KVM: VMX: Enable Virtual Processor Identification (VPID)
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "segment_descriptor.h"
21 #include "mmu.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30
31 #include <asm/io.h>
32 #include <asm/desc.h>
33
34 MODULE_AUTHOR("Qumranet");
35 MODULE_LICENSE("GPL");
36
37 static int bypass_guest_pf = 1;
38 module_param(bypass_guest_pf, bool, 0);
39
40 static int enable_vpid = 1;
41 module_param(enable_vpid, bool, 0);
42
43 struct vmcs {
44 u32 revision_id;
45 u32 abort;
46 char data[0];
47 };
48
49 struct vcpu_vmx {
50 struct kvm_vcpu vcpu;
51 int launched;
52 u8 fail;
53 u32 idt_vectoring_info;
54 struct kvm_msr_entry *guest_msrs;
55 struct kvm_msr_entry *host_msrs;
56 int nmsrs;
57 int save_nmsrs;
58 int msr_offset_efer;
59 #ifdef CONFIG_X86_64
60 int msr_offset_kernel_gs_base;
61 #endif
62 struct vmcs *vmcs;
63 struct {
64 int loaded;
65 u16 fs_sel, gs_sel, ldt_sel;
66 int gs_ldt_reload_needed;
67 int fs_reload_needed;
68 int guest_efer_loaded;
69 } host_state;
70 struct {
71 struct {
72 bool pending;
73 u8 vector;
74 unsigned rip;
75 } irq;
76 } rmode;
77 int vpid;
78 };
79
80 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
81 {
82 return container_of(vcpu, struct vcpu_vmx, vcpu);
83 }
84
85 static int init_rmode_tss(struct kvm *kvm);
86
87 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
88 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
89
90 static struct page *vmx_io_bitmap_a;
91 static struct page *vmx_io_bitmap_b;
92
93 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
94 static DEFINE_SPINLOCK(vmx_vpid_lock);
95
96 static struct vmcs_config {
97 int size;
98 int order;
99 u32 revision_id;
100 u32 pin_based_exec_ctrl;
101 u32 cpu_based_exec_ctrl;
102 u32 cpu_based_2nd_exec_ctrl;
103 u32 vmexit_ctrl;
104 u32 vmentry_ctrl;
105 } vmcs_config;
106
107 #define VMX_SEGMENT_FIELD(seg) \
108 [VCPU_SREG_##seg] = { \
109 .selector = GUEST_##seg##_SELECTOR, \
110 .base = GUEST_##seg##_BASE, \
111 .limit = GUEST_##seg##_LIMIT, \
112 .ar_bytes = GUEST_##seg##_AR_BYTES, \
113 }
114
115 static struct kvm_vmx_segment_field {
116 unsigned selector;
117 unsigned base;
118 unsigned limit;
119 unsigned ar_bytes;
120 } kvm_vmx_segment_fields[] = {
121 VMX_SEGMENT_FIELD(CS),
122 VMX_SEGMENT_FIELD(DS),
123 VMX_SEGMENT_FIELD(ES),
124 VMX_SEGMENT_FIELD(FS),
125 VMX_SEGMENT_FIELD(GS),
126 VMX_SEGMENT_FIELD(SS),
127 VMX_SEGMENT_FIELD(TR),
128 VMX_SEGMENT_FIELD(LDTR),
129 };
130
131 /*
132 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
133 * away by decrementing the array size.
134 */
135 static const u32 vmx_msr_index[] = {
136 #ifdef CONFIG_X86_64
137 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
138 #endif
139 MSR_EFER, MSR_K6_STAR,
140 };
141 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
142
143 static void load_msrs(struct kvm_msr_entry *e, int n)
144 {
145 int i;
146
147 for (i = 0; i < n; ++i)
148 wrmsrl(e[i].index, e[i].data);
149 }
150
151 static void save_msrs(struct kvm_msr_entry *e, int n)
152 {
153 int i;
154
155 for (i = 0; i < n; ++i)
156 rdmsrl(e[i].index, e[i].data);
157 }
158
159 static inline int is_page_fault(u32 intr_info)
160 {
161 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
162 INTR_INFO_VALID_MASK)) ==
163 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
164 }
165
166 static inline int is_no_device(u32 intr_info)
167 {
168 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
169 INTR_INFO_VALID_MASK)) ==
170 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
171 }
172
173 static inline int is_invalid_opcode(u32 intr_info)
174 {
175 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
176 INTR_INFO_VALID_MASK)) ==
177 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
178 }
179
180 static inline int is_external_interrupt(u32 intr_info)
181 {
182 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
183 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
184 }
185
186 static inline int cpu_has_vmx_tpr_shadow(void)
187 {
188 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
189 }
190
191 static inline int vm_need_tpr_shadow(struct kvm *kvm)
192 {
193 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
194 }
195
196 static inline int cpu_has_secondary_exec_ctrls(void)
197 {
198 return (vmcs_config.cpu_based_exec_ctrl &
199 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
200 }
201
202 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
203 {
204 return (vmcs_config.cpu_based_2nd_exec_ctrl &
205 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
206 }
207
208 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
209 {
210 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
211 (irqchip_in_kernel(kvm)));
212 }
213
214 static inline int cpu_has_vmx_vpid(void)
215 {
216 return (vmcs_config.cpu_based_2nd_exec_ctrl &
217 SECONDARY_EXEC_ENABLE_VPID);
218 }
219
220 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
221 {
222 int i;
223
224 for (i = 0; i < vmx->nmsrs; ++i)
225 if (vmx->guest_msrs[i].index == msr)
226 return i;
227 return -1;
228 }
229
230 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
231 {
232 struct {
233 u64 vpid : 16;
234 u64 rsvd : 48;
235 u64 gva;
236 } operand = { vpid, 0, gva };
237
238 asm volatile (ASM_VMX_INVVPID
239 /* CF==1 or ZF==1 --> rc = -1 */
240 "; ja 1f ; ud2 ; 1:"
241 : : "a"(&operand), "c"(ext) : "cc", "memory");
242 }
243
244 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
245 {
246 int i;
247
248 i = __find_msr_index(vmx, msr);
249 if (i >= 0)
250 return &vmx->guest_msrs[i];
251 return NULL;
252 }
253
254 static void vmcs_clear(struct vmcs *vmcs)
255 {
256 u64 phys_addr = __pa(vmcs);
257 u8 error;
258
259 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
260 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
261 : "cc", "memory");
262 if (error)
263 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
264 vmcs, phys_addr);
265 }
266
267 static void __vcpu_clear(void *arg)
268 {
269 struct vcpu_vmx *vmx = arg;
270 int cpu = raw_smp_processor_id();
271
272 if (vmx->vcpu.cpu == cpu)
273 vmcs_clear(vmx->vmcs);
274 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
275 per_cpu(current_vmcs, cpu) = NULL;
276 rdtscll(vmx->vcpu.arch.host_tsc);
277 }
278
279 static void vcpu_clear(struct vcpu_vmx *vmx)
280 {
281 if (vmx->vcpu.cpu == -1)
282 return;
283 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
284 vmx->launched = 0;
285 }
286
287 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
288 {
289 if (vmx->vpid == 0)
290 return;
291
292 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
293 }
294
295 static unsigned long vmcs_readl(unsigned long field)
296 {
297 unsigned long value;
298
299 asm volatile (ASM_VMX_VMREAD_RDX_RAX
300 : "=a"(value) : "d"(field) : "cc");
301 return value;
302 }
303
304 static u16 vmcs_read16(unsigned long field)
305 {
306 return vmcs_readl(field);
307 }
308
309 static u32 vmcs_read32(unsigned long field)
310 {
311 return vmcs_readl(field);
312 }
313
314 static u64 vmcs_read64(unsigned long field)
315 {
316 #ifdef CONFIG_X86_64
317 return vmcs_readl(field);
318 #else
319 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
320 #endif
321 }
322
323 static noinline void vmwrite_error(unsigned long field, unsigned long value)
324 {
325 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
326 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
327 dump_stack();
328 }
329
330 static void vmcs_writel(unsigned long field, unsigned long value)
331 {
332 u8 error;
333
334 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
335 : "=q"(error) : "a"(value), "d"(field) : "cc");
336 if (unlikely(error))
337 vmwrite_error(field, value);
338 }
339
340 static void vmcs_write16(unsigned long field, u16 value)
341 {
342 vmcs_writel(field, value);
343 }
344
345 static void vmcs_write32(unsigned long field, u32 value)
346 {
347 vmcs_writel(field, value);
348 }
349
350 static void vmcs_write64(unsigned long field, u64 value)
351 {
352 #ifdef CONFIG_X86_64
353 vmcs_writel(field, value);
354 #else
355 vmcs_writel(field, value);
356 asm volatile ("");
357 vmcs_writel(field+1, value >> 32);
358 #endif
359 }
360
361 static void vmcs_clear_bits(unsigned long field, u32 mask)
362 {
363 vmcs_writel(field, vmcs_readl(field) & ~mask);
364 }
365
366 static void vmcs_set_bits(unsigned long field, u32 mask)
367 {
368 vmcs_writel(field, vmcs_readl(field) | mask);
369 }
370
371 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
372 {
373 u32 eb;
374
375 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
376 if (!vcpu->fpu_active)
377 eb |= 1u << NM_VECTOR;
378 if (vcpu->guest_debug.enabled)
379 eb |= 1u << 1;
380 if (vcpu->arch.rmode.active)
381 eb = ~0;
382 vmcs_write32(EXCEPTION_BITMAP, eb);
383 }
384
385 static void reload_tss(void)
386 {
387 /*
388 * VT restores TR but not its size. Useless.
