Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29
30 #include <asm/io.h>
31 #include <asm/desc.h>
32
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
35
36 static int bypass_guest_pf = 1;
37 module_param(bypass_guest_pf, bool, 0);
38
39 static int enable_vpid = 1;
40 module_param(enable_vpid, bool, 0);
41
42 static int flexpriority_enabled = 1;
43 module_param(flexpriority_enabled, bool, 0);
44
45 static int enable_ept = 1;
46 module_param(enable_ept, bool, 0);
47
48 struct vmcs {
49 u32 revision_id;
50 u32 abort;
51 char data[0];
52 };
53
54 struct vcpu_vmx {
55 struct kvm_vcpu vcpu;
56 int launched;
57 u8 fail;
58 u32 idt_vectoring_info;
59 struct kvm_msr_entry *guest_msrs;
60 struct kvm_msr_entry *host_msrs;
61 int nmsrs;
62 int save_nmsrs;
63 int msr_offset_efer;
64 #ifdef CONFIG_X86_64
65 int msr_offset_kernel_gs_base;
66 #endif
67 struct vmcs *vmcs;
68 struct {
69 int loaded;
70 u16 fs_sel, gs_sel, ldt_sel;
71 int gs_ldt_reload_needed;
72 int fs_reload_needed;
73 int guest_efer_loaded;
74 } host_state;
75 struct {
76 struct {
77 bool pending;
78 u8 vector;
79 unsigned rip;
80 } irq;
81 } rmode;
82 int vpid;
83 };
84
85 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
86 {
87 return container_of(vcpu, struct vcpu_vmx, vcpu);
88 }
89
90 static int init_rmode(struct kvm *kvm);
91
92 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
93 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
94
95 static struct page *vmx_io_bitmap_a;
96 static struct page *vmx_io_bitmap_b;
97 static struct page *vmx_msr_bitmap;
98
99 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
100 static DEFINE_SPINLOCK(vmx_vpid_lock);
101
102 static struct vmcs_config {
103 int size;
104 int order;
105 u32 revision_id;
106 u32 pin_based_exec_ctrl;
107 u32 cpu_based_exec_ctrl;
108 u32 cpu_based_2nd_exec_ctrl;
109 u32 vmexit_ctrl;
110 u32 vmentry_ctrl;
111 } vmcs_config;
112
113 struct vmx_capability {
114 u32 ept;
115 u32 vpid;
116 } vmx_capability;
117
118 #define VMX_SEGMENT_FIELD(seg) \
119 [VCPU_SREG_##seg] = { \
120 .selector = GUEST_##seg##_SELECTOR, \
121 .base = GUEST_##seg##_BASE, \
122 .limit = GUEST_##seg##_LIMIT, \
123 .ar_bytes = GUEST_##seg##_AR_BYTES, \
124 }
125
126 static struct kvm_vmx_segment_field {
127 unsigned selector;
128 unsigned base;
129 unsigned limit;
130 unsigned ar_bytes;
131 } kvm_vmx_segment_fields[] = {
132 VMX_SEGMENT_FIELD(CS),
133 VMX_SEGMENT_FIELD(DS),
134 VMX_SEGMENT_FIELD(ES),
135 VMX_SEGMENT_FIELD(FS),
136 VMX_SEGMENT_FIELD(GS),
137 VMX_SEGMENT_FIELD(SS),
138 VMX_SEGMENT_FIELD(TR),
139 VMX_SEGMENT_FIELD(LDTR),
140 };
141
142 /*
143 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
144 * away by decrementing the array size.
145 */
146 static const u32 vmx_msr_index[] = {
147 #ifdef CONFIG_X86_64
148 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
149 #endif
150 MSR_EFER, MSR_K6_STAR,
151 };
152 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
153
154 static void load_msrs(struct kvm_msr_entry *e, int n)
155 {
156 int i;
157
158 for (i = 0; i < n; ++i)
159 wrmsrl(e[i].index, e[i].data);
160 }
161
162 static void save_msrs(struct kvm_msr_entry *e, int n)
163 {
164 int i;
165
166 for (i = 0; i < n; ++i)
167 rdmsrl(e[i].index, e[i].data);
168 }
169
170 static inline int is_page_fault(u32 intr_info)
171 {
172 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
173 INTR_INFO_VALID_MASK)) ==
174 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
175 }
176
177 static inline int is_no_device(u32 intr_info)
178 {
179 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
180 INTR_INFO_VALID_MASK)) ==
181 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
182 }
183
184 static inline int is_invalid_opcode(u32 intr_info)
185 {
186 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
187 INTR_INFO_VALID_MASK)) ==
188 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
189 }
190
191 static inline int is_external_interrupt(u32 intr_info)
192 {
193 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
194 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
195 }
196
197 static inline int cpu_has_vmx_msr_bitmap(void)
198 {
199 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
200 }
201
202 static inline int cpu_has_vmx_tpr_shadow(void)
203 {
204 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
205 }
206
207 static inline int vm_need_tpr_shadow(struct kvm *kvm)
208 {
209 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
210 }
211
212 static inline int cpu_has_secondary_exec_ctrls(void)
213 {
214 return (vmcs_config.cpu_based_exec_ctrl &
215 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
216 }
217
218 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
219 {
220 return flexpriority_enabled
221 && (vmcs_config.cpu_based_2nd_exec_ctrl &
222 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
223 }
224
225 static inline int cpu_has_vmx_invept_individual_addr(void)
226 {
227 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
228 }
229
230 static inline int cpu_has_vmx_invept_context(void)
231 {
232 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
233 }
234
235 static inline int cpu_has_vmx_invept_global(void)
236 {
237 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
238 }
239
240 static inline int cpu_has_vmx_ept(void)
241 {
242 return (vmcs_config.cpu_based_2nd_exec_ctrl &
243 SECONDARY_EXEC_ENABLE_EPT);
244 }
245
246 static inline int vm_need_ept(void)
247 {
248 return (cpu_has_vmx_ept() && enable_ept);
249 }
250
251 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
252 {
253 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
254 (irqchip_in_kernel(kvm)));
255 }
256
257 static inline int cpu_has_vmx_vpid(void)
258 {
259 return (vmcs_config.cpu_based_2nd_exec_ctrl &
260 SECONDARY_EXEC_ENABLE_VPID);
261 }
262
263 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
264 {
265 int i;
266
267 for (i = 0; i < vmx->nmsrs; ++i)
268 if (vmx->guest_msrs[i].index == msr)
269 return i;
270 return -1;
271 }
272
273 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
274 {
275 struct {
276 u64 vpid : 16;
277 u64 rsvd : 48;
278 u64 gva;
279 } operand = { vpid, 0, gva };
280
281 asm volatile (ASM_VMX_INVVPID
282 /* CF==1 or ZF==1 --> rc = -1 */
283 "; ja 1f ; ud2 ; 1:"
284 : : "a"(&operand), "c"(ext) : "cc", "memory");
285 }
286
287 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
288 {
289 struct {
290 u64 eptp, gpa;
291 } operand = {eptp, gpa};
292
293 asm volatile (ASM_VMX_INVEPT
294 /* CF==1 or ZF==1 --> rc = -1 */
295 "; ja 1f ; ud2 ; 1:\n"
296 : : "a" (&operand), "c" (ext) : "cc", "memory");
297 }
298
299 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
300 {
301 int i;
302
303 i = __find_msr_index(vmx, msr);
304 if (i >= 0)
305 return &vmx->guest_msrs[i];
306 return NULL;
307 }
308
309 static void vmcs_clear(struct vmcs *vmcs)
310 {
311 u64 phys_addr = __pa(vmcs);
312 u8 error;
313
314 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
315 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
316 : "cc", "memory");
317 if (error)
318 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
319 vmcs, phys_addr);
320 }
321
322 static void __vcpu_clear(void *arg)
323 {
324 struct vcpu_vmx *vmx = arg;
325 int cpu = raw_smp_processor_id();
326
327 if (vmx->vcpu.cpu == cpu)
328 vmcs_clear(vmx->vmcs);
329 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
330 per_cpu(current_vmcs, cpu) = NULL;
331 rdtscll(vmx->vcpu.arch.host_tsc);
332 }
333
334 static void vcpu_clear(struct vcpu_vmx *vmx)
335 {
336 if (vmx->vcpu.cpu == -1)
337 return;
338 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
339 vmx->launched = 0;
340 }
341
342 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
343 {
344 if (vmx->vpid == 0)
345 return;
346
347 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
348 }
349
350 static inline void ept_sync_global(void)
351 {
352 if (cpu_has_vmx_invept_global())
353 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
354 }
355
356 static inline void ept_sync_context(u64 eptp)
357 {
358 if (vm_need_ept()) {
359 if (cpu_has_vmx_invept_context())
360 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
361 else
362 ept_sync_global();
363 }
364 }
365
366 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
367 {
368 if (vm_need_ept()) {
369 if (cpu_has_vmx_invept_individual_addr())
370 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
371 eptp, gpa);
372 else
373 ept_sync_context(eptp);
374 }
375 }
376
377 static unsigned long vmcs_readl(unsigned long field)
378 {
379 unsigned long value;
380
381 asm volatile (ASM_VMX_VMREAD_RDX_RAX
382 : "=a"(value) : "d"(field) : "cc");
383 return value;
384 }
385
386 static u16 vmcs_read16(unsigned long field)
387 {
388 return vmcs_readl(field);
389 }
390
391 static u32 vmcs_read32(unsigned long field)
392 {
393 return vmcs_readl(field);
394 }
395
396 static u64 vmcs_read64(unsigned long field)
397 {
398 #ifdef CONFIG_X86_64
399 return vmcs_readl(field);
400 #else
401 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
402 #endif
403 }
404
405 static noinline void vmwrite_error(unsigned long field, unsigned long value)
406 {
407 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
408 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
409 dump_stack();
410 }
411
412 static void vmcs_writel(unsigned long field, unsigned long value)
413 {
414 u8 error;
415
416 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
417 : "=q"(error) : "a"(value), "d"(field) : "cc");
418 if (unlikely(error))
419 vmwrite_error(field, value);
420 }
421
422 static void vmcs_write16(unsigned long field, u16 value)
423 {
424 vmcs_writel(field, value);
425 }
426
427 static void vmcs_write32(unsigned long field, u32 value)
428 {
429 vmcs_writel(field, value);
430 }
431
432 static void vmcs_write64(unsigned long field, u64 value)
433 {
434 #ifdef CONFIG_X86_64
435 vmcs_writel(field, value);
436 #else
437 vmcs_writel(field, value);
438 asm volatile ("");
439 vmcs_writel(field+1, value >> 32);
440 #endif
441 }
442
443 static void vmcs_clear_bits(unsigned long field, u32 mask)
444 {
445 vmcs_writel(field, vmcs_readl(field) & ~mask);
446 }
447
448 static void vmcs_set_bits(unsigned long field, u32 mask)
449 {
450 vmcs_writel(field, vmcs_readl(field) | mask);
451 }
452
453 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
454 {
455 u32 eb;
456
457 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
458 if (!vcpu->fpu_active)
459 eb |= 1u << NM_VECTOR;
460 if (vcpu->guest_debug.enabled)
461 eb |= 1u << 1;
462 if (vcpu->arch.rmode.active)
463 eb = ~0;
464 if (vm_need_ept())
465 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
466 vmcs_write32(EXCEPTION_BITMAP, eb);
467 }
468
469 static void reload_tss(void)
470 {
471 /*
472 * VT restores TR but not its size. Useless.
