
1756 * If the FPU is not active (through the host task or
1757 * the guest vcpu), then restore the cr0.TS bit.
1758 */
1759 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1760 stts();
1761 load_gdt(&__get_cpu_var(host_gdt));
1762 }
1763
1764 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1765 {
1766 preempt_disable();
1767 __vmx_load_host_state(vmx);
1768 preempt_enable();
1769 }
1770
1771 /*
1772 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1773 * vcpu mutex is already taken.
1774 */
1775 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1776 {
1777 struct vcpu_vmx *vmx = to_vmx(vcpu);
1778 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1779
1780 if (!vmm_exclusive)
1781 kvm_cpu_vmxon(phys_addr);
1782 else if (vmx->loaded_vmcs->cpu != cpu)
1783 loaded_vmcs_clear(vmx->loaded_vmcs);
1784
1785 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1786 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1787 vmcs_load(vmx->loaded_vmcs->vmcs);
1788 }
1789
1790 if (vmx->loaded_vmcs->cpu != cpu) {
1791 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1792 unsigned long sysenter_esp;
1793
1794 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1795 local_irq_disable();
1796 crash_disable_local_vmclear(cpu);
1797
1798 /*
1799 * Read loaded_vmcs->cpu should be before fetching
1800 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1801 * See the comments in __loaded_vmcs_clear().
1802 */
1803 smp_rmb();
1804
1805 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1806 &per_cpu(loaded_vmcss_on_cpu, cpu));
1807 crash_enable_local_vmclear(cpu);
1808 local_irq_enable();
1809
1810 /*
1811 * Linux uses per-cpu TSS and GDT, so set these when switching
1812 * processors.
1813 */
1814 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1815 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1816
1817 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1818 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1819 vmx->loaded_vmcs->cpu = cpu;
1820 }
1821 }
1822
1823 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1824 {
1825 __vmx_load_host_state(to_vmx(vcpu));
1826 if (!vmm_exclusive) {
1827 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1828 vcpu->cpu = -1;
1829 kvm_cpu_vmxoff();
1830 }
1831 }
1832
1833 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1834 {
1835 ulong cr0;
1836
1837 if (vcpu->fpu_active)
1838 return;
1839 vcpu->fpu_active = 1;
1840 cr0 = vmcs_readl(GUEST_CR0);
1841 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1842 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1843 vmcs_writel(GUEST_CR0, cr0);
1844 update_exception_bitmap(vcpu);
1845 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1846 if (is_guest_mode(vcpu))
1847 vcpu->arch.cr0_guest_owned_bits &=
1848 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1849 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1850 }
1851
1852 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1853
1854 /*
1855 * Return the cr0 value that a nested guest would read. This is a combination
1856 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1857 * its hypervisor (cr0_read_shadow).
1858 */
1859 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1860 {
1861 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1862 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1863 }
1864 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1865 {
1866 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1867 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1868 }
1869
1870 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1871 {
1872 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1873 * set this *before* calling this function.
1874 */
1875 vmx_decache_cr0_guest_bits(vcpu);
1876 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1877 update_exception_bitmap(vcpu);
1878 vcpu->arch.cr0_guest_owned_bits = 0;
1879 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1880 if (is_guest_mode(vcpu)) {
1881 /*
1882 * L1's specified read shadow might not contain the TS bit,
1883 * so now that we turned on shadowing of this bit, we need to
1884 * set this bit of the shadow. Like in nested_vmx_run we need
1885 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1886 * up-to-date here because we just decached cr0.TS (and we'll
1887 * only update vmcs12->guest_cr0 on nested exit).
1888 */
1889 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1890 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1891 (vcpu->arch.cr0 & X86_CR0_TS);
1892 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1893 } else
1894 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1895 }
1896
1897 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1898 {
1899 unsigned long rflags, save_rflags;
1900
1901 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1902 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1903 rflags = vmcs_readl(GUEST_RFLAGS);
1904 if (to_vmx(vcpu)->rmode.vm86_active) {
1905 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1906 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1907 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1908 }
1909 to_vmx(vcpu)->rflags = rflags;
1910 }
1911 return to_vmx(vcpu)->rflags;
1912 }
1913
1914 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1915 {
1916 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1917 to_vmx(vcpu)->rflags = rflags;
1918 if (to_vmx(vcpu)->rmode.vm86_active) {
1919 to_vmx(vcpu)->rmode.save_rflags = rflags;
1920 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1921 }
1922 vmcs_writel(GUEST_RFLAGS, rflags);
1923 }
1924
1925 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1926 {
1927 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1928 int ret = 0;
1929
1930 if (interruptibility & GUEST_INTR_STATE_STI)
1931 ret |= KVM_X86_SHADOW_INT_STI;
1932 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1933 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1934
1935 return ret & mask;
1936 }
1937
1938 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1939 {
1940 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1941 u32 interruptibility = interruptibility_old;
1942
1943 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1944
1945 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1946 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1947 else if (mask & KVM_X86_SHADOW_INT_STI)
1948 interruptibility |= GUEST_INTR_STATE_STI;
1949
1950 if ((interruptibility != interruptibility_old))
1951 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1952 }
1953
1954 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1955 {
1956 unsigned long rip;
1957
1958 rip = kvm_rip_read(vcpu);
1959 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1960 kvm_rip_write(vcpu, rip);
1961
1962 /* skipping an emulated instruction also counts */
1963 vmx_set_interrupt_shadow(vcpu, 0);
1964 }
1965
1966 /*
1967 * KVM wants to inject page-faults which it got to the guest. This function
1968 * checks whether in a nested guest, we need to inject them to L1 or L2.
1969 */
1970 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
1971 {
1972 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1973
1974 if (!(vmcs12->exception_bitmap & (1u << nr)))
1975 return 0;
1976
1977 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
1978 vmcs_read32(VM_EXIT_INTR_INFO),
1979 vmcs_readl(EXIT_QUALIFICATION));
1980 return 1;
1981 }
1982
1983 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1984 bool has_error_code, u32 error_code,
1985 bool reinject)
1986 {
1987 struct vcpu_vmx *vmx = to_vmx(vcpu);
1988 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1989
1990 if (!reinject && is_guest_mode(vcpu) &&
1991 nested_vmx_check_exception(vcpu, nr))
1992 return;
1993
1994 if (has_error_code) {
1995 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1996 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1997 }
1998
1999 if (vmx->rmode.vm86_active) {
2000 int inc_eip = 0;
2001 if (kvm_exception_is_soft(nr))
2002 inc_eip = vcpu->arch.event_exit_inst_len;
2003 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2004 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2005 return;
2006 }
2007
2008 if (kvm_exception_is_soft(nr)) {
2009 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2010 vmx->vcpu.arch.event_exit_inst_len);
2011 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2012 } else
2013 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2014
2015 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2016 }
2017
2018 static bool vmx_rdtscp_supported(void)
2019 {
2020 return cpu_has_vmx_rdtscp();
2021 }
2022
2023 static bool vmx_invpcid_supported(void)
2024 {
2025 return cpu_has_vmx_invpcid() && enable_ept;
2026 }
2027
2028 /*
2029 * Swap MSR entry in host/guest MSR entry array.
2030 */
2031 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2032 {
2033 struct shared_msr_entry tmp;
2034
2035 tmp = vmx->guest_msrs[to];
2036 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2037 vmx->guest_msrs[from] = tmp;
2038 }
2039
2040 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2041 {
2042 unsigned long *msr_bitmap;
2043
2044 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2045 if (is_long_mode(vcpu))
2046 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2047 else
2048 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2049 } else {
2050 if (is_long_mode(vcpu))
2051 msr_bitmap = vmx_msr_bitmap_longmode;
2052 else
2053 msr_bitmap = vmx_msr_bitmap_legacy;
2054 }
2055
2056 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2057 }
2058
2059 /*
2060 * Set up the vmcs to automatically save and restore system
2061 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2062 * mode, as fiddling with msrs is very expensive.
2063 */
2064 static void setup_msrs(struct vcpu_vmx *vmx)
2065 {
2066 int save_nmsrs, index;
2067
2068 save_nmsrs = 0;
2069 #ifdef CONFIG_X86_64
2070 if (is_long_mode(&vmx->vcpu)) {
2071 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2072 if (index >= 0)
2073 move_msr_up(vmx, index, save_nmsrs++);
2074 index = __find_msr_index(vmx, MSR_LSTAR);
2075 if (index >= 0)
2076 move_msr_up(vmx, index, save_nmsrs++);
2077 index = __find_msr_index(vmx, MSR_CSTAR);
2078 if (index >= 0)
2079 move_msr_up(vmx, index, save_nmsrs++);
2080 index = __find_msr_index(vmx, MSR_TSC_AUX);
2081 if (index >= 0 && vmx->rdtscp_enabled)
2082 move_msr_up(vmx, index, save_nmsrs++);
2083 /*
2084 * MSR_STAR is only needed on long mode guests, and only
2085 * if efer.sce is enabled.
2086 */
2087 index = __find_msr_index(vmx, MSR_STAR);
2088 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2089 move_msr_up(vmx, index, save_nmsrs++);
2090 }
2091 #endif
2092 index = __find_msr_index(vmx, MSR_EFER);
2093 if (index >= 0 && update_transition_efer(vmx, index))
2094 move_msr_up(vmx, index, save_nmsrs++);
2095
2096 vmx->save_nmsrs = save_nmsrs;
2097
2098 if (cpu_has_vmx_msr_bitmap())
2099 vmx_set_msr_bitmap(&vmx->vcpu);
2100 }
2101
2102 /*
2103 * reads and returns guest's timestamp counter "register"
2104 * guest_tsc = host_tsc + tsc_offset -- 21.3
2105 */
2106 static u64 guest_read_tsc(void)
2107 {
2108 u64 host_tsc, tsc_offset;
2109
2110 rdtscll(host_tsc);
2111 tsc_offset = vmcs_read64(TSC_OFFSET);
2112 return host_tsc + tsc_offset;
2113 }
2114
2115 /*
2116 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2117 * counter, even if a nested guest (L2) is currently running.
2118 */
2119 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2120 {
2121 u64 tsc_offset;
2122
2123 tsc_offset = is_guest_mode(vcpu) ?
2124 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2125 vmcs_read64(TSC_OFFSET);
2126 return host_tsc + tsc_offset;
2127 }
2128
2129 /*
2130 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2131 * software catchup for faster rates on slower CPUs.
2132 */
2133 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2134 {
2135 if (!scale)
2136 return;
2137
2138 if (user_tsc_khz > tsc_khz) {
2139 vcpu->arch.tsc_catchup = 1;
2140 vcpu->arch.tsc_always_catchup = 1;
2141 } else
2142 WARN(1, "user requested TSC rate below hardware speed\n");
2143 }
2144
2145 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2146 {
2147 return vmcs_read64(TSC_OFFSET);
2148 }
2149
2150 /*
2151 * writes 'offset' into guest's timestamp counter offset register
2152 */
2153 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2154 {
2155 if (is_guest_mode(vcpu)) {
2156 /*
2157 * We're here if L1 chose not to trap WRMSR to TSC. According
2158 * to the spec, this should set L1's TSC; The offset that L1
2159 * set for L2 remains unchanged, and still needs to be added
2160 * to the newly set TSC to get L2's TSC.
2161 */
2162 struct vmcs12 *vmcs12;
2163 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2164 /* recalculate vmcs02.TSC_OFFSET: */
2165 vmcs12 = get_vmcs12(vcpu);
2166 vmcs_write64(TSC_OFFSET, offset +
2167 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2168 vmcs12->tsc_offset : 0));
2169 } else {
2170 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2171 vmcs_read64(TSC_OFFSET), offset);
2172 vmcs_write64(TSC_OFFSET, offset);
2173 }
2174 }
2175
2176 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2177 {
2178 u64 offset = vmcs_read64(TSC_OFFSET);
2179
2180 vmcs_write64(TSC_OFFSET, offset + adjustment);
2181 if (is_guest_mode(vcpu)) {
2182 /* Even when running L2, the adjustment needs to apply to L1 */
2183 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2184 } else
2185 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2186 offset + adjustment);
2187 }
2188
2189 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2190 {
2191 return target_tsc - native_read_tsc();
2192 }
2193
2194 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2195 {
2196 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2197 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2198 }
2199
2200 /*
2201 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2202 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2203 * all guests if the "nested" module option is off, and can also be disabled
2204 * for a single guest by disabling its VMX cpuid bit.
2205 */
2206 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2207 {
2208 return nested && guest_cpuid_has_vmx(vcpu);
2209 }
2210
2211 /*
2212 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2213 * returned for the various VMX controls MSRs when nested VMX is enabled.
2214 * The same values should also be used to verify that vmcs12 control fields are
2215 * valid during nested entry from L1 to L2.
2216 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2217 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2218 * bit in the high half is on if the corresponding bit in the control field
2219 * may be on. See also vmx_control_verify().
2220 * TODO: allow these variables to be modified (downgraded) by module options
2221 * or other means.
2222 */
2223 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2224 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2225 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2226 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2227 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2228 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2229 static u32 nested_vmx_ept_caps;
2230 static __init void nested_vmx_setup_ctls_msrs(void)
2231 {
2232 /*
2233 * Note that as a general rule, the high half of the MSRs (bits in
2234 * the control fields which may be 1) should be initialized by the
2235 * intersection of the underlying hardware's MSR (i.e., features which
2236 * can be supported) and the list of features we want to expose -
2237 * because they are known to be properly supported in our code.
2238 * Also, usually, the low half of the MSRs (bits which must be 1) can
2239 * be set to 0, meaning that L1 may turn off any of these bits. The
2240 * reason is that if one of these bits is necessary, it will appear
2241 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2242 * fields of vmcs01 and vmcs02, will turn these bits off - and
2243 * nested_vmx_exit_handled() will not pass related exits to L1.
2244 * These rules have exceptions below.
2245 */
2246
2247 /* pin-based controls */
2248 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2249 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2250 /*
2251 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2252 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2253 */
2254 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2255 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2256 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2257 PIN_BASED_VMX_PREEMPTION_TIMER;
2258 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2259
2260 /*
2261 * Exit controls
2262 * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2263 * 17 must be 1.
2264 */
2265 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2266 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2267 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2268 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2269 nested_vmx_exit_ctls_high &=
2270 #ifdef CONFIG_X86_64
2271 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2272 #endif
2273 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
2274 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
2275 if (!(nested_vmx_pinbased_ctls_high & PIN_BASED_VMX_PREEMPTION_TIMER) ||
2276 !(nested_vmx_exit_ctls_high & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)) {
2277 nested_vmx_exit_ctls_high &= ~VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
2278 nested_vmx_pinbased_ctls_high &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2279 }
2280 nested_vmx_exit_ctls_high |= (VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2281 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER);
2282
2283 /* entry controls */
2284 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2285 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2286 /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2287 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2288 nested_vmx_entry_ctls_high &=
2289 #ifdef CONFIG_X86_64
2290 VM_ENTRY_IA32E_MODE |
2291 #endif
2292 VM_ENTRY_LOAD_IA32_PAT;
2293 nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2294 VM_ENTRY_LOAD_IA32_EFER);
2295
2296 /* cpu-based controls */
2297 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2298 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2299 nested_vmx_procbased_ctls_low = 0;
2300 nested_vmx_procbased_ctls_high &=
2301 CPU_BASED_VIRTUAL_INTR_PENDING |
2302 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2303 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2304 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2305 CPU_BASED_CR3_STORE_EXITING |
2306 #ifdef CONFIG_X86_64
2307 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2308 #endif
2309 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2310 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2311 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2312 CPU_BASED_PAUSE_EXITING |
2313 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2314 /*
2315 * We can allow some features even when not supported by the
2316 * hardware. For example, L1 can specify an MSR bitmap - and we
2317 * can use it to avoid exits to L1 - even when L0 runs L2
2318 * without MSR bitmaps.
2319 */
2320 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2321
2322 /* secondary cpu-based controls */
2323 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2324 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2325 nested_vmx_secondary_ctls_low = 0;
2326 nested_vmx_secondary_ctls_high &=
2327 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2328 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2329 SECONDARY_EXEC_WBINVD_EXITING;
2330
2331 if (enable_ept) {
2332 /* nested EPT: emulate EPT also to L1 */
2333 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2334 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2335 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2336 VMX_EPT_INVEPT_BIT;
2337 nested_vmx_ept_caps &= vmx_capability.ept;
2338 /*
2339 * Since invept is completely emulated we support both global
2340 * and context invalidation independent of what host cpu
2341 * supports
2342 */
2343 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2344 VMX_EPT_EXTENT_CONTEXT_BIT;
2345 } else
2346 nested_vmx_ept_caps = 0;
2347
2348 /* miscellaneous data */
2349 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2350 nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2351 VMX_MISC_SAVE_EFER_LMA;
2352 nested_vmx_misc_low |= VMX_MISC_ACTIVITY_HLT;
2353 nested_vmx_misc_high = 0;
2354 }
2355
2356 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2357 {
2358 /*
2359 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2360 */
2361 return ((control & high) | low) == control;
2362 }
2363
2364 static inline u64 vmx_control_msr(u32 low, u32 high)
2365 {
2366 return low | ((u64)high << 32);
2367 }
2368
2369 /* Returns 0 on success, non-0 otherwise. */
2370 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2371 {
2372 switch (msr_index) {
2373 case MSR_IA32_VMX_BASIC:
2374 /*
2375 * This MSR reports some information about VMX support. We
2376 * should return information about the VMX we emulate for the
2377 * guest, and the VMCS structure we give it - not about the
2378 * VMX support of the underlying hardware.
2379 */
2380 *pdata = VMCS12_REVISION |
2381 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2382 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2383 break;
2384 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2385 case MSR_IA32_VMX_PINBASED_CTLS:
2386 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2387 nested_vmx_pinbased_ctls_high);
2388 break;
2389 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2390 case MSR_IA32_VMX_PROCBASED_CTLS:
2391 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2392 nested_vmx_procbased_ctls_high);
2393 break;
2394 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2395 case MSR_IA32_VMX_EXIT_CTLS:
2396 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2397 nested_vmx_exit_ctls_high);
2398 break;
2399 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2400 case MSR_IA32_VMX_ENTRY_CTLS:
2401 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2402 nested_vmx_entry_ctls_high);
2403 break;
2404 case MSR_IA32_VMX_MISC:
2405 *pdata = vmx_control_msr(nested_vmx_misc_low,
2406 nested_vmx_misc_high);
2407 break;
2408 /*
2409 * These MSRs specify bits which the guest must keep fixed (on or off)
2410 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2411 * We picked the standard core2 setting.
2412 */
2413 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2414 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2415 case MSR_IA32_VMX_CR0_FIXED0:
2416 *pdata = VMXON_CR0_ALWAYSON;
2417 break;
2418 case MSR_IA32_VMX_CR0_FIXED1:
2419 *pdata = -1ULL;
2420 break;
2421 case MSR_IA32_VMX_CR4_FIXED0:
2422 *pdata = VMXON_CR4_ALWAYSON;
2423 break;
2424 case MSR_IA32_VMX_CR4_FIXED1:
2425 *pdata = -1ULL;
2426 break;
2427 case MSR_IA32_VMX_VMCS_ENUM:
2428 *pdata = 0x1f;
2429 break;
2430 case MSR_IA32_VMX_PROCBASED_CTLS2:
2431 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2432 nested_vmx_secondary_ctls_high);
2433 break;
2434 case MSR_IA32_VMX_EPT_VPID_CAP:
2435 /* Currently, no nested vpid support */
2436 *pdata = nested_vmx_ept_caps;
2437 break;
2438 default:
2439 return 1;
2440 }
2441
2442 return 0;
2443 }
2444
2445 /*
2446 * Reads an msr value (of 'msr_index') into 'pdata'.
2447 * Returns 0 on success, non-0 otherwise.
2448 * Assumes vcpu_load() was already called.
2449 */
2450 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2451 {
2452 u64 data;
2453 struct shared_msr_entry *msr;
2454
2455 if (!pdata) {
2456 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2457 return -EINVAL;
2458 }
2459
2460 switch (msr_index) {
2461 #ifdef CONFIG_X86_64
2462 case MSR_FS_BASE:
2463 data = vmcs_readl(GUEST_FS_BASE);
2464 break;
2465 case MSR_GS_BASE:
2466 data = vmcs_readl(GUEST_GS_BASE);
2467 break;
2468 case MSR_KERNEL_GS_BASE:
2469 vmx_load_host_state(to_vmx(vcpu));
2470 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2471 break;
2472 #endif
2473 case MSR_EFER:
2474 return kvm_get_msr_common(vcpu, msr_index, pdata);
2475 case MSR_IA32_TSC:
2476 data = guest_read_tsc();
2477 break;
2478 case MSR_IA32_SYSENTER_CS:
2479 data = vmcs_read32(GUEST_SYSENTER_CS);
2480 break;
2481 case MSR_IA32_SYSENTER_EIP:
2482 data = vmcs_readl(GUEST_SYSENTER_EIP);
2483 break;
2484 case MSR_IA32_SYSENTER_ESP:
2485 data = vmcs_readl(GUEST_SYSENTER_ESP);
2486 break;
2487 case MSR_IA32_FEATURE_CONTROL:
2488 if (!nested_vmx_allowed(vcpu))
2489 return 1;
2490 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2491 break;
2492 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2493 if (!nested_vmx_allowed(vcpu))
2494 return 1;
2495 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2496 case MSR_TSC_AUX:
2497 if (!to_vmx(vcpu)->rdtscp_enabled)
2498 return 1;
2499 /* Otherwise falls through */
2500 default:
2501 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2502 if (msr) {
2503 data = msr->data;
2504 break;
2505 }
2506 return kvm_get_msr_common(vcpu, msr_index, pdata);
2507 }
2508
2509 *pdata = data;
2510 return 0;
2511 }
2512
2513 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2514
2515 /*
2516 * Writes msr value into into the appropriate "register".
2517 * Returns 0 on success, non-0 otherwise.
2518 * Assumes vcpu_load() was already called.
2519 */
2520 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2521 {
2522 struct vcpu_vmx *vmx = to_vmx(vcpu);
2523 struct shared_msr_entry *msr;
2524 int ret = 0;
2525 u32 msr_index = msr_info->index;
2526 u64 data = msr_info->data;
2527
2528 switch (msr_index) {
2529 case MSR_EFER:
2530 ret = kvm_set_msr_common(vcpu, msr_info);
2531 break;
2532 #ifdef CONFIG_X86_64
2533 case MSR_FS_BASE:
2534 vmx_segment_cache_clear(vmx);
2535 vmcs_writel(GUEST_FS_BASE, data);
2536 break;
2537 case MSR_GS_BASE:
2538 vmx_segment_cache_clear(vmx);
2539 vmcs_writel(GUEST_GS_BASE, data);
2540 break;
2541 case MSR_KERNEL_GS_BASE:
2542 vmx_load_host_state(vmx);
2543 vmx->msr_guest_kernel_gs_base = data;
2544 break;
2545 #endif
2546 case MSR_IA32_SYSENTER_CS:
2547 vmcs_write32(GUEST_SYSENTER_CS, data);
2548 break;
2549 case MSR_IA32_SYSENTER_EIP:
2550 vmcs_writel(GUEST_SYSENTER_EIP, data);
2551 break;
2552 case MSR_IA32_SYSENTER_ESP:
2553 vmcs_writel(GUEST_SYSENTER_ESP, data);
2554 break;
2555 case MSR_IA32_TSC:
2556 kvm_write_tsc(vcpu, msr_info);
2557 break;
2558 case MSR_IA32_CR_PAT:
2559 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2560 vmcs_write64(GUEST_IA32_PAT, data);
2561 vcpu->arch.pat = data;
2562 break;
2563 }
2564 ret = kvm_set_msr_common(vcpu, msr_info);
2565 break;
2566 case MSR_IA32_TSC_ADJUST:
2567 ret = kvm_set_msr_common(vcpu, msr_info);
2568 break;
2569 case MSR_IA32_FEATURE_CONTROL:
2570 if (!nested_vmx_allowed(vcpu) ||
2571 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2572 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2573 return 1;
2574 vmx->nested.msr_ia32_feature_control = data;
2575 if (msr_info->host_initiated && data == 0)
2576 vmx_leave_nested(vcpu);
2577 break;
2578 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2579 return 1; /* they are read-only */
2580 case MSR_TSC_AUX:
2581 if (!vmx->rdtscp_enabled)
2582 return 1;
2583 /* Check reserved bit, higher 32 bits should be zero */
2584 if ((data >> 32) != 0)
2585 return 1;
2586 /* Otherwise falls through */
2587 default:
2588 msr = find_msr_entry(vmx, msr_index);
2589 if (msr) {
2590 msr->data = data;
2591 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2592 preempt_disable();
2593 kvm_set_shared_msr(msr->index, msr->data,
2594 msr->mask);
2595 preempt_enable();
2596 }
2597 break;
2598 }
2599 ret = kvm_set_msr_common(vcpu, msr_info);
2600 }
2601
2602 return ret;
2603 }
2604
2605 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2606 {
2607 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2608 switch (reg) {
2609 case VCPU_REGS_RSP:
2610 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2611 break;
2612 case VCPU_REGS_RIP:
2613 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2614 break;
2615 case VCPU_EXREG_PDPTR:
2616 if (enable_ept)
2617 ept_save_pdptrs(vcpu);
2618 break;
2619 default:
2620 break;
2621 }
2622 }
2623
2624 static __init int cpu_has_kvm_support(void)
2625 {
2626 return cpu_has_vmx();
2627 }
2628
2629 static __init int vmx_disabled_by_bios(void)
2630 {
2631 u64 msr;
2632
2633 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2634 if (msr & FEATURE_CONTROL_LOCKED) {
2635 /* launched w/ TXT and VMX disabled */
2636 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2637 && tboot_enabled())
2638 return 1;
2639 /* launched w/o TXT and VMX only enabled w/ TXT */
2640 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2641 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2642 && !tboot_enabled()) {
2643 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2644 "activate TXT before enabling KVM\n");
2645 return 1;
2646 }
2647 /* launched w/o TXT and VMX disabled */
2648 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2649 && !tboot_enabled())
2650 return 1;
2651 }
2652
2653 return 0;
2654 }
2655
2656 static void kvm_cpu_vmxon(u64 addr)
2657 {
2658 asm volatile (ASM_VMX_VMXON_RAX
2659 : : "a"(&addr), "m"(addr)
2660 : "memory", "cc");
2661 }
2662
2663 static int hardware_enable(void *garbage)
2664 {
2665 int cpu = raw_smp_processor_id();
2666 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2667 u64 old, test_bits;
2668
2669 if (read_cr4() & X86_CR4_VMXE)
2670 return -EBUSY;
2671
2672 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2673
2674 /*
2675 * Now we can enable the vmclear operation in kdump
2676 * since the loaded_vmcss_on_cpu list on this cpu
2677 * has been initialized.
2678 *
2679 * Though the cpu is not in VMX operation now, there
2680 * is no problem to enable the vmclear operation
2681 * for the loaded_vmcss_on_cpu list is empty!
2682 */
2683 crash_enable_local_vmclear(cpu);
2684
2685 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2686
2687 test_bits = FEATURE_CONTROL_LOCKED;
2688 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2689 if (tboot_enabled())
2690 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2691
2692 if ((old & test_bits) != test_bits) {
2693 /* enable and lock */
2694 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2695 }
2696 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2697
2698 if (vmm_exclusive) {
2699 kvm_cpu_vmxon(phys_addr);
2700 ept_sync_global();
2701 }
2702
2703 native_store_gdt(&__get_cpu_var(host_gdt));
2704
2705 return 0;
2706 }
2707
2708 static void vmclear_local_loaded_vmcss(void)
2709 {
2710 int cpu = raw_smp_processor_id();
2711 struct loaded_vmcs *v, *n;
2712
2713 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2714 loaded_vmcss_on_cpu_link)
2715 __loaded_vmcs_clear(v);
2716 }
2717
2718
2719 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2720 * tricks.
2721 */
2722 static void kvm_cpu_vmxoff(void)
2723 {
2724 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2725 }
2726
2727 static void hardware_disable(void *garbage)
2728 {
2729 if (vmm_exclusive) {
2730 vmclear_local_loaded_vmcss();
2731 kvm_cpu_vmxoff();
2732 }
2733 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2734 }
2735
2736 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2737 u32 msr, u32 *result)
2738 {
2739 u32 vmx_msr_low, vmx_msr_high;
2740 u32 ctl = ctl_min | ctl_opt;
2741
2742 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2743
2744 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2745 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2746
2747 /* Ensure minimum (required) set of control bits are supported. */
2748 if (ctl_min & ~ctl)
2749 return -EIO;
2750
2751 *result = ctl;
2752 return 0;
2753 }
2754
2755 static __init bool allow_1_setting(u32 msr, u32 ctl)
2756 {
2757 u32 vmx_msr_low, vmx_msr_high;
2758
2759 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2760 return vmx_msr_high & ctl;
2761 }
2762
2763 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2764 {
2765 u32 vmx_msr_low, vmx_msr_high;
2766 u32 min, opt, min2, opt2;
2767 u32 _pin_based_exec_control = 0;
2768 u32 _cpu_based_exec_control = 0;
2769 u32 _cpu_based_2nd_exec_control = 0;
2770 u32 _vmexit_control = 0;
2771 u32 _vmentry_control = 0;
2772
2773 min = CPU_BASED_HLT_EXITING |
2774 #ifdef CONFIG_X86_64
2775 CPU_BASED_CR8_LOAD_EXITING |
2776 CPU_BASED_CR8_STORE_EXITING |
2777 #endif
2778 CPU_BASED_CR3_LOAD_EXITING |
2779 CPU_BASED_CR3_STORE_EXITING |
2780 CPU_BASED_USE_IO_BITMAPS |
2781 CPU_BASED_MOV_DR_EXITING |
2782 CPU_BASED_USE_TSC_OFFSETING |
2783 CPU_BASED_MWAIT_EXITING |
2784 CPU_BASED_MONITOR_EXITING |
2785 CPU_BASED_INVLPG_EXITING |
2786 CPU_BASED_RDPMC_EXITING;
2787
2788 opt = CPU_BASED_TPR_SHADOW |
2789 CPU_BASED_USE_MSR_BITMAPS |
2790 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2791 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2792 &_cpu_based_exec_control) < 0)
2793 return -EIO;
2794 #ifdef CONFIG_X86_64
2795 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2796 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2797 ~CPU_BASED_CR8_STORE_EXITING;
2798 #endif
2799 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2800 min2 = 0;
2801 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2802 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2803 SECONDARY_EXEC_WBINVD_EXITING |
2804 SECONDARY_EXEC_ENABLE_VPID |
2805 SECONDARY_EXEC_ENABLE_EPT |
2806 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2807 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2808 SECONDARY_EXEC_RDTSCP |
2809 SECONDARY_EXEC_ENABLE_INVPCID |
2810 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2811 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2812 SECONDARY_EXEC_SHADOW_VMCS;
2813 if (adjust_vmx_controls(min2, opt2,
2814 MSR_IA32_VMX_PROCBASED_CTLS2,
2815 &_cpu_based_2nd_exec_control) < 0)
2816 return -EIO;
2817 }
2818 #ifndef CONFIG_X86_64
2819 if (!(_cpu_based_2nd_exec_control &
2820 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2821 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2822 #endif
2823
2824 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2825 _cpu_based_2nd_exec_control &= ~(
2826 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2827 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2828 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2829
2830 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2831 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2832 enabled */
2833 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2834 CPU_BASED_CR3_STORE_EXITING |
2835 CPU_BASED_INVLPG_EXITING);
2836 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2837 vmx_capability.ept, vmx_capability.vpid);
2838 }
2839
2840 min = 0;
2841 #ifdef CONFIG_X86_64
2842 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2843 #endif
2844 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2845 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
2846 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2847 &_vmexit_control) < 0)
2848 return -EIO;
2849
2850 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2851 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2852 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2853 &_pin_based_exec_control) < 0)
2854 return -EIO;
2855
2856 if (!(_cpu_based_2nd_exec_control &
2857 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2858 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2859 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2860
2861 min = 0;
2862 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
2863 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2864 &_vmentry_control) < 0)
2865 return -EIO;
2866
2867 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2868
2869 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2870 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2871 return -EIO;
2872
2873 #ifdef CONFIG_X86_64
2874 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2875 if (vmx_msr_high & (1u<<16))
2876 return -EIO;
2877 #endif
2878
2879 /* Require Write-Back (WB) memory type for VMCS accesses. */
2880 if (((vmx_msr_high >> 18) & 15) != 6)
2881 return -EIO;
2882
2883 vmcs_conf->size = vmx_msr_high & 0x1fff;
2884 vmcs_conf->order = get_order(vmcs_config.size);
2885 vmcs_conf->revision_id = vmx_msr_low;
2886
2887 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2888 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2889 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2890 vmcs_conf->vmexit_ctrl = _vmexit_control;
2891 vmcs_conf->vmentry_ctrl = _vmentry_control;
2892
2893 cpu_has_load_ia32_efer =
2894 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2895 VM_ENTRY_LOAD_IA32_EFER)
2896 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2897 VM_EXIT_LOAD_IA32_EFER);
2898
2899 cpu_has_load_perf_global_ctrl =
2900 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2901 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2902 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2903 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2904
2905 /*
2906 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2907 * but due to arrata below it can't be used. Workaround is to use
2908 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2909 *
2910 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2911 *
2912 * AAK155 (model 26)
2913 * AAP115 (model 30)
2914 * AAT100 (model 37)
2915 * BC86,AAY89,BD102 (model 44)
2916 * BA97 (model 46)
2917 *
2918 */
2919 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2920 switch (boot_cpu_data.x86_model) {
2921 case 26:
2922 case 30:
2923 case 37:
2924 case 44:
2925 case 46:
2926 cpu_has_load_perf_global_ctrl = false;
2927 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2928 "does not work properly. Using workaround\n");
2929 break;
2930 default:
2931 break;
2932 }
2933 }
2934
2935 return 0;
2936 }
2937
2938 static struct vmcs *alloc_vmcs_cpu(int cpu)
2939 {
2940 int node = cpu_to_node(cpu);
2941 struct page *pages;
2942 struct vmcs *vmcs;
2943
2944 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2945 if (!pages)
2946 return NULL;
2947 vmcs = page_address(pages);
2948 memset(vmcs, 0, vmcs_config.size);
2949 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2950 return vmcs;
2951 }
2952
2953 static struct vmcs *alloc_vmcs(void)
2954 {
2955 return alloc_vmcs_cpu(raw_smp_processor_id());
2956 }
2957
2958 static void free_vmcs(struct vmcs *vmcs)
2959 {
2960 free_pages((unsigned long)vmcs, vmcs_config.order);
2961 }
2962
2963 /*
2964 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2965 */
2966 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2967 {
2968 if (!loaded_vmcs->vmcs)
2969 return;
2970 loaded_vmcs_clear(loaded_vmcs);
2971 free_vmcs(loaded_vmcs->vmcs);
2972 loaded_vmcs->vmcs = NULL;
2973 }
2974
2975 static void free_kvm_area(void)
2976 {
2977 int cpu;
2978
2979 for_each_possible_cpu(cpu) {
2980 free_vmcs(per_cpu(vmxarea, cpu));
2981 per_cpu(vmxarea, cpu) = NULL;
2982 }
2983 }
2984
2985 static __init int alloc_kvm_area(void)
2986 {
2987 int cpu;
2988
2989 for_each_possible_cpu(cpu) {
2990 struct vmcs *vmcs;
2991
2992 vmcs = alloc_vmcs_cpu(cpu);
2993 if (!vmcs) {
2994 free_kvm_area();
2995 return -ENOMEM;
2996 }
2997
2998 per_cpu(vmxarea, cpu) = vmcs;
2999 }
3000 return 0;
3001 }
3002
3003 static __init int hardware_setup(void)
3004 {
3005 if (setup_vmcs_config(&vmcs_config) < 0)
3006 return -EIO;
3007
3008 if (boot_cpu_has(X86_FEATURE_NX))
3009 kvm_enable_efer_bits(EFER_NX);
3010
3011 if (!cpu_has_vmx_vpid())
3012 enable_vpid = 0;
3013 if (!cpu_has_vmx_shadow_vmcs())
3014 enable_shadow_vmcs = 0;
3015
3016 if (!cpu_has_vmx_ept() ||
3017 !cpu_has_vmx_ept_4levels()) {
3018 enable_ept = 0;
3019 enable_unrestricted_guest = 0;
3020 enable_ept_ad_bits = 0;
3021 }
3022
3023 if (!cpu_has_vmx_ept_ad_bits())
3024 enable_ept_ad_bits = 0;
3025
3026 if (!cpu_has_vmx_unrestricted_guest())
3027 enable_unrestricted_guest = 0;
3028
3029 if (!cpu_has_vmx_flexpriority())
3030 flexpriority_enabled = 0;
3031
3032 if (!cpu_has_vmx_tpr_shadow())
3033 kvm_x86_ops->update_cr8_intercept = NULL;
3034
3035 if (enable_ept && !cpu_has_vmx_ept_2m_page())
3036 kvm_disable_largepages();
3037
3038 if (!cpu_has_vmx_ple())
3039 ple_gap = 0;
3040
3041 if (!cpu_has_vmx_apicv())
3042 enable_apicv = 0;
3043
3044 if (enable_apicv)
3045 kvm_x86_ops->update_cr8_intercept = NULL;
3046 else {
3047 kvm_x86_ops->hwapic_irr_update = NULL;
3048 kvm_x86_ops->deliver_posted_interrupt = NULL;
3049 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3050 }
3051
3052 if (nested)
3053 nested_vmx_setup_ctls_msrs();
3054
3055 return alloc_kvm_area();
3056 }
3057
3058 static __exit void hardware_unsetup(void)
3059 {
3060 free_kvm_area();
3061 }
3062
3063 static bool emulation_required(struct kvm_vcpu *vcpu)
3064 {
3065 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3066 }
3067
3068 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3069 struct kvm_segment *save)
3070 {
3071 if (!emulate_invalid_guest_state) {
3072 /*
3073 * CS and SS RPL should be equal during guest entry according
3074 * to VMX spec, but in reality it is not always so. Since vcpu
3075 * is in the middle of the transition from real mode to
3076 * protected mode it is safe to assume that RPL 0 is a good
3077 * default value.
3078 */
3079 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3080 save->selector &= ~SELECTOR_RPL_MASK;
3081 save->dpl = save->selector & SELECTOR_RPL_MASK;
3082 save->s = 1;
3083 }
3084 vmx_set_segment(vcpu, save, seg);
3085 }
3086
3087 static void enter_pmode(struct kvm_vcpu *vcpu)
3088 {
3089 unsigned long flags;
3090 struct vcpu_vmx *vmx = to_vmx(vcpu);
3091
3092 /*
3093 * Update real mode segment cache. It may be not up-to-date if sement
3094 * register was written while vcpu was in a guest mode.
3095 */
3096 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3097 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3098 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3099 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3100 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3101 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3102
3103 vmx->rmode.vm86_active = 0;
3104
3105 vmx_segment_cache_clear(vmx);
3106
3107 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3108
3109 flags = vmcs_readl(GUEST_RFLAGS);
3110 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3111 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3112 vmcs_writel(GUEST_RFLAGS, flags);
3113
3114 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3115 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3116
3117 update_exception_bitmap(vcpu);
3118
3119 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3120 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3121 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3122 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3123 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3124 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3125
3126 /* CPL is always 0 when CPU enters protected mode */
3127 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3128 vmx->cpl = 0;
3129 }
3130
3131 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3132 {
3133 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3134 struct kvm_segment var = *save;
3135
3136 var.dpl = 0x3;
3137 if (seg == VCPU_SREG_CS)
3138 var.type = 0x3;
3139
3140 if (!emulate_invalid_guest_state) {
3141 var.selector = var.base >> 4;
3142 var.base = var.base & 0xffff0;
3143 var.limit = 0xffff;
3144 var.g = 0;
3145 var.db = 0;
3146 var.present = 1;
3147 var.s = 1;
3148 var.l = 0;
3149 var.unusable = 0;
3150 var.type = 0x3;
3151 var.avl = 0;
3152 if (save->base & 0xf)
3153 printk_once(KERN_WARNING "kvm: segment base is not "
3154 "paragraph aligned when entering "
3155 "protected mode (seg=%d)", seg);
3156 }
3157
3158 vmcs_write16(sf->selector, var.selector);
3159 vmcs_write32(sf->base, var.base);
3160 vmcs_write32(sf->limit, var.limit);
3161 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3162 }
3163
3164 static void enter_rmode(struct kvm_vcpu *vcpu)
3165 {
3166 unsigned long flags;
3167 struct vcpu_vmx *vmx = to_vmx(vcpu);
3168
3169 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3170 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3171 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3172 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3173 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3174 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3175 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3176
3177 vmx->rmode.vm86_active = 1;
3178
3179 /*
3180 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3181 * vcpu. Warn the user that an update is overdue.
3182 */
3183 if (!vcpu->kvm->arch.tss_addr)
3184 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3185 "called before entering vcpu\n");
3186
3187 vmx_segment_cache_clear(vmx);
3188
3189 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3190 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3191 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3192
3193 flags = vmcs_readl(GUEST_RFLAGS);
3194 vmx->rmode.save_rflags = flags;
3195
3196 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3197
3198 vmcs_writel(GUEST_RFLAGS, flags);
3199 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3200 update_exception_bitmap(vcpu);
3201
3202 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3203 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3204 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3205 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3206 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3207 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3208
3209 kvm_mmu_reset_context(vcpu);
3210 }
3211
3212 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3213 {
3214 struct vcpu_vmx *vmx = to_vmx(vcpu);
3215 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3216
3217 if (!msr)
3218 return;
3219
3220 /*
3221 * Force kernel_gs_base reloading before EFER changes, as control
3222 * of this msr depends on is_long_mode().
3223 */
3224 vmx_load_host_state(to_vmx(vcpu));
3225 vcpu->arch.efer = efer;
3226 if (efer & EFER_LMA) {
3227 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3228 msr->data = efer;
3229 } else {
3230 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3231
3232 msr->data = efer & ~EFER_LME;
3233 }
3234 setup_msrs(vmx);
3235 }
3236
3237 #ifdef CONFIG_X86_64
3238
3239 static void enter_lmode(struct kvm_vcpu *vcpu)
3240 {
3241 u32 guest_tr_ar;
3242
3243 vmx_segment_cache_clear(to_vmx(vcpu));
3244
3245 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3246 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3247 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3248 __func__);
3249 vmcs_write32(GUEST_TR_AR_BYTES,
3250 (guest_tr_ar & ~AR_TYPE_MASK)
3251 | AR_TYPE_BUSY_64_TSS);
3252 }
3253 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3254 }
3255
3256 static void exit_lmode(struct kvm_vcpu *vcpu)
3257 {
3258 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3259 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3260 }
3261
3262 #endif
3263
3264 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3265 {
3266 vpid_sync_context(to_vmx(vcpu));
3267 if (enable_ept) {
3268 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3269 return;
3270 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3271 }
3272 }
3273
3274 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3275 {
3276 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3277
3278 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3279 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3280 }
3281
3282 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3283 {
3284 if (enable_ept && is_paging(vcpu))
3285 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3286 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3287 }
3288
3289 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3290 {
3291 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3292
3293 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3294 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3295 }
3296
3297 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3298 {
3299 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3300
3301 if (!test_bit(VCPU_EXREG_PDPTR,
3302 (unsigned long *)&vcpu->arch.regs_dirty))
3303 return;
3304
3305 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3306 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3307 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3308 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3309 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3310 }
3311 }
3312
3313 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3314 {
3315 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3316
3317 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3318 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3319 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3320 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3321 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3322 }
3323
3324 __set_bit(VCPU_EXREG_PDPTR,
3325 (unsigned long *)&vcpu->arch.regs_avail);
3326 __set_bit(VCPU_EXREG_PDPTR,
3327 (unsigned long *)&vcpu->arch.regs_dirty);
3328 }
3329
3330 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3331
3332 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3333 unsigned long cr0,
3334 struct kvm_vcpu *vcpu)
3335 {
3336 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3337 vmx_decache_cr3(vcpu);
3338 if (!(cr0 & X86_CR0_PG)) {
3339 /* From paging/starting to nonpaging */
3340 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3341 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3342 (CPU_BASED_CR3_LOAD_EXITING |
3343 CPU_BASED_CR3_STORE_EXITING));
3344 vcpu->arch.cr0 = cr0;
3345 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3346 } else if (!is_paging(vcpu)) {
3347 /* From nonpaging to paging */
3348 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3349 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3350 ~(CPU_BASED_CR3_LOAD_EXITING |
3351 CPU_BASED_CR3_STORE_EXITING));
3352 vcpu->arch.cr0 = cr0;
3353 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3354 }
3355
3356 if (!(cr0 & X86_CR0_WP))
3357 *hw_cr0 &= ~X86_CR0_WP;
3358 }
3359
3360 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3361 {
3362 struct vcpu_vmx *vmx = to_vmx(vcpu);
3363 unsigned long hw_cr0;
3364
3365 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3366 if (enable_unrestricted_guest)
3367 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3368 else {
3369 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3370
3371 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3372 enter_pmode(vcpu);
3373
3374 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3375 enter_rmode(vcpu);
3376 }
3377
3378 #ifdef CONFIG_X86_64
3379 if (vcpu->arch.efer & EFER_LME) {
3380 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3381 enter_lmode(vcpu);
3382 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3383 exit_lmode(vcpu);
3384 }
3385 #endif
3386
3387 if (enable_ept)
3388 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3389
3390 if (!vcpu->fpu_active)
3391 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3392
3393 vmcs_writel(CR0_READ_SHADOW, cr0);
3394 vmcs_writel(GUEST_CR0, hw_cr0);
3395 vcpu->arch.cr0 = cr0;
3396
3397 /* depends on vcpu->arch.cr0 to be set to a new value */
3398 vmx->emulation_required = emulation_required(vcpu);
3399 }
3400
3401 static u64 construct_eptp(unsigned long root_hpa)
3402 {
3403 u64 eptp;
3404
3405 /* TODO write the value reading from MSR */
3406 eptp = VMX_EPT_DEFAULT_MT |
3407 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3408 if (enable_ept_ad_bits)
3409 eptp |= VMX_EPT_AD_ENABLE_BIT;
3410 eptp |= (root_hpa & PAGE_MASK);
3411
3412 return eptp;
3413 }
3414
3415 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3416 {
3417 unsigned long guest_cr3;
3418 u64 eptp;
3419
3420 guest_cr3 = cr3;
3421 if (enable_ept) {
3422 eptp = construct_eptp(cr3);
3423 vmcs_write64(EPT_POINTER, eptp);
3424 if (is_paging(vcpu) || is_guest_mode(vcpu))
3425 guest_cr3 = kvm_read_cr3(vcpu);
3426 else
3427 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3428 ept_load_pdptrs(vcpu);
3429 }
3430
3431 vmx_flush_tlb(vcpu);
3432 vmcs_writel(GUEST_CR3, guest_cr3);
3433 }
3434
3435 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3436 {
3437 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3438 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3439
3440 if (cr4 & X86_CR4_VMXE) {
3441 /*
3442 * To use VMXON (and later other VMX instructions), a guest
3443 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3444 * So basically the check on whether to allow nested VMX
3445 * is here.
3446 */
3447 if (!nested_vmx_allowed(vcpu))
3448 return 1;
3449 }
3450 if (to_vmx(vcpu)->nested.vmxon &&
3451 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3452 return 1;
3453
3454 vcpu->arch.cr4 = cr4;
3455 if (enable_ept) {
3456 if (!is_paging(vcpu)) {
3457 hw_cr4 &= ~X86_CR4_PAE;
3458 hw_cr4 |= X86_CR4_PSE;
3459 /*
3460 * SMEP is disabled if CPU is in non-paging mode in
3461 * hardware. However KVM always uses paging mode to
3462 * emulate guest non-paging mode with TDP.
3463 * To emulate this behavior, SMEP needs to be manually
3464 * disabled when guest switches to non-paging mode.
3465 */
3466 hw_cr4 &= ~X86_CR4_SMEP;
3467 } else if (!(cr4 & X86_CR4_PAE)) {
3468 hw_cr4 &= ~X86_CR4_PAE;
3469 }
3470 }
3471
3472 vmcs_writel(CR4_READ_SHADOW, cr4);
3473 vmcs_writel(GUEST_CR4, hw_cr4);
3474 return 0;
3475 }
3476
3477 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3478 struct kvm_segment *var, int seg)
3479 {
3480 struct vcpu_vmx *vmx = to_vmx(vcpu);
3481 u32 ar;
3482
3483 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3484 *var = vmx->rmode.segs[seg];
3485 if (seg == VCPU_SREG_TR
3486 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3487 return;
3488 var->base = vmx_read_guest_seg_base(vmx, seg);
3489 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3490 return;
3491 }
3492 var->base = vmx_read_guest_seg_base(vmx, seg);
3493 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3494 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3495 ar = vmx_read_guest_seg_ar(vmx, seg);
3496 var->unusable = (ar >> 16) & 1;
3497 var->type = ar & 15;
3498 var->s = (ar >> 4) & 1;
3499 var->dpl = (ar >> 5) & 3;
3500 /*
3501 * Some userspaces do not preserve unusable property. Since usable
3502 * segment has to be present according to VMX spec we can use present
3503 * property to amend userspace bug by making unusable segment always
3504 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3505 * segment as unusable.
3506 */
3507 var->present = !var->unusable;
3508 var->avl = (ar >> 12) & 1;
3509 var->l = (ar >> 13) & 1;
3510 var->db = (ar >> 14) & 1;
3511 var->g = (ar >> 15) & 1;
3512 }
3513
3514 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3515 {
3516 struct kvm_segment s;
3517
3518 if (to_vmx(vcpu)->rmode.vm86_active) {
3519 vmx_get_segment(vcpu, &s, seg);
3520 return s.base;
3521 }
3522 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3523 }
3524
3525 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3526 {
3527 struct vcpu_vmx *vmx = to_vmx(vcpu);
3528
3529 if (!is_protmode(vcpu))
3530 return 0;
3531
3532 if (!is_long_mode(vcpu)
3533 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3534 return 3;
3535
3536 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3537 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3538 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3539 }
3540
3541 return vmx->cpl;
3542 }
3543
3544
3545 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3546 {
3547 u32 ar;
3548
3549 if (var->unusable || !var->present)
3550 ar = 1 << 16;
3551 else {
3552 ar = var->type & 15;
3553 ar |= (var->s & 1) << 4;
3554 ar |= (var->dpl & 3) << 5;
3555 ar |= (var->present & 1) << 7;
3556 ar |= (var->avl & 1) << 12;
3557 ar |= (var->l & 1) << 13;
3558 ar |= (var->db & 1) << 14;
3559 ar |= (var->g & 1) << 15;
3560 }
3561
3562 return ar;
3563 }
3564
3565 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3566 struct kvm_segment *var, int seg)
3567 {
3568 struct vcpu_vmx *vmx = to_vmx(vcpu);
3569 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3570
3571 vmx_segment_cache_clear(vmx);
3572 if (seg == VCPU_SREG_CS)
3573 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3574
3575 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3576 vmx->rmode.segs[seg] = *var;
3577 if (seg == VCPU_SREG_TR)
3578 vmcs_write16(sf->selector, var->selector);
3579 else if (var->s)
3580 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3581 goto out;
3582 }
3583
3584 vmcs_writel(sf->base, var->base);
3585 vmcs_write32(sf->limit, var->limit);
3586 vmcs_write16(sf->selector, var->selector);
3587
3588 /*
3589 * Fix the "Accessed" bit in AR field of segment registers for older
3590 * qemu binaries.
3591 * IA32 arch specifies that at the time of processor reset the
3592 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3593 * is setting it to 0 in the userland code. This causes invalid guest
3594 * state vmexit when "unrestricted guest" mode is turned on.
3595 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3596 * tree. Newer qemu binaries with that qemu fix would not need this
3597 * kvm hack.
3598 */
3599 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3600 var->type |= 0x1; /* Accessed */
3601
3602 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3603
3604 out:
3605 vmx->emulation_required |= emulation_required(vcpu);
3606 }
3607
3608 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3609 {
3610 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3611
3612 *db = (ar >> 14) & 1;
3613 *l = (ar >> 13) & 1;
3614 }
3615
3616 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3617 {
3618 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3619 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3620 }
3621
3622 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3623 {
3624 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3625 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3626 }
3627
3628 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3629 {
3630 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3631 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3632 }
3633
3634 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3635 {
3636 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3637 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3638 }
3639
3640 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3641 {
3642 struct kvm_segment var;
3643 u32 ar;
3644
3645 vmx_get_segment(vcpu, &var, seg);
3646 var.dpl = 0x3;
3647 if (seg == VCPU_SREG_CS)
3648 var.type = 0x3;
3649 ar = vmx_segment_access_rights(&var);
3650
3651 if (var.base != (var.selector << 4))
3652 return false;
3653 if (var.limit != 0xffff)
3654 return false;
3655 if (ar != 0xf3)
3656 return false;
3657
3658 return true;
3659 }
3660
3661 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3662 {
3663 struct kvm_segment cs;
3664 unsigned int cs_rpl;
3665
3666 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3667 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3668
3669 if (cs.unusable)
3670 return false;
3671 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3672 return false;
3673 if (!cs.s)
3674 return false;
3675 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3676 if (cs.dpl > cs_rpl)
3677 return false;
3678 } else {
3679 if (cs.dpl != cs_rpl)
3680 return false;
3681 }
3682 if (!cs.present)
3683 return false;
3684
3685 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3686 return true;
3687 }
3688
3689 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3690 {
3691 struct kvm_segment ss;
3692 unsigned int ss_rpl;
3693
3694 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3695 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3696
3697 if (ss.unusable)
3698 return true;
3699 if (ss.type != 3 && ss.type != 7)
3700 return false;
3701 if (!ss.s)
3702 return false;
3703 if (ss.dpl != ss_rpl) /* DPL != RPL */
3704 return false;
3705 if (!ss.present)
3706 return false;
3707
3708 return true;
3709 }
3710
3711 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3712 {
3713 struct kvm_segment var;
3714 unsigned int rpl;
3715
3716 vmx_get_segment(vcpu, &var, seg);
3717 rpl = var.selector & SELECTOR_RPL_MASK;
3718
3719 if (var.unusable)
3720 return true;
3721 if (!var.s)
3722 return false;
3723 if (!var.present)
3724 return false;
3725 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3726 if (var.dpl < rpl) /* DPL < RPL */
3727 return false;
3728 }
3729
3730 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3731 * rights flags
3732 */
3733 return true;
3734 }
3735
3736 static bool tr_valid(struct kvm_vcpu *vcpu)
3737 {
3738 struct kvm_segment tr;
3739
3740 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3741
3742 if (tr.unusable)
3743 return false;
3744 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3745 return false;
3746 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3747 return false;
3748 if (!tr.present)
3749 return false;
3750
3751 return true;
3752 }
3753
3754 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3755 {
3756 struct kvm_segment ldtr;
3757
3758 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3759
3760 if (ldtr.unusable)
3761 return true;
3762 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3763 return false;
3764 if (ldtr.type != 2)
3765 return false;
3766 if (!ldtr.present)
3767 return false;
3768
3769 return true;
3770 }
3771
3772 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3773 {
3774 struct kvm_segment cs, ss;
3775
3776 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3777 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3778
3779 return ((cs.selector & SELECTOR_RPL_MASK) ==
3780 (ss.selector & SELECTOR_RPL_MASK));
3781 }
3782
3783 /*
3784 * Check if guest state is valid. Returns true if valid, false if
3785 * not.
3786 * We assume that registers are always usable
3787 */
3788 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3789 {
3790 if (enable_unrestricted_guest)
3791 return true;
3792
3793 /* real mode guest state checks */
3794 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3795 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3796 return false;
3797 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3798 return false;
3799 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3800 return false;
3801 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3802 return false;
3803 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3804 return false;
3805 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3806 return false;
3807 } else {
3808 /* protected mode guest state checks */
3809 if (!cs_ss_rpl_check(vcpu))
3810 return false;
3811 if (!code_segment_valid(vcpu))
3812 return false;
3813 if (!stack_segment_valid(vcpu))
3814 return false;
3815 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3816 return false;
3817 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3818 return false;
3819 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3820 return false;
3821 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3822 return false;
3823 if (!tr_valid(vcpu))
3824 return false;
3825 if (!ldtr_valid(vcpu))
3826 return false;
3827 }
3828 /* TODO:
3829 * - Add checks on RIP
3830 * - Add checks on RFLAGS
3831 */
3832
3833 return true;
3834 }
3835
3836 static int init_rmode_tss(struct kvm *kvm)
3837 {
3838 gfn_t fn;
3839 u16 data = 0;
3840 int r, idx, ret = 0;
3841
3842 idx = srcu_read_lock(&kvm->srcu);
3843 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3844 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3845 if (r < 0)
3846 goto out;
3847 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3848 r = kvm_write_guest_page(kvm, fn++, &data,
3849 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3850 if (r < 0)
3851 goto out;
3852 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3853 if (r < 0)
3854 goto out;
3855 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3856 if (r < 0)
3857 goto out;
3858 data = ~0;
3859 r = kvm_write_guest_page(kvm, fn, &data,
3860 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3861 sizeof(u8));
3862 if (r < 0)
3863 goto out;
3864
3865 ret = 1;
3866 out:
3867 srcu_read_unlock(&kvm->srcu, idx);
3868 return ret;
3869 }
3870
3871 static int init_rmode_identity_map(struct kvm *kvm)
3872 {
3873 int i, idx, r, ret;
3874 pfn_t identity_map_pfn;
3875 u32 tmp;
3876
3877 if (!enable_ept)
3878 return 1;
3879 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3880 printk(KERN_ERR "EPT: identity-mapping pagetable "
3881 "haven't been allocated!\n");
3882 return 0;
3883 }
3884 if (likely(kvm->arch.ept_identity_pagetable_done))
3885 return 1;
3886 ret = 0;
3887 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3888 idx = srcu_read_lock(&kvm->srcu);
3889 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3890 if (r < 0)
3891 goto out;
3892 /* Set up identity-mapping pagetable for EPT in real mode */
3893 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3894 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3895 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3896 r = kvm_write_guest_page(kvm, identity_map_pfn,
3897 &tmp, i * sizeof(tmp), sizeof(tmp));
3898 if (r < 0)
3899 goto out;
3900 }
3901 kvm->arch.ept_identity_pagetable_done = true;
3902 ret = 1;
3903 out:
3904 srcu_read_unlock(&kvm->srcu, idx);
3905 return ret;
3906 }
3907
3908 static void seg_setup(int seg)
3909 {
3910 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3911 unsigned int ar;
3912
3913 vmcs_write16(sf->selector, 0);
3914 vmcs_writel(sf->base, 0);
3915 vmcs_write32(sf->limit, 0xffff);
3916 ar = 0x93;
3917 if (seg == VCPU_SREG_CS)
3918 ar |= 0x08; /* code segment */
3919
3920 vmcs_write32(sf->ar_bytes, ar);
3921 }
3922
3923 static int alloc_apic_access_page(struct kvm *kvm)
3924 {
3925 struct page *page;
3926 struct kvm_userspace_memory_region kvm_userspace_mem;
3927 int r = 0;
3928
3929 mutex_lock(&kvm->slots_lock);
3930 if (kvm->arch.apic_access_page)
3931 goto out;
3932 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3933 kvm_userspace_mem.flags = 0;
3934 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3935 kvm_userspace_mem.memory_size = PAGE_SIZE;
3936 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3937 if (r)
3938 goto out;
3939
3940 page = gfn_to_page(kvm, 0xfee00);
3941 if (is_error_page(page)) {
3942 r = -EFAULT;
3943 goto out;
3944 }
3945
3946 kvm->arch.apic_access_page = page;
3947 out:
3948 mutex_unlock(&kvm->slots_lock);
3949 return r;
3950 }
3951
3952 static int alloc_identity_pagetable(struct kvm *kvm)
3953 {
3954 struct page *page;
3955 struct kvm_userspace_memory_region kvm_userspace_mem;
3956 int r = 0;
3957
3958 mutex_lock(&kvm->slots_lock);
3959 if (kvm->arch.ept_identity_pagetable)
3960 goto out;
3961 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3962 kvm_userspace_mem.flags = 0;
3963 kvm_userspace_mem.guest_phys_addr =
3964 kvm->arch.ept_identity_map_addr;
3965 kvm_userspace_mem.memory_size = PAGE_SIZE;
3966 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3967 if (r)
3968 goto out;
3969
3970 page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3971 if (is_error_page(page)) {
3972 r = -EFAULT;
3973 goto out;
3974 }
3975
3976 kvm->arch.ept_identity_pagetable = page;
3977 out:
3978 mutex_unlock(&kvm->slots_lock);
3979 return r;
3980 }
3981
3982 static void allocate_vpid(struct vcpu_vmx *vmx)
3983 {
3984 int vpid;
3985
3986 vmx->vpid = 0;
3987 if (!enable_vpid)
3988 return;
3989 spin_lock(&vmx_vpid_lock);
3990 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3991 if (vpid < VMX_NR_VPIDS) {
3992 vmx->vpid = vpid;
3993 __set_bit(vpid, vmx_vpid_bitmap);
3994 }
3995 spin_unlock(&vmx_vpid_lock);
3996 }
3997
3998 static void free_vpid(struct vcpu_vmx *vmx)
3999 {
4000 if (!enable_vpid)
4001 return;
4002 spin_lock(&vmx_vpid_lock);
4003 if (vmx->vpid != 0)
4004 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4005 spin_unlock(&vmx_vpid_lock);
4006 }
4007
4008 #define MSR_TYPE_R 1
4009 #define MSR_TYPE_W 2
4010 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4011 u32 msr, int type)
4012 {
4013 int f = sizeof(unsigned long);
4014
4015 if (!cpu_has_vmx_msr_bitmap())
4016 return;
4017
4018 /*
4019 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4020 * have the write-low and read-high bitmap offsets the wrong way round.
4021 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4022 */
4023 if (msr <= 0x1fff) {
4024 if (type & MSR_TYPE_R)
4025 /* read-low */
4026 __clear_bit(msr, msr_bitmap + 0x000 / f);
4027
4028 if (type & MSR_TYPE_W)
4029 /* write-low */
4030 __clear_bit(msr, msr_bitmap + 0x800 / f);
4031
4032 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4033 msr &= 0x1fff;
4034 if (type & MSR_TYPE_R)
4035 /* read-high */
4036 __clear_bit(msr, msr_bitmap + 0x400 / f);
4037
4038 if (type & MSR_TYPE_W)
4039 /* write-high */
4040 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4041
4042 }
4043 }
4044
4045 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4046 u32 msr, int type)
4047 {
4048 int f = sizeof(unsigned long);
4049
4050 if (!cpu_has_vmx_msr_bitmap())
4051 return;
4052
4053 /*
4054 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4055 * have the write-low and read-high bitmap offsets the wrong way round.
4056 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4057 */
4058 if (msr <= 0x1fff) {
4059 if (type & MSR_TYPE_R)
4060 /* read-low */
4061 __set_bit(msr, msr_bitmap + 0x000 / f);
4062
4063 if (type & MSR_TYPE_W)
4064 /* write-low */
4065 __set_bit(msr, msr_bitmap + 0x800 / f);
4066
4067 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4068 msr &= 0x1fff;
4069 if (type & MSR_TYPE_R)
4070 /* read-high */
4071 __set_bit(msr, msr_bitmap + 0x400 / f);
4072
4073 if (type & MSR_TYPE_W)
4074 /* write-high */
4075 __set_bit(msr, msr_bitmap + 0xc00 / f);
4076
4077 }
4078 }
4079
4080 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4081 {
4082 if (!longmode_only)
4083 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4084 msr, MSR_TYPE_R | MSR_TYPE_W);
4085 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4086 msr, MSR_TYPE_R | MSR_TYPE_W);
4087 }
4088
4089 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4090 {
4091 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4092 msr, MSR_TYPE_R);
4093 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4094 msr, MSR_TYPE_R);
4095 }
4096
4097 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4098 {
4099 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4100 msr, MSR_TYPE_R);
4101 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4102 msr, MSR_TYPE_R);
4103 }
4104
4105 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4106 {
4107 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4108 msr, MSR_TYPE_W);
4109 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4110 msr, MSR_TYPE_W);
4111 }
4112
4113 static int vmx_vm_has_apicv(struct kvm *kvm)
4114 {
4115 return enable_apicv && irqchip_in_kernel(kvm);
4116 }
4117
4118 /*
4119 * Send interrupt to vcpu via posted interrupt way.
4120 * 1. If target vcpu is running(non-root mode), send posted interrupt
4121 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4122 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4123 * interrupt from PIR in next vmentry.
4124 */
4125 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4126 {
4127 struct vcpu_vmx *vmx = to_vmx(vcpu);
4128 int r;
4129
4130 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4131 return;
4132
4133 r = pi_test_and_set_on(&vmx->pi_desc);
4134 kvm_make_request(KVM_REQ_EVENT, vcpu);
4135 #ifdef CONFIG_SMP
4136 if (!r && (vcpu->mode == IN_GUEST_MODE))
4137 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4138 POSTED_INTR_VECTOR);
4139 else
4140 #endif
4141 kvm_vcpu_kick(vcpu);
4142 }
4143
4144 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4145 {
4146 struct vcpu_vmx *vmx = to_vmx(vcpu);
4147
4148 if (!pi_test_and_clear_on(&vmx->pi_desc))
4149 return;
4150
4151 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4152 }
4153
4154 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4155 {
4156 return;
4157 }
4158
4159 /*
4160 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4161 * will not change in the lifetime of the guest.
4162 * Note that host-state that does change is set elsewhere. E.g., host-state
4163 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4164 */
4165 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4166 {
4167 u32 low32, high32;
4168 unsigned long tmpl;
4169 struct desc_ptr dt;
4170
4171 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4172 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
4173 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4174
4175 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4176 #ifdef CONFIG_X86_64
4177 /*
4178 * Load null selectors, so we can avoid reloading them in
4179 * __vmx_load_host_state(), in case userspace uses the null selectors
4180 * too (the expected case).
4181 */
4182 vmcs_write16(HOST_DS_SELECTOR, 0);
4183 vmcs_write16(HOST_ES_SELECTOR, 0);
4184 #else
4185 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4186 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4187 #endif
4188 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4189 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4190
4191 native_store_idt(&dt);
4192 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4193 vmx->host_idt_base = dt.address;
4194
4195 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4196
4197 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4198 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4199 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4200 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4201
4202 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4203 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4204 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4205 }
4206 }
4207
4208 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4209 {
4210 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4211 if (enable_ept)
4212 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4213 if (is_guest_mode(&vmx->vcpu))
4214 vmx->vcpu.arch.cr4_guest_owned_bits &=
4215 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4216 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4217 }
4218
4219 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4220 {
4221 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4222
4223 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4224 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4225 return pin_based_exec_ctrl;
4226 }
4227
4228 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4229 {
4230 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4231 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4232 exec_control &= ~CPU_BASED_TPR_SHADOW;
4233 #ifdef CONFIG_X86_64
4234 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4235 CPU_BASED_CR8_LOAD_EXITING;
4236 #endif
4237 }
4238 if (!enable_ept)
4239 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4240 CPU_BASED_CR3_LOAD_EXITING |
4241 CPU_BASED_INVLPG_EXITING;
4242 return exec_control;
4243 }
4244
4245 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4246 {
4247 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4248 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4249 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4250 if (vmx->vpid == 0)
4251 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4252 if (!enable_ept) {
4253 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4254 enable_unrestricted_guest = 0;
4255 /* Enable INVPCID for non-ept guests may cause performance regression. */
4256 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4257 }
4258 if (!enable_unrestricted_guest)
4259 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4260 if (!ple_gap)
4261 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4262 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4263 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4264 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4265 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4266 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4267 (handle_vmptrld).
4268 We can NOT enable shadow_vmcs here because we don't have yet
4269 a current VMCS12
4270 */
4271 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4272 return exec_control;
4273 }
4274
4275 static void ept_set_mmio_spte_mask(void)
4276 {
4277 /*
4278 * EPT Misconfigurations can be generated if the value of bits 2:0
4279 * of an EPT paging-structure entry is 110b (write/execute).
4280 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4281 * spte.
4282 */
4283 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4284 }
4285
4286 /*
4287 * Sets up the vmcs for emulated real mode.
4288 */
4289 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4290 {
4291 #ifdef CONFIG_X86_64
4292 unsigned long a;
4293 #endif
4294 int i;
4295
4296 /* I/O */
4297 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4298 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4299
4300 if (enable_shadow_vmcs) {
4301 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4302 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4303 }
4304 if (cpu_has_vmx_msr_bitmap())
4305 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4306
4307 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4308
4309 /* Control */
4310 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4311
4312 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4313
4314 if (cpu_has_secondary_exec_ctrls()) {
4315 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4316 vmx_secondary_exec_control(vmx));
4317 }
4318
4319 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4320 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4321 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4322 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4323 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4324
4325 vmcs_write16(GUEST_INTR_STATUS, 0);
4326
4327 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4328 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4329 }
4330
4331 if (ple_gap) {
4332 vmcs_write32(PLE_GAP, ple_gap);
4333 vmcs_write32(PLE_WINDOW, ple_window);
4334 }
4335
4336 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4337 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4338 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4339
4340 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4341 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4342 vmx_set_constant_host_state(vmx);
4343 #ifdef CONFIG_X86_64
4344 rdmsrl(MSR_FS_BASE, a);
4345 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4346 rdmsrl(MSR_GS_BASE, a);
4347 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4348 #else
4349 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4350 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4351 #endif
4352
4353 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4354 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4355 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4356 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4357 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4358
4359 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4360 u32 msr_low, msr_high;
4361 u64 host_pat;
4362 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4363 host_pat = msr_low | ((u64) msr_high << 32);
4364 /* Write the default value follow host pat */
4365 vmcs_write64(GUEST_IA32_PAT, host_pat);
4366 /* Keep arch.pat sync with GUEST_IA32_PAT */
4367 vmx->vcpu.arch.pat = host_pat;
4368 }
4369
4370 for (i = 0; i < NR_VMX_MSR; ++i) {
4371 u32 index = vmx_msr_index[i];
4372 u32 data_low, data_high;
4373 int j = vmx->nmsrs;
4374
4375 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4376 continue;
4377 if (wrmsr_safe(index, data_low, data_high) < 0)
4378 continue;
4379 vmx->guest_msrs[j].index = i;
4380 vmx->guest_msrs[j].data = 0;
4381 vmx->guest_msrs[j].mask = -1ull;
4382 ++vmx->nmsrs;
4383 }
4384
4385
4386 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4387
4388 /* 22.2.1, 20.8.1 */
4389 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4390
4391 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4392 set_cr4_guest_host_mask(vmx);
4393
4394 return 0;
4395 }
4396
4397 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4398 {
4399 struct vcpu_vmx *vmx = to_vmx(vcpu);
4400 struct msr_data apic_base_msr;
4401
4402 vmx->rmode.vm86_active = 0;
4403
4404 vmx->soft_vnmi_blocked = 0;
4405
4406 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4407 kvm_set_cr8(&vmx->vcpu, 0);
4408 apic_base_msr.data = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4409 if (kvm_vcpu_is_bsp(&vmx->vcpu))
4410 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4411 apic_base_msr.host_initiated = true;
4412 kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4413
4414 vmx_segment_cache_clear(vmx);
4415
4416 seg_setup(VCPU_SREG_CS);
4417 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4418 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4419
4420 seg_setup(VCPU_SREG_DS);
4421 seg_setup(VCPU_SREG_ES);
4422 seg_setup(VCPU_SREG_FS);
4423 seg_setup(VCPU_SREG_GS);
4424 seg_setup(VCPU_SREG_SS);
4425
4426 vmcs_write16(GUEST_TR_SELECTOR, 0);
4427 vmcs_writel(GUEST_TR_BASE, 0);
4428 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4429 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4430
4431 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4432 vmcs_writel(GUEST_LDTR_BASE, 0);
4433 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4434 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4435
4436 vmcs_write32(GUEST_SYSENTER_CS, 0);
4437 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4438 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4439
4440 vmcs_writel(GUEST_RFLAGS, 0x02);
4441 kvm_rip_write(vcpu, 0xfff0);
4442
4443 vmcs_writel(GUEST_GDTR_BASE, 0);
4444 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4445
4446 vmcs_writel(GUEST_IDTR_BASE, 0);
4447 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4448
4449 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4450 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4451 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4452
4453 /* Special registers */
4454 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4455
4456 setup_msrs(vmx);
4457
4458 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4459
4460 if (cpu_has_vmx_tpr_shadow()) {
4461 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4462 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4463 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4464 __pa(vmx->vcpu.arch.apic->regs));
4465 vmcs_write32(TPR_THRESHOLD, 0);
4466 }
4467
4468 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4469 vmcs_write64(APIC_ACCESS_ADDR,
4470 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4471
4472 if (vmx_vm_has_apicv(vcpu->kvm))
4473 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4474
4475 if (vmx->vpid != 0)
4476 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4477
4478 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4479 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4480 vmx_set_cr4(&vmx->vcpu, 0);
4481 vmx_set_efer(&vmx->vcpu, 0);
4482 vmx_fpu_activate(&vmx->vcpu);
4483 update_exception_bitmap(&vmx->vcpu);
4484
4485 vpid_sync_context(vmx);
4486 }
4487
4488 /*
4489 * In nested virtualization, check if L1 asked to exit on external interrupts.
4490 * For most existing hypervisors, this will always return true.
4491 */
4492 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4493 {
4494 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4495 PIN_BASED_EXT_INTR_MASK;
4496 }
4497
4498 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4499 {
4500 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4501 PIN_BASED_NMI_EXITING;
4502 }
4503
4504 static int enable_irq_window(struct kvm_vcpu *vcpu)
4505 {
4506 u32 cpu_based_vm_exec_control;
4507
4508 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4509 /*
4510 * We get here if vmx_interrupt_allowed() said we can't
4511 * inject to L1 now because L2 must run. The caller will have
4512 * to make L2 exit right after entry, so we can inject to L1
4513 * more promptly.
4514 */
4515 return -EBUSY;
4516
4517 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4518 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4519 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4520 return 0;
4521 }
4522
4523 static int enable_nmi_window(struct kvm_vcpu *vcpu)
4524 {
4525 u32 cpu_based_vm_exec_control;
4526
4527 if (!cpu_has_virtual_nmis())
4528 return enable_irq_window(vcpu);
4529
4530 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
4531 return enable_irq_window(vcpu);
4532
4533 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4534 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4535 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4536 return 0;
4537 }
4538
4539 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4540 {
4541 struct vcpu_vmx *vmx = to_vmx(vcpu);
4542 uint32_t intr;
4543 int irq = vcpu->arch.interrupt.nr;
4544
4545 trace_kvm_inj_virq(irq);
4546
4547 ++vcpu->stat.irq_injections;
4548 if (vmx->rmode.vm86_active) {
4549 int inc_eip = 0;
4550 if (vcpu->arch.interrupt.soft)
4551 inc_eip = vcpu->arch.event_exit_inst_len;
4552 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4553 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4554 return;
4555 }
4556 intr = irq | INTR_INFO_VALID_MASK;
4557 if (vcpu->arch.interrupt.soft) {
4558 intr |= INTR_TYPE_SOFT_INTR;
4559 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4560 vmx->vcpu.arch.event_exit_inst_len);
4561 } else
4562 intr |= INTR_TYPE_EXT_INTR;
4563 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4564 }
4565
4566 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4567 {
4568 struct vcpu_vmx *vmx = to_vmx(vcpu);
4569
4570 if (is_guest_mode(vcpu))
4571 return;
4572
4573 if (!cpu_has_virtual_nmis()) {
4574 /*
4575 * Tracking the NMI-blocked state in software is built upon
4576 * finding the next open IRQ window. This, in turn, depends on
4577 * well-behaving guests: They have to keep IRQs disabled at
4578 * least as long as the NMI handler runs. Otherwise we may
4579 * cause NMI nesting, maybe breaking the guest. But as this is
4580 * highly unlikely, we can live with the residual risk.
4581 */
4582 vmx->soft_vnmi_blocked = 1;
4583 vmx->vnmi_blocked_time = 0;
4584 }
4585
4586 ++vcpu->stat.nmi_injections;
4587 vmx->nmi_known_unmasked = false;
4588 if (vmx->rmode.vm86_active) {
4589 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4590 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4591 return;
4592 }
4593 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4594 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4595 }
4596
4597 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4598 {
4599 if (!cpu_has_virtual_nmis())
4600 return to_vmx(vcpu)->soft_vnmi_blocked;
4601 if (to_vmx(vcpu)->nmi_known_unmasked)
4602 return false;
4603 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4604 }
4605
4606 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4607 {
4608 struct vcpu_vmx *vmx = to_vmx(vcpu);
4609
4610 if (!cpu_has_virtual_nmis()) {
4611 if (vmx->soft_vnmi_blocked != masked) {
4612 vmx->soft_vnmi_blocked = masked;
4613 vmx->vnmi_blocked_time = 0;
4614 }
4615 } else {
4616 vmx->nmi_known_unmasked = !masked;
4617 if (masked)
4618 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4619 GUEST_INTR_STATE_NMI);
4620 else
4621 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4622 GUEST_INTR_STATE_NMI);
4623 }
4624 }
4625
4626 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4627 {
4628 if (is_guest_mode(vcpu)) {
4629 if (to_vmx(vcpu)->nested.nested_run_pending)
4630 return 0;
4631 if (nested_exit_on_nmi(vcpu)) {
4632 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4633 NMI_VECTOR | INTR_TYPE_NMI_INTR |
4634 INTR_INFO_VALID_MASK, 0);
4635 /*
4636 * The NMI-triggered VM exit counts as injection:
4637 * clear this one and block further NMIs.
4638 */
4639 vcpu->arch.nmi_pending = 0;
4640 vmx_set_nmi_mask(vcpu, true);
4641 return 0;
4642 }
4643 }
4644
4645 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4646 return 0;
4647
4648 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4649 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4650 | GUEST_INTR_STATE_NMI));
4651 }
4652
4653 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4654 {
4655 if (is_guest_mode(vcpu)) {
4656 if (to_vmx(vcpu)->nested.nested_run_pending)
4657 return 0;
4658 if (nested_exit_on_intr(vcpu)) {
4659 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4660 0, 0);
4661 /*
4662 * fall through to normal code, but now in L1, not L2
4663 */
4664 }
4665 }
4666
4667 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4668 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4669 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4670 }
4671
4672 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4673 {
4674 int ret;
4675 struct kvm_userspace_memory_region tss_mem = {
4676 .slot = TSS_PRIVATE_MEMSLOT,
4677 .guest_phys_addr = addr,
4678 .memory_size = PAGE_SIZE * 3,
4679 .flags = 0,
4680 };
4681
4682 ret = kvm_set_memory_region(kvm, &tss_mem);
4683 if (ret)
4684 return ret;
4685 kvm->arch.tss_addr = addr;
4686 if (!init_rmode_tss(kvm))
4687 return -ENOMEM;
4688
4689 return 0;
4690 }
4691
4692 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4693 {
4694 switch (vec) {
4695 case BP_VECTOR:
4696 /*
4697 * Update instruction length as we may reinject the exception
4698 * from user space while in guest debugging mode.
4699 */
4700 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4701 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4702 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4703 return false;
4704 /* fall through */
4705 case DB_VECTOR:
4706 if (vcpu->guest_debug &
4707 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4708 return false;
4709 /* fall through */
4710 case DE_VECTOR:
4711 case OF_VECTOR:
4712 case BR_VECTOR:
4713 case UD_VECTOR:
4714 case DF_VECTOR:
4715 case SS_VECTOR:
4716 case GP_VECTOR:
4717 case MF_VECTOR:
4718 return true;
4719 break;
4720 }
4721 return false;
4722 }
4723
4724 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4725 int vec, u32 err_code)
4726 {
4727 /*
4728 * Instruction with address size override prefix opcode 0x67
4729 * Cause the #SS fault with 0 error code in VM86 mode.
4730 */
4731 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4732 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4733 if (vcpu->arch.halt_request) {
4734 vcpu->arch.halt_request = 0;
4735 return kvm_emulate_halt(vcpu);
4736 }
4737 return 1;
4738 }
4739 return 0;
4740 }
4741
4742 /*
4743 * Forward all other exceptions that are valid in real mode.
4744 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4745 * the required debugging infrastructure rework.
4746 */
4747 kvm_queue_exception(vcpu, vec);
4748 return 1;
4749 }
4750
4751 /*
4752 * Trigger machine check on the host. We assume all the MSRs are already set up
4753 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4754 * We pass a fake environment to the machine check handler because we want
4755 * the guest to be always treated like user space, no matter what context
4756 * it used internally.
4757 */
4758 static void kvm_machine_check(void)
4759 {
4760 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4761 struct pt_regs regs = {
4762 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4763 .flags = X86_EFLAGS_IF,
4764 };
4765
4766 do_machine_check(&regs, 0);
4767 #endif
4768 }
4769
4770 static int handle_machine_check(struct kvm_vcpu *vcpu)
4771 {
4772 /* already handled by vcpu_run */
4773 return 1;
4774 }
4775
4776 static int handle_exception(struct kvm_vcpu *vcpu)
4777 {
4778 struct vcpu_vmx *vmx = to_vmx(vcpu);
4779 struct kvm_run *kvm_run = vcpu->run;
4780 u32 intr_info, ex_no, error_code;
4781 unsigned long cr2, rip, dr6;
4782 u32 vect_info;
4783 enum emulation_result er;
4784
4785 vect_info = vmx->idt_vectoring_info;
4786 intr_info = vmx->exit_intr_info;
4787
4788 if (is_machine_check(intr_info))
4789 return handle_machine_check(vcpu);
4790
4791 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4792 return 1; /* already handled by vmx_vcpu_run() */
4793
4794 if (is_no_device(intr_info)) {
4795 vmx_fpu_activate(vcpu);
4796 return 1;
4797 }
4798
4799 if (is_invalid_opcode(intr_info)) {
4800 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4801 if (er != EMULATE_DONE)
4802 kvm_queue_exception(vcpu, UD_VECTOR);
4803 return 1;
4804 }
4805
4806 error_code = 0;
4807 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4808 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4809
4810 /*
4811 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4812 * MMIO, it is better to report an internal error.
4813 * See the comments in vmx_handle_exit.
4814 */
4815 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4816 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4817 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4818 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4819 vcpu->run->internal.ndata = 2;
4820 vcpu->run->internal.data[0] = vect_info;
4821 vcpu->run->internal.data[1] = intr_info;
4822 return 0;
4823 }
4824
4825 if (is_page_fault(intr_info)) {
4826 /* EPT won't cause page fault directly */
4827 BUG_ON(enable_ept);
4828 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4829 trace_kvm_page_fault(cr2, error_code);
4830
4831 if (kvm_event_needs_reinjection(vcpu))
4832 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4833 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4834 }
4835
4836 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4837
4838 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4839 return handle_rmode_exception(vcpu, ex_no, error_code);
4840
4841 switch (ex_no) {
4842 case DB_VECTOR:
4843 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4844 if (!(vcpu->guest_debug &
4845 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4846 vcpu->arch.dr6 &= ~15;
4847 vcpu->arch.dr6 |= dr6;
4848 kvm_queue_exception(vcpu, DB_VECTOR);
4849 return 1;
4850 }
4851 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4852 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4853 /* fall through */
4854 case BP_VECTOR:
4855 /*
4856 * Update instruction length as we may reinject #BP from
4857 * user space while in guest debugging mode. Reading it for
4858 * #DB as well causes no harm, it is not used in that case.
4859 */
4860 vmx->vcpu.arch.event_exit_inst_len =
4861 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4862 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4863 rip = kvm_rip_read(vcpu);
4864 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4865 kvm_run->debug.arch.exception = ex_no;
4866 break;
4867 default:
4868 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4869 kvm_run->ex.exception = ex_no;
4870 kvm_run->ex.error_code = error_code;
4871 break;
4872 }
4873 return 0;
4874 }
4875
4876 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4877 {
4878 ++vcpu->stat.irq_exits;
4879 return 1;
4880 }
4881
4882 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4883 {
4884 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4885 return 0;
4886 }
4887
4888 static int handle_io(struct kvm_vcpu *vcpu)
4889 {
4890 unsigned long exit_qualification;
4891 int size, in, string;
4892 unsigned port;
4893
4894 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4895 string = (exit_qualification & 16) != 0;
4896 in = (exit_qualification & 8) != 0;
4897
4898 ++vcpu->stat.io_exits;
4899
4900 if (string || in)
4901 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4902
4903 port = exit_qualification >> 16;
4904 size = (exit_qualification & 7) + 1;
4905 skip_emulated_instruction(vcpu);
4906
4907 return kvm_fast_pio_out(vcpu, size, port);
4908 }
4909
4910 static void
4911 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4912 {
4913 /*
4914 * Patch in the VMCALL instruction:
4915 */
4916 hypercall[0] = 0x0f;
4917 hypercall[1] = 0x01;
4918 hypercall[2] = 0xc1;
4919 }
4920
4921 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4922 {
4923 unsigned long always_on = VMXON_CR0_ALWAYSON;
4924
4925 if (nested_vmx_secondary_ctls_high &
4926 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4927 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4928 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4929 return (val & always_on) == always_on;
4930 }
4931
4932 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4933 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4934 {
4935 if (is_guest_mode(vcpu)) {
4936 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4937 unsigned long orig_val = val;
4938
4939 /*
4940 * We get here when L2 changed cr0 in a way that did not change
4941 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4942 * but did change L0 shadowed bits. So we first calculate the
4943 * effective cr0 value that L1 would like to write into the
4944 * hardware. It consists of the L2-owned bits from the new
4945 * value combined with the L1-owned bits from L1's guest_cr0.
4946 */
4947 val = (val & ~vmcs12->cr0_guest_host_mask) |
4948 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4949
4950 if (!nested_cr0_valid(vmcs12, val))
4951 return 1;
4952
4953 if (kvm_set_cr0(vcpu, val))
4954 return 1;
4955 vmcs_writel(CR0_READ_SHADOW, orig_val);
4956 return 0;
4957 } else {
4958 if (to_vmx(vcpu)->nested.vmxon &&
4959 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4960 return 1;
4961 return kvm_set_cr0(vcpu, val);
4962 }
4963 }
4964
4965 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4966 {
4967 if (is_guest_mode(vcpu)) {
4968 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4969 unsigned long orig_val = val;
4970
4971 /* analogously to handle_set_cr0 */
4972 val = (val & ~vmcs12->cr4_guest_host_mask) |
4973 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4974 if (kvm_set_cr4(vcpu, val))
4975 return 1;
4976 vmcs_writel(CR4_READ_SHADOW, orig_val);
4977 return 0;
4978 } else
4979 return kvm_set_cr4(vcpu, val);
4980 }
4981
4982 /* called to set cr0 as approriate for clts instruction exit. */
4983 static void handle_clts(struct kvm_vcpu *vcpu)
4984 {
4985 if (is_guest_mode(vcpu)) {
4986 /*
4987 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4988 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4989 * just pretend it's off (also in arch.cr0 for fpu_activate).
4990 */
4991 vmcs_writel(CR0_READ_SHADOW,
4992 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4993 vcpu->arch.cr0 &= ~X86_CR0_TS;
4994 } else
4995 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4996 }
4997
4998 static int handle_cr(struct kvm_vcpu *vcpu)
4999 {
5000 unsigned long exit_qualification, val;
5001 int cr;
5002 int reg;
5003 int err;
5004
5005 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5006 cr = exit_qualification & 15;
5007 reg = (exit_qualification >> 8) & 15;
5008 switch ((exit_qualification >> 4) & 3) {
5009 case 0: /* mov to cr */
5010 val = kvm_register_read(vcpu, reg);
5011 trace_kvm_cr_write(cr, val);
5012 switch (cr) {
5013 case 0:
5014 err = handle_set_cr0(vcpu, val);
5015 kvm_complete_insn_gp(vcpu, err);
5016 return 1;
5017 case 3:
5018 err = kvm_set_cr3(vcpu, val);
5019 kvm_complete_insn_gp(vcpu, err);
5020 return 1;
5021 case 4:
5022 err = handle_set_cr4(vcpu, val);
5023 kvm_complete_insn_gp(vcpu, err);
5024 return 1;
5025 case 8: {
5026 u8 cr8_prev = kvm_get_cr8(vcpu);
5027 u8 cr8 = kvm_register_read(vcpu, reg);
5028 err = kvm_set_cr8(vcpu, cr8);
5029 kvm_complete_insn_gp(vcpu, err);
5030 if (irqchip_in_kernel(vcpu->kvm))
5031 return 1;
5032 if (cr8_prev <= cr8)
5033 return 1;
5034 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5035 return 0;
5036 }
5037 }
5038 break;
5039 case 2: /* clts */
5040 handle_clts(vcpu);
5041 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5042 skip_emulated_instruction(vcpu);
5043 vmx_fpu_activate(vcpu);
5044 return 1;
5045 case 1: /*mov from cr*/
5046 switch (cr) {
5047 case 3:
5048 val = kvm_read_cr3(vcpu);
5049 kvm_register_write(vcpu, reg, val);
5050 trace_kvm_cr_read(cr, val);
5051 skip_emulated_instruction(vcpu);
5052 return 1;
5053 case 8:
5054 val = kvm_get_cr8(vcpu);
5055 kvm_register_write(vcpu, reg, val);
5056 trace_kvm_cr_read(cr, val);
5057 skip_emulated_instruction(vcpu);
5058 return 1;
5059 }
5060 break;
5061 case 3: /* lmsw */
5062 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5063 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5064 kvm_lmsw(vcpu, val);
5065
5066 skip_emulated_instruction(vcpu);
5067 return 1;
5068 default:
5069 break;
5070 }
5071 vcpu->run->exit_reason = 0;
5072 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5073 (int)(exit_qualification >> 4) & 3, cr);
5074 return 0;
5075 }
5076
5077 static int handle_dr(struct kvm_vcpu *vcpu)
5078 {
5079 unsigned long exit_qualification;
5080 int dr, reg;
5081
5082 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5083 if (!kvm_require_cpl(vcpu, 0))
5084 return 1;
5085 dr = vmcs_readl(GUEST_DR7);
5086 if (dr & DR7_GD) {
5087 /*
5088 * As the vm-exit takes precedence over the debug trap, we
5089 * need to emulate the latter, either for the host or the
5090 * guest debugging itself.
5091 */
5092 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5093 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5094 vcpu->run->debug.arch.dr7 = dr;
5095 vcpu->run->debug.arch.pc =
5096 vmcs_readl(GUEST_CS_BASE) +
5097 vmcs_readl(GUEST_RIP);
5098 vcpu->run->debug.arch.exception = DB_VECTOR;
5099 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5100 return 0;
5101 } else {
5102 vcpu->arch.dr7 &= ~DR7_GD;
5103 vcpu->arch.dr6 |= DR6_BD;
5104 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5105 kvm_queue_exception(vcpu, DB_VECTOR);
5106 return 1;
5107 }
5108 }
5109
5110 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5111 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5112 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5113 if (exit_qualification & TYPE_MOV_FROM_DR) {
5114 unsigned long val;
5115
5116 if (kvm_get_dr(vcpu, dr, &val))
5117 return 1;
5118 kvm_register_write(vcpu, reg, val);
5119 } else
5120 if (kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]))
5121 return 1;
5122
5123 skip_emulated_instruction(vcpu);
5124 return 1;
5125 }
5126
5127 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5128 {
5129 return vcpu->arch.dr6;
5130 }
5131
5132 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5133 {
5134 }
5135
5136 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5137 {
5138 vmcs_writel(GUEST_DR7, val);
5139 }
5140
5141 static int handle_cpuid(struct kvm_vcpu *vcpu)
5142 {
5143 kvm_emulate_cpuid(vcpu);
5144 return 1;
5145 }
5146
5147 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5148 {
5149 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5150 u64 data;
5151
5152 if (vmx_get_msr(vcpu, ecx, &data)) {
5153 trace_kvm_msr_read_ex(ecx);
5154 kvm_inject_gp(vcpu, 0);
5155 return 1;
5156 }
5157
5158 trace_kvm_msr_read(ecx, data);
5159
5160 /* FIXME: handling of bits 32:63 of rax, rdx */
5161 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5162 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5163 skip_emulated_instruction(vcpu);
5164 return 1;
5165 }
5166
5167 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5168 {
5169 struct msr_data msr;
5170 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5171 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5172 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5173
5174 msr.data = data;
5175 msr.index = ecx;
5176 msr.host_initiated = false;
5177 if (vmx_set_msr(vcpu, &msr) != 0) {
5178 trace_kvm_msr_write_ex(ecx, data);
5179 kvm_inject_gp(vcpu, 0);
5180 return 1;
5181 }
5182
5183 trace_kvm_msr_write(ecx, data);
5184 skip_emulated_instruction(vcpu);
5185 return 1;
5186 }
5187
5188 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5189 {
5190 kvm_make_request(KVM_REQ_EVENT, vcpu);
5191 return 1;
5192 }
5193
5194 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5195 {
5196 u32 cpu_based_vm_exec_control;
5197
5198 /* clear pending irq */
5199 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5200 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5201 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5202
5203 kvm_make_request(KVM_REQ_EVENT, vcpu);
5204
5205 ++vcpu->stat.irq_window_exits;
5206
5207 /*
5208 * If the user space waits to inject interrupts, exit as soon as
5209 * possible
5210 */
5211 if (!irqchip_in_kernel(vcpu->kvm) &&
5212 vcpu->run->request_interrupt_window &&
5213 !kvm_cpu_has_interrupt(vcpu)) {
5214 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5215 return 0;
5216 }
5217 return 1;
5218 }
5219
5220 static int handle_halt(struct kvm_vcpu *vcpu)
5221 {
5222 skip_emulated_instruction(vcpu);
5223 return kvm_emulate_halt(vcpu);
5224 }
5225
5226 static int handle_vmcall(struct kvm_vcpu *vcpu)
5227 {
5228 skip_emulated_instruction(vcpu);
5229 kvm_emulate_hypercall(vcpu);
5230 return 1;
5231 }
5232
5233 static int handle_invd(struct kvm_vcpu *vcpu)
5234 {
5235 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5236 }
5237
5238 static int handle_invlpg(struct kvm_vcpu *vcpu)
5239 {
5240 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5241
5242 kvm_mmu_invlpg(vcpu, exit_qualification);
5243 skip_emulated_instruction(vcpu);
5244 return 1;
5245 }
5246
5247 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5248 {
5249 int err;
5250
5251 err = kvm_rdpmc(vcpu);
5252 kvm_complete_insn_gp(vcpu, err);
5253
5254 return 1;
5255 }
5256
5257 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5258 {
5259 skip_emulated_instruction(vcpu);
5260 kvm_emulate_wbinvd(vcpu);
5261 return 1;
5262 }
5263
5264 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5265 {
5266 u64 new_bv = kvm_read_edx_eax(vcpu);
5267 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5268
5269 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5270 skip_emulated_instruction(vcpu);
5271 return 1;
5272 }
5273
5274 static int handle_apic_access(struct kvm_vcpu *vcpu)
5275 {
5276 if (likely(fasteoi)) {
5277 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5278 int access_type, offset;
5279
5280 access_type = exit_qualification & APIC_ACCESS_TYPE;
5281 offset = exit_qualification & APIC_ACCESS_OFFSET;
5282 /*
5283 * Sane guest uses MOV to write EOI, with written value
5284 * not cared. So make a short-circuit here by avoiding
5285 * heavy instruction emulation.
5286 */
5287 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5288 (offset == APIC_EOI)) {
5289 kvm_lapic_set_eoi(vcpu);
5290 skip_emulated_instruction(vcpu);
5291 return 1;
5292 }
5293 }
5294 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5295 }
5296
5297 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5298 {
5299 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5300 int vector = exit_qualification & 0xff;
5301
5302 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5303 kvm_apic_set_eoi_accelerated(vcpu, vector);
5304 return 1;
5305 }
5306
5307 static int handle_apic_write(struct kvm_vcpu *vcpu)
5308 {
5309 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5310 u32 offset = exit_qualification & 0xfff;
5311
5312 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5313 kvm_apic_write_nodecode(vcpu, offset);
5314 return 1;
5315 }
5316
5317 static int handle_task_switch(struct kvm_vcpu *vcpu)
5318 {
5319 struct vcpu_vmx *vmx = to_vmx(vcpu);
5320 unsigned long exit_qualification;
5321 bool has_error_code = false;
5322 u32 error_code = 0;
5323 u16 tss_selector;
5324 int reason, type, idt_v, idt_index;
5325
5326 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5327 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5328 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5329
5330 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5331
5332 reason = (u32)exit_qualification >> 30;
5333 if (reason == TASK_SWITCH_GATE && idt_v) {
5334 switch (type) {
5335 case INTR_TYPE_NMI_INTR:
5336 vcpu->arch.nmi_injected = false;
5337 vmx_set_nmi_mask(vcpu, true);
5338 break;
5339 case INTR_TYPE_EXT_INTR:
5340 case INTR_TYPE_SOFT_INTR:
5341 kvm_clear_interrupt_queue(vcpu);
5342 break;
5343 case INTR_TYPE_HARD_EXCEPTION:
5344 if (vmx->idt_vectoring_info &
5345 VECTORING_INFO_DELIVER_CODE_MASK) {
5346 has_error_code = true;
5347 error_code =
5348 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5349 }
5350 /* fall through */
5351 case INTR_TYPE_SOFT_EXCEPTION:
5352 kvm_clear_exception_queue(vcpu);
5353 break;
5354 default:
5355 break;
5356 }
5357 }
5358 tss_selector = exit_qualification;
5359
5360 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5361 type != INTR_TYPE_EXT_INTR &&
5362 type != INTR_TYPE_NMI_INTR))
5363 skip_emulated_instruction(vcpu);
5364
5365 if (kvm_task_switch(vcpu, tss_selector,
5366 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5367 has_error_code, error_code) == EMULATE_FAIL) {
5368 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5369 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5370 vcpu->run->internal.ndata = 0;
5371 return 0;
5372 }
5373
5374 /* clear all local breakpoint enable flags */
5375 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5376
5377 /*
5378 * TODO: What about debug traps on tss switch?
5379 * Are we supposed to inject them and update dr6?
5380 */
5381
5382 return 1;
5383 }
5384
5385 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5386 {
5387 unsigned long exit_qualification;
5388 gpa_t gpa;
5389 u32 error_code;
5390 int gla_validity;
5391
5392 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5393
5394 gla_validity = (exit_qualification >> 7) & 0x3;
5395 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5396 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5397 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5398 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5399 vmcs_readl(GUEST_LINEAR_ADDRESS));
5400 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5401 (long unsigned int)exit_qualification);
5402 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5403 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5404 return 0;
5405 }
5406
5407 /*
5408 * EPT violation happened while executing iret from NMI,
5409 * "blocked by NMI" bit has to be set before next VM entry.
5410 * There are errata that may cause this bit to not be set:
5411 * AAK134, BY25.
5412 */
5413 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5414 cpu_has_virtual_nmis() &&
5415 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5416 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5417
5418 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5419 trace_kvm_page_fault(gpa, exit_qualification);
5420
5421 /* It is a write fault? */
5422 error_code = exit_qualification & (1U << 1);
5423 /* It is a fetch fault? */
5424 error_code |= (exit_qualification & (1U << 2)) << 2;
5425 /* ept page table is present? */
5426 error_code |= (exit_qualification >> 3) & 0x1;
5427
5428 vcpu->arch.exit_qualification = exit_qualification;
5429
5430 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5431 }
5432
5433 static u64 ept_rsvd_mask(u64 spte, int level)
5434 {
5435 int i;
5436 u64 mask = 0;
5437
5438 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5439 mask |= (1ULL << i);
5440
5441 if (level > 2)
5442 /* bits 7:3 reserved */
5443 mask |= 0xf8;
5444 else if (level == 2) {
5445 if (spte & (1ULL << 7))
5446 /* 2MB ref, bits 20:12 reserved */
5447 mask |= 0x1ff000;
5448 else
5449 /* bits 6:3 reserved */
5450 mask |= 0x78;
5451 }
5452
5453 return mask;
5454 }
5455
5456 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5457 int level)
5458 {
5459 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5460
5461 /* 010b (write-only) */
5462 WARN_ON((spte & 0x7) == 0x2);
5463
5464 /* 110b (write/execute) */
5465 WARN_ON((spte & 0x7) == 0x6);
5466
5467 /* 100b (execute-only) and value not supported by logical processor */
5468 if (!cpu_has_vmx_ept_execute_only())
5469 WARN_ON((spte & 0x7) == 0x4);
5470
5471 /* not 000b */
5472 if ((spte & 0x7)) {
5473 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5474
5475 if (rsvd_bits != 0) {
5476 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5477 __func__, rsvd_bits);
5478 WARN_ON(1);
5479 }
5480
5481 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5482 u64 ept_mem_type = (spte & 0x38) >> 3;
5483
5484 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5485 ept_mem_type == 7) {
5486 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5487 __func__, ept_mem_type);
5488 WARN_ON(1);
5489 }
5490 }
5491 }
5492 }
5493
5494 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5495 {
5496 u64 sptes[4];
5497 int nr_sptes, i, ret;
5498 gpa_t gpa;
5499
5500 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5501
5502 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5503 if (likely(ret == RET_MMIO_PF_EMULATE))
5504 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5505 EMULATE_DONE;
5506
5507 if (unlikely(ret == RET_MMIO_PF_INVALID))
5508 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5509
5510 if (unlikely(ret == RET_MMIO_PF_RETRY))
5511 return 1;
5512
5513 /* It is the real ept misconfig */
5514 printk(KERN_ERR "EPT: Misconfiguration.\n");
5515 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5516
5517 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5518
5519 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5520 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5521
5522 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5523 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5524
5525 return 0;
5526 }
5527
5528 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5529 {
5530 u32 cpu_based_vm_exec_control;
5531
5532 /* clear pending NMI */
5533 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5534 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5535 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5536 ++vcpu->stat.nmi_window_exits;
5537 kvm_make_request(KVM_REQ_EVENT, vcpu);
5538
5539 return 1;
5540 }
5541
5542 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5543 {
5544 struct vcpu_vmx *vmx = to_vmx(vcpu);
5545 enum emulation_result err = EMULATE_DONE;
5546 int ret = 1;
5547 u32 cpu_exec_ctrl;
5548 bool intr_window_requested;
5549 unsigned count = 130;
5550
5551 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5552 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5553
5554 while (!guest_state_valid(vcpu) && count-- != 0) {
5555 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5556 return handle_interrupt_window(&vmx->vcpu);
5557
5558 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5559 return 1;
5560
5561 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5562
5563 if (err == EMULATE_USER_EXIT) {
5564 ++vcpu->stat.mmio_exits;
5565 ret = 0;
5566 goto out;
5567 }
5568
5569 if (err != EMULATE_DONE) {
5570 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5571 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5572 vcpu->run->internal.ndata = 0;
5573 return 0;
5574 }
5575
5576 if (vcpu->arch.halt_request) {
5577 vcpu->arch.halt_request = 0;
5578 ret = kvm_emulate_halt(vcpu);
5579 goto out;
5580 }
5581
5582 if (signal_pending(current))
5583 goto out;
5584 if (need_resched())
5585 schedule();
5586 }
5587
5588 vmx->emulation_required = emulation_required(vcpu);
5589 out:
5590 return ret;
5591 }
5592
5593 /*
5594 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5595 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5596 */
5597 static int handle_pause(struct kvm_vcpu *vcpu)
5598 {
5599 skip_emulated_instruction(vcpu);
5600 kvm_vcpu_on_spin(vcpu);
5601
5602 return 1;
5603 }
5604
5605 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5606 {
5607 kvm_queue_exception(vcpu, UD_VECTOR);
5608 return 1;
5609 }
5610
5611 /*
5612 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5613 * We could reuse a single VMCS for all the L2 guests, but we also want the
5614 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5615 * allows keeping them loaded on the processor, and in the future will allow
5616 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5617 * every entry if they never change.
5618 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5619 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5620 *
5621 * The following functions allocate and free a vmcs02 in this pool.
5622 */
5623
5624 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5625 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5626 {
5627 struct vmcs02_list *item;
5628 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5629 if (item->vmptr == vmx->nested.current_vmptr) {
5630 list_move(&item->list, &vmx->nested.vmcs02_pool);
5631 return &item->vmcs02;
5632 }
5633
5634 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5635 /* Recycle the least recently used VMCS. */
5636 item = list_entry(vmx->nested.vmcs02_pool.prev,
5637 struct vmcs02_list, list);
5638 item->vmptr = vmx->nested.current_vmptr;
5639 list_move(&item->list, &vmx->nested.vmcs02_pool);
5640 return &item->vmcs02;
5641 }
5642
5643 /* Create a new VMCS */
5644 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5645 if (!item)
5646 return NULL;
5647 item->vmcs02.vmcs = alloc_vmcs();
5648 if (!item->vmcs02.vmcs) {
5649 kfree(item);
5650 return NULL;
5651 }
5652 loaded_vmcs_init(&item->vmcs02);
5653 item->vmptr = vmx->nested.current_vmptr;
5654 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5655 vmx->nested.vmcs02_num++;
5656 return &item->vmcs02;
5657 }
5658
5659 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5660 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5661 {
5662 struct vmcs02_list *item;
5663 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5664 if (item->vmptr == vmptr) {
5665 free_loaded_vmcs(&item->vmcs02);
5666 list_del(&item->list);
5667 kfree(item);
5668 vmx->nested.vmcs02_num--;
5669 return;
5670 }
5671 }
5672
5673 /*
5674 * Free all VMCSs saved for this vcpu, except the one pointed by
5675 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5676 * currently used, if running L2), and vmcs01 when running L2.
5677 */
5678 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5679 {
5680 struct vmcs02_list *item, *n;
5681 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5682 if (vmx->loaded_vmcs != &item->vmcs02)
5683 free_loaded_vmcs(&item->vmcs02);
5684 list_del(&item->list);
5685 kfree(item);
5686 }
5687 vmx->nested.vmcs02_num = 0;
5688
5689 if (vmx->loaded_vmcs != &vmx->vmcs01)
5690 free_loaded_vmcs(&vmx->vmcs01);
5691 }
5692
5693 /*
5694 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5695 * set the success or error code of an emulated VMX instruction, as specified
5696 * by Vol 2B, VMX Instruction Reference, "Conventions".
5697 */
5698 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5699 {
5700 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5701 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5702 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5703 }
5704
5705 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5706 {
5707 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5708 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5709 X86_EFLAGS_SF | X86_EFLAGS_OF))
5710 | X86_EFLAGS_CF);
5711 }
5712
5713 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5714 u32 vm_instruction_error)
5715 {
5716 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5717 /*
5718 * failValid writes the error number to the current VMCS, which
5719 * can't be done there isn't a current VMCS.
5720 */
5721 nested_vmx_failInvalid(vcpu);
5722 return;
5723 }
5724 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5725 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5726 X86_EFLAGS_SF | X86_EFLAGS_OF))
5727 | X86_EFLAGS_ZF);
5728 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5729 /*
5730 * We don't need to force a shadow sync because
5731 * VM_INSTRUCTION_ERROR is not shadowed
5732 */
5733 }
5734
5735 /*
5736 * Emulate the VMXON instruction.
5737 * Currently, we just remember that VMX is active, and do not save or even
5738 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5739 * do not currently need to store anything in that guest-allocated memory
5740 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5741 * argument is different from the VMXON pointer (which the spec says they do).
5742 */
5743 static int handle_vmon(struct kvm_vcpu *vcpu)
5744 {
5745 struct kvm_segment cs;
5746 struct vcpu_vmx *vmx = to_vmx(vcpu);
5747 struct vmcs *shadow_vmcs;
5748 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
5749 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
5750
5751 /* The Intel VMX Instruction Reference lists a bunch of bits that
5752 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5753 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5754 * Otherwise, we should fail with #UD. We test these now:
5755 */
5756 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5757 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5758 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5759 kvm_queue_exception(vcpu, UD_VECTOR);
5760 return 1;
5761 }
5762
5763 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5764 if (is_long_mode(vcpu) && !cs.l) {
5765 kvm_queue_exception(vcpu, UD_VECTOR);
5766 return 1;
5767 }
5768
5769 if (vmx_get_cpl(vcpu)) {
5770 kvm_inject_gp(vcpu, 0);
5771 return 1;
5772 }
5773 if (vmx->nested.vmxon) {
5774 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5775 skip_emulated_instruction(vcpu);
5776 return 1;
5777 }
5778
5779 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5780 != VMXON_NEEDED_FEATURES) {
5781 kvm_inject_gp(vcpu, 0);
5782 return 1;
5783 }
5784
5785 if (enable_shadow_vmcs) {
5786 shadow_vmcs = alloc_vmcs();
5787 if (!shadow_vmcs)
5788 return -ENOMEM;
5789 /* mark vmcs as shadow */
5790 shadow_vmcs->revision_id |= (1u << 31);
5791 /* init shadow vmcs */
5792 vmcs_clear(shadow_vmcs);
5793 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5794 }
5795
5796 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5797 vmx->nested.vmcs02_num = 0;
5798
5799 vmx->nested.vmxon = true;
5800
5801 skip_emulated_instruction(vcpu);
5802 nested_vmx_succeed(vcpu);
5803 return 1;
5804 }
5805
5806 /*
5807 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5808 * for running VMX instructions (except VMXON, whose prerequisites are
5809 * slightly different). It also specifies what exception to inject otherwise.
5810 */
5811 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5812 {
5813 struct kvm_segment cs;
5814 struct vcpu_vmx *vmx = to_vmx(vcpu);
5815
5816 if (!vmx->nested.vmxon) {
5817 kvm_queue_exception(vcpu, UD_VECTOR);
5818 return 0;
5819 }
5820
5821 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5822 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5823 (is_long_mode(vcpu) && !cs.l)) {
5824 kvm_queue_exception(vcpu, UD_VECTOR);
5825 return 0;
5826 }
5827
5828 if (vmx_get_cpl(vcpu)) {
5829 kvm_inject_gp(vcpu, 0);
5830 return 0;
5831 }
5832
5833 return 1;
5834 }
5835
5836 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5837 {
5838 u32 exec_control;
5839 if (enable_shadow_vmcs) {
5840 if (vmx->nested.current_vmcs12 != NULL) {
5841 /* copy to memory all shadowed fields in case
5842 they were modified */
5843 copy_shadow_to_vmcs12(vmx);
5844 vmx->nested.sync_shadow_vmcs = false;
5845 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5846 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5847 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5848 vmcs_write64(VMCS_LINK_POINTER, -1ull);
5849 }
5850 }
5851 kunmap(vmx->nested.current_vmcs12_page);
5852 nested_release_page(vmx->nested.current_vmcs12_page);
5853 }
5854
5855 /*
5856 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5857 * just stops using VMX.
5858 */
5859 static void free_nested(struct vcpu_vmx *vmx)
5860 {
5861 if (!vmx->nested.vmxon)
5862 return;
5863 vmx->nested.vmxon = false;
5864 if (vmx->nested.current_vmptr != -1ull) {
5865 nested_release_vmcs12(vmx);
5866 vmx->nested.current_vmptr = -1ull;
5867 vmx->nested.current_vmcs12 = NULL;
5868 }
5869 if (enable_shadow_vmcs)
5870 free_vmcs(vmx->nested.current_shadow_vmcs);
5871 /* Unpin physical memory we referred to in current vmcs02 */
5872 if (vmx->nested.apic_access_page) {
5873 nested_release_page(vmx->nested.apic_access_page);
5874 vmx->nested.apic_access_page = 0;
5875 }
5876
5877 nested_free_all_saved_vmcss(vmx);
5878 }
5879
5880 /* Emulate the VMXOFF instruction */
5881 static int handle_vmoff(struct kvm_vcpu *vcpu)
5882 {
5883 if (!nested_vmx_check_permission(vcpu))
5884 return 1;
5885 free_nested(to_vmx(vcpu));
5886 skip_emulated_instruction(vcpu);
5887 nested_vmx_succeed(vcpu);
5888 return 1;
5889 }
5890
5891 /*
5892 * Decode the memory-address operand of a vmx instruction, as recorded on an
5893 * exit caused by such an instruction (run by a guest hypervisor).
5894 * On success, returns 0. When the operand is invalid, returns 1 and throws
5895 * #UD or #GP.
5896 */
5897 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5898 unsigned long exit_qualification,
5899 u32 vmx_instruction_info, gva_t *ret)
5900 {
5901 /*
5902 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5903 * Execution", on an exit, vmx_instruction_info holds most of the
5904 * addressing components of the operand. Only the displacement part
5905 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5906 * For how an actual address is calculated from all these components,
5907 * refer to Vol. 1, "Operand Addressing".
5908 */
5909 int scaling = vmx_instruction_info & 3;
5910 int addr_size = (vmx_instruction_info >> 7) & 7;
5911 bool is_reg = vmx_instruction_info & (1u << 10);
5912 int seg_reg = (vmx_instruction_info >> 15) & 7;
5913 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5914 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5915 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5916 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5917
5918 if (is_reg) {
5919 kvm_queue_exception(vcpu, UD_VECTOR);
5920 return 1;
5921 }
5922
5923 /* Addr = segment_base + offset */
5924 /* offset = base + [index * scale] + displacement */
5925 *ret = vmx_get_segment_base(vcpu, seg_reg);
5926 if (base_is_valid)
5927 *ret += kvm_register_read(vcpu, base_reg);
5928 if (index_is_valid)
5929 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5930 *ret += exit_qualification; /* holds the displacement */
5931
5932 if (addr_size == 1) /* 32 bit */
5933 *ret &= 0xffffffff;
5934
5935 /*
5936 * TODO: throw #GP (and return 1) in various cases that the VM*
5937 * instructions require it - e.g., offset beyond segment limit,
5938 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5939 * address, and so on. Currently these are not checked.
5940 */
5941 return 0;
5942 }
5943
5944 /* Emulate the VMCLEAR instruction */
5945 static int handle_vmclear(struct kvm_vcpu *vcpu)
5946 {
5947 struct vcpu_vmx *vmx = to_vmx(vcpu);
5948 gva_t gva;
5949 gpa_t vmptr;
5950 struct vmcs12 *vmcs12;
5951 struct page *page;
5952 struct x86_exception e;
5953
5954 if (!nested_vmx_check_permission(vcpu))
5955 return 1;
5956
5957 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5958 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5959 return 1;
5960
5961 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5962 sizeof(vmptr), &e)) {
5963 kvm_inject_page_fault(vcpu, &e);
5964 return 1;
5965 }
5966
5967 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5968 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5969 skip_emulated_instruction(vcpu);
5970 return 1;
5971 }
5972
5973 if (vmptr == vmx->nested.current_vmptr) {
5974 nested_release_vmcs12(vmx);
5975 vmx->nested.current_vmptr = -1ull;
5976 vmx->nested.current_vmcs12 = NULL;
5977 }
5978
5979 page = nested_get_page(vcpu, vmptr);
5980 if (page == NULL) {
5981 /*
5982 * For accurate processor emulation, VMCLEAR beyond available
5983 * physical memory should do nothing at all. However, it is
5984 * possible that a nested vmx bug, not a guest hypervisor bug,
5985 * resulted in this case, so let's shut down before doing any
5986 * more damage:
5987 */
5988 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5989 return 1;
5990 }
5991 vmcs12 = kmap(page);
5992 vmcs12->launch_state = 0;
5993 kunmap(page);
5994 nested_release_page(page);
5995
5996 nested_free_vmcs02(vmx, vmptr);
5997
5998 skip_emulated_instruction(vcpu);
5999 nested_vmx_succeed(vcpu);
6000 return 1;
6001 }
6002
6003 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6004
6005 /* Emulate the VMLAUNCH instruction */
6006 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6007 {
6008 return nested_vmx_run(vcpu, true);
6009 }
6010
6011 /* Emulate the VMRESUME instruction */
6012 static int handle_vmresume(struct kvm_vcpu *vcpu)
6013 {
6014
6015 return nested_vmx_run(vcpu, false);
6016 }
6017
6018 enum vmcs_field_type {
6019 VMCS_FIELD_TYPE_U16 = 0,
6020 VMCS_FIELD_TYPE_U64 = 1,
6021 VMCS_FIELD_TYPE_U32 = 2,
6022 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6023 };
6024
6025 static inline int vmcs_field_type(unsigned long field)
6026 {
6027 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6028 return VMCS_FIELD_TYPE_U32;
6029 return (field >> 13) & 0x3 ;
6030 }
6031
6032 static inline int vmcs_field_readonly(unsigned long field)
6033 {
6034 return (((field >> 10) & 0x3) == 1);
6035 }
6036
6037 /*
6038 * Read a vmcs12 field. Since these can have varying lengths and we return
6039 * one type, we chose the biggest type (u64) and zero-extend the return value
6040 * to that size. Note that the caller, handle_vmread, might need to use only
6041 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6042 * 64-bit fields are to be returned).
6043 */
6044 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6045 unsigned long field, u64 *ret)
6046 {
6047 short offset = vmcs_field_to_offset(field);
6048 char *p;
6049
6050 if (offset < 0)
6051 return 0;
6052
6053 p = ((char *)(get_vmcs12(vcpu))) + offset;
6054
6055 switch (vmcs_field_type(field)) {
6056 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6057 *ret = *((natural_width *)p);
6058 return 1;
6059 case VMCS_FIELD_TYPE_U16:
6060 *ret = *((u16 *)p);
6061 return 1;
6062 case VMCS_FIELD_TYPE_U32:
6063 *ret = *((u32 *)p);
6064 return 1;
6065 case VMCS_FIELD_TYPE_U64:
6066 *ret = *((u64 *)p);
6067 return 1;
6068 default:
6069 return 0; /* can never happen. */
6070 }
6071 }
6072
6073
6074 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6075 unsigned long field, u64 field_value){
6076 short offset = vmcs_field_to_offset(field);
6077 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6078 if (offset < 0)
6079 return false;
6080
6081 switch (vmcs_field_type(field)) {
6082 case VMCS_FIELD_TYPE_U16:
6083 *(u16 *)p = field_value;
6084 return true;
6085 case VMCS_FIELD_TYPE_U32:
6086 *(u32 *)p = field_value;
6087 return true;
6088 case VMCS_FIELD_TYPE_U64:
6089 *(u64 *)p = field_value;
6090 return true;
6091 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6092 *(natural_width *)p = field_value;
6093 return true;
6094 default:
6095 return false; /* can never happen. */
6096 }
6097
6098 }
6099
6100 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6101 {
6102 int i;
6103 unsigned long field;
6104 u64 field_value;
6105 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6106 const unsigned long *fields = shadow_read_write_fields;
6107 const int num_fields = max_shadow_read_write_fields;
6108
6109 vmcs_load(shadow_vmcs);
6110
6111 for (i = 0; i < num_fields; i++) {
6112 field = fields[i];
6113 switch (vmcs_field_type(field)) {
6114 case VMCS_FIELD_TYPE_U16:
6115 field_value = vmcs_read16(field);
6116 break;
6117 case VMCS_FIELD_TYPE_U32:
6118 field_value = vmcs_read32(field);
6119 break;
6120 case VMCS_FIELD_TYPE_U64:
6121 field_value = vmcs_read64(field);
6122 break;
6123 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6124 field_value = vmcs_readl(field);
6125 break;
6126 }
6127 vmcs12_write_any(&vmx->vcpu, field, field_value);
6128 }
6129
6130 vmcs_clear(shadow_vmcs);
6131 vmcs_load(vmx->loaded_vmcs->vmcs);
6132 }
6133
6134 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6135 {
6136 const unsigned long *fields[] = {
6137 shadow_read_write_fields,
6138 shadow_read_only_fields
6139 };
6140 const int max_fields[] = {
6141 max_shadow_read_write_fields,
6142 max_shadow_read_only_fields
6143 };
6144 int i, q;
6145 unsigned long field;
6146 u64 field_value = 0;
6147 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6148
6149 vmcs_load(shadow_vmcs);
6150
6151 for (q = 0; q < ARRAY_SIZE(fields); q++) {
6152 for (i = 0; i < max_fields[q]; i++) {
6153 field = fields[q][i];
6154 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6155
6156 switch (vmcs_field_type(field)) {
6157 case VMCS_FIELD_TYPE_U16:
6158 vmcs_write16(field, (u16)field_value);
6159 break;
6160 case VMCS_FIELD_TYPE_U32:
6161 vmcs_write32(field, (u32)field_value);
6162 break;
6163 case VMCS_FIELD_TYPE_U64:
6164 vmcs_write64(field, (u64)field_value);
6165 break;
6166 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6167 vmcs_writel(field, (long)field_value);
6168 break;
6169 }
6170 }
6171 }
6172
6173 vmcs_clear(shadow_vmcs);
6174 vmcs_load(vmx->loaded_vmcs->vmcs);
6175 }
6176
6177 /*
6178 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6179 * used before) all generate the same failure when it is missing.
6180 */
6181 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6182 {
6183 struct vcpu_vmx *vmx = to_vmx(vcpu);
6184 if (vmx->nested.current_vmptr == -1ull) {
6185 nested_vmx_failInvalid(vcpu);
6186 skip_emulated_instruction(vcpu);
6187 return 0;
6188 }
6189 return 1;
6190 }
6191
6192 static int handle_vmread(struct kvm_vcpu *vcpu)
6193 {
6194 unsigned long field;
6195 u64 field_value;
6196 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6197 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6198 gva_t gva = 0;
6199
6200 if (!nested_vmx_check_permission(vcpu) ||
6201 !nested_vmx_check_vmcs12(vcpu))
6202 return 1;
6203
6204 /* Decode instruction info and find the field to read */
6205 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6206 /* Read the field, zero-extended to a u64 field_value */
6207 if (!vmcs12_read_any(vcpu, field, &field_value)) {
6208 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6209 skip_emulated_instruction(vcpu);
6210 return 1;
6211 }
6212 /*
6213 * Now copy part of this value to register or memory, as requested.
6214 * Note that the number of bits actually copied is 32 or 64 depending
6215 * on the guest's mode (32 or 64 bit), not on the given field's length.
6216 */
6217 if (vmx_instruction_info & (1u << 10)) {
6218 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6219 field_value);
6220 } else {
6221 if (get_vmx_mem_address(vcpu, exit_qualification,
6222 vmx_instruction_info, &gva))
6223 return 1;
6224 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6225 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6226 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6227 }
6228
6229 nested_vmx_succeed(vcpu);
6230 skip_emulated_instruction(vcpu);
6231 return 1;
6232 }
6233
6234
6235 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6236 {
6237 unsigned long field;
6238 gva_t gva;
6239 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6240 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6241 /* The value to write might be 32 or 64 bits, depending on L1's long
6242 * mode, and eventually we need to write that into a field of several
6243 * possible lengths. The code below first zero-extends the value to 64
6244 * bit (field_value), and then copies only the approriate number of
6245 * bits into the vmcs12 field.
6246 */
6247 u64 field_value = 0;
6248 struct x86_exception e;
6249
6250 if (!nested_vmx_check_permission(vcpu) ||
6251 !nested_vmx_check_vmcs12(vcpu))
6252 return 1;
6253
6254 if (vmx_instruction_info & (1u << 10))
6255 field_value = kvm_register_read(vcpu,
6256 (((vmx_instruction_info) >> 3) & 0xf));
6257 else {
6258 if (get_vmx_mem_address(vcpu, exit_qualification,
6259 vmx_instruction_info, &gva))
6260 return 1;
6261 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6262 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6263 kvm_inject_page_fault(vcpu, &e);
6264 return 1;
6265 }
6266 }
6267
6268
6269 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6270 if (vmcs_field_readonly(field)) {
6271 nested_vmx_failValid(vcpu,
6272 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6273 skip_emulated_instruction(vcpu);
6274 return 1;
6275 }
6276
6277 if (!vmcs12_write_any(vcpu, field, field_value)) {
6278 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6279 skip_emulated_instruction(vcpu);
6280 return 1;
6281 }
6282
6283 nested_vmx_succeed(vcpu);
6284 skip_emulated_instruction(vcpu);
6285 return 1;
6286 }
6287
6288 /* Emulate the VMPTRLD instruction */
6289 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6290 {
6291 struct vcpu_vmx *vmx = to_vmx(vcpu);
6292 gva_t gva;
6293 gpa_t vmptr;
6294 struct x86_exception e;
6295 u32 exec_control;
6296
6297 if (!nested_vmx_check_permission(vcpu))
6298 return 1;
6299
6300 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6301 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6302 return 1;
6303
6304 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6305 sizeof(vmptr), &e)) {
6306 kvm_inject_page_fault(vcpu, &e);
6307 return 1;
6308 }
6309
6310 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6311 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6312 skip_emulated_instruction(vcpu);
6313 return 1;
6314 }
6315
6316 if (vmx->nested.current_vmptr != vmptr) {
6317 struct vmcs12 *new_vmcs12;
6318 struct page *page;
6319 page = nested_get_page(vcpu, vmptr);
6320 if (page == NULL) {
6321 nested_vmx_failInvalid(vcpu);
6322 skip_emulated_instruction(vcpu);
6323 return 1;
6324 }
6325 new_vmcs12 = kmap(page);
6326 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6327 kunmap(page);
6328 nested_release_page_clean(page);
6329 nested_vmx_failValid(vcpu,
6330 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6331 skip_emulated_instruction(vcpu);
6332 return 1;
6333 }
6334 if (vmx->nested.current_vmptr != -1ull)
6335 nested_release_vmcs12(vmx);
6336
6337 vmx->nested.current_vmptr = vmptr;
6338 vmx->nested.current_vmcs12 = new_vmcs12;
6339 vmx->nested.current_vmcs12_page = page;
6340 if (enable_shadow_vmcs) {
6341 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6342 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6343 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6344 vmcs_write64(VMCS_LINK_POINTER,
6345 __pa(vmx->nested.current_shadow_vmcs));
6346 vmx->nested.sync_shadow_vmcs = true;
6347 }
6348 }
6349
6350 nested_vmx_succeed(vcpu);
6351 skip_emulated_instruction(vcpu);
6352 return 1;
6353 }
6354
6355 /* Emulate the VMPTRST instruction */
6356 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6357 {
6358 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6359 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6360 gva_t vmcs_gva;
6361 struct x86_exception e;
6362
6363 if (!nested_vmx_check_permission(vcpu))
6364 return 1;
6365
6366 if (get_vmx_mem_address(vcpu, exit_qualification,
6367 vmx_instruction_info, &vmcs_gva))
6368 return 1;
6369 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6370 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6371 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6372 sizeof(u64), &e)) {
6373 kvm_inject_page_fault(vcpu, &e);
6374 return 1;
6375 }
6376 nested_vmx_succeed(vcpu);
6377 skip_emulated_instruction(vcpu);
6378 return 1;
6379 }
6380
6381 /* Emulate the INVEPT instruction */
6382 static int handle_invept(struct kvm_vcpu *vcpu)
6383 {
6384 u32 vmx_instruction_info, types;
6385 unsigned long type;
6386 gva_t gva;
6387 struct x86_exception e;
6388 struct {
6389 u64 eptp, gpa;
6390 } operand;
6391 u64 eptp_mask = ((1ull << 51) - 1) & PAGE_MASK;
6392
6393 if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6394 !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6395 kvm_queue_exception(vcpu, UD_VECTOR);
6396 return 1;
6397 }
6398
6399 if (!nested_vmx_check_permission(vcpu))
6400 return 1;
6401
6402 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6403 kvm_queue_exception(vcpu, UD_VECTOR);
6404 return 1;
6405 }
6406
6407 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6408 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
6409
6410 types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6411
6412 if (!(types & (1UL << type))) {
6413 nested_vmx_failValid(vcpu,
6414 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6415 return 1;
6416 }
6417
6418 /* According to the Intel VMX instruction reference, the memory
6419 * operand is read even if it isn't needed (e.g., for type==global)
6420 */
6421 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6422 vmx_instruction_info, &gva))
6423 return 1;
6424 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6425 sizeof(operand), &e)) {
6426 kvm_inject_page_fault(vcpu, &e);
6427 return 1;
6428 }
6429
6430 switch (type) {
6431 case VMX_EPT_EXTENT_CONTEXT:
6432 if ((operand.eptp & eptp_mask) !=
6433 (nested_ept_get_cr3(vcpu) & eptp_mask))
6434 break;
6435 case VMX_EPT_EXTENT_GLOBAL:
6436 kvm_mmu_sync_roots(vcpu);
6437 kvm_mmu_flush_tlb(vcpu);
6438 nested_vmx_succeed(vcpu);
6439 break;
6440 default:
6441 BUG_ON(1);
6442 break;
6443 }
6444
6445 skip_emulated_instruction(vcpu);
6446 return 1;
6447 }
6448
6449 /*
6450 * The exit handlers return 1 if the exit was handled fully and guest execution
6451 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6452 * to be done to userspace and return 0.
6453 */
6454 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6455 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6456 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6457 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6458 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6459 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6460 [EXIT_REASON_CR_ACCESS] = handle_cr,
6461 [EXIT_REASON_DR_ACCESS] = handle_dr,
6462 [EXIT_REASON_CPUID] = handle_cpuid,
6463 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6464 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6465 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6466 [EXIT_REASON_HLT] = handle_halt,
6467 [EXIT_REASON_INVD] = handle_invd,
6468 [EXIT_REASON_INVLPG] = handle_invlpg,
6469 [EXIT_REASON_RDPMC] = handle_rdpmc,
6470 [EXIT_REASON_VMCALL] = handle_vmcall,
6471 [EXIT_REASON_VMCLEAR] = handle_vmclear,
6472 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
6473 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6474 [EXIT_REASON_VMPTRST] = handle_vmptrst,
6475 [EXIT_REASON_VMREAD] = handle_vmread,
6476 [EXIT_REASON_VMRESUME] = handle_vmresume,
6477 [EXIT_REASON_VMWRITE] = handle_vmwrite,
6478 [EXIT_REASON_VMOFF] = handle_vmoff,
6479 [EXIT_REASON_VMON] = handle_vmon,
6480 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6481 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6482 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6483 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6484 [EXIT_REASON_WBINVD] = handle_wbinvd,
6485 [EXIT_REASON_XSETBV] = handle_xsetbv,
6486 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6487 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6488 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6489 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6490 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6491 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
6492 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6493 [EXIT_REASON_INVEPT] = handle_invept,
6494 };
6495
6496 static const int kvm_vmx_max_exit_handlers =
6497 ARRAY_SIZE(kvm_vmx_exit_handlers);
6498
6499 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6500 struct vmcs12 *vmcs12)
6501 {
6502 unsigned long exit_qualification;
6503 gpa_t bitmap, last_bitmap;
6504 unsigned int port;
6505 int size;
6506 u8 b;
6507
6508 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6509 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6510
6511 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6512
6513 port = exit_qualification >> 16;
6514 size = (exit_qualification & 7) + 1;
6515
6516 last_bitmap = (gpa_t)-1;
6517 b = -1;
6518
6519 while (size > 0) {
6520 if (port < 0x8000)
6521 bitmap = vmcs12->io_bitmap_a;
6522 else if (port < 0x10000)
6523 bitmap = vmcs12->io_bitmap_b;
6524 else
6525 return 1;
6526 bitmap += (port & 0x7fff) / 8;
6527
6528 if (last_bitmap != bitmap)
6529 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6530 return 1;
6531 if (b & (1 << (port & 7)))
6532 return 1;
6533
6534 port++;
6535 size--;
6536 last_bitmap = bitmap;
6537 }
6538
6539 return 0;
6540 }
6541
6542 /*
6543 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6544 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6545 * disinterest in the current event (read or write a specific MSR) by using an
6546 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6547 */
6548 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6549 struct vmcs12 *vmcs12, u32 exit_reason)
6550 {
6551 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6552 gpa_t bitmap;
6553
6554 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6555 return 1;
6556
6557 /*
6558 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6559 * for the four combinations of read/write and low/high MSR numbers.
6560 * First we need to figure out which of the four to use:
6561 */
6562 bitmap = vmcs12->msr_bitmap;
6563 if (exit_reason == EXIT_REASON_MSR_WRITE)
6564 bitmap += 2048;
6565 if (msr_index >= 0xc0000000) {
6566 msr_index -= 0xc0000000;
6567 bitmap += 1024;
6568 }
6569
6570 /* Then read the msr_index'th bit from this bitmap: */
6571 if (msr_index < 1024*8) {
6572 unsigned char b;
6573 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6574 return 1;
6575 return 1 & (b >> (msr_index & 7));
6576 } else
6577 return 1; /* let L1 handle the wrong parameter */
6578 }
6579
6580 /*
6581 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6582 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6583 * intercept (via guest_host_mask etc.) the current event.
6584 */
6585 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6586 struct vmcs12 *vmcs12)
6587 {
6588 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6589 int cr = exit_qualification & 15;
6590 int reg = (exit_qualification >> 8) & 15;
6591 unsigned long val = kvm_register_read(vcpu, reg);
6592
6593 switch ((exit_qualification >> 4) & 3) {
6594 case 0: /* mov to cr */
6595 switch (cr) {
6596 case 0:
6597 if (vmcs12->cr0_guest_host_mask &
6598 (val ^ vmcs12->cr0_read_shadow))
6599 return 1;
6600 break;
6601 case 3:
6602 if ((vmcs12->cr3_target_count >= 1 &&
6603 vmcs12->cr3_target_value0 == val) ||
6604 (vmcs12->cr3_target_count >= 2 &&
6605 vmcs12->cr3_target_value1 == val) ||
6606 (vmcs12->cr3_target_count >= 3 &&
6607 vmcs12->cr3_target_value2 == val) ||
6608 (vmcs12->cr3_target_count >= 4 &&
6609 vmcs12->cr3_target_value3 == val))
6610 return 0;
6611 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6612 return 1;
6613 break;
6614 case 4:
6615 if (vmcs12->cr4_guest_host_mask &
6616 (vmcs12->cr4_read_shadow ^ val))
6617 return 1;
6618 break;
6619 case 8:
6620 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6621 return 1;
6622 break;
6623 }
6624 break;
6625 case 2: /* clts */
6626 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6627 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6628 return 1;
6629 break;
6630 case 1: /* mov from cr */
6631 switch (cr) {
6632 case 3:
6633 if (vmcs12->cpu_based_vm_exec_control &
6634 CPU_BASED_CR3_STORE_EXITING)
6635 return 1;
6636 break;
6637 case 8:
6638 if (vmcs12->cpu_based_vm_exec_control &
6639 CPU_BASED_CR8_STORE_EXITING)
6640 return 1;
6641 break;
6642 }
6643 break;
6644 case 3: /* lmsw */
6645 /*
6646 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6647 * cr0. Other attempted changes are ignored, with no exit.
6648 */
6649 if (vmcs12->cr0_guest_host_mask & 0xe &
6650 (val ^ vmcs12->cr0_read_shadow))
6651 return 1;
6652 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6653 !(vmcs12->cr0_read_shadow & 0x1) &&
6654 (val & 0x1))
6655 return 1;
6656 break;
6657 }
6658 return 0;
6659 }
6660
6661 /*
6662 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6663 * should handle it ourselves in L0 (and then continue L2). Only call this
6664 * when in is_guest_mode (L2).
6665 */
6666 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6667 {
6668 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6669 struct vcpu_vmx *vmx = to_vmx(vcpu);
6670 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6671 u32 exit_reason = vmx->exit_reason;
6672
6673 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
6674 vmcs_readl(EXIT_QUALIFICATION),
6675 vmx->idt_vectoring_info,
6676 intr_info,
6677 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6678 KVM_ISA_VMX);
6679
6680 if (vmx->nested.nested_run_pending)
6681 return 0;
6682
6683 if (unlikely(vmx->fail)) {
6684 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6685 vmcs_read32(VM_INSTRUCTION_ERROR));
6686 return 1;
6687 }
6688
6689 switch (exit_reason) {
6690 case EXIT_REASON_EXCEPTION_NMI:
6691 if (!is_exception(intr_info))
6692 return 0;
6693 else if (is_page_fault(intr_info))
6694 return enable_ept;
6695 else if (is_no_device(intr_info) &&
6696 !(nested_read_cr0(vmcs12) & X86_CR0_TS))
6697 return 0;
6698 return vmcs12->exception_bitmap &
6699 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6700 case EXIT_REASON_EXTERNAL_INTERRUPT:
6701 return 0;
6702 case EXIT_REASON_TRIPLE_FAULT:
6703 return 1;
6704 case EXIT_REASON_PENDING_INTERRUPT:
6705 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6706 case EXIT_REASON_NMI_WINDOW:
6707 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6708 case EXIT_REASON_TASK_SWITCH:
6709 return 1;
6710 case EXIT_REASON_CPUID:
6711 return 1;
6712 case EXIT_REASON_HLT:
6713 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6714 case EXIT_REASON_INVD:
6715 return 1;
6716 case EXIT_REASON_INVLPG:
6717 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6718 case EXIT_REASON_RDPMC:
6719 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6720 case EXIT_REASON_RDTSC:
6721 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6722 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6723 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6724 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6725 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6726 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6727 case EXIT_REASON_INVEPT:
6728 /*
6729 * VMX instructions trap unconditionally. This allows L1 to
6730 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6731 */
6732 return 1;
6733 case EXIT_REASON_CR_ACCESS:
6734 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6735 case EXIT_REASON_DR_ACCESS:
6736 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6737 case EXIT_REASON_IO_INSTRUCTION:
6738 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6739 case EXIT_REASON_MSR_READ:
6740 case EXIT_REASON_MSR_WRITE:
6741 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6742 case EXIT_REASON_INVALID_STATE:
6743 return 1;
6744 case EXIT_REASON_MWAIT_INSTRUCTION:
6745 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6746 case EXIT_REASON_MONITOR_INSTRUCTION:
6747 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6748 case EXIT_REASON_PAUSE_INSTRUCTION:
6749 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6750 nested_cpu_has2(vmcs12,
6751 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6752 case EXIT_REASON_MCE_DURING_VMENTRY:
6753 return 0;
6754 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6755 return 1;
6756 case EXIT_REASON_APIC_ACCESS:
6757 return nested_cpu_has2(vmcs12,
6758 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6759 case EXIT_REASON_EPT_VIOLATION:
6760 /*
6761 * L0 always deals with the EPT violation. If nested EPT is
6762 * used, and the nested mmu code discovers that the address is
6763 * missing in the guest EPT table (EPT12), the EPT violation
6764 * will be injected with nested_ept_inject_page_fault()
6765 */
6766 return 0;
6767 case EXIT_REASON_EPT_MISCONFIG:
6768 /*
6769 * L2 never uses directly L1's EPT, but rather L0's own EPT
6770 * table (shadow on EPT) or a merged EPT table that L0 built
6771 * (EPT on EPT). So any problems with the structure of the
6772 * table is L0's fault.
6773 */
6774 return 0;
6775 case EXIT_REASON_PREEMPTION_TIMER:
6776 return vmcs12->pin_based_vm_exec_control &
6777 PIN_BASED_VMX_PREEMPTION_TIMER;
6778 case EXIT_REASON_WBINVD:
6779 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6780 case EXIT_REASON_XSETBV:
6781 return 1;
6782 default:
6783 return 1;
6784 }
6785 }
6786
6787 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6788 {
6789 *info1 = vmcs_readl(EXIT_QUALIFICATION);
6790 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6791 }
6792
6793 static void nested_adjust_preemption_timer(struct kvm_vcpu *vcpu)
6794 {
6795 u64 delta_tsc_l1;
6796 u32 preempt_val_l1, preempt_val_l2, preempt_scale;
6797
6798 if (!(get_vmcs12(vcpu)->pin_based_vm_exec_control &
6799 PIN_BASED_VMX_PREEMPTION_TIMER))
6800 return;
6801 preempt_scale = native_read_msr(MSR_IA32_VMX_MISC) &
6802 MSR_IA32_VMX_MISC_PREEMPTION_TIMER_SCALE;
6803 preempt_val_l2 = vmcs_read32(VMX_PREEMPTION_TIMER_VALUE);
6804 delta_tsc_l1 = vmx_read_l1_tsc(vcpu, native_read_tsc())
6805 - vcpu->arch.last_guest_tsc;
6806 preempt_val_l1 = delta_tsc_l1 >> preempt_scale;
6807 if (preempt_val_l2 <= preempt_val_l1)
6808 preempt_val_l2 = 0;
6809 else
6810 preempt_val_l2 -= preempt_val_l1;
6811 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, preempt_val_l2);
6812 }
6813
6814 /*
6815 * The guest has exited. See if we can fix it or if we need userspace
6816 * assistance.
6817 */
6818 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6819 {
6820 struct vcpu_vmx *vmx = to_vmx(vcpu);
6821 u32 exit_reason = vmx->exit_reason;
6822 u32 vectoring_info = vmx->idt_vectoring_info;
6823
6824 /* If guest state is invalid, start emulating */
6825 if (vmx->emulation_required)
6826 return handle_invalid_guest_state(vcpu);
6827
6828 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6829 nested_vmx_vmexit(vcpu, exit_reason,
6830 vmcs_read32(VM_EXIT_INTR_INFO),
6831 vmcs_readl(EXIT_QUALIFICATION));
6832 return 1;
6833 }
6834
6835 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6836 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6837 vcpu->run->fail_entry.hardware_entry_failure_reason
6838 = exit_reason;
6839 return 0;
6840 }
6841
6842 if (unlikely(vmx->fail)) {
6843 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6844 vcpu->run->fail_entry.hardware_entry_failure_reason
6845 = vmcs_read32(VM_INSTRUCTION_ERROR);
6846 return 0;
6847 }
6848
6849 /*
6850 * Note:
6851 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6852 * delivery event since it indicates guest is accessing MMIO.
6853 * The vm-exit can be triggered again after return to guest that
6854 * will cause infinite loop.
6855 */
6856 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6857 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6858 exit_reason != EXIT_REASON_EPT_VIOLATION &&
6859 exit_reason != EXIT_REASON_TASK_SWITCH)) {
6860 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6861 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6862 vcpu->run->internal.ndata = 2;
6863 vcpu->run->internal.data[0] = vectoring_info;
6864 vcpu->run->internal.data[1] = exit_reason;
6865 return 0;
6866 }
6867
6868 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6869 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6870 get_vmcs12(vcpu))))) {
6871 if (vmx_interrupt_allowed(vcpu)) {
6872 vmx->soft_vnmi_blocked = 0;
6873 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6874 vcpu->arch.nmi_pending) {
6875 /*
6876 * This CPU don't support us in finding the end of an
6877 * NMI-blocked window if the guest runs with IRQs
6878 * disabled. So we pull the trigger after 1 s of
6879 * futile waiting, but inform the user about this.
6880 */
6881 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6882 "state on VCPU %d after 1 s timeout\n",
6883 __func__, vcpu->vcpu_id);
6884 vmx->soft_vnmi_blocked = 0;
6885 }
6886 }
6887
6888 if (exit_reason < kvm_vmx_max_exit_handlers
6889 && kvm_vmx_exit_handlers[exit_reason])
6890 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6891 else {
6892 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6893 vcpu->run->hw.hardware_exit_reason = exit_reason;
6894 }
6895 return 0;
6896 }
6897
6898 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6899 {
6900 if (irr == -1 || tpr < irr) {
6901 vmcs_write32(TPR_THRESHOLD, 0);
6902 return;
6903 }
6904
6905 vmcs_write32(TPR_THRESHOLD, irr);
6906 }
6907
6908 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6909 {
6910 u32 sec_exec_control;
6911
6912 /*
6913 * There is not point to enable virtualize x2apic without enable
6914 * apicv
6915 */
6916 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6917 !vmx_vm_has_apicv(vcpu->kvm))
6918 return;
6919
6920 if (!vm_need_tpr_shadow(vcpu->kvm))
6921 return;
6922
6923 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6924
6925 if (set) {
6926 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6927 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6928 } else {
6929 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6930 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6931 }
6932 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6933
6934 vmx_set_msr_bitmap(vcpu);
6935 }
6936
6937 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6938 {
6939 u16 status;
6940 u8 old;
6941
6942 if (!vmx_vm_has_apicv(kvm))
6943 return;
6944
6945 if (isr == -1)
6946 isr = 0;
6947
6948 status = vmcs_read16(GUEST_INTR_STATUS);
6949 old = status >> 8;
6950 if (isr != old) {
6951 status &= 0xff;
6952 status |= isr << 8;
6953 vmcs_write16(GUEST_INTR_STATUS, status);
6954 }
6955 }
6956
6957 static void vmx_set_rvi(int vector)
6958 {
6959 u16 status;
6960 u8 old;
6961
6962 status = vmcs_read16(GUEST_INTR_STATUS);
6963 old = (u8)status & 0xff;
6964 if ((u8)vector != old) {
6965 status &= ~0xff;
6966 status |= (u8)vector;
6967 vmcs_write16(GUEST_INTR_STATUS, status);
6968 }
6969 }
6970
6971 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6972 {
6973 if (max_irr == -1)
6974 return;
6975
6976 vmx_set_rvi(max_irr);
6977 }
6978
6979 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6980 {
6981 if (!vmx_vm_has_apicv(vcpu->kvm))
6982 return;
6983
6984 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6985 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6986 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6987 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6988 }
6989
6990 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6991 {
6992 u32 exit_intr_info;
6993
6994 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6995 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6996 return;
6997
6998 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6999 exit_intr_info = vmx->exit_intr_info;
7000
7001 /* Handle machine checks before interrupts are enabled */
7002 if (is_machine_check(exit_intr_info))
7003 kvm_machine_check();
7004
7005 /* We need to handle NMIs before interrupts are enabled */
7006 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7007 (exit_intr_info & INTR_INFO_VALID_MASK)) {
7008 kvm_before_handle_nmi(&vmx->vcpu);
7009 asm("int $2");
7010 kvm_after_handle_nmi(&vmx->vcpu);
7011 }
7012 }
7013
7014 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7015 {
7016 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7017
7018 /*
7019 * If external interrupt exists, IF bit is set in rflags/eflags on the
7020 * interrupt stack frame, and interrupt will be enabled on a return
7021 * from interrupt handler.
7022 */
7023 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7024 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7025 unsigned int vector;
7026 unsigned long entry;
7027 gate_desc *desc;
7028 struct vcpu_vmx *vmx = to_vmx(vcpu);
7029 #ifdef CONFIG_X86_64
7030 unsigned long tmp;
7031 #endif
7032
7033 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7034 desc = (gate_desc *)vmx->host_idt_base + vector;
7035 entry = gate_offset(*desc);
7036 asm volatile(
7037 #ifdef CONFIG_X86_64
7038 "mov %%" _ASM_SP ", %[sp]\n\t"
7039 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7040 "push $%c[ss]\n\t"
7041 "push %[sp]\n\t"
7042 #endif
7043 "pushf\n\t"
7044 "orl $0x200, (%%" _ASM_SP ")\n\t"
7045 __ASM_SIZE(push) " $%c[cs]\n\t"
7046 "call *%[entry]\n\t"
7047 :
7048 #ifdef CONFIG_X86_64
7049 [sp]"=&r"(tmp)
7050 #endif
7051 :
7052 [entry]"r"(entry),
7053 [ss]"i"(__KERNEL_DS),
7054 [cs]"i"(__KERNEL_CS)
7055 );
7056 } else
7057 local_irq_enable();
7058 }
7059
7060 static bool vmx_mpx_supported(void)
7061 {
7062 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7063 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7064 }
7065
7066 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7067 {
7068 u32 exit_intr_info;
7069 bool unblock_nmi;
7070 u8 vector;
7071 bool idtv_info_valid;
7072
7073 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7074
7075 if (cpu_has_virtual_nmis()) {
7076 if (vmx->nmi_known_unmasked)
7077 return;
7078 /*
7079 * Can't use vmx->exit_intr_info since we're not sure what
7080 * the exit reason is.
7081 */
7082 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7083 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7084 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7085 /*
7086 * SDM 3: 27.7.1.2 (September 2008)
7087 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7088 * a guest IRET fault.
7089 * SDM 3: 23.2.2 (September 2008)
7090 * Bit 12 is undefined in any of the following cases:
7091 * If the VM exit sets the valid bit in the IDT-vectoring
7092 * information field.
7093 * If the VM exit is due to a double fault.
7094 */
7095 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7096 vector != DF_VECTOR && !idtv_info_valid)
7097 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7098 GUEST_INTR_STATE_NMI);
7099 else
7100 vmx->nmi_known_unmasked =
7101 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7102 & GUEST_INTR_STATE_NMI);
7103 } else if (unlikely(vmx->soft_vnmi_blocked))
7104 vmx->vnmi_blocked_time +=
7105 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7106 }
7107
7108 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7109 u32 idt_vectoring_info,
7110 int instr_len_field,
7111 int error_code_field)
7112 {
7113 u8 vector;
7114 int type;
7115 bool idtv_info_valid;
7116
7117 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7118
7119 vcpu->arch.nmi_injected = false;
7120 kvm_clear_exception_queue(vcpu);
7121 kvm_clear_interrupt_queue(vcpu);
7122
7123 if (!idtv_info_valid)
7124 return;
7125
7126 kvm_make_request(KVM_REQ_EVENT, vcpu);
7127
7128 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7129 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7130
7131 switch (type) {
7132 case INTR_TYPE_NMI_INTR:
7133 vcpu->arch.nmi_injected = true;
7134 /*
7135 * SDM 3: 27.7.1.2 (September 2008)
7136 * Clear bit "block by NMI" before VM entry if a NMI
7137 * delivery faulted.
7138 */
7139 vmx_set_nmi_mask(vcpu, false);
7140 break;
7141 case INTR_TYPE_SOFT_EXCEPTION:
7142 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7143 /* fall through */
7144 case INTR_TYPE_HARD_EXCEPTION:
7145 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7146 u32 err = vmcs_read32(error_code_field);
7147 kvm_requeue_exception_e(vcpu, vector, err);
7148 } else
7149 kvm_requeue_exception(vcpu, vector);
7150 break;
7151 case INTR_TYPE_SOFT_INTR:
7152 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7153 /* fall through */
7154 case INTR_TYPE_EXT_INTR:
7155 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7156 break;
7157 default:
7158 break;
7159 }
7160 }
7161
7162 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7163 {
7164 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7165 VM_EXIT_INSTRUCTION_LEN,
7166 IDT_VECTORING_ERROR_CODE);
7167 }
7168
7169 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7170 {
7171 __vmx_complete_interrupts(vcpu,
7172 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7173 VM_ENTRY_INSTRUCTION_LEN,
7174 VM_ENTRY_EXCEPTION_ERROR_CODE);
7175
7176 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7177 }
7178
7179 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7180 {
7181 int i, nr_msrs;
7182 struct perf_guest_switch_msr *msrs;
7183
7184 msrs = perf_guest_get_msrs(&nr_msrs);
7185
7186 if (!msrs)
7187 return;
7188
7189 for (i = 0; i < nr_msrs; i++)
7190 if (msrs[i].host == msrs[i].guest)
7191 clear_atomic_switch_msr(vmx, msrs[i].msr);
7192 else
7193 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7194 msrs[i].host);
7195 }
7196
7197 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7198 {
7199 struct vcpu_vmx *vmx = to_vmx(vcpu);
7200 unsigned long debugctlmsr;
7201
7202 /* Record the guest's net vcpu time for enforced NMI injections. */
7203 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7204 vmx->entry_time = ktime_get();
7205
7206 /* Don't enter VMX if guest state is invalid, let the exit handler
7207 start emulation until we arrive back to a valid state */
7208 if (vmx->emulation_required)
7209 return;
7210
7211 if (vmx->nested.sync_shadow_vmcs) {
7212 copy_vmcs12_to_shadow(vmx);
7213 vmx->nested.sync_shadow_vmcs = false;
7214 }
7215
7216 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7217 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7218 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7219 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7220
7221 /* When single-stepping over STI and MOV SS, we must clear the
7222 * corresponding interruptibility bits in the guest state. Otherwise
7223 * vmentry fails as it then expects bit 14 (BS) in pending debug
7224 * exceptions being set, but that's not correct for the guest debugging
7225 * case. */
7226 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7227 vmx_set_interrupt_shadow(vcpu, 0);
7228
7229 atomic_switch_perf_msrs(vmx);
7230 debugctlmsr = get_debugctlmsr();
7231
7232 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending)
7233 nested_adjust_preemption_timer(vcpu);
7234 vmx->__launched = vmx->loaded_vmcs->launched;
7235 asm(
7236 /* Store host registers */
7237 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7238 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7239 "push %%" _ASM_CX " \n\t"
7240 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7241 "je 1f \n\t"
7242 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7243 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7244 "1: \n\t"
7245 /* Reload cr2 if changed */
7246 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7247 "mov %%cr2, %%" _ASM_DX " \n\t"
7248 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7249 "je 2f \n\t"
7250 "mov %%" _ASM_AX", %%cr2 \n\t"
7251 "2: \n\t"
7252 /* Check if vmlaunch of vmresume is needed */
7253 "cmpl $0, %c[launched](%0) \n\t"
7254 /* Load guest registers. Don't clobber flags. */
7255 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7256 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7257 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7258 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7259 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7260 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7261 #ifdef CONFIG_X86_64
7262 "mov %c[r8](%0), %%r8 \n\t"
7263 "mov %c[r9](%0), %%r9 \n\t"
7264 "mov %c[r10](%0), %%r10 \n\t"
7265 "mov %c[r11](%0), %%r11 \n\t"
7266 "mov %c[r12](%0), %%r12 \n\t"
7267 "mov %c[r13](%0), %%r13 \n\t"
7268 "mov %c[r14](%0), %%r14 \n\t"
7269 "mov %c[r15](%0), %%r15 \n\t"
7270 #endif
7271 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7272
7273 /* Enter guest mode */
7274 "jne 1f \n\t"
7275 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7276 "jmp 2f \n\t"
7277 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7278 "2: "
7279 /* Save guest registers, load host registers, keep flags */
7280 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7281 "pop %0 \n\t"
7282 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7283 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7284 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7285 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7286 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7287 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7288 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7289 #ifdef CONFIG_X86_64
7290 "mov %%r8, %c[r8](%0) \n\t"
7291 "mov %%r9, %c[r9](%0) \n\t"
7292 "mov %%r10, %c[r10](%0) \n\t"
7293 "mov %%r11, %c[r11](%0) \n\t"
7294 "mov %%r12, %c[r12](%0) \n\t"
7295 "mov %%r13, %c[r13](%0) \n\t"
7296 "mov %%r14, %c[r14](%0) \n\t"
7297 "mov %%r15, %c[r15](%0) \n\t"
7298 #endif
7299 "mov %%cr2, %%" _ASM_AX " \n\t"
7300 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7301
7302 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
7303 "setbe %c[fail](%0) \n\t"
7304 ".pushsection .rodata \n\t"
7305 ".global vmx_return \n\t"
7306 "vmx_return: " _ASM_PTR " 2b \n\t"
7307 ".popsection"
7308 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7309 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7310 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7311 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7312 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7313 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7314 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7315 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7316 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7317 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7318 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7319 #ifdef CONFIG_X86_64
7320 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7321 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7322 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7323 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7324 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7325 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7326 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7327 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7328 #endif
7329 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7330 [wordsize]"i"(sizeof(ulong))
7331 : "cc", "memory"
7332 #ifdef CONFIG_X86_64
7333 , "rax", "rbx", "rdi", "rsi"
7334 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7335 #else
7336 , "eax", "ebx", "edi", "esi"
7337 #endif
7338 );
7339
7340 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7341 if (debugctlmsr)
7342 update_debugctlmsr(debugctlmsr);
7343
7344 #ifndef CONFIG_X86_64
7345 /*
7346 * The sysexit path does not restore ds/es, so we must set them to
7347 * a reasonable value ourselves.
7348 *
7349 * We can't defer this to vmx_load_host_state() since that function
7350 * may be executed in interrupt context, which saves and restore segments
7351 * around it, nullifying its effect.
7352 */
7353 loadsegment(ds, __USER_DS);
7354 loadsegment(es, __USER_DS);
7355 #endif
7356
7357 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7358 | (1 << VCPU_EXREG_RFLAGS)
7359 | (1 << VCPU_EXREG_CPL)
7360 | (1 << VCPU_EXREG_PDPTR)
7361 | (1 << VCPU_EXREG_SEGMENTS)
7362 | (1 << VCPU_EXREG_CR3));
7363 vcpu->arch.regs_dirty = 0;
7364
7365 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7366
7367 vmx->loaded_vmcs->launched = 1;
7368
7369 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7370 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7371
7372 /*
7373 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7374 * we did not inject a still-pending event to L1 now because of
7375 * nested_run_pending, we need to re-enable this bit.
7376 */
7377 if (vmx->nested.nested_run_pending)
7378 kvm_make_request(KVM_REQ_EVENT, vcpu);
7379
7380 vmx->nested.nested_run_pending = 0;
7381
7382 vmx_complete_atomic_exit(vmx);
7383 vmx_recover_nmi_blocking(vmx);
7384 vmx_complete_interrupts(vmx);
7385 }
7386
7387 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7388 {
7389 struct vcpu_vmx *vmx = to_vmx(vcpu);
7390
7391 free_vpid(vmx);
7392 free_loaded_vmcs(vmx->loaded_vmcs);
7393 free_nested(vmx);
7394 kfree(vmx->guest_msrs);
7395 kvm_vcpu_uninit(vcpu);
7396 kmem_cache_free(kvm_vcpu_cache, vmx);
7397 }
7398
7399 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7400 {
7401 int err;
7402 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7403 int cpu;
7404
7405 if (!vmx)
7406 return ERR_PTR(-ENOMEM);
7407
7408 allocate_vpid(vmx);
7409
7410 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7411 if (err)
7412 goto free_vcpu;
7413
7414 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7415 err = -ENOMEM;
7416 if (!vmx->guest_msrs) {
7417 goto uninit_vcpu;
7418 }
7419
7420 vmx->loaded_vmcs = &vmx->vmcs01;
7421 vmx->loaded_vmcs->vmcs = alloc_vmcs();
7422 if (!vmx->loaded_vmcs->vmcs)
7423 goto free_msrs;
7424 if (!vmm_exclusive)
7425 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7426 loaded_vmcs_init(vmx->loaded_vmcs);
7427 if (!vmm_exclusive)
7428 kvm_cpu_vmxoff();
7429
7430 cpu = get_cpu();
7431 vmx_vcpu_load(&vmx->vcpu, cpu);
7432 vmx->vcpu.cpu = cpu;
7433 err = vmx_vcpu_setup(vmx);
7434 vmx_vcpu_put(&vmx->vcpu);
7435 put_cpu();
7436 if (err)
7437 goto free_vmcs;
7438 if (vm_need_virtualize_apic_accesses(kvm)) {
7439 err = alloc_apic_access_page(kvm);
7440 if (err)
7441 goto free_vmcs;
7442 }
7443
7444 if (enable_ept) {
7445 if (!kvm->arch.ept_identity_map_addr)
7446 kvm->arch.ept_identity_map_addr =
7447 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7448 err = -ENOMEM;
7449 if (alloc_identity_pagetable(kvm) != 0)
7450 goto free_vmcs;
7451 if (!init_rmode_identity_map(kvm))
7452 goto free_vmcs;
7453 }
7454
7455 vmx->nested.current_vmptr = -1ull;
7456 vmx->nested.current_vmcs12 = NULL;
7457
7458 return &vmx->vcpu;
7459
7460 free_vmcs:
7461 free_loaded_vmcs(vmx->loaded_vmcs);
7462 free_msrs:
7463 kfree(vmx->guest_msrs);
7464 uninit_vcpu:
7465 kvm_vcpu_uninit(&vmx->vcpu);
7466 free_vcpu:
7467 free_vpid(vmx);
7468 kmem_cache_free(kvm_vcpu_cache, vmx);
7469 return ERR_PTR(err);
7470 }
7471
7472 static void __init vmx_check_processor_compat(void *rtn)
7473 {
7474 struct vmcs_config vmcs_conf;
7475
7476 *(int *)rtn = 0;
7477 if (setup_vmcs_config(&vmcs_conf) < 0)
7478 *(int *)rtn = -EIO;
7479 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7480 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7481 smp_processor_id());
7482 *(int *)rtn = -EIO;
7483 }
7484 }
7485
7486 static int get_ept_level(void)
7487 {
7488 return VMX_EPT_DEFAULT_GAW + 1;
7489 }
7490
7491 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7492 {
7493 u64 ret;
7494
7495 /* For VT-d and EPT combination
7496 * 1. MMIO: always map as UC
7497 * 2. EPT with VT-d:
7498 * a. VT-d without snooping control feature: can't guarantee the
7499 * result, try to trust guest.
7500 * b. VT-d with snooping control feature: snooping control feature of
7501 * VT-d engine can guarantee the cache correctness. Just set it
7502 * to WB to keep consistent with host. So the same as item 3.
7503 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7504 * consistent with host MTRR
7505 */
7506 if (is_mmio)
7507 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7508 else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
7509 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7510 VMX_EPT_MT_EPTE_SHIFT;
7511 else
7512 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7513 | VMX_EPT_IPAT_BIT;
7514
7515 return ret;
7516 }
7517
7518 static int vmx_get_lpage_level(void)
7519 {
7520 if (enable_ept && !cpu_has_vmx_ept_1g_page())
7521 return PT_DIRECTORY_LEVEL;
7522 else
7523 /* For shadow and EPT supported 1GB page */
7524 return PT_PDPE_LEVEL;
7525 }
7526
7527 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7528 {
7529 struct kvm_cpuid_entry2 *best;
7530 struct vcpu_vmx *vmx = to_vmx(vcpu);
7531 u32 exec_control;
7532
7533 vmx->rdtscp_enabled = false;
7534 if (vmx_rdtscp_supported()) {
7535 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7536 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7537 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7538 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7539 vmx->rdtscp_enabled = true;
7540 else {
7541 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7542 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7543 exec_control);
7544 }
7545 }
7546 }
7547
7548 /* Exposing INVPCID only when PCID is exposed */
7549 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7550 if (vmx_invpcid_supported() &&
7551 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7552 guest_cpuid_has_pcid(vcpu)) {
7553 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7554 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7555 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7556 exec_control);
7557 } else {
7558 if (cpu_has_secondary_exec_ctrls()) {
7559 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7560 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7561 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7562 exec_control);
7563 }
7564 if (best)
7565 best->ebx &= ~bit(X86_FEATURE_INVPCID);
7566 }
7567 }
7568
7569 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7570 {
7571 if (func == 1 && nested)
7572 entry->ecx |= bit(X86_FEATURE_VMX);
7573 }
7574
7575 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7576 struct x86_exception *fault)
7577 {
7578 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7579 u32 exit_reason;
7580
7581 if (fault->error_code & PFERR_RSVD_MASK)
7582 exit_reason = EXIT_REASON_EPT_MISCONFIG;
7583 else
7584 exit_reason = EXIT_REASON_EPT_VIOLATION;
7585 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
7586 vmcs12->guest_physical_address = fault->address;
7587 }
7588
7589 /* Callbacks for nested_ept_init_mmu_context: */
7590
7591 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7592 {
7593 /* return the page table to be shadowed - in our case, EPT12 */
7594 return get_vmcs12(vcpu)->ept_pointer;
7595 }
7596
7597 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7598 {
7599 kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7600 nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7601
7602 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
7603 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
7604 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7605
7606 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
7607 }
7608
7609 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7610 {
7611 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7612 }
7613
7614 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7615 struct x86_exception *fault)
7616 {
7617 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7618
7619 WARN_ON(!is_guest_mode(vcpu));
7620
7621 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7622 if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
7623 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
7624 vmcs_read32(VM_EXIT_INTR_INFO),
7625 vmcs_readl(EXIT_QUALIFICATION));
7626 else
7627 kvm_inject_page_fault(vcpu, fault);
7628 }
7629
7630 /*
7631 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7632 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7633 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7634 * guest in a way that will both be appropriate to L1's requests, and our
7635 * needs. In addition to modifying the active vmcs (which is vmcs02), this
7636 * function also has additional necessary side-effects, like setting various
7637 * vcpu->arch fields.
7638 */
7639 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7640 {
7641 struct vcpu_vmx *vmx = to_vmx(vcpu);
7642 u32 exec_control;
7643 u32 exit_control;
7644
7645 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7646 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7647 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7648 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7649 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7650 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7651 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7652 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7653 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7654 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7655 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7656 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7657 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7658 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7659 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7660 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7661 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7662 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7663 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7664 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7665 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7666 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7667 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7668 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7669 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7670 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7671 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7672 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7673 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7674 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7675 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7676 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7677 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7678 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7679 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7680 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7681
7682 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7683 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7684 vmcs12->vm_entry_intr_info_field);
7685 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7686 vmcs12->vm_entry_exception_error_code);
7687 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7688 vmcs12->vm_entry_instruction_len);
7689 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7690 vmcs12->guest_interruptibility_info);
7691 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7692 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7693 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
7694 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7695 vmcs12->guest_pending_dbg_exceptions);
7696 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7697 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7698
7699 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7700
7701 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7702 (vmcs_config.pin_based_exec_ctrl |
7703 vmcs12->pin_based_vm_exec_control));
7704
7705 if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7706 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7707 vmcs12->vmx_preemption_timer_value);
7708
7709 /*
7710 * Whether page-faults are trapped is determined by a combination of
7711 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7712 * If enable_ept, L0 doesn't care about page faults and we should
7713 * set all of these to L1's desires. However, if !enable_ept, L0 does
7714 * care about (at least some) page faults, and because it is not easy
7715 * (if at all possible?) to merge L0 and L1's desires, we simply ask
7716 * to exit on each and every L2 page fault. This is done by setting
7717 * MASK=MATCH=0 and (see below) EB.PF=1.
7718 * Note that below we don't need special code to set EB.PF beyond the
7719 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7720 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7721 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7722 *
7723 * A problem with this approach (when !enable_ept) is that L1 may be
7724 * injected with more page faults than it asked for. This could have
7725 * caused problems, but in practice existing hypervisors don't care.
7726 * To fix this, we will need to emulate the PFEC checking (on the L1
7727 * page tables), using walk_addr(), when injecting PFs to L1.
7728 */
7729 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7730 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7731 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7732 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7733
7734 if (cpu_has_secondary_exec_ctrls()) {
7735 u32 exec_control = vmx_secondary_exec_control(vmx);
7736 if (!vmx->rdtscp_enabled)
7737 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7738 /* Take the following fields only from vmcs12 */
7739 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7740 if (nested_cpu_has(vmcs12,
7741 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7742 exec_control |= vmcs12->secondary_vm_exec_control;
7743
7744 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7745 /*
7746 * Translate L1 physical address to host physical
7747 * address for vmcs02. Keep the page pinned, so this
7748 * physical address remains valid. We keep a reference
7749 * to it so we can release it later.
7750 */
7751 if (vmx->nested.apic_access_page) /* shouldn't happen */
7752 nested_release_page(vmx->nested.apic_access_page);
7753 vmx->nested.apic_access_page =
7754 nested_get_page(vcpu, vmcs12->apic_access_addr);
7755 /*
7756 * If translation failed, no matter: This feature asks
7757 * to exit when accessing the given address, and if it
7758 * can never be accessed, this feature won't do
7759 * anything anyway.
7760 */
7761 if (!vmx->nested.apic_access_page)
7762 exec_control &=
7763 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7764 else
7765 vmcs_write64(APIC_ACCESS_ADDR,
7766 page_to_phys(vmx->nested.apic_access_page));
7767 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
7768 exec_control |=
7769 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7770 vmcs_write64(APIC_ACCESS_ADDR,
7771 page_to_phys(vcpu->kvm->arch.apic_access_page));
7772 }
7773
7774 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7775 }
7776
7777
7778 /*
7779 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7780 * Some constant fields are set here by vmx_set_constant_host_state().
7781 * Other fields are different per CPU, and will be set later when
7782 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7783 */
7784 vmx_set_constant_host_state(vmx);
7785
7786 /*
7787 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7788 * entry, but only if the current (host) sp changed from the value
7789 * we wrote last (vmx->host_rsp). This cache is no longer relevant
7790 * if we switch vmcs, and rather than hold a separate cache per vmcs,
7791 * here we just force the write to happen on entry.
7792 */
7793 vmx->host_rsp = 0;
7794
7795 exec_control = vmx_exec_control(vmx); /* L0's desires */
7796 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7797 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7798 exec_control &= ~CPU_BASED_TPR_SHADOW;
7799 exec_control |= vmcs12->cpu_based_vm_exec_control;
7800 /*
7801 * Merging of IO and MSR bitmaps not currently supported.
7802 * Rather, exit every time.
7803 */
7804 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7805 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7806 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7807
7808 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7809
7810 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7811 * bitwise-or of what L1 wants to trap for L2, and what we want to
7812 * trap. Note that CR0.TS also needs updating - we do this later.
7813 */
7814 update_exception_bitmap(vcpu);
7815 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7816 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7817
7818 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
7819 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
7820 * bits are further modified by vmx_set_efer() below.
7821 */
7822 exit_control = vmcs_config.vmexit_ctrl;
7823 if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7824 exit_control |= VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
7825 vm_exit_controls_init(vmx, exit_control);
7826
7827 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
7828 * emulated by vmx_set_efer(), below.
7829 */
7830 vm_entry_controls_init(vmx,
7831 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
7832 ~VM_ENTRY_IA32E_MODE) |
7833 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7834
7835 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
7836 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7837 vcpu->arch.pat = vmcs12->guest_ia32_pat;
7838 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7839 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7840
7841
7842 set_cr4_guest_host_mask(vmx);
7843
7844 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7845 vmcs_write64(TSC_OFFSET,
7846 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7847 else
7848 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7849
7850 if (enable_vpid) {
7851 /*
7852 * Trivially support vpid by letting L2s share their parent
7853 * L1's vpid. TODO: move to a more elaborate solution, giving
7854 * each L2 its own vpid and exposing the vpid feature to L1.
7855 */
7856 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7857 vmx_flush_tlb(vcpu);
7858 }
7859
7860 if (nested_cpu_has_ept(vmcs12)) {
7861 kvm_mmu_unload(vcpu);
7862 nested_ept_init_mmu_context(vcpu);
7863 }
7864
7865 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7866 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7867 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7868 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7869 else
7870 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7871 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7872 vmx_set_efer(vcpu, vcpu->arch.efer);
7873
7874 /*
7875 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7876 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7877 * The CR0_READ_SHADOW is what L2 should have expected to read given
7878 * the specifications by L1; It's not enough to take
7879 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7880 * have more bits than L1 expected.
7881 */
7882 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7883 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7884
7885 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7886 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7887
7888 /* shadow page tables on either EPT or shadow page tables */
7889 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7890 kvm_mmu_reset_context(vcpu);
7891
7892 if (!enable_ept)
7893 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
7894
7895 /*
7896 * L1 may access the L2's PDPTR, so save them to construct vmcs12
7897 */
7898 if (enable_ept) {
7899 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
7900 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
7901 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
7902 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
7903 }
7904
7905 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7906 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7907 }
7908
7909 /*
7910 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7911 * for running an L2 nested guest.
7912 */
7913 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7914 {
7915 struct vmcs12 *vmcs12;
7916 struct vcpu_vmx *vmx = to_vmx(vcpu);
7917 int cpu;
7918 struct loaded_vmcs *vmcs02;
7919 bool ia32e;
7920
7921 if (!nested_vmx_check_permission(vcpu) ||
7922 !nested_vmx_check_vmcs12(vcpu))
7923 return 1;
7924
7925 skip_emulated_instruction(vcpu);
7926 vmcs12 = get_vmcs12(vcpu);
7927
7928 if (enable_shadow_vmcs)
7929 copy_shadow_to_vmcs12(vmx);
7930
7931 /*
7932 * The nested entry process starts with enforcing various prerequisites
7933 * on vmcs12 as required by the Intel SDM, and act appropriately when
7934 * they fail: As the SDM explains, some conditions should cause the
7935 * instruction to fail, while others will cause the instruction to seem
7936 * to succeed, but return an EXIT_REASON_INVALID_STATE.
7937 * To speed up the normal (success) code path, we should avoid checking
7938 * for misconfigurations which will anyway be caught by the processor
7939 * when using the merged vmcs02.
7940 */
7941 if (vmcs12->launch_state == launch) {
7942 nested_vmx_failValid(vcpu,
7943 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7944 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7945 return 1;
7946 }
7947
7948 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
7949 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
7950 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7951 return 1;
7952 }
7953
7954 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7955 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7956 /*TODO: Also verify bits beyond physical address width are 0*/
7957 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7958 return 1;
7959 }
7960
7961 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7962 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7963 /*TODO: Also verify bits beyond physical address width are 0*/
7964 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7965 return 1;
7966 }
7967
7968 if (vmcs12->vm_entry_msr_load_count > 0 ||
7969 vmcs12->vm_exit_msr_load_count > 0 ||
7970 vmcs12->vm_exit_msr_store_count > 0) {
7971 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7972 __func__);
7973 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7974 return 1;
7975 }
7976
7977 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7978 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7979 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7980 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7981 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7982 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7983 !vmx_control_verify(vmcs12->vm_exit_controls,
7984 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7985 !vmx_control_verify(vmcs12->vm_entry_controls,
7986 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7987 {
7988 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7989 return 1;
7990 }
7991
7992 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7993 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7994 nested_vmx_failValid(vcpu,
7995 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7996 return 1;
7997 }
7998
7999 if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8000 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8001 nested_vmx_entry_failure(vcpu, vmcs12,
8002 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8003 return 1;
8004 }
8005 if (vmcs12->vmcs_link_pointer != -1ull) {
8006 nested_vmx_entry_failure(vcpu, vmcs12,
8007 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8008 return 1;
8009 }
8010
8011 /*
8012 * If the load IA32_EFER VM-entry control is 1, the following checks
8013 * are performed on the field for the IA32_EFER MSR:
8014 * - Bits reserved in the IA32_EFER MSR must be 0.
8015 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8016 * the IA-32e mode guest VM-exit control. It must also be identical
8017 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8018 * CR0.PG) is 1.
8019 */
8020 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8021 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8022 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8023 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8024 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8025 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8026 nested_vmx_entry_failure(vcpu, vmcs12,
8027 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8028 return 1;
8029 }
8030 }
8031
8032 /*
8033 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8034 * IA32_EFER MSR must be 0 in the field for that register. In addition,
8035 * the values of the LMA and LME bits in the field must each be that of
8036 * the host address-space size VM-exit control.
8037 */
8038 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8039 ia32e = (vmcs12->vm_exit_controls &
8040 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8041 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8042 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8043 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8044 nested_vmx_entry_failure(vcpu, vmcs12,
8045 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8046 return 1;
8047 }
8048 }
8049
8050 /*
8051 * We're finally done with prerequisite checking, and can start with
8052 * the nested entry.
8053 */
8054
8055 vmcs02 = nested_get_current_vmcs02(vmx);
8056 if (!vmcs02)
8057 return -ENOMEM;
8058
8059 enter_guest_mode(vcpu);
8060
8061 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8062
8063 cpu = get_cpu();
8064 vmx->loaded_vmcs = vmcs02;
8065 vmx_vcpu_put(vcpu);
8066 vmx_vcpu_load(vcpu, cpu);
8067 vcpu->cpu = cpu;
8068 put_cpu();
8069
8070 vmx_segment_cache_clear(vmx);
8071
8072 vmcs12->launch_state = 1;
8073
8074 prepare_vmcs02(vcpu, vmcs12);
8075
8076 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8077 return kvm_emulate_halt(vcpu);
8078
8079 vmx->nested.nested_run_pending = 1;
8080
8081 /*
8082 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8083 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8084 * returned as far as L1 is concerned. It will only return (and set
8085 * the success flag) when L2 exits (see nested_vmx_vmexit()).
8086 */
8087 return 1;
8088 }
8089
8090 /*
8091 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8092 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8093 * This function returns the new value we should put in vmcs12.guest_cr0.
8094 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8095 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8096 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8097 * didn't trap the bit, because if L1 did, so would L0).
8098 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8099 * been modified by L2, and L1 knows it. So just leave the old value of
8100 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8101 * isn't relevant, because if L0 traps this bit it can set it to anything.
8102 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8103 * changed these bits, and therefore they need to be updated, but L0
8104 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8105 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8106 */
8107 static inline unsigned long
8108 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8109 {
8110 return
8111 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8112 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8113 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8114 vcpu->arch.cr0_guest_owned_bits));
8115 }
8116
8117 static inline unsigned long
8118 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8119 {
8120 return
8121 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8122 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8123 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8124 vcpu->arch.cr4_guest_owned_bits));
8125 }
8126
8127 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8128 struct vmcs12 *vmcs12)
8129 {
8130 u32 idt_vectoring;
8131 unsigned int nr;
8132
8133 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8134 nr = vcpu->arch.exception.nr;
8135 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8136
8137 if (kvm_exception_is_soft(nr)) {
8138 vmcs12->vm_exit_instruction_len =
8139 vcpu->arch.event_exit_inst_len;
8140 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8141 } else
8142 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8143
8144 if (vcpu->arch.exception.has_error_code) {
8145 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8146 vmcs12->idt_vectoring_error_code =
8147 vcpu->arch.exception.error_code;
8148 }
8149
8150 vmcs12->idt_vectoring_info_field = idt_vectoring;
8151 } else if (vcpu->arch.nmi_injected) {
8152 vmcs12->idt_vectoring_info_field =
8153 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8154 } else if (vcpu->arch.interrupt.pending) {
8155 nr = vcpu->arch.interrupt.nr;
8156 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8157
8158 if (vcpu->arch.interrupt.soft) {
8159 idt_vectoring |= INTR_TYPE_SOFT_INTR;
8160 vmcs12->vm_entry_instruction_len =
8161 vcpu->arch.event_exit_inst_len;
8162 } else
8163 idt_vectoring |= INTR_TYPE_EXT_INTR;
8164
8165 vmcs12->idt_vectoring_info_field = idt_vectoring;
8166 }
8167 }
8168
8169 /*
8170 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8171 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8172 * and this function updates it to reflect the changes to the guest state while
8173 * L2 was running (and perhaps made some exits which were handled directly by L0
8174 * without going back to L1), and to reflect the exit reason.
8175 * Note that we do not have to copy here all VMCS fields, just those that
8176 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8177 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8178 * which already writes to vmcs12 directly.
8179 */
8180 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8181 u32 exit_reason, u32 exit_intr_info,
8182 unsigned long exit_qualification)
8183 {
8184 /* update guest state fields: */
8185 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8186 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8187
8188 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8189 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8190 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8191 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8192
8193 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8194 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8195 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8196 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8197 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8198 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8199 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8200 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8201 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8202 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8203 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8204 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8205 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8206 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8207 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8208 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8209 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8210 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8211 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8212 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8213 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8214 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8215 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8216 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8217 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8218 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8219 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8220 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8221 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8222 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8223 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8224 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8225 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8226 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8227 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8228 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8229
8230 vmcs12->guest_interruptibility_info =
8231 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8232 vmcs12->guest_pending_dbg_exceptions =
8233 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8234 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8235 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8236 else
8237 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8238
8239 if ((vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER) &&
8240 (vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER))
8241 vmcs12->vmx_preemption_timer_value =
8242 vmcs_read32(VMX_PREEMPTION_TIMER_VALUE);
8243
8244 /*
8245 * In some cases (usually, nested EPT), L2 is allowed to change its
8246 * own CR3 without exiting. If it has changed it, we must keep it.
8247 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8248 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8249 *
8250 * Additionally, restore L2's PDPTR to vmcs12.
8251 */
8252 if (enable_ept) {
8253 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8254 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8255 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8256 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8257 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8258 }
8259
8260 vmcs12->vm_entry_controls =
8261 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8262 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8263
8264 /* TODO: These cannot have changed unless we have MSR bitmaps and
8265 * the relevant bit asks not to trap the change */
8266 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8267 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8268 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8269 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8270 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8271 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8272 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8273 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8274
8275 /* update exit information fields: */
8276
8277 vmcs12->vm_exit_reason = exit_reason;
8278 vmcs12->exit_qualification = exit_qualification;
8279
8280 vmcs12->vm_exit_intr_info = exit_intr_info;
8281 if ((vmcs12->vm_exit_intr_info &
8282 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8283 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8284 vmcs12->vm_exit_intr_error_code =
8285 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8286 vmcs12->idt_vectoring_info_field = 0;
8287 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8288 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8289
8290 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8291 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8292 * instead of reading the real value. */
8293 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8294
8295 /*
8296 * Transfer the event that L0 or L1 may wanted to inject into
8297 * L2 to IDT_VECTORING_INFO_FIELD.
8298 */
8299 vmcs12_save_pending_event(vcpu, vmcs12);
8300 }
8301
8302 /*
8303 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8304 * preserved above and would only end up incorrectly in L1.
8305 */
8306 vcpu->arch.nmi_injected = false;
8307 kvm_clear_exception_queue(vcpu);
8308 kvm_clear_interrupt_queue(vcpu);
8309 }
8310
8311 /*
8312 * A part of what we need to when the nested L2 guest exits and we want to
8313 * run its L1 parent, is to reset L1's guest state to the host state specified
8314 * in vmcs12.
8315 * This function is to be called not only on normal nested exit, but also on
8316 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8317 * Failures During or After Loading Guest State").
8318 * This function should be called when the active VMCS is L1's (vmcs01).
8319 */
8320 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8321 struct vmcs12 *vmcs12)
8322 {
8323 struct kvm_segment seg;
8324
8325 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8326 vcpu->arch.efer = vmcs12->host_ia32_efer;
8327 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8328 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8329 else
8330 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8331 vmx_set_efer(vcpu, vcpu->arch.efer);
8332
8333 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8334 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8335 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8336 /*
8337 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8338 * actually changed, because it depends on the current state of
8339 * fpu_active (which may have changed).
8340 * Note that vmx_set_cr0 refers to efer set above.
8341 */
8342 vmx_set_cr0(vcpu, vmcs12->host_cr0);
8343 /*
8344 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8345 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8346 * but we also need to update cr0_guest_host_mask and exception_bitmap.
8347 */
8348 update_exception_bitmap(vcpu);
8349 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8350 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8351
8352 /*
8353 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8354 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8355 */
8356 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8357 kvm_set_cr4(vcpu, vmcs12->host_cr4);
8358
8359 nested_ept_uninit_mmu_context(vcpu);
8360
8361 kvm_set_cr3(vcpu, vmcs12->host_cr3);
8362 kvm_mmu_reset_context(vcpu);
8363
8364 if (!enable_ept)
8365 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8366
8367 if (enable_vpid) {
8368 /*
8369 * Trivially support vpid by letting L2s share their parent
8370 * L1's vpid. TODO: move to a more elaborate solution, giving
8371 * each L2 its own vpid and exposing the vpid feature to L1.
8372 */
8373 vmx_flush_tlb(vcpu);
8374 }
8375
8376
8377 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8378 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8379 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8380 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8381 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8382
8383 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8384 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8385 vcpu->arch.pat = vmcs12->host_ia32_pat;
8386 }
8387 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8388 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8389 vmcs12->host_ia32_perf_global_ctrl);
8390
8391 /* Set L1 segment info according to Intel SDM
8392 27.5.2 Loading Host Segment and Descriptor-Table Registers */
8393 seg = (struct kvm_segment) {
8394 .base = 0,
8395 .limit = 0xFFFFFFFF,
8396 .selector = vmcs12->host_cs_selector,
8397 .type = 11,
8398 .present = 1,
8399 .s = 1,
8400 .g = 1
8401 };
8402 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8403 seg.l = 1;
8404 else
8405 seg.db = 1;
8406 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8407 seg = (struct kvm_segment) {
8408 .base = 0,
8409 .limit = 0xFFFFFFFF,
8410 .type = 3,
8411 .present = 1,
8412 .s = 1,
8413 .db = 1,
8414 .g = 1
8415 };
8416 seg.selector = vmcs12->host_ds_selector;
8417 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8418 seg.selector = vmcs12->host_es_selector;
8419 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8420 seg.selector = vmcs12->host_ss_selector;
8421 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8422 seg.selector = vmcs12->host_fs_selector;
8423 seg.base = vmcs12->host_fs_base;
8424 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8425 seg.selector = vmcs12->host_gs_selector;
8426 seg.base = vmcs12->host_gs_base;
8427 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8428 seg = (struct kvm_segment) {
8429 .base = vmcs12->host_tr_base,
8430 .limit = 0x67,
8431 .selector = vmcs12->host_tr_selector,
8432 .type = 11,
8433 .present = 1
8434 };
8435 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8436
8437 kvm_set_dr(vcpu, 7, 0x400);
8438 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8439 }
8440
8441 /*
8442 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8443 * and modify vmcs12 to make it see what it would expect to see there if
8444 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8445 */
8446 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
8447 u32 exit_intr_info,
8448 unsigned long exit_qualification)
8449 {
8450 struct vcpu_vmx *vmx = to_vmx(vcpu);
8451 int cpu;
8452 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8453
8454 /* trying to cancel vmlaunch/vmresume is a bug */
8455 WARN_ON_ONCE(vmx->nested.nested_run_pending);
8456
8457 leave_guest_mode(vcpu);
8458 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
8459 exit_qualification);
8460
8461 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
8462 vmcs12->exit_qualification,
8463 vmcs12->idt_vectoring_info_field,
8464 vmcs12->vm_exit_intr_info,
8465 vmcs12->vm_exit_intr_error_code,
8466 KVM_ISA_VMX);
8467
8468 cpu = get_cpu();
8469 vmx->loaded_vmcs = &vmx->vmcs01;
8470 vmx_vcpu_put(vcpu);
8471 vmx_vcpu_load(vcpu, cpu);
8472 vcpu->cpu = cpu;
8473 put_cpu();
8474
8475 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8476 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
8477 vmx_segment_cache_clear(vmx);
8478
8479 /* if no vmcs02 cache requested, remove the one we used */
8480 if (VMCS02_POOL_SIZE == 0)
8481 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8482
8483 load_vmcs12_host_state(vcpu, vmcs12);
8484
8485 /* Update TSC_OFFSET if TSC was changed while L2 ran */
8486 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8487
8488 /* This is needed for same reason as it was needed in prepare_vmcs02 */
8489 vmx->host_rsp = 0;
8490
8491 /* Unpin physical memory we referred to in vmcs02 */
8492 if (vmx->nested.apic_access_page) {
8493 nested_release_page(vmx->nested.apic_access_page);
8494 vmx->nested.apic_access_page = 0;
8495 }
8496
8497 /*
8498 * Exiting from L2 to L1, we're now back to L1 which thinks it just
8499 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8500 * success or failure flag accordingly.
8501 */
8502 if (unlikely(vmx->fail)) {
8503 vmx->fail = 0;
8504 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8505 } else
8506 nested_vmx_succeed(vcpu);
8507 if (enable_shadow_vmcs)
8508 vmx->nested.sync_shadow_vmcs = true;
8509 }
8510
8511 /*
8512 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
8513 */
8514 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
8515 {
8516 if (is_guest_mode(vcpu))
8517 nested_vmx_vmexit(vcpu, -1, 0, 0);
8518 free_nested(to_vmx(vcpu));
8519 }
8520
8521 /*
8522 * L1's failure to enter L2 is a subset of a normal exit, as explained in
8523 * 23.7 "VM-entry failures during or after loading guest state" (this also
8524 * lists the acceptable exit-reason and exit-qualification parameters).
8525 * It should only be called before L2 actually succeeded to run, and when
8526 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8527 */
8528 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8529 struct vmcs12 *vmcs12,
8530 u32 reason, unsigned long qualification)
8531 {
8532 load_vmcs12_host_state(vcpu, vmcs12);
8533 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8534 vmcs12->exit_qualification = qualification;
8535 nested_vmx_succeed(vcpu);
8536 if (enable_shadow_vmcs)
8537 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8538 }
8539
8540 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8541 struct x86_instruction_info *info,
8542 enum x86_intercept_stage stage)
8543 {
8544 return X86EMUL_CONTINUE;
8545 }
8546
8547 static struct kvm_x86_ops vmx_x86_ops = {
8548 .cpu_has_kvm_support = cpu_has_kvm_support,
8549 .disabled_by_bios = vmx_disabled_by_bios,
8550 .hardware_setup = hardware_setup,
8551 .hardware_unsetup = hardware_unsetup,
8552 .check_processor_compatibility = vmx_check_processor_compat,
8553 .hardware_enable = hardware_enable,
8554 .hardware_disable = hardware_disable,
8555 .cpu_has_accelerated_tpr = report_flexpriority,
8556
8557 .vcpu_create = vmx_create_vcpu,
8558 .vcpu_free = vmx_free_vcpu,
8559 .vcpu_reset = vmx_vcpu_reset,
8560
8561 .prepare_guest_switch = vmx_save_host_state,
8562 .vcpu_load = vmx_vcpu_load,
8563 .vcpu_put = vmx_vcpu_put,
8564
8565 .update_db_bp_intercept = update_exception_bitmap,
8566 .get_msr = vmx_get_msr,
8567 .set_msr = vmx_set_msr,
8568 .get_segment_base = vmx_get_segment_base,
8569 .get_segment = vmx_get_segment,
8570 .set_segment = vmx_set_segment,
8571 .get_cpl = vmx_get_cpl,
8572 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8573 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8574 .decache_cr3 = vmx_decache_cr3,
8575 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8576 .set_cr0 = vmx_set_cr0,
8577 .set_cr3 = vmx_set_cr3,
8578 .set_cr4 = vmx_set_cr4,
8579 .set_efer = vmx_set_efer,
8580 .get_idt = vmx_get_idt,
8581 .set_idt = vmx_set_idt,
8582 .get_gdt = vmx_get_gdt,
8583 .set_gdt = vmx_set_gdt,
8584 .get_dr6 = vmx_get_dr6,
8585 .set_dr6 = vmx_set_dr6,
8586 .set_dr7 = vmx_set_dr7,
8587 .cache_reg = vmx_cache_reg,
8588 .get_rflags = vmx_get_rflags,
8589 .set_rflags = vmx_set_rflags,
8590 .fpu_activate = vmx_fpu_activate,
8591 .fpu_deactivate = vmx_fpu_deactivate,
8592
8593 .tlb_flush = vmx_flush_tlb,
8594
8595 .run = vmx_vcpu_run,
8596 .handle_exit = vmx_handle_exit,
8597 .skip_emulated_instruction = skip_emulated_instruction,
8598 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8599 .get_interrupt_shadow = vmx_get_interrupt_shadow,
8600 .patch_hypercall = vmx_patch_hypercall,
8601 .set_irq = vmx_inject_irq,
8602 .set_nmi = vmx_inject_nmi,
8603 .queue_exception = vmx_queue_exception,
8604 .cancel_injection = vmx_cancel_injection,
8605 .interrupt_allowed = vmx_interrupt_allowed,
8606 .nmi_allowed = vmx_nmi_allowed,
8607 .get_nmi_mask = vmx_get_nmi_mask,
8608 .set_nmi_mask = vmx_set_nmi_mask,
8609 .enable_nmi_window = enable_nmi_window,
8610 .enable_irq_window = enable_irq_window,
8611 .update_cr8_intercept = update_cr8_intercept,
8612 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8613 .vm_has_apicv = vmx_vm_has_apicv,
8614 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8615 .hwapic_irr_update = vmx_hwapic_irr_update,
8616 .hwapic_isr_update = vmx_hwapic_isr_update,
8617 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8618 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8619
8620 .set_tss_addr = vmx_set_tss_addr,
8621 .get_tdp_level = get_ept_level,
8622 .get_mt_mask = vmx_get_mt_mask,
8623
8624 .get_exit_info = vmx_get_exit_info,
8625
8626 .get_lpage_level = vmx_get_lpage_level,
8627
8628 .cpuid_update = vmx_cpuid_update,
8629
8630 .rdtscp_supported = vmx_rdtscp_supported,
8631 .invpcid_supported = vmx_invpcid_supported,
8632
8633 .set_supported_cpuid = vmx_set_supported_cpuid,
8634
8635 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8636
8637 .set_tsc_khz = vmx_set_tsc_khz,
8638 .read_tsc_offset = vmx_read_tsc_offset,
8639 .write_tsc_offset = vmx_write_tsc_offset,
8640 .adjust_tsc_offset = vmx_adjust_tsc_offset,
8641 .compute_tsc_offset = vmx_compute_tsc_offset,
8642 .read_l1_tsc = vmx_read_l1_tsc,
8643
8644 .set_tdp_cr3 = vmx_set_cr3,
8645
8646 .check_intercept = vmx_check_intercept,
8647 .handle_external_intr = vmx_handle_external_intr,
8648 .mpx_supported = vmx_mpx_supported,
8649 };
8650
8651 static int __init vmx_init(void)
8652 {
8653 int r, i, msr;
8654
8655 rdmsrl_safe(MSR_EFER, &host_efer);
8656
8657 for (i = 0; i < NR_VMX_MSR; ++i)
8658 kvm_define_shared_msr(i, vmx_msr_index[i]);
8659
8660 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8661 if (!vmx_io_bitmap_a)
8662 return -ENOMEM;
8663
8664 r = -ENOMEM;
8665
8666 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8667 if (!vmx_io_bitmap_b)
8668 goto out;
8669
8670 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8671 if (!vmx_msr_bitmap_legacy)
8672 goto out1;
8673
8674 vmx_msr_bitmap_legacy_x2apic =
8675 (unsigned long *)__get_free_page(GFP_KERNEL);
8676 if (!vmx_msr_bitmap_legacy_x2apic)
8677 goto out2;
8678
8679 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8680 if (!vmx_msr_bitmap_longmode)
8681 goto out3;
8682
8683 vmx_msr_bitmap_longmode_x2apic =
8684 (unsigned long *)__get_free_page(GFP_KERNEL);
8685 if (!vmx_msr_bitmap_longmode_x2apic)
8686 goto out4;
8687 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8688 if (!vmx_vmread_bitmap)
8689 goto out5;
8690
8691 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8692 if (!vmx_vmwrite_bitmap)
8693 goto out6;
8694
8695 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8696 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8697 /* shadowed read/write fields */
8698 for (i = 0; i < max_shadow_read_write_fields; i++) {
8699 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8700 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8701 }
8702 /* shadowed read only fields */
8703 for (i = 0; i < max_shadow_read_only_fields; i++)
8704 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
8705
8706 /*
8707 * Allow direct access to the PC debug port (it is often used for I/O
8708 * delays, but the vmexits simply slow things down).
8709 */
8710 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8711 clear_bit(0x80, vmx_io_bitmap_a);
8712
8713 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8714
8715 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8716 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8717
8718 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8719
8720 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8721 __alignof__(struct vcpu_vmx), THIS_MODULE);
8722 if (r)
8723 goto out7;
8724
8725 #ifdef CONFIG_KEXEC
8726 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8727 crash_vmclear_local_loaded_vmcss);
8728 #endif
8729
8730 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8731 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8732 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8733 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8734 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8735 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8736 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
8737
8738 memcpy(vmx_msr_bitmap_legacy_x2apic,
8739 vmx_msr_bitmap_legacy, PAGE_SIZE);
8740 memcpy(vmx_msr_bitmap_longmode_x2apic,
8741 vmx_msr_bitmap_longmode, PAGE_SIZE);
8742
8743 if (enable_apicv) {
8744 for (msr = 0x800; msr <= 0x8ff; msr++)
8745 vmx_disable_intercept_msr_read_x2apic(msr);
8746
8747 /* According SDM, in x2apic mode, the whole id reg is used.
8748 * But in KVM, it only use the highest eight bits. Need to
8749 * intercept it */
8750 vmx_enable_intercept_msr_read_x2apic(0x802);
8751 /* TMCCT */
8752 vmx_enable_intercept_msr_read_x2apic(0x839);
8753 /* TPR */
8754 vmx_disable_intercept_msr_write_x2apic(0x808);
8755 /* EOI */
8756 vmx_disable_intercept_msr_write_x2apic(0x80b);
8757 /* SELF-IPI */
8758 vmx_disable_intercept_msr_write_x2apic(0x83f);
8759 }
8760
8761 if (enable_ept) {
8762 kvm_mmu_set_mask_ptes(0ull,
8763 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8764 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8765 0ull, VMX_EPT_EXECUTABLE_MASK);
8766 ept_set_mmio_spte_mask();
8767 kvm_enable_tdp();
8768 } else
8769 kvm_disable_tdp();
8770
8771 return 0;
8772
8773 out7:
8774 free_page((unsigned long)vmx_vmwrite_bitmap);
8775 out6:
8776 free_page((unsigned long)vmx_vmread_bitmap);
8777 out5:
8778 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8779 out4:
8780 free_page((unsigned long)vmx_msr_bitmap_longmode);
8781 out3:
8782 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8783 out2:
8784 free_page((unsigned long)vmx_msr_bitmap_legacy);
8785 out1:
8786 free_page((unsigned long)vmx_io_bitmap_b);
8787 out:
8788 free_page((unsigned long)vmx_io_bitmap_a);
8789 return r;
8790 }
8791
8792 static void __exit vmx_exit(void)
8793 {
8794 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8795 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8796 free_page((unsigned long)vmx_msr_bitmap_legacy);
8797 free_page((unsigned long)vmx_msr_bitmap_longmode);
8798 free_page((unsigned long)vmx_io_bitmap_b);
8799 free_page((unsigned long)vmx_io_bitmap_a);
8800 free_page((unsigned long)vmx_vmwrite_bitmap);
8801 free_page((unsigned long)vmx_vmread_bitmap);
8802
8803 #ifdef CONFIG_KEXEC
8804 rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8805 synchronize_rcu();
8806 #endif
8807
8808 kvm_exit();
8809 }
8810
8811 module_init(vmx_init)
8812 module_exit(vmx_exit)
This page took 0.214635 seconds and 5 git commands to generate.