389 */
390 struct descriptor_table gdt;
391 struct segment_descriptor *descs;
392
393 get_gdt(&gdt);
394 descs = (void *)gdt.base;
395 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
396 load_TR_desc();
397 }
398
399 static void load_transition_efer(struct vcpu_vmx *vmx)
400 {
401 int efer_offset = vmx->msr_offset_efer;
402 u64 host_efer = vmx->host_msrs[efer_offset].data;
403 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
404 u64 ignore_bits;
405
406 if (efer_offset < 0)
407 return;
408 /*
409 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
410 * outside long mode
411 */
412 ignore_bits = EFER_NX | EFER_SCE;
413 #ifdef CONFIG_X86_64
414 ignore_bits |= EFER_LMA | EFER_LME;
415 /* SCE is meaningful only in long mode on Intel */
416 if (guest_efer & EFER_LMA)
417 ignore_bits &= ~(u64)EFER_SCE;
418 #endif
419 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
420 return;
421
422 vmx->host_state.guest_efer_loaded = 1;
423 guest_efer &= ~ignore_bits;
424 guest_efer |= host_efer & ignore_bits;
425 wrmsrl(MSR_EFER, guest_efer);
426 vmx->vcpu.stat.efer_reload++;
427 }
428
429 static void reload_host_efer(struct vcpu_vmx *vmx)
430 {
431 if (vmx->host_state.guest_efer_loaded) {
432 vmx->host_state.guest_efer_loaded = 0;
433 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
434 }
435 }
436
437 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
438 {
439 struct vcpu_vmx *vmx = to_vmx(vcpu);
440
441 if (vmx->host_state.loaded)
442 return;
443
444 vmx->host_state.loaded = 1;
445 /*
446 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
447 * allow segment selectors with cpl > 0 or ti == 1.
448 */
449 vmx->host_state.ldt_sel = read_ldt();
450 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
451 vmx->host_state.fs_sel = read_fs();
452 if (!(vmx->host_state.fs_sel & 7)) {
453 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
454 vmx->host_state.fs_reload_needed = 0;
455 } else {
456 vmcs_write16(HOST_FS_SELECTOR, 0);
457 vmx->host_state.fs_reload_needed = 1;
458 }
459 vmx->host_state.gs_sel = read_gs();
460 if (!(vmx->host_state.gs_sel & 7))
461 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
462 else {
463 vmcs_write16(HOST_GS_SELECTOR, 0);
464 vmx->host_state.gs_ldt_reload_needed = 1;
465 }
466
467 #ifdef CONFIG_X86_64
468 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
469 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
470 #else
471 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
472 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
473 #endif
474
475 #ifdef CONFIG_X86_64
476 if (is_long_mode(&vmx->vcpu))
477 save_msrs(vmx->host_msrs +
478 vmx->msr_offset_kernel_gs_base, 1);
479
480 #endif
481 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
482 load_transition_efer(vmx);
483 }
484
485 static void vmx_load_host_state(struct vcpu_vmx *vmx)
486 {
487 unsigned long flags;
488
489 if (!vmx->host_state.loaded)
490 return;
491
492 ++vmx->vcpu.stat.host_state_reload;
493 vmx->host_state.loaded = 0;
494 if (vmx->host_state.fs_reload_needed)
495 load_fs(vmx->host_state.fs_sel);
496 if (vmx->host_state.gs_ldt_reload_needed) {
497 load_ldt(vmx->host_state.ldt_sel);
498 /*
499 * If we have to reload gs, we must take care to
500 * preserve our gs base.
501 */
502 local_irq_save(flags);
503 load_gs(vmx->host_state.gs_sel);
504 #ifdef CONFIG_X86_64
505 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
506 #endif
507 local_irq_restore(flags);
508 }
509 reload_tss();
510 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
511 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
512 reload_host_efer(vmx);
513 }
514
515 /*
516 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
517 * vcpu mutex is already taken.
518 */
519 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
520 {
521 struct vcpu_vmx *vmx = to_vmx(vcpu);
522 u64 phys_addr = __pa(vmx->vmcs);
523 u64 tsc_this, delta;
524
525 if (vcpu->cpu != cpu) {
526 vcpu_clear(vmx);
527 kvm_migrate_apic_timer(vcpu);
528 vpid_sync_vcpu_all(vmx);
529 }
530
531 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
532 u8 error;
533
534 per_cpu(current_vmcs, cpu) = vmx->vmcs;
535 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
536 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
537 : "cc");
538 if (error)
539 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
540 vmx->vmcs, phys_addr);
541 }
542
543 if (vcpu->cpu != cpu) {
544 struct descriptor_table dt;
545 unsigned long sysenter_esp;
546
547 vcpu->cpu = cpu;
548 /*
549 * Linux uses per-cpu TSS and GDT, so set these when switching
550 * processors.
551 */
552 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
553 get_gdt(&dt);
554 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
555
556 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
557 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
558
559 /*
560 * Make sure the time stamp counter is monotonous.
561 */
562 rdtscll(tsc_this);
563 delta = vcpu->arch.host_tsc - tsc_this;
564 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
565 }
566 }
567
568 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
569 {
570 vmx_load_host_state(to_vmx(vcpu));
571 }
572
573 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
574 {
575 if (vcpu->fpu_active)
576 return;
577 vcpu->fpu_active = 1;
578 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
579 if (vcpu->arch.cr0 & X86_CR0_TS)
580 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
581 update_exception_bitmap(vcpu);
582 }
583
584 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
585 {
586 if (!vcpu->fpu_active)
587 return;
588 vcpu->fpu_active = 0;
589 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
590 update_exception_bitmap(vcpu);
591 }
592
593 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
594 {
595 vcpu_clear(to_vmx(vcpu));
596 }
597
598 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
599 {
600 return vmcs_readl(GUEST_RFLAGS);
601 }
602
603 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
604 {
605 if (vcpu->arch.rmode.active)
606 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
607 vmcs_writel(GUEST_RFLAGS, rflags);
608 }
609
610 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
611 {
612 unsigned long rip;
613 u32 interruptibility;
614
615 rip = vmcs_readl(GUEST_RIP);
616 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
617 vmcs_writel(GUEST_RIP, rip);
618
619 /*
620 * We emulated an instruction, so temporary interrupt blocking
621 * should be removed, if set.
622 */
623 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
624 if (interruptibility & 3)
625 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
626 interruptibility & ~3);
627 vcpu->arch.interrupt_window_open = 1;
628 }
629
630 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
631 bool has_error_code, u32 error_code)
632 {
633 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
634 nr | INTR_TYPE_EXCEPTION
635 | (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0)
636 | INTR_INFO_VALID_MASK);
637 if (has_error_code)
638 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
639 }
640
641 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
642 {
643 struct vcpu_vmx *vmx = to_vmx(vcpu);
644
645 return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
646 }
647
648 /*
649 * Swap MSR entry in host/guest MSR entry array.
650 */
651 #ifdef CONFIG_X86_64
652 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
653 {
654 struct kvm_msr_entry tmp;
655
656 tmp = vmx->guest_msrs[to];
657 vmx->guest_msrs[to] = vmx->guest_msrs[from];
658 vmx->guest_msrs[from] = tmp;
659 tmp = vmx->host_msrs[to];
660 vmx->host_msrs[to] = vmx->host_msrs[from];
661 vmx->host_msrs[from] = tmp;
662 }
663 #endif
664
665 /*
666 * Set up the vmcs to automatically save and restore system
667 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
668 * mode, as fiddling with msrs is very expensive.
669 */
670 static void setup_msrs(struct vcpu_vmx *vmx)
671 {
672 int save_nmsrs;
673
674 vmx_load_host_state(vmx);
675 save_nmsrs = 0;
676 #ifdef CONFIG_X86_64
677 if (is_long_mode(&vmx->vcpu)) {
678 int index;
679
680 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
681 if (index >= 0)
682 move_msr_up(vmx, index, save_nmsrs++);
683 index = __find_msr_index(vmx, MSR_LSTAR);
684 if (index >= 0)
685 move_msr_up(vmx, index, save_nmsrs++);
686 index = __find_msr_index(vmx, MSR_CSTAR);
687 if (index >= 0)
688 move_msr_up(vmx, index, save_nmsrs++);
689 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
690 if (index >= 0)
691 move_msr_up(vmx, index, save_nmsrs++);
692 /*
693 * MSR_K6_STAR is only needed on long mode guests, and only
694 * if efer.sce is enabled.
695 */
696 index = __find_msr_index(vmx, MSR_K6_STAR);
697 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
698 move_msr_up(vmx, index, save_nmsrs++);
699 }
700 #endif
701 vmx->save_nmsrs = save_nmsrs;
702
703 #ifdef CONFIG_X86_64
704 vmx->msr_offset_kernel_gs_base =
705 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
706 #endif
707 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
708 }
709
710 /*
711 * reads and returns guest's timestamp counter "register"
712 * guest_tsc = host_tsc + tsc_offset -- 21.3
713 */
714 static u64 guest_read_tsc(void)
715 {
716 u64 host_tsc, tsc_offset;
717
718 rdtscll(host_tsc);
719 tsc_offset = vmcs_read64(TSC_OFFSET);
720 return host_tsc + tsc_offset;
721 }
722
723 /*
724 * writes 'guest_tsc' into guest's timestamp counter "register"
725 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
726 */
727 static void guest_write_tsc(u64 guest_tsc)
728 {
729 u64 host_tsc;
730
731 rdtscll(host_tsc);
732 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
733 }
734
735 /*
736 * Reads an msr value (of 'msr_index') into 'pdata'.
