KVM: VMX: Simplify pdptr and cr3 management
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
29 #include "x86.h"
30
31 #include <asm/io.h>
32 #include <asm/desc.h>
33 #include <asm/vmx.h>
34 #include <asm/virtext.h>
35 #include <asm/mce.h>
36
37 #define __ex(x) __kvm_handle_fault_on_reboot(x)
38
39 MODULE_AUTHOR("Qumranet");
40 MODULE_LICENSE("GPL");
41
42 static int __read_mostly bypass_guest_pf = 1;
43 module_param(bypass_guest_pf, bool, S_IRUGO);
44
45 static int __read_mostly enable_vpid = 1;
46 module_param_named(vpid, enable_vpid, bool, 0444);
47
48 static int __read_mostly flexpriority_enabled = 1;
49 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
50
51 static int __read_mostly enable_ept = 1;
52 module_param_named(ept, enable_ept, bool, S_IRUGO);
53
54 static int __read_mostly emulate_invalid_guest_state = 0;
55 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
56
57 struct vmcs {
58 u32 revision_id;
59 u32 abort;
60 char data[0];
61 };
62
63 struct vcpu_vmx {
64 struct kvm_vcpu vcpu;
65 struct list_head local_vcpus_link;
66 unsigned long host_rsp;
67 int launched;
68 u8 fail;
69 u32 idt_vectoring_info;
70 struct kvm_msr_entry *guest_msrs;
71 struct kvm_msr_entry *host_msrs;
72 int nmsrs;
73 int save_nmsrs;
74 int msr_offset_efer;
75 #ifdef CONFIG_X86_64
76 int msr_offset_kernel_gs_base;
77 #endif
78 struct vmcs *vmcs;
79 struct {
80 int loaded;
81 u16 fs_sel, gs_sel, ldt_sel;
82 int gs_ldt_reload_needed;
83 int fs_reload_needed;
84 int guest_efer_loaded;
85 } host_state;
86 struct {
87 struct {
88 bool pending;
89 u8 vector;
90 unsigned rip;
91 } irq;
92 } rmode;
93 int vpid;
94 bool emulation_required;
95 enum emulation_result invalid_state_emulation_result;
96
97 /* Support for vnmi-less CPUs */
98 int soft_vnmi_blocked;
99 ktime_t entry_time;
100 s64 vnmi_blocked_time;
101 u32 exit_reason;
102 };
103
104 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
105 {
106 return container_of(vcpu, struct vcpu_vmx, vcpu);
107 }
108
109 static int init_rmode(struct kvm *kvm);
110 static u64 construct_eptp(unsigned long root_hpa);
111
112 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
113 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
114 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
115
116 static unsigned long *vmx_io_bitmap_a;
117 static unsigned long *vmx_io_bitmap_b;
118 static unsigned long *vmx_msr_bitmap_legacy;
119 static unsigned long *vmx_msr_bitmap_longmode;
120
121 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
122 static DEFINE_SPINLOCK(vmx_vpid_lock);
123
124 static struct vmcs_config {
125 int size;
126 int order;
127 u32 revision_id;
128 u32 pin_based_exec_ctrl;
129 u32 cpu_based_exec_ctrl;
130 u32 cpu_based_2nd_exec_ctrl;
131 u32 vmexit_ctrl;
132 u32 vmentry_ctrl;
133 } vmcs_config;
134
135 static struct vmx_capability {
136 u32 ept;
137 u32 vpid;
138 } vmx_capability;
139
140 #define VMX_SEGMENT_FIELD(seg) \
141 [VCPU_SREG_##seg] = { \
142 .selector = GUEST_##seg##_SELECTOR, \
143 .base = GUEST_##seg##_BASE, \
144 .limit = GUEST_##seg##_LIMIT, \
145 .ar_bytes = GUEST_##seg##_AR_BYTES, \
146 }
147
148 static struct kvm_vmx_segment_field {
149 unsigned selector;
150 unsigned base;
151 unsigned limit;
152 unsigned ar_bytes;
153 } kvm_vmx_segment_fields[] = {
154 VMX_SEGMENT_FIELD(CS),
155 VMX_SEGMENT_FIELD(DS),
156 VMX_SEGMENT_FIELD(ES),
157 VMX_SEGMENT_FIELD(FS),
158 VMX_SEGMENT_FIELD(GS),
159 VMX_SEGMENT_FIELD(SS),
160 VMX_SEGMENT_FIELD(TR),
161 VMX_SEGMENT_FIELD(LDTR),
162 };
163
164 /*
165 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
166 * away by decrementing the array size.
167 */
168 static const u32 vmx_msr_index[] = {
169 #ifdef CONFIG_X86_64
170 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
171 #endif
172 MSR_EFER, MSR_K6_STAR,
173 };
174 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
175
176 static void load_msrs(struct kvm_msr_entry *e, int n)
177 {
178 int i;
179
180 for (i = 0; i < n; ++i)
181 wrmsrl(e[i].index, e[i].data);
182 }
183
184 static void save_msrs(struct kvm_msr_entry *e, int n)
185 {
186 int i;
187
188 for (i = 0; i < n; ++i)
189 rdmsrl(e[i].index, e[i].data);
190 }
191
192 static inline int is_page_fault(u32 intr_info)
193 {
194 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
195 INTR_INFO_VALID_MASK)) ==
196 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
197 }
198
199 static inline int is_no_device(u32 intr_info)
200 {
201 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
202 INTR_INFO_VALID_MASK)) ==
203 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
204 }
205
206 static inline int is_invalid_opcode(u32 intr_info)
207 {
208 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
209 INTR_INFO_VALID_MASK)) ==
210 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
211 }
212
213 static inline int is_external_interrupt(u32 intr_info)
214 {
215 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
216 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
217 }
218
219 static inline int is_machine_check(u32 intr_info)
220 {
221 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
222 INTR_INFO_VALID_MASK)) ==
223 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
224 }
225
226 static inline int cpu_has_vmx_msr_bitmap(void)
227 {
228 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
229 }
230
231 static inline int cpu_has_vmx_tpr_shadow(void)
232 {
233 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
234 }
235
236 static inline int vm_need_tpr_shadow(struct kvm *kvm)
237 {
238 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
239 }
240
241 static inline int cpu_has_secondary_exec_ctrls(void)
242 {
243 return vmcs_config.cpu_based_exec_ctrl &
244 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
245 }
246
247 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
248 {
249 return vmcs_config.cpu_based_2nd_exec_ctrl &
250 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
251 }
252
253 static inline bool cpu_has_vmx_flexpriority(void)
254 {
255 return cpu_has_vmx_tpr_shadow() &&
256 cpu_has_vmx_virtualize_apic_accesses();
257 }
258
259 static inline int cpu_has_vmx_invept_individual_addr(void)
260 {
261 return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
262 }
263
264 static inline int cpu_has_vmx_invept_context(void)
265 {
266 return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
267 }
268
269 static inline int cpu_has_vmx_invept_global(void)
270 {
271 return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
272 }
273
274 static inline int cpu_has_vmx_ept(void)
275 {
276 return vmcs_config.cpu_based_2nd_exec_ctrl &
277 SECONDARY_EXEC_ENABLE_EPT;
278 }
279
280 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
281 {
282 return flexpriority_enabled &&
283 (cpu_has_vmx_virtualize_apic_accesses()) &&
284 (irqchip_in_kernel(kvm));
285 }
286
287 static inline int cpu_has_vmx_vpid(void)
288 {
289 return vmcs_config.cpu_based_2nd_exec_ctrl &
290 SECONDARY_EXEC_ENABLE_VPID;
291 }
292
293 static inline int cpu_has_virtual_nmis(void)
294 {
295 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
296 }
297
298 static inline bool report_flexpriority(void)
299 {
300 return flexpriority_enabled;
301 }
302
303 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
304 {
305 int i;
306
307 for (i = 0; i < vmx->nmsrs; ++i)
308 if (vmx->guest_msrs[i].index == msr)
309 return i;
310 return -1;
311 }
312
313 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
314 {
315 struct {
316 u64 vpid : 16;
317 u64 rsvd : 48;
318 u64 gva;
319 } operand = { vpid, 0, gva };
320
321 asm volatile (__ex(ASM_VMX_INVVPID)
322 /* CF==1 or ZF==1 --> rc = -1 */
323 "; ja 1f ; ud2 ; 1:"
324 : : "a"(&operand), "c"(ext) : "cc", "memory");
325 }
326
327 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
328 {
329 struct {
330 u64 eptp, gpa;
331 } operand = {eptp, gpa};
332
333 asm volatile (__ex(ASM_VMX_INVEPT)
334 /* CF==1 or ZF==1 --> rc = -1 */
335 "; ja 1f ; ud2 ; 1:\n"
336 : : "a" (&operand), "c" (ext) : "cc", "memory");
337 }
338
339 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
340 {
341 int i;
342
343 i = __find_msr_index(vmx, msr);
344 if (i >= 0)
345 return &vmx->guest_msrs[i];
346 return NULL;
347 }
348
349 static void vmcs_clear(struct vmcs *vmcs)
350 {
351 u64 phys_addr = __pa(vmcs);
352 u8 error;
353
354 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
355 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
356 : "cc", "memory");
357 if (error)
358 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
359 vmcs, phys_addr);
360 }
361
362 static void __vcpu_clear(void *arg)
363 {
364 struct vcpu_vmx *vmx = arg;
365 int cpu = raw_smp_processor_id();
366
367 if (vmx->vcpu.cpu == cpu)
368 vmcs_clear(vmx->vmcs);
369 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
370 per_cpu(current_vmcs, cpu) = NULL;
371 rdtscll(vmx->vcpu.arch.host_tsc);
372 list_del(&vmx->local_vcpus_link);
373 vmx->vcpu.cpu = -1;
374 vmx->launched = 0;
375 }
376
377 static void vcpu_clear(struct vcpu_vmx *vmx)
378 {
379 if (vmx->vcpu.cpu == -1)
380 return;
381 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
382 }
383
384 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
385 {
386 if (vmx->vpid == 0)
387 return;
388
389 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
390 }
391
392 static inline void ept_sync_global(void)
393 {
394 if (cpu_has_vmx_invept_global())
395 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
396 }
397
398 static inline void ept_sync_context(u64 eptp)
399 {
400 if (enable_ept) {
401 if (cpu_has_vmx_invept_context())
402 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
403 else
404 ept_sync_global();
405 }
406 }
407
408 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
409 {
410 if (enable_ept) {
411 if (cpu_has_vmx_invept_individual_addr())
412 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
413 eptp, gpa);
414 else
415 ept_sync_context(eptp);
416 }
417 }
418
419 static unsigned long vmcs_readl(unsigned long field)
420 {
421 unsigned long value;
422
423 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
424 : "=a"(value) : "d"(field) : "cc");
425 return value;
426 }
427
428 static u16 vmcs_read16(unsigned long field)
429 {
430 return vmcs_readl(field);
431 }
432
433 static u32 vmcs_read32(unsigned long field)
434 {
435 return vmcs_readl(field);
436 }
437
438 static u64 vmcs_read64(unsigned long field)
439 {
440 #ifdef CONFIG_X86_64
441 return vmcs_readl(field);
442 #else
443 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
444 #endif
445 }
446
447 static noinline void vmwrite_error(unsigned long field, unsigned long value)
448 {
449 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
450 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
451 dump_stack();
452 }
453
454 static void vmcs_writel(unsigned long field, unsigned long value)
455 {
456 u8 error;
457
458 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
459 : "=q"(error) : "a"(value), "d"(field) : "cc");
460 if (unlikely(error))
461 vmwrite_error(field, value);
462 }
463
464 static void vmcs_write16(unsigned long field, u16 value)
465 {
466 vmcs_writel(field, value);
467 }
468
469 static void vmcs_write32(unsigned long field, u32 value)
470 {
471 vmcs_writel(field, value);
472 }
473
474 static void vmcs_write64(unsigned long field, u64 value)
475 {
476 vmcs_writel(field, value);
477 #ifndef CONFIG_X86_64
478 asm volatile ("");
479 vmcs_writel(field+1, value >> 32);
480 #endif
481 }
482
483 static void vmcs_clear_bits(unsigned long field, u32 mask)
484 {
485 vmcs_writel(field, vmcs_readl(field) & ~mask);
486 }
487
488 static void vmcs_set_bits(unsigned long field, u32 mask)
489 {
490 vmcs_writel(field, vmcs_readl(field) | mask);
491 }
492
493 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
494 {
495 u32 eb;
496
497 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
498 if (!vcpu->fpu_active)
499 eb |= 1u << NM_VECTOR;
500 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
501 if (vcpu->guest_debug &
502 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
503 eb |= 1u << DB_VECTOR;
504 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
505 eb |= 1u << BP_VECTOR;
506 }
507 if (vcpu->arch.rmode.vm86_active)
508 eb = ~0;
509 if (enable_ept)
510 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
511 vmcs_write32(EXCEPTION_BITMAP, eb);
512 }
513
514 static void reload_tss(void)
515 {
516 /*
517 * VT restores TR but not its size. Useless.