473 */
474 struct descriptor_table gdt;
475 struct desc_struct *descs;
476
477 get_gdt(&gdt);
478 descs = (void *)gdt.base;
479 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
480 load_TR_desc();
481 }
482
483 static void load_transition_efer(struct vcpu_vmx *vmx)
484 {
485 int efer_offset = vmx->msr_offset_efer;
486 u64 host_efer = vmx->host_msrs[efer_offset].data;
487 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
488 u64 ignore_bits;
489
490 if (efer_offset < 0)
491 return;
492 /*
493 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
494 * outside long mode
495 */
496 ignore_bits = EFER_NX | EFER_SCE;
497 #ifdef CONFIG_X86_64
498 ignore_bits |= EFER_LMA | EFER_LME;
499 /* SCE is meaningful only in long mode on Intel */
500 if (guest_efer & EFER_LMA)
501 ignore_bits &= ~(u64)EFER_SCE;
502 #endif
503 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
504 return;
505
506 vmx->host_state.guest_efer_loaded = 1;
507 guest_efer &= ~ignore_bits;
508 guest_efer |= host_efer & ignore_bits;
509 wrmsrl(MSR_EFER, guest_efer);
510 vmx->vcpu.stat.efer_reload++;
511 }
512
513 static void reload_host_efer(struct vcpu_vmx *vmx)
514 {
515 if (vmx->host_state.guest_efer_loaded) {
516 vmx->host_state.guest_efer_loaded = 0;
517 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
518 }
519 }
520
521 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
522 {
523 struct vcpu_vmx *vmx = to_vmx(vcpu);
524
525 if (vmx->host_state.loaded)
526 return;
527
528 vmx->host_state.loaded = 1;
529 /*
530 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
531 * allow segment selectors with cpl > 0 or ti == 1.
532 */
533 vmx->host_state.ldt_sel = read_ldt();
534 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
535 vmx->host_state.fs_sel = read_fs();
536 if (!(vmx->host_state.fs_sel & 7)) {
537 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
538 vmx->host_state.fs_reload_needed = 0;
539 } else {
540 vmcs_write16(HOST_FS_SELECTOR, 0);
541 vmx->host_state.fs_reload_needed = 1;
542 }
543 vmx->host_state.gs_sel = read_gs();
544 if (!(vmx->host_state.gs_sel & 7))
545 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
546 else {
547 vmcs_write16(HOST_GS_SELECTOR, 0);
548 vmx->host_state.gs_ldt_reload_needed = 1;
549 }
550
551 #ifdef CONFIG_X86_64
552 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
553 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
554 #else
555 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
556 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
557 #endif
558
559 #ifdef CONFIG_X86_64
560 if (is_long_mode(&vmx->vcpu))
561 save_msrs(vmx->host_msrs +
562 vmx->msr_offset_kernel_gs_base, 1);
563
564 #endif
565 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
566 load_transition_efer(vmx);
567 }
568
569 static void vmx_load_host_state(struct vcpu_vmx *vmx)
570 {
571 unsigned long flags;
572
573 if (!vmx->host_state.loaded)
574 return;
575
576 ++vmx->vcpu.stat.host_state_reload;
577 vmx->host_state.loaded = 0;
578 if (vmx->host_state.fs_reload_needed)
579 load_fs(vmx->host_state.fs_sel);
580 if (vmx->host_state.gs_ldt_reload_needed) {
581 load_ldt(vmx->host_state.ldt_sel);
582 /*
583 * If we have to reload gs, we must take care to
584 * preserve our gs base.
585 */
586 local_irq_save(flags);
587 load_gs(vmx->host_state.gs_sel);
588 #ifdef CONFIG_X86_64
589 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
590 #endif
591 local_irq_restore(flags);
592 }
593 reload_tss();
594 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
595 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
596 reload_host_efer(vmx);
597 }
598
599 /*
600 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
601 * vcpu mutex is already taken.
602 */
603 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
604 {
605 struct vcpu_vmx *vmx = to_vmx(vcpu);
606 u64 phys_addr = __pa(vmx->vmcs);
607 u64 tsc_this, delta, new_offset;
608
609 if (vcpu->cpu != cpu) {
610 vcpu_clear(vmx);
611 kvm_migrate_apic_timer(vcpu);
612 vpid_sync_vcpu_all(vmx);
613 }
614
615 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
616 u8 error;
617
618 per_cpu(current_vmcs, cpu) = vmx->vmcs;
619 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
620 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
621 : "cc");
622 if (error)
623 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
624 vmx->vmcs, phys_addr);
625 }
626
627 if (vcpu->cpu != cpu) {
628 struct descriptor_table dt;
629 unsigned long sysenter_esp;
630
631 vcpu->cpu = cpu;
632 /*
633 * Linux uses per-cpu TSS and GDT, so set these when switching
634 * processors.
635 */
636 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
637 get_gdt(&dt);
638 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
639
640 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
641 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
642
643 /*
644 * Make sure the time stamp counter is monotonous.
645 */
646 rdtscll(tsc_this);
647 if (tsc_this < vcpu->arch.host_tsc) {
648 delta = vcpu->arch.host_tsc - tsc_this;
649 new_offset = vmcs_read64(TSC_OFFSET) + delta;
650 vmcs_write64(TSC_OFFSET, new_offset);
651 }
652 }
653 }
654
655 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
656 {
657 vmx_load_host_state(to_vmx(vcpu));
658 }
659
660 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
661 {
662 if (vcpu->fpu_active)
663 return;
664 vcpu->fpu_active = 1;
665 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
666 if (vcpu->arch.cr0 & X86_CR0_TS)
667 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
668 update_exception_bitmap(vcpu);
669 }
670
671 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
672 {
673 if (!vcpu->fpu_active)
674 return;
675 vcpu->fpu_active = 0;
676 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
677 update_exception_bitmap(vcpu);
678 }
679
680 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
681 {
682 vcpu_clear(to_vmx(vcpu));
683 }
684
685 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
686 {
687 return vmcs_readl(GUEST_RFLAGS);
688 }
689
690 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
691 {
692 if (vcpu->arch.rmode.active)
693 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
694 vmcs_writel(GUEST_RFLAGS, rflags);
695 }
696
697 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
698 {
699 unsigned long rip;
700 u32 interruptibility;
701
702 rip = vmcs_readl(GUEST_RIP);
703 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
704 vmcs_writel(GUEST_RIP, rip);
705
706 /*
707 * We emulated an instruction, so temporary interrupt blocking
708 * should be removed, if set.
709 */
710 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
711 if (interruptibility & 3)
712 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
713 interruptibility & ~3);
714 vcpu->arch.interrupt_window_open = 1;
715 }
716
717 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
718 bool has_error_code, u32 error_code)
719 {
720 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
721 nr | INTR_TYPE_EXCEPTION
722 | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
723 | INTR_INFO_VALID_MASK);
724 if (has_error_code)
725 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
726 }
727
728 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
729 {
730 struct vcpu_vmx *vmx = to_vmx(vcpu);
731
732 return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
733 }
734
735 /*
736 * Swap MSR entry in host/guest MSR entry array.
737 */
738 #ifdef CONFIG_X86_64
739 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
740 {
741 struct kvm_msr_entry tmp;
742
743 tmp = vmx->guest_msrs[to];
744 vmx->guest_msrs[to] = vmx->guest_msrs[from];
745 vmx->guest_msrs[from] = tmp;
746 tmp = vmx->host_msrs[to];
747 vmx->host_msrs[to] = vmx->host_msrs[from];
748 vmx->host_msrs[from] = tmp;
749 }
750 #endif
751
752 /*
753 * Set up the vmcs to automatically save and restore system
754 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
755 * mode, as fiddling with msrs is very expensive.
756 */
757 static void setup_msrs(struct vcpu_vmx *vmx)
758 {
759 int save_nmsrs;
760
761 vmx_load_host_state(vmx);
762 save_nmsrs = 0;
763 #ifdef CONFIG_X86_64
764 if (is_long_mode(&vmx->vcpu)) {
765 int index;
766
767 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
768 if (index >= 0)
769 move_msr_up(vmx, index, save_nmsrs++);
770 index = __find_msr_index(vmx, MSR_LSTAR);
771 if (index >= 0)
772 move_msr_up(vmx, index, save_nmsrs++);
773 index = __find_msr_index(vmx, MSR_CSTAR);
774 if (index >= 0)
775 move_msr_up(vmx, index, save_nmsrs++);
776 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
777 if (index >= 0)
778 move_msr_up(vmx, index, save_nmsrs++);
779 /*
780 * MSR_K6_STAR is only needed on long mode guests, and only
781 * if efer.sce is enabled.
782 */
783 index = __find_msr_index(vmx, MSR_K6_STAR);
784 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
785 move_msr_up(vmx, index, save_nmsrs++);
786 }
787 #endif
788 vmx->save_nmsrs = save_nmsrs;
789
790 #ifdef CONFIG_X86_64
791 vmx->msr_offset_kernel_gs_base =
792 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
793 #endif
794 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
795 }
796
797 /*
798 * reads and returns guest's timestamp counter "register"
799 * guest_tsc = host_tsc + tsc_offset -- 21.3
800 */
801 static u64 guest_read_tsc(void)
802 {
803 u64 host_tsc, tsc_offset;
804
805 rdtscll(host_tsc);
806 tsc_offset = vmcs_read64(TSC_OFFSET);
807 return host_tsc + tsc_offset;
808 }
809
810 /*
811 * writes 'guest_tsc' into guest's timestamp counter "register"
812 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
813 */
814 static void guest_write_tsc(u64 guest_tsc)
815 {
816 u64 host_tsc;
817
818 rdtscll(host_tsc);
819 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
820 }
821
822 /*
823 * Reads an msr value (of 'msr_index') into 'pdata'.
824 * Returns 0 on success, non-0 otherwise.
825 * Assumes vcpu_load() was already called.
826 */
827 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
828 {
829 u64 data;
830 struct kvm_msr_entry *msr;
831
832 if (!pdata) {
833 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
834 return -EINVAL;
835 }
836
837 switch (msr_index) {
838 #ifdef CONFIG_X86_64
839 case MSR_FS_BASE:
840 data = vmcs_readl(GUEST_FS_BASE);
841 break;
842 case MSR_GS_BASE:
843 data = vmcs_readl(GUEST_GS_BASE);
844 break;
845 case MSR_EFER:
846 return kvm_get_msr_common(vcpu, msr_index, pdata);
847 #endif
848 case MSR_IA32_TIME_STAMP_COUNTER:
849 data = guest_read_tsc();
850 break;
851 case MSR_IA32_SYSENTER_CS:
852 data = vmcs_read32(GUEST_SYSENTER_CS);
853 break;
854 case MSR_IA32_SYSENTER_EIP:
855 data = vmcs_readl(GUEST_SYSENTER_EIP);
856 break;
857 case MSR_IA32_SYSENTER_ESP:
858 data = vmcs_readl(GUEST_SYSENTER_ESP);
859 break;
860 default:
861 msr = find_msr_entry(to_vmx(vcpu), msr_index);
862 if (msr) {
863 data = msr->data;
864 break;
865 }
866 return kvm_get_msr_common(vcpu, msr_index, pdata);
867 }
868
869 *pdata = data;
870 return 0;
871 }
872
873 /*
874 * Writes msr value into into the appropriate "register".