737 * Returns 0 on success, non-0 otherwise.
738 * Assumes vcpu_load() was already called.
739 */
740 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
741 {
742 u64 data;
743 struct kvm_msr_entry *msr;
744
745 if (!pdata) {
746 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
747 return -EINVAL;
748 }
749
750 switch (msr_index) {
751 #ifdef CONFIG_X86_64
752 case MSR_FS_BASE:
753 data = vmcs_readl(GUEST_FS_BASE);
754 break;
755 case MSR_GS_BASE:
756 data = vmcs_readl(GUEST_GS_BASE);
757 break;
758 case MSR_EFER:
759 return kvm_get_msr_common(vcpu, msr_index, pdata);
760 #endif
761 case MSR_IA32_TIME_STAMP_COUNTER:
762 data = guest_read_tsc();
763 break;
764 case MSR_IA32_SYSENTER_CS:
765 data = vmcs_read32(GUEST_SYSENTER_CS);
766 break;
767 case MSR_IA32_SYSENTER_EIP:
768 data = vmcs_readl(GUEST_SYSENTER_EIP);
769 break;
770 case MSR_IA32_SYSENTER_ESP:
771 data = vmcs_readl(GUEST_SYSENTER_ESP);
772 break;
773 default:
774 msr = find_msr_entry(to_vmx(vcpu), msr_index);
775 if (msr) {
776 data = msr->data;
777 break;
778 }
779 return kvm_get_msr_common(vcpu, msr_index, pdata);
780 }
781
782 *pdata = data;
783 return 0;
784 }
785
786 /*
787 * Writes msr value into into the appropriate "register".
788 * Returns 0 on success, non-0 otherwise.
789 * Assumes vcpu_load() was already called.
790 */
791 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
792 {
793 struct vcpu_vmx *vmx = to_vmx(vcpu);
794 struct kvm_msr_entry *msr;
795 int ret = 0;
796
797 switch (msr_index) {
798 #ifdef CONFIG_X86_64
799 case MSR_EFER:
800 ret = kvm_set_msr_common(vcpu, msr_index, data);
801 if (vmx->host_state.loaded) {
802 reload_host_efer(vmx);
803 load_transition_efer(vmx);
804 }
805 break;
806 case MSR_FS_BASE:
807 vmcs_writel(GUEST_FS_BASE, data);
808 break;
809 case MSR_GS_BASE:
810 vmcs_writel(GUEST_GS_BASE, data);
811 break;
812 #endif
813 case MSR_IA32_SYSENTER_CS:
814 vmcs_write32(GUEST_SYSENTER_CS, data);
815 break;
816 case MSR_IA32_SYSENTER_EIP:
817 vmcs_writel(GUEST_SYSENTER_EIP, data);
818 break;
819 case MSR_IA32_SYSENTER_ESP:
820 vmcs_writel(GUEST_SYSENTER_ESP, data);
821 break;
822 case MSR_IA32_TIME_STAMP_COUNTER:
823 guest_write_tsc(data);
824 break;
825 default:
826 msr = find_msr_entry(vmx, msr_index);
827 if (msr) {
828 msr->data = data;
829 if (vmx->host_state.loaded)
830 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
831 break;
832 }
833 ret = kvm_set_msr_common(vcpu, msr_index, data);
834 }
835
836 return ret;
837 }
838
839 /*
840 * Sync the rsp and rip registers into the vcpu structure. This allows
841 * registers to be accessed by indexing vcpu->arch.regs.
842 */
843 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
844 {
845 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
846 vcpu->arch.rip = vmcs_readl(GUEST_RIP);
847 }
848
849 /*
850 * Syncs rsp and rip back into the vmcs. Should be called after possible
851 * modification.
852 */
853 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
854 {
855 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
856 vmcs_writel(GUEST_RIP, vcpu->arch.rip);
857 }
858
859 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
860 {
861 unsigned long dr7 = 0x400;
862 int old_singlestep;
863
864 old_singlestep = vcpu->guest_debug.singlestep;
865
866 vcpu->guest_debug.enabled = dbg->enabled;
867 if (vcpu->guest_debug.enabled) {
868 int i;
869
870 dr7 |= 0x200; /* exact */
871 for (i = 0; i < 4; ++i) {
872 if (!dbg->breakpoints[i].enabled)
873 continue;
874 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
875 dr7 |= 2 << (i*2); /* global enable */
876 dr7 |= 0 << (i*4+16); /* execution breakpoint */
877 }
878
879 vcpu->guest_debug.singlestep = dbg->singlestep;
880 } else
881 vcpu->guest_debug.singlestep = 0;
882
883 if (old_singlestep && !vcpu->guest_debug.singlestep) {
884 unsigned long flags;
885
886 flags = vmcs_readl(GUEST_RFLAGS);
887 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
888 vmcs_writel(GUEST_RFLAGS, flags);
889 }
890
891 update_exception_bitmap(vcpu);
892 vmcs_writel(GUEST_DR7, dr7);
893
894 return 0;
895 }
896
897 static int vmx_get_irq(struct kvm_vcpu *vcpu)
898 {
899 struct vcpu_vmx *vmx = to_vmx(vcpu);
900 u32 idtv_info_field;
901
902 idtv_info_field = vmx->idt_vectoring_info;
903 if (idtv_info_field & INTR_INFO_VALID_MASK) {
904 if (is_external_interrupt(idtv_info_field))
905 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
906 else
907 printk(KERN_DEBUG "pending exception: not handled yet\n");
908 }
909 return -1;
910 }
911
912 static __init int cpu_has_kvm_support(void)
913 {
914 unsigned long ecx = cpuid_ecx(1);
915 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
916 }
917
918 static __init int vmx_disabled_by_bios(void)
919 {
920 u64 msr;
921
922 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
923 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
924 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
925 == MSR_IA32_FEATURE_CONTROL_LOCKED;
926 /* locked but not enabled */
927 }
928
929 static void hardware_enable(void *garbage)
930 {
931 int cpu = raw_smp_processor_id();
932 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
933 u64 old;
934
935 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
936 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
937 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
938 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
939 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
940 /* enable and lock */
941 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
942 MSR_IA32_FEATURE_CONTROL_LOCKED |
943 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
944 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
945 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
946 : "memory", "cc");
947 }
948
949 static void hardware_disable(void *garbage)
950 {
951 asm volatile (ASM_VMX_VMXOFF : : : "cc");
952 }
953
954 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
955 u32 msr, u32 *result)
956 {
957 u32 vmx_msr_low, vmx_msr_high;
958 u32 ctl = ctl_min | ctl_opt;
959
960 rdmsr(msr, vmx_msr_low, vmx_msr_high);
961
962 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
963 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
964
965 /* Ensure minimum (required) set of control bits are supported. */
966 if (ctl_min & ~ctl)
967 return -EIO;
968
969 *result = ctl;
970 return 0;
971 }
972
973 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
974 {
975 u32 vmx_msr_low, vmx_msr_high;
976 u32 min, opt;
977 u32 _pin_based_exec_control = 0;
978 u32 _cpu_based_exec_control = 0;
979 u32 _cpu_based_2nd_exec_control = 0;
980 u32 _vmexit_control = 0;
981 u32 _vmentry_control = 0;
982
983 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
984 opt = 0;
985 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
986 &_pin_based_exec_control) < 0)
987 return -EIO;
988
989 min = CPU_BASED_HLT_EXITING |
990 #ifdef CONFIG_X86_64
991 CPU_BASED_CR8_LOAD_EXITING |
992 CPU_BASED_CR8_STORE_EXITING |
993 #endif
994 CPU_BASED_USE_IO_BITMAPS |
995 CPU_BASED_MOV_DR_EXITING |
996 CPU_BASED_USE_TSC_OFFSETING;
997 opt = CPU_BASED_TPR_SHADOW |
998 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
999 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1000 &_cpu_based_exec_control) < 0)
1001 return -EIO;
1002 #ifdef CONFIG_X86_64
1003 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1004 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1005 ~CPU_BASED_CR8_STORE_EXITING;
1006 #endif
1007 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1008 min = 0;
1009 opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1010 SECONDARY_EXEC_WBINVD_EXITING |
1011 SECONDARY_EXEC_ENABLE_VPID;
1012 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
1013 &_cpu_based_2nd_exec_control) < 0)
1014 return -EIO;
1015 }
1016 #ifndef CONFIG_X86_64
1017 if (!(_cpu_based_2nd_exec_control &
1018 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1019 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1020 #endif
1021
1022 min = 0;
1023 #ifdef CONFIG_X86_64
1024 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1025 #endif
1026 opt = 0;
1027 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1028 &_vmexit_control) < 0)
1029 return -EIO;
1030
1031 min = opt = 0;
1032 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1033 &_vmentry_control) < 0)
1034 return -EIO;
1035
1036 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1037
1038 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1039 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1040 return -EIO;
1041
1042 #ifdef CONFIG_X86_64
1043 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1044 if (vmx_msr_high & (1u<<16))
1045 return -EIO;
1046 #endif
1047
1048 /* Require Write-Back (WB) memory type for VMCS accesses. */
1049 if (((vmx_msr_high >> 18) & 15) != 6)
1050 return -EIO;
1051
1052 vmcs_conf->size = vmx_msr_high & 0x1fff;
1053 vmcs_conf->order = get_order(vmcs_config.size);
1054 vmcs_conf->revision_id = vmx_msr_low;
1055
1056 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1057 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1058 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1059 vmcs_conf->vmexit_ctrl = _vmexit_control;
1060 vmcs_conf->vmentry_ctrl = _vmentry_control;
1061
1062 return 0;
1063 }
1064
1065 static struct vmcs *alloc_vmcs_cpu(int cpu)
1066 {
1067 int node = cpu_to_node(cpu);
1068 struct page *pages;
1069 struct vmcs *vmcs;
1070
1071 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1072 if (!pages)
1073 return NULL;
1074 vmcs = page_address(pages);
1075 memset(vmcs, 0, vmcs_config.size);
1076 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1077 return vmcs;
1078 }
1079
1080 static struct vmcs *alloc_vmcs(void)
1081 {
1082 return alloc_vmcs_cpu(raw_smp_processor_id());
1083 }
1084
1085 static void free_vmcs(struct vmcs *vmcs)
1086 {
1087 free_pages((unsigned long)vmcs, vmcs_config.order);