518 */
519 struct descriptor_table gdt;
520 struct desc_struct *descs;
521
522 kvm_get_gdt(&gdt);
523 descs = (void *)gdt.base;
524 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
525 load_TR_desc();
526 }
527
528 static void load_transition_efer(struct vcpu_vmx *vmx)
529 {
530 int efer_offset = vmx->msr_offset_efer;
531 u64 host_efer = vmx->host_msrs[efer_offset].data;
532 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
533 u64 ignore_bits;
534
535 if (efer_offset < 0)
536 return;
537 /*
538 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
539 * outside long mode
540 */
541 ignore_bits = EFER_NX | EFER_SCE;
542 #ifdef CONFIG_X86_64
543 ignore_bits |= EFER_LMA | EFER_LME;
544 /* SCE is meaningful only in long mode on Intel */
545 if (guest_efer & EFER_LMA)
546 ignore_bits &= ~(u64)EFER_SCE;
547 #endif
548 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
549 return;
550
551 vmx->host_state.guest_efer_loaded = 1;
552 guest_efer &= ~ignore_bits;
553 guest_efer |= host_efer & ignore_bits;
554 wrmsrl(MSR_EFER, guest_efer);
555 vmx->vcpu.stat.efer_reload++;
556 }
557
558 static void reload_host_efer(struct vcpu_vmx *vmx)
559 {
560 if (vmx->host_state.guest_efer_loaded) {
561 vmx->host_state.guest_efer_loaded = 0;
562 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
563 }
564 }
565
566 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
567 {
568 struct vcpu_vmx *vmx = to_vmx(vcpu);
569
570 if (vmx->host_state.loaded)
571 return;
572
573 vmx->host_state.loaded = 1;
574 /*
575 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
576 * allow segment selectors with cpl > 0 or ti == 1.
577 */
578 vmx->host_state.ldt_sel = kvm_read_ldt();
579 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
580 vmx->host_state.fs_sel = kvm_read_fs();
581 if (!(vmx->host_state.fs_sel & 7)) {
582 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
583 vmx->host_state.fs_reload_needed = 0;
584 } else {
585 vmcs_write16(HOST_FS_SELECTOR, 0);
586 vmx->host_state.fs_reload_needed = 1;
587 }
588 vmx->host_state.gs_sel = kvm_read_gs();
589 if (!(vmx->host_state.gs_sel & 7))
590 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
591 else {
592 vmcs_write16(HOST_GS_SELECTOR, 0);
593 vmx->host_state.gs_ldt_reload_needed = 1;
594 }
595
596 #ifdef CONFIG_X86_64
597 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
598 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
599 #else
600 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
601 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
602 #endif
603
604 #ifdef CONFIG_X86_64
605 if (is_long_mode(&vmx->vcpu))
606 save_msrs(vmx->host_msrs +
607 vmx->msr_offset_kernel_gs_base, 1);
608
609 #endif
610 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
611 load_transition_efer(vmx);
612 }
613
614 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
615 {
616 unsigned long flags;
617
618 if (!vmx->host_state.loaded)
619 return;
620
621 ++vmx->vcpu.stat.host_state_reload;
622 vmx->host_state.loaded = 0;
623 if (vmx->host_state.fs_reload_needed)
624 kvm_load_fs(vmx->host_state.fs_sel);
625 if (vmx->host_state.gs_ldt_reload_needed) {
626 kvm_load_ldt(vmx->host_state.ldt_sel);
627 /*
628 * If we have to reload gs, we must take care to
629 * preserve our gs base.
630 */
631 local_irq_save(flags);
632 kvm_load_gs(vmx->host_state.gs_sel);
633 #ifdef CONFIG_X86_64
634 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
635 #endif
636 local_irq_restore(flags);
637 }
638 reload_tss();
639 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
640 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
641 reload_host_efer(vmx);
642 }
643
644 static void vmx_load_host_state(struct vcpu_vmx *vmx)
645 {
646 preempt_disable();
647 __vmx_load_host_state(vmx);
648 preempt_enable();
649 }
650
651 /*
652 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
653 * vcpu mutex is already taken.
654 */
655 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
656 {
657 struct vcpu_vmx *vmx = to_vmx(vcpu);
658 u64 phys_addr = __pa(vmx->vmcs);
659 u64 tsc_this, delta, new_offset;
660
661 if (vcpu->cpu != cpu) {
662 vcpu_clear(vmx);
663 kvm_migrate_timers(vcpu);
664 vpid_sync_vcpu_all(vmx);
665 local_irq_disable();
666 list_add(&vmx->local_vcpus_link,
667 &per_cpu(vcpus_on_cpu, cpu));
668 local_irq_enable();
669 }
670
671 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
672 u8 error;
673
674 per_cpu(current_vmcs, cpu) = vmx->vmcs;
675 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
676 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
677 : "cc");
678 if (error)
679 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
680 vmx->vmcs, phys_addr);
681 }
682
683 if (vcpu->cpu != cpu) {
684 struct descriptor_table dt;
685 unsigned long sysenter_esp;
686
687 vcpu->cpu = cpu;
688 /*
689 * Linux uses per-cpu TSS and GDT, so set these when switching
690 * processors.
691 */
692 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
693 kvm_get_gdt(&dt);
694 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
695
696 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
697 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
698
699 /*
700 * Make sure the time stamp counter is monotonous.
701 */
702 rdtscll(tsc_this);
703 if (tsc_this < vcpu->arch.host_tsc) {
704 delta = vcpu->arch.host_tsc - tsc_this;
705 new_offset = vmcs_read64(TSC_OFFSET) + delta;
706 vmcs_write64(TSC_OFFSET, new_offset);
707 }
708 }
709 }
710
711 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
712 {
713 __vmx_load_host_state(to_vmx(vcpu));
714 }
715
716 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
717 {
718 if (vcpu->fpu_active)
719 return;
720 vcpu->fpu_active = 1;
721 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
722 if (vcpu->arch.cr0 & X86_CR0_TS)
723 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
724 update_exception_bitmap(vcpu);
725 }
726
727 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
728 {
729 if (!vcpu->fpu_active)
730 return;
731 vcpu->fpu_active = 0;
732 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
733 update_exception_bitmap(vcpu);
734 }
735
736 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
737 {
738 return vmcs_readl(GUEST_RFLAGS);
739 }
740
741 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
742 {
743 if (vcpu->arch.rmode.vm86_active)
744 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
745 vmcs_writel(GUEST_RFLAGS, rflags);
746 }
747
748 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
749 {
750 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
751 int ret = 0;
752
753 if (interruptibility & GUEST_INTR_STATE_STI)
754 ret |= X86_SHADOW_INT_STI;
755 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
756 ret |= X86_SHADOW_INT_MOV_SS;
757
758 return ret & mask;
759 }
760
761 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
762 {
763 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
764 u32 interruptibility = interruptibility_old;
765
766 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
767
768 if (mask & X86_SHADOW_INT_MOV_SS)
769 interruptibility |= GUEST_INTR_STATE_MOV_SS;
770 if (mask & X86_SHADOW_INT_STI)
771 interruptibility |= GUEST_INTR_STATE_STI;
772
773 if ((interruptibility != interruptibility_old))
774 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
775 }
776
777 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
778 {
779 unsigned long rip;
780
781 rip = kvm_rip_read(vcpu);
782 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
783 kvm_rip_write(vcpu, rip);
784
785 /* skipping an emulated instruction also counts */
786 vmx_set_interrupt_shadow(vcpu, 0);
787 }
788
789 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
790 bool has_error_code, u32 error_code)
791 {
792 struct vcpu_vmx *vmx = to_vmx(vcpu);
793 u32 intr_info = nr | INTR_INFO_VALID_MASK;
794
795 if (has_error_code) {
796 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
797 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
798 }
799
800 if (vcpu->arch.rmode.vm86_active) {
801 vmx->rmode.irq.pending = true;
802 vmx->rmode.irq.vector = nr;
803 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
804 if (kvm_exception_is_soft(nr))
805 vmx->rmode.irq.rip +=
806 vmx->vcpu.arch.event_exit_inst_len;
807 intr_info |= INTR_TYPE_SOFT_INTR;
808 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
809 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
810 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
811 return;
812 }
813
814 if (kvm_exception_is_soft(nr)) {
815 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
816 vmx->vcpu.arch.event_exit_inst_len);
817 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
818 } else
819 intr_info |= INTR_TYPE_HARD_EXCEPTION;
820
821 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
822 }
823
824 /*
825 * Swap MSR entry in host/guest MSR entry array.
826 */
827 #ifdef CONFIG_X86_64
828 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
829 {
830 struct kvm_msr_entry tmp;
831
832 tmp = vmx->guest_msrs[to];
833 vmx->guest_msrs[to] = vmx->guest_msrs[from];
834 vmx->guest_msrs[from] = tmp;
835 tmp = vmx->host_msrs[to];
836 vmx->host_msrs[to] = vmx->host_msrs[from];
837 vmx->host_msrs[from] = tmp;
838 }
839 #endif
840
841 /*
842 * Set up the vmcs to automatically save and restore system
843 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
844 * mode, as fiddling with msrs is very expensive.
845 */
846 static void setup_msrs(struct vcpu_vmx *vmx)
847 {
848 int save_nmsrs;
849 unsigned long *msr_bitmap;
850
851 vmx_load_host_state(vmx);
852 save_nmsrs = 0;
853 #ifdef CONFIG_X86_64
854 if (is_long_mode(&vmx->vcpu)) {
855 int index;
856
857 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
858 if (index >= 0)
859 move_msr_up(vmx, index, save_nmsrs++);
860 index = __find_msr_index(vmx, MSR_LSTAR);
861 if (index >= 0)
862 move_msr_up(vmx, index, save_nmsrs++);
863 index = __find_msr_index(vmx, MSR_CSTAR);
864 if (index >= 0)
865 move_msr_up(vmx, index, save_nmsrs++);
866 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
867 if (index >= 0)
868 move_msr_up(vmx, index, save_nmsrs++);
869 /*
870 * MSR_K6_STAR is only needed on long mode guests, and only
871 * if efer.sce is enabled.
872 */
873 index = __find_msr_index(vmx, MSR_K6_STAR);
874 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
875 move_msr_up(vmx, index, save_nmsrs++);
876 }
877 #endif
878 vmx->save_nmsrs = save_nmsrs;
879
880 #ifdef CONFIG_X86_64
881 vmx->msr_offset_kernel_gs_base =
882 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
883 #endif
884 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
885
886 if (cpu_has_vmx_msr_bitmap()) {
887 if (is_long_mode(&vmx->vcpu))
888 msr_bitmap = vmx_msr_bitmap_longmode;
889 else
890 msr_bitmap = vmx_msr_bitmap_legacy;
891
892 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
893 }
894 }
895
896 /*
897 * reads and returns guest's timestamp counter "register"
898 * guest_tsc = host_tsc + tsc_offset -- 21.3
899 */
900 static u64 guest_read_tsc(void)
901 {
902 u64 host_tsc, tsc_offset;
903
904 rdtscll(host_tsc);
905 tsc_offset = vmcs_read64(TSC_OFFSET);
906 return host_tsc + tsc_offset;
907 }
908
909 /*
910 * writes 'guest_tsc' into guest's timestamp counter "register"
911 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
912 */
913 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
914 {
915 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
916 }
917
918 /*
919 * Reads an msr value (of 'msr_index') into 'pdata'.
920 * Returns 0 on success, non-0 otherwise.
921 * Assumes vcpu_load() was already called.
922 */
923 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
924 {
925 u64 data;
926 struct kvm_msr_entry *msr;
927
928 if (!pdata) {
929 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
930 return -EINVAL;
931 }
932
933 switch (msr_index) {
934 #ifdef CONFIG_X86_64
935 case MSR_FS_BASE:
936 data = vmcs_readl(GUEST_FS_BASE);
937 break;
938 case MSR_GS_BASE:
939 data = vmcs_readl(GUEST_GS_BASE);
940 break;
941 case MSR_EFER:
942 return kvm_get_msr_common(vcpu, msr_index, pdata);
943 #endif
944 case MSR_IA32_TSC:
945 data = guest_read_tsc();
946 break;
947 case MSR_IA32_SYSENTER_CS:
948 data = vmcs_read32(GUEST_SYSENTER_CS);
949 break;
950 case MSR_IA32_SYSENTER_EIP:
951 data = vmcs_readl(GUEST_SYSENTER_EIP);
952 break;
953 case MSR_IA32_SYSENTER_ESP:
954 data = vmcs_readl(GUEST_SYSENTER_ESP);
955 break;
956 default:
957 vmx_load_host_state(to_vmx(vcpu));
958 msr = find_msr_entry(to_vmx(vcpu), msr_index);
959 if (msr) {
960 data = msr->data;
961 break;
962 }
963 return kvm_get_msr_common(vcpu, msr_index, pdata);
964 }
965
966 *pdata = data;
967 return 0;
968 }
969
970 /*
971 * Writes msr value into into the appropriate "register".
972 * Returns 0 on success, non-0 otherwise.
973 * Assumes vcpu_load() was already called.
