kvm: x86: vmx: avoid returning bool to distinguish success from error
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/i387.h>
44 #include <asm/xcr.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52 #define __ex_clear(x, reg) \
53 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 static const struct x86_cpu_id vmx_cpu_id[] = {
59 X86_FEATURE_MATCH(X86_FEATURE_VMX),
60 {}
61 };
62 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
63
64 static bool __read_mostly enable_vpid = 1;
65 module_param_named(vpid, enable_vpid, bool, 0444);
66
67 static bool __read_mostly flexpriority_enabled = 1;
68 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
69
70 static bool __read_mostly enable_ept = 1;
71 module_param_named(ept, enable_ept, bool, S_IRUGO);
72
73 static bool __read_mostly enable_unrestricted_guest = 1;
74 module_param_named(unrestricted_guest,
75 enable_unrestricted_guest, bool, S_IRUGO);
76
77 static bool __read_mostly enable_ept_ad_bits = 1;
78 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
79
80 static bool __read_mostly emulate_invalid_guest_state = true;
81 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
82
83 static bool __read_mostly vmm_exclusive = 1;
84 module_param(vmm_exclusive, bool, S_IRUGO);
85
86 static bool __read_mostly fasteoi = 1;
87 module_param(fasteoi, bool, S_IRUGO);
88
89 static bool __read_mostly enable_apicv = 1;
90 module_param(enable_apicv, bool, S_IRUGO);
91
92 static bool __read_mostly enable_shadow_vmcs = 1;
93 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
94 /*
95 * If nested=1, nested virtualization is supported, i.e., guests may use
96 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97 * use VMX instructions.
98 */
99 static bool __read_mostly nested = 0;
100 module_param(nested, bool, S_IRUGO);
101
102 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
103 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
104 #define KVM_VM_CR0_ALWAYS_ON \
105 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
106 #define KVM_CR4_GUEST_OWNED_BITS \
107 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
108 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
109
110 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
111 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
112
113 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
114
115 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
116
117 /*
118 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119 * ple_gap: upper bound on the amount of time between two successive
120 * executions of PAUSE in a loop. Also indicate if ple enabled.
121 * According to test, this time is usually smaller than 128 cycles.
122 * ple_window: upper bound on the amount of time a guest is allowed to execute
123 * in a PAUSE loop. Tests indicate that most spinlocks are held for
124 * less than 2^12 cycles
125 * Time is measured based on a counter that runs at the same rate as the TSC,
126 * refer SDM volume 3b section 21.6.13 & 22.1.3.
127 */
128 #define KVM_VMX_DEFAULT_PLE_GAP 128
129 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
130 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
131 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
132 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
133 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
134
135 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
136 module_param(ple_gap, int, S_IRUGO);
137
138 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
139 module_param(ple_window, int, S_IRUGO);
140
141 /* Default doubles per-vcpu window every exit. */
142 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
143 module_param(ple_window_grow, int, S_IRUGO);
144
145 /* Default resets per-vcpu window every exit to ple_window. */
146 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
147 module_param(ple_window_shrink, int, S_IRUGO);
148
149 /* Default is to compute the maximum so we can never overflow. */
150 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
151 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
152 module_param(ple_window_max, int, S_IRUGO);
153
154 extern const ulong vmx_return;
155
156 #define NR_AUTOLOAD_MSRS 8
157 #define VMCS02_POOL_SIZE 1
158
159 struct vmcs {
160 u32 revision_id;
161 u32 abort;
162 char data[0];
163 };
164
165 /*
166 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
167 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
168 * loaded on this CPU (so we can clear them if the CPU goes down).
169 */
170 struct loaded_vmcs {
171 struct vmcs *vmcs;
172 int cpu;
173 int launched;
174 struct list_head loaded_vmcss_on_cpu_link;
175 };
176
177 struct shared_msr_entry {
178 unsigned index;
179 u64 data;
180 u64 mask;
181 };
182
183 /*
184 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
185 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
186 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
187 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
188 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
189 * More than one of these structures may exist, if L1 runs multiple L2 guests.
190 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
191 * underlying hardware which will be used to run L2.
192 * This structure is packed to ensure that its layout is identical across
193 * machines (necessary for live migration).
194 * If there are changes in this struct, VMCS12_REVISION must be changed.
195 */
196 typedef u64 natural_width;
197 struct __packed vmcs12 {
198 /* According to the Intel spec, a VMCS region must start with the
199 * following two fields. Then follow implementation-specific data.
200 */
201 u32 revision_id;
202 u32 abort;
203
204 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
205 u32 padding[7]; /* room for future expansion */
206
207 u64 io_bitmap_a;
208 u64 io_bitmap_b;
209 u64 msr_bitmap;
210 u64 vm_exit_msr_store_addr;
211 u64 vm_exit_msr_load_addr;
212 u64 vm_entry_msr_load_addr;
213 u64 tsc_offset;
214 u64 virtual_apic_page_addr;
215 u64 apic_access_addr;
216 u64 ept_pointer;
217 u64 guest_physical_address;
218 u64 vmcs_link_pointer;
219 u64 guest_ia32_debugctl;
220 u64 guest_ia32_pat;
221 u64 guest_ia32_efer;
222 u64 guest_ia32_perf_global_ctrl;
223 u64 guest_pdptr0;
224 u64 guest_pdptr1;
225 u64 guest_pdptr2;
226 u64 guest_pdptr3;
227 u64 guest_bndcfgs;
228 u64 host_ia32_pat;
229 u64 host_ia32_efer;
230 u64 host_ia32_perf_global_ctrl;
231 u64 padding64[8]; /* room for future expansion */
232 /*
233 * To allow migration of L1 (complete with its L2 guests) between
234 * machines of different natural widths (32 or 64 bit), we cannot have
235 * unsigned long fields with no explict size. We use u64 (aliased
236 * natural_width) instead. Luckily, x86 is little-endian.
237 */
238 natural_width cr0_guest_host_mask;
239 natural_width cr4_guest_host_mask;
240 natural_width cr0_read_shadow;
241 natural_width cr4_read_shadow;
242 natural_width cr3_target_value0;
243 natural_width cr3_target_value1;
244 natural_width cr3_target_value2;
245 natural_width cr3_target_value3;
246 natural_width exit_qualification;
247 natural_width guest_linear_address;
248 natural_width guest_cr0;
249 natural_width guest_cr3;
250 natural_width guest_cr4;
251 natural_width guest_es_base;
252 natural_width guest_cs_base;
253 natural_width guest_ss_base;
254 natural_width guest_ds_base;
255 natural_width guest_fs_base;
256 natural_width guest_gs_base;
257 natural_width guest_ldtr_base;
258 natural_width guest_tr_base;
259 natural_width guest_gdtr_base;
260 natural_width guest_idtr_base;
261 natural_width guest_dr7;
262 natural_width guest_rsp;
263 natural_width guest_rip;
264 natural_width guest_rflags;
265 natural_width guest_pending_dbg_exceptions;
266 natural_width guest_sysenter_esp;
267 natural_width guest_sysenter_eip;
268 natural_width host_cr0;
269 natural_width host_cr3;
270 natural_width host_cr4;
271 natural_width host_fs_base;
272 natural_width host_gs_base;
273 natural_width host_tr_base;
274 natural_width host_gdtr_base;
275 natural_width host_idtr_base;
276 natural_width host_ia32_sysenter_esp;
277 natural_width host_ia32_sysenter_eip;
278 natural_width host_rsp;
279 natural_width host_rip;
280 natural_width paddingl[8]; /* room for future expansion */
281 u32 pin_based_vm_exec_control;
282 u32 cpu_based_vm_exec_control;
283 u32 exception_bitmap;
284 u32 page_fault_error_code_mask;
285 u32 page_fault_error_code_match;
286 u32 cr3_target_count;
287 u32 vm_exit_controls;
288 u32 vm_exit_msr_store_count;
289 u32 vm_exit_msr_load_count;
290 u32 vm_entry_controls;
291 u32 vm_entry_msr_load_count;
292 u32 vm_entry_intr_info_field;
293 u32 vm_entry_exception_error_code;
294 u32 vm_entry_instruction_len;
295 u32 tpr_threshold;
296 u32 secondary_vm_exec_control;
297 u32 vm_instruction_error;
298 u32 vm_exit_reason;
299 u32 vm_exit_intr_info;
300 u32 vm_exit_intr_error_code;
301 u32 idt_vectoring_info_field;
302 u32 idt_vectoring_error_code;
303 u32 vm_exit_instruction_len;
304 u32 vmx_instruction_info;
305 u32 guest_es_limit;
306 u32 guest_cs_limit;
307 u32 guest_ss_limit;
308 u32 guest_ds_limit;
309 u32 guest_fs_limit;
310 u32 guest_gs_limit;
311 u32 guest_ldtr_limit;
312 u32 guest_tr_limit;
313 u32 guest_gdtr_limit;
314 u32 guest_idtr_limit;
315 u32 guest_es_ar_bytes;
316 u32 guest_cs_ar_bytes;
317 u32 guest_ss_ar_bytes;
318 u32 guest_ds_ar_bytes;
319 u32 guest_fs_ar_bytes;
320 u32 guest_gs_ar_bytes;
321 u32 guest_ldtr_ar_bytes;
322 u32 guest_tr_ar_bytes;
323 u32 guest_interruptibility_info;
324 u32 guest_activity_state;
325 u32 guest_sysenter_cs;
326 u32 host_ia32_sysenter_cs;
327 u32 vmx_preemption_timer_value;
328 u32 padding32[7]; /* room for future expansion */
329 u16 virtual_processor_id;
330 u16 guest_es_selector;
331 u16 guest_cs_selector;
332 u16 guest_ss_selector;
333 u16 guest_ds_selector;
334 u16 guest_fs_selector;
335 u16 guest_gs_selector;
336 u16 guest_ldtr_selector;
337 u16 guest_tr_selector;
338 u16 host_es_selector;
339 u16 host_cs_selector;
340 u16 host_ss_selector;
341 u16 host_ds_selector;
342 u16 host_fs_selector;
343 u16 host_gs_selector;
344 u16 host_tr_selector;
345 };
346
347 /*
348 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
349 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
350 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
351 */
352 #define VMCS12_REVISION 0x11e57ed0
353
354 /*
355 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
356 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
357 * current implementation, 4K are reserved to avoid future complications.