1088 }
1089
1090 static void free_kvm_area(void)
1091 {
1092 int cpu;
1093
1094 for_each_online_cpu(cpu)
1095 free_vmcs(per_cpu(vmxarea, cpu));
1096 }
1097
1098 static __init int alloc_kvm_area(void)
1099 {
1100 int cpu;
1101
1102 for_each_online_cpu(cpu) {
1103 struct vmcs *vmcs;
1104
1105 vmcs = alloc_vmcs_cpu(cpu);
1106 if (!vmcs) {
1107 free_kvm_area();
1108 return -ENOMEM;
1109 }
1110
1111 per_cpu(vmxarea, cpu) = vmcs;
1112 }
1113 return 0;
1114 }
1115
1116 static __init int hardware_setup(void)
1117 {
1118 if (setup_vmcs_config(&vmcs_config) < 0)
1119 return -EIO;
1120 return alloc_kvm_area();
1121 }
1122
1123 static __exit void hardware_unsetup(void)
1124 {
1125 free_kvm_area();
1126 }
1127
1128 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1129 {
1130 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1131
1132 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1133 vmcs_write16(sf->selector, save->selector);
1134 vmcs_writel(sf->base, save->base);
1135 vmcs_write32(sf->limit, save->limit);
1136 vmcs_write32(sf->ar_bytes, save->ar);
1137 } else {
1138 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1139 << AR_DPL_SHIFT;
1140 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1141 }
1142 }
1143
1144 static void enter_pmode(struct kvm_vcpu *vcpu)
1145 {
1146 unsigned long flags;
1147
1148 vcpu->arch.rmode.active = 0;
1149
1150 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1151 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1152 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1153
1154 flags = vmcs_readl(GUEST_RFLAGS);
1155 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1156 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1157 vmcs_writel(GUEST_RFLAGS, flags);
1158
1159 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1160 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1161
1162 update_exception_bitmap(vcpu);
1163
1164 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1165 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1166 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1167 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1168
1169 vmcs_write16(GUEST_SS_SELECTOR, 0);
1170 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1171
1172 vmcs_write16(GUEST_CS_SELECTOR,
1173 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1174 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1175 }
1176
1177 static gva_t rmode_tss_base(struct kvm *kvm)
1178 {
1179 if (!kvm->arch.tss_addr) {
1180 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1181 kvm->memslots[0].npages - 3;
1182 return base_gfn << PAGE_SHIFT;
1183 }
1184 return kvm->arch.tss_addr;
1185 }
1186
1187 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1188 {
1189 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1190
1191 save->selector = vmcs_read16(sf->selector);
1192 save->base = vmcs_readl(sf->base);
1193 save->limit = vmcs_read32(sf->limit);
1194 save->ar = vmcs_read32(sf->ar_bytes);
1195 vmcs_write16(sf->selector, save->base >> 4);
1196 vmcs_write32(sf->base, save->base & 0xfffff);
1197 vmcs_write32(sf->limit, 0xffff);
1198 vmcs_write32(sf->ar_bytes, 0xf3);
1199 }
1200
1201 static void enter_rmode(struct kvm_vcpu *vcpu)
1202 {
1203 unsigned long flags;
1204
1205 vcpu->arch.rmode.active = 1;
1206
1207 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1208 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1209
1210 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1211 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1212
1213 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1214 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1215
1216 flags = vmcs_readl(GUEST_RFLAGS);
1217 vcpu->arch.rmode.save_iopl
1218 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1219
1220 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1221
1222 vmcs_writel(GUEST_RFLAGS, flags);
1223 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1224 update_exception_bitmap(vcpu);
1225
1226 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1227 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1228 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1229
1230 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1231 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1232 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1233 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1234 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1235
1236 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1237 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1238 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1239 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1240
1241 kvm_mmu_reset_context(vcpu);
1242 init_rmode_tss(vcpu->kvm);
1243 }
1244
1245 #ifdef CONFIG_X86_64
1246
1247 static void enter_lmode(struct kvm_vcpu *vcpu)
1248 {
1249 u32 guest_tr_ar;
1250
1251 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1252 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1253 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1254 __FUNCTION__);
1255 vmcs_write32(GUEST_TR_AR_BYTES,
1256 (guest_tr_ar & ~AR_TYPE_MASK)
1257 | AR_TYPE_BUSY_64_TSS);
1258 }
1259
1260 vcpu->arch.shadow_efer |= EFER_LMA;
1261
1262 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1263 vmcs_write32(VM_ENTRY_CONTROLS,
1264 vmcs_read32(VM_ENTRY_CONTROLS)
1265 | VM_ENTRY_IA32E_MODE);
1266 }
1267
1268 static void exit_lmode(struct kvm_vcpu *vcpu)
1269 {
1270 vcpu->arch.shadow_efer &= ~EFER_LMA;
1271
1272 vmcs_write32(VM_ENTRY_CONTROLS,
1273 vmcs_read32(VM_ENTRY_CONTROLS)
1274 & ~VM_ENTRY_IA32E_MODE);
1275 }
1276
1277 #endif
1278
1279 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1280 {
1281 vpid_sync_vcpu_all(to_vmx(vcpu));
1282 }
1283
1284 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1285 {
1286 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1287 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1288 }
1289
1290 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1291 {
1292 vmx_fpu_deactivate(vcpu);
1293
1294 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1295 enter_pmode(vcpu);
1296
1297 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1298 enter_rmode(vcpu);
1299
1300 #ifdef CONFIG_X86_64
1301 if (vcpu->arch.shadow_efer & EFER_LME) {
1302 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1303 enter_lmode(vcpu);
1304 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1305 exit_lmode(vcpu);
1306 }
1307 #endif
1308
1309 vmcs_writel(CR0_READ_SHADOW, cr0);
1310 vmcs_writel(GUEST_CR0,
1311 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1312 vcpu->arch.cr0 = cr0;
1313
1314 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1315 vmx_fpu_activate(vcpu);
1316 }
1317
1318 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1319 {
1320 vmx_flush_tlb(vcpu);
1321 vmcs_writel(GUEST_CR3, cr3);
1322 if (vcpu->arch.cr0 & X86_CR0_PE)
1323 vmx_fpu_deactivate(vcpu);
1324 }
1325
1326 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1327 {
1328 vmcs_writel(CR4_READ_SHADOW, cr4);
1329 vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
1330 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1331 vcpu->arch.cr4 = cr4;
1332 }
1333
1334 #ifdef CONFIG_X86_64
1335
1336 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1337 {
1338 struct vcpu_vmx *vmx = to_vmx(vcpu);
1339 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1340
1341 vcpu->arch.shadow_efer = efer;
1342 if (efer & EFER_LMA) {
1343 vmcs_write32(VM_ENTRY_CONTROLS,
1344 vmcs_read32(VM_ENTRY_CONTROLS) |
1345 VM_ENTRY_IA32E_MODE);
1346 msr->data = efer;
1347
1348 } else {
1349 vmcs_write32(VM_ENTRY_CONTROLS,
1350 vmcs_read32(VM_ENTRY_CONTROLS) &
1351 ~VM_ENTRY_IA32E_MODE);
1352
1353 msr->data = efer & ~EFER_LME;
1354 }
1355 setup_msrs(vmx);
1356 }
1357
1358 #endif
1359
1360 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1361 {
1362 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1363
1364 return vmcs_readl(sf->base);
1365 }
1366
1367 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1368 struct kvm_segment *var, int seg)
1369 {
1370 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1371 u32 ar;
1372
1373 var->base = vmcs_readl(sf->base);
1374 var->limit = vmcs_read32(sf->limit);
1375 var->selector = vmcs_read16(sf->selector);
1376 ar = vmcs_read32(sf->ar_bytes);
1377 if (ar & AR_UNUSABLE_MASK)
1378 ar = 0;
1379 var->type = ar & 15;
1380 var->s = (ar >> 4) & 1;
1381 var->dpl = (ar >> 5) & 3;
1382 var->present = (ar >> 7) & 1;
1383 var->avl = (ar >> 12) & 1;
1384 var->l = (ar >> 13) & 1;
1385 var->db = (ar >> 14) & 1;
1386 var->g = (ar >> 15) & 1;
1387 var->unusable = (ar >> 16) & 1;
1388 }
1389
1390 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1391 {
1392 u32 ar;
1393
1394 if (var->unusable)
1395 ar = 1 << 16;
1396 else {
1397 ar = var->type & 15;
1398 ar |= (var->s & 1) << 4;
1399 ar |= (var->dpl & 3) << 5;
1400 ar |= (var->present & 1) << 7;
1401 ar |= (var->avl & 1) << 12;
1402 ar |= (var->l & 1) << 13;
1403 ar |= (var->db & 1) << 14;
1404 ar |= (var->g & 1) << 15;
1405 }
1406 if (ar == 0) /* a 0 value means unusable */
1407 ar = AR_UNUSABLE_MASK;
1408
1409 return ar;
1410 }
1411
1412 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1413 struct kvm_segment *var, int seg)
1414 {
1415 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1416 u32 ar;
1417
1418 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1419 vcpu->arch.rmode.tr.selector = var->selector;
1420 vcpu->arch.rmode.tr.base = var->base;
1421 vcpu->arch.rmode.tr.limit = var->limit;
1422 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1423 return;
1424 }
1425 vmcs_writel(sf->base, var->base);
1426 vmcs_write32(sf->limit, var->limit);
1427 vmcs_write16(sf->selector, var->selector);
1428 if (vcpu->arch.rmode.active && var->s) {
1429 /*
1430 * Hack real-mode segments into vm86 compatibility.