875 * Returns 0 on success, non-0 otherwise.
876 * Assumes vcpu_load() was already called.
877 */
878 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
879 {
880 struct vcpu_vmx *vmx = to_vmx(vcpu);
881 struct kvm_msr_entry *msr;
882 int ret = 0;
883
884 switch (msr_index) {
885 #ifdef CONFIG_X86_64
886 case MSR_EFER:
887 ret = kvm_set_msr_common(vcpu, msr_index, data);
888 if (vmx->host_state.loaded) {
889 reload_host_efer(vmx);
890 load_transition_efer(vmx);
891 }
892 break;
893 case MSR_FS_BASE:
894 vmcs_writel(GUEST_FS_BASE, data);
895 break;
896 case MSR_GS_BASE:
897 vmcs_writel(GUEST_GS_BASE, data);
898 break;
899 #endif
900 case MSR_IA32_SYSENTER_CS:
901 vmcs_write32(GUEST_SYSENTER_CS, data);
902 break;
903 case MSR_IA32_SYSENTER_EIP:
904 vmcs_writel(GUEST_SYSENTER_EIP, data);
905 break;
906 case MSR_IA32_SYSENTER_ESP:
907 vmcs_writel(GUEST_SYSENTER_ESP, data);
908 break;
909 case MSR_IA32_TIME_STAMP_COUNTER:
910 guest_write_tsc(data);
911 break;
912 default:
913 msr = find_msr_entry(vmx, msr_index);
914 if (msr) {
915 msr->data = data;
916 if (vmx->host_state.loaded)
917 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
918 break;
919 }
920 ret = kvm_set_msr_common(vcpu, msr_index, data);
921 }
922
923 return ret;
924 }
925
926 /*
927 * Sync the rsp and rip registers into the vcpu structure. This allows
928 * registers to be accessed by indexing vcpu->arch.regs.
929 */
930 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
931 {
932 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
933 vcpu->arch.rip = vmcs_readl(GUEST_RIP);
934 }
935
936 /*
937 * Syncs rsp and rip back into the vmcs. Should be called after possible
938 * modification.
939 */
940 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
941 {
942 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
943 vmcs_writel(GUEST_RIP, vcpu->arch.rip);
944 }
945
946 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
947 {
948 unsigned long dr7 = 0x400;
949 int old_singlestep;
950
951 old_singlestep = vcpu->guest_debug.singlestep;
952
953 vcpu->guest_debug.enabled = dbg->enabled;
954 if (vcpu->guest_debug.enabled) {
955 int i;
956
957 dr7 |= 0x200; /* exact */
958 for (i = 0; i < 4; ++i) {
959 if (!dbg->breakpoints[i].enabled)
960 continue;
961 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
962 dr7 |= 2 << (i*2); /* global enable */
963 dr7 |= 0 << (i*4+16); /* execution breakpoint */
964 }
965
966 vcpu->guest_debug.singlestep = dbg->singlestep;
967 } else
968 vcpu->guest_debug.singlestep = 0;
969
970 if (old_singlestep && !vcpu->guest_debug.singlestep) {
971 unsigned long flags;
972
973 flags = vmcs_readl(GUEST_RFLAGS);
974 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
975 vmcs_writel(GUEST_RFLAGS, flags);
976 }
977
978 update_exception_bitmap(vcpu);
979 vmcs_writel(GUEST_DR7, dr7);
980
981 return 0;
982 }
983
984 static int vmx_get_irq(struct kvm_vcpu *vcpu)
985 {
986 struct vcpu_vmx *vmx = to_vmx(vcpu);
987 u32 idtv_info_field;
988
989 idtv_info_field = vmx->idt_vectoring_info;
990 if (idtv_info_field & INTR_INFO_VALID_MASK) {
991 if (is_external_interrupt(idtv_info_field))
992 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
993 else
994 printk(KERN_DEBUG "pending exception: not handled yet\n");
995 }
996 return -1;
997 }
998
999 static __init int cpu_has_kvm_support(void)
1000 {
1001 unsigned long ecx = cpuid_ecx(1);
1002 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
1003 }
1004
1005 static __init int vmx_disabled_by_bios(void)
1006 {
1007 u64 msr;
1008
1009 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1010 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
1011 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1012 == MSR_IA32_FEATURE_CONTROL_LOCKED;
1013 /* locked but not enabled */
1014 }
1015
1016 static void hardware_enable(void *garbage)
1017 {
1018 int cpu = raw_smp_processor_id();
1019 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1020 u64 old;
1021
1022 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1023 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
1024 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1025 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
1026 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1027 /* enable and lock */
1028 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1029 MSR_IA32_FEATURE_CONTROL_LOCKED |
1030 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
1031 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1032 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
1033 : "memory", "cc");
1034 }
1035
1036 static void hardware_disable(void *garbage)
1037 {
1038 asm volatile (ASM_VMX_VMXOFF : : : "cc");
1039 }
1040
1041 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1042 u32 msr, u32 *result)
1043 {
1044 u32 vmx_msr_low, vmx_msr_high;
1045 u32 ctl = ctl_min | ctl_opt;
1046
1047 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1048
1049 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1050 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1051
1052 /* Ensure minimum (required) set of control bits are supported. */
1053 if (ctl_min & ~ctl)
1054 return -EIO;
1055
1056 *result = ctl;
1057 return 0;
1058 }
1059
1060 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1061 {
1062 u32 vmx_msr_low, vmx_msr_high;
1063 u32 min, opt, min2, opt2;
1064 u32 _pin_based_exec_control = 0;
1065 u32 _cpu_based_exec_control = 0;
1066 u32 _cpu_based_2nd_exec_control = 0;
1067 u32 _vmexit_control = 0;
1068 u32 _vmentry_control = 0;
1069
1070 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1071 opt = 0;
1072 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1073 &_pin_based_exec_control) < 0)
1074 return -EIO;
1075
1076 min = CPU_BASED_HLT_EXITING |
1077 #ifdef CONFIG_X86_64
1078 CPU_BASED_CR8_LOAD_EXITING |
1079 CPU_BASED_CR8_STORE_EXITING |
1080 #endif
1081 CPU_BASED_CR3_LOAD_EXITING |
1082 CPU_BASED_CR3_STORE_EXITING |
1083 CPU_BASED_USE_IO_BITMAPS |
1084 CPU_BASED_MOV_DR_EXITING |
1085 CPU_BASED_USE_TSC_OFFSETING;
1086 opt = CPU_BASED_TPR_SHADOW |
1087 CPU_BASED_USE_MSR_BITMAPS |
1088 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1089 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1090 &_cpu_based_exec_control) < 0)
1091 return -EIO;
1092 #ifdef CONFIG_X86_64
1093 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1094 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1095 ~CPU_BASED_CR8_STORE_EXITING;
1096 #endif
1097 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1098 min2 = 0;
1099 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1100 SECONDARY_EXEC_WBINVD_EXITING |
1101 SECONDARY_EXEC_ENABLE_VPID |
1102 SECONDARY_EXEC_ENABLE_EPT;
1103 if (adjust_vmx_controls(min2, opt2,
1104 MSR_IA32_VMX_PROCBASED_CTLS2,
1105 &_cpu_based_2nd_exec_control) < 0)
1106 return -EIO;
1107 }
1108 #ifndef CONFIG_X86_64
1109 if (!(_cpu_based_2nd_exec_control &
1110 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1111 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1112 #endif
1113 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1114 /* CR3 accesses don't need to cause VM Exits when EPT enabled */
1115 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1116 CPU_BASED_CR3_STORE_EXITING);
1117 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1118 &_cpu_based_exec_control) < 0)
1119 return -EIO;
1120 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1121 vmx_capability.ept, vmx_capability.vpid);
1122 }
1123
1124 min = 0;
1125 #ifdef CONFIG_X86_64
1126 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1127 #endif
1128 opt = 0;
1129 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1130 &_vmexit_control) < 0)
1131 return -EIO;
1132
1133 min = opt = 0;
1134 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1135 &_vmentry_control) < 0)
1136 return -EIO;
1137
1138 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1139
1140 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1141 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1142 return -EIO;
1143
1144 #ifdef CONFIG_X86_64
1145 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1146 if (vmx_msr_high & (1u<<16))
1147 return -EIO;
1148 #endif
1149
1150 /* Require Write-Back (WB) memory type for VMCS accesses. */
1151 if (((vmx_msr_high >> 18) & 15) != 6)
1152 return -EIO;
1153
1154 vmcs_conf->size = vmx_msr_high & 0x1fff;
1155 vmcs_conf->order = get_order(vmcs_config.size);
1156 vmcs_conf->revision_id = vmx_msr_low;
1157
1158 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1159 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1160 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1161 vmcs_conf->vmexit_ctrl = _vmexit_control;
1162 vmcs_conf->vmentry_ctrl = _vmentry_control;
1163
1164 return 0;
1165 }
1166
1167 static struct vmcs *alloc_vmcs_cpu(int cpu)
1168 {
1169 int node = cpu_to_node(cpu);
1170 struct page *pages;
1171 struct vmcs *vmcs;
1172
1173 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1174 if (!pages)
1175 return NULL;
1176 vmcs = page_address(pages);
1177 memset(vmcs, 0, vmcs_config.size);
1178 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1179 return vmcs;
1180 }
1181
1182 static struct vmcs *alloc_vmcs(void)
1183 {
1184 return alloc_vmcs_cpu(raw_smp_processor_id());
1185 }
1186
1187 static void free_vmcs(struct vmcs *vmcs)
1188 {
1189 free_pages((unsigned long)vmcs, vmcs_config.order);
1190 }
1191
1192 static void free_kvm_area(void)
1193 {
1194 int cpu;
1195
1196 for_each_online_cpu(cpu)
1197 free_vmcs(per_cpu(vmxarea, cpu));
1198 }
1199
1200 static __init int alloc_kvm_area(void)
1201 {
1202 int cpu;
1203
1204 for_each_online_cpu(cpu) {
1205 struct vmcs *vmcs;
1206
1207 vmcs = alloc_vmcs_cpu(cpu);
1208 if (!vmcs) {
1209 free_kvm_area();
1210 return -ENOMEM;
1211 }
1212
1213 per_cpu(vmxarea, cpu) = vmcs;
1214 }
1215 return 0;
1216 }
1217
1218 static __init int hardware_setup(void)
1219 {
1220 if (setup_vmcs_config(&vmcs_config) < 0)
1221 return -EIO;
1222
1223 if (boot_cpu_has(X86_FEATURE_NX))
1224 kvm_enable_efer_bits(EFER_NX);
1225
1226 return alloc_kvm_area();
1227 }
1228
1229 static __exit void hardware_unsetup(void)
1230 {
1231 free_kvm_area();
1232 }
1233
1234 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1235 {
1236 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1237
1238 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1239 vmcs_write16(sf->selector, save->selector);
1240 vmcs_writel(sf->base, save->base);
1241 vmcs_write32(sf->limit, save->limit);
1242 vmcs_write32(sf->ar_bytes, save->ar);
1243 } else {
1244 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1245 << AR_DPL_SHIFT;
1246 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1247 }
1248 }
1249
1250 static void enter_pmode(struct kvm_vcpu *vcpu)
1251 {
1252 unsigned long flags;
1253
1254 vcpu->arch.rmode.active = 0;
1255
1256 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1257 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1258 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1259
1260 flags = vmcs_readl(GUEST_RFLAGS);
1261 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1262 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1263 vmcs_writel(GUEST_RFLAGS, flags);
1264
1265 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1266 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1267
1268 update_exception_bitmap(vcpu);
1269
1270 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1271 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1272 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1273 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1274
1275 vmcs_write16(GUEST_SS_SELECTOR, 0);
1276 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1277
1278 vmcs_write16(GUEST_CS_SELECTOR,
1279 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1280 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1281 }
1282
1283 static gva_t rmode_tss_base(struct kvm *kvm)
1284 {
1285 if (!kvm->arch.tss_addr) {
1286 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1287 kvm->memslots[0].npages - 3;
1288 return base_gfn << PAGE_SHIFT;
1289 }
1290 return kvm->arch.tss_addr;
1291 }
1292
1293 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1294 {
1295 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1296
1297 save->selector = vmcs_read16(sf->selector);
1298 save->base = vmcs_readl(sf->base);
1299 save->limit = vmcs_read32(sf->limit);
1300 save->ar = vmcs_read32(sf->ar_bytes);
1301 vmcs_write16(sf->selector, save->base >> 4);
1302 vmcs_write32(sf->base, save->base & 0xfffff);
1303 vmcs_write32(sf->limit, 0xffff);
1304 vmcs_write32(sf->ar_bytes, 0xf3);
1305 }
1306
1307 static void enter_rmode(struct kvm_vcpu *vcpu)
1308 {
1309 unsigned long flags;
1310
1311 vcpu->arch.rmode.active = 1;
1312
1313 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1314 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1315
1316 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1317 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1318
1319 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1320 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1321
1322 flags = vmcs_readl(GUEST_RFLAGS);
1323 vcpu->arch.rmode.save_iopl
1324 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1325
1326 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1327
1328 vmcs_writel(GUEST_RFLAGS, flags);
1329 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1330 update_exception_bitmap(vcpu);
1331
1332 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1333 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1334 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1335
1336 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1337 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1338 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1339 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1340 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1341
1342 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1343 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1344 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1345 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1346
1347 kvm_mmu_reset_context(vcpu);
1348 init_rmode(vcpu->kvm);
1349 }
1350
1351 #ifdef CONFIG_X86_64
1352
1353 static void enter_lmode(struct kvm_vcpu *vcpu)
1354 {
1355 u32 guest_tr_ar;
1356
1357 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1358 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1359 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1360 __func__);
1361 vmcs_write32(GUEST_TR_AR_BYTES,
1362 (guest_tr_ar & ~AR_TYPE_MASK)
1363 | AR_TYPE_BUSY_64_TSS);
1364 }
1365
1366 vcpu->arch.shadow_efer |= EFER_LMA;
1367
1368 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1369 vmcs_write32(VM_ENTRY_CONTROLS,
1370 vmcs_read32(VM_ENTRY_CONTROLS)
1371 | VM_ENTRY_IA32E_MODE);
1372 }
1373
1374 static void exit_lmode(struct kvm_vcpu *vcpu)
1375 {
1376 vcpu->arch.shadow_efer &= ~EFER_LMA;
1377
1378 vmcs_write32(VM_ENTRY_CONTROLS,
1379 vmcs_read32(VM_ENTRY_CONTROLS)
1380 & ~VM_ENTRY_IA32E_MODE);
1381 }
1382
1383 #endif
1384
1385 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1386 {
1387 vpid_sync_vcpu_all(to_vmx(vcpu));
1388 }
1389
1390 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1391 {
1392 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1393 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1394 }
1395
1396 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1397 {
1398 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1399 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1400 printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1401 return;
1402 }
1403 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1404 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1405 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1406 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1407 }
1408 }
1409
1410 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1411
1412 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1413 unsigned long cr0,
1414 struct kvm_vcpu *vcpu)
1415 {
1416 if (!(cr0 & X86_CR0_PG)) {
1417 /* From paging/starting to nonpaging */
1418 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1419 vmcs_config.cpu_based_exec_ctrl |
1420 (CPU_BASED_CR3_LOAD_EXITING |
1421 CPU_BASED_CR3_STORE_EXITING));
1422 vcpu->arch.cr0 = cr0;
1423 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1424 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1425 *hw_cr0 &= ~X86_CR0_WP;
1426 } else if (!is_paging(vcpu)) {
1427 /* From nonpaging to paging */
1428 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1429 vmcs_config.cpu_based_exec_ctrl &
1430 ~(CPU_BASED_CR3_LOAD_EXITING |
1431 CPU_BASED_CR3_STORE_EXITING));
1432 vcpu->arch.cr0 = cr0;
1433 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1434 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1435 *hw_cr0 &= ~X86_CR0_WP;
1436 }
1437 }
1438
1439 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1440 struct kvm_vcpu *vcpu)
1441 {
1442 if (!is_paging(vcpu)) {
1443 *hw_cr4 &= ~X86_CR4_PAE;
1444 *hw_cr4 |= X86_CR4_PSE;
1445 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1446 *hw_cr4 &= ~X86_CR4_PAE;
1447 }
1448
1449 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1450 {
1451 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1452 KVM_VM_CR0_ALWAYS_ON;
1453
1454 vmx_fpu_deactivate(vcpu);
1455
1456 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1457 enter_pmode(vcpu);
1458
1459 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1460 enter_rmode(vcpu);
1461
1462 #ifdef CONFIG_X86_64
1463 if (vcpu->arch.shadow_efer & EFER_LME) {
1464 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1465 enter_lmode(vcpu);
1466 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1467 exit_lmode(vcpu);
1468 }
1469 #endif
1470
1471 if (vm_need_ept())
1472 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1473
1474 vmcs_writel(CR0_READ_SHADOW, cr0);
1475 vmcs_writel(GUEST_CR0, hw_cr0);
1476 vcpu->arch.cr0 = cr0;
1477
1478 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1479 vmx_fpu_activate(vcpu);
1480 }
1481
1482 static u64 construct_eptp(unsigned long root_hpa)
1483 {
1484 u64 eptp;
1485
1486 /* TODO write the value reading from MSR */
1487 eptp = VMX_EPT_DEFAULT_MT |
1488 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1489 eptp |= (root_hpa & PAGE_MASK);
1490
1491 return eptp;
1492 }
1493
1494 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1495 {
1496 unsigned long guest_cr3;
1497 u64 eptp;
1498
1499 guest_cr3 = cr3;
1500 if (vm_need_ept()) {
1501 eptp = construct_eptp(cr3);
1502 vmcs_write64(EPT_POINTER, eptp);
1503 ept_sync_context(eptp);
1504 ept_load_pdptrs(vcpu);
1505 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1506 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1507 }
1508
1509 vmx_flush_tlb(vcpu);
1510 vmcs_writel(GUEST_CR3, guest_cr3);
1511 if (vcpu->arch.cr0 & X86_CR0_PE)
1512 vmx_fpu_deactivate(vcpu);
1513 }
1514
1515 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1516 {
1517 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1518 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1519
1520 vcpu->arch.cr4 = cr4;
1521 if (vm_need_ept())
1522 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1523
1524 vmcs_writel(CR4_READ_SHADOW, cr4);
1525 vmcs_writel(GUEST_CR4, hw_cr4);
1526 }
1527
1528 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1529 {
1530 struct vcpu_vmx *vmx = to_vmx(vcpu);
1531 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1532
1533 vcpu->arch.shadow_efer = efer;
1534 if (!msr)
1535 return;
1536 if (efer & EFER_LMA) {
1537 vmcs_write32(VM_ENTRY_CONTROLS,
1538 vmcs_read32(VM_ENTRY_CONTROLS) |
1539 VM_ENTRY_IA32E_MODE);
1540 msr->data = efer;
1541
1542 } else {
1543 vmcs_write32(VM_ENTRY_CONTROLS,
1544 vmcs_read32(VM_ENTRY_CONTROLS) &
1545 ~VM_ENTRY_IA32E_MODE);
1546
1547 msr->data = efer & ~EFER_LME;
1548 }
1549 setup_msrs(vmx);
1550 }
1551
1552 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1553 {
1554 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1555
1556 return vmcs_readl(sf->base);
1557 }
1558
1559 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1560 struct kvm_segment *var, int seg)
1561 {
1562 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1563 u32 ar;
1564
1565 var->base = vmcs_readl(sf->base);
1566 var->limit = vmcs_read32(sf->limit);
1567 var->selector = vmcs_read16(sf->selector);
1568 ar = vmcs_read32(sf->ar_bytes);
1569 if (ar & AR_UNUSABLE_MASK)
1570 ar = 0;
1571 var->type = ar & 15;
1572 var->s = (ar >> 4) & 1;
1573 var->dpl = (ar >> 5) & 3;
1574 var->present = (ar >> 7) & 1;
1575 var->avl = (ar >> 12) & 1;
1576 var->l = (ar >> 13) & 1;
1577 var->db = (ar >> 14) & 1;
1578 var->g = (ar >> 15) & 1;
1579 var->unusable = (ar >> 16) & 1;
1580 }
1581
1582 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1583 {
1584 struct kvm_segment kvm_seg;
1585
1586 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1587 return 0;
1588
1589 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1590 return 3;
1591
1592 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1593 return kvm_seg.selector & 3;
1594 }
1595
1596 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1597 {
1598 u32 ar;
1599
1600 if (var->unusable)
1601 ar = 1 << 16;
1602 else {
1603 ar = var->type & 15;
1604 ar |= (var->s & 1) << 4;
1605 ar |= (var->dpl & 3) << 5;
1606 ar |= (var->present & 1) << 7;
1607 ar |= (var->avl & 1) << 12;
1608 ar |= (var->l & 1) << 13;
1609 ar |= (var->db & 1) << 14;
1610 ar |= (var->g & 1) << 15;
1611 }
1612 if (ar == 0) /* a 0 value means unusable */
1613 ar = AR_UNUSABLE_MASK;
1614
1615 return ar;
1616 }
1617
1618 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1619 struct kvm_segment *var, int seg)
1620 {
1621 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1622 u32 ar;
1623
1624 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1625 vcpu->arch.rmode.tr.selector = var->selector;
1626 vcpu->arch.rmode.tr.base = var->base;
1627 vcpu->arch.rmode.tr.limit = var->limit;
1628 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1629 return;
1630 }
1631 vmcs_writel(sf->base, var->base);
1632 vmcs_write32(sf->limit, var->limit);
1633 vmcs_write16(sf->selector, var->selector);
1634 if (vcpu->arch.rmode.active && var->s) {
1635 /*
1636 * Hack real-mode segments into vm86 compatibility.
1637 */
1638 if (var->base == 0xffff0000 && var->selector == 0xf000)
1639 vmcs_writel(sf->base, 0xf0000);
1640 ar = 0xf3;
1641 } else
1642 ar = vmx_segment_access_rights(var);
1643 vmcs_write32(sf->ar_bytes, ar);
1644 }
1645
1646 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1647 {
1648 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1649
1650 *db = (ar >> 14) & 1;
1651 *l = (ar >> 13) & 1;
1652 }
1653
1654 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1655 {
1656 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1657 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1658 }
1659
1660 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1661 {
1662 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1663 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1664 }
1665
1666 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1667 {
1668 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1669 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1670 }
1671
1672 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1673 {
1674 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1675 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1676 }
1677
1678 static int init_rmode_tss(struct kvm *kvm)
1679 {
1680 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1681 u16 data = 0;
1682 int ret = 0;
1683 int r;
1684
1685 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1686 if (r < 0)
1687 goto out;
1688 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1689 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1690 if (r < 0)
1691 goto out;
1692 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1693 if (r < 0)
1694 goto out;
1695 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1696 if (r < 0)
1697 goto out;
1698 data = ~0;
1699 r = kvm_write_guest_page(kvm, fn, &data,
1700 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1701 sizeof(u8));
1702 if (r < 0)
1703 goto out;
1704
1705 ret = 1;
1706 out:
1707 return ret;
1708 }
1709
1710 static int init_rmode_identity_map(struct kvm *kvm)
1711 {
1712 int i, r, ret;
1713 pfn_t identity_map_pfn;
1714 u32 tmp;
1715
1716 if (!vm_need_ept())
1717 return 1;
1718 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1719 printk(KERN_ERR "EPT: identity-mapping pagetable "
1720 "haven't been allocated!\n");
1721 return 0;
1722 }
1723 if (likely(kvm->arch.ept_identity_pagetable_done))
1724 return 1;
1725 ret = 0;
1726 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1727 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1728 if (r < 0)
1729 goto out;
1730 /* Set up identity-mapping pagetable for EPT in real mode */
1731 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1732 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
1733 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
1734 r = kvm_write_guest_page(kvm, identity_map_pfn,
1735 &tmp, i * sizeof(tmp), sizeof(tmp));
1736 if (r < 0)
1737 goto out;
1738 }
1739 kvm->arch.ept_identity_pagetable_done = true;
1740 ret = 1;
1741 out:
1742 return ret;
1743 }
1744
1745 static void seg_setup(int seg)
1746 {
1747 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1748
1749 vmcs_write16(sf->selector, 0);
1750 vmcs_writel(sf->base, 0);
1751 vmcs_write32(sf->limit, 0xffff);
1752 vmcs_write32(sf->ar_bytes, 0x93);
1753 }
1754
1755 static int alloc_apic_access_page(struct kvm *kvm)
1756 {
1757 struct kvm_userspace_memory_region kvm_userspace_mem;
1758 int r = 0;
1759
1760 down_write(&kvm->slots_lock);
1761 if (kvm->arch.apic_access_page)
1762 goto out;
1763 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1764 kvm_userspace_mem.flags = 0;
1765 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1766 kvm_userspace_mem.memory_size = PAGE_SIZE;
1767 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1768 if (r)
1769 goto out;
1770
1771 down_read(&current->mm->mmap_sem);
1772 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1773 up_read(&current->mm->mmap_sem);
1774 out:
1775 up_write(&kvm->slots_lock);
1776 return r;
1777 }
1778
1779 static int alloc_identity_pagetable(struct kvm *kvm)
1780 {
1781 struct kvm_userspace_memory_region kvm_userspace_mem;
1782 int r = 0;
1783
1784 down_write(&kvm->slots_lock);
1785 if (kvm->arch.ept_identity_pagetable)
1786 goto out;
1787 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
1788 kvm_userspace_mem.flags = 0;
1789 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1790 kvm_userspace_mem.memory_size = PAGE_SIZE;
1791 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1792 if (r)
1793 goto out;
1794
1795 down_read(&current->mm->mmap_sem);
1796 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
1797 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
1798 up_read(&current->mm->mmap_sem);
1799 out:
1800 up_write(&kvm->slots_lock);
1801 return r;
1802 }
1803
1804 static void allocate_vpid(struct vcpu_vmx *vmx)
1805 {
1806 int vpid;
1807
1808 vmx->vpid = 0;
1809 if (!enable_vpid || !cpu_has_vmx_vpid())
1810 return;
1811 spin_lock(&vmx_vpid_lock);
1812 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
1813 if (vpid < VMX_NR_VPIDS) {
1814 vmx->vpid = vpid;
1815 __set_bit(vpid, vmx_vpid_bitmap);
1816 }
1817 spin_unlock(&vmx_vpid_lock);
1818 }
1819
1820 void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
1821 {
1822 void *va;
1823
1824 if (!cpu_has_vmx_msr_bitmap())
1825 return;
1826
1827 /*
1828 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
1829 * have the write-low and read-high bitmap offsets the wrong way round.
1830 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
1831 */
1832 va = kmap(msr_bitmap);
1833 if (msr <= 0x1fff) {
1834 __clear_bit(msr, va + 0x000); /* read-low */
1835 __clear_bit(msr, va + 0x800); /* write-low */
1836 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1837 msr &= 0x1fff;
1838 __clear_bit(msr, va + 0x400); /* read-high */
1839 __clear_bit(msr, va + 0xc00); /* write-high */
1840 }
1841 kunmap(msr_bitmap);
1842 }
1843
1844 /*
1845 * Sets up the vmcs for emulated real mode.
1846 */
1847 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1848 {
1849 u32 host_sysenter_cs;
1850 u32 junk;
1851 unsigned long a;
1852 struct descriptor_table dt;
1853 int i;
1854 unsigned long kvm_vmx_return;
1855 u32 exec_control;
1856
1857 /* I/O */
1858 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1859 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1860
1861 if (cpu_has_vmx_msr_bitmap())
1862 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
1863
1864 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1865
1866 /* Control */
1867 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1868 vmcs_config.pin_based_exec_ctrl);
1869
1870 exec_control = vmcs_config.cpu_based_exec_ctrl;
1871 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1872 exec_control &= ~CPU_BASED_TPR_SHADOW;
1873 #ifdef CONFIG_X86_64
1874 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1875 CPU_BASED_CR8_LOAD_EXITING;
1876 #endif
1877 }
1878 if (!vm_need_ept())
1879 exec_control |= CPU_BASED_CR3_STORE_EXITING |
1880 CPU_BASED_CR3_LOAD_EXITING;
1881 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1882
1883 if (cpu_has_secondary_exec_ctrls()) {
1884 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1885 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1886 exec_control &=
1887 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1888 if (vmx->vpid == 0)
1889 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
1890 if (!vm_need_ept())
1891 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
1892 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1893 }
1894
1895 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1896 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1897 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1898
1899 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1900 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1901 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1902
1903 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1904 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1905 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1906 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1907 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1908 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1909 #ifdef CONFIG_X86_64
1910 rdmsrl(MSR_FS_BASE, a);
1911 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1912 rdmsrl(MSR_GS_BASE, a);
1913 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1914 #else
1915 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1916 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1917 #endif
1918
1919 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1920
1921 get_idt(&dt);
1922 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1923
1924 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1925 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1926 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1927 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1928 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1929
1930 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1931 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1932 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1933 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1934 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1935 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1936
1937 for (i = 0; i < NR_VMX_MSR; ++i) {
1938 u32 index = vmx_msr_index[i];
1939 u32 data_low, data_high;
1940 u64 data;
1941 int j = vmx->nmsrs;
1942
1943 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1944 continue;
1945 if (wrmsr_safe(index, data_low, data_high) < 0)
1946 continue;
1947 data = data_low | ((u64)data_high << 32);
1948 vmx->host_msrs[j].index = index;
1949 vmx->host_msrs[j].reserved = 0;
1950 vmx->host_msrs[j].data = data;
1951 vmx->guest_msrs[j] = vmx->host_msrs[j];
1952 ++vmx->nmsrs;
1953 }
1954
1955 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1956
1957 /* 22.2.1, 20.8.1 */
1958 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1959
1960 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1961 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1962
1963
1964 return 0;
1965 }
1966
1967 static int init_rmode(struct kvm *kvm)
1968 {
1969 if (!init_rmode_tss(kvm))
1970 return 0;
1971 if (!init_rmode_identity_map(kvm))
1972 return 0;
1973 return 1;
1974 }
1975
1976 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1977 {
1978 struct vcpu_vmx *vmx = to_vmx(vcpu);
1979 u64 msr;
1980 int ret;
1981
1982 down_read(&vcpu->kvm->slots_lock);
1983 if (!init_rmode(vmx->vcpu.kvm)) {
1984 ret = -ENOMEM;
1985 goto out;
1986 }
1987
1988 vmx->vcpu.arch.rmode.active = 0;
1989
1990 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1991 kvm_set_cr8(&vmx->vcpu, 0);
1992 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1993 if (vmx->vcpu.vcpu_id == 0)
1994 msr |= MSR_IA32_APICBASE_BSP;
1995 kvm_set_apic_base(&vmx->vcpu, msr);
1996
1997 fx_init(&vmx->vcpu);
1998
1999 /*
2000 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2001 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2002 */
2003 if (vmx->vcpu.vcpu_id == 0) {
2004 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2005 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2006 } else {
2007 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2008 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2009 }
2010 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2011 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2012
2013 seg_setup(VCPU_SREG_DS);
2014 seg_setup(VCPU_SREG_ES);
2015 seg_setup(VCPU_SREG_FS);
2016 seg_setup(VCPU_SREG_GS);
2017 seg_setup(VCPU_SREG_SS);
2018
2019 vmcs_write16(GUEST_TR_SELECTOR, 0);
2020 vmcs_writel(GUEST_TR_BASE, 0);
2021 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2022 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2023
2024 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2025 vmcs_writel(GUEST_LDTR_BASE, 0);
2026 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2027 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2028
2029 vmcs_write32(GUEST_SYSENTER_CS, 0);
2030 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2031 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2032
2033 vmcs_writel(GUEST_RFLAGS, 0x02);
2034 if (vmx->vcpu.vcpu_id == 0)
2035 vmcs_writel(GUEST_RIP, 0xfff0);
2036 else
2037 vmcs_writel(GUEST_RIP, 0);
2038 vmcs_writel(GUEST_RSP, 0);
2039
2040 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2041 vmcs_writel(GUEST_DR7, 0x400);
2042
2043 vmcs_writel(GUEST_GDTR_BASE, 0);
2044 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2045
2046 vmcs_writel(GUEST_IDTR_BASE, 0);
2047 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2048
2049 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2050 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2051 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2052
2053 guest_write_tsc(0);
2054
2055 /* Special registers */
2056 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2057
2058 setup_msrs(vmx);
2059
2060 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2061
2062 if (cpu_has_vmx_tpr_shadow()) {
2063 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2064 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2065 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2066 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2067 vmcs_write32(TPR_THRESHOLD, 0);
2068 }
2069
2070 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2071 vmcs_write64(APIC_ACCESS_ADDR,
2072 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2073
2074 if (vmx->vpid != 0)
2075 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2076
2077 vmx->vcpu.arch.cr0 = 0x60000010;
2078 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2079 vmx_set_cr4(&vmx->vcpu, 0);
2080 vmx_set_efer(&vmx->vcpu, 0);
2081 vmx_fpu_activate(&vmx->vcpu);
2082 update_exception_bitmap(&vmx->vcpu);
2083
2084 vpid_sync_vcpu_all(vmx);
2085
2086 ret = 0;
2087
2088 out:
2089 up_read(&vcpu->kvm->slots_lock);
2090 return ret;
2091 }
2092
2093 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2094 {
2095 struct vcpu_vmx *vmx = to_vmx(vcpu);
2096
2097 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2098
2099 if (vcpu->arch.rmode.active) {
2100 vmx->rmode.irq.pending = true;
2101 vmx->rmode.irq.vector = irq;
2102 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
2103 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2104 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2105 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2106 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
2107 return;
2108 }
2109 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2110 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2111 }
2112
2113 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2114 {
2115 int word_index = __ffs(vcpu->arch.irq_summary);
2116 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2117 int irq = word_index * BITS_PER_LONG + bit_index;
2118
2119 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2120 if (!vcpu->arch.irq_pending[word_index])
2121 clear_bit(word_index, &vcpu->arch.irq_summary);
2122 vmx_inject_irq(vcpu, irq);
2123 }
2124
2125
2126 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2127 struct kvm_run *kvm_run)
2128 {
2129 u32 cpu_based_vm_exec_control;
2130
2131 vcpu->arch.interrupt_window_open =
2132 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2133 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2134
2135 if (vcpu->arch.interrupt_window_open &&
2136 vcpu->arch.irq_summary &&
2137 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
2138 /*
2139 * If interrupts enabled, and not blocked by sti or mov ss. Good.
2140 */
2141 kvm_do_inject_irq(vcpu);
2142
2143 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2144 if (!vcpu->arch.interrupt_window_open &&
2145 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2146 /*
2147 * Interrupts blocked. Wait for unblock.
2148 */
2149 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2150 else
2151 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2152 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2153 }
2154
2155 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2156 {
2157 int ret;
2158 struct kvm_userspace_memory_region tss_mem = {
2159 .slot = 8,
2160 .guest_phys_addr = addr,
2161 .memory_size = PAGE_SIZE * 3,
2162 .flags = 0,
2163 };
2164
2165 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2166 if (ret)
2167 return ret;
2168 kvm->arch.tss_addr = addr;
2169 return 0;
2170 }
2171
2172 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2173 {
2174 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2175
2176 set_debugreg(dbg->bp[0], 0);
2177 set_debugreg(dbg->bp[1], 1);
2178 set_debugreg(dbg->bp[2], 2);
2179 set_debugreg(dbg->bp[3], 3);
2180
2181 if (dbg->singlestep) {
2182 unsigned long flags;
2183
2184 flags = vmcs_readl(GUEST_RFLAGS);
2185 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2186 vmcs_writel(GUEST_RFLAGS, flags);
2187 }
2188 }
2189
2190 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2191 int vec, u32 err_code)
2192 {
2193 if (!vcpu->arch.rmode.active)
2194 return 0;
2195
2196 /*
2197 * Instruction with address size override prefix opcode 0x67
2198 * Cause the #SS fault with 0 error code in VM86 mode.
2199 */
2200 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2201 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2202 return 1;
2203 return 0;
2204 }
2205
2206 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2207 {
2208 struct vcpu_vmx *vmx = to_vmx(vcpu);
2209 u32 intr_info, error_code;
2210 unsigned long cr2, rip;
2211 u32 vect_info;
2212 enum emulation_result er;
2213
2214 vect_info = vmx->idt_vectoring_info;
2215 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2216
2217 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2218 !is_page_fault(intr_info))
2219 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2220 "intr info 0x%x\n", __func__, vect_info, intr_info);
2221
2222 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2223 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2224 set_bit(irq, vcpu->arch.irq_pending);
2225 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2226 }
2227
2228 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2229 return 1; /* already handled by vmx_vcpu_run() */
2230
2231 if (is_no_device(intr_info)) {
2232 vmx_fpu_activate(vcpu);
2233 return 1;
2234 }
2235
2236 if (is_invalid_opcode(intr_info)) {
2237 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2238 if (er != EMULATE_DONE)
2239 kvm_queue_exception(vcpu, UD_VECTOR);
2240 return 1;
2241 }
2242
2243 error_code = 0;
2244 rip = vmcs_readl(GUEST_RIP);
2245 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2246 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2247 if (is_page_fault(intr_info)) {
2248 /* EPT won't cause page fault directly */
2249 if (vm_need_ept())
2250 BUG();
2251 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2252 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2253 (u32)((u64)cr2 >> 32), handler);
2254 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2255 }
2256
2257 if (vcpu->arch.rmode.active &&
2258 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2259 error_code)) {
2260 if (vcpu->arch.halt_request) {
2261 vcpu->arch.halt_request = 0;
2262 return kvm_emulate_halt(vcpu);
2263 }
2264 return 1;
2265 }
2266
2267 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2268 (INTR_TYPE_EXCEPTION | 1)) {
2269 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2270 return 0;
2271 }
2272 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2273 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2274 kvm_run->ex.error_code = error_code;
2275 return 0;
2276 }
2277
2278 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2279 struct kvm_run *kvm_run)
2280 {
2281 ++vcpu->stat.irq_exits;
2282 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2283 return 1;
2284 }
2285
2286 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2287 {
2288 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2289 return 0;
2290 }
2291
2292 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2293 {
2294 unsigned long exit_qualification;
2295 int size, down, in, string, rep;
2296 unsigned port;
2297
2298 ++vcpu->stat.io_exits;
2299 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2300 string = (exit_qualification & 16) != 0;
2301
2302 if (string) {
2303 if (emulate_instruction(vcpu,
2304 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2305 return 0;
2306 return 1;
2307 }
2308
2309 size = (exit_qualification & 7) + 1;
2310 in = (exit_qualification & 8) != 0;
2311 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2312 rep = (exit_qualification & 32) != 0;
2313 port = exit_qualification >> 16;
2314
2315 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2316 }
2317
2318 static void
2319 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2320 {
2321 /*
2322 * Patch in the VMCALL instruction:
2323 */
2324 hypercall[0] = 0x0f;
2325 hypercall[1] = 0x01;
2326 hypercall[2] = 0xc1;
2327 }
2328
2329 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2330 {
2331 unsigned long exit_qualification;
2332 int cr;
2333 int reg;
2334
2335 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2336 cr = exit_qualification & 15;
2337 reg = (exit_qualification >> 8) & 15;
2338 switch ((exit_qualification >> 4) & 3) {
2339 case 0: /* mov to cr */
2340 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
2341 (u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
2342 switch (cr) {
2343 case 0:
2344 vcpu_load_rsp_rip(vcpu);
2345 kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
2346 skip_emulated_instruction(vcpu);
2347 return 1;
2348 case 3:
2349 vcpu_load_rsp_rip(vcpu);
2350 kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
2351 skip_emulated_instruction(vcpu);
2352 return 1;
2353 case 4:
2354 vcpu_load_rsp_rip(vcpu);
2355 kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
2356 skip_emulated_instruction(vcpu);
2357 return 1;
2358 case 8:
2359 vcpu_load_rsp_rip(vcpu);
2360 kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
2361 skip_emulated_instruction(vcpu);
2362 if (irqchip_in_kernel(vcpu->kvm))
2363 return 1;
2364 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2365 return 0;
2366 };
2367 break;
2368 case 2: /* clts */
2369 vcpu_load_rsp_rip(vcpu);
2370 vmx_fpu_deactivate(vcpu);
2371 vcpu->arch.cr0 &= ~X86_CR0_TS;
2372 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2373 vmx_fpu_activate(vcpu);
2374 KVMTRACE_0D(CLTS, vcpu, handler);
2375 skip_emulated_instruction(vcpu);
2376 return 1;
2377 case 1: /*mov from cr*/
2378 switch (cr) {
2379 case 3:
2380 vcpu_load_rsp_rip(vcpu);
2381 vcpu->arch.regs[reg] = vcpu->arch.cr3;
2382 vcpu_put_rsp_rip(vcpu);
2383 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2384 (u32)vcpu->arch.regs[reg],
2385 (u32)((u64)vcpu->arch.regs[reg] >> 32),
2386 handler);
2387 skip_emulated_instruction(vcpu);
2388 return 1;
2389 case 8:
2390 vcpu_load_rsp_rip(vcpu);
2391 vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
2392 vcpu_put_rsp_rip(vcpu);
2393 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2394 (u32)vcpu->arch.regs[reg], handler);
2395 skip_emulated_instruction(vcpu);
2396 return 1;
2397 }
2398 break;
2399 case 3: /* lmsw */
2400 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2401
2402 skip_emulated_instruction(vcpu);
2403 return 1;
2404 default:
2405 break;
2406 }
2407 kvm_run->exit_reason = 0;
2408 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2409 (int)(exit_qualification >> 4) & 3, cr);
2410 return 0;
2411 }
2412
2413 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2414 {
2415 unsigned long exit_qualification;
2416 unsigned long val;
2417 int dr, reg;
2418
2419 /*
2420 * FIXME: this code assumes the host is debugging the guest.
2421 * need to deal with guest debugging itself too.
2422 */
2423 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2424 dr = exit_qualification & 7;
2425 reg = (exit_qualification >> 8) & 15;
2426 vcpu_load_rsp_rip(vcpu);
2427 if (exit_qualification & 16) {
2428 /* mov from dr */
2429 switch (dr) {
2430 case 6:
2431 val = 0xffff0ff0;
2432 break;
2433 case 7:
2434 val = 0x400;
2435 break;
2436 default:
2437 val = 0;
2438 }
2439 vcpu->arch.regs[reg] = val;
2440 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2441 } else {
2442 /* mov to dr */
2443 }
2444 vcpu_put_rsp_rip(vcpu);
2445 skip_emulated_instruction(vcpu);
2446 return 1;
2447 }
2448
2449 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2450 {
2451 kvm_emulate_cpuid(vcpu);
2452 return 1;
2453 }
2454
2455 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2456 {
2457 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2458 u64 data;
2459
2460 if (vmx_get_msr(vcpu, ecx, &data)) {
2461 kvm_inject_gp(vcpu, 0);
2462 return 1;
2463 }
2464
2465 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2466 handler);
2467
2468 /* FIXME: handling of bits 32:63 of rax, rdx */
2469 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2470 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2471 skip_emulated_instruction(vcpu);
2472 return 1;
2473 }
2474
2475 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2476 {
2477 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2478 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2479 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2480
2481 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2482 handler);
2483
2484 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2485 kvm_inject_gp(vcpu, 0);
2486 return 1;
2487 }
2488
2489 skip_emulated_instruction(vcpu);
2490 return 1;
2491 }
2492
2493 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2494 struct kvm_run *kvm_run)
2495 {
2496 return 1;
2497 }
2498
2499 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2500 struct kvm_run *kvm_run)
2501 {
2502 u32 cpu_based_vm_exec_control;
2503
2504 /* clear pending irq */
2505 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2506 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2507 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2508
2509 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2510
2511 /*
2512 * If the user space waits to inject interrupts, exit as soon as
2513 * possible
2514 */
2515 if (kvm_run->request_interrupt_window &&
2516 !vcpu->arch.irq_summary) {
2517 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2518 ++vcpu->stat.irq_window_exits;
2519 return 0;
2520 }
2521 return 1;
2522 }
2523
2524 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2525 {
2526 skip_emulated_instruction(vcpu);
2527 return kvm_emulate_halt(vcpu);
2528 }
2529
2530 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2531 {
2532 skip_emulated_instruction(vcpu);
2533 kvm_emulate_hypercall(vcpu);
2534 return 1;
2535 }
2536
2537 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2538 {
2539 skip_emulated_instruction(vcpu);
2540 /* TODO: Add support for VT-d/pass-through device */
2541 return 1;
2542 }
2543
2544 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2545 {
2546 u64 exit_qualification;
2547 enum emulation_result er;
2548 unsigned long offset;
2549
2550 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2551 offset = exit_qualification & 0xffful;
2552
2553 KVMTRACE_1D(APIC_ACCESS, vcpu, (u32)offset, handler);
2554
2555 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2556
2557 if (er != EMULATE_DONE) {
2558 printk(KERN_ERR
2559 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2560 offset);
2561 return -ENOTSUPP;
2562 }
2563 return 1;
2564 }
2565
2566 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2567 {
2568 unsigned long exit_qualification;
2569 u16 tss_selector;
2570 int reason;
2571
2572 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2573
2574 reason = (u32)exit_qualification >> 30;
2575 tss_selector = exit_qualification;
2576
2577 return kvm_task_switch(vcpu, tss_selector, reason);
2578 }
2579
2580 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2581 {
2582 u64 exit_qualification;
2583 enum emulation_result er;
2584 gpa_t gpa;
2585 unsigned long hva;
2586 int gla_validity;
2587 int r;
2588
2589 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2590
2591 if (exit_qualification & (1 << 6)) {
2592 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
2593 return -ENOTSUPP;
2594 }
2595
2596 gla_validity = (exit_qualification >> 7) & 0x3;
2597 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
2598 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
2599 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2600 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2601 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2602 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2603 (long unsigned int)exit_qualification);
2604 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2605 kvm_run->hw.hardware_exit_reason = 0;
2606 return -ENOTSUPP;
2607 }
2608
2609 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
2610 hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
2611 if (!kvm_is_error_hva(hva)) {
2612 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
2613 if (r < 0) {
2614 printk(KERN_ERR "EPT: Not enough memory!\n");
2615 return -ENOMEM;
2616 }
2617 return 1;
2618 } else {
2619 /* must be MMIO */
2620 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2621
2622 if (er == EMULATE_FAIL) {
2623 printk(KERN_ERR
2624 "EPT: Fail to handle EPT violation vmexit!er is %d\n",
2625 er);
2626 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2627 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2628 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2629 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2630 (long unsigned int)exit_qualification);
2631 return -ENOTSUPP;
2632 } else if (er == EMULATE_DO_MMIO)
2633 return 0;
2634 }
2635 return 1;
2636 }
2637
2638 /*
2639 * The exit handlers return 1 if the exit was handled fully and guest execution
2640 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2641 * to be done to userspace and return 0.
2642 */
2643 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2644 struct kvm_run *kvm_run) = {
2645 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2646 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2647 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2648 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2649 [EXIT_REASON_CR_ACCESS] = handle_cr,
2650 [EXIT_REASON_DR_ACCESS] = handle_dr,
2651 [EXIT_REASON_CPUID] = handle_cpuid,
2652 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2653 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2654 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2655 [EXIT_REASON_HLT] = handle_halt,
2656 [EXIT_REASON_VMCALL] = handle_vmcall,
2657 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2658 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2659 [EXIT_REASON_WBINVD] = handle_wbinvd,
2660 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
2661 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
2662 };
2663
2664 static const int kvm_vmx_max_exit_handlers =
2665 ARRAY_SIZE(kvm_vmx_exit_handlers);
2666
2667 /*
2668 * The guest has exited. See if we can fix it or if we need userspace
2669 * assistance.
2670 */
2671 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2672 {
2673 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2674 struct vcpu_vmx *vmx = to_vmx(vcpu);
2675 u32 vectoring_info = vmx->idt_vectoring_info;
2676
2677 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
2678 (u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
2679
2680 /* Access CR3 don't cause VMExit in paging mode, so we need
2681 * to sync with guest real CR3. */
2682 if (vm_need_ept() && is_paging(vcpu)) {
2683 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2684 ept_load_pdptrs(vcpu);
2685 }
2686
2687 if (unlikely(vmx->fail)) {
2688 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2689 kvm_run->fail_entry.hardware_entry_failure_reason
2690 = vmcs_read32(VM_INSTRUCTION_ERROR);
2691 return 0;
2692 }
2693
2694 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2695 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
2696 exit_reason != EXIT_REASON_EPT_VIOLATION))
2697 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2698 "exit reason is 0x%x\n", __func__, exit_reason);
2699 if (exit_reason < kvm_vmx_max_exit_handlers
2700 && kvm_vmx_exit_handlers[exit_reason])
2701 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2702 else {
2703 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2704 kvm_run->hw.hardware_exit_reason = exit_reason;
2705 }
2706 return 0;
2707 }
2708
2709 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2710 {
2711 int max_irr, tpr;
2712
2713 if (!vm_need_tpr_shadow(vcpu->kvm))
2714 return;
2715
2716 if (!kvm_lapic_enabled(vcpu) ||
2717 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2718 vmcs_write32(TPR_THRESHOLD, 0);
2719 return;
2720 }
2721
2722 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2723 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2724 }
2725
2726 static void enable_irq_window(struct kvm_vcpu *vcpu)
2727 {
2728 u32 cpu_based_vm_exec_control;
2729
2730 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2731 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2732 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2733 }
2734
2735 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2736 {
2737 struct vcpu_vmx *vmx = to_vmx(vcpu);
2738 u32 idtv_info_field, intr_info_field;
2739 int has_ext_irq, interrupt_window_open;
2740 int vector;
2741
2742 update_tpr_threshold(vcpu);
2743
2744 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2745 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2746 idtv_info_field = vmx->idt_vectoring_info;
2747 if (intr_info_field & INTR_INFO_VALID_MASK) {
2748 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2749 /* TODO: fault when IDT_Vectoring */
2750 if (printk_ratelimit())
2751 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2752 }
2753 if (has_ext_irq)
2754 enable_irq_window(vcpu);
2755 return;
2756 }
2757 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2758 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2759 == INTR_TYPE_EXT_INTR
2760 && vcpu->arch.rmode.active) {
2761 u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2762
2763 vmx_inject_irq(vcpu, vect);
2764 if (unlikely(has_ext_irq))
2765 enable_irq_window(vcpu);
2766 return;
2767 }
2768
2769 KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
2770
2771 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2772 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2773 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2774
2775 if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
2776 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2777 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2778 if (unlikely(has_ext_irq))
2779 enable_irq_window(vcpu);
2780 return;
2781 }
2782 if (!has_ext_irq)
2783 return;
2784 interrupt_window_open =
2785 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2786 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2787 if (interrupt_window_open) {
2788 vector = kvm_cpu_get_interrupt(vcpu);
2789 vmx_inject_irq(vcpu, vector);
2790 kvm_timer_intr_post(vcpu, vector);
2791 } else
2792 enable_irq_window(vcpu);
2793 }
2794
2795 /*
2796 * Failure to inject an interrupt should give us the information
2797 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2798 * when fetching the interrupt redirection bitmap in the real-mode
2799 * tss, this doesn't happen. So we do it ourselves.
2800 */
2801 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2802 {
2803 vmx->rmode.irq.pending = 0;
2804 if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2805 return;
2806 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2807 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2808 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2809 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2810 return;
2811 }
2812 vmx->idt_vectoring_info =
2813 VECTORING_INFO_VALID_MASK
2814 | INTR_TYPE_EXT_INTR
2815 | vmx->rmode.irq.vector;
2816 }
2817
2818 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2819 {
2820 struct vcpu_vmx *vmx = to_vmx(vcpu);
2821 u32 intr_info;
2822
2823 /*
2824 * Loading guest fpu may have cleared host cr0.ts
2825 */
2826 vmcs_writel(HOST_CR0, read_cr0());
2827
2828 asm(
2829 /* Store host registers */
2830 #ifdef CONFIG_X86_64
2831 "push %%rdx; push %%rbp;"
2832 "push %%rcx \n\t"
2833 #else
2834 "push %%edx; push %%ebp;"
2835 "push %%ecx \n\t"
2836 #endif
2837 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2838 /* Check if vmlaunch of vmresume is needed */
2839 "cmpl $0, %c[launched](%0) \n\t"
2840 /* Load guest registers. Don't clobber flags. */
2841 #ifdef CONFIG_X86_64
2842 "mov %c[cr2](%0), %%rax \n\t"
2843 "mov %%rax, %%cr2 \n\t"
2844 "mov %c[rax](%0), %%rax \n\t"
2845 "mov %c[rbx](%0), %%rbx \n\t"
2846 "mov %c[rdx](%0), %%rdx \n\t"
2847 "mov %c[rsi](%0), %%rsi \n\t"
2848 "mov %c[rdi](%0), %%rdi \n\t"
2849 "mov %c[rbp](%0), %%rbp \n\t"
2850 "mov %c[r8](%0), %%r8 \n\t"
2851 "mov %c[r9](%0), %%r9 \n\t"
2852 "mov %c[r10](%0), %%r10 \n\t"
2853 "mov %c[r11](%0), %%r11 \n\t"
2854 "mov %c[r12](%0), %%r12 \n\t"
2855 "mov %c[r13](%0), %%r13 \n\t"
2856 "mov %c[r14](%0), %%r14 \n\t"
2857 "mov %c[r15](%0), %%r15 \n\t"
2858 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2859 #else
2860 "mov %c[cr2](%0), %%eax \n\t"
2861 "mov %%eax, %%cr2 \n\t"
2862 "mov %c[rax](%0), %%eax \n\t"
2863 "mov %c[rbx](%0), %%ebx \n\t"
2864 "mov %c[rdx](%0), %%edx \n\t"
2865 "mov %c[rsi](%0), %%esi \n\t"
2866 "mov %c[rdi](%0), %%edi \n\t"
2867 "mov %c[rbp](%0), %%ebp \n\t"
2868 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2869 #endif
2870 /* Enter guest mode */
2871 "jne .Llaunched \n\t"
2872 ASM_VMX_VMLAUNCH "\n\t"
2873 "jmp .Lkvm_vmx_return \n\t"
2874 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2875 ".Lkvm_vmx_return: "
2876 /* Save guest registers, load host registers, keep flags */
2877 #ifdef CONFIG_X86_64
2878 "xchg %0, (%%rsp) \n\t"
2879 "mov %%rax, %c[rax](%0) \n\t"
2880 "mov %%rbx, %c[rbx](%0) \n\t"
2881 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2882 "mov %%rdx, %c[rdx](%0) \n\t"
2883 "mov %%rsi, %c[rsi](%0) \n\t"
2884 "mov %%rdi, %c[rdi](%0) \n\t"
2885 "mov %%rbp, %c[rbp](%0) \n\t"
2886 "mov %%r8, %c[r8](%0) \n\t"
2887 "mov %%r9, %c[r9](%0) \n\t"
2888 "mov %%r10, %c[r10](%0) \n\t"
2889 "mov %%r11, %c[r11](%0) \n\t"
2890 "mov %%r12, %c[r12](%0) \n\t"
2891 "mov %%r13, %c[r13](%0) \n\t"
2892 "mov %%r14, %c[r14](%0) \n\t"
2893 "mov %%r15, %c[r15](%0) \n\t"
2894 "mov %%cr2, %%rax \n\t"
2895 "mov %%rax, %c[cr2](%0) \n\t"
2896
2897 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
2898 #else
2899 "xchg %0, (%%esp) \n\t"
2900 "mov %%eax, %c[rax](%0) \n\t"
2901 "mov %%ebx, %c[rbx](%0) \n\t"
2902 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2903 "mov %%edx, %c[rdx](%0) \n\t"
2904 "mov %%esi, %c[rsi](%0) \n\t"
2905 "mov %%edi, %c[rdi](%0) \n\t"
2906 "mov %%ebp, %c[rbp](%0) \n\t"
2907 "mov %%cr2, %%eax \n\t"
2908 "mov %%eax, %c[cr2](%0) \n\t"
2909
2910 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2911 #endif
2912 "setbe %c[fail](%0) \n\t"
2913 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2914 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2915 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2916 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
2917 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
2918 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
2919 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
2920 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
2921 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
2922 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
2923 #ifdef CONFIG_X86_64
2924 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
2925 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
2926 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
2927 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
2928 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
2929 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
2930 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
2931 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
2932 #endif
2933 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
2934 : "cc", "memory"
2935 #ifdef CONFIG_X86_64
2936 , "rbx", "rdi", "rsi"
2937 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2938 #else
2939 , "ebx", "edi", "rsi"
2940 #endif
2941 );
2942
2943 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2944 if (vmx->rmode.irq.pending)
2945 fixup_rmode_irq(vmx);
2946
2947 vcpu->arch.interrupt_window_open =
2948 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2949
2950 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2951 vmx->launched = 1;
2952
2953 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2954
2955 /* We need to handle NMIs before interrupts are enabled */
2956 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
2957 KVMTRACE_0D(NMI, vcpu, handler);
2958 asm("int $2");
2959 }
2960 }
2961
2962 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2963 {
2964 struct vcpu_vmx *vmx = to_vmx(vcpu);
2965
2966 if (vmx->vmcs) {
2967 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2968 free_vmcs(vmx->vmcs);
2969 vmx->vmcs = NULL;
2970 }
2971 }
2972
2973 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2974 {
2975 struct vcpu_vmx *vmx = to_vmx(vcpu);
2976
2977 spin_lock(&vmx_vpid_lock);
2978 if (vmx->vpid != 0)
2979 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2980 spin_unlock(&vmx_vpid_lock);
2981 vmx_free_vmcs(vcpu);
2982 kfree(vmx->host_msrs);
2983 kfree(vmx->guest_msrs);
2984 kvm_vcpu_uninit(vcpu);
2985 kmem_cache_free(kvm_vcpu_cache, vmx);
2986 }
2987
2988 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2989 {
2990 int err;
2991 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2992 int cpu;
2993
2994 if (!vmx)
2995 return ERR_PTR(-ENOMEM);
2996
2997 allocate_vpid(vmx);
2998 if (id == 0 && vm_need_ept()) {
2999 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3000 VMX_EPT_WRITABLE_MASK |
3001 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3002 kvm_mmu_set_mask_ptes(0ull, VMX_EPT_FAKE_ACCESSED_MASK,
3003 VMX_EPT_FAKE_DIRTY_MASK, 0ull,
3004 VMX_EPT_EXECUTABLE_MASK);
3005 kvm_enable_tdp();
3006 }
3007
3008 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3009 if (err)
3010 goto free_vcpu;
3011
3012 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3013 if (!vmx->guest_msrs) {
3014 err = -ENOMEM;
3015 goto uninit_vcpu;
3016 }
3017
3018 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3019 if (!vmx->host_msrs)
3020 goto free_guest_msrs;
3021
3022 vmx->vmcs = alloc_vmcs();
3023 if (!vmx->vmcs)
3024 goto free_msrs;
3025
3026 vmcs_clear(vmx->vmcs);
3027
3028 cpu = get_cpu();
3029 vmx_vcpu_load(&vmx->vcpu, cpu);
3030 err = vmx_vcpu_setup(vmx);
3031 vmx_vcpu_put(&vmx->vcpu);
3032 put_cpu();
3033 if (err)
3034 goto free_vmcs;
3035 if (vm_need_virtualize_apic_accesses(kvm))
3036 if (alloc_apic_access_page(kvm) != 0)
3037 goto free_vmcs;
3038
3039 if (vm_need_ept())
3040 if (alloc_identity_pagetable(kvm) != 0)
3041 goto free_vmcs;
3042
3043 return &vmx->vcpu;
3044
3045 free_vmcs:
3046 free_vmcs(vmx->vmcs);
3047 free_msrs:
3048 kfree(vmx->host_msrs);
3049 free_guest_msrs:
3050 kfree(vmx->guest_msrs);
3051 uninit_vcpu:
3052 kvm_vcpu_uninit(&vmx->vcpu);
3053 free_vcpu:
3054 kmem_cache_free(kvm_vcpu_cache, vmx);
3055 return ERR_PTR(err);
3056 }
3057
3058 static void __init vmx_check_processor_compat(void *rtn)
3059 {
3060 struct vmcs_config vmcs_conf;
3061
3062 *(int *)rtn = 0;
3063 if (setup_vmcs_config(&vmcs_conf) < 0)
3064 *(int *)rtn = -EIO;
3065 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3066 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3067 smp_processor_id());
3068 *(int *)rtn = -EIO;
3069 }
3070 }
3071
3072 static int get_ept_level(void)
3073 {
3074 return VMX_EPT_DEFAULT_GAW + 1;
3075 }
3076
3077 static struct kvm_x86_ops vmx_x86_ops = {
3078 .cpu_has_kvm_support = cpu_has_kvm_support,
3079 .disabled_by_bios = vmx_disabled_by_bios,
3080 .hardware_setup = hardware_setup,
3081 .hardware_unsetup = hardware_unsetup,
3082 .check_processor_compatibility = vmx_check_processor_compat,
3083 .hardware_enable = hardware_enable,
3084 .hardware_disable = hardware_disable,
3085 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3086
3087 .vcpu_create = vmx_create_vcpu,
3088 .vcpu_free = vmx_free_vcpu,
3089 .vcpu_reset = vmx_vcpu_reset,
3090
3091 .prepare_guest_switch = vmx_save_host_state,
3092 .vcpu_load = vmx_vcpu_load,
3093 .vcpu_put = vmx_vcpu_put,
3094 .vcpu_decache = vmx_vcpu_decache,
3095
3096 .set_guest_debug = set_guest_debug,
3097 .guest_debug_pre = kvm_guest_debug_pre,
3098 .get_msr = vmx_get_msr,
3099 .set_msr = vmx_set_msr,
3100 .get_segment_base = vmx_get_segment_base,
3101 .get_segment = vmx_get_segment,
3102 .set_segment = vmx_set_segment,
3103 .get_cpl = vmx_get_cpl,
3104 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3105 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3106 .set_cr0 = vmx_set_cr0,
3107 .set_cr3 = vmx_set_cr3,
3108 .set_cr4 = vmx_set_cr4,
3109 .set_efer = vmx_set_efer,
3110 .get_idt = vmx_get_idt,
3111 .set_idt = vmx_set_idt,
3112 .get_gdt = vmx_get_gdt,
3113 .set_gdt = vmx_set_gdt,
3114 .cache_regs = vcpu_load_rsp_rip,
3115 .decache_regs = vcpu_put_rsp_rip,
3116 .get_rflags = vmx_get_rflags,
3117 .set_rflags = vmx_set_rflags,
3118
3119 .tlb_flush = vmx_flush_tlb,
3120
3121 .run = vmx_vcpu_run,
3122 .handle_exit = kvm_handle_exit,
3123 .skip_emulated_instruction = skip_emulated_instruction,
3124 .patch_hypercall = vmx_patch_hypercall,
3125 .get_irq = vmx_get_irq,
3126 .set_irq = vmx_inject_irq,
3127 .queue_exception = vmx_queue_exception,
3128 .exception_injected = vmx_exception_injected,
3129 .inject_pending_irq = vmx_intr_assist,
3130 .inject_pending_vectors = do_interrupt_requests,
3131
3132 .set_tss_addr = vmx_set_tss_addr,
3133 .get_tdp_level = get_ept_level,
3134 };
3135
3136 static int __init vmx_init(void)
3137 {
3138 void *va;
3139 int r;
3140
3141 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3142 if (!vmx_io_bitmap_a)
3143 return -ENOMEM;
3144
3145 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3146 if (!vmx_io_bitmap_b) {
3147 r = -ENOMEM;
3148 goto out;
3149 }
3150
3151 vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3152 if (!vmx_msr_bitmap) {
3153 r = -ENOMEM;
3154 goto out1;
3155 }
3156
3157 /*
3158 * Allow direct access to the PC debug port (it is often used for I/O
3159 * delays, but the vmexits simply slow things down).
3160 */
3161 va = kmap(vmx_io_bitmap_a);
3162 memset(va, 0xff, PAGE_SIZE);
3163 clear_bit(0x80, va);
3164 kunmap(vmx_io_bitmap_a);
3165
3166 va = kmap(vmx_io_bitmap_b);
3167 memset(va, 0xff, PAGE_SIZE);
3168 kunmap(vmx_io_bitmap_b);
3169
3170 va = kmap(vmx_msr_bitmap);
3171 memset(va, 0xff, PAGE_SIZE);
3172 kunmap(vmx_msr_bitmap);
3173
3174 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3175
3176 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3177 if (r)
3178 goto out2;
3179
3180 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3181 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3182 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3183 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3184 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3185
3186 if (cpu_has_vmx_ept())
3187 bypass_guest_pf = 0;
3188
3189 if (bypass_guest_pf)
3190 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3191
3192 ept_sync_global();
3193
3194 return 0;
3195
3196 out2:
3197 __free_page(vmx_msr_bitmap);
3198 out1:
3199 __free_page(vmx_io_bitmap_b);
3200 out:
3201 __free_page(vmx_io_bitmap_a);
3202 return r;
3203 }
3204
3205 static void __exit vmx_exit(void)
3206 {
3207 __free_page(vmx_msr_bitmap);
3208 __free_page(vmx_io_bitmap_b);
3209 __free_page(vmx_io_bitmap_a);
3210
3211 kvm_exit();
3212 }
3213
3214 module_init(vmx_init)
3215 module_exit(vmx_exit)
This page took 0.152268 seconds and 6 git commands to generate.