358 */
359 #define VMCS12_SIZE 0x1000
360
361 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
362 struct vmcs02_list {
363 struct list_head list;
364 gpa_t vmptr;
365 struct loaded_vmcs vmcs02;
366 };
367
368 /*
369 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
370 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
371 */
372 struct nested_vmx {
373 /* Has the level1 guest done vmxon? */
374 bool vmxon;
375 gpa_t vmxon_ptr;
376
377 /* The guest-physical address of the current VMCS L1 keeps for L2 */
378 gpa_t current_vmptr;
379 /* The host-usable pointer to the above */
380 struct page *current_vmcs12_page;
381 struct vmcs12 *current_vmcs12;
382 struct vmcs *current_shadow_vmcs;
383 /*
384 * Indicates if the shadow vmcs must be updated with the
385 * data hold by vmcs12
386 */
387 bool sync_shadow_vmcs;
388
389 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
390 struct list_head vmcs02_pool;
391 int vmcs02_num;
392 u64 vmcs01_tsc_offset;
393 /* L2 must run next, and mustn't decide to exit to L1. */
394 bool nested_run_pending;
395 /*
396 * Guest pages referred to in vmcs02 with host-physical pointers, so
397 * we must keep them pinned while L2 runs.
398 */
399 struct page *apic_access_page;
400 struct page *virtual_apic_page;
401 u64 msr_ia32_feature_control;
402
403 struct hrtimer preemption_timer;
404 bool preemption_timer_expired;
405
406 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
407 u64 vmcs01_debugctl;
408 };
409
410 #define POSTED_INTR_ON 0
411 /* Posted-Interrupt Descriptor */
412 struct pi_desc {
413 u32 pir[8]; /* Posted interrupt requested */
414 u32 control; /* bit 0 of control is outstanding notification bit */
415 u32 rsvd[7];
416 } __aligned(64);
417
418 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
419 {
420 return test_and_set_bit(POSTED_INTR_ON,
421 (unsigned long *)&pi_desc->control);
422 }
423
424 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
425 {
426 return test_and_clear_bit(POSTED_INTR_ON,
427 (unsigned long *)&pi_desc->control);
428 }
429
430 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
431 {
432 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
433 }
434
435 struct vcpu_vmx {
436 struct kvm_vcpu vcpu;
437 unsigned long host_rsp;
438 u8 fail;
439 bool nmi_known_unmasked;
440 u32 exit_intr_info;
441 u32 idt_vectoring_info;
442 ulong rflags;
443 struct shared_msr_entry *guest_msrs;
444 int nmsrs;
445 int save_nmsrs;
446 unsigned long host_idt_base;
447 #ifdef CONFIG_X86_64
448 u64 msr_host_kernel_gs_base;
449 u64 msr_guest_kernel_gs_base;
450 #endif
451 u32 vm_entry_controls_shadow;
452 u32 vm_exit_controls_shadow;
453 /*
454 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
455 * non-nested (L1) guest, it always points to vmcs01. For a nested
456 * guest (L2), it points to a different VMCS.
457 */
458 struct loaded_vmcs vmcs01;
459 struct loaded_vmcs *loaded_vmcs;
460 bool __launched; /* temporary, used in vmx_vcpu_run */
461 struct msr_autoload {
462 unsigned nr;
463 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
464 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
465 } msr_autoload;
466 struct {
467 int loaded;
468 u16 fs_sel, gs_sel, ldt_sel;
469 #ifdef CONFIG_X86_64
470 u16 ds_sel, es_sel;
471 #endif
472 int gs_ldt_reload_needed;
473 int fs_reload_needed;
474 u64 msr_host_bndcfgs;
475 unsigned long vmcs_host_cr4; /* May not match real cr4 */
476 } host_state;
477 struct {
478 int vm86_active;
479 ulong save_rflags;
480 struct kvm_segment segs[8];
481 } rmode;
482 struct {
483 u32 bitmask; /* 4 bits per segment (1 bit per field) */
484 struct kvm_save_segment {
485 u16 selector;
486 unsigned long base;
487 u32 limit;
488 u32 ar;
489 } seg[8];
490 } segment_cache;
491 int vpid;
492 bool emulation_required;
493
494 /* Support for vnmi-less CPUs */
495 int soft_vnmi_blocked;
496 ktime_t entry_time;
497 s64 vnmi_blocked_time;
498 u32 exit_reason;
499
500 bool rdtscp_enabled;
501
502 /* Posted interrupt descriptor */
503 struct pi_desc pi_desc;
504
505 /* Support for a guest hypervisor (nested VMX) */
506 struct nested_vmx nested;
507
508 /* Dynamic PLE window. */
509 int ple_window;
510 bool ple_window_dirty;
511 };
512
513 enum segment_cache_field {
514 SEG_FIELD_SEL = 0,
515 SEG_FIELD_BASE = 1,
516 SEG_FIELD_LIMIT = 2,
517 SEG_FIELD_AR = 3,
518
519 SEG_FIELD_NR = 4
520 };
521
522 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
523 {
524 return container_of(vcpu, struct vcpu_vmx, vcpu);
525 }
526
527 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
528 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
529 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
530 [number##_HIGH] = VMCS12_OFFSET(name)+4
531
532
533 static unsigned long shadow_read_only_fields[] = {
534 /*
535 * We do NOT shadow fields that are modified when L0
536 * traps and emulates any vmx instruction (e.g. VMPTRLD,
537 * VMXON...) executed by L1.
538 * For example, VM_INSTRUCTION_ERROR is read
539 * by L1 if a vmx instruction fails (part of the error path).
540 * Note the code assumes this logic. If for some reason
541 * we start shadowing these fields then we need to
542 * force a shadow sync when L0 emulates vmx instructions
543 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
544 * by nested_vmx_failValid)
545 */
546 VM_EXIT_REASON,
547 VM_EXIT_INTR_INFO,
548 VM_EXIT_INSTRUCTION_LEN,
549 IDT_VECTORING_INFO_FIELD,
550 IDT_VECTORING_ERROR_CODE,
551 VM_EXIT_INTR_ERROR_CODE,
552 EXIT_QUALIFICATION,
553 GUEST_LINEAR_ADDRESS,
554 GUEST_PHYSICAL_ADDRESS
555 };
556 static int max_shadow_read_only_fields =
557 ARRAY_SIZE(shadow_read_only_fields);
558
559 static unsigned long shadow_read_write_fields[] = {
560 TPR_THRESHOLD,
561 GUEST_RIP,
562 GUEST_RSP,
563 GUEST_CR0,
564 GUEST_CR3,
565 GUEST_CR4,
566 GUEST_INTERRUPTIBILITY_INFO,
567 GUEST_RFLAGS,
568 GUEST_CS_SELECTOR,
569 GUEST_CS_AR_BYTES,
570 GUEST_CS_LIMIT,
571 GUEST_CS_BASE,
572 GUEST_ES_BASE,
573 GUEST_BNDCFGS,
574 CR0_GUEST_HOST_MASK,
575 CR0_READ_SHADOW,
576 CR4_READ_SHADOW,
577 TSC_OFFSET,
578 EXCEPTION_BITMAP,
579 CPU_BASED_VM_EXEC_CONTROL,
580 VM_ENTRY_EXCEPTION_ERROR_CODE,
581 VM_ENTRY_INTR_INFO_FIELD,
582 VM_ENTRY_INSTRUCTION_LEN,
583 VM_ENTRY_EXCEPTION_ERROR_CODE,
584 HOST_FS_BASE,
585 HOST_GS_BASE,
586 HOST_FS_SELECTOR,
587 HOST_GS_SELECTOR
588 };
589 static int max_shadow_read_write_fields =
590 ARRAY_SIZE(shadow_read_write_fields);
591
592 static const unsigned short vmcs_field_to_offset_table[] = {
593 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
594 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
595 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
596 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
597 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
598 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
599 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
600 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
601 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
602 FIELD(HOST_ES_SELECTOR, host_es_selector),
603 FIELD(HOST_CS_SELECTOR, host_cs_selector),
604 FIELD(HOST_SS_SELECTOR, host_ss_selector),
605 FIELD(HOST_DS_SELECTOR, host_ds_selector),
606 FIELD(HOST_FS_SELECTOR, host_fs_selector),
607 FIELD(HOST_GS_SELECTOR, host_gs_selector),
608 FIELD(HOST_TR_SELECTOR, host_tr_selector),
609 FIELD64(IO_BITMAP_A, io_bitmap_a),
610 FIELD64(IO_BITMAP_B, io_bitmap_b),
611 FIELD64(MSR_BITMAP, msr_bitmap),
612 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
613 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
614 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
615 FIELD64(TSC_OFFSET, tsc_offset),
616 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
617 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
618 FIELD64(EPT_POINTER, ept_pointer),
619 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
620 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
621 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
622 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
623 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
624 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
625 FIELD64(GUEST_PDPTR0, guest_pdptr0),
626 FIELD64(GUEST_PDPTR1, guest_pdptr1),
627 FIELD64(GUEST_PDPTR2, guest_pdptr2),
628 FIELD64(GUEST_PDPTR3, guest_pdptr3),
629 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
630 FIELD64(HOST_IA32_PAT, host_ia32_pat),
631 FIELD64(HOST_IA32_EFER, host_ia32_efer),
632 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
633 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
634 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
635 FIELD(EXCEPTION_BITMAP, exception_bitmap),
636 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
637 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
638 FIELD(CR3_TARGET_COUNT, cr3_target_count),
639 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
640 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
641 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
642 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
643 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
644 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
645 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
646 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
647 FIELD(TPR_THRESHOLD, tpr_threshold),
648 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
649 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
650 FIELD(VM_EXIT_REASON, vm_exit_reason),
651 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
652 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
653 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
654 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
655 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
656 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
657 FIELD(GUEST_ES_LIMIT, guest_es_limit),
658 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
659 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
660 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
661 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
662 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
663 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
664 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
665 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
666 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
667 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
668 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
669 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
670 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
671 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
672 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
673 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
674 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
675 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
676 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
677 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
678 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
679 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
680 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
681 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
682 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
683 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
684 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
685 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
686 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
687 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
688 FIELD(EXIT_QUALIFICATION, exit_qualification),
689 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