1431 */
1432 if (var->base == 0xffff0000 && var->selector == 0xf000)
1433 vmcs_writel(sf->base, 0xf0000);
1434 ar = 0xf3;
1435 } else
1436 ar = vmx_segment_access_rights(var);
1437 vmcs_write32(sf->ar_bytes, ar);
1438 }
1439
1440 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1441 {
1442 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1443
1444 *db = (ar >> 14) & 1;
1445 *l = (ar >> 13) & 1;
1446 }
1447
1448 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1449 {
1450 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1451 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1452 }
1453
1454 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1455 {
1456 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1457 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1458 }
1459
1460 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1461 {
1462 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1463 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1464 }
1465
1466 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1467 {
1468 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1469 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1470 }
1471
1472 static int init_rmode_tss(struct kvm *kvm)
1473 {
1474 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1475 u16 data = 0;
1476 int ret = 0;
1477 int r;
1478
1479 down_read(&kvm->slots_lock);
1480 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1481 if (r < 0)
1482 goto out;
1483 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1484 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1485 if (r < 0)
1486 goto out;
1487 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1488 if (r < 0)
1489 goto out;
1490 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1491 if (r < 0)
1492 goto out;
1493 data = ~0;
1494 r = kvm_write_guest_page(kvm, fn, &data,
1495 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1496 sizeof(u8));
1497 if (r < 0)
1498 goto out;
1499
1500 ret = 1;
1501 out:
1502 up_read(&kvm->slots_lock);
1503 return ret;
1504 }
1505
1506 static void seg_setup(int seg)
1507 {
1508 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1509
1510 vmcs_write16(sf->selector, 0);
1511 vmcs_writel(sf->base, 0);
1512 vmcs_write32(sf->limit, 0xffff);
1513 vmcs_write32(sf->ar_bytes, 0x93);
1514 }
1515
1516 static int alloc_apic_access_page(struct kvm *kvm)
1517 {
1518 struct kvm_userspace_memory_region kvm_userspace_mem;
1519 int r = 0;
1520
1521 down_write(&kvm->slots_lock);
1522 if (kvm->arch.apic_access_page)
1523 goto out;
1524 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1525 kvm_userspace_mem.flags = 0;
1526 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1527 kvm_userspace_mem.memory_size = PAGE_SIZE;
1528 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1529 if (r)
1530 goto out;
1531
1532 down_read(&current->mm->mmap_sem);
1533 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1534 up_read(&current->mm->mmap_sem);
1535 out:
1536 up_write(&kvm->slots_lock);
1537 return r;
1538 }
1539
1540 static void allocate_vpid(struct vcpu_vmx *vmx)
1541 {
1542 int vpid;
1543
1544 vmx->vpid = 0;
1545 if (!enable_vpid || !cpu_has_vmx_vpid())
1546 return;
1547 spin_lock(&vmx_vpid_lock);
1548 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
1549 if (vpid < VMX_NR_VPIDS) {
1550 vmx->vpid = vpid;
1551 __set_bit(vpid, vmx_vpid_bitmap);
1552 }
1553 spin_unlock(&vmx_vpid_lock);
1554 }
1555
1556 /*
1557 * Sets up the vmcs for emulated real mode.
1558 */
1559 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1560 {
1561 u32 host_sysenter_cs;
1562 u32 junk;
1563 unsigned long a;
1564 struct descriptor_table dt;
1565 int i;
1566 unsigned long kvm_vmx_return;
1567 u32 exec_control;
1568
1569 /* I/O */
1570 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1571 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1572
1573 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1574
1575 /* Control */
1576 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1577 vmcs_config.pin_based_exec_ctrl);
1578
1579 exec_control = vmcs_config.cpu_based_exec_ctrl;
1580 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1581 exec_control &= ~CPU_BASED_TPR_SHADOW;
1582 #ifdef CONFIG_X86_64
1583 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1584 CPU_BASED_CR8_LOAD_EXITING;
1585 #endif
1586 }
1587 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1588
1589 if (cpu_has_secondary_exec_ctrls()) {
1590 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1591 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1592 exec_control &=
1593 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1594 if (vmx->vpid == 0)
1595 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
1596 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1597 }
1598
1599 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1600 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1601 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1602
1603 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1604 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1605 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1606
1607 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1608 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1609 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1610 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1611 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1612 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1613 #ifdef CONFIG_X86_64
1614 rdmsrl(MSR_FS_BASE, a);
1615 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1616 rdmsrl(MSR_GS_BASE, a);
1617 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1618 #else
1619 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1620 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1621 #endif
1622
1623 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1624
1625 get_idt(&dt);
1626 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1627
1628 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1629 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1630 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1631 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1632 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1633
1634 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1635 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1636 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1637 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1638 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1639 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1640
1641 for (i = 0; i < NR_VMX_MSR; ++i) {
1642 u32 index = vmx_msr_index[i];
1643 u32 data_low, data_high;
1644 u64 data;
1645 int j = vmx->nmsrs;
1646
1647 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1648 continue;
1649 if (wrmsr_safe(index, data_low, data_high) < 0)
1650 continue;
1651 data = data_low | ((u64)data_high << 32);
1652 vmx->host_msrs[j].index = index;
1653 vmx->host_msrs[j].reserved = 0;
1654 vmx->host_msrs[j].data = data;
1655 vmx->guest_msrs[j] = vmx->host_msrs[j];
1656 ++vmx->nmsrs;
1657 }
1658
1659 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1660
1661 /* 22.2.1, 20.8.1 */
1662 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1663
1664 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1665 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1666
1667
1668 return 0;
1669 }
1670
1671 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1672 {
1673 struct vcpu_vmx *vmx = to_vmx(vcpu);
1674 u64 msr;
1675 int ret;
1676
1677 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1678 ret = -ENOMEM;
1679 goto out;
1680 }
1681
1682 vmx->vcpu.arch.rmode.active = 0;
1683
1684 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1685 set_cr8(&vmx->vcpu, 0);
1686 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1687 if (vmx->vcpu.vcpu_id == 0)
1688 msr |= MSR_IA32_APICBASE_BSP;
1689 kvm_set_apic_base(&vmx->vcpu, msr);
1690
1691 fx_init(&vmx->vcpu);
1692
1693 /*
1694 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1695 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1696 */
1697 if (vmx->vcpu.vcpu_id == 0) {
1698 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1699 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1700 } else {
1701 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
1702 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
1703 }
1704 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1705 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1706
1707 seg_setup(VCPU_SREG_DS);
1708 seg_setup(VCPU_SREG_ES);
1709 seg_setup(VCPU_SREG_FS);
1710 seg_setup(VCPU_SREG_GS);
1711 seg_setup(VCPU_SREG_SS);
1712
1713 vmcs_write16(GUEST_TR_SELECTOR, 0);
1714 vmcs_writel(GUEST_TR_BASE, 0);
1715 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1716 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1717
1718 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1719 vmcs_writel(GUEST_LDTR_BASE, 0);
1720 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1721 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1722
1723 vmcs_write32(GUEST_SYSENTER_CS, 0);
1724 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1725 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1726
1727 vmcs_writel(GUEST_RFLAGS, 0x02);
1728 if (vmx->vcpu.vcpu_id == 0)
1729 vmcs_writel(GUEST_RIP, 0xfff0);
1730 else
1731 vmcs_writel(GUEST_RIP, 0);
1732 vmcs_writel(GUEST_RSP, 0);
1733
1734 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
1735 vmcs_writel(GUEST_DR7, 0x400);
1736
1737 vmcs_writel(GUEST_GDTR_BASE, 0);
1738 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1739
1740 vmcs_writel(GUEST_IDTR_BASE, 0);
1741 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1742
1743 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1744 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1745 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1746
1747 guest_write_tsc(0);
1748
1749 /* Special registers */
1750 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1751
1752 setup_msrs(vmx);
1753
1754 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1755
1756 if (cpu_has_vmx_tpr_shadow()) {
1757 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1758 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1759 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1760 page_to_phys(vmx->vcpu.arch.apic->regs_page));
1761 vmcs_write32(TPR_THRESHOLD, 0);
1762 }
1763
1764 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1765 vmcs_write64(APIC_ACCESS_ADDR,
1766 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
1767
1768 if (vmx->vpid != 0)
1769 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1770
1771 vmx->vcpu.arch.cr0 = 0x60000010;
1772 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
1773 vmx_set_cr4(&vmx->vcpu, 0);
1774 #ifdef CONFIG_X86_64
1775 vmx_set_efer(&vmx->vcpu, 0);
1776 #endif
1777 vmx_fpu_activate(&vmx->vcpu);
1778 update_exception_bitmap(&vmx->vcpu);
1779
1780 vpid_sync_vcpu_all(vmx);
1781
1782 return 0;
1783
1784 out:
1785 return ret;
1786 }
1787
1788 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1789 {
1790 struct vcpu_vmx *vmx = to_vmx(vcpu);
1791
1792 if (vcpu->arch.rmode.active) {
1793 vmx->rmode.irq.pending = true;
1794 vmx->rmode.irq.vector = irq;
1795 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
1796 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1797 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
1798 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1799 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
1800 return;
1801 }
1802 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1803 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1804 }
1805
1806 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1807 {
1808 int word_index = __ffs(vcpu->arch.irq_summary);
1809 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1810 int irq = word_index * BITS_PER_LONG + bit_index;
1811
1812 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1813 if (!vcpu->arch.irq_pending[word_index])
1814 clear_bit(word_index, &vcpu->arch.irq_summary);
1815 vmx_inject_irq(vcpu, irq);
1816 }
1817
1818
1819 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1820 struct kvm_run *kvm_run)
1821 {
1822 u32 cpu_based_vm_exec_control;
1823
1824 vcpu->arch.interrupt_window_open =
1825 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1826 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1827
1828 if (vcpu->arch.interrupt_window_open &&
1829 vcpu->arch.irq_summary &&
1830 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1831 /*
1832 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1833 */
1834 kvm_do_inject_irq(vcpu);
1835
1836 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1837 if (!vcpu->arch.interrupt_window_open &&
1838 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
1839 /*
1840 * Interrupts blocked. Wait for unblock.