974 */
975 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
976 {
977 struct vcpu_vmx *vmx = to_vmx(vcpu);
978 struct kvm_msr_entry *msr;
979 u64 host_tsc;
980 int ret = 0;
981
982 switch (msr_index) {
983 case MSR_EFER:
984 vmx_load_host_state(vmx);
985 ret = kvm_set_msr_common(vcpu, msr_index, data);
986 break;
987 #ifdef CONFIG_X86_64
988 case MSR_FS_BASE:
989 vmcs_writel(GUEST_FS_BASE, data);
990 break;
991 case MSR_GS_BASE:
992 vmcs_writel(GUEST_GS_BASE, data);
993 break;
994 #endif
995 case MSR_IA32_SYSENTER_CS:
996 vmcs_write32(GUEST_SYSENTER_CS, data);
997 break;
998 case MSR_IA32_SYSENTER_EIP:
999 vmcs_writel(GUEST_SYSENTER_EIP, data);
1000 break;
1001 case MSR_IA32_SYSENTER_ESP:
1002 vmcs_writel(GUEST_SYSENTER_ESP, data);
1003 break;
1004 case MSR_IA32_TSC:
1005 rdtscll(host_tsc);
1006 guest_write_tsc(data, host_tsc);
1007 break;
1008 case MSR_P6_PERFCTR0:
1009 case MSR_P6_PERFCTR1:
1010 case MSR_P6_EVNTSEL0:
1011 case MSR_P6_EVNTSEL1:
1012 /*
1013 * Just discard all writes to the performance counters; this
1014 * should keep both older linux and windows 64-bit guests
1015 * happy
1016 */
1017 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
1018
1019 break;
1020 case MSR_IA32_CR_PAT:
1021 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1022 vmcs_write64(GUEST_IA32_PAT, data);
1023 vcpu->arch.pat = data;
1024 break;
1025 }
1026 /* Otherwise falls through to kvm_set_msr_common */
1027 default:
1028 vmx_load_host_state(vmx);
1029 msr = find_msr_entry(vmx, msr_index);
1030 if (msr) {
1031 msr->data = data;
1032 break;
1033 }
1034 ret = kvm_set_msr_common(vcpu, msr_index, data);
1035 }
1036
1037 return ret;
1038 }
1039
1040 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1041 {
1042 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1043 switch (reg) {
1044 case VCPU_REGS_RSP:
1045 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1046 break;
1047 case VCPU_REGS_RIP:
1048 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1049 break;
1050 default:
1051 break;
1052 }
1053 }
1054
1055 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1056 {
1057 int old_debug = vcpu->guest_debug;
1058 unsigned long flags;
1059
1060 vcpu->guest_debug = dbg->control;
1061 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
1062 vcpu->guest_debug = 0;
1063
1064 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1065 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1066 else
1067 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1068
1069 flags = vmcs_readl(GUEST_RFLAGS);
1070 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1071 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1072 else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1073 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1074 vmcs_writel(GUEST_RFLAGS, flags);
1075
1076 update_exception_bitmap(vcpu);
1077
1078 return 0;
1079 }
1080
1081 static __init int cpu_has_kvm_support(void)
1082 {
1083 return cpu_has_vmx();
1084 }
1085
1086 static __init int vmx_disabled_by_bios(void)
1087 {
1088 u64 msr;
1089
1090 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1091 return (msr & (FEATURE_CONTROL_LOCKED |
1092 FEATURE_CONTROL_VMXON_ENABLED))
1093 == FEATURE_CONTROL_LOCKED;
1094 /* locked but not enabled */
1095 }
1096
1097 static void hardware_enable(void *garbage)
1098 {
1099 int cpu = raw_smp_processor_id();
1100 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1101 u64 old;
1102
1103 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1104 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1105 if ((old & (FEATURE_CONTROL_LOCKED |
1106 FEATURE_CONTROL_VMXON_ENABLED))
1107 != (FEATURE_CONTROL_LOCKED |
1108 FEATURE_CONTROL_VMXON_ENABLED))
1109 /* enable and lock */
1110 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1111 FEATURE_CONTROL_LOCKED |
1112 FEATURE_CONTROL_VMXON_ENABLED);
1113 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1114 asm volatile (ASM_VMX_VMXON_RAX
1115 : : "a"(&phys_addr), "m"(phys_addr)
1116 : "memory", "cc");
1117 }
1118
1119 static void vmclear_local_vcpus(void)
1120 {
1121 int cpu = raw_smp_processor_id();
1122 struct vcpu_vmx *vmx, *n;
1123
1124 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1125 local_vcpus_link)
1126 __vcpu_clear(vmx);
1127 }
1128
1129
1130 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1131 * tricks.
1132 */
1133 static void kvm_cpu_vmxoff(void)
1134 {
1135 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1136 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1137 }
1138
1139 static void hardware_disable(void *garbage)
1140 {
1141 vmclear_local_vcpus();
1142 kvm_cpu_vmxoff();
1143 }
1144
1145 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1146 u32 msr, u32 *result)
1147 {
1148 u32 vmx_msr_low, vmx_msr_high;
1149 u32 ctl = ctl_min | ctl_opt;
1150
1151 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1152
1153 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1154 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1155
1156 /* Ensure minimum (required) set of control bits are supported. */
1157 if (ctl_min & ~ctl)
1158 return -EIO;
1159
1160 *result = ctl;
1161 return 0;
1162 }
1163
1164 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1165 {
1166 u32 vmx_msr_low, vmx_msr_high;
1167 u32 min, opt, min2, opt2;
1168 u32 _pin_based_exec_control = 0;
1169 u32 _cpu_based_exec_control = 0;
1170 u32 _cpu_based_2nd_exec_control = 0;
1171 u32 _vmexit_control = 0;
1172 u32 _vmentry_control = 0;
1173
1174 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1175 opt = PIN_BASED_VIRTUAL_NMIS;
1176 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1177 &_pin_based_exec_control) < 0)
1178 return -EIO;
1179
1180 min = CPU_BASED_HLT_EXITING |
1181 #ifdef CONFIG_X86_64
1182 CPU_BASED_CR8_LOAD_EXITING |
1183 CPU_BASED_CR8_STORE_EXITING |
1184 #endif
1185 CPU_BASED_CR3_LOAD_EXITING |
1186 CPU_BASED_CR3_STORE_EXITING |
1187 CPU_BASED_USE_IO_BITMAPS |
1188 CPU_BASED_MOV_DR_EXITING |
1189 CPU_BASED_USE_TSC_OFFSETING |
1190 CPU_BASED_INVLPG_EXITING;
1191 opt = CPU_BASED_TPR_SHADOW |
1192 CPU_BASED_USE_MSR_BITMAPS |
1193 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1194 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1195 &_cpu_based_exec_control) < 0)
1196 return -EIO;
1197 #ifdef CONFIG_X86_64
1198 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1199 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1200 ~CPU_BASED_CR8_STORE_EXITING;
1201 #endif
1202 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1203 min2 = 0;
1204 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1205 SECONDARY_EXEC_WBINVD_EXITING |
1206 SECONDARY_EXEC_ENABLE_VPID |
1207 SECONDARY_EXEC_ENABLE_EPT;
1208 if (adjust_vmx_controls(min2, opt2,
1209 MSR_IA32_VMX_PROCBASED_CTLS2,
1210 &_cpu_based_2nd_exec_control) < 0)
1211 return -EIO;
1212 }
1213 #ifndef CONFIG_X86_64
1214 if (!(_cpu_based_2nd_exec_control &
1215 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1216 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1217 #endif
1218 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1219 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1220 enabled */
1221 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1222 CPU_BASED_CR3_STORE_EXITING |
1223 CPU_BASED_INVLPG_EXITING);
1224 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1225 &_cpu_based_exec_control) < 0)
1226 return -EIO;
1227 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1228 vmx_capability.ept, vmx_capability.vpid);
1229 }
1230
1231 min = 0;
1232 #ifdef CONFIG_X86_64
1233 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1234 #endif
1235 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1236 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1237 &_vmexit_control) < 0)
1238 return -EIO;
1239
1240 min = 0;
1241 opt = VM_ENTRY_LOAD_IA32_PAT;
1242 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1243 &_vmentry_control) < 0)
1244 return -EIO;
1245
1246 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1247
1248 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1249 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1250 return -EIO;
1251
1252 #ifdef CONFIG_X86_64
1253 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1254 if (vmx_msr_high & (1u<<16))
1255 return -EIO;
1256 #endif
1257
1258 /* Require Write-Back (WB) memory type for VMCS accesses. */
1259 if (((vmx_msr_high >> 18) & 15) != 6)
1260 return -EIO;
1261
1262 vmcs_conf->size = vmx_msr_high & 0x1fff;
1263 vmcs_conf->order = get_order(vmcs_config.size);
1264 vmcs_conf->revision_id = vmx_msr_low;
1265
1266 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1267 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1268 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1269 vmcs_conf->vmexit_ctrl = _vmexit_control;
1270 vmcs_conf->vmentry_ctrl = _vmentry_control;
1271
1272 return 0;
1273 }
1274
1275 static struct vmcs *alloc_vmcs_cpu(int cpu)
1276 {
1277 int node = cpu_to_node(cpu);
1278 struct page *pages;
1279 struct vmcs *vmcs;
1280
1281 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1282 if (!pages)
1283 return NULL;
1284 vmcs = page_address(pages);
1285 memset(vmcs, 0, vmcs_config.size);
1286 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1287 return vmcs;
1288 }
1289
1290 static struct vmcs *alloc_vmcs(void)
1291 {
1292 return alloc_vmcs_cpu(raw_smp_processor_id());
1293 }
1294
1295 static void free_vmcs(struct vmcs *vmcs)
1296 {
1297 free_pages((unsigned long)vmcs, vmcs_config.order);
1298 }
1299
1300 static void free_kvm_area(void)
1301 {
1302 int cpu;
1303
1304 for_each_online_cpu(cpu)
1305 free_vmcs(per_cpu(vmxarea, cpu));
1306 }
1307
1308 static __init int alloc_kvm_area(void)
1309 {
1310 int cpu;
1311
1312 for_each_online_cpu(cpu) {
1313 struct vmcs *vmcs;
1314
1315 vmcs = alloc_vmcs_cpu(cpu);
1316 if (!vmcs) {
1317 free_kvm_area();
1318 return -ENOMEM;
1319 }
1320
1321 per_cpu(vmxarea, cpu) = vmcs;
1322 }
1323 return 0;
1324 }
1325
1326 static __init int hardware_setup(void)
1327 {
1328 if (setup_vmcs_config(&vmcs_config) < 0)
1329 return -EIO;
1330
1331 if (boot_cpu_has(X86_FEATURE_NX))
1332 kvm_enable_efer_bits(EFER_NX);
1333
1334 if (!cpu_has_vmx_vpid())
1335 enable_vpid = 0;
1336
1337 if (!cpu_has_vmx_ept())
1338 enable_ept = 0;
1339
1340 if (!cpu_has_vmx_flexpriority())
1341 flexpriority_enabled = 0;
1342
1343 if (!cpu_has_vmx_tpr_shadow())
1344 kvm_x86_ops->update_cr8_intercept = NULL;
1345
1346 return alloc_kvm_area();
1347 }
1348
1349 static __exit void hardware_unsetup(void)
1350 {
1351 free_kvm_area();
1352 }
1353
1354 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1355 {
1356 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1357
1358 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1359 vmcs_write16(sf->selector, save->selector);
1360 vmcs_writel(sf->base, save->base);
1361 vmcs_write32(sf->limit, save->limit);
1362 vmcs_write32(sf->ar_bytes, save->ar);
1363 } else {
1364 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1365 << AR_DPL_SHIFT;
1366 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1367 }
1368 }
1369
1370 static void enter_pmode(struct kvm_vcpu *vcpu)
1371 {
1372 unsigned long flags;
1373 struct vcpu_vmx *vmx = to_vmx(vcpu);
1374
1375 vmx->emulation_required = 1;
1376 vcpu->arch.rmode.vm86_active = 0;
1377
1378 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1379 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1380 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1381
1382 flags = vmcs_readl(GUEST_RFLAGS);
1383 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1384 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1385 vmcs_writel(GUEST_RFLAGS, flags);
1386
1387 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1388 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1389
1390 update_exception_bitmap(vcpu);
1391
1392 if (emulate_invalid_guest_state)
1393 return;
1394
1395 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1396 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1397 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1398 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1399
1400 vmcs_write16(GUEST_SS_SELECTOR, 0);
1401 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1402
1403 vmcs_write16(GUEST_CS_SELECTOR,
1404 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1405 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1406 }
1407
1408 static gva_t rmode_tss_base(struct kvm *kvm)
1409 {
1410 if (!kvm->arch.tss_addr) {
1411 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1412 kvm->memslots[0].npages - 3;
1413 return base_gfn << PAGE_SHIFT;
1414 }
1415 return kvm->arch.tss_addr;
1416 }
1417
1418 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1419 {
1420 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1421
1422 save->selector = vmcs_read16(sf->selector);
1423 save->base = vmcs_readl(sf->base);
1424 save->limit = vmcs_read32(sf->limit);
1425 save->ar = vmcs_read32(sf->ar_bytes);
1426 vmcs_write16(sf->selector, save->base >> 4);
1427 vmcs_write32(sf->base, save->base & 0xfffff);
1428 vmcs_write32(sf->limit, 0xffff);
1429 vmcs_write32(sf->ar_bytes, 0xf3);
1430 }
1431
1432 static void enter_rmode(struct kvm_vcpu *vcpu)
1433 {
1434 unsigned long flags;
1435 struct vcpu_vmx *vmx = to_vmx(vcpu);
1436
1437 vmx->emulation_required = 1;
1438 vcpu->arch.rmode.vm86_active = 1;
1439
1440 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1441 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1442
1443 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1444 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1445
1446 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1447 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1448
1449 flags = vmcs_readl(GUEST_RFLAGS);
1450 vcpu->arch.rmode.save_iopl
1451 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1452
1453 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1454
1455 vmcs_writel(GUEST_RFLAGS, flags);