690 FIELD(GUEST_CR0, guest_cr0),
691 FIELD(GUEST_CR3, guest_cr3),
692 FIELD(GUEST_CR4, guest_cr4),
693 FIELD(GUEST_ES_BASE, guest_es_base),
694 FIELD(GUEST_CS_BASE, guest_cs_base),
695 FIELD(GUEST_SS_BASE, guest_ss_base),
696 FIELD(GUEST_DS_BASE, guest_ds_base),
697 FIELD(GUEST_FS_BASE, guest_fs_base),
698 FIELD(GUEST_GS_BASE, guest_gs_base),
699 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
700 FIELD(GUEST_TR_BASE, guest_tr_base),
701 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
702 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
703 FIELD(GUEST_DR7, guest_dr7),
704 FIELD(GUEST_RSP, guest_rsp),
705 FIELD(GUEST_RIP, guest_rip),
706 FIELD(GUEST_RFLAGS, guest_rflags),
707 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
708 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
709 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
710 FIELD(HOST_CR0, host_cr0),
711 FIELD(HOST_CR3, host_cr3),
712 FIELD(HOST_CR4, host_cr4),
713 FIELD(HOST_FS_BASE, host_fs_base),
714 FIELD(HOST_GS_BASE, host_gs_base),
715 FIELD(HOST_TR_BASE, host_tr_base),
716 FIELD(HOST_GDTR_BASE, host_gdtr_base),
717 FIELD(HOST_IDTR_BASE, host_idtr_base),
718 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
719 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
720 FIELD(HOST_RSP, host_rsp),
721 FIELD(HOST_RIP, host_rip),
722 };
723
724 static inline short vmcs_field_to_offset(unsigned long field)
725 {
726 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
727
728 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
729 vmcs_field_to_offset_table[field] == 0)
730 return -ENOENT;
731
732 return vmcs_field_to_offset_table[field];
733 }
734
735 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
736 {
737 return to_vmx(vcpu)->nested.current_vmcs12;
738 }
739
740 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
741 {
742 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
743 if (is_error_page(page))
744 return NULL;
745
746 return page;
747 }
748
749 static void nested_release_page(struct page *page)
750 {
751 kvm_release_page_dirty(page);
752 }
753
754 static void nested_release_page_clean(struct page *page)
755 {
756 kvm_release_page_clean(page);
757 }
758
759 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
760 static u64 construct_eptp(unsigned long root_hpa);
761 static void kvm_cpu_vmxon(u64 addr);
762 static void kvm_cpu_vmxoff(void);
763 static bool vmx_mpx_supported(void);
764 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
765 static void vmx_set_segment(struct kvm_vcpu *vcpu,
766 struct kvm_segment *var, int seg);
767 static void vmx_get_segment(struct kvm_vcpu *vcpu,
768 struct kvm_segment *var, int seg);
769 static bool guest_state_valid(struct kvm_vcpu *vcpu);
770 static u32 vmx_segment_access_rights(struct kvm_segment *var);
771 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
772 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
773 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
774 static int alloc_identity_pagetable(struct kvm *kvm);
775
776 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
777 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
778 /*
779 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
780 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
781 */
782 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
783 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
784
785 static unsigned long *vmx_io_bitmap_a;
786 static unsigned long *vmx_io_bitmap_b;
787 static unsigned long *vmx_msr_bitmap_legacy;
788 static unsigned long *vmx_msr_bitmap_longmode;
789 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
790 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
791 static unsigned long *vmx_vmread_bitmap;
792 static unsigned long *vmx_vmwrite_bitmap;
793
794 static bool cpu_has_load_ia32_efer;
795 static bool cpu_has_load_perf_global_ctrl;
796
797 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
798 static DEFINE_SPINLOCK(vmx_vpid_lock);
799
800 static struct vmcs_config {
801 int size;
802 int order;
803 u32 revision_id;
804 u32 pin_based_exec_ctrl;
805 u32 cpu_based_exec_ctrl;
806 u32 cpu_based_2nd_exec_ctrl;
807 u32 vmexit_ctrl;
808 u32 vmentry_ctrl;
809 } vmcs_config;
810
811 static struct vmx_capability {
812 u32 ept;
813 u32 vpid;
814 } vmx_capability;
815
816 #define VMX_SEGMENT_FIELD(seg) \
817 [VCPU_SREG_##seg] = { \
818 .selector = GUEST_##seg##_SELECTOR, \
819 .base = GUEST_##seg##_BASE, \
820 .limit = GUEST_##seg##_LIMIT, \
821 .ar_bytes = GUEST_##seg##_AR_BYTES, \
822 }
823
824 static const struct kvm_vmx_segment_field {
825 unsigned selector;
826 unsigned base;
827 unsigned limit;
828 unsigned ar_bytes;
829 } kvm_vmx_segment_fields[] = {
830 VMX_SEGMENT_FIELD(CS),
831 VMX_SEGMENT_FIELD(DS),
832 VMX_SEGMENT_FIELD(ES),
833 VMX_SEGMENT_FIELD(FS),
834 VMX_SEGMENT_FIELD(GS),
835 VMX_SEGMENT_FIELD(SS),
836 VMX_SEGMENT_FIELD(TR),
837 VMX_SEGMENT_FIELD(LDTR),
838 };
839
840 static u64 host_efer;
841
842 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
843
844 /*
845 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
846 * away by decrementing the array size.
847 */
848 static const u32 vmx_msr_index[] = {
849 #ifdef CONFIG_X86_64
850 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
851 #endif
852 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
853 };
854
855 static inline bool is_page_fault(u32 intr_info)
856 {
857 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
858 INTR_INFO_VALID_MASK)) ==
859 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
860 }
861
862 static inline bool is_no_device(u32 intr_info)
863 {
864 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
865 INTR_INFO_VALID_MASK)) ==
866 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
867 }
868
869 static inline bool is_invalid_opcode(u32 intr_info)
870 {
871 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
872 INTR_INFO_VALID_MASK)) ==
873 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
874 }
875
876 static inline bool is_external_interrupt(u32 intr_info)
877 {
878 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
879 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
880 }
881
882 static inline bool is_machine_check(u32 intr_info)
883 {
884 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
885 INTR_INFO_VALID_MASK)) ==
886 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
887 }
888
889 static inline bool cpu_has_vmx_msr_bitmap(void)
890 {
891 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
892 }
893
894 static inline bool cpu_has_vmx_tpr_shadow(void)
895 {
896 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
897 }
898
899 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
900 {
901 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
902 }
903
904 static inline bool cpu_has_secondary_exec_ctrls(void)
905 {
906 return vmcs_config.cpu_based_exec_ctrl &
907 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
908 }
909
910 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
911 {
912 return vmcs_config.cpu_based_2nd_exec_ctrl &
913 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
914 }
915
916 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
917 {
918 return vmcs_config.cpu_based_2nd_exec_ctrl &
919 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
920 }
921
922 static inline bool cpu_has_vmx_apic_register_virt(void)
923 {
924 return vmcs_config.cpu_based_2nd_exec_ctrl &
925 SECONDARY_EXEC_APIC_REGISTER_VIRT;
926 }
927
928 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
929 {
930 return vmcs_config.cpu_based_2nd_exec_ctrl &
931 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
932 }
933
934 static inline bool cpu_has_vmx_posted_intr(void)
935 {
936 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
937 }
938
939 static inline bool cpu_has_vmx_apicv(void)
940 {
941 return cpu_has_vmx_apic_register_virt() &&
942 cpu_has_vmx_virtual_intr_delivery() &&
943 cpu_has_vmx_posted_intr();
944 }
945
946 static inline bool cpu_has_vmx_flexpriority(void)
947 {
948 return cpu_has_vmx_tpr_shadow() &&
949 cpu_has_vmx_virtualize_apic_accesses();
950 }
951
952 static inline bool cpu_has_vmx_ept_execute_only(void)
953 {
954 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
955 }
956
957 static inline bool cpu_has_vmx_eptp_uncacheable(void)
958 {
959 return vmx_capability.ept & VMX_EPTP_UC_BIT;
960 }
961
962 static inline bool cpu_has_vmx_eptp_writeback(void)
963 {
964 return vmx_capability.ept & VMX_EPTP_WB_BIT;
965 }
966
967 static inline bool cpu_has_vmx_ept_2m_page(void)
968 {
969 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
970 }
971
972 static inline bool cpu_has_vmx_ept_1g_page(void)
973 {
974 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
975 }
976
977 static inline bool cpu_has_vmx_ept_4levels(void)
978 {
979 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
980 }
981
982 static inline bool cpu_has_vmx_ept_ad_bits(void)
983 {
984 return vmx_capability.ept & VMX_EPT_AD_BIT;
985 }
986
987 static inline bool cpu_has_vmx_invept_context(void)
988 {
989 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
990 }
991
992 static inline bool cpu_has_vmx_invept_global(void)
993 {
994 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
995 }
996
997 static inline bool cpu_has_vmx_invvpid_single(void)
998 {
999 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1000 }
1001
1002 static inline bool cpu_has_vmx_invvpid_global(void)
1003 {
1004 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1005 }
1006
1007 static inline bool cpu_has_vmx_ept(void)
1008 {
1009 return vmcs_config.cpu_based_2nd_exec_ctrl &
1010 SECONDARY_EXEC_ENABLE_EPT;
1011 }
1012
1013 static inline bool cpu_has_vmx_unrestricted_guest(void)
1014 {
1015 return vmcs_config.cpu_based_2nd_exec_ctrl &
1016 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1017 }
1018
1019 static inline bool cpu_has_vmx_ple(void)
1020 {
1021 return vmcs_config.cpu_based_2nd_exec_ctrl &
1022 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1023 }
1024
1025 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1026 {
1027 return flexpriority_enabled && irqchip_in_kernel(kvm);
1028 }
1029
1030 static inline bool cpu_has_vmx_vpid(void)
1031 {
1032 return vmcs_config.cpu_based_2nd_exec_ctrl &
1033 SECONDARY_EXEC_ENABLE_VPID;
1034 }
1035
1036 static inline bool cpu_has_vmx_rdtscp(void)
1037 {
1038 return vmcs_config.cpu_based_2nd_exec_ctrl &
1039 SECONDARY_EXEC_RDTSCP;
1040 }
1041
1042 static inline bool cpu_has_vmx_invpcid(void)
1043 {
1044 return vmcs_config.cpu_based_2nd_exec_ctrl &
1045 SECONDARY_EXEC_ENABLE_INVPCID;
1046 }
1047
1048 static inline bool cpu_has_virtual_nmis(void)
1049 {
1050 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1051 }
1052
1053 static inline bool cpu_has_vmx_wbinvd_exit(void)
1054 {
1055 return vmcs_config.cpu_based_2nd_exec_ctrl &
1056 SECONDARY_EXEC_WBINVD_EXITING;
1057 }
1058
1059 static inline bool cpu_has_vmx_shadow_vmcs(void)
1060 {
1061 u64 vmx_msr;
1062 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1063 /* check if the cpu supports writing r/o exit information fields */
1064 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1065 return false;
1066
1067 return vmcs_config.cpu_based_2nd_exec_ctrl &
1068 SECONDARY_EXEC_SHADOW_VMCS;
1069 }
1070
1071 static inline bool report_flexpriority(void)
1072 {
1073 return flexpriority_enabled;
1074 }
1075
1076 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1077 {
1078 return vmcs12->cpu_based_vm_exec_control & bit;
1079 }
1080
1081 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1082 {
1083 return (vmcs12->cpu_based_vm_exec_control &
1084 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1085 (vmcs12->secondary_vm_exec_control & bit);