1841 */
1842 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1843 else
1844 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1845 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1846 }
1847
1848 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
1849 {
1850 int ret;
1851 struct kvm_userspace_memory_region tss_mem = {
1852 .slot = 8,
1853 .guest_phys_addr = addr,
1854 .memory_size = PAGE_SIZE * 3,
1855 .flags = 0,
1856 };
1857
1858 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
1859 if (ret)
1860 return ret;
1861 kvm->arch.tss_addr = addr;
1862 return 0;
1863 }
1864
1865 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1866 {
1867 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1868
1869 set_debugreg(dbg->bp[0], 0);
1870 set_debugreg(dbg->bp[1], 1);
1871 set_debugreg(dbg->bp[2], 2);
1872 set_debugreg(dbg->bp[3], 3);
1873
1874 if (dbg->singlestep) {
1875 unsigned long flags;
1876
1877 flags = vmcs_readl(GUEST_RFLAGS);
1878 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1879 vmcs_writel(GUEST_RFLAGS, flags);
1880 }
1881 }
1882
1883 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1884 int vec, u32 err_code)
1885 {
1886 if (!vcpu->arch.rmode.active)
1887 return 0;
1888
1889 /*
1890 * Instruction with address size override prefix opcode 0x67
1891 * Cause the #SS fault with 0 error code in VM86 mode.
1892 */
1893 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1894 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
1895 return 1;
1896 return 0;
1897 }
1898
1899 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1900 {
1901 struct vcpu_vmx *vmx = to_vmx(vcpu);
1902 u32 intr_info, error_code;
1903 unsigned long cr2, rip;
1904 u32 vect_info;
1905 enum emulation_result er;
1906
1907 vect_info = vmx->idt_vectoring_info;
1908 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1909
1910 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1911 !is_page_fault(intr_info))
1912 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1913 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1914
1915 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1916 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1917 set_bit(irq, vcpu->arch.irq_pending);
1918 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1919 }
1920
1921 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1922 return 1; /* already handled by vmx_vcpu_run() */
1923
1924 if (is_no_device(intr_info)) {
1925 vmx_fpu_activate(vcpu);
1926 return 1;
1927 }
1928
1929 if (is_invalid_opcode(intr_info)) {
1930 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1931 if (er != EMULATE_DONE)
1932 kvm_queue_exception(vcpu, UD_VECTOR);
1933 return 1;
1934 }
1935
1936 error_code = 0;
1937 rip = vmcs_readl(GUEST_RIP);
1938 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1939 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1940 if (is_page_fault(intr_info)) {
1941 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1942 return kvm_mmu_page_fault(vcpu, cr2, error_code);
1943 }
1944
1945 if (vcpu->arch.rmode.active &&
1946 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1947 error_code)) {
1948 if (vcpu->arch.halt_request) {
1949 vcpu->arch.halt_request = 0;
1950 return kvm_emulate_halt(vcpu);
1951 }
1952 return 1;
1953 }
1954
1955 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
1956 (INTR_TYPE_EXCEPTION | 1)) {
1957 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1958 return 0;
1959 }
1960 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1961 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1962 kvm_run->ex.error_code = error_code;
1963 return 0;
1964 }
1965
1966 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1967 struct kvm_run *kvm_run)
1968 {
1969 ++vcpu->stat.irq_exits;
1970 return 1;
1971 }
1972
1973 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1974 {
1975 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1976 return 0;
1977 }
1978
1979 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1980 {
1981 unsigned long exit_qualification;
1982 int size, down, in, string, rep;
1983 unsigned port;
1984
1985 ++vcpu->stat.io_exits;
1986 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1987 string = (exit_qualification & 16) != 0;
1988
1989 if (string) {
1990 if (emulate_instruction(vcpu,
1991 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1992 return 0;
1993 return 1;
1994 }
1995
1996 size = (exit_qualification & 7) + 1;
1997 in = (exit_qualification & 8) != 0;
1998 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1999 rep = (exit_qualification & 32) != 0;
2000 port = exit_qualification >> 16;
2001
2002 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2003 }
2004
2005 static void
2006 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2007 {
2008 /*
2009 * Patch in the VMCALL instruction:
2010 */
2011 hypercall[0] = 0x0f;
2012 hypercall[1] = 0x01;
2013 hypercall[2] = 0xc1;
2014 }
2015
2016 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2017 {
2018 unsigned long exit_qualification;
2019 int cr;
2020 int reg;
2021
2022 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2023 cr = exit_qualification & 15;
2024 reg = (exit_qualification >> 8) & 15;
2025 switch ((exit_qualification >> 4) & 3) {
2026 case 0: /* mov to cr */
2027 switch (cr) {
2028 case 0:
2029 vcpu_load_rsp_rip(vcpu);
2030 set_cr0(vcpu, vcpu->arch.regs[reg]);
2031 skip_emulated_instruction(vcpu);
2032 return 1;
2033 case 3:
2034 vcpu_load_rsp_rip(vcpu);
2035 set_cr3(vcpu, vcpu->arch.regs[reg]);
2036 skip_emulated_instruction(vcpu);
2037 return 1;
2038 case 4:
2039 vcpu_load_rsp_rip(vcpu);
2040 set_cr4(vcpu, vcpu->arch.regs[reg]);
2041 skip_emulated_instruction(vcpu);
2042 return 1;
2043 case 8:
2044 vcpu_load_rsp_rip(vcpu);
2045 set_cr8(vcpu, vcpu->arch.regs[reg]);
2046 skip_emulated_instruction(vcpu);
2047 if (irqchip_in_kernel(vcpu->kvm))
2048 return 1;
2049 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2050 return 0;
2051 };
2052 break;
2053 case 2: /* clts */
2054 vcpu_load_rsp_rip(vcpu);
2055 vmx_fpu_deactivate(vcpu);
2056 vcpu->arch.cr0 &= ~X86_CR0_TS;
2057 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2058 vmx_fpu_activate(vcpu);
2059 skip_emulated_instruction(vcpu);
2060 return 1;
2061 case 1: /*mov from cr*/
2062 switch (cr) {
2063 case 3:
2064 vcpu_load_rsp_rip(vcpu);
2065 vcpu->arch.regs[reg] = vcpu->arch.cr3;
2066 vcpu_put_rsp_rip(vcpu);
2067 skip_emulated_instruction(vcpu);
2068 return 1;
2069 case 8:
2070 vcpu_load_rsp_rip(vcpu);
2071 vcpu->arch.regs[reg] = get_cr8(vcpu);
2072 vcpu_put_rsp_rip(vcpu);
2073 skip_emulated_instruction(vcpu);
2074 return 1;
2075 }
2076 break;
2077 case 3: /* lmsw */
2078 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2079
2080 skip_emulated_instruction(vcpu);
2081 return 1;
2082 default:
2083 break;
2084 }
2085 kvm_run->exit_reason = 0;
2086 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2087 (int)(exit_qualification >> 4) & 3, cr);
2088 return 0;
2089 }
2090
2091 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2092 {
2093 unsigned long exit_qualification;
2094 unsigned long val;
2095 int dr, reg;
2096
2097 /*
2098 * FIXME: this code assumes the host is debugging the guest.
2099 * need to deal with guest debugging itself too.