1456 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1457 update_exception_bitmap(vcpu);
1458
1459 if (emulate_invalid_guest_state)
1460 goto continue_rmode;
1461
1462 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1463 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1464 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1465
1466 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1467 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1468 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1469 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1470 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1471
1472 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1473 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1474 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1475 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1476
1477 continue_rmode:
1478 kvm_mmu_reset_context(vcpu);
1479 init_rmode(vcpu->kvm);
1480 }
1481
1482 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1483 {
1484 struct vcpu_vmx *vmx = to_vmx(vcpu);
1485 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1486
1487 vcpu->arch.shadow_efer = efer;
1488 if (!msr)
1489 return;
1490 if (efer & EFER_LMA) {
1491 vmcs_write32(VM_ENTRY_CONTROLS,
1492 vmcs_read32(VM_ENTRY_CONTROLS) |
1493 VM_ENTRY_IA32E_MODE);
1494 msr->data = efer;
1495 } else {
1496 vmcs_write32(VM_ENTRY_CONTROLS,
1497 vmcs_read32(VM_ENTRY_CONTROLS) &
1498 ~VM_ENTRY_IA32E_MODE);
1499
1500 msr->data = efer & ~EFER_LME;
1501 }
1502 setup_msrs(vmx);
1503 }
1504
1505 #ifdef CONFIG_X86_64
1506
1507 static void enter_lmode(struct kvm_vcpu *vcpu)
1508 {
1509 u32 guest_tr_ar;
1510
1511 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1512 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1513 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1514 __func__);
1515 vmcs_write32(GUEST_TR_AR_BYTES,
1516 (guest_tr_ar & ~AR_TYPE_MASK)
1517 | AR_TYPE_BUSY_64_TSS);
1518 }
1519 vcpu->arch.shadow_efer |= EFER_LMA;
1520 vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1521 }
1522
1523 static void exit_lmode(struct kvm_vcpu *vcpu)
1524 {
1525 vcpu->arch.shadow_efer &= ~EFER_LMA;
1526
1527 vmcs_write32(VM_ENTRY_CONTROLS,
1528 vmcs_read32(VM_ENTRY_CONTROLS)
1529 & ~VM_ENTRY_IA32E_MODE);
1530 }
1531
1532 #endif
1533
1534 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1535 {
1536 vpid_sync_vcpu_all(to_vmx(vcpu));
1537 if (enable_ept)
1538 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1539 }
1540
1541 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1542 {
1543 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1544 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1545 }
1546
1547 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1548 {
1549 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1550 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1551 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1552 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1553 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1554 }
1555 }
1556
1557 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1558 {
1559 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1560 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1561 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1562 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1563 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1564 }
1565 }
1566
1567 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1568
1569 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1570 unsigned long cr0,
1571 struct kvm_vcpu *vcpu)
1572 {
1573 if (!(cr0 & X86_CR0_PG)) {
1574 /* From paging/starting to nonpaging */
1575 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1576 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1577 (CPU_BASED_CR3_LOAD_EXITING |
1578 CPU_BASED_CR3_STORE_EXITING));
1579 vcpu->arch.cr0 = cr0;
1580 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1581 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1582 *hw_cr0 &= ~X86_CR0_WP;
1583 } else if (!is_paging(vcpu)) {
1584 /* From nonpaging to paging */
1585 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1586 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1587 ~(CPU_BASED_CR3_LOAD_EXITING |
1588 CPU_BASED_CR3_STORE_EXITING));
1589 vcpu->arch.cr0 = cr0;
1590 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1591 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1592 *hw_cr0 &= ~X86_CR0_WP;
1593 }
1594 }
1595
1596 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1597 struct kvm_vcpu *vcpu)
1598 {
1599 if (!is_paging(vcpu)) {
1600 *hw_cr4 &= ~X86_CR4_PAE;
1601 *hw_cr4 |= X86_CR4_PSE;
1602 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1603 *hw_cr4 &= ~X86_CR4_PAE;
1604 }
1605
1606 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1607 {
1608 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1609 KVM_VM_CR0_ALWAYS_ON;
1610
1611 vmx_fpu_deactivate(vcpu);
1612
1613 if (vcpu->arch.rmode.vm86_active && (cr0 & X86_CR0_PE))
1614 enter_pmode(vcpu);
1615
1616 if (!vcpu->arch.rmode.vm86_active && !(cr0 & X86_CR0_PE))
1617 enter_rmode(vcpu);
1618
1619 #ifdef CONFIG_X86_64
1620 if (vcpu->arch.shadow_efer & EFER_LME) {
1621 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1622 enter_lmode(vcpu);
1623 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1624 exit_lmode(vcpu);
1625 }
1626 #endif
1627
1628 if (enable_ept)
1629 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1630
1631 vmcs_writel(CR0_READ_SHADOW, cr0);
1632 vmcs_writel(GUEST_CR0, hw_cr0);
1633 vcpu->arch.cr0 = cr0;
1634
1635 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1636 vmx_fpu_activate(vcpu);
1637 }
1638
1639 static u64 construct_eptp(unsigned long root_hpa)
1640 {
1641 u64 eptp;
1642
1643 /* TODO write the value reading from MSR */
1644 eptp = VMX_EPT_DEFAULT_MT |
1645 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1646 eptp |= (root_hpa & PAGE_MASK);
1647
1648 return eptp;
1649 }
1650
1651 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1652 {
1653 unsigned long guest_cr3;
1654 u64 eptp;
1655
1656 guest_cr3 = cr3;
1657 if (enable_ept) {
1658 eptp = construct_eptp(cr3);
1659 vmcs_write64(EPT_POINTER, eptp);
1660 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1661 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1662 }
1663
1664 vmx_flush_tlb(vcpu);
1665 vmcs_writel(GUEST_CR3, guest_cr3);
1666 if (vcpu->arch.cr0 & X86_CR0_PE)
1667 vmx_fpu_deactivate(vcpu);
1668 }
1669
1670 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1671 {
1672 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.vm86_active ?
1673 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1674
1675 vcpu->arch.cr4 = cr4;
1676 if (enable_ept)
1677 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1678
1679 vmcs_writel(CR4_READ_SHADOW, cr4);
1680 vmcs_writel(GUEST_CR4, hw_cr4);
1681 }
1682
1683 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1684 {
1685 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1686
1687 return vmcs_readl(sf->base);
1688 }
1689
1690 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1691 struct kvm_segment *var, int seg)
1692 {
1693 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1694 u32 ar;
1695
1696 var->base = vmcs_readl(sf->base);
1697 var->limit = vmcs_read32(sf->limit);
1698 var->selector = vmcs_read16(sf->selector);
1699 ar = vmcs_read32(sf->ar_bytes);
1700 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1701 ar = 0;
1702 var->type = ar & 15;
1703 var->s = (ar >> 4) & 1;
1704 var->dpl = (ar >> 5) & 3;
1705 var->present = (ar >> 7) & 1;
1706 var->avl = (ar >> 12) & 1;
1707 var->l = (ar >> 13) & 1;
1708 var->db = (ar >> 14) & 1;
1709 var->g = (ar >> 15) & 1;
1710 var->unusable = (ar >> 16) & 1;
1711 }
1712
1713 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1714 {
1715 struct kvm_segment kvm_seg;
1716
1717 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1718 return 0;
1719
1720 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1721 return 3;
1722
1723 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1724 return kvm_seg.selector & 3;
1725 }
1726
1727 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1728 {
1729 u32 ar;
1730
1731 if (var->unusable)
1732 ar = 1 << 16;
1733 else {
1734 ar = var->type & 15;
1735 ar |= (var->s & 1) << 4;
1736 ar |= (var->dpl & 3) << 5;
1737 ar |= (var->present & 1) << 7;
1738 ar |= (var->avl & 1) << 12;
1739 ar |= (var->l & 1) << 13;
1740 ar |= (var->db & 1) << 14;
1741 ar |= (var->g & 1) << 15;
1742 }
1743 if (ar == 0) /* a 0 value means unusable */
1744 ar = AR_UNUSABLE_MASK;
1745
1746 return ar;
1747 }
1748
1749 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1750 struct kvm_segment *var, int seg)
1751 {
1752 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1753 u32 ar;
1754
1755 if (vcpu->arch.rmode.vm86_active && seg == VCPU_SREG_TR) {
1756 vcpu->arch.rmode.tr.selector = var->selector;
1757 vcpu->arch.rmode.tr.base = var->base;
1758 vcpu->arch.rmode.tr.limit = var->limit;
1759 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1760 return;
1761 }
1762 vmcs_writel(sf->base, var->base);
1763 vmcs_write32(sf->limit, var->limit);
1764 vmcs_write16(sf->selector, var->selector);
1765 if (vcpu->arch.rmode.vm86_active && var->s) {
1766 /*
1767 * Hack real-mode segments into vm86 compatibility.
1768 */
1769 if (var->base == 0xffff0000 && var->selector == 0xf000)
1770 vmcs_writel(sf->base, 0xf0000);
1771 ar = 0xf3;
1772 } else
1773 ar = vmx_segment_access_rights(var);
1774 vmcs_write32(sf->ar_bytes, ar);
1775 }
1776
1777 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1778 {
1779 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1780
1781 *db = (ar >> 14) & 1;
1782 *l = (ar >> 13) & 1;
1783 }
1784
1785 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1786 {
1787 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1788 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1789 }
1790
1791 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1792 {
1793 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1794 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1795 }
1796
1797 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1798 {
1799 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1800 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1801 }
1802
1803 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1804 {
1805 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1806 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1807 }
1808
1809 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1810 {
1811 struct kvm_segment var;
1812 u32 ar;
1813
1814 vmx_get_segment(vcpu, &var, seg);
1815 ar = vmx_segment_access_rights(&var);
1816
1817 if (var.base != (var.selector << 4))
1818 return false;
1819 if (var.limit != 0xffff)
1820 return false;
1821 if (ar != 0xf3)
1822 return false;
1823
1824 return true;
1825 }
1826
1827 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1828 {
1829 struct kvm_segment cs;
1830 unsigned int cs_rpl;
1831
1832 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1833 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1834
1835 if (cs.unusable)
1836 return false;
1837 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1838 return false;
1839 if (!cs.s)
1840 return false;
1841 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1842 if (cs.dpl > cs_rpl)
1843 return false;
1844 } else {
1845 if (cs.dpl != cs_rpl)
1846 return false;
1847 }
1848 if (!cs.present)
1849 return false;
1850
1851 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1852 return true;
1853 }
1854
1855 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1856 {
1857 struct kvm_segment ss;
1858 unsigned int ss_rpl;
1859
1860 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1861 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1862
1863 if (ss.unusable)
1864 return true;
1865 if (ss.type != 3 && ss.type != 7)
1866 return false;
1867 if (!ss.s)
1868 return false;
1869 if (ss.dpl != ss_rpl) /* DPL != RPL */
1870 return false;
1871 if (!ss.present)
1872 return false;
1873
1874 return true;
1875 }
1876
1877 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1878 {
1879 struct kvm_segment var;
1880 unsigned int rpl;
1881
1882 vmx_get_segment(vcpu, &var, seg);
1883 rpl = var.selector & SELECTOR_RPL_MASK;
1884
1885 if (var.unusable)
1886 return true;
1887 if (!var.s)
1888 return false;
1889 if (!var.present)
1890 return false;
1891 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1892 if (var.dpl < rpl) /* DPL < RPL */
1893 return false;
1894 }
1895
1896 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1897 * rights flags
1898 */
1899 return true;
1900 }
1901
1902 static bool tr_valid(struct kvm_vcpu *vcpu)
1903 {
1904 struct kvm_segment tr;
1905
1906 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1907
1908 if (tr.unusable)
1909 return false;
1910 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1911 return false;
1912 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1913 return false;
1914 if (!tr.present)
1915 return false;
1916
1917 return true;
1918 }
1919
1920 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1921 {
1922 struct kvm_segment ldtr;
1923
1924 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1925
1926 if (ldtr.unusable)
1927 return true;
1928 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1929 return false;
1930 if (ldtr.type != 2)
1931 return false;
1932 if (!ldtr.present)
1933 return false;
1934
1935 return true;
1936 }
1937
1938 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
1939 {
1940 struct kvm_segment cs, ss;
1941
1942 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1943 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1944
1945 return ((cs.selector & SELECTOR_RPL_MASK) ==
1946 (ss.selector & SELECTOR_RPL_MASK));
1947 }
1948
1949 /*
1950 * Check if guest state is valid. Returns true if valid, false if
1951 * not.