1086 }
1087
1088 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1089 {
1090 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1091 }
1092
1093 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1094 {
1095 return vmcs12->pin_based_vm_exec_control &
1096 PIN_BASED_VMX_PREEMPTION_TIMER;
1097 }
1098
1099 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1100 {
1101 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1102 }
1103
1104 static inline bool is_exception(u32 intr_info)
1105 {
1106 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1107 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1108 }
1109
1110 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1111 u32 exit_intr_info,
1112 unsigned long exit_qualification);
1113 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1114 struct vmcs12 *vmcs12,
1115 u32 reason, unsigned long qualification);
1116
1117 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1118 {
1119 int i;
1120
1121 for (i = 0; i < vmx->nmsrs; ++i)
1122 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1123 return i;
1124 return -1;
1125 }
1126
1127 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1128 {
1129 struct {
1130 u64 vpid : 16;
1131 u64 rsvd : 48;
1132 u64 gva;
1133 } operand = { vpid, 0, gva };
1134
1135 asm volatile (__ex(ASM_VMX_INVVPID)
1136 /* CF==1 or ZF==1 --> rc = -1 */
1137 "; ja 1f ; ud2 ; 1:"
1138 : : "a"(&operand), "c"(ext) : "cc", "memory");
1139 }
1140
1141 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1142 {
1143 struct {
1144 u64 eptp, gpa;
1145 } operand = {eptp, gpa};
1146
1147 asm volatile (__ex(ASM_VMX_INVEPT)
1148 /* CF==1 or ZF==1 --> rc = -1 */
1149 "; ja 1f ; ud2 ; 1:\n"
1150 : : "a" (&operand), "c" (ext) : "cc", "memory");
1151 }
1152
1153 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1154 {
1155 int i;
1156
1157 i = __find_msr_index(vmx, msr);
1158 if (i >= 0)
1159 return &vmx->guest_msrs[i];
1160 return NULL;
1161 }
1162
1163 static void vmcs_clear(struct vmcs *vmcs)
1164 {
1165 u64 phys_addr = __pa(vmcs);
1166 u8 error;
1167
1168 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1169 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1170 : "cc", "memory");
1171 if (error)
1172 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1173 vmcs, phys_addr);
1174 }
1175
1176 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1177 {
1178 vmcs_clear(loaded_vmcs->vmcs);
1179 loaded_vmcs->cpu = -1;
1180 loaded_vmcs->launched = 0;
1181 }
1182
1183 static void vmcs_load(struct vmcs *vmcs)
1184 {
1185 u64 phys_addr = __pa(vmcs);
1186 u8 error;
1187
1188 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1189 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1190 : "cc", "memory");
1191 if (error)
1192 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1193 vmcs, phys_addr);
1194 }
1195
1196 #ifdef CONFIG_KEXEC
1197 /*
1198 * This bitmap is used to indicate whether the vmclear
1199 * operation is enabled on all cpus. All disabled by
1200 * default.
1201 */
1202 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1203
1204 static inline void crash_enable_local_vmclear(int cpu)
1205 {
1206 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1207 }
1208
1209 static inline void crash_disable_local_vmclear(int cpu)
1210 {
1211 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1212 }
1213
1214 static inline int crash_local_vmclear_enabled(int cpu)
1215 {
1216 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1217 }
1218
1219 static void crash_vmclear_local_loaded_vmcss(void)
1220 {
1221 int cpu = raw_smp_processor_id();
1222 struct loaded_vmcs *v;
1223
1224 if (!crash_local_vmclear_enabled(cpu))
1225 return;
1226
1227 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1228 loaded_vmcss_on_cpu_link)
1229 vmcs_clear(v->vmcs);
1230 }
1231 #else
1232 static inline void crash_enable_local_vmclear(int cpu) { }
1233 static inline void crash_disable_local_vmclear(int cpu) { }
1234 #endif /* CONFIG_KEXEC */
1235
1236 static void __loaded_vmcs_clear(void *arg)
1237 {
1238 struct loaded_vmcs *loaded_vmcs = arg;
1239 int cpu = raw_smp_processor_id();
1240
1241 if (loaded_vmcs->cpu != cpu)
1242 return; /* vcpu migration can race with cpu offline */
1243 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1244 per_cpu(current_vmcs, cpu) = NULL;
1245 crash_disable_local_vmclear(cpu);
1246 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1247
1248 /*
1249 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1250 * is before setting loaded_vmcs->vcpu to -1 which is done in
1251 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1252 * then adds the vmcs into percpu list before it is deleted.
1253 */
1254 smp_wmb();
1255
1256 loaded_vmcs_init(loaded_vmcs);
1257 crash_enable_local_vmclear(cpu);
1258 }
1259
1260 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1261 {
1262 int cpu = loaded_vmcs->cpu;
1263
1264 if (cpu != -1)
1265 smp_call_function_single(cpu,
1266 __loaded_vmcs_clear, loaded_vmcs, 1);
1267 }
1268
1269 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1270 {
1271 if (vmx->vpid == 0)
1272 return;
1273
1274 if (cpu_has_vmx_invvpid_single())
1275 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1276 }
1277
1278 static inline void vpid_sync_vcpu_global(void)
1279 {
1280 if (cpu_has_vmx_invvpid_global())
1281 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1282 }
1283
1284 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1285 {
1286 if (cpu_has_vmx_invvpid_single())
1287 vpid_sync_vcpu_single(vmx);
1288 else
1289 vpid_sync_vcpu_global();
1290 }
1291
1292 static inline void ept_sync_global(void)
1293 {
1294 if (cpu_has_vmx_invept_global())
1295 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1296 }
1297
1298 static inline void ept_sync_context(u64 eptp)
1299 {
1300 if (enable_ept) {
1301 if (cpu_has_vmx_invept_context())
1302 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1303 else
1304 ept_sync_global();
1305 }
1306 }
1307
1308 static __always_inline unsigned long vmcs_readl(unsigned long field)
1309 {
1310 unsigned long value;
1311
1312 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1313 : "=a"(value) : "d"(field) : "cc");
1314 return value;
1315 }
1316
1317 static __always_inline u16 vmcs_read16(unsigned long field)
1318 {
1319 return vmcs_readl(field);
1320 }
1321
1322 static __always_inline u32 vmcs_read32(unsigned long field)
1323 {
1324 return vmcs_readl(field);
1325 }
1326
1327 static __always_inline u64 vmcs_read64(unsigned long field)
1328 {
1329 #ifdef CONFIG_X86_64
1330 return vmcs_readl(field);
1331 #else
1332 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1333 #endif
1334 }
1335
1336 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1337 {
1338 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1339 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1340 dump_stack();
1341 }
1342
1343 static void vmcs_writel(unsigned long field, unsigned long value)
1344 {
1345 u8 error;
1346
1347 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1348 : "=q"(error) : "a"(value), "d"(field) : "cc");
1349 if (unlikely(error))
1350 vmwrite_error(field, value);
1351 }
1352
1353 static void vmcs_write16(unsigned long field, u16 value)
1354 {
1355 vmcs_writel(field, value);
1356 }
1357
1358 static void vmcs_write32(unsigned long field, u32 value)
1359 {
1360 vmcs_writel(field, value);
1361 }
1362
1363 static void vmcs_write64(unsigned long field, u64 value)
1364 {
1365 vmcs_writel(field, value);
1366 #ifndef CONFIG_X86_64
1367 asm volatile ("");
1368 vmcs_writel(field+1, value >> 32);
1369 #endif
1370 }
1371
1372 static void vmcs_clear_bits(unsigned long field, u32 mask)
1373 {
1374 vmcs_writel(field, vmcs_readl(field) & ~mask);
1375 }
1376
1377 static void vmcs_set_bits(unsigned long field, u32 mask)
1378 {
1379 vmcs_writel(field, vmcs_readl(field) | mask);
1380 }
1381
1382 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1383 {
1384 vmcs_write32(VM_ENTRY_CONTROLS, val);
1385 vmx->vm_entry_controls_shadow = val;
1386 }
1387
1388 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1389 {
1390 if (vmx->vm_entry_controls_shadow != val)
1391 vm_entry_controls_init(vmx, val);
1392 }
1393
1394 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1395 {
1396 return vmx->vm_entry_controls_shadow;
1397 }
1398
1399
1400 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1401 {
1402 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1403 }
1404
1405 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1406 {
1407 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1408 }
1409
1410 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1411 {
1412 vmcs_write32(VM_EXIT_CONTROLS, val);
1413 vmx->vm_exit_controls_shadow = val;
1414 }
1415
1416 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1417 {
1418 if (vmx->vm_exit_controls_shadow != val)
1419 vm_exit_controls_init(vmx, val);
1420 }
1421
1422 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1423 {
1424 return vmx->vm_exit_controls_shadow;
1425 }
1426
1427
1428 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1429 {
1430 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1431 }
1432
1433 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1434 {
1435 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1436 }
1437
1438 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1439 {
1440 vmx->segment_cache.bitmask = 0;
1441 }
1442
1443 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1444 unsigned field)
1445 {
1446 bool ret;
1447 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1448
1449 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1450 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1451 vmx->segment_cache.bitmask = 0;
1452 }
1453 ret = vmx->segment_cache.bitmask & mask;
1454 vmx->segment_cache.bitmask |= mask;
1455 return ret;
1456 }
1457
1458 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1459 {
1460 u16 *p = &vmx->segment_cache.seg[seg].selector;
1461
1462 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1463 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1464 return *p;
1465 }
1466
1467 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1468 {
1469 ulong *p = &vmx->segment_cache.seg[seg].base;
1470
1471 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1472 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1473 return *p;
1474 }
1475
1476 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1477 {
1478 u32 *p = &vmx->segment_cache.seg[seg].limit;
1479
1480 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1481 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1482 return *p;
1483 }
1484
1485 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1486 {
1487 u32 *p = &vmx->segment_cache.seg[seg].ar;
1488
1489 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1490 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1491 return *p;
1492 }
1493
1494 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1495 {
1496 u32 eb;
1497
1498 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1499 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1500 if ((vcpu->guest_debug &
1501 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1502 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1503 eb |= 1u << BP_VECTOR;
1504 if (to_vmx(vcpu)->rmode.vm86_active)
1505 eb = ~0;
1506 if (enable_ept)
1507 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1508 if (vcpu->fpu_active)
1509 eb &= ~(1u << NM_VECTOR);
1510
1511 /* When we are running a nested L2 guest and L1 specified for it a
1512 * certain exception bitmap, we must trap the same exceptions and pass
1513 * them to L1. When running L2, we will only handle the exceptions
1514 * specified above if L1 did not want them.
1515 */
1516 if (is_guest_mode(vcpu))
1517 eb |= get_vmcs12(vcpu)->exception_bitmap;
1518
1519 vmcs_write32(EXCEPTION_BITMAP, eb);
1520 }
1521
1522 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1523 unsigned long entry, unsigned long exit)
1524 {
1525 vm_entry_controls_clearbit(vmx, entry);
1526 vm_exit_controls_clearbit(vmx, exit);
1527 }
1528
1529 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1530 {
1531 unsigned i;
1532 struct msr_autoload *m = &vmx->msr_autoload;
1533
1534 switch (msr) {
1535 case MSR_EFER:
1536 if (cpu_has_load_ia32_efer) {
1537 clear_atomic_switch_msr_special(vmx,
1538 VM_ENTRY_LOAD_IA32_EFER,
1539 VM_EXIT_LOAD_IA32_EFER);
1540 return;
1541 }
1542 break;
1543 case MSR_CORE_PERF_GLOBAL_CTRL:
1544 if (cpu_has_load_perf_global_ctrl) {
1545 clear_atomic_switch_msr_special(vmx,
1546 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1547 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1548 return;
1549 }
1550 break;
1551 }
1552
1553 for (i = 0; i < m->nr; ++i)
1554 if (m->guest[i].index == msr)
1555 break;
1556
1557 if (i == m->nr)
1558 return;
1559 --m->nr;
1560 m->guest[i] = m->guest[m->nr];
1561 m->host[i] = m->host[m->nr];
1562 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1563 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1564 }
1565
1566 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1567 unsigned long entry, unsigned long exit,
1568 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1569 u64 guest_val, u64 host_val)
1570 {
1571 vmcs_write64(guest_val_vmcs, guest_val);
1572 vmcs_write64(host_val_vmcs, host_val);
1573 vm_entry_controls_setbit(vmx, entry);
1574 vm_exit_controls_setbit(vmx, exit);
1575 }
1576
1577 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1578 u64 guest_val, u64 host_val)
1579 {
1580 unsigned i;
1581 struct msr_autoload *m = &vmx->msr_autoload;
1582
1583 switch (msr) {
1584 case MSR_EFER:
1585 if (cpu_has_load_ia32_efer) {
1586 add_atomic_switch_msr_special(vmx,
1587 VM_ENTRY_LOAD_IA32_EFER,
1588 VM_EXIT_LOAD_IA32_EFER,
1589 GUEST_IA32_EFER,
1590 HOST_IA32_EFER,
1591 guest_val, host_val);
1592 return;
1593 }
1594 break;
1595 case MSR_CORE_PERF_GLOBAL_CTRL:
1596 if (cpu_has_load_perf_global_ctrl) {
1597 add_atomic_switch_msr_special(vmx,
1598 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1599 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1600 GUEST_IA32_PERF_GLOBAL_CTRL,
1601 HOST_IA32_PERF_GLOBAL_CTRL,
1602 guest_val, host_val);
1603 return;
1604 }
1605 break;
1606 }
1607
1608 for (i = 0; i < m->nr; ++i)
1609 if (m->guest[i].index == msr)
1610 break;
1611
1612 if (i == NR_AUTOLOAD_MSRS) {
1613 printk_once(KERN_WARNING "Not enough msr switch entries. "
1614 "Can't add msr %x\n", msr);
1615 return;
1616 } else if (i == m->nr) {
1617 ++m->nr;
1618 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1619 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1620 }
1621
1622 m->guest[i].index = msr;
1623 m->guest[i].value = guest_val;
1624 m->host[i].index = msr;
1625 m->host[i].value = host_val;
1626 }
1627
1628 static void reload_tss(void)
1629 {
1630 /*
1631 * VT restores TR but not its size. Useless.
1632 */
1633 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1634 struct desc_struct *descs;
1635
1636 descs = (void *)gdt->address;
1637 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1638 load_TR_desc();
1639 }
1640
1641 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1642 {
1643 u64 guest_efer;
1644 u64 ignore_bits;
1645
1646 guest_efer = vmx->vcpu.arch.efer;
1647
1648 /*
1649 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1650 * outside long mode
1651 */
1652 ignore_bits = EFER_NX | EFER_SCE;
1653 #ifdef CONFIG_X86_64
1654 ignore_bits |= EFER_LMA | EFER_LME;
1655 /* SCE is meaningful only in long mode on Intel */
1656 if (guest_efer & EFER_LMA)
1657 ignore_bits &= ~(u64)EFER_SCE;
1658 #endif
1659 guest_efer &= ~ignore_bits;
1660 guest_efer |= host_efer & ignore_bits;
1661 vmx->guest_msrs[efer_offset].data = guest_efer;
1662 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1663
1664 clear_atomic_switch_msr(vmx, MSR_EFER);
1665 /* On ept, can't emulate nx, and must switch nx atomically */
1666 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1667 guest_efer = vmx->vcpu.arch.efer;
1668 if (!(guest_efer & EFER_LMA))
1669 guest_efer &= ~EFER_LME;
1670 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1671 return false;
1672 }
1673
1674 return true;
1675 }
1676
1677 static unsigned long segment_base(u16 selector)
1678 {
1679 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1680 struct desc_struct *d;
1681 unsigned long table_base;
1682 unsigned long v;
1683
1684 if (!(selector & ~3))
1685 return 0;
1686
1687 table_base = gdt->address;
1688
1689 if (selector & 4) { /* from ldt */
1690 u16 ldt_selector = kvm_read_ldt();
1691
1692 if (!(ldt_selector & ~3))
1693 return 0;
1694
1695 table_base = segment_base(ldt_selector);
1696 }
1697 d = (struct desc_struct *)(table_base + (selector & ~7));
1698 v = get_desc_base(d);
1699 #ifdef CONFIG_X86_64
1700 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1701 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1702 #endif
1703 return v;
1704 }
1705
1706 static inline unsigned long kvm_read_tr_base(void)
1707 {
1708 u16 tr;
1709 asm("str %0" : "=g"(tr));
1710 return segment_base(tr);
1711 }
1712
1713 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1714 {
1715 struct vcpu_vmx *vmx = to_vmx(vcpu);
1716 int i;
1717
1718 if (vmx->host_state.loaded)
1719 return;
1720
1721 vmx->host_state.loaded = 1;
1722 /*
1723 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1724 * allow segment selectors with cpl > 0 or ti == 1.
1725 */
1726 vmx->host_state.ldt_sel = kvm_read_ldt();
1727 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1728 savesegment(fs, vmx->host_state.fs_sel);
1729 if (!(vmx->host_state.fs_sel & 7)) {
1730 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1731 vmx->host_state.fs_reload_needed = 0;
1732 } else {
1733 vmcs_write16(HOST_FS_SELECTOR, 0);
1734 vmx->host_state.fs_reload_needed = 1;
1735 }
1736 savesegment(gs, vmx->host_state.gs_sel);
1737 if (!(vmx->host_state.gs_sel & 7))
1738 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1739 else {
1740 vmcs_write16(HOST_GS_SELECTOR, 0);
1741 vmx->host_state.gs_ldt_reload_needed = 1;
1742 }
1743
1744 #ifdef CONFIG_X86_64
1745 savesegment(ds, vmx->host_state.ds_sel);
1746 savesegment(es, vmx->host_state.es_sel);
1747 #endif
1748
1749 #ifdef CONFIG_X86_64
1750 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1751 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1752 #else
1753 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1754 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1755 #endif
1756
1757 #ifdef CONFIG_X86_64
1758 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1759 if (is_long_mode(&vmx->vcpu))
1760 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1761 #endif
1762 if (boot_cpu_has(X86_FEATURE_MPX))
1763 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1764 for (i = 0; i < vmx->save_nmsrs; ++i)
1765 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1766 vmx->guest_msrs[i].data,
1767 vmx->guest_msrs[i].mask);
1768 }
1769
1770 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1771 {
1772 if (!vmx->host_state.loaded)
1773 return;
1774
1775 ++vmx->vcpu.stat.host_state_reload;
1776 vmx->host_state.loaded = 0;
1777 #ifdef CONFIG_X86_64
1778 if (is_long_mode(&vmx->vcpu))
1779 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1780 #endif
1781 if (vmx->host_state.gs_ldt_reload_needed) {
1782 kvm_load_ldt(vmx->host_state.ldt_sel);
1783 #ifdef CONFIG_X86_64
1784 load_gs_index(vmx->host_state.gs_sel);
1785 #else
1786 loadsegment(gs, vmx->host_state.gs_sel);
1787 #endif
1788 }
1789 if (vmx->host_state.fs_reload_needed)
1790 loadsegment(fs, vmx->host_state.fs_sel);
1791 #ifdef CONFIG_X86_64
1792 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1793 loadsegment(ds, vmx->host_state.ds_sel);
1794 loadsegment(es, vmx->host_state.es_sel);
1795 }
1796 #endif
1797 reload_tss();
1798 #ifdef CONFIG_X86_64
1799 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1800 #endif
1801 if (vmx->host_state.msr_host_bndcfgs)
1802 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1803 /*
1804 * If the FPU is not active (through the host task or
1805 * the guest vcpu), then restore the cr0.TS bit.
1806 */
1807 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1808 stts();
1809 load_gdt(this_cpu_ptr(&host_gdt));
1810 }
1811
1812 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1813 {
1814 preempt_disable();
1815 __vmx_load_host_state(vmx);
1816 preempt_enable();
1817 }
1818
1819 /*
1820 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1821 * vcpu mutex is already taken.
1822 */
1823 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1824 {
1825 struct vcpu_vmx *vmx = to_vmx(vcpu);
1826 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1827
1828 if (!vmm_exclusive)
1829 kvm_cpu_vmxon(phys_addr);
1830 else if (vmx->loaded_vmcs->cpu != cpu)
1831 loaded_vmcs_clear(vmx->loaded_vmcs);
1832
1833 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1834 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1835 vmcs_load(vmx->loaded_vmcs->vmcs);
1836 }
1837
1838 if (vmx->loaded_vmcs->cpu != cpu) {
1839 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1840 unsigned long sysenter_esp;
1841
1842 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1843 local_irq_disable();
1844 crash_disable_local_vmclear(cpu);
1845
1846 /*
1847 * Read loaded_vmcs->cpu should be before fetching
1848 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1849 * See the comments in __loaded_vmcs_clear().
1850 */
1851 smp_rmb();
1852
1853 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1854 &per_cpu(loaded_vmcss_on_cpu, cpu));
1855 crash_enable_local_vmclear(cpu);
1856 local_irq_enable();
1857
1858 /*
1859 * Linux uses per-cpu TSS and GDT, so set these when switching
1860 * processors.
1861 */
1862 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1863 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1864
1865 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1866 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1867 vmx->loaded_vmcs->cpu = cpu;
1868 }
1869 }
1870
1871 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1872 {
1873 __vmx_load_host_state(to_vmx(vcpu));
1874 if (!vmm_exclusive) {
1875 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1876 vcpu->cpu = -1;
1877 kvm_cpu_vmxoff();
1878 }
1879 }
1880
1881 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1882 {
1883 ulong cr0;
1884
1885 if (vcpu->fpu_active)
1886 return;
1887 vcpu->fpu_active = 1;
1888 cr0 = vmcs_readl(GUEST_CR0);
1889 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1890 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1891 vmcs_writel(GUEST_CR0, cr0);
1892 update_exception_bitmap(vcpu);
1893 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1894 if (is_guest_mode(vcpu))
1895 vcpu->arch.cr0_guest_owned_bits &=
1896 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1897 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1898 }
1899
1900 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1901
1902 /*
1903 * Return the cr0 value that a nested guest would read. This is a combination
1904 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1905 * its hypervisor (cr0_read_shadow).
1906 */
1907 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1908 {
1909 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1910 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1911 }
1912 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1913 {
1914 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1915 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1916 }
1917
1918 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1919 {
1920 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1921 * set this *before* calling this function.
1922 */
1923 vmx_decache_cr0_guest_bits(vcpu);
1924 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1925 update_exception_bitmap(vcpu);
1926 vcpu->arch.cr0_guest_owned_bits = 0;
1927 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1928 if (is_guest_mode(vcpu)) {
1929 /*
1930 * L1's specified read shadow might not contain the TS bit,
1931 * so now that we turned on shadowing of this bit, we need to
1932 * set this bit of the shadow. Like in nested_vmx_run we need
1933 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1934 * up-to-date here because we just decached cr0.TS (and we'll
1935 * only update vmcs12->guest_cr0 on nested exit).
1936 */
1937 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1938 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1939 (vcpu->arch.cr0 & X86_CR0_TS);
1940 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1941 } else
1942 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1943 }
1944
1945 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1946 {
1947 unsigned long rflags, save_rflags;
1948
1949 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1950 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1951 rflags = vmcs_readl(GUEST_RFLAGS);
1952 if (to_vmx(vcpu)->rmode.vm86_active) {
1953 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1954 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1955 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1956 }
1957 to_vmx(vcpu)->rflags = rflags;
1958 }
1959 return to_vmx(vcpu)->rflags;
1960 }
1961
1962 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1963 {
1964 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1965 to_vmx(vcpu)->rflags = rflags;
1966 if (to_vmx(vcpu)->rmode.vm86_active) {
1967 to_vmx(vcpu)->rmode.save_rflags = rflags;
1968 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1969 }
1970 vmcs_writel(GUEST_RFLAGS, rflags);
1971 }
1972
1973 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1974 {
1975 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1976 int ret = 0;
1977
1978 if (interruptibility & GUEST_INTR_STATE_STI)
1979 ret |= KVM_X86_SHADOW_INT_STI;
1980 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1981 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1982
1983 return ret;
1984 }
1985
1986 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1987 {
1988 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1989 u32 interruptibility = interruptibility_old;
1990
1991 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1992
1993 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1994 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1995 else if (mask & KVM_X86_SHADOW_INT_STI)
1996 interruptibility |= GUEST_INTR_STATE_STI;
1997
1998 if ((interruptibility != interruptibility_old))
1999 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2000 }
2001
2002 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2003 {
2004 unsigned long rip;
2005
2006 rip = kvm_rip_read(vcpu);
2007 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2008 kvm_rip_write(vcpu, rip);
2009
2010 /* skipping an emulated instruction also counts */
2011 vmx_set_interrupt_shadow(vcpu, 0);
2012 }
2013
2014 /*
2015 * KVM wants to inject page-faults which it got to the guest. This function
2016 * checks whether in a nested guest, we need to inject them to L1 or L2.
2017 */
2018 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2019 {
2020 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2021
2022 if (!(vmcs12->exception_bitmap & (1u << nr)))
2023 return 0;
2024
2025 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2026 vmcs_read32(VM_EXIT_INTR_INFO),
2027 vmcs_readl(EXIT_QUALIFICATION));
2028 return 1;
2029 }
2030
2031 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2032 bool has_error_code, u32 error_code,
2033 bool reinject)
2034 {
2035 struct vcpu_vmx *vmx = to_vmx(vcpu);
2036 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2037
2038 if (!reinject && is_guest_mode(vcpu) &&
2039 nested_vmx_check_exception(vcpu, nr))
2040 return;
2041
2042 if (has_error_code) {
2043 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2044 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2045 }
2046
2047 if (vmx->rmode.vm86_active) {
2048 int inc_eip = 0;
2049 if (kvm_exception_is_soft(nr))
2050 inc_eip = vcpu->arch.event_exit_inst_len;
2051 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2052 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2053 return;
2054 }
2055
2056 if (kvm_exception_is_soft(nr)) {
2057 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2058 vmx->vcpu.arch.event_exit_inst_len);
2059 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2060 } else
2061 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2062
2063 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2064 }
2065
2066 static bool vmx_rdtscp_supported(void)
2067 {
2068 return cpu_has_vmx_rdtscp();
2069 }
2070
2071 static bool vmx_invpcid_supported(void)
2072 {
2073 return cpu_has_vmx_invpcid() && enable_ept;
2074 }
2075
2076 /*
2077 * Swap MSR entry in host/guest MSR entry array.
2078 */
2079 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2080 {
2081 struct shared_msr_entry tmp;
2082
2083 tmp = vmx->guest_msrs[to];
2084 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2085 vmx->guest_msrs[from] = tmp;
2086 }
2087
2088 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2089 {
2090 unsigned long *msr_bitmap;
2091
2092 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2093 if (is_long_mode(vcpu))
2094 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2095 else
2096 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2097 } else {
2098 if (is_long_mode(vcpu))
2099 msr_bitmap = vmx_msr_bitmap_longmode;
2100 else
2101 msr_bitmap = vmx_msr_bitmap_legacy;
2102 }
2103
2104 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2105 }
2106
2107 /*
2108 * Set up the vmcs to automatically save and restore system
2109 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2110 * mode, as fiddling with msrs is very expensive.
2111 */
2112 static void setup_msrs(struct vcpu_vmx *vmx)
2113 {
2114 int save_nmsrs, index;
2115
2116 save_nmsrs = 0;
2117 #ifdef CONFIG_X86_64
2118 if (is_long_mode(&vmx->vcpu)) {
2119 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2120 if (index >= 0)
2121 move_msr_up(vmx, index, save_nmsrs++);
2122 index = __find_msr_index(vmx, MSR_LSTAR);
2123 if (index >= 0)
2124 move_msr_up(vmx, index, save_nmsrs++);
2125 index = __find_msr_index(vmx, MSR_CSTAR);
2126 if (index >= 0)
2127 move_msr_up(vmx, index, save_nmsrs++);
2128 index = __find_msr_index(vmx, MSR_TSC_AUX);
2129 if (index >= 0 && vmx->rdtscp_enabled)
2130 move_msr_up(vmx, index, save_nmsrs++);
2131 /*
2132 * MSR_STAR is only needed on long mode guests, and only
2133 * if efer.sce is enabled.
2134 */
2135 index = __find_msr_index(vmx, MSR_STAR);
2136 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2137 move_msr_up(vmx, index, save_nmsrs++);
2138 }
2139 #endif
2140 index = __find_msr_index(vmx, MSR_EFER);
2141 if (index >= 0 && update_transition_efer(vmx, index))
2142 move_msr_up(vmx, index, save_nmsrs++);
2143
2144 vmx->save_nmsrs = save_nmsrs;
2145
2146 if (cpu_has_vmx_msr_bitmap())
2147 vmx_set_msr_bitmap(&vmx->vcpu);
2148 }
2149
2150 /*
2151 * reads and returns guest's timestamp counter "register"
2152 * guest_tsc = host_tsc + tsc_offset -- 21.3
2153 */
2154 static u64 guest_read_tsc(void)
2155 {
2156 u64 host_tsc, tsc_offset;
2157
2158 rdtscll(host_tsc);
2159 tsc_offset = vmcs_read64(TSC_OFFSET);
2160 return host_tsc + tsc_offset;
2161 }
2162
2163 /*
2164 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2165 * counter, even if a nested guest (L2) is currently running.
2166 */
2167 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2168 {
2169 u64 tsc_offset;
2170
2171 tsc_offset = is_guest_mode(vcpu) ?
2172 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2173 vmcs_read64(TSC_OFFSET);
2174 return host_tsc + tsc_offset;
2175 }
2176
2177 /*
2178 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2179 * software catchup for faster rates on slower CPUs.
2180 */
2181 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2182 {
2183 if (!scale)
2184 return;
2185
2186 if (user_tsc_khz > tsc_khz) {
2187 vcpu->arch.tsc_catchup = 1;
2188 vcpu->arch.tsc_always_catchup = 1;
2189 } else
2190 WARN(1, "user requested TSC rate below hardware speed\n");
2191 }
2192
2193 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2194 {
2195 return vmcs_read64(TSC_OFFSET);
2196 }
2197
2198 /*
2199 * writes 'offset' into guest's timestamp counter offset register
2200 */
2201 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2202 {
2203 if (is_guest_mode(vcpu)) {
2204 /*
2205 * We're here if L1 chose not to trap WRMSR to TSC. According
2206 * to the spec, this should set L1's TSC; The offset that L1
2207 * set for L2 remains unchanged, and still needs to be added
2208 * to the newly set TSC to get L2's TSC.
2209 */
2210 struct vmcs12 *vmcs12;
2211 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2212 /* recalculate vmcs02.TSC_OFFSET: */
2213 vmcs12 = get_vmcs12(vcpu);
2214 vmcs_write64(TSC_OFFSET, offset +
2215 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2216 vmcs12->tsc_offset : 0));
2217 } else {
2218 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2219 vmcs_read64(TSC_OFFSET), offset);
2220 vmcs_write64(TSC_OFFSET, offset);
2221 }
2222 }
2223
2224 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2225 {
2226 u64 offset = vmcs_read64(TSC_OFFSET);
2227
2228 vmcs_write64(TSC_OFFSET, offset + adjustment);
2229 if (is_guest_mode(vcpu)) {
2230 /* Even when running L2, the adjustment needs to apply to L1 */
2231 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2232 } else
2233 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2234 offset + adjustment);
2235 }
2236
2237 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2238 {
2239 return target_tsc - native_read_tsc();
2240 }
2241
2242 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2243 {
2244 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2245 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2246 }
2247
2248 /*
2249 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2250 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2251 * all guests if the "nested" module option is off, and can also be disabled
2252 * for a single guest by disabling its VMX cpuid bit.
2253 */
2254 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2255 {
2256 return nested && guest_cpuid_has_vmx(vcpu);
2257 }
2258
2259 /*
2260 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2261 * returned for the various VMX controls MSRs when nested VMX is enabled.
2262 * The same values should also be used to verify that vmcs12 control fields are
2263 * valid during nested entry from L1 to L2.
2264 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2265 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2266 * bit in the high half is on if the corresponding bit in the control field
2267 * may be on. See also vmx_control_verify().
2268 * TODO: allow these variables to be modified (downgraded) by module options
2269 * or other means.
2270 */
2271 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2272 static u32 nested_vmx_true_procbased_ctls_low;
2273 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2274 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2275 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2276 static u32 nested_vmx_true_exit_ctls_low;
2277 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2278 static u32 nested_vmx_true_entry_ctls_low;
2279 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2280 static u32 nested_vmx_ept_caps;
2281 static __init void nested_vmx_setup_ctls_msrs(void)
2282 {
2283 /*
2284 * Note that as a general rule, the high half of the MSRs (bits in
2285 * the control fields which may be 1) should be initialized by the
2286 * intersection of the underlying hardware's MSR (i.e., features which
2287 * can be supported) and the list of features we want to expose -
2288 * because they are known to be properly supported in our code.
2289 * Also, usually, the low half of the MSRs (bits which must be 1) can
2290 * be set to 0, meaning that L1 may turn off any of these bits. The
2291 * reason is that if one of these bits is necessary, it will appear
2292 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2293 * fields of vmcs01 and vmcs02, will turn these bits off - and
2294 * nested_vmx_exit_handled() will not pass related exits to L1.
2295 * These rules have exceptions below.
2296 */
2297
2298 /* pin-based controls */
2299 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2300 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2301 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2302 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2303 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2304 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2305 PIN_BASED_VMX_PREEMPTION_TIMER;
2306
2307 /* exit controls */
2308 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2309 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2310 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2311
2312 nested_vmx_exit_ctls_high &=
2313 #ifdef CONFIG_X86_64
2314 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2315 #endif
2316 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2317 nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2318 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2319 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2320
2321 if (vmx_mpx_supported())
2322 nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2323
2324 /* We support free control of debug control saving. */
2325 nested_vmx_true_exit_ctls_low = nested_vmx_exit_ctls_low &
2326 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2327
2328 /* entry controls */
2329 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2330 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2331 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2332 nested_vmx_entry_ctls_high &=
2333 #ifdef CONFIG_X86_64
2334 VM_ENTRY_IA32E_MODE |
2335 #endif
2336 VM_ENTRY_LOAD_IA32_PAT;
2337 nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2338 VM_ENTRY_LOAD_IA32_EFER);
2339 if (vmx_mpx_supported())
2340 nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2341
2342 /* We support free control of debug control loading. */
2343 nested_vmx_true_entry_ctls_low = nested_vmx_entry_ctls_low &
2344 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2345
2346 /* cpu-based controls */
2347 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2348 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2349 nested_vmx_procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2350 nested_vmx_procbased_ctls_high &=
2351 CPU_BASED_VIRTUAL_INTR_PENDING |
2352 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2353 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2354 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2355 CPU_BASED_CR3_STORE_EXITING |
2356 #ifdef CONFIG_X86_64
2357 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2358 #endif
2359 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2360 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2361 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2362 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
2363 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2364 /*
2365 * We can allow some features even when not supported by the
2366 * hardware. For example, L1 can specify an MSR bitmap - and we
2367 * can use it to avoid exits to L1 - even when L0 runs L2
2368 * without MSR bitmaps.
2369 */
2370 nested_vmx_procbased_ctls_high |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2371 CPU_BASED_USE_MSR_BITMAPS;
2372
2373 /* We support free control of CR3 access interception. */
2374 nested_vmx_true_procbased_ctls_low = nested_vmx_procbased_ctls_low &
2375 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2376
2377 /* secondary cpu-based controls */
2378 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2379 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2380 nested_vmx_secondary_ctls_low = 0;
2381 nested_vmx_secondary_ctls_high &=
2382 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2383 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2384 SECONDARY_EXEC_WBINVD_EXITING;
2385
2386 if (enable_ept) {
2387 /* nested EPT: emulate EPT also to L1 */
2388 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2389 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2390 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2391 VMX_EPT_INVEPT_BIT;
2392 nested_vmx_ept_caps &= vmx_capability.ept;
2393 /*
2394 * For nested guests, we don't do anything specific
2395 * for single context invalidation. Hence, only advertise
2396 * support for global context invalidation.
2397 */
2398 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2399 } else
2400 nested_vmx_ept_caps = 0;
2401
2402 /* miscellaneous data */
2403 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2404 nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2405 nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2406 VMX_MISC_ACTIVITY_HLT;
2407 nested_vmx_misc_high = 0;
2408 }
2409
2410 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2411 {
2412 /*
2413 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2414 */
2415 return ((control & high) | low) == control;
2416 }
2417
2418 static inline u64 vmx_control_msr(u32 low, u32 high)
2419 {
2420 return low | ((u64)high << 32);
2421 }
2422
2423 /* Returns 0 on success, non-0 otherwise. */
2424 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2425 {
2426 switch (msr_index) {
2427 case MSR_IA32_VMX_BASIC:
2428 /*
2429 * This MSR reports some information about VMX support. We
2430 * should return information about the VMX we emulate for the
2431 * guest, and the VMCS structure we give it - not about the
2432 * VMX support of the underlying hardware.
2433 */
2434 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2435 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2436 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2437 break;
2438 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2439 case MSR_IA32_VMX_PINBASED_CTLS:
2440 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2441 nested_vmx_pinbased_ctls_high);
2442 break;
2443 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2444 *pdata = vmx_control_msr(nested_vmx_true_procbased_ctls_low,
2445 nested_vmx_procbased_ctls_high);
2446 break;
2447 case MSR_IA32_VMX_PROCBASED_CTLS:
2448 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2449 nested_vmx_procbased_ctls_high);
2450 break;
2451 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2452 *pdata = vmx_control_msr(nested_vmx_true_exit_ctls_low,
2453 nested_vmx_exit_ctls_high);
2454 break;
2455 case MSR_IA32_VMX_EXIT_CTLS:
2456 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2457 nested_vmx_exit_ctls_high);
2458 break;
2459 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2460 *pdata = vmx_control_msr(nested_vmx_true_entry_ctls_low,
2461 nested_vmx_entry_ctls_high);
2462 break;
2463 case MSR_IA32_VMX_ENTRY_CTLS:
2464 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2465 nested_vmx_entry_ctls_high);
2466 break;
2467 case MSR_IA32_VMX_MISC:
2468 *pdata = vmx_control_msr(nested_vmx_misc_low,
2469 nested_vmx_misc_high);
2470 break;
2471 /*
2472 * These MSRs specify bits which the guest must keep fixed (on or off)
2473 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2474 * We picked the standard core2 setting.
2475 */
2476 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2477 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2478 case MSR_IA32_VMX_CR0_FIXED0:
2479 *pdata = VMXON_CR0_ALWAYSON;
2480 break;
2481 case MSR_IA32_VMX_CR0_FIXED1:
2482 *pdata = -1ULL;
2483 break;
2484 case MSR_IA32_VMX_CR4_FIXED0:
2485 *pdata = VMXON_CR4_ALWAYSON;
2486 break;
2487 case MSR_IA32_VMX_CR4_FIXED1:
2488 *pdata = -1ULL;
2489 break;
2490 case MSR_IA32_VMX_VMCS_ENUM:
2491 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2492 break;
2493 case MSR_IA32_VMX_PROCBASED_CTLS2:
2494 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2495 nested_vmx_secondary_ctls_high);
2496 break;
2497 case MSR_IA32_VMX_EPT_VPID_CAP:
2498 /* Currently, no nested vpid support */
2499 *pdata = nested_vmx_ept_caps;
2500 break;
2501 default:
2502 return 1;
2503 }
2504
2505 return 0;
2506 }
2507
2508 /*
2509 * Reads an msr value (of 'msr_index') into 'pdata'.
2510 * Returns 0 on success, non-0 otherwise.
2511 * Assumes vcpu_load() was already called.
2512 */
2513 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2514 {
2515 u64 data;
2516 struct shared_msr_entry *msr;
2517
2518 if (!pdata) {
2519 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2520 return -EINVAL;
2521 }
2522
2523 switch (msr_index) {
2524 #ifdef CONFIG_X86_64
2525 case MSR_FS_BASE:
2526 data = vmcs_readl(GUEST_FS_BASE);
2527 break;
2528 case MSR_GS_BASE:
2529 data = vmcs_readl(GUEST_GS_BASE);
2530 break;
2531 case MSR_KERNEL_GS_BASE:
2532 vmx_load_host_state(to_vmx(vcpu));
2533 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2534 break;
2535 #endif
2536 case MSR_EFER:
2537 return kvm_get_msr_common(vcpu, msr_index, pdata);
2538 case MSR_IA32_TSC:
2539 data = guest_read_tsc();
2540 break;
2541 case MSR_IA32_SYSENTER_CS:
2542 data = vmcs_read32(GUEST_SYSENTER_CS);
2543 break;
2544 case MSR_IA32_SYSENTER_EIP:
2545 data = vmcs_readl(GUEST_SYSENTER_EIP);
2546 break;
2547 case MSR_IA32_SYSENTER_ESP:
2548 data = vmcs_readl(GUEST_SYSENTER_ESP);
2549 break;
2550 case MSR_IA32_BNDCFGS:
2551 if (!vmx_mpx_supported())
2552 return 1;
2553 data = vmcs_read64(GUEST_BNDCFGS);
2554 break;
2555 case MSR_IA32_FEATURE_CONTROL:
2556 if (!nested_vmx_allowed(vcpu))
2557 return 1;
2558 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2559 break;
2560 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2561 if (!nested_vmx_allowed(vcpu))
2562 return 1;
2563 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2564 case MSR_TSC_AUX:
2565 if (!to_vmx(vcpu)->rdtscp_enabled)
2566 return 1;
2567 /* Otherwise falls through */
2568 default:
2569 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2570 if (msr) {
2571 data = msr->data;
2572 break;
2573 }
2574 return kvm_get_msr_common(vcpu, msr_index, pdata);
2575 }
2576
2577 *pdata = data;
2578 return 0;
2579 }
2580
2581 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2582
2583 /*
2584 * Writes msr value into into the appropriate "register".
2585 * Returns 0 on success, non-0 otherwise.
2586 * Assumes vcpu_load() was already called.
2587 */
2588 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2589 {
2590 struct vcpu_vmx *vmx = to_vmx(vcpu);
2591 struct shared_msr_entry *msr;
2592 int ret = 0;
2593 u32 msr_index = msr_info->index;
2594 u64 data = msr_info->data;
2595
2596 switch (msr_index) {
2597 case MSR_EFER:
2598 ret = kvm_set_msr_common(vcpu, msr_info);
2599 break;
2600 #ifdef CONFIG_X86_64
2601 case MSR_FS_BASE:
2602 vmx_segment_cache_clear(vmx);
2603 vmcs_writel(GUEST_FS_BASE, data);
2604 break;
2605 case MSR_GS_BASE:
2606 vmx_segment_cache_clear(vmx);
2607 vmcs_writel(GUEST_GS_BASE, data);
2608 break;
2609 case MSR_KERNEL_GS_BASE:
2610 vmx_load_host_state(vmx);
2611 vmx->msr_guest_kernel_gs_base = data;
2612 break;
2613 #endif
2614 case MSR_IA32_SYSENTER_CS:
2615 vmcs_write32(GUEST_SYSENTER_CS, data);
2616 break;
2617 case MSR_IA32_SYSENTER_EIP:
2618 vmcs_writel(GUEST_SYSENTER_EIP, data);
2619 break;
2620 case MSR_IA32_SYSENTER_ESP:
2621 vmcs_writel(GUEST_SYSENTER_ESP, data);
2622 break;
2623 case MSR_IA32_BNDCFGS:
2624 if (!vmx_mpx_supported())
2625 return 1;
2626 vmcs_write64(GUEST_BNDCFGS, data);
2627 break;
2628 case MSR_IA32_TSC:
2629 kvm_write_tsc(vcpu, msr_info);
2630 break;
2631 case MSR_IA32_CR_PAT:
2632 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2633 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2634 return 1;
2635 vmcs_write64(GUEST_IA32_PAT, data);
2636 vcpu->arch.pat = data;
2637 break;
2638 }
2639 ret = kvm_set_msr_common(vcpu, msr_info);
2640 break;
2641 case MSR_IA32_TSC_ADJUST:
2642 ret = kvm_set_msr_common(vcpu, msr_info);
2643 break;
2644 case MSR_IA32_FEATURE_CONTROL:
2645 if (!nested_vmx_allowed(vcpu) ||
2646 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2647 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2648 return 1;
2649 vmx->nested.msr_ia32_feature_control = data;
2650 if (msr_info->host_initiated && data == 0)
2651 vmx_leave_nested(vcpu);
2652 break;
2653 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2654 return 1; /* they are read-only */
2655 case MSR_TSC_AUX:
2656 if (!vmx->rdtscp_enabled)
2657 return 1;
2658 /* Check reserved bit, higher 32 bits should be zero */
2659 if ((data >> 32) != 0)
2660 return 1;
2661 /* Otherwise falls through */
2662 default:
2663 msr = find_msr_entry(vmx, msr_index);
2664 if (msr) {
2665 u64 old_msr_data = msr->data;
2666 msr->data = data;
2667 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2668 preempt_disable();
2669 ret = kvm_set_shared_msr(msr->index, msr->data,
2670 msr->mask);
2671 preempt_enable();
2672 if (ret)
2673 msr->data = old_msr_data;
2674 }
2675 break;
2676 }
2677 ret = kvm_set_msr_common(vcpu, msr_info);
2678 }
2679
2680 return ret;
2681 }
2682
2683 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2684 {
2685 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2686 switch (reg) {
2687 case VCPU_REGS_RSP:
2688 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2689 break;
2690 case VCPU_REGS_RIP:
2691 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2692 break;
2693 case VCPU_EXREG_PDPTR:
2694 if (enable_ept)
2695 ept_save_pdptrs(vcpu);
2696 break;
2697 default:
2698 break;
2699 }
2700 }
2701
2702 static __init int cpu_has_kvm_support(void)
2703 {
2704 return cpu_has_vmx();
2705 }
2706
2707 static __init int vmx_disabled_by_bios(void)
2708 {
2709 u64 msr;
2710
2711 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2712 if (msr & FEATURE_CONTROL_LOCKED) {
2713 /* launched w/ TXT and VMX disabled */
2714 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2715 && tboot_enabled())
2716 return 1;
2717 /* launched w/o TXT and VMX only enabled w/ TXT */
2718 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2719 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2720 && !tboot_enabled()) {
2721 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2722 "activate TXT before enabling KVM\n");
2723 return 1;
2724 }
2725 /* launched w/o TXT and VMX disabled */
2726 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2727 && !tboot_enabled())
2728 return 1;
2729 }
2730
2731 return 0;
2732 }
2733
2734 static void kvm_cpu_vmxon(u64 addr)
2735 {
2736 asm volatile (ASM_VMX_VMXON_RAX
2737 : : "a"(&addr), "m"(addr)
2738 : "memory", "cc");
2739 }
2740
2741 static int hardware_enable(void)
2742 {
2743 int cpu = raw_smp_processor_id();
2744 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2745 u64 old, test_bits;
2746
2747 if (read_cr4() & X86_CR4_VMXE)
2748 return -EBUSY;
2749
2750 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2751
2752 /*
2753 * Now we can enable the vmclear operation in kdump
2754 * since the loaded_vmcss_on_cpu list on this cpu
2755 * has been initialized.
2756 *
2757 * Though the cpu is not in VMX operation now, there
2758 * is no problem to enable the vmclear operation
2759 * for the loaded_vmcss_on_cpu list is empty!
2760 */
2761 crash_enable_local_vmclear(cpu);
2762
2763 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2764
2765 test_bits = FEATURE_CONTROL_LOCKED;
2766 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2767 if (tboot_enabled())
2768 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2769
2770 if ((old & test_bits) != test_bits) {
2771 /* enable and lock */
2772 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2773 }
2774 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2775
2776 if (vmm_exclusive) {
2777 kvm_cpu_vmxon(phys_addr);
2778 ept_sync_