2100 */
2101 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2102 dr = exit_qualification & 7;
2103 reg = (exit_qualification >> 8) & 15;
2104 vcpu_load_rsp_rip(vcpu);
2105 if (exit_qualification & 16) {
2106 /* mov from dr */
2107 switch (dr) {
2108 case 6:
2109 val = 0xffff0ff0;
2110 break;
2111 case 7:
2112 val = 0x400;
2113 break;
2114 default:
2115 val = 0;
2116 }
2117 vcpu->arch.regs[reg] = val;
2118 } else {
2119 /* mov to dr */
2120 }
2121 vcpu_put_rsp_rip(vcpu);
2122 skip_emulated_instruction(vcpu);
2123 return 1;
2124 }
2125
2126 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2127 {
2128 kvm_emulate_cpuid(vcpu);
2129 return 1;
2130 }
2131
2132 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2133 {
2134 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2135 u64 data;
2136
2137 if (vmx_get_msr(vcpu, ecx, &data)) {
2138 kvm_inject_gp(vcpu, 0);
2139 return 1;
2140 }
2141
2142 /* FIXME: handling of bits 32:63 of rax, rdx */
2143 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2144 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2145 skip_emulated_instruction(vcpu);
2146 return 1;
2147 }
2148
2149 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2150 {
2151 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2152 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2153 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2154
2155 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2156 kvm_inject_gp(vcpu, 0);
2157 return 1;
2158 }
2159
2160 skip_emulated_instruction(vcpu);
2161 return 1;
2162 }
2163
2164 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2165 struct kvm_run *kvm_run)
2166 {
2167 return 1;
2168 }
2169
2170 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2171 struct kvm_run *kvm_run)
2172 {
2173 u32 cpu_based_vm_exec_control;
2174
2175 /* clear pending irq */
2176 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2177 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2178 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2179 /*
2180 * If the user space waits to inject interrupts, exit as soon as
2181 * possible
2182 */
2183 if (kvm_run->request_interrupt_window &&
2184 !vcpu->arch.irq_summary) {
2185 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2186 ++vcpu->stat.irq_window_exits;
2187 return 0;
2188 }
2189 return 1;
2190 }
2191
2192 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2193 {
2194 skip_emulated_instruction(vcpu);
2195 return kvm_emulate_halt(vcpu);
2196 }
2197
2198 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2199 {
2200 skip_emulated_instruction(vcpu);
2201 kvm_emulate_hypercall(vcpu);
2202 return 1;
2203 }
2204
2205 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2206 {
2207 skip_emulated_instruction(vcpu);
2208 /* TODO: Add support for VT-d/pass-through device */
2209 return 1;
2210 }
2211
2212 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2213 {
2214 u64 exit_qualification;
2215 enum emulation_result er;
2216 unsigned long offset;
2217
2218 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2219 offset = exit_qualification & 0xffful;
2220
2221 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2222
2223 if (er != EMULATE_DONE) {
2224 printk(KERN_ERR
2225 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2226 offset);
2227 return -ENOTSUPP;
2228 }
2229 return 1;
2230 }
2231
2232 /*
2233 * The exit handlers return 1 if the exit was handled fully and guest execution
2234 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2235 * to be done to userspace and return 0.
2236 */
2237 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2238 struct kvm_run *kvm_run) = {
2239 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2240 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2241 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2242 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2243 [EXIT_REASON_CR_ACCESS] = handle_cr,
2244 [EXIT_REASON_DR_ACCESS] = handle_dr,
2245 [EXIT_REASON_CPUID] = handle_cpuid,
2246 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2247 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2248 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2249 [EXIT_REASON_HLT] = handle_halt,
2250 [EXIT_REASON_VMCALL] = handle_vmcall,
2251 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2252 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2253 [EXIT_REASON_WBINVD] = handle_wbinvd,
2254 };
2255
2256 static const int kvm_vmx_max_exit_handlers =
2257 ARRAY_SIZE(kvm_vmx_exit_handlers);
2258
2259 /*
2260 * The guest has exited. See if we can fix it or if we need userspace
2261 * assistance.
2262 */
2263 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2264 {
2265 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2266 struct vcpu_vmx *vmx = to_vmx(vcpu);
2267 u32 vectoring_info = vmx->idt_vectoring_info;
2268
2269 if (unlikely(vmx->fail)) {
2270 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2271 kvm_run->fail_entry.hardware_entry_failure_reason
2272 = vmcs_read32(VM_INSTRUCTION_ERROR);
2273 return 0;
2274 }
2275
2276 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2277 exit_reason != EXIT_REASON_EXCEPTION_NMI)
2278 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2279 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2280 if (exit_reason < kvm_vmx_max_exit_handlers
2281 && kvm_vmx_exit_handlers[exit_reason])
2282 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2283 else {
2284 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2285 kvm_run->hw.hardware_exit_reason = exit_reason;
2286 }
2287 return 0;
2288 }
2289
2290 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2291 {
2292 int max_irr, tpr;
2293
2294 if (!vm_need_tpr_shadow(vcpu->kvm))
2295 return;
2296
2297 if (!kvm_lapic_enabled(vcpu) ||
2298 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2299 vmcs_write32(TPR_THRESHOLD, 0);
2300 return;
2301 }
2302
2303 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2304 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2305 }
2306
2307 static void enable_irq_window(struct kvm_vcpu *vcpu)
2308 {
2309 u32 cpu_based_vm_exec_control;
2310
2311 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2312 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2313 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2314 }
2315
2316 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2317 {
2318 struct vcpu_vmx *vmx = to_vmx(vcpu);
2319 u32 idtv_info_field, intr_info_field;
2320 int has_ext_irq, interrupt_window_open;
2321 int vector;
2322
2323 update_tpr_threshold(vcpu);
2324
2325 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2326 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2327 idtv_info_field = vmx->idt_vectoring_info;
2328 if (intr_info_field & INTR_INFO_VALID_MASK) {
2329 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2330 /* TODO: fault when IDT_Vectoring */
2331 if (printk_ratelimit())
2332 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2333 }
2334 if (has_ext_irq)
2335 enable_irq_window(vcpu);
2336 return;
2337 }
2338 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2339 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2340 == INTR_TYPE_EXT_INTR
2341 && vcpu->arch.rmode.active) {
2342 u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2343
2344 vmx_inject_irq(vcpu, vect);
2345 if (unlikely(has_ext_irq))
2346 enable_irq_window(vcpu);
2347 return;
2348 }
2349
2350 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2351 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2352 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2353
2354 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2355 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2356 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2357 if (unlikely(has_ext_irq))
2358 enable_irq_window(vcpu);
2359 return;
2360 }
2361 if (!has_ext_irq)
2362 return;
2363 interrupt_window_open =
2364 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2365 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2366 if (interrupt_window_open) {
2367 vector = kvm_cpu_get_interrupt(vcpu);
2368 vmx_inject_irq(vcpu, vector);
2369 kvm_timer_intr_post(vcpu, vector);
2370 } else
2371 enable_irq_window(vcpu);
2372 }
2373
2374 /*
2375 * Failure to inject an interrupt should give us the information
2376 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2377 * when fetching the interrupt redirection bitmap in the real-mode
2378 * tss, this doesn't happen. So we do it ourselves.
2379 */
2380 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2381 {
2382 vmx->rmode.irq.pending = 0;
2383 if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2384 return;
2385 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2386 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2387 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2388 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2389 return;
2390 }
2391 vmx->idt_vectoring_info =
2392 VECTORING_INFO_VALID_MASK
2393 | INTR_TYPE_EXT_INTR
2394 | vmx->rmode.irq.vector;
2395 }
2396
2397 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2398 {
2399 struct vcpu_vmx *vmx = to_vmx(vcpu);
2400 u32 intr_info;
2401
2402 /*
2403 * Loading guest fpu may have cleared host cr0.ts
2404 */
2405 vmcs_writel(HOST_CR0, read_cr0());
2406
2407 asm(
2408 /* Store host registers */
2409 #ifdef CONFIG_X86_64
2410 "push %%rdx; push %%rbp;"
2411 "push %%rcx \n\t"
2412 #else
2413 "push %%edx; push %%ebp;"
2414 "push %%ecx \n\t"
2415 #endif
2416 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2417 /* Check if vmlaunch of vmresume is needed */
2418 "cmpl $0, %c[launched](%0) \n\t"
2419 /* Load guest registers. Don't clobber flags. */
2420 #ifdef CONFIG_X86_64
2421 "mov %c[cr2](%0), %%rax \n\t"
2422 "mov %%rax, %%cr2 \n\t"
2423 "mov %c[rax](%0), %%rax \n\t"
2424 "mov %c[rbx](%0), %%rbx \n\t"
2425 "mov %c[rdx](%0), %%rdx \n\t"