1952 * We assume that registers are always usable
1953 */
1954 static bool guest_state_valid(struct kvm_vcpu *vcpu)
1955 {
1956 /* real mode guest state checks */
1957 if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
1958 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
1959 return false;
1960 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
1961 return false;
1962 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
1963 return false;
1964 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
1965 return false;
1966 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
1967 return false;
1968 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
1969 return false;
1970 } else {
1971 /* protected mode guest state checks */
1972 if (!cs_ss_rpl_check(vcpu))
1973 return false;
1974 if (!code_segment_valid(vcpu))
1975 return false;
1976 if (!stack_segment_valid(vcpu))
1977 return false;
1978 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
1979 return false;
1980 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
1981 return false;
1982 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
1983 return false;
1984 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
1985 return false;
1986 if (!tr_valid(vcpu))
1987 return false;
1988 if (!ldtr_valid(vcpu))
1989 return false;
1990 }
1991 /* TODO:
1992 * - Add checks on RIP
1993 * - Add checks on RFLAGS
1994 */
1995
1996 return true;
1997 }
1998
1999 static int init_rmode_tss(struct kvm *kvm)
2000 {
2001 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2002 u16 data = 0;
2003 int ret = 0;
2004 int r;
2005
2006 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2007 if (r < 0)
2008 goto out;
2009 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2010 r = kvm_write_guest_page(kvm, fn++, &data,
2011 TSS_IOPB_BASE_OFFSET, sizeof(u16));
2012 if (r < 0)
2013 goto out;
2014 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2015 if (r < 0)
2016 goto out;
2017 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2018 if (r < 0)
2019 goto out;
2020 data = ~0;
2021 r = kvm_write_guest_page(kvm, fn, &data,
2022 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2023 sizeof(u8));
2024 if (r < 0)
2025 goto out;
2026
2027 ret = 1;
2028 out:
2029 return ret;
2030 }
2031
2032 static int init_rmode_identity_map(struct kvm *kvm)
2033 {
2034 int i, r, ret;
2035 pfn_t identity_map_pfn;
2036 u32 tmp;
2037
2038 if (!enable_ept)
2039 return 1;
2040 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2041 printk(KERN_ERR "EPT: identity-mapping pagetable "
2042 "haven't been allocated!\n");
2043 return 0;
2044 }
2045 if (likely(kvm->arch.ept_identity_pagetable_done))
2046 return 1;
2047 ret = 0;
2048 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
2049 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2050 if (r < 0)
2051 goto out;
2052 /* Set up identity-mapping pagetable for EPT in real mode */
2053 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2054 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2055 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2056 r = kvm_write_guest_page(kvm, identity_map_pfn,
2057 &tmp, i * sizeof(tmp), sizeof(tmp));
2058 if (r < 0)
2059 goto out;
2060 }
2061 kvm->arch.ept_identity_pagetable_done = true;
2062 ret = 1;
2063 out:
2064 return ret;
2065 }
2066
2067 static void seg_setup(int seg)
2068 {
2069 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2070
2071 vmcs_write16(sf->selector, 0);
2072 vmcs_writel(sf->base, 0);
2073 vmcs_write32(sf->limit, 0xffff);
2074 vmcs_write32(sf->ar_bytes, 0xf3);
2075 }
2076
2077 static int alloc_apic_access_page(struct kvm *kvm)
2078 {
2079 struct kvm_userspace_memory_region kvm_userspace_mem;
2080 int r = 0;
2081
2082 down_write(&kvm->slots_lock);
2083 if (kvm->arch.apic_access_page)
2084 goto out;
2085 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2086 kvm_userspace_mem.flags = 0;
2087 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2088 kvm_userspace_mem.memory_size = PAGE_SIZE;
2089 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2090 if (r)
2091 goto out;
2092
2093 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2094 out:
2095 up_write(&kvm->slots_lock);
2096 return r;
2097 }
2098
2099 static int alloc_identity_pagetable(struct kvm *kvm)
2100 {
2101 struct kvm_userspace_memory_region kvm_userspace_mem;
2102 int r = 0;
2103
2104 down_write(&kvm->slots_lock);
2105 if (kvm->arch.ept_identity_pagetable)
2106 goto out;
2107 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2108 kvm_userspace_mem.flags = 0;
2109 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2110 kvm_userspace_mem.memory_size = PAGE_SIZE;
2111 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2112 if (r)
2113 goto out;
2114
2115 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2116 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2117 out:
2118 up_write(&kvm->slots_lock);
2119 return r;
2120 }
2121
2122 static void allocate_vpid(struct vcpu_vmx *vmx)
2123 {
2124 int vpid;
2125
2126 vmx->vpid = 0;
2127 if (!enable_vpid)
2128 return;
2129 spin_lock(&vmx_vpid_lock);
2130 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2131 if (vpid < VMX_NR_VPIDS) {
2132 vmx->vpid = vpid;
2133 __set_bit(vpid, vmx_vpid_bitmap);
2134 }
2135 spin_unlock(&vmx_vpid_lock);
2136 }
2137
2138 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2139 {
2140 int f = sizeof(unsigned long);
2141
2142 if (!cpu_has_vmx_msr_bitmap())
2143 return;
2144
2145 /*
2146 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2147 * have the write-low and read-high bitmap offsets the wrong way round.
2148 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2149 */
2150 if (msr <= 0x1fff) {
2151 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2152 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2153 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2154 msr &= 0x1fff;
2155 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2156 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2157 }
2158 }
2159
2160 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2161 {
2162 if (!longmode_only)
2163 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2164 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2165 }
2166
2167 /*
2168 * Sets up the vmcs for emulated real mode.
2169 */
2170 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2171 {
2172 u32 host_sysenter_cs, msr_low, msr_high;
2173 u32 junk;
2174 u64 host_pat, tsc_this, tsc_base;
2175 unsigned long a;
2176 struct descriptor_table dt;
2177 int i;
2178 unsigned long kvm_vmx_return;
2179 u32 exec_control;
2180
2181 /* I/O */
2182 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2183 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2184
2185 if (cpu_has_vmx_msr_bitmap())
2186 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2187
2188 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2189
2190 /* Control */
2191 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2192 vmcs_config.pin_based_exec_ctrl);
2193
2194 exec_control = vmcs_config.cpu_based_exec_ctrl;
2195 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2196 exec_control &= ~CPU_BASED_TPR_SHADOW;
2197 #ifdef CONFIG_X86_64
2198 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2199 CPU_BASED_CR8_LOAD_EXITING;
2200 #endif
2201 }
2202 if (!enable_ept)
2203 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2204 CPU_BASED_CR3_LOAD_EXITING |
2205 CPU_BASED_INVLPG_EXITING;
2206 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2207
2208 if (cpu_has_secondary_exec_ctrls()) {
2209 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2210 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2211 exec_control &=
2212 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2213 if (vmx->vpid == 0)
2214 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2215 if (!enable_ept)
2216 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2217 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2218 }
2219
2220 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2221 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2222 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2223
2224 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2225 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2226 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2227
2228 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2229 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2230 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2231 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2232 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2233 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2234 #ifdef CONFIG_X86_64
2235 rdmsrl(MSR_FS_BASE, a);
2236 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2237 rdmsrl(MSR_GS_BASE, a);
2238 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2239 #else
2240 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2241 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2242 #endif
2243
2244 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2245
2246 kvm_get_idt(&dt);
2247 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
2248
2249 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2250 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2251 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2252 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2253 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2254
2255 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2256 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2257 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2258 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2259 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2260 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2261
2262 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2263 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2264 host_pat = msr_low | ((u64) msr_high << 32);
2265 vmcs_write64(HOST_IA32_PAT, host_pat);
2266 }
2267 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2268 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2269 host_pat = msr_low | ((u64) msr_high << 32);
2270 /* Write the default value follow host pat */
2271 vmcs_write64(GUEST_IA32_PAT, host_pat);
2272 /* Keep arch.pat sync with GUEST_IA32_PAT */
2273 vmx->vcpu.arch.pat = host_pat;
2274 }
2275
2276 for (i = 0; i < NR_VMX_MSR; ++i) {
2277 u32 index = vmx_msr_index[i];
2278 u32 data_low, data_high;
2279 u64 data;
2280 int j = vmx->nmsrs;
2281
2282 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2283 continue;
2284 if (wrmsr_safe(index, data_low, data_high) < 0)
2285 continue;
2286 data = data_low | ((u64)data_high << 32);
2287 vmx->host_msrs[j].index = index;
2288 vmx->host_msrs[j].reserved = 0;
2289 vmx->host_msrs[j].data = data;
2290 vmx->guest_msrs[j] = vmx->host_msrs[j];
2291 ++vmx->nmsrs;
2292 }
2293
2294 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2295
2296 /* 22.2.1, 20.8.1 */
2297 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2298
2299 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2300 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2301
2302 tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2303 rdtscll(tsc_this);
2304 if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2305 tsc_base = tsc_this;
2306
2307 guest_write_tsc(0, tsc_base);
2308
2309 return 0;
2310 }
2311
2312 static int init_rmode(struct kvm *kvm)
2313 {
2314 if (!init_rmode_tss(kvm))
2315 return 0;
2316 if (!init_rmode_identity_map(kvm))
2317 return 0;
2318 return 1;
2319 }
2320
2321 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2322 {
2323 struct vcpu_vmx *vmx = to_vmx(vcpu);
2324 u64 msr;
2325 int ret;
2326
2327 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2328 down_read(&vcpu->kvm->slots_lock);
2329 if (!init_rmode(vmx->vcpu.kvm)) {
2330 ret = -ENOMEM;
2331 goto out;
2332 }
2333
2334 vmx->vcpu.arch.rmode.vm86_active = 0;
2335
2336 vmx->soft_vnmi_blocked = 0;
2337
2338 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2339 kvm_set_cr8(&vmx->vcpu, 0);
2340 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2341 if (vmx->vcpu.vcpu_id == 0)
2342 msr |= MSR_IA32_APICBASE_BSP;
2343 kvm_set_apic_base(&vmx->vcpu, msr);
2344
2345 fx_init(&vmx->vcpu);
2346
2347 seg_setup(VCPU_SREG_CS);
2348 /*
2349 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2350 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2351 */
2352 if (vmx->vcpu.vcpu_id == 0) {
2353 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2354 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2355 } else {
2356 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2357 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2358 }
2359
2360 seg_setup(VCPU_SREG_DS);
2361 seg_setup(VCPU_SREG_ES);
2362 seg_setup(VCPU_SREG_FS);
2363 seg_setup(VCPU_SREG_GS);
2364 seg_setup(VCPU_SREG_SS);
2365
2366 vmcs_write16(GUEST_TR_SELECTOR, 0);
2367 vmcs_writel(GUEST_TR_BASE, 0);
2368 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2369 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2370
2371 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2372 vmcs_writel(GUEST_LDTR_BASE, 0);
2373 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2374 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2375
2376 vmcs_write32(GUEST_SYSENTER_CS, 0);
2377 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2378 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2379
2380 vmcs_writel(GUEST_RFLAGS, 0x02);
2381 if (vmx->vcpu.vcpu_id == 0)
2382 kvm_rip_write(vcpu, 0xfff0);
2383 else
2384 kvm_rip_write(vcpu, 0);
2385 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2386
2387 vmcs_writel(GUEST_DR7, 0x400);
2388
2389 vmcs_writel(GUEST_GDTR_BASE, 0);
2390 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2391
2392 vmcs_writel(GUEST_IDTR_BASE, 0);
2393 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2394
2395 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2396 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2397 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2398
2399 /* Special registers */
2400 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2401
2402 setup_msrs(vmx);
2403
2404 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2405
2406 if (cpu_has_vmx_tpr_shadow()) {
2407 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2408 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2409 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2410 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2411 vmcs_write32(TPR_THRESHOLD, 0);
2412 }
2413
2414 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2415 vmcs_write64(APIC_ACCESS_ADDR,
2416 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2417
2418 if (vmx->vpid != 0)
2419 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2420
2421 vmx->vcpu.arch.cr0 = 0x60000010;
2422 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2423 vmx_set_cr4(&vmx->vcpu, 0);
2424 vmx_set_efer(&vmx->vcpu, 0);
2425 vmx_fpu_activate(&vmx->vcpu);
2426 update_exception_bitmap(&vmx->vcpu);
2427
2428 vpid_sync_vcpu_all(vmx);
2429
2430 ret = 0;
2431
2432 /* HACK: Don't enable emulation on guest boot/reset */
2433 vmx->emulation_required = 0;
2434
2435 out:
2436 up_read(&vcpu->kvm->slots_lock);
2437 return ret;
2438 }
2439
2440 static void enable_irq_window(struct kvm_vcpu *vcpu)
2441 {
2442 u32 cpu_based_vm_exec_control;
2443
2444 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2445 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2446 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2447 }
2448
2449 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2450 {
2451 u32 cpu_based_vm_exec_control;
2452
2453 if (!cpu_has_virtual_nmis()) {
2454 enable_irq_window(vcpu);
2455 return;
2456 }
2457
2458 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2459 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2460 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2461 }
2462
2463 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2464 {
2465 struct vcpu_vmx *vmx = to_vmx(vcpu);
2466 uint32_t intr;
2467 int irq = vcpu->arch.interrupt.nr;
2468
2469 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2470
2471 ++vcpu->stat.irq_injections;
2472 if (vcpu->arch.rmode.vm86_active) {
2473 vmx->rmode.irq.pending = true;
2474 vmx->rmode.irq.vector = irq;
2475 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2476 if (vcpu->arch.interrupt.soft)
2477 vmx->rmode.irq.rip +=
2478 vmx->vcpu.arch.event_exit_inst_len;
2479 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2480 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2481 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2482 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2483 return;
2484 }
2485 intr = irq | INTR_INFO_VALID_MASK;
2486 if (vcpu->arch.interrupt.soft) {
2487 intr |= INTR_TYPE_SOFT_INTR;
2488 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2489 vmx->vcpu.arch.event_exit_inst_len);
2490 } else
2491 intr |= INTR_TYPE_EXT_INTR;
2492 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2493 }
2494
2495 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2496 {
2497 struct vcpu_vmx *vmx = to_vmx(vcpu);
2498
2499 if (!cpu_has_virtual_nmis()) {
2500 /*
2501 * Tracking the NMI-blocked state in software is built upon
2502 * finding the next open IRQ window. This, in turn, depends on
2503 * well-behaving guests: They have to keep IRQs disabled at
2504 * least as long as the NMI handler runs. Otherwise we may
2505 * cause NMI nesting, maybe breaking the guest. But as this is
2506 * highly unlikely, we can live with the residual risk.
2507 */
2508 vmx->soft_vnmi_blocked = 1;
2509 vmx->vnmi_blocked_time = 0;
2510 }
2511
2512 ++vcpu->stat.nmi_injections;
2513 if (vcpu->arch.rmode.vm86_active) {
2514 vmx->rmode.irq.pending = true;
2515 vmx->rmode.irq.vector = NMI_VECTOR;
2516 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2517 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2518 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2519 INTR_INFO_VALID_MASK);
2520 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2521 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2522 return;
2523 }
2524 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2525 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2526 }
2527
2528 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2529 {
2530 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2531 return 0;
2532
2533 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2534 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2535 GUEST_INTR_STATE_NMI));
2536 }
2537
2538 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2539 {
2540 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2541 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2542 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2543 }
2544
2545 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2546 {
2547 int ret;
2548 struct kvm_userspace_memory_region tss_mem = {
2549 .slot = TSS_PRIVATE_MEMSLOT,
2550 .guest_phys_addr = addr,
2551 .memory_size = PAGE_SIZE * 3,
2552 .flags = 0,
2553 };
2554
2555 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2556 if (ret)
2557 return ret;
2558 kvm->arch.tss_addr = addr;
2559 return 0;
2560 }
2561
2562 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2563 int vec, u32 err_code)
2564 {
2565 /*
2566 * Instruction with address size override prefix opcode 0x67
2567 * Cause the #SS fault with 0 error code in VM86 mode.
2568 */
2569 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2570 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2571 return 1;
2572 /*
2573 * Forward all other exceptions that are valid in real mode.
2574 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2575 * the required debugging infrastructure rework.
2576 */
2577 switch (vec) {
2578 case DB_VECTOR:
2579 if (vcpu->guest_debug &
2580 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2581 return 0;
2582 kvm_queue_exception(vcpu, vec);
2583 return 1;
2584 case BP_VECTOR:
2585 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2586 return 0;
2587 /* fall through */
2588 case DE_VECTOR:
2589 case OF_VECTOR:
2590 case BR_VECTOR:
2591 case UD_VECTOR:
2592 case DF_VECTOR:
2593 case SS_VECTOR:
2594 case GP_VECTOR:
2595 case MF_VECTOR:
2596 kvm_queue_exception(vcpu, vec);
2597 return 1;
2598 }
2599 return 0;
2600 }
2601
2602 /*
2603 * Trigger machine check on the host. We assume all the MSRs are already set up
2604 * by the CPU and that we still run on the same CPU as the MCE occurred on.
2605 * We pass a fake environment to the machine check handler because we want
2606 * the guest to be always treated like user space, no matter what context
2607 * it used internally.
2608 */
2609 static void kvm_machine_check(void)
2610 {
2611 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2612 struct pt_regs regs = {
2613 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2614 .flags = X86_EFLAGS_IF,
2615 };
2616
2617 do_machine_check(&regs, 0);
2618 #endif
2619 }
2620
2621 static int handle_machine_check(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2622 {
2623 /* already handled by vcpu_run */
2624 return 1;
2625 }
2626
2627 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2628 {
2629 struct vcpu_vmx *vmx = to_vmx(vcpu);
2630 u32 intr_info, ex_no, error_code;
2631 unsigned long cr2, rip, dr6;
2632 u32 vect_info;
2633 enum emulation_result er;
2634
2635 vect_info = vmx->idt_vectoring_info;
2636 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2637
2638 if (is_machine_check(intr_info))
2639 return handle_machine_check(vcpu, kvm_run);
2640
2641 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2642 !is_page_fault(intr_info))
2643 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2644 "intr info 0x%x\n", __func__, vect_info, intr_info);
2645
2646 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2647 return 1; /* already handled by vmx_vcpu_run() */
2648
2649 if (is_no_device(intr_info)) {
2650 vmx_fpu_activate(vcpu);
2651 return 1;
2652 }
2653
2654 if (is_invalid_opcode(intr_info)) {
2655 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2656 if (er != EMULATE_DONE)
2657 kvm_queue_exception(vcpu, UD_VECTOR);
2658 return 1;
2659 }
2660
2661 error_code = 0;
2662 rip = kvm_rip_read(vcpu);
2663 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2664 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2665 if (is_page_fault(intr_info)) {
2666 /* EPT won't cause page fault directly */
2667 if (enable_ept)
2668 BUG();
2669 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2670 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2671 (u32)((u64)cr2 >> 32), handler);
2672 if (kvm_event_needs_reinjection(vcpu))
2673 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2674 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2675 }
2676
2677 if (vcpu->arch.rmode.vm86_active &&
2678 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2679 error_code)) {
2680 if (vcpu->arch.halt_request) {
2681 vcpu->arch.halt_request = 0;
2682 return kvm_emulate_halt(vcpu);
2683 }
2684 return 1;
2685 }
2686
2687 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2688 switch (ex_no) {
2689 case DB_VECTOR:
2690 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2691 if (!(vcpu->guest_debug &
2692 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2693 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2694 kvm_queue_exception(vcpu, DB_VECTOR);
2695 return 1;
2696 }
2697 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2698 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2699 /* fall through */
2700 case BP_VECTOR:
2701 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2702 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2703 kvm_run->debug.arch.exception = ex_no;
2704 break;
2705 default:
2706 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2707 kvm_run->ex.exception = ex_no;
2708 kvm_run->ex.error_code = error_code;
2709 break;
2710 }
2711 return 0;
2712 }
2713
2714 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2715 struct kvm_run *kvm_run)
2716 {
2717 ++vcpu->stat.irq_exits;
2718 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2719 return 1;
2720 }
2721
2722 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2723 {
2724 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2725 return 0;
2726 }
2727
2728 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2729 {
2730 unsigned long exit_qualification;
2731 int size, in, string;
2732 unsigned port;
2733
2734 ++vcpu->stat.io_exits;
2735 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2736 string = (exit_qualification & 16) != 0;
2737
2738 if (string) {
2739 if (emulate_instruction(vcpu,
2740 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2741 return 0;
2742 return 1;
2743 }
2744
2745 size = (exit_qualification & 7) + 1;
2746 in = (exit_qualification & 8) != 0;
2747 port = exit_qualification >> 16;
2748
2749 skip_emulated_instruction(vcpu);
2750 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2751 }
2752
2753 static void
2754 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2755 {
2756 /*
2757 * Patch in the VMCALL instruction:
2758 */
2759 hypercall[0] = 0x0f;
2760 hypercall[1] = 0x01;
2761 hypercall[2] = 0xc1;
2762 }
2763
2764 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2765 {
2766 unsigned long exit_qualification;
2767 int cr;
2768 int reg;
2769
2770 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2771 cr = exit_qualification & 15;
2772 reg = (exit_qualification >> 8) & 15;
2773 switch ((exit_qualification >> 4) & 3) {
2774 case 0: /* mov to cr */
2775 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2776 (u32)kvm_register_read(vcpu, reg),
2777 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2778 handler);
2779 switch (cr) {
2780 case 0:
2781 kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2782 skip_emulated_instruction(vcpu);
2783 return 1;
2784 case 3:
2785 kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2786 skip_emulated_instruction(vcpu);
2787 return 1;
2788 case 4:
2789 kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2790 skip_emulated_instruction(vcpu);
2791 return 1;
2792 case 8: {
2793 u8 cr8_prev = kvm_get_cr8(vcpu);
2794 u8 cr8 = kvm_register_read(vcpu, reg);
2795 kvm_set_cr8(vcpu, cr8);
2796 skip_emulated_instruction(vcpu);
2797 if (irqchip_in_kernel(vcpu->kvm))
2798 return 1;
2799 if (cr8_prev <= cr8)
2800 return 1;
2801 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2802 return 0;
2803 }
2804 };
2805 break;
2806 case 2: /* clts */
2807 vmx_fpu_deactivate(vcpu);
2808 vcpu->arch.cr0 &= ~X86_CR0_TS;
2809 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2810 vmx_fpu_activate(vcpu);
2811 KVMTRACE_0D(CLTS, vcpu, handler);
2812 skip_emulated_instruction(vcpu);
2813 return 1;
2814 case 1: /*mov from cr*/
2815 switch (cr) {
2816 case 3:
2817 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2818 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2819 (u32)kvm_register_read(vcpu, reg),
2820 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2821 handler);
2822 skip_emulated_instruction(vcpu);
2823 return 1;
2824 case 8:
2825 kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2826 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2827 (u32)kvm_register_read(vcpu, reg), handler);
2828 skip_emulated_instruction(vcpu);
2829 return 1;
2830 }
2831 break;
2832 case 3: /* lmsw */
2833 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2834
2835 skip_emulated_instruction(vcpu);
2836 return 1;
2837 default:
2838 break;
2839 }
2840 kvm_run->exit_reason = 0;
2841 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2842 (int)(exit_qualification >> 4) & 3, cr);
2843 return 0;
2844 }
2845
2846 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2847 {
2848 unsigned long exit_qualification;
2849 unsigned long val;
2850 int dr, reg;
2851
2852 dr = vmcs_readl(GUEST_DR7);
2853 if (dr & DR7_GD) {
2854 /*
2855 * As the vm-exit takes precedence over the debug trap, we
2856 * need to emulate the latter, either for the host or the
2857 * guest debugging itself.
2858 */
2859 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2860 kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
2861 kvm_run->debug.arch.dr7 = dr;
2862 kvm_run->debug.arch.pc =
2863 vmcs_readl(GUEST_CS_BASE) +
2864 vmcs_readl(GUEST_RIP);
2865 kvm_run->debug.arch.exception = DB_VECTOR;
2866 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2867 return 0;
2868 } else {
2869 vcpu->arch.dr7 &= ~DR7_GD;
2870 vcpu->arch.dr6 |= DR6_BD;
2871 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2872 kvm_queue_exception(vcpu, DB_VECTOR);
2873 return 1;
2874 }
2875 }
2876
2877 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2878 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2879 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2880 if (exit_qualification & TYPE_MOV_FROM_DR) {
2881 switch (dr) {
2882 case 0 ... 3:
2883 val = vcpu->arch.db[dr];
2884 break;
2885 case 6:
2886 val = vcpu->arch.dr6;
2887 break;
2888 case 7:
2889 val = vcpu->arch.dr7;
2890 break;
2891 default:
2892 val = 0;
2893 }
2894 kvm_register_write(vcpu, reg, val);
2895 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2896 } else {
2897 val = vcpu->arch.regs[reg];
2898 switch (dr) {
2899 case 0 ... 3:
2900 vcpu->arch.db[dr] = val;
2901 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2902 vcpu->arch.eff_db[dr] = val;
2903 break;
2904 case 4 ... 5:
2905 if (vcpu->arch.cr4 & X86_CR4_DE)
2906 kvm_queue_exception(vcpu, UD_VECTOR);
2907 break;
2908 case 6:
2909 if (val & 0xffffffff00000000ULL) {
2910 kvm_queue_exception(vcpu, GP_VECTOR);
2911 break;
2912 }
2913 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
2914 break;
2915 case 7:
2916 if (val & 0xffffffff00000000ULL) {
2917 kvm_queue_exception(vcpu, GP_VECTOR);
2918 break;
2919 }
2920 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
2921 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
2922 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2923 vcpu->arch.switch_db_regs =
2924 (val & DR7_BP_EN_MASK);
2925 }
2926 break;
2927 }
2928 KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
2929 }
2930 skip_emulated_instruction(vcpu);
2931 return 1;
2932 }
2933
2934 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2935 {
2936 kvm_emulate_cpuid(vcpu);
2937 return 1;
2938 }
2939
2940 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2941 {
2942 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2943 u64 data;
2944
2945 if (vmx_get_msr(vcpu, ecx, &data)) {
2946 kvm_inject_gp(vcpu, 0);
2947 return 1;
2948 }
2949
2950 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2951 handler);
2952
2953 /* FIXME: handling of bits 32:63 of rax, rdx */
2954 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2955 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2956 skip_emulated_instruction(vcpu);
2957 return 1;
2958 }
2959
2960 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2961 {
2962 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2963 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2964 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2965
2966 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2967 handler);
2968
2969 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2970 kvm_inject_gp(vcpu, 0);
2971 return 1;
2972 }
2973
2974 skip_emulated_instruction(vcpu);
2975 return 1;
2976 }
2977
2978 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2979 struct kvm_run *kvm_run)
2980 {
2981 return 1;
2982 }
2983
2984 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2985 struct kvm_run *kvm_run)
2986 {
2987 u32 cpu_based_vm_exec_control;
2988
2989 /* clear pending irq */
2990 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2991 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2992 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2993
2994 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2995 ++vcpu->stat.irq_window_exits;
2996
2997 /*
2998 * If the user space waits to inject interrupts, exit as soon as
2999 * possible
3000 */
3001 if (!irqchip_in_kernel(vcpu->kvm) &&
3002 kvm_run->request_interrupt_window &&
3003 !kvm_cpu_has_interrupt(vcpu)) {
3004 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3005 return 0;
3006 }
3007 return 1;
3008 }
3009
3010 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3011 {
3012 skip_emulated_instruction(vcpu);
3013 return kvm_emulate_halt(vcpu);
3014 }
3015
3016 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3017 {
3018 skip_emulated_instruction(vcpu);
3019 kvm_emulate_hypercall(vcpu);
3020 return 1;
3021 }
3022
3023 static int handle_vmx_insn(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3024 {
3025 kvm_queue_exception(vcpu, UD_VECTOR);
3026 return 1;
3027 }
3028
3029 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3030 {
3031 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3032
3033 kvm_mmu_invlpg(vcpu, exit_qualification);
3034 skip_emulated_instruction(vcpu);
3035 return 1;
3036 }
3037
3038 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3039 {
3040 skip_emulated_instruction(vcpu);
3041 /* TODO: Add support for VT-d/pass-through device */
3042 return 1;
3043 }
3044
3045 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3046 {
3047 unsigned long exit_qualification;
3048 enum emulation_result er;
3049 unsigned long offset;
3050
3051 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3052 offset = exit_qualification & 0xffful;
3053
3054 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3055
3056 if (er != EMULATE_DONE) {
3057 printk(KERN_ERR
3058 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3059 offset);
3060 return -ENOTSUPP;
3061 }
3062 return 1;
3063 }
3064
3065 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3066 {
3067 struct vcpu_vmx *vmx = to_vmx(vcpu);
3068 unsigned long exit_qualification;
3069 u16 tss_selector;
3070 int reason, type, idt_v;
3071
3072 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3073 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3074
3075 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3076
3077 reason = (u32)exit_qualification >> 30;
3078 if (reason == TASK_SWITCH_GATE && idt_v) {
3079 switch (type) {
3080 case INTR_TYPE_NMI_INTR:
3081 vcpu->arch.nmi_injected = false;
3082 if (cpu_has_virtual_nmis())
3083 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3084 GUEST_INTR_STATE_NMI);
3085 break;
3086 case INTR_TYPE_EXT_INTR:
3087 case INTR_TYPE_SOFT_INTR:
3088 kvm_clear_interrupt_queue(vcpu);
3089 break;
3090 case INTR_TYPE_HARD_EXCEPTION:
3091 case INTR_TYPE_SOFT_EXCEPTION:
3092 kvm_clear_exception_queue(vcpu);
3093 break;
3094 default:
3095 break;
3096 }
3097 }
3098 tss_selector = exit_qualification;
3099
3100 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3101 type != INTR_TYPE_EXT_INTR &&
3102 type != INTR_TYPE_NMI_INTR))
3103 skip_emulated_instruction(vcpu);
3104
3105 if (!kvm_task_switch(vcpu, tss_selector, reason))
3106 return 0;
3107
3108 /* clear all local breakpoint enable flags */
3109 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3110
3111 /*
3112 * TODO: What about debug traps on tss switch?
3113 * Are we supposed to inject them and update dr6?
3114 */
3115
3116 return 1;
3117 }
3118
3119 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3120 {
3121 unsigned long exit_qualification;
3122 gpa_t gpa;
3123 int gla_validity;
3124
3125 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3126
3127 if (exit_qualification & (1 << 6)) {
3128 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3129 return -ENOTSUPP;
3130 }
3131
3132 gla_validity = (exit_qualification >> 7) & 0x3;
3133 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3134 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3135 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3136 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3137 vmcs_readl(GUEST_LINEAR_ADDRESS));
3138 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3139 (long unsigned int)exit_qualification);
3140 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3141 kvm_run->hw.hardware_exit_reason = 0;
3142 return -ENOTSUPP;
3143 }
3144
3145 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3146 return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3147 }
3148
3149 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3150 {
3151 u32 cpu_based_vm_exec_control;
3152
3153 /* clear pending NMI */
3154 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3155 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3156 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3157 ++vcpu->stat.nmi_window_exits;
3158
3159 return 1;
3160 }
3161
3162 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3163 struct kvm_run *kvm_run)
3164 {
3165 struct vcpu_vmx *vmx = to_vmx(vcpu);
3166 enum emulation_result err = EMULATE_DONE;
3167
3168 local_irq_enable();
3169 preempt_enable();
3170
3171 while (!guest_state_valid(vcpu)) {
3172 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3173
3174 if (err == EMULATE_DO_MMIO)
3175 break;
3176
3177 if (err != EMULATE_DONE) {
3178 kvm_report_emulation_failure(vcpu, "emulation failure");
3179 break;
3180 }
3181
3182 if (signal_pending(current))
3183 break;
3184 if (need_resched())
3185 schedule();
3186 }
3187
3188 preempt_disable();
3189 local_irq_disable();
3190
3191 vmx->invalid_state_emulation_result = err;
3192 }
3193
3194 /*
3195 * The exit handlers return 1 if the exit was handled fully and guest execution
3196 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3197 * to be done to userspace and return 0.
3198 */
3199 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3200 struct kvm_run *kvm_run) = {
3201 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3202 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3203 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3204 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3205 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3206 [EXIT_REASON_CR_ACCESS] = handle_cr,
3207 [EXIT_REASON_DR_ACCESS] = handle_dr,
3208 [EXIT_REASON_CPUID] = handle_cpuid,
3209 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3210 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3211 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3212 [EXIT_REASON_HLT] = handle_halt,
3213 [EXIT_REASON_INVLPG] = handle_invlpg,
3214 [EXIT_REASON_VMCALL] = handle_vmcall,
3215 [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
3216 [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
3217 [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
3218 [EXIT_REASON_VMPTRST] = handle_vmx_insn,
3219 [EXIT_REASON_VMREAD] = handle_vmx_insn,
3220 [EXIT_REASON_VMRESUME] = handle_vmx_insn,
3221 [EXIT_REASON_VMWRITE] = handle_vmx_insn,
3222 [EXIT_REASON_VMOFF] = handle_vmx_insn,
3223 [EXIT_REASON_VMON] = handle_vmx_insn,
3224 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3225 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3226 [EXIT_REASON_WBINVD] = handle_wbinvd,
3227 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3228 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3229 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
3230 };
3231
3232 static const int kvm_vmx_max_exit_handlers =
3233 ARRAY_SIZE(kvm_vmx_exit_handlers);
3234
3235 /*
3236 * The guest has exited. See if we can fix it or if we need userspace
3237 * assistance.
3238 */
3239 static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3240 {
3241 struct vcpu_vmx *vmx = to_vmx(vcpu);
3242 u32 exit_reason = vmx->exit_reason;
3243 u32 vectoring_info = vmx->idt_vectoring_info;
3244
3245 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3246 (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3247
3248 /* If we need to emulate an MMIO from handle_invalid_guest_state
3249 * we just return 0 */
3250 if (vmx->emulation_required && emulate_invalid_guest_state) {
3251 if (guest_state_valid(vcpu))
3252 vmx->emulation_required = 0;
3253 return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
3254 }
3255
3256 /* Access CR3 don't cause VMExit in paging mode, so we need
3257 * to sync with guest real CR3. */
3258 if (enable_ept && is_paging(vcpu)) {
3259 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3260 ept_save_pdptrs(vcpu);
3261 }
3262
3263 if (unlikely(vmx->fail)) {
3264 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3265 kvm_run->fail_entry.hardware_entry_failure_reason
3266 = vmcs_read32(VM_INSTRUCTION_ERROR);
3267 return 0;
3268 }
3269
3270 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3271 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3272 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3273 exit_reason != EXIT_REASON_TASK_SWITCH))
3274 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3275 "(0x%x) and exit reason is 0x%x\n",
3276 __func__, vectoring_info, exit_reason);
3277
3278 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3279 if (vmx_interrupt_allowed(vcpu)) {
3280 vmx->soft_vnmi_blocked = 0;
3281 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3282 vcpu->arch.nmi_pending) {
3283 /*
3284 * This CPU don't support us in finding the end of an
3285 * NMI-blocked window if the guest runs with IRQs
3286 * disabled. So we pull the trigger after 1 s of
3287 * futile waiting, but inform the user about this.
3288 */
3289 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3290 "state on VCPU %d after 1 s timeout\n",
3291 __func__, vcpu->vcpu_id);
3292 vmx->soft_vnmi_blocked = 0;
3293 }
3294 }
3295
3296 if (exit_reason < kvm_vmx_max_exit_handlers
3297 && kvm_vmx_exit_handlers[exit_reason])
3298 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3299 else {
3300 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3301 kvm_run->hw.hardware_exit_reason = exit_reason;
3302 }
3303 return 0;
3304 }
3305
3306 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3307 {
3308 if (irr == -1 || tpr < irr) {
3309 vmcs_write32(TPR_THRESHOLD, 0);
3310 return;
3311 }
3312
3313 vmcs_write32(TPR_THRESHOLD, irr);
3314 }
3315
3316 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3317 {
3318 u32 exit_intr_info;
3319 u32 idt_vectoring_info = vmx->idt_vectoring_info;
3320 bool unblock_nmi;
3321 u8 vector;
3322 int type;
3323 bool idtv_info_valid;
3324
3325 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3326
3327 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3328
3329 /* Handle machine checks before interrupts are enabled */
3330 if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3331 || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3332 && is_machine_check(exit_intr_info)))
3333 kvm_machine_check();
3334
3335 /* We need to handle NMIs before interrupts are enabled */
3336 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3337 (exit_intr_info & INTR_INFO_VALID_MASK)) {
3338 KVMTRACE_0D(NMI, &vmx->vcpu, handler);
3339 asm("int $2");
3340 }
3341
3342 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3343
3344 if (cpu_has_virtual_nmis()) {
3345 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3346 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3347 /*
3348 * SDM 3: 27.7.1.2 (September 2008)
3349 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3350 * a guest IRET fault.
3351 * SDM 3: 23.2.2 (September 2008)
3352 * Bit 12 is undefined in any of the following cases:
3353 * If the VM exit sets the valid bit in the IDT-vectoring
3354 * information field.
3355 * If the VM exit is due to a double fault.
3356 */
3357 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3358 vector != DF_VECTOR && !idtv_info_valid)
3359 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3360 GUEST_INTR_STATE_NMI);
3361 } else if (unlikely(vmx->soft_vnmi_blocked))
3362 vmx->vnmi_blocked_time +=
3363 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3364
3365 vmx->vcpu.arch.nmi_injected = false;
3366 kvm_clear_exception_queue(&vmx->vcpu);
3367 kvm_clear_interrupt_queue(&vmx->vcpu);
3368
3369 if (!idtv_info_valid)
3370 return;
3371
3372 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3373 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3374
3375 switch (type) {
3376 case INTR_TYPE_NMI_INTR:
3377 vmx->vcpu.arch.nmi_injected = true;
3378 /*
3379 * SDM 3: 27.7.1.2 (September 2008)
3380 * Clear bit "block by NMI" before VM entry if a NMI
3381 * delivery faulted.
3382 */
3383 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3384 GUEST_INTR_STATE_NMI);
3385 break;
3386 case INTR_TYPE_SOFT_EXCEPTION:
3387 vmx->vcpu.arch.event_exit_inst_len =
3388 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3389 /* fall through */
3390 case INTR_TYPE_HARD_EXCEPTION:
3391 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3392 u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3393 kvm_queue_exception_e(&vmx->vcpu, vector, err);
3394 } else
3395 kvm_queue_exception(&vmx->vcpu, vector);
3396 break;
3397 case INTR_TYPE_SOFT_INTR:
3398 vmx->vcpu.arch.event_exit_inst_len =
3399 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3400 /* fall through */
3401 case INTR_TYPE_EXT_INTR:
3402 kvm_queue_interrupt(&vmx->vcpu, vector,
3403 type == INTR_TYPE_SOFT_INTR);
3404 break;
3405 default:
3406 break;
3407 }
3408 }
3409
3410 /*
3411 * Failure to inject an interrupt should give us the information
3412 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3413 * when fetching the interrupt redirection bitmap in the real-mode
3414 * tss, this doesn't happen. So we do it ourselves.
3415 */
3416 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3417 {
3418 vmx->rmode.irq.pending = 0;
3419 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3420 return;
3421 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3422 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3423 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3424 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3425 return;
3426 }
3427 vmx->idt_vectoring_info =
3428 VECTORING_INFO_VALID_MASK
3429 | INTR_TYPE_EXT_INTR
3430 | vmx->rmode.irq.vector;
3431 }
3432
3433 #ifdef CONFIG_X86_64
3434 #define R "r"
3435 #define Q "q"
3436 #else
3437 #define R "e"
3438 #define Q "l"
3439 #endif
3440
3441 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3442 {
3443 struct vcpu_vmx *vmx = to_vmx(vcpu);
3444
3445 if (enable_ept && is_paging(vcpu)) {
3446 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3447 ept_load_pdptrs(vcpu);
3448 }
3449 /* Record the guest's net vcpu time for enforced NMI injections. */
3450 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3451 vmx->entry_time = ktime_get();
3452
3453 /* Handle invalid guest state instead of entering VMX */
3454 if (vmx->emulation_required && emulate_invalid_guest_state) {
3455 handle_invalid_guest_state(vcpu, kvm_run);
3456 return;
3457 }
3458
3459 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3460 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3461 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3462 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3463
3464 /* When single-stepping over STI and MOV SS, we must clear the
3465 * corresponding interruptibility bits in the guest state. Otherwise
3466 * vmentry fails as it then expects bit 14 (BS) in pending debug
3467 * exceptions being set, but that's not correct for the guest debugging
3468 * case. */
3469 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3470 vmx_set_interrupt_shadow(vcpu, 0);
3471
3472 /*
3473 * Loading guest fpu may have cleared host cr0.ts
3474 */
3475 vmcs_writel(HOST_CR0, read_cr0());
3476
3477 set_debugreg(vcpu->arch.dr6, 6);
3478
3479 asm(
3480 /* Store host registers */
3481 "push %%"R"dx; push %%"R"bp;"
3482 "push %%"R"cx \n\t"
3483 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3484 "je 1f \n\t"
3485 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3486 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3487 "1: \n\t"
3488 /* Check if vmlaunch of vmresume is needed */
3489 "cmpl $0, %c[launched](%0) \n\t"
3490 /* Load guest registers. Don't clobber flags. */
3491 "mov %c[cr2](%0), %%"R"ax \n\t"
3492 "mov %%"R"ax, %%cr2 \n\t"
3493 "mov %c[rax](%0), %%"R"ax \n\t"
3494 "mov %c[rbx](%0), %%"R"bx \n\t"
3495 "mov %c[rdx](%0), %%"R"dx \n\t"
3496 "mov %c[rsi](%0), %%"R"si \n\t"
3497 "mov %c[rdi](%0), %%"R"di \n\t"
3498 "mov %c[rbp](%0), %%"R"bp \n\t"
3499 #ifdef CONFIG_X86_64
3500 "mov %c[r8](%0), %%r8 \n\t"
3501 "mov %c[r9](%0), %%r9 \n\t"
3502 "mov %c[r10](%0), %%r10 \n\t"
3503 "mov %c[r11](%0), %%r11 \n\t"
3504 "mov %c[r12](%0), %%r12 \n\t"
3505 "mov %c[r13](%0), %%r13 \n\t"
3506 "mov %c[r14](%0), %%r14 \n\t"
3507 "mov %c[r15](%0), %%r15 \n\t"
3508 #endif
3509 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3510
3511 /* Enter guest mode */
3512 "jne .Llaunched \n\t"
3513 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3514 "jmp .Lkvm_vmx_return \n\t"
3515 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3516 ".Lkvm_vmx_return: "
3517 /* Save guest registers, load host registers, keep flags */
3518 "xchg %0, (%%"R"sp) \n\t"
3519 "mov %%"R"ax, %c[rax](%0) \n\t"
3520 "mov %%"R"bx, %c[rbx](%0) \n\t"
3521 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3522 "mov %%"R"dx, %c[rdx](%0) \n\t"
3523 "mov %%"R"si, %c[rsi](%0) \n\t"
3524 "mov %%"R"di, %c[rdi](%0) \n\t"
3525 "mov %%"R"bp, %c[rbp](%0) \n\t"
3526 #ifdef CONFIG_X86_64
3527 "mov %%r8, %c[r8](%0) \n\t"
3528 "mov %%r9, %c[r9](%0) \n\t"
3529 "mov %%r10, %c[r10](%0) \n\t"
3530 "mov %%r11, %c[r11](%0) \n\t"
3531 "mov %%r12, %c[r12](%0) \n\t"
3532 "mov %%r13, %c[r13](%0) \n\t"
3533 "mov %%r14, %c[r14](%0) \n\t"
3534 "mov %%r15, %c[r15](%0) \n\t"
3535 #endif
3536 "mov %%cr2, %%"R"ax \n\t"
3537 "mov %%"R"ax, %c[cr2](%0) \n\t"
3538
3539 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3540 "setbe %c[fail](%0) \n\t"
3541 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3542 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3543 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3544 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3545 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3546 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3547 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3548 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3549 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3550 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3551 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3552 #ifdef CONFIG_X86_64
3553 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3554 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3555 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3556 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3557 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3558 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3559 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3560 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3561 #endif
3562 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3563 : "cc", "memory"
3564 , R"bx", R"di", R"si"
3565 #ifdef CONFIG_X86_64
3566 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3567 #endif
3568 );
3569
3570 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3571 vcpu->arch.regs_dirty = 0;
3572
3573 get_debugreg(vcpu->arch.dr6, 6);
3574
3575 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3576 if (vmx->rmode.irq.pending)
3577 fixup_rmode_irq(vmx);
3578
3579 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3580 vmx->launched = 1;
3581
3582 vmx_complete_interrupts(vmx);
3583 }
3584
3585 #undef R
3586 #undef Q
3587
3588 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3589 {
3590 struct vcpu_vmx *vmx = to_vmx(vcpu);
3591
3592 if (vmx->vmcs) {
3593 vcpu_clear(vmx);
3594 free_vmcs(vmx->vmcs);
3595 vmx->vmcs = NULL;
3596 }
3597 }
3598
3599 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3600 {
3601 struct vcpu_vmx *vmx = to_vmx(vcpu);
3602
3603 spin_lock(&vmx_vpid_lock);
3604 if (vmx->vpid != 0)
3605 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3606 spin_unlock(&vmx_vpid_lock);
3607 vmx_free_vmcs(vcpu);
3608 kfree(vmx->host_msrs);
3609 kfree(vmx->guest_msrs);
3610 kvm_vcpu_uninit(vcpu);
3611 kmem_cache_free(kvm_vcpu_cache, vmx);
3612 }
3613
3614 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3615 {
3616 int err;
3617 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3618 int cpu;
3619
3620 if (!vmx)
3621 return ERR_PTR(-ENOMEM);
3622
3623 allocate_vpid(vmx);
3624
3625 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3626 if (err)
3627 goto free_vcpu;
3628
3629 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3630 if (!vmx->guest_msrs) {
3631 err = -ENOMEM;
3632 goto uninit_vcpu;
3633 }
3634
3635 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3636 if (!vmx->host_msrs)
3637 goto free_guest_msrs;
3638
3639 vmx->vmcs = alloc_vmcs();
3640 if (!vmx->vmcs)
3641 goto free_msrs;
3642
3643 vmcs_clear(vmx->vmcs);
3644
3645 cpu = get_cpu();
3646 vmx_vcpu_load(&vmx->vcpu, cpu);
3647 err = vmx_vcpu_setup(vmx);
3648 vmx_vcpu_put(&vmx->vcpu);
3649 put_cpu();
3650 if (err)
3651 goto free_vmcs;
3652 if (vm_need_virtualize_apic_accesses(kvm))
3653 if (alloc_apic_access_page(kvm) != 0)
3654 goto free_vmcs;
3655
3656 if (enable_ept)
3657 if (alloc_identity_pagetable(kvm) != 0)
3658 goto free_vmcs;
3659
3660 return &vmx->vcpu;
3661
3662 free_vmcs:
3663 free_vmcs(vmx->vmcs);
3664 free_msrs:
3665 kfree(vmx->host_msrs);
3666 free_guest_msrs:
3667 kfree(vmx->guest_msrs);
3668 uninit_vcpu:
3669 kvm_vcpu_uninit(&vmx->vcpu);
3670 free_vcpu:
3671 kmem_cache_free(kvm_vcpu_cache, vmx);
3672 return ERR_PTR(err);
3673 }
3674
3675 static void __init vmx_check_processor_compat(void *rtn)
3676 {
3677 struct vmcs_config vmcs_conf;
3678
3679 *(int *)rtn = 0;
3680 if (setup_vmcs_config(&vmcs_conf) < 0)
3681 *(int *)rtn = -EIO;
3682 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3683 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3684 smp_processor_id());
3685 *(int *)rtn = -EIO;
3686 }
3687 }
3688
3689 static int get_ept_level(void)
3690 {
3691 return VMX_EPT_DEFAULT_GAW + 1;
3692 }
3693
3694 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3695 {
3696 u64 ret;
3697
3698 /* For VT-d and EPT combination
3699 * 1. MMIO: always map as UC
3700 * 2. EPT with VT-d:
3701 * a. VT-d without snooping control feature: can't guarantee the
3702 * result, try to trust guest.
3703 * b. VT-d with snooping control feature: snooping control feature of
3704 * VT-d engine can guarantee the cache correctness. Just set it
3705 * to WB to keep consistent with host. So the same as item 3.
3706 * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3707 * consistent with host MTRR
3708 */
3709 if (is_mmio)
3710 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3711 else if (vcpu->kvm->arch.iommu_domain &&
3712 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3713 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3714 VMX_EPT_MT_EPTE_SHIFT;
3715 else
3716 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3717 | VMX_EPT_IGMT_BIT;
3718
3719 return ret;
3720 }
3721
3722 static struct kvm_x86_ops vmx_x86_ops = {
3723 .cpu_has_kvm_support = cpu_has_kvm_support,
3724 .disabled_by_bios = vmx_disabled_by_bios,
3725 .hardware_setup = hardware_setup,
3726 .hardware_unsetup = hardware_unsetup,
3727 .check_processor_compatibility = vmx_check_processor_compat,
3728 .hardware_enable = hardware_enable,
3729 .hardware_disable = hardware_disable,
3730 .cpu_has_accelerated_tpr = report_flexpriority,
3731
3732 .vcpu_create = vmx_create_vcpu,
3733 .vcpu_free = vmx_free_vcpu,
3734 .vcpu_reset = vmx_vcpu_reset,
3735
3736 .prepare_guest_switch = vmx_save_host_state,
3737 .vcpu_load = vmx_vcpu_load,
3738 .vcpu_put = vmx_vcpu_put,
3739
3740 .set_guest_debug = set_guest_debug,
3741 .get_msr = vmx_get_msr,
3742 .set_msr = vmx_set_msr,
3743 .get_segment_base = vmx_get_segment_base,
3744 .get_segment = vmx_get_segment,
3745 .set_segment = vmx_set_segment,
3746 .get_cpl = vmx_get_cpl,
3747 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3748 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3749 .set_cr0 = vmx_set_cr0,
3750 .set_cr3 = vmx_set_cr3,
3751 .set_cr4 = vmx_set_cr4,
3752 .set_efer = vmx_set_efer,
3753 .get_idt = vmx_get_idt,
3754 .set_idt = vmx_set_idt,
3755 .get_gdt = vmx_get_gdt,
3756 .set_gdt = vmx_set_gdt,
3757 .cache_reg = vmx_cache_reg,
3758 .get_rflags = vmx_get_rflags,
3759 .set_rflags = vmx_set_rflags,
3760
3761 .tlb_flush = vmx_flush_tlb,
3762
3763 .run = vmx_vcpu_run,
3764 .handle_exit = vmx_handle_exit,
3765 .skip_emulated_instruction = skip_emulated_instruction,
3766 .set_interrupt_shadow = vmx_set_interrupt_shadow,
3767 .get_interrupt_shadow = vmx_get_interrupt_shadow,
3768 .patch_hypercall = vmx_patch_hypercall,
3769 .set_irq = vmx_inject_irq,
3770 .set_nmi = vmx_inject_nmi,
3771 .queue_exception = vmx_queue_exception,
3772 .interrupt_allowed = vmx_interrupt_allowed,
3773 .nmi_allowed = vmx_nmi_allowed,
3774 .enable_nmi_window = enable_nmi_window,
3775 .enable_irq_window = enable_irq_window,
3776 .update_cr8_intercept = update_cr8_intercept,
3777
3778 .set_tss_addr = vmx_set_tss_addr,
3779 .get_tdp_level = get_ept_level,
3780 .get_mt_mask = vmx_get_mt_mask,
3781 };
3782
3783 static int __init vmx_init(void)
3784 {
3785 int r;
3786
3787 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
3788 if (!vmx_io_bitmap_a)
3789 return -ENOMEM;
3790
3791 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
3792 if (!vmx_io_bitmap_b) {
3793 r = -ENOMEM;
3794 goto out;
3795 }
3796
3797 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
3798 if (!vmx_msr_bitmap_legacy) {
3799 r = -ENOMEM;
3800 goto out1;
3801 }
3802
3803 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
3804 if (!vmx_msr_bitmap_longmode) {
3805 r = -ENOMEM;
3806 goto out2;
3807 }
3808
3809 /*
3810 * Allow direct access to the PC debug port (it is often used for I/O
3811 * delays, but the vmexits simply slow things down).
3812 */
3813 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
3814 clear_bit(0x80, vmx_io_bitmap_a);
3815
3816 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
3817
3818 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
3819 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3820
3821 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3822
3823 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3824 if (r)
3825 goto out3;
3826
3827 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
3828 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
3829 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
3830 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
3831 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
3832 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
3833
3834 if (enable_ept) {
3835 bypass_guest_pf = 0;
3836 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3837 VMX_EPT_WRITABLE_MASK);
3838 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3839 VMX_EPT_EXECUTABLE_MASK);
3840 kvm_enable_tdp();
3841 } else
3842 kvm_disable_tdp();
3843
3844 if (bypass_guest_pf)
3845 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3846
3847 ept_sync_global();
3848
3849 return 0;
3850
3851 out3:
3852 free_page((unsigned long)vmx_msr_bitmap_longmode);
3853 out2:
3854 free_page((unsigned long)vmx_msr_bitmap_legacy);
3855 out1:
3856 free_page((unsigned long)vmx_io_bitmap_b);
3857 out:
3858 free_page((unsigned long)vmx_io_bitmap_a);
3859 return r;
3860 }
3861
3862 static void __exit vmx_exit(void)
3863 {
3864 free_page((unsigned long)vmx_msr_bitmap_legacy);
3865 free_page((unsigned long)vmx_msr_bitmap_longmode);
3866 free_page((unsigned long)vmx_io_bitmap_b);
3867 free_page((unsigned long)vmx_io_bitmap_a);
3868
3869 kvm_exit();
3870 }
3871
3872 module_init(vmx_init)
3873 module_exit(vmx_exit)
This page took 0.192425 seconds and 6 git commands to generate.