Merge master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29
30 #include <asm/io.h>
31 #include <asm/desc.h>
32
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
35
36 static int bypass_guest_pf = 1;
37 module_param(bypass_guest_pf, bool, 0);
38
39 static int enable_vpid = 1;
40 module_param(enable_vpid, bool, 0);
41
42 static int flexpriority_enabled = 1;
43 module_param(flexpriority_enabled, bool, 0);
44
45 static int enable_ept = 1;
46 module_param(enable_ept, bool, 0);
47
48 struct vmcs {
49 u32 revision_id;
50 u32 abort;
51 char data[0];
52 };
53
54 struct vcpu_vmx {
55 struct kvm_vcpu vcpu;
56 int launched;
57 u8 fail;
58 u32 idt_vectoring_info;
59 struct kvm_msr_entry *guest_msrs;
60 struct kvm_msr_entry *host_msrs;
61 int nmsrs;
62 int save_nmsrs;
63 int msr_offset_efer;
64 #ifdef CONFIG_X86_64
65 int msr_offset_kernel_gs_base;
66 #endif
67 struct vmcs *vmcs;
68 struct {
69 int loaded;
70 u16 fs_sel, gs_sel, ldt_sel;
71 int gs_ldt_reload_needed;
72 int fs_reload_needed;
73 int guest_efer_loaded;
74 } host_state;
75 struct {
76 struct {
77 bool pending;
78 u8 vector;
79 unsigned rip;
80 } irq;
81 } rmode;
82 int vpid;
83 };
84
85 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
86 {
87 return container_of(vcpu, struct vcpu_vmx, vcpu);
88 }
89
90 static int init_rmode(struct kvm *kvm);
91
92 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
93 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
94
95 static struct page *vmx_io_bitmap_a;
96 static struct page *vmx_io_bitmap_b;
97 static struct page *vmx_msr_bitmap;
98
99 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
100 static DEFINE_SPINLOCK(vmx_vpid_lock);
101
102 static struct vmcs_config {
103 int size;
104 int order;
105 u32 revision_id;
106 u32 pin_based_exec_ctrl;
107 u32 cpu_based_exec_ctrl;
108 u32 cpu_based_2nd_exec_ctrl;
109 u32 vmexit_ctrl;
110 u32 vmentry_ctrl;
111 } vmcs_config;
112
113 struct vmx_capability {
114 u32 ept;
115 u32 vpid;
116 } vmx_capability;
117
118 #define VMX_SEGMENT_FIELD(seg) \
119 [VCPU_SREG_##seg] = { \
120 .selector = GUEST_##seg##_SELECTOR, \
121 .base = GUEST_##seg##_BASE, \
122 .limit = GUEST_##seg##_LIMIT, \
123 .ar_bytes = GUEST_##seg##_AR_BYTES, \
124 }
125
126 static struct kvm_vmx_segment_field {
127 unsigned selector;
128 unsigned base;
129 unsigned limit;
130 unsigned ar_bytes;
131 } kvm_vmx_segment_fields[] = {
132 VMX_SEGMENT_FIELD(CS),
133 VMX_SEGMENT_FIELD(DS),
134 VMX_SEGMENT_FIELD(ES),
135 VMX_SEGMENT_FIELD(FS),
136 VMX_SEGMENT_FIELD(GS),
137 VMX_SEGMENT_FIELD(SS),
138 VMX_SEGMENT_FIELD(TR),
139 VMX_SEGMENT_FIELD(LDTR),
140 };
141
142 /*
143 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
144 * away by decrementing the array size.
145 */
146 static const u32 vmx_msr_index[] = {
147 #ifdef CONFIG_X86_64
148 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
149 #endif
150 MSR_EFER, MSR_K6_STAR,
151 };
152 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
153
154 static void load_msrs(struct kvm_msr_entry *e, int n)
155 {
156 int i;
157
158 for (i = 0; i < n; ++i)
159 wrmsrl(e[i].index, e[i].data);
160 }
161
162 static void save_msrs(struct kvm_msr_entry *e, int n)
163 {
164 int i;
165
166 for (i = 0; i < n; ++i)
167 rdmsrl(e[i].index, e[i].data);
168 }
169
170 static inline int is_page_fault(u32 intr_info)
171 {
172 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
173 INTR_INFO_VALID_MASK)) ==
174 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
175 }
176
177 static inline int is_no_device(u32 intr_info)
178 {
179 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
180 INTR_INFO_VALID_MASK)) ==
181 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
182 }
183
184 static inline int is_invalid_opcode(u32 intr_info)
185 {
186 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
187 INTR_INFO_VALID_MASK)) ==
188 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
189 }
190
191 static inline int is_external_interrupt(u32 intr_info)
192 {
193 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
194 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
195 }
196
197 static inline int cpu_has_vmx_msr_bitmap(void)
198 {
199 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
200 }
201
202 static inline int cpu_has_vmx_tpr_shadow(void)
203 {
204 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
205 }
206
207 static inline int vm_need_tpr_shadow(struct kvm *kvm)
208 {
209 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
210 }
211
212 static inline int cpu_has_secondary_exec_ctrls(void)
213 {
214 return (vmcs_config.cpu_based_exec_ctrl &
215 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
216 }
217
218 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
219 {
220 return flexpriority_enabled
221 && (vmcs_config.cpu_based_2nd_exec_ctrl &
222 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
223 }
224
225 static inline int cpu_has_vmx_invept_individual_addr(void)
226 {
227 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
228 }
229
230 static inline int cpu_has_vmx_invept_context(void)
231 {
232 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
233 }
234
235 static inline int cpu_has_vmx_invept_global(void)
236 {
237 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
238 }
239
240 static inline int cpu_has_vmx_ept(void)
241 {
242 return (vmcs_config.cpu_based_2nd_exec_ctrl &
243 SECONDARY_EXEC_ENABLE_EPT);
244 }
245
246 static inline int vm_need_ept(void)
247 {
248 return (cpu_has_vmx_ept() && enable_ept);
249 }
250
251 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
252 {
253 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
254 (irqchip_in_kernel(kvm)));
255 }
256
257 static inline int cpu_has_vmx_vpid(void)
258 {
259 return (vmcs_config.cpu_based_2nd_exec_ctrl &
260 SECONDARY_EXEC_ENABLE_VPID);
261 }
262
263 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
264 {
265 int i;
266
267 for (i = 0; i < vmx->nmsrs; ++i)
268 if (vmx->guest_msrs[i].index == msr)
269 return i;
270 return -1;
271 }
272
273 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
274 {
275 struct {
276 u64 vpid : 16;
277 u64 rsvd : 48;
278 u64 gva;
279 } operand = { vpid, 0, gva };
280
281 asm volatile (ASM_VMX_INVVPID
282 /* CF==1 or ZF==1 --> rc = -1 */
283 "; ja 1f ; ud2 ; 1:"
284 : : "a"(&operand), "c"(ext) : "cc", "memory");
285 }
286
287 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
288 {
289 struct {
290 u64 eptp, gpa;
291 } operand = {eptp, gpa};
292
293 asm volatile (ASM_VMX_INVEPT
294 /* CF==1 or ZF==1 --> rc = -1 */
295 "; ja 1f ; ud2 ; 1:\n"
296 : : "a" (&operand), "c" (ext) : "cc", "memory");
297 }
298
299 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
300 {
301 int i;
302
303 i = __find_msr_index(vmx, msr);
304 if (i >= 0)
305 return &vmx->guest_msrs[i];
306 return NULL;
307 }
308
309 static void vmcs_clear(struct vmcs *vmcs)
310 {
311 u64 phys_addr = __pa(vmcs);
312 u8 error;
313
314 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
315 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
316 : "cc", "memory");
317 if (error)
318 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
319 vmcs, phys_addr);
320 }
321
322 static void __vcpu_clear(void *arg)
323 {
324 struct vcpu_vmx *vmx = arg;
325 int cpu = raw_smp_processor_id();
326
327 if (vmx->vcpu.cpu == cpu)
328 vmcs_clear(vmx->vmcs);
329 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
330 per_cpu(current_vmcs, cpu) = NULL;
331 rdtscll(vmx->vcpu.arch.host_tsc);
332 }
333
334 static void vcpu_clear(struct vcpu_vmx *vmx)
335 {
336 if (vmx->vcpu.cpu == -1)
337 return;
338 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
339 vmx->launched = 0;
340 }
341
342 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
343 {
344 if (vmx->vpid == 0)
345 return;
346
347 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
348 }
349
350 static inline void ept_sync_global(void)
351 {
352 if (cpu_has_vmx_invept_global())
353 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
354 }
355
356 static inline void ept_sync_context(u64 eptp)
357 {
358 if (vm_need_ept()) {
359 if (cpu_has_vmx_invept_context())
360 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
361 else
362 ept_sync_global();
363 }
364 }
365
366 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
367 {
368 if (vm_need_ept()) {
369 if (cpu_has_vmx_invept_individual_addr())
370 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
371 eptp, gpa);
372 else
373 ept_sync_context(eptp);
374 }
375 }
376
377 static unsigned long vmcs_readl(unsigned long field)
378 {
379 unsigned long value;
380
381 asm volatile (ASM_VMX_VMREAD_RDX_RAX
382 : "=a"(value) : "d"(field) : "cc");
383 return value;
384 }
385
386 static u16 vmcs_read16(unsigned long field)
387 {
388 return vmcs_readl(field);
389 }
390
391 static u32 vmcs_read32(unsigned long field)
392 {
393 return vmcs_readl(field);
394 }
395
396 static u64 vmcs_read64(unsigned long field)
397 {
398 #ifdef CONFIG_X86_64
399 return vmcs_readl(field);
400 #else
401 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
402 #endif
403 }
404
405 static noinline void vmwrite_error(unsigned long field, unsigned long value)
406 {
407 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
408 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
409 dump_stack();
410 }
411
412 static void vmcs_writel(unsigned long field, unsigned long value)
413 {
414 u8 error;
415
416 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
417 : "=q"(error) : "a"(value), "d"(field) : "cc");
418 if (unlikely(error))
419 vmwrite_error(field, value);
420 }
421
422 static void vmcs_write16(unsigned long field, u16 value)
423 {
424 vmcs_writel(field, value);
425 }
426
427 static void vmcs_write32(unsigned long field, u32 value)
428 {
429 vmcs_writel(field, value);
430 }
431
432 static void vmcs_write64(unsigned long field, u64 value)
433 {
434 #ifdef CONFIG_X86_64
435 vmcs_writel(field, value);
436 #else
437 vmcs_writel(field, value);
438 asm volatile ("");
439 vmcs_writel(field+1, value >> 32);
440 #endif
441 }
442
443 static void vmcs_clear_bits(unsigned long field, u32 mask)
444 {
445 vmcs_writel(field, vmcs_readl(field) & ~mask);
446 }
447
448 static void vmcs_set_bits(unsigned long field, u32 mask)
449 {
450 vmcs_writel(field, vmcs_readl(field) | mask);
451 }
452
453 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
454 {
455 u32 eb;
456
457 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
458 if (!vcpu->fpu_active)
459 eb |= 1u << NM_VECTOR;
460 if (vcpu->guest_debug.enabled)
461 eb |= 1u << 1;
462 if (vcpu->arch.rmode.active)
463 eb = ~0;
464 if (vm_need_ept())
465 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
466 vmcs_write32(EXCEPTION_BITMAP, eb);
467 }
468
469 static void reload_tss(void)
470 {
471 /*
472 * VT restores TR but not its size. Useless.