2426 "mov %c[rsi](%0), %%rsi \n\t"
2427 "mov %c[rdi](%0), %%rdi \n\t"
2428 "mov %c[rbp](%0), %%rbp \n\t"
2429 "mov %c[r8](%0), %%r8 \n\t"
2430 "mov %c[r9](%0), %%r9 \n\t"
2431 "mov %c[r10](%0), %%r10 \n\t"
2432 "mov %c[r11](%0), %%r11 \n\t"
2433 "mov %c[r12](%0), %%r12 \n\t"
2434 "mov %c[r13](%0), %%r13 \n\t"
2435 "mov %c[r14](%0), %%r14 \n\t"
2436 "mov %c[r15](%0), %%r15 \n\t"
2437 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2438 #else
2439 "mov %c[cr2](%0), %%eax \n\t"
2440 "mov %%eax, %%cr2 \n\t"
2441 "mov %c[rax](%0), %%eax \n\t"
2442 "mov %c[rbx](%0), %%ebx \n\t"
2443 "mov %c[rdx](%0), %%edx \n\t"
2444 "mov %c[rsi](%0), %%esi \n\t"
2445 "mov %c[rdi](%0), %%edi \n\t"
2446 "mov %c[rbp](%0), %%ebp \n\t"
2447 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2448 #endif
2449 /* Enter guest mode */
2450 "jne .Llaunched \n\t"
2451 ASM_VMX_VMLAUNCH "\n\t"
2452 "jmp .Lkvm_vmx_return \n\t"
2453 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2454 ".Lkvm_vmx_return: "
2455 /* Save guest registers, load host registers, keep flags */
2456 #ifdef CONFIG_X86_64
2457 "xchg %0, (%%rsp) \n\t"
2458 "mov %%rax, %c[rax](%0) \n\t"
2459 "mov %%rbx, %c[rbx](%0) \n\t"
2460 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2461 "mov %%rdx, %c[rdx](%0) \n\t"
2462 "mov %%rsi, %c[rsi](%0) \n\t"
2463 "mov %%rdi, %c[rdi](%0) \n\t"
2464 "mov %%rbp, %c[rbp](%0) \n\t"
2465 "mov %%r8, %c[r8](%0) \n\t"
2466 "mov %%r9, %c[r9](%0) \n\t"
2467 "mov %%r10, %c[r10](%0) \n\t"
2468 "mov %%r11, %c[r11](%0) \n\t"
2469 "mov %%r12, %c[r12](%0) \n\t"
2470 "mov %%r13, %c[r13](%0) \n\t"
2471 "mov %%r14, %c[r14](%0) \n\t"
2472 "mov %%r15, %c[r15](%0) \n\t"
2473 "mov %%cr2, %%rax \n\t"
2474 "mov %%rax, %c[cr2](%0) \n\t"
2475
2476 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
2477 #else
2478 "xchg %0, (%%esp) \n\t"
2479 "mov %%eax, %c[rax](%0) \n\t"
2480 "mov %%ebx, %c[rbx](%0) \n\t"
2481 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2482 "mov %%edx, %c[rdx](%0) \n\t"
2483 "mov %%esi, %c[rsi](%0) \n\t"
2484 "mov %%edi, %c[rdi](%0) \n\t"
2485 "mov %%ebp, %c[rbp](%0) \n\t"
2486 "mov %%cr2, %%eax \n\t"
2487 "mov %%eax, %c[cr2](%0) \n\t"
2488
2489 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2490 #endif
2491 "setbe %c[fail](%0) \n\t"
2492 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2493 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2494 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2495 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
2496 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
2497 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
2498 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
2499 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
2500 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
2501 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
2502 #ifdef CONFIG_X86_64
2503 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
2504 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
2505 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
2506 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
2507 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
2508 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
2509 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
2510 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
2511 #endif
2512 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
2513 : "cc", "memory"
2514 #ifdef CONFIG_X86_64
2515 , "rbx", "rdi", "rsi"
2516 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2517 #else
2518 , "ebx", "edi", "rsi"
2519 #endif
2520 );
2521
2522 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2523 if (vmx->rmode.irq.pending)
2524 fixup_rmode_irq(vmx);
2525
2526 vcpu->arch.interrupt_window_open =
2527 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2528
2529 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2530 vmx->launched = 1;
2531
2532 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2533
2534 /* We need to handle NMIs before interrupts are enabled */
2535 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2536 asm("int $2");
2537 }
2538
2539 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2540 {
2541 struct vcpu_vmx *vmx = to_vmx(vcpu);
2542
2543 if (vmx->vmcs) {
2544 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2545 free_vmcs(vmx->vmcs);
2546 vmx->vmcs = NULL;
2547 }
2548 }
2549
2550 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2551 {
2552 struct vcpu_vmx *vmx = to_vmx(vcpu);
2553
2554 spin_lock(&vmx_vpid_lock);
2555 if (vmx->vpid != 0)
2556 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2557 spin_unlock(&vmx_vpid_lock);
2558 vmx_free_vmcs(vcpu);
2559 kfree(vmx->host_msrs);
2560 kfree(vmx->guest_msrs);
2561 kvm_vcpu_uninit(vcpu);
2562 kmem_cache_free(kvm_vcpu_cache, vmx);
2563 }
2564
2565 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2566 {
2567 int err;
2568 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2569 int cpu;
2570
2571 if (!vmx)
2572 return ERR_PTR(-ENOMEM);
2573
2574 allocate_vpid(vmx);
2575
2576 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2577 if (err)
2578 goto free_vcpu;
2579
2580 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2581 if (!vmx->guest_msrs) {
2582 err = -ENOMEM;
2583 goto uninit_vcpu;
2584 }
2585
2586 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2587 if (!vmx->host_msrs)
2588 goto free_guest_msrs;
2589
2590 vmx->vmcs = alloc_vmcs();
2591 if (!vmx->vmcs)
2592 goto free_msrs;
2593
2594 vmcs_clear(vmx->vmcs);
2595
2596 cpu = get_cpu();
2597 vmx_vcpu_load(&vmx->vcpu, cpu);
2598 err = vmx_vcpu_setup(vmx);
2599 vmx_vcpu_put(&vmx->vcpu);
2600 put_cpu();
2601 if (err)
2602 goto free_vmcs;
2603 if (vm_need_virtualize_apic_accesses(kvm))
2604 if (alloc_apic_access_page(kvm) != 0)
2605 goto free_vmcs;
2606
2607 return &vmx->vcpu;
2608
2609 free_vmcs:
2610 free_vmcs(vmx->vmcs);
2611 free_msrs:
2612 kfree(vmx->host_msrs);
2613 free_guest_msrs:
2614 kfree(vmx->guest_msrs);
2615 uninit_vcpu:
2616 kvm_vcpu_uninit(&vmx->vcpu);
2617 free_vcpu:
2618 kmem_cache_free(kvm_vcpu_cache, vmx);
2619 return ERR_PTR(err);
2620 }
2621
2622 static void __init vmx_check_processor_compat(void *rtn)
2623 {
2624 struct vmcs_config vmcs_conf;
2625
2626 *(int *)rtn = 0;
2627 if (setup_vmcs_config(&vmcs_conf) < 0)
2628 *(int *)rtn = -EIO;
2629 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2630 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2631 smp_processor_id());
2632 *(int *)rtn = -EIO;
2633 }
2634 }
2635
2636 static struct kvm_x86_ops vmx_x86_ops = {
2637 .cpu_has_kvm_support = cpu_has_kvm_support,
2638 .disabled_by_bios = vmx_disabled_by_bios,
2639 .hardware_setup = hardware_setup,
2640 .hardware_unsetup = hardware_unsetup,
2641 .check_processor_compatibility = vmx_check_processor_compat,
2642 .hardware_enable = hardware_enable,
2643 .hardware_disable = hardware_disable,
2644 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
2645
2646 .vcpu_create = vmx_create_vcpu,
2647 .vcpu_free = vmx_free_vcpu,
2648 .vcpu_reset = vmx_vcpu_reset,
2649
2650 .prepare_guest_switch = vmx_save_host_state,
2651 .vcpu_load = vmx_vcpu_load,
2652 .vcpu_put = vmx_vcpu_put,
2653 .vcpu_decache = vmx_vcpu_decache,
2654
2655 .set_guest_debug = set_guest_debug,
2656 .guest_debug_pre = kvm_guest_debug_pre,
2657 .get_msr = vmx_get_msr,
2658 .set_msr = vmx_set_msr,
2659 .get_segment_base = vmx_get_segment_base,
2660 .get_segment = vmx_get_segment,
2661 .set_segment = vmx_set_segment,
2662 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2663 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2664 .set_cr0 = vmx_set_cr0,
2665 .set_cr3 = vmx_set_cr3,
2666 .set_cr4 = vmx_set_cr4,
2667 #ifdef CONFIG_X86_64
2668 .set_efer = vmx_set_efer,
2669 #endif
2670 .get_idt = vmx_get_idt,
2671 .set_idt = vmx_set_idt,
2672 .get_gdt = vmx_get_gdt,
2673 .set_gdt = vmx_set_gdt,
2674 .cache_regs = vcpu_load_rsp_rip,
2675 .decache_regs = vcpu_put_rsp_rip,
2676 .get_rflags = vmx_get_rflags,
2677 .set_rflags = vmx_set_rflags,
2678
2679 .tlb_flush = vmx_flush_tlb,
2680
2681 .run = vmx_vcpu_run,
2682 .handle_exit = kvm_handle_exit,
2683 .skip_emulated_instruction = skip_emulated_instruction,
2684 .patch_hypercall = vmx_patch_hypercall,
2685 .get_irq = vmx_get_irq,
2686 .set_irq = vmx_inject_irq,
2687 .queue_exception = vmx_queue_exception,
2688 .exception_injected = vmx_exception_injected,
2689 .inject_pending_irq = vmx_intr_assist,
2690 .inject_pending_vectors = do_interrupt_requests,
2691
2692 .set_tss_addr = vmx_set_tss_addr,
2693 };
2694
2695 static int __init vmx_init(void)
2696 {
2697 void *iova;
2698 int r;
2699
2700 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2701 if (!vmx_io_bitmap_a)
2702 return -ENOMEM;
2703
2704 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2705 if (!vmx_io_bitmap_b) {
2706 r = -ENOMEM;
2707 goto out;
2708 }
2709
2710 /*
2711 * Allow direct access to the PC debug port (it is often used for I/O
2712 * delays, but the vmexits simply slow things down).
2713 */
2714 iova = kmap(vmx_io_bitmap_a);
2715 memset(iova, 0xff, PAGE_SIZE);
2716 clear_bit(0x80, iova);
2717 kunmap(vmx_io_bitmap_a);
2718
2719 iova = kmap(vmx_io_bitmap_b);
2720 memset(iova, 0xff, PAGE_SIZE);
2721 kunmap(vmx_io_bitmap_b);
2722
2723 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
2724
2725 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2726 if (r)
2727 goto out1;
2728
2729 if (bypass_guest_pf)
2730 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2731
2732 return 0;
2733
2734 out1:
2735 __free_page(vmx_io_bitmap_b);
2736 out:
2737 __free_page(vmx_io_bitmap_a);
2738 return r;
2739 }
2740
2741 static void __exit vmx_exit(void)
2742 {
2743 __free_page(vmx_io_bitmap_b);
2744 __free_page(vmx_io_bitmap_a);
2745
2746 kvm_exit();
2747 }
2748
2749 module_init(vmx_init)
2750 module_exit(vmx_exit)
This page took 0.139028 seconds and 6 git commands to generate.