473 */
474 struct descriptor_table gdt;
475 struct desc_struct *descs;
476
477 get_gdt(&gdt);
478 descs = (void *)gdt.base;
479 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
480 load_TR_desc();
481 }
482
483 static void load_transition_efer(struct vcpu_vmx *vmx)
484 {
485 int efer_offset = vmx->msr_offset_efer;
486 u64 host_efer = vmx->host_msrs[efer_offset].data;
487 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
488 u64 ignore_bits;
489
490 if (efer_offset < 0)
491 return;
492 /*
493 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
494 * outside long mode
495 */
496 ignore_bits = EFER_NX | EFER_SCE;
497 #ifdef CONFIG_X86_64
498 ignore_bits |= EFER_LMA | EFER_LME;
499 /* SCE is meaningful only in long mode on Intel */
500 if (guest_efer & EFER_LMA)
501 ignore_bits &= ~(u64)EFER_SCE;
502 #endif
503 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
504 return;
505
506 vmx->host_state.guest_efer_loaded = 1;
507 guest_efer &= ~ignore_bits;
508 guest_efer |= host_efer & ignore_bits;
509 wrmsrl(MSR_EFER, guest_efer);
510 vmx->vcpu.stat.efer_reload++;
511 }
512
513 static void reload_host_efer(struct vcpu_vmx *vmx)
514 {
515 if (vmx->host_state.guest_efer_loaded) {
516 vmx->host_state.guest_efer_loaded = 0;
517 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
518 }
519 }
520
521 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
522 {
523 struct vcpu_vmx *vmx = to_vmx(vcpu);
524
525 if (vmx->host_state.loaded)
526 return;
527
528 vmx->host_state.loaded = 1;
529 /*
530 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
531 * allow segment selectors with cpl > 0 or ti == 1.
532 */
533 vmx->host_state.ldt_sel = read_ldt();
534 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
535 vmx->host_state.fs_sel = read_fs();
536 if (!(vmx->host_state.fs_sel & 7)) {
537 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
538 vmx->host_state.fs_reload_needed = 0;
539 } else {
540 vmcs_write16(HOST_FS_SELECTOR, 0);
541 vmx->host_state.fs_reload_needed = 1;
542 }
543 vmx->host_state.gs_sel = read_gs();
544 if (!(vmx->host_state.gs_sel & 7))
545 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
546 else {
547 vmcs_write16(HOST_GS_SELECTOR, 0);
548 vmx->host_state.gs_ldt_reload_needed = 1;
549 }
550
551 #ifdef CONFIG_X86_64
552 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
553 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
554 #else
555 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
556 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
557 #endif
558
559 #ifdef CONFIG_X86_64
560 if (is_long_mode(&vmx->vcpu))
561 save_msrs(vmx->host_msrs +
562 vmx->msr_offset_kernel_gs_base, 1);
563
564 #endif
565 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
566 load_transition_efer(vmx);
567 }
568
569 static void vmx_load_host_state(struct vcpu_vmx *vmx)
570 {
571 unsigned long flags;
572
573 if (!vmx->host_state.loaded)
574 return;
575
576 ++vmx->vcpu.stat.host_state_reload;
577 vmx->host_state.loaded = 0;
578 if (vmx->host_state.fs_reload_needed)
579 load_fs(vmx->host_state.fs_sel);
580 if (vmx->host_state.gs_ldt_reload_needed) {
581 load_ldt(vmx->host_state.ldt_sel);
582 /*
583 * If we have to reload gs, we must take care to
584 * preserve our gs base.
585 */
586 local_irq_save(flags);
587 load_gs(vmx->host_state.gs_sel);
588 #ifdef CONFIG_X86_64
589 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
590 #endif
591 local_irq_restore(flags);
592 }
593 reload_tss();
594 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
595 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
596 reload_host_efer(vmx);
597 }
598
599 /*
600 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
601 * vcpu mutex is already taken.
602 */
603 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
604 {
605 struct vcpu_vmx *vmx = to_vmx(vcpu);
606 u64 phys_addr = __pa(vmx->vmcs);
607 u64 tsc_this, delta, new_offset;
608
609 if (vcpu->cpu != cpu) {
610 vcpu_clear(vmx);
611 kvm_migrate_timers(vcpu);
612 vpid_sync_vcpu_all(vmx);
613 }
614
615 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
616 u8 error;
617
618 per_cpu(current_vmcs, cpu) = vmx->vmcs;
619 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
620 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
621 : "cc");
622 if (error)
623 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
624 vmx->vmcs, phys_addr);
625 }
626
627 if (vcpu->cpu != cpu) {
628 struct descriptor_table dt;
629 unsigned long sysenter_esp;
630
631 vcpu->cpu = cpu;
632 /*
633 * Linux uses per-cpu TSS and GDT, so set these when switching
634 * processors.
635 */
636 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
637 get_gdt(&dt);
638 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
639
640 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
641 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
642
643 /*
644 * Make sure the time stamp counter is monotonous.
645 */
646 rdtscll(tsc_this);
647 if (tsc_this < vcpu->arch.host_tsc) {
648 delta = vcpu->arch.host_tsc - tsc_this;
649 new_offset = vmcs_read64(TSC_OFFSET) + delta;
650 vmcs_write64(TSC_OFFSET, new_offset);
651 }
652 }
653 }
654
655 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
656 {
657 vmx_load_host_state(to_vmx(vcpu));
658 }
659
660 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
661 {
662 if (vcpu->fpu_active)
663 return;
664 vcpu->fpu_active = 1;
665 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
666 if (vcpu->arch.cr0 & X86_CR0_TS)
667 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
668 update_exception_bitmap(vcpu);
669 }
670
671 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
672 {
673 if (!vcpu->fpu_active)
674 return;
675 vcpu->fpu_active = 0;
676 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
677 update_exception_bitmap(vcpu);
678 }
679
680 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
681 {
682 vcpu_clear(to_vmx(vcpu));
683 }
684
685 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
686 {
687 return vmcs_readl(GUEST_RFLAGS);
688 }
689
690 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
691 {
692 if (vcpu->arch.rmode.active)
693 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
694 vmcs_writel(GUEST_RFLAGS, rflags);
695 }
696
697 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
698 {
699 unsigned long rip;
700 u32 interruptibility;
701
702 rip = vmcs_readl(GUEST_RIP);
703 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
704 vmcs_writel(GUEST_RIP, rip);
705
706 /*
707 * We emulated an instruction, so temporary interrupt blocking
708 * should be removed, if set.
709 */
710 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
711 if (interruptibility & 3)
712 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
713 interruptibility & ~3);
714 vcpu->arch.interrupt_window_open = 1;
715 }
716
717 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
718 bool has_error_code, u32 error_code)
719 {
720 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
721 nr | INTR_TYPE_EXCEPTION
722 | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
723 | INTR_INFO_VALID_MASK);
724 if (has_error_code)
725 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
726 }
727
728 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
729 {
730 struct vcpu_vmx *vmx = to_vmx(vcpu);
731
732 return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
733 }
734
735 /*
736 * Swap MSR entry in host/guest MSR entry array.
737 */
738 #ifdef CONFIG_X86_64
739 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
740 {
741 struct kvm_msr_entry tmp;
742
743 tmp = vmx->guest_msrs[to];
744 vmx->guest_msrs[to] = vmx->guest_msrs[from];
745 vmx->guest_msrs[from] = tmp;
746 tmp = vmx->host_msrs[to];
747 vmx->host_msrs[to] = vmx->host_msrs[from];
748 vmx->host_msrs[from] = tmp;
749 }
750 #endif
751
752 /*
753 * Set up the vmcs to automatically save and restore system
754 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
755 * mode, as fiddling with msrs is very expensive.
756 */
757 static void setup_msrs(struct vcpu_vmx *vmx)
758 {
759 int save_nmsrs;
760
761 vmx_load_host_state(vmx);
762 save_nmsrs = 0;
763 #ifdef CONFIG_X86_64
764 if (is_long_mode(&vmx->vcpu)) {
765 int index;
766
767 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
768 if (index >= 0)
769 move_msr_up(vmx, index, save_nmsrs++);
770 index = __find_msr_index(vmx, MSR_LSTAR);
771 if (index >= 0)
772 move_msr_up(vmx, index, save_nmsrs++);
773 index = __find_msr_index(vmx, MSR_CSTAR);
774 if (index >= 0)
775 move_msr_up(vmx, index, save_nmsrs++);
776 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
777 if (index >= 0)
778 move_msr_up(vmx, index, save_nmsrs++);
779 /*
780 * MSR_K6_STAR is only needed on long mode guests, and only
781 * if efer.sce is enabled.
782 */
783 index = __find_msr_index(vmx, MSR_K6_STAR);
784 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
785 move_msr_up(vmx, index, save_nmsrs++);
786 }
787 #endif
788 vmx->save_nmsrs = save_nmsrs;
789
790 #ifdef CONFIG_X86_64
791 vmx->msr_offset_kernel_gs_base =
792 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
793 #endif
794 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
795 }
796
797 /*
798 * reads and returns guest's timestamp counter "register"
799 * guest_tsc = host_tsc + tsc_offset -- 21.3
800 */
801 static u64 guest_read_tsc(void)
802 {
803 u64 host_tsc, tsc_offset;
804
805 rdtscll(host_tsc);
806 tsc_offset = vmcs_read64(TSC_OFFSET);
807 return host_tsc + tsc_offset;
808 }
809
810 /*
811 * writes 'guest_tsc' into guest's timestamp counter "register"
812 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
813 */
814 static void guest_write_tsc(u64 guest_tsc)
815 {
816 u64 host_tsc;
817
818 rdtscll(host_tsc);
819 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
820 }
821
822 /*
823 * Reads an msr value (of 'msr_index') into 'pdata'.
824 * Returns 0 on success, non-0 otherwise.
825 * Assumes vcpu_load() was already called.
826 */
827 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
828 {
829 u64 data;
830 struct kvm_msr_entry *msr;
831
832 if (!pdata) {
833 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
834 return -EINVAL;
835 }
836
837 switch (msr_index) {
838 #ifdef CONFIG_X86_64
839 case MSR_FS_BASE:
840 data = vmcs_readl(GUEST_FS_BASE);
841 break;
842 case MSR_GS_BASE:
843 data = vmcs_readl(GUEST_GS_BASE);
844 break;
845 case MSR_EFER:
846 return kvm_get_msr_common(vcpu, msr_index, pdata);
847 #endif
848 case MSR_IA32_TIME_STAMP_COUNTER:
849 data = guest_read_tsc();
850 break;
851 case MSR_IA32_SYSENTER_CS:
852 data = vmcs_read32(GUEST_SYSENTER_CS);
853 break;
854 case MSR_IA32_SYSENTER_EIP:
855 data = vmcs_readl(GUEST_SYSENTER_EIP);
856 break;
857 case MSR_IA32_SYSENTER_ESP:
858 data = vmcs_readl(GUEST_SYSENTER_ESP);
859 break;
860 default:
861 msr = find_msr_entry(to_vmx(vcpu), msr_index);
862 if (msr) {
863 data = msr->data;
864 break;
865 }
866 return kvm_get_msr_common(vcpu, msr_index, pdata);
867 }
868
869 *pdata = data;
870 return 0;
871 }
872
873 /*
874 * Writes msr value into into the appropriate "register".
875 * Returns 0 on success, non-0 otherwise.
876 * Assumes vcpu_load() was already called.
877 */
878 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
879 {
880 struct vcpu_vmx *vmx = to_vmx(vcpu);
881 struct kvm_msr_entry *msr;
882 int ret = 0;
883
884 switch (msr_index) {
885 #ifdef CONFIG_X86_64
886 case MSR_EFER:
887 ret = kvm_set_msr_common(vcpu, msr_index, data);
888 if (vmx->host_state.loaded) {
889 reload_host_efer(vmx);
890 load_transition_efer(vmx);
891 }
892 break;
893 case MSR_FS_BASE:
894 vmcs_writel(GUEST_FS_BASE, data);
895 break;
896 case MSR_GS_BASE:
897 vmcs_writel(GUEST_GS_BASE, data);
898 break;
899 #endif
900 case MSR_IA32_SYSENTER_CS:
901 vmcs_write32(GUEST_SYSENTER_CS, data);
902 break;
903 case MSR_IA32_SYSENTER_EIP:
904 vmcs_writel(GUEST_SYSENTER_EIP, data);
905 break;
906 case MSR_IA32_SYSENTER_ESP:
907 vmcs_writel(GUEST_SYSENTER_ESP, data);
908 break;
909 case MSR_IA32_TIME_STAMP_COUNTER:
910 guest_write_tsc(data);
911 break;
912 default:
913 msr = find_msr_entry(vmx, msr_index);
914 if (msr) {
915 msr->data = data;
916 if (vmx->host_state.loaded)
917 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
918 break;
919 }
920 ret = kvm_set_msr_common(vcpu, msr_index, data);
921 }
922
923 return ret;
924 }
925
926 /*
927 * Sync the rsp and rip registers into the vcpu structure. This allows
928 * registers to be accessed by indexing vcpu->arch.regs.
929 */
930 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
931 {
932 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
933 vcpu->arch.rip = vmcs_readl(GUEST_RIP);
934 }
935
936 /*
937 * Syncs rsp and rip back into the vmcs. Should be called after possible
938 * modification.
939 */
940 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
941 {
942 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
943 vmcs_writel(GUEST_RIP, vcpu->arch.rip);
944 }
945
946 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
947 {
948 unsigned long dr7 = 0x400;
949 int old_singlestep;
950
951 old_singlestep = vcpu->guest_debug.singlestep;
952
953 vcpu->guest_debug.enabled = dbg->enabled;
954 if (vcpu->guest_debug.enabled) {
955 int i;
956
957 dr7 |= 0x200; /* exact */
958 for (i = 0; i < 4; ++i) {
959 if (!dbg->breakpoints[i].enabled)
960 continue;
961 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
962 dr7 |= 2 << (i*2); /* global enable */
963 dr7 |= 0 << (i*4+16); /* execution breakpoint */
964 }
965
966 vcpu->guest_debug.singlestep = dbg->singlestep;
967 } else
968 vcpu->guest_debug.singlestep = 0;
969
970 if (old_singlestep && !vcpu->guest_debug.singlestep) {
971 unsigned long flags;
972
973 flags = vmcs_readl(GUEST_RFLAGS);
974 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
975 vmcs_writel(GUEST_RFLAGS, flags);
976 }
977
978 update_exception_bitmap(vcpu);
979 vmcs_writel(GUEST_DR7, dr7);
980
981 return 0;
982 }
983
984 static int vmx_get_irq(struct kvm_vcpu *vcpu)
985 {
986 struct vcpu_vmx *vmx = to_vmx(vcpu);
987 u32 idtv_info_field;
988
989 idtv_info_field = vmx->idt_vectoring_info;
990 if (idtv_info_field & INTR_INFO_VALID_MASK) {
991 if (is_external_interrupt(idtv_info_field))
992 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
993 else
994 printk(KERN_DEBUG "pending exception: not handled yet\n");
995 }
996 return -1;
997 }
998
999 static __init int cpu_has_kvm_support(void)
1000 {
1001 unsigned long ecx = cpuid_ecx(1);
1002 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
1003 }
1004
1005 static __init int vmx_disabled_by_bios(void)
1006 {
1007 u64 msr;
1008
1009 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1010 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
1011 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1012 == MSR_IA32_FEATURE_CONTROL_LOCKED;
1013 /* locked but not enabled */
1014 }
1015
1016 static void hardware_enable(void *garbage)
1017 {
1018 int cpu = raw_smp_processor_id();
1019 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1020 u64 old;
1021
1022 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1023 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
1024 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1025 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
1026 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1027 /* enable and lock */
1028 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1029 MSR_IA32_FEATURE_CONTROL_LOCKED |
1030 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
1031 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1032 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
1033 : "memory", "cc");
1034 }
1035
1036 static void hardware_disable(void *garbage)
1037 {
1038 asm volatile (ASM_VMX_VMXOFF : : : "cc");
1039 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1040 }
1041
1042 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1043 u32 msr, u32 *result)
1044 {
1045 u32 vmx_msr_low, vmx_msr_high;
1046 u32 ctl = ctl_min | ctl_opt;
1047
1048 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1049
1050 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1051 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1052
1053 /* Ensure minimum (required) set of control bits are supported. */
1054 if (ctl_min & ~ctl)
1055 return -EIO;
1056
1057 *result = ctl;
1058 return 0;
1059 }
1060
1061 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1062 {
1063 u32 vmx_msr_low, vmx_msr_high;
1064 u32 min, opt, min2, opt2;
1065 u32 _pin_based_exec_control = 0;
1066 u32 _cpu_based_exec_control = 0;
1067 u32 _cpu_based_2nd_exec_control = 0;
1068 u32 _vmexit_control = 0;
1069 u32 _vmentry_control = 0;
1070
1071 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1072 opt = 0;
1073 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1074 &_pin_based_exec_control) < 0)
1075 return -EIO;
1076
1077 min = CPU_BASED_HLT_EXITING |
1078 #ifdef CONFIG_X86_64
1079 CPU_BASED_CR8_LOAD_EXITING |
1080 CPU_BASED_CR8_STORE_EXITING |
1081 #endif
1082 CPU_BASED_CR3_LOAD_EXITING |
1083 CPU_BASED_CR3_STORE_EXITING |
1084 CPU_BASED_USE_IO_BITMAPS |
1085 CPU_BASED_MOV_DR_EXITING |
1086 CPU_BASED_USE_TSC_OFFSETING;
1087 opt = CPU_BASED_TPR_SHADOW |
1088 CPU_BASED_USE_MSR_BITMAPS |
1089 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1090 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1091 &_cpu_based_exec_control) < 0)
1092 return -EIO;
1093 #ifdef CONFIG_X86_64
1094 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1095 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1096 ~CPU_BASED_CR8_STORE_EXITING;
1097 #endif
1098 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1099 min2 = 0;
1100 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1101 SECONDARY_EXEC_WBINVD_EXITING |
1102 SECONDARY_EXEC_ENABLE_VPID |
1103 SECONDARY_EXEC_ENABLE_EPT;
1104 if (adjust_vmx_controls(min2, opt2,
1105 MSR_IA32_VMX_PROCBASED_CTLS2,
1106 &_cpu_based_2nd_exec_control) < 0)
1107 return -EIO;
1108 }
1109 #ifndef CONFIG_X86_64
1110 if (!(_cpu_based_2nd_exec_control &
1111 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1112 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1113 #endif
1114 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1115 /* CR3 accesses don't need to cause VM Exits when EPT enabled */
1116 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1117 CPU_BASED_CR3_STORE_EXITING);
1118 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1119 &_cpu_based_exec_control) < 0)
1120 return -EIO;
1121 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1122 vmx_capability.ept, vmx_capability.vpid);
1123 }
1124
1125 min = 0;
1126 #ifdef CONFIG_X86_64
1127 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1128 #endif
1129 opt = 0;
1130 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1131 &_vmexit_control) < 0)
1132 return -EIO;
1133
1134 min = opt = 0;
1135 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1136 &_vmentry_control) < 0)
1137 return -EIO;
1138
1139 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1140
1141 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1142 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1143 return -EIO;
1144
1145 #ifdef CONFIG_X86_64
1146 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1147 if (vmx_msr_high & (1u<<16))
1148 return -EIO;
1149 #endif
1150
1151 /* Require Write-Back (WB) memory type for VMCS accesses. */
1152 if (((vmx_msr_high >> 18) & 15) != 6)
1153 return -EIO;
1154
1155 vmcs_conf->size = vmx_msr_high & 0x1fff;
1156 vmcs_conf->order = get_order(vmcs_config.size);
1157 vmcs_conf->revision_id = vmx_msr_low;
1158
1159 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1160 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1161 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1162 vmcs_conf->vmexit_ctrl = _vmexit_control;
1163 vmcs_conf->vmentry_ctrl = _vmentry_control;
1164
1165 return 0;
1166 }
1167
1168 static struct vmcs *alloc_vmcs_cpu(int cpu)
1169 {
1170 int node = cpu_to_node(cpu);
1171 struct page *pages;
1172 struct vmcs *vmcs;
1173
1174 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1175 if (!pages)
1176 return NULL;
1177 vmcs = page_address(pages);
1178 memset(vmcs, 0, vmcs_config.size);
1179 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1180 return vmcs;
1181 }
1182
1183 static struct vmcs *alloc_vmcs(void)
1184 {
1185 return alloc_vmcs_cpu(raw_smp_processor_id());
1186 }
1187
1188 static void free_vmcs(struct vmcs *vmcs)
1189 {
1190 free_pages((unsigned long)vmcs, vmcs_config.order);
1191 }
1192
1193 static void free_kvm_area(void)
1194 {
1195 int cpu;
1196
1197 for_each_online_cpu(cpu)
1198 free_vmcs(per_cpu(vmxarea, cpu));
1199 }
1200
1201 static __init int alloc_kvm_area(void)
1202 {
1203 int cpu;
1204
1205 for_each_online_cpu(cpu) {
1206 struct vmcs *vmcs;
1207
1208 vmcs = alloc_vmcs_cpu(cpu);
1209 if (!vmcs) {
1210 free_kvm_area();
1211 return -ENOMEM;
1212 }
1213
1214 per_cpu(vmxarea, cpu) = vmcs;
1215 }
1216 return 0;
1217 }
1218
1219 static __init int hardware_setup(void)
1220 {
1221 if (setup_vmcs_config(&vmcs_config) < 0)
1222 return -EIO;
1223
1224 if (boot_cpu_has(X86_FEATURE_NX))
1225 kvm_enable_efer_bits(EFER_NX);
1226
1227 return alloc_kvm_area();
1228 }
1229
1230 static __exit void hardware_unsetup(void)
1231 {
1232 free_kvm_area();
1233 }
1234
1235 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1236 {
1237 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1238
1239 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1240 vmcs_write16(sf->selector, save->selector);
1241 vmcs_writel(sf->base, save->base);
1242 vmcs_write32(sf->limit, save->limit);
1243 vmcs_write32(sf->ar_bytes, save->ar);
1244 } else {
1245 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1246 << AR_DPL_SHIFT;
1247 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1248 }
1249 }
1250
1251 static void enter_pmode(struct kvm_vcpu *vcpu)
1252 {
1253 unsigned long flags;
1254
1255 vcpu->arch.rmode.active = 0;
1256
1257 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1258 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1259 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1260
1261 flags = vmcs_readl(GUEST_RFLAGS);
1262 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1263 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1264 vmcs_writel(GUEST_RFLAGS, flags);
1265
1266 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1267 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1268
1269 update_exception_bitmap(vcpu);
1270
1271 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1272 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1273 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1274 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1275
1276 vmcs_write16(GUEST_SS_SELECTOR, 0);
1277 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1278
1279 vmcs_write16(GUEST_CS_SELECTOR,
1280 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1281 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1282 }
1283
1284 static gva_t rmode_tss_base(struct kvm *kvm)
1285 {
1286 if (!kvm->arch.tss_addr) {
1287 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1288 kvm->memslots[0].npages - 3;
1289 return base_gfn << PAGE_SHIFT;
1290 }
1291 return kvm->arch.tss_addr;
1292 }
1293
1294 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1295 {
1296 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1297
1298 save->selector = vmcs_read16(sf->selector);
1299 save->base = vmcs_readl(sf->base);
1300 save->limit = vmcs_read32(sf->limit);
1301 save->ar = vmcs_read32(sf->ar_bytes);
1302 vmcs_write16(sf->selector, save->base >> 4);
1303 vmcs_write32(sf->base, save->base & 0xfffff);
1304 vmcs_write32(sf->limit, 0xffff);
1305 vmcs_write32(sf->ar_bytes, 0xf3);
1306 }
1307
1308 static void enter_rmode(struct kvm_vcpu *vcpu)
1309 {
1310 unsigned long flags;
1311
1312 vcpu->arch.rmode.active = 1;
1313
1314 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1315 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1316
1317 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1318 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1319
1320 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1321 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1322
1323 flags = vmcs_readl(GUEST_RFLAGS);
1324 vcpu->arch.rmode.save_iopl
1325 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1326
1327 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1328
1329 vmcs_writel(GUEST_RFLAGS, flags);
1330 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1331 update_exception_bitmap(vcpu);
1332
1333 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1334 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1335 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1336
1337 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1338 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1339 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1340 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1341 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1342
1343 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1344 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1345 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1346 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1347
1348 kvm_mmu_reset_context(vcpu);
1349 init_rmode(vcpu->kvm);
1350 }
1351
1352 #ifdef CONFIG_X86_64
1353
1354 static void enter_lmode(struct kvm_vcpu *vcpu)
1355 {
1356 u32 guest_tr_ar;
1357
1358 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1359 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1360 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1361 __func__);
1362 vmcs_write32(GUEST_TR_AR_BYTES,
1363 (guest_tr_ar & ~AR_TYPE_MASK)
1364 | AR_TYPE_BUSY_64_TSS);
1365 }
1366
1367 vcpu->arch.shadow_efer |= EFER_LMA;
1368
1369 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1370 vmcs_write32(VM_ENTRY_CONTROLS,
1371 vmcs_read32(VM_ENTRY_CONTROLS)
1372 | VM_ENTRY_IA32E_MODE);
1373 }
1374
1375 static void exit_lmode(struct kvm_vcpu *vcpu)
1376 {
1377 vcpu->arch.shadow_efer &= ~EFER_LMA;
1378
1379 vmcs_write32(VM_ENTRY_CONTROLS,
1380 vmcs_read32(VM_ENTRY_CONTROLS)
1381 & ~VM_ENTRY_IA32E_MODE);
1382 }
1383
1384 #endif
1385
1386 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1387 {
1388 vpid_sync_vcpu_all(to_vmx(vcpu));
1389 }
1390
1391 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1392 {
1393 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1394 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1395 }
1396
1397 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1398 {
1399 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1400 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1401 printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1402 return;
1403 }
1404 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1405 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1406 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1407 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1408 }
1409 }
1410
1411 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1412
1413 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1414 unsigned long cr0,
1415 struct kvm_vcpu *vcpu)
1416 {
1417 if (!(cr0 & X86_CR0_PG)) {
1418 /* From paging/starting to nonpaging */
1419 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1420 vmcs_config.cpu_based_exec_ctrl |
1421 (CPU_BASED_CR3_LOAD_EXITING |
1422 CPU_BASED_CR3_STORE_EXITING));
1423 vcpu->arch.cr0 = cr0;
1424 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1425 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1426 *hw_cr0 &= ~X86_CR0_WP;
1427 } else if (!is_paging(vcpu)) {
1428 /* From nonpaging to paging */
1429 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1430 vmcs_config.cpu_based_exec_ctrl &
1431 ~(CPU_BASED_CR3_LOAD_EXITING |
1432 CPU_BASED_CR3_STORE_EXITING));
1433 vcpu->arch.cr0 = cr0;
1434 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1435 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1436 *hw_cr0 &= ~X86_CR0_WP;
1437 }
1438 }
1439
1440 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1441 struct kvm_vcpu *vcpu)
1442 {
1443 if (!is_paging(vcpu)) {
1444 *hw_cr4 &= ~X86_CR4_PAE;
1445 *hw_cr4 |= X86_CR4_PSE;
1446 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1447 *hw_cr4 &= ~X86_CR4_PAE;
1448 }
1449
1450 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1451 {
1452 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1453 KVM_VM_CR0_ALWAYS_ON;
1454
1455 vmx_fpu_deactivate(vcpu);
1456
1457 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1458 enter_pmode(vcpu);
1459
1460 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1461 enter_rmode(vcpu);
1462
1463 #ifdef CONFIG_X86_64
1464 if (vcpu->arch.shadow_efer & EFER_LME) {
1465 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1466 enter_lmode(vcpu);
1467 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1468 exit_lmode(vcpu);
1469 }
1470 #endif
1471
1472 if (vm_need_ept())
1473 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1474
1475 vmcs_writel(CR0_READ_SHADOW, cr0);
1476 vmcs_writel(GUEST_CR0, hw_cr0);
1477 vcpu->arch.cr0 = cr0;
1478
1479 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1480 vmx_fpu_activate(vcpu);
1481 }
1482
1483 static u64 construct_eptp(unsigned long root_hpa)
1484 {
1485 u64 eptp;
1486
1487 /* TODO write the value reading from MSR */
1488 eptp = VMX_EPT_DEFAULT_MT |
1489 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1490 eptp |= (root_hpa & PAGE_MASK);
1491
1492 return eptp;
1493 }
1494
1495 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1496 {
1497 unsigned long guest_cr3;
1498 u64 eptp;
1499
1500 guest_cr3 = cr3;
1501 if (vm_need_ept()) {
1502 eptp = construct_eptp(cr3);
1503 vmcs_write64(EPT_POINTER, eptp);
1504 ept_sync_context(eptp);
1505 ept_load_pdptrs(vcpu);
1506 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1507 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1508 }
1509
1510 vmx_flush_tlb(vcpu);
1511 vmcs_writel(GUEST_CR3, guest_cr3);
1512 if (vcpu->arch.cr0 & X86_CR0_PE)
1513 vmx_fpu_deactivate(vcpu);
1514 }
1515
1516 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1517 {
1518 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1519 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1520
1521 vcpu->arch.cr4 = cr4;
1522 if (vm_need_ept())
1523 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1524
1525 vmcs_writel(CR4_READ_SHADOW, cr4);
1526 vmcs_writel(GUEST_CR4, hw_cr4);
1527 }
1528
1529 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1530 {
1531 struct vcpu_vmx *vmx = to_vmx(vcpu);
1532 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1533
1534 vcpu->arch.shadow_efer = efer;
1535 if (!msr)
1536 return;
1537 if (efer & EFER_LMA) {
1538 vmcs_write32(VM_ENTRY_CONTROLS,
1539 vmcs_read32(VM_ENTRY_CONTROLS) |
1540 VM_ENTRY_IA32E_MODE);
1541 msr->data = efer;
1542
1543 } else {
1544 vmcs_write32(VM_ENTRY_CONTROLS,
1545 vmcs_read32(VM_ENTRY_CONTROLS) &
1546 ~VM_ENTRY_IA32E_MODE);
1547
1548 msr->data = efer & ~EFER_LME;
1549 }
1550 setup_msrs(vmx);
1551 }
1552
1553 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1554 {
1555 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1556
1557 return vmcs_readl(sf->base);
1558 }
1559
1560 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1561 struct kvm_segment *var, int seg)
1562 {
1563 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1564 u32 ar;
1565
1566 var->base = vmcs_readl(sf->base);
1567 var->limit = vmcs_read32(sf->limit);
1568 var->selector = vmcs_read16(sf->selector);
1569 ar = vmcs_read32(sf->ar_bytes);
1570 if (ar & AR_UNUSABLE_MASK)
1571 ar = 0;
1572 var->type = ar & 15;
1573 var->s = (ar >> 4) & 1;
1574 var->dpl = (ar >> 5) & 3;
1575 var->present = (ar >> 7) & 1;
1576 var->avl = (ar >> 12) & 1;
1577 var->l = (ar >> 13) & 1;
1578 var->db = (ar >> 14) & 1;
1579 var->g = (ar >> 15) & 1;
1580 var->unusable = (ar >> 16) & 1;
1581 }
1582
1583 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1584 {
1585 struct kvm_segment kvm_seg;
1586
1587 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1588 return 0;
1589
1590 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1591 return 3;
1592
1593 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1594 return kvm_seg.selector & 3;
1595 }
1596
1597 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1598 {
1599 u32 ar;
1600
1601 if (var->unusable)
1602 ar = 1 << 16;
1603 else {
1604 ar = var->type & 15;
1605 ar |= (var->s & 1) << 4;
1606 ar |= (var->dpl & 3) << 5;
1607 ar |= (var->present & 1) << 7;
1608 ar |= (var->avl & 1) << 12;
1609 ar |= (var->l & 1) << 13;
1610 ar |= (var->db & 1) << 14;
1611 ar |= (var->g & 1) << 15;
1612 }
1613 if (ar == 0) /* a 0 value means unusable */
1614 ar = AR_UNUSABLE_MASK;
1615
1616 return ar;
1617 }
1618
1619 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1620 struct kvm_segment *var, int seg)
1621 {
1622 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1623 u32 ar;
1624
1625 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1626 vcpu->arch.rmode.tr.selector = var->selector;
1627 vcpu->arch.rmode.tr.base = var->base;
1628 vcpu->arch.rmode.tr.limit = var->limit;
1629 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1630 return;
1631 }
1632 vmcs_writel(sf->base, var->base);
1633 vmcs_write32(sf->limit, var->limit);
1634 vmcs_write16(sf->selector, var->selector);
1635 if (vcpu->arch.rmode.active && var->s) {
1636 /*
1637 * Hack real-mode segments into vm86 compatibility.
1638 */
1639 if (var->base == 0xffff0000 && var->selector == 0xf000)
1640 vmcs_writel(sf->base, 0xf0000);
1641 ar = 0xf3;
1642 } else
1643 ar = vmx_segment_access_rights(var);
1644 vmcs_write32(sf->ar_bytes, ar);
1645 }
1646
1647 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1648 {
1649 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1650
1651 *db = (ar >> 14) & 1;
1652 *l = (ar >> 13) & 1;
1653 }
1654
1655 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1656 {
1657 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1658 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1659 }
1660
1661 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1662 {
1663 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1664 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1665 }
1666
1667 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1668 {
1669 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1670 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1671 }
1672
1673 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1674 {
1675 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1676 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1677 }
1678
1679 static int init_rmode_tss(struct kvm *kvm)
1680 {
1681 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1682 u16 data = 0;
1683 int ret = 0;
1684 int r;
1685
1686 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1687 if (r < 0)
1688 goto out;
1689 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1690 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1691 if (r < 0)
1692 goto out;
1693 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1694 if (r < 0)
1695 goto out;
1696 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1697 if (r < 0)
1698 goto out;
1699 data = ~0;
1700 r = kvm_write_guest_page(kvm, fn, &data,
1701 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1702 sizeof(u8));
1703 if (r < 0)
1704 goto out;
1705
1706 ret = 1;
1707 out:
1708 return ret;
1709 }
1710
1711 static int init_rmode_identity_map(struct kvm *kvm)
1712 {
1713 int i, r, ret;
1714 pfn_t identity_map_pfn;
1715 u32 tmp;
1716
1717 if (!vm_need_ept())
1718 return 1;
1719 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1720 printk(KERN_ERR "EPT: identity-mapping pagetable "
1721 "haven't been allocated!\n");
1722 return 0;
1723 }
1724 if (likely(kvm->arch.ept_identity_pagetable_done))
1725 return 1;
1726 ret = 0;
1727 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1728 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1729 if (r < 0)
1730 goto out;
1731 /* Set up identity-mapping pagetable for EPT in real mode */
1732 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1733 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
1734 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
1735 r = kvm_write_guest_page(kvm, identity_map_pfn,
1736 &tmp, i * sizeof(tmp), sizeof(tmp));
1737 if (r < 0)
1738 goto out;
1739 }
1740 kvm->arch.ept_identity_pagetable_done = true;
1741 ret = 1;
1742 out:
1743 return ret;
1744 }
1745
1746 static void seg_setup(int seg)
1747 {
1748 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1749
1750 vmcs_write16(sf->selector, 0);
1751 vmcs_writel(sf->base, 0);
1752 vmcs_write32(sf->limit, 0xffff);
1753 vmcs_write32(sf->ar_bytes, 0x93);
1754 }
1755
1756 static int alloc_apic_access_page(struct kvm *kvm)
1757 {
1758 struct kvm_userspace_memory_region kvm_userspace_mem;
1759 int r = 0;
1760
1761 down_write(&kvm->slots_lock);
1762 if (kvm->arch.apic_access_page)
1763 goto out;
1764 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1765 kvm_userspace_mem.flags = 0;
1766 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1767 kvm_userspace_mem.memory_size = PAGE_SIZE;
1768 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1769 if (r)
1770 goto out;
1771
1772 down_read(&current->mm->mmap_sem);
1773 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1774 up_read(&current->mm->mmap_sem);
1775 out:
1776 up_write(&kvm->slots_lock);
1777 return r;
1778 }
1779
1780 static int alloc_identity_pagetable(struct kvm *kvm)
1781 {
1782 struct kvm_userspace_memory_region kvm_userspace_mem;
1783 int r = 0;
1784
1785 down_write(&kvm->slots_lock);
1786 if (kvm->arch.ept_identity_pagetable)
1787 goto out;
1788 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
1789 kvm_userspace_mem.flags = 0;
1790 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1791 kvm_userspace_mem.memory_size = PAGE_SIZE;
1792 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1793 if (r)
1794 goto out;
1795
1796 down_read(&current->mm->mmap_sem);
1797 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
1798 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
1799 up_read(&current->mm->mmap_sem);
1800 out:
1801 up_write(&kvm->slots_lock);
1802 return r;
1803 }
1804
1805 static void allocate_vpid(struct vcpu_vmx *vmx)
1806 {
1807 int vpid;
1808
1809 vmx->vpid = 0;
1810 if (!enable_vpid || !cpu_has_vmx_vpid())
1811 return;
1812 spin_lock(&vmx_vpid_lock);
1813 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
1814 if (vpid < VMX_NR_VPIDS) {
1815 vmx->vpid = vpid;
1816 __set_bit(vpid, vmx_vpid_bitmap);
1817 }
1818 spin_unlock(&vmx_vpid_lock);
1819 }
1820
1821 void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
1822 {
1823 void *va;
1824
1825 if (!cpu_has_vmx_msr_bitmap())
1826 return;
1827
1828 /*
1829 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
1830 * have the write-low and read-high bitmap offsets the wrong way round.
1831 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
1832 */
1833 va = kmap(msr_bitmap);
1834 if (msr <= 0x1fff) {
1835 __clear_bit(msr, va + 0x000); /* read-low */
1836 __clear_bit(msr, va + 0x800); /* write-low */
1837 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1838 msr &= 0x1fff;
1839 __clear_bit(msr, va + 0x400); /* read-high */
1840 __clear_bit(msr, va + 0xc00); /* write-high */
1841 }
1842 kunmap(msr_bitmap);
1843 }
1844
1845 /*
1846 * Sets up the vmcs for emulated real mode.
1847 */
1848 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1849 {
1850 u32 host_sysenter_cs;
1851 u32 junk;
1852 unsigned long a;
1853 struct descriptor_table dt;
1854 int i;
1855 unsigned long kvm_vmx_return;
1856 u32 exec_control;
1857
1858 /* I/O */
1859 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1860 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1861
1862 if (cpu_has_vmx_msr_bitmap())
1863 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
1864
1865 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1866
1867 /* Control */
1868 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1869 vmcs_config.pin_based_exec_ctrl);
1870
1871 exec_control = vmcs_config.cpu_based_exec_ctrl;
1872 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1873 exec_control &= ~CPU_BASED_TPR_SHADOW;
1874 #ifdef CONFIG_X86_64
1875 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1876 CPU_BASED_CR8_LOAD_EXITING;
1877 #endif
1878 }
1879 if (!vm_need_ept())
1880 exec_control |= CPU_BASED_CR3_STORE_EXITING |
1881 CPU_BASED_CR3_LOAD_EXITING;
1882 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1883
1884 if (cpu_has_secondary_exec_ctrls()) {
1885 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1886 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1887 exec_control &=
1888 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1889 if (vmx->vpid == 0)
1890 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
1891 if (!vm_need_ept())
1892 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
1893 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1894 }
1895
1896 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1897 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1898 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1899
1900 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1901 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1902 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1903
1904 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1905 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1906 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1907 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1908 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1909 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1910 #ifdef CONFIG_X86_64
1911 rdmsrl(MSR_FS_BASE, a);
1912 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1913 rdmsrl(MSR_GS_BASE, a);
1914 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1915 #else
1916 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1917 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1918 #endif
1919
1920 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1921
1922 get_idt(&dt);
1923 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1924
1925 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1926 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1927 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1928 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1929 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1930
1931 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1932 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1933 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1934 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1935 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1936 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1937
1938 for (i = 0; i < NR_VMX_MSR; ++i) {
1939 u32 index = vmx_msr_index[i];
1940 u32 data_low, data_high;
1941 u64 data;
1942 int j = vmx->nmsrs;
1943
1944 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1945 continue;
1946 if (wrmsr_safe(index, data_low, data_high) < 0)
1947 continue;
1948 data = data_low | ((u64)data_high << 32);
1949 vmx->host_msrs[j].index = index;
1950 vmx->host_msrs[j].reserved = 0;
1951 vmx->host_msrs[j].data = data;
1952 vmx->guest_msrs[j] = vmx->host_msrs[j];
1953 ++vmx->nmsrs;
1954 }
1955
1956 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1957
1958 /* 22.2.1, 20.8.1 */
1959 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1960
1961 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1962 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1963
1964
1965 return 0;
1966 }
1967
1968 static int init_rmode(struct kvm *kvm)
1969 {
1970 if (!init_rmode_tss(kvm))
1971 return 0;
1972 if (!init_rmode_identity_map(kvm))
1973 return 0;
1974 return 1;
1975 }
1976
1977 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1978 {
1979 struct vcpu_vmx *vmx = to_vmx(vcpu);
1980 u64 msr;
1981 int ret;
1982
1983 down_read(&vcpu->kvm->slots_lock);
1984 if (!init_rmode(vmx->vcpu.kvm)) {
1985 ret = -ENOMEM;
1986 goto out;
1987 }
1988
1989 vmx->vcpu.arch.rmode.active = 0;
1990
1991 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1992 kvm_set_cr8(&vmx->vcpu, 0);
1993 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1994 if (vmx->vcpu.vcpu_id == 0)
1995 msr |= MSR_IA32_APICBASE_BSP;
1996 kvm_set_apic_base(&vmx->vcpu, msr);
1997
1998 fx_init(&vmx->vcpu);
1999
2000 /*
2001 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2002 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2003 */
2004 if (vmx->vcpu.vcpu_id == 0) {
2005 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2006 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2007 } else {
2008 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2009 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2010 }
2011 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2012 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2013
2014 seg_setup(VCPU_SREG_DS);
2015 seg_setup(VCPU_SREG_ES);
2016 seg_setup(VCPU_SREG_FS);
2017 seg_setup(VCPU_SREG_GS);
2018 seg_setup(VCPU_SREG_SS);
2019
2020 vmcs_write16(GUEST_TR_SELECTOR, 0);
2021 vmcs_writel(GUEST_TR_BASE, 0);
2022 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2023 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2024
2025 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2026 vmcs_writel(GUEST_LDTR_BASE, 0);
2027 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2028 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2029
2030 vmcs_write32(GUEST_SYSENTER_CS, 0);
2031 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2032 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2033
2034 vmcs_writel(GUEST_RFLAGS, 0x02);
2035 if (vmx->vcpu.vcpu_id == 0)
2036 vmcs_writel(GUEST_RIP, 0xfff0);
2037 else
2038 vmcs_writel(GUEST_RIP, 0);
2039 vmcs_writel(GUEST_RSP, 0);
2040
2041 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2042 vmcs_writel(GUEST_DR7, 0x400);
2043
2044 vmcs_writel(GUEST_GDTR_BASE, 0);
2045 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2046
2047 vmcs_writel(GUEST_IDTR_BASE, 0);
2048 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2049
2050 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2051 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2052 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2053
2054 guest_write_tsc(0);
2055
2056 /* Special registers */
2057 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2058
2059 setup_msrs(vmx);
2060
2061 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2062
2063 if (cpu_has_vmx_tpr_shadow()) {
2064 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2065 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2066 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2067 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2068 vmcs_write32(TPR_THRESHOLD, 0);
2069 }
2070
2071 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2072 vmcs_write64(APIC_ACCESS_ADDR,
2073 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2074
2075 if (vmx->vpid != 0)
2076 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2077
2078 vmx->vcpu.arch.cr0 = 0x60000010;
2079 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2080 vmx_set_cr4(&vmx->vcpu, 0);
2081 vmx_set_efer(&vmx->vcpu, 0);
2082 vmx_fpu_activate(&vmx->vcpu);
2083 update_exception_bitmap(&vmx->vcpu);
2084
2085 vpid_sync_vcpu_all(vmx);
2086
2087 ret = 0;
2088
2089 out:
2090 up_read(&vcpu->kvm->slots_lock);
2091 return ret;
2092 }
2093
2094 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2095 {
2096 struct vcpu_vmx *vmx = to_vmx(vcpu);
2097
2098 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2099
2100 if (vcpu->arch.rmode.active) {
2101 vmx->rmode.irq.pending = true;
2102 vmx->rmode.irq.vector = irq;
2103 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
2104 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2105 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2106 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2107 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
2108 return;
2109 }
2110 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2111 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2112 }
2113
2114 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2115 {
2116 int word_index = __ffs(vcpu->arch.irq_summary);
2117 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2118 int irq = word_index * BITS_PER_LONG + bit_index;
2119
2120 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2121 if (!vcpu->arch.irq_pending[word_index])
2122 clear_bit(word_index, &vcpu->arch.irq_summary);
2123 vmx_inject_irq(vcpu, irq);
2124 }
2125
2126
2127 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2128 struct kvm_run *kvm_run)
2129 {
2130 u32 cpu_based_vm_exec_control;
2131
2132 vcpu->arch.interrupt_window_open =
2133 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2134 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2135
2136 if (vcpu->arch.interrupt_window_open &&
2137 vcpu->arch.irq_summary &&
2138 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
2139 /*
2140 * If interrupts enabled, and not blocked by sti or mov ss. Good.
2141 */
2142 kvm_do_inject_irq(vcpu);
2143
2144 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2145 if (!vcpu->arch.interrupt_window_open &&
2146 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2147 /*
2148 * Interrupts blocked. Wait for unblock.
2149 */
2150 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2151 else
2152 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2153 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2154 }
2155
2156 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2157 {
2158 int ret;
2159 struct kvm_userspace_memory_region tss_mem = {
2160 .slot = 8,
2161 .guest_phys_addr = addr,
2162 .memory_size = PAGE_SIZE * 3,
2163 .flags = 0,
2164 };
2165
2166 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2167 if (ret)
2168 return ret;
2169 kvm->arch.tss_addr = addr;
2170 return 0;
2171 }
2172
2173 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2174 {
2175 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2176
2177 set_debugreg(dbg->bp[0], 0);
2178 set_debugreg(dbg->bp[1], 1);
2179 set_debugreg(dbg->bp[2], 2);
2180 set_debugreg(dbg->bp[3], 3);
2181
2182 if (dbg->singlestep) {
2183 unsigned long flags;
2184
2185 flags = vmcs_readl(GUEST_RFLAGS);
2186 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2187 vmcs_writel(GUEST_RFLAGS, flags);
2188 }
2189 }
2190
2191 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2192 int vec, u32 err_code)
2193 {
2194 if (!vcpu->arch.rmode.active)
2195 return 0;
2196
2197 /*
2198 * Instruction with address size override prefix opcode 0x67
2199 * Cause the #SS fault with 0 error code in VM86 mode.
2200 */
2201 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2202 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2203 return 1;
2204 return 0;
2205 }
2206
2207 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2208 {
2209 struct vcpu_vmx *vmx = to_vmx(vcpu);
2210 u32 intr_info, error_code;
2211 unsigned long cr2, rip;
2212 u32 vect_info;
2213 enum emulation_result er;
2214
2215 vect_info = vmx->idt_vectoring_info;
2216 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2217
2218 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2219 !is_page_fault(intr_info))
2220 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2221 "intr info 0x%x\n", __func__, vect_info, intr_info);
2222
2223 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2224 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2225 set_bit(irq, vcpu->arch.irq_pending);
2226 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2227 }
2228
2229 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2230 return 1; /* already handled by vmx_vcpu_run() */
2231
2232 if (is_no_device(intr_info)) {
2233 vmx_fpu_activate(vcpu);
2234 return 1;
2235 }
2236
2237 if (is_invalid_opcode(intr_info)) {
2238 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2239 if (er != EMULATE_DONE)
2240 kvm_queue_exception(vcpu, UD_VECTOR);
2241 return 1;
2242 }
2243
2244 error_code = 0;
2245 rip = vmcs_readl(GUEST_RIP);
2246 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2247 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2248 if (is_page_fault(intr_info)) {
2249 /* EPT won't cause page fault directly */
2250 if (vm_need_ept())
2251 BUG();
2252 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2253 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2254 (u32)((u64)cr2 >> 32), handler);
2255 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2256 }
2257
2258 if (vcpu->arch.rmode.active &&
2259 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2260 error_code)) {
2261 if (vcpu->arch.halt_request) {
2262 vcpu->arch.halt_request = 0;
2263 return kvm_emulate_halt(vcpu);
2264 }
2265 return 1;
2266 }
2267
2268 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2269 (INTR_TYPE_EXCEPTION | 1)) {
2270 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2271 return 0;
2272 }
2273 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2274 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2275 kvm_run->ex.error_code = error_code;
2276 return 0;
2277 }
2278
2279 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2280 struct kvm_run *kvm_run)
2281 {
2282 ++vcpu->stat.irq_exits;
2283 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2284 return 1;
2285 }
2286
2287 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2288 {
2289 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2290 return 0;
2291 }
2292
2293 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2294 {
2295 unsigned long exit_qualification;
2296 int size, down, in, string, rep;
2297 unsigned port;
2298
2299 ++vcpu->stat.io_exits;
2300 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2301 string = (exit_qualification & 16) != 0;
2302
2303 if (string) {
2304 if (emulate_instruction(vcpu,
2305 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2306 return 0;
2307 return 1;
2308 }
2309
2310 size = (exit_qualification & 7) + 1;
2311 in = (exit_qualification & 8) != 0;
2312 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2313 rep = (exit_qualification & 32) != 0;
2314 port = exit_qualification >> 16;
2315
2316 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2317 }
2318
2319 static void
2320 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2321 {
2322 /*
2323 * Patch in the VMCALL instruction:
2324 */
2325 hypercall[0] = 0x0f;
2326 hypercall[1] = 0x01;
2327 hypercall[2] = 0xc1;
2328 }
2329
2330 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2331 {
2332 unsigned long exit_qualification;
2333 int cr;
2334 int reg;
2335
2336 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2337 cr = exit_qualification & 15;
2338 reg = (exit_qualification >> 8) & 15;
2339 switch ((exit_qualification >> 4) & 3) {
2340 case 0: /* mov to cr */
2341 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
2342 (u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
2343 switch (cr) {
2344 case 0:
2345 vcpu_load_rsp_rip(vcpu);
2346 kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
2347 skip_emulated_instruction(vcpu);
2348 return 1;
2349 case 3:
2350 vcpu_load_rsp_rip(vcpu);
2351 kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
2352 skip_emulated_instruction(vcpu);
2353 return 1;
2354 case 4:
2355 vcpu_load_rsp_rip(vcpu);
2356 kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
2357 skip_emulated_instruction(vcpu);
2358 return 1;
2359 case 8:
2360 vcpu_load_rsp_rip(vcpu);
2361 kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
2362 skip_emulated_instruction(vcpu);
2363 if (irqchip_in_kernel(vcpu->kvm))
2364 return 1;
2365 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2366 return 0;
2367 };
2368 break;
2369 case 2: /* clts */
2370 vcpu_load_rsp_rip(vcpu);
2371 vmx_fpu_deactivate(vcpu);
2372 vcpu->arch.cr0 &= ~X86_CR0_TS;
2373 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2374 vmx_fpu_activate(vcpu);
2375 KVMTRACE_0D(CLTS, vcpu, handler);
2376 skip_emulated_instruction(vcpu);
2377 return 1;
2378 case 1: /*mov from cr*/
2379 switch (cr) {
2380 case 3:
2381 vcpu_load_rsp_rip(vcpu);
2382 vcpu->arch.regs[reg] = vcpu->arch.cr3;
2383 vcpu_put_rsp_rip(vcpu);
2384 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2385 (u32)vcpu->arch.regs[reg],
2386 (u32)((u64)vcpu->arch.regs[reg] >> 32),
2387 handler);
2388 skip_emulated_instruction(vcpu);
2389 return 1;
2390 case 8:
2391 vcpu_load_rsp_rip(vcpu);
2392 vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
2393 vcpu_put_rsp_rip(vcpu);
2394 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2395 (u32)vcpu->arch.regs[reg], handler);
2396 skip_emulated_instruction(vcpu);
2397 return 1;
2398 }
2399 break;
2400 case 3: /* lmsw */
2401 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2402
2403 skip_emulated_instruction(vcpu);
2404 return 1;
2405 default:
2406 break;
2407 }
2408 kvm_run->exit_reason = 0;
2409 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2410 (int)(exit_qualification >> 4) & 3, cr);
2411 return 0;
2412 }
2413
2414 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2415 {
2416 unsigned long exit_qualification;
2417 unsigned long val;
2418 int dr, reg;
2419
2420 /*
2421 * FIXME: this code assumes the host is debugging the guest.
2422 * need to deal with guest debugging itself too.
2423 */
2424 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2425 dr = exit_qualification & 7;
2426 reg = (exit_qualification >> 8) & 15;
2427 vcpu_load_rsp_rip(vcpu);
2428 if (exit_qualification & 16) {
2429 /* mov from dr */
2430 switch (dr) {
2431 case 6:
2432 val = 0xffff0ff0;
2433 break;
2434 case 7:
2435 val = 0x400;
2436 break;
2437 default:
2438 val = 0;
2439 }
2440 vcpu->arch.regs[reg] = val;
2441 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2442 } else {
2443 /* mov to dr */
2444 }
2445 vcpu_put_rsp_rip(vcpu);
2446 skip_emulated_instruction(vcpu);
2447 return 1;
2448 }
2449
2450 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2451 {
2452 kvm_emulate_cpuid(vcpu);
2453 return 1;
2454 }
2455
2456 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2457 {
2458 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2459 u64 data;
2460
2461 if (vmx_get_msr(vcpu, ecx, &data)) {
2462 kvm_inject_gp(vcpu, 0);
2463 return 1;
2464 }
2465
2466 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2467 handler);
2468
2469 /* FIXME: handling of bits 32:63 of rax, rdx */
2470 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2471 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2472 skip_emulated_instruction(vcpu);
2473 return 1;
2474 }
2475
2476 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2477 {
2478 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2479 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2480 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2481
2482 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2483 handler);
2484
2485 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2486 kvm_inject_gp(vcpu, 0);
2487 return 1;
2488 }
2489
2490 skip_emulated_instruction(vcpu);
2491 return 1;
2492 }
2493
2494 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2495 struct kvm_run *kvm_run)
2496 {
2497 return 1;
2498 }
2499
2500 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2501 struct kvm_run *kvm_run)
2502 {
2503 u32 cpu_based_vm_exec_control;
2504
2505 /* clear pending irq */
2506 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2507 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2508 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2509
2510 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2511
2512 /*
2513 * If the user space waits to inject interrupts, exit as soon as
2514 * possible
2515 */
2516 if (kvm_run->request_interrupt_window &&
2517 !vcpu->arch.irq_summary) {
2518 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2519 ++vcpu->stat.irq_window_exits;
2520 return 0;
2521 }
2522 return 1;
2523 }
2524
2525 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2526 {
2527 skip_emulated_instruction(vcpu);
2528 return kvm_emulate_halt(vcpu);
2529 }
2530
2531 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2532 {
2533 skip_emulated_instruction(vcpu);
2534 kvm_emulate_hypercall(vcpu);
2535 return 1;
2536 }
2537
2538 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2539 {
2540 skip_emulated_instruction(vcpu);
2541 /* TODO: Add support for VT-d/pass-through device */
2542 return 1;
2543 }
2544
2545 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2546 {
2547 u64 exit_qualification;
2548 enum emulation_result er;
2549 unsigned long offset;
2550
2551 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2552 offset = exit_qualification & 0xffful;
2553
2554 KVMTRACE_1D(APIC_ACCESS, vcpu, (u32)offset, handler);
2555
2556 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2557
2558 if (er != EMULATE_DONE) {
2559 printk(KERN_ERR
2560 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2561 offset);
2562 return -ENOTSUPP;
2563 }
2564 return 1;
2565 }
2566
2567 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2568 {
2569 unsigned long exit_qualification;
2570 u16 tss_selector;
2571 int reason;
2572
2573 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2574
2575 reason = (u32)exit_qualification >> 30;
2576 tss_selector = exit_qualification;
2577
2578 return kvm_task_switch(vcpu, tss_selector, reason);
2579 }
2580
2581 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2582 {
2583 u64 exit_qualification;
2584 enum emulation_result er;
2585 gpa_t gpa;
2586 unsigned long hva;
2587 int gla_validity;
2588 int r;
2589
2590 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2591
2592 if (exit_qualification & (1 << 6)) {
2593 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
2594 return -ENOTSUPP;
2595 }
2596
2597 gla_validity = (exit_qualification >> 7) & 0x3;
2598 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
2599 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
2600 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2601 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2602 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2603 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2604 (long unsigned int)exit_qualification);
2605 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2606 kvm_run->hw.hardware_exit_reason = 0;
2607 return -ENOTSUPP;
2608 }
2609
2610 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
2611 hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
2612 if (!kvm_is_error_hva(hva)) {
2613 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
2614 if (r < 0) {
2615 printk(KERN_ERR "EPT: Not enough memory!\n");
2616 return -ENOMEM;
2617 }
2618 return 1;
2619 } else {
2620 /* must be MMIO */
2621 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2622
2623 if (er == EMULATE_FAIL) {
2624 printk(KERN_ERR
2625 "EPT: Fail to handle EPT violation vmexit!er is %d\n",
2626 er);
2627 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2628 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2629 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2630 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2631 (long unsigned int)exit_qualification);
2632 return -ENOTSUPP;
2633 } else if (er == EMULATE_DO_MMIO)
2634 return 0;
2635 }
2636 return 1;
2637 }
2638
2639 /*
2640 * The exit handlers return 1 if the exit was handled fully and guest execution
2641 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2642 * to be done to userspace and return 0.
2643 */
2644 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2645 struct kvm_run *kvm_run) = {
2646 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2647 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2648 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2649 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2650 [EXIT_REASON_CR_ACCESS] = handle_cr,
2651 [EXIT_REASON_DR_ACCESS] = handle_dr,
2652 [EXIT_REASON_CPUID] = handle_cpuid,
2653 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2654 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2655 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2656 [EXIT_REASON_HLT] = handle_halt,
2657 [EXIT_REASON_VMCALL] = handle_vmcall,
2658 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2659 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2660 [EXIT_REASON_WBINVD] = handle_wbinvd,
2661 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
2662 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
2663 };
2664
2665 static const int kvm_vmx_max_exit_handlers =
2666 ARRAY_SIZE(kvm_vmx_exit_handlers);
2667
2668 /*
2669 * The guest has exited. See if we can fix it or if we need userspace
2670 * assistance.
2671 */
2672 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2673 {
2674 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2675 struct vcpu_vmx *vmx = to_vmx(vcpu);
2676 u32 vectoring_info = vmx->idt_vectoring_info;
2677
2678 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
2679 (u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
2680
2681 /* Access CR3 don't cause VMExit in paging mode, so we need
2682 * to sync with guest real CR3. */
2683 if (vm_need_ept() && is_paging(vcpu)) {
2684 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2685 ept_load_pdptrs(vcpu);
2686 }
2687
2688 if (unlikely(vmx->fail)) {
2689 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2690 kvm_run->fail_entry.hardware_entry_failure_reason
2691 = vmcs_read32(VM_INSTRUCTION_ERROR);
2692 return 0;
2693 }
2694
2695 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2696 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
2697 exit_reason != EXIT_REASON_EPT_VIOLATION))
2698 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2699 "exit reason is 0x%x\n", __func__, exit_reason);
2700 if (exit_reason < kvm_vmx_max_exit_handlers
2701 && kvm_vmx_exit_handlers[exit_reason])
2702 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2703 else {
2704 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2705 kvm_run->hw.hardware_exit_reason = exit_reason;
2706 }
2707 return 0;
2708 }
2709
2710 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2711 {
2712 int max_irr, tpr;
2713
2714 if (!vm_need_tpr_shadow(vcpu->kvm))
2715 return;
2716
2717 if (!kvm_lapic_enabled(vcpu) ||
2718 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2719 vmcs_write32(TPR_THRESHOLD, 0);
2720 return;
2721 }
2722
2723 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2724 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2725 }
2726
2727 static void enable_irq_window(struct kvm_vcpu *vcpu)
2728 {
2729 u32 cpu_based_vm_exec_control;
2730
2731 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2732 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2733 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2734 }
2735
2736 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2737 {
2738 struct vcpu_vmx *vmx = to_vmx(vcpu);
2739 u32 idtv_info_field, intr_info_field;
2740 int has_ext_irq, interrupt_window_open;
2741 int vector;
2742
2743 update_tpr_threshold(vcpu);
2744
2745 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2746 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2747 idtv_info_field = vmx->idt_vectoring_info;
2748 if (intr_info_field & INTR_INFO_VALID_MASK) {
2749 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2750 /* TODO: fault when IDT_Vectoring */
2751 if (printk_ratelimit())
2752 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2753 }
2754 if (has_ext_irq)
2755 enable_irq_window(vcpu);
2756 return;
2757 }
2758 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2759 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2760 == INTR_TYPE_EXT_INTR
2761 && vcpu->arch.rmode.active) {
2762 u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2763
2764 vmx_inject_irq(vcpu, vect);
2765 if (unlikely(has_ext_irq))
2766 enable_irq_window(vcpu);
2767 return;
2768 }
2769
2770 KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
2771
2772 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2773 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2774 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2775
2776 if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
2777 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2778 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2779 if (unlikely(has_ext_irq))
2780 enable_irq_window(vcpu);
2781 return;
2782 }
2783 if (!has_ext_irq)
2784 return;
2785 interrupt_window_open =
2786 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2787 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2788 if (interrupt_window_open) {
2789 vector = kvm_cpu_get_interrupt(vcpu);
2790 vmx_inject_irq(vcpu, vector);
2791 kvm_timer_intr_post(vcpu, vector);
2792 } else
2793 enable_irq_window(vcpu);
2794 }
2795
2796 /*
2797 * Failure to inject an interrupt should give us the information
2798 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2799 * when fetching the interrupt redirection bitmap in the real-mode
2800 * tss, this doesn't happen. So we do it ourselves.
2801 */
2802 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2803 {
2804 vmx->rmode.irq.pending = 0;
2805 if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2806 return;
2807 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2808 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2809 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2810 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2811 return;
2812 }
2813 vmx->idt_vectoring_info =
2814 VECTORING_INFO_VALID_MASK
2815 | INTR_TYPE_EXT_INTR
2816 | vmx->rmode.irq.vector;
2817 }
2818
2819 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2820 {
2821 struct vcpu_vmx *vmx = to_vmx(vcpu);
2822 u32 intr_info;
2823
2824 /*
2825 * Loading guest fpu may have cleared host cr0.ts
2826 */
2827 vmcs_writel(HOST_CR0, read_cr0());
2828
2829 asm(
2830 /* Store host registers */
2831 #ifdef CONFIG_X86_64
2832 "push %%rdx; push %%rbp;"
2833 "push %%rcx \n\t"
2834 #else
2835 "push %%edx; push %%ebp;"
2836 "push %%ecx \n\t"
2837 #endif
2838 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2839 /* Check if vmlaunch of vmresume is needed */
2840 "cmpl $0, %c[launched](%0) \n\t"
2841 /* Load guest registers. Don't clobber flags. */
2842 #ifdef CONFIG_X86_64
2843 "mov %c[cr2](%0), %%rax \n\t"
2844 "mov %%rax, %%cr2 \n\t"
2845 "mov %c[rax](%0), %%rax \n\t"
2846 "mov %c[rbx](%0), %%rbx \n\t"
2847 "mov %c[rdx](%0), %%rdx \n\t"
2848 "mov %c[rsi](%0), %%rsi \n\t"
2849 "mov %c[rdi](%0), %%rdi \n\t"
2850 "mov %c[rbp](%0), %%rbp \n\t"
2851 "mov %c[r8](%0), %%r8 \n\t"
2852 "mov %c[r9](%0), %%r9 \n\t"
2853 "mov %c[r10](%0), %%r10 \n\t"
2854 "mov %c[r11](%0), %%r11 \n\t"
2855 "mov %c[r12](%0), %%r12 \n\t"
2856 "mov %c[r13](%0), %%r13 \n\t"
2857 "mov %c[r14](%0), %%r14 \n\t"
2858 "mov %c[r15](%0), %%r15 \n\t"
2859 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2860 #else
2861 "mov %c[cr2](%0), %%eax \n\t"
2862 "mov %%eax, %%cr2 \n\t"
2863 "mov %c[rax](%0), %%eax \n\t"
2864 "mov %c[rbx](%0), %%ebx \n\t"
2865 "mov %c[rdx](%0), %%edx \n\t"
2866 "mov %c[rsi](%0), %%esi \n\t"
2867 "mov %c[rdi](%0), %%edi \n\t"
2868 "mov %c[rbp](%0), %%ebp \n\t"
2869 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2870 #endif
2871 /* Enter guest mode */
2872 "jne .Llaunched \n\t"
2873 ASM_VMX_VMLAUNCH "\n\t"
2874 "jmp .Lkvm_vmx_return \n\t"
2875 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2876 ".Lkvm_vmx_return: "
2877 /* Save guest registers, load host registers, keep flags */
2878 #ifdef CONFIG_X86_64
2879 "xchg %0, (%%rsp) \n\t"
2880 "mov %%rax, %c[rax](%0) \n\t"
2881 "mov %%rbx, %c[rbx](%0) \n\t"
2882 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2883 "mov %%rdx, %c[rdx](%0) \n\t"
2884 "mov %%rsi, %c[rsi](%0) \n\t"
2885 "mov %%rdi, %c[rdi](%0) \n\t"
2886 "mov %%rbp, %c[rbp](%0) \n\t"
2887 "mov %%r8, %c[r8](%0) \n\t"
2888 "mov %%r9, %c[r9](%0) \n\t"
2889 "mov %%r10, %c[r10](%0) \n\t"
2890 "mov %%r11, %c[r11](%0) \n\t"
2891 "mov %%r12, %c[r12](%0) \n\t"
2892 "mov %%r13, %c[r13](%0) \n\t"
2893 "mov %%r14, %c[r14](%0) \n\t"
2894 "mov %%r15, %c[r15](%0) \n\t"
2895 "mov %%cr2, %%rax \n\t"
2896 "mov %%rax, %c[cr2](%0) \n\t"
2897
2898 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
2899 #else
2900 "xchg %0, (%%esp) \n\t"
2901 "mov %%eax, %c[rax](%0) \n\t"
2902 "mov %%ebx, %c[rbx](%0) \n\t"
2903 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2904 "mov %%edx, %c[rdx](%0) \n\t"
2905 "mov %%esi, %c[rsi](%0) \n\t"
2906 "mov %%edi, %c[rdi](%0) \n\t"
2907 "mov %%ebp, %c[rbp](%0) \n\t"
2908 "mov %%cr2, %%eax \n\t"
2909 "mov %%eax, %c[cr2](%0) \n\t"
2910
2911 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2912 #endif
2913 "setbe %c[fail](%0) \n\t"
2914 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2915 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2916 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2917 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
2918 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
2919 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
2920 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
2921 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
2922 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
2923 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
2924 #ifdef CONFIG_X86_64
2925 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
2926 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
2927 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
2928 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
2929 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
2930 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
2931 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
2932 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
2933 #endif
2934 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
2935 : "cc", "memory"
2936 #ifdef CONFIG_X86_64
2937 , "rbx", "rdi", "rsi"
2938 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2939 #else
2940 , "ebx", "edi", "rsi"
2941 #endif
2942 );
2943
2944 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2945 if (vmx->rmode.irq.pending)
2946 fixup_rmode_irq(vmx);
2947
2948 vcpu->arch.interrupt_window_open =
2949 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2950
2951 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2952 vmx->launched = 1;
2953
2954 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2955
2956 /* We need to handle NMIs before interrupts are enabled */
2957 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
2958 KVMTRACE_0D(NMI, vcpu, handler);
2959 asm("int $2");
2960 }
2961 }
2962
2963 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2964 {
2965 struct vcpu_vmx *vmx = to_vmx(vcpu);
2966
2967 if (vmx->vmcs) {
2968 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2969 free_vmcs(vmx->vmcs);
2970 vmx->vmcs = NULL;
2971 }
2972 }
2973
2974 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2975 {
2976 struct vcpu_vmx *vmx = to_vmx(vcpu);
2977
2978 spin_lock(&vmx_vpid_lock);
2979 if (vmx->vpid != 0)
2980 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2981 spin_unlock(&vmx_vpid_lock);
2982 vmx_free_vmcs(vcpu);
2983 kfree(vmx->host_msrs);
2984 kfree(vmx->guest_msrs);
2985 kvm_vcpu_uninit(vcpu);
2986 kmem_cache_free(kvm_vcpu_cache, vmx);
2987 }
2988
2989 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2990 {
2991 int err;
2992 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2993 int cpu;
2994
2995 if (!vmx)
2996 return ERR_PTR(-ENOMEM);
2997
2998 allocate_vpid(vmx);
2999 if (id == 0 && vm_need_ept()) {
3000 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3001 VMX_EPT_WRITABLE_MASK |
3002 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3003 kvm_mmu_set_mask_ptes(0ull, VMX_EPT_FAKE_ACCESSED_MASK,
3004 VMX_EPT_FAKE_DIRTY_MASK, 0ull,
3005 VMX_EPT_EXECUTABLE_MASK);
3006 kvm_enable_tdp();
3007 }
3008
3009 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3010 if (err)
3011 goto free_vcpu;
3012
3013 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3014 if (!vmx->guest_msrs) {
3015 err = -ENOMEM;
3016 goto uninit_vcpu;
3017 }
3018
3019 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3020 if (!vmx->host_msrs)
3021 goto free_guest_msrs;
3022
3023 vmx->vmcs = alloc_vmcs();
3024 if (!vmx->vmcs)
3025 goto free_msrs;
3026
3027 vmcs_clear(vmx->vmcs);
3028
3029 cpu = get_cpu();
3030 vmx_vcpu_load(&vmx->vcpu, cpu);
3031 err = vmx_vcpu_setup(vmx);
3032 vmx_vcpu_put(&vmx->vcpu);
3033 put_cpu();
3034 if (err)
3035 goto free_vmcs;
3036 if (vm_need_virtualize_apic_accesses(kvm))
3037 if (alloc_apic_access_page(kvm) != 0)
3038 goto free_vmcs;
3039
3040 if (vm_need_ept())
3041 if (alloc_identity_pagetable(kvm) != 0)
3042 goto free_vmcs;
3043
3044 return &vmx->vcpu;
3045
3046 free_vmcs:
3047 free_vmcs(vmx->vmcs);
3048 free_msrs:
3049 kfree(vmx->host_msrs);
3050 free_guest_msrs:
3051 kfree(vmx->guest_msrs);
3052 uninit_vcpu:
3053 kvm_vcpu_uninit(&vmx->vcpu);
3054 free_vcpu:
3055 kmem_cache_free(kvm_vcpu_cache, vmx);
3056 return ERR_PTR(err);
3057 }
3058
3059 static void __init vmx_check_processor_compat(void *rtn)
3060 {
3061 struct vmcs_config vmcs_conf;
3062
3063 *(int *)rtn = 0;
3064 if (setup_vmcs_config(&vmcs_conf) < 0)
3065 *(int *)rtn = -EIO;
3066 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3067 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3068 smp_processor_id());
3069 *(int *)rtn = -EIO;
3070 }
3071 }
3072
3073 static int get_ept_level(void)
3074 {
3075 return VMX_EPT_DEFAULT_GAW + 1;
3076 }
3077
3078 static struct kvm_x86_ops vmx_x86_ops = {
3079 .cpu_has_kvm_support = cpu_has_kvm_support,
3080 .disabled_by_bios = vmx_disabled_by_bios,
3081 .hardware_setup = hardware_setup,
3082 .hardware_unsetup = hardware_unsetup,
3083 .check_processor_compatibility = vmx_check_processor_compat,
3084 .hardware_enable = hardware_enable,
3085 .hardware_disable = hardware_disable,
3086 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3087
3088 .vcpu_create = vmx_create_vcpu,
3089 .vcpu_free = vmx_free_vcpu,
3090 .vcpu_reset = vmx_vcpu_reset,
3091
3092 .prepare_guest_switch = vmx_save_host_state,
3093 .vcpu_load = vmx_vcpu_load,
3094 .vcpu_put = vmx_vcpu_put,
3095 .vcpu_decache = vmx_vcpu_decache,
3096
3097 .set_guest_debug = set_guest_debug,
3098 .guest_debug_pre = kvm_guest_debug_pre,
3099 .get_msr = vmx_get_msr,
3100 .set_msr = vmx_set_msr,
3101 .get_segment_base = vmx_get_segment_base,
3102 .get_segment = vmx_get_segment,
3103 .set_segment = vmx_set_segment,
3104 .get_cpl = vmx_get_cpl,
3105 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3106 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3107 .set_cr0 = vmx_set_cr0,
3108 .set_cr3 = vmx_set_cr3,
3109 .set_cr4 = vmx_set_cr4,
3110 .set_efer = vmx_set_efer,
3111 .get_idt = vmx_get_idt,
3112 .set_idt = vmx_set_idt,
3113 .get_gdt = vmx_get_gdt,
3114 .set_gdt = vmx_set_gdt,
3115 .cache_regs = vcpu_load_rsp_rip,
3116 .decache_regs = vcpu_put_rsp_rip,
3117 .get_rflags = vmx_get_rflags,
3118 .set_rflags = vmx_set_rflags,
3119
3120 .tlb_flush = vmx_flush_tlb,
3121
3122 .run = vmx_vcpu_run,
3123 .handle_exit = kvm_handle_exit,
3124 .skip_emulated_instruction = skip_emulated_instruction,
3125 .patch_hypercall = vmx_patch_hypercall,
3126 .get_irq = vmx_get_irq,
3127 .set_irq = vmx_inject_irq,
3128 .queue_exception = vmx_queue_exception,
3129 .exception_injected = vmx_exception_injected,
3130 .inject_pending_irq = vmx_intr_assist,
3131 .inject_pending_vectors = do_interrupt_requests,
3132
3133 .set_tss_addr = vmx_set_tss_addr,
3134 .get_tdp_level = get_ept_level,
3135 };
3136
3137 static int __init vmx_init(void)
3138 {
3139 void *va;
3140 int r;
3141
3142 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3143 if (!vmx_io_bitmap_a)
3144 return -ENOMEM;
3145
3146 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3147 if (!vmx_io_bitmap_b) {
3148 r = -ENOMEM;
3149 goto out;
3150 }
3151
3152 vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3153 if (!vmx_msr_bitmap) {
3154 r = -ENOMEM;
3155 goto out1;
3156 }
3157
3158 /*
3159 * Allow direct access to the PC debug port (it is often used for I/O
3160 * delays, but the vmexits simply slow things down).
3161 */
3162 va = kmap(vmx_io_bitmap_a);
3163 memset(va, 0xff, PAGE_SIZE);
3164 clear_bit(0x80, va);
3165 kunmap(vmx_io_bitmap_a);
3166
3167 va = kmap(vmx_io_bitmap_b);
3168 memset(va, 0xff, PAGE_SIZE);
3169 kunmap(vmx_io_bitmap_b);
3170
3171 va = kmap(vmx_msr_bitmap);
3172 memset(va, 0xff, PAGE_SIZE);
3173 kunmap(vmx_msr_bitmap);
3174
3175 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3176
3177 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3178 if (r)
3179 goto out2;
3180
3181 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3182 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3183 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3184 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3185 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3186
3187 if (cpu_has_vmx_ept())
3188 bypass_guest_pf = 0;
3189
3190 if (bypass_guest_pf)
3191 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3192
3193 ept_sync_global();
3194
3195 return 0;
3196
3197 out2:
3198 __free_page(vmx_msr_bitmap);
3199 out1:
3200 __free_page(vmx_io_bitmap_b);
3201 out:
3202 __free_page(vmx_io_bitmap_a);
3203 return r;
3204 }
3205
3206 static void __exit vmx_exit(void)
3207 {
3208 __free_page(vmx_msr_bitmap);
3209 __free_page(vmx_io_bitmap_b);
3210 __free_page(vmx_io_bitmap_a);
3211
3212 kvm_exit();
3213 }
3214
3215 module_init(vmx_init)
3216 module_exit(vmx_exit)
This page took 0.142203 seconds and 6 git commands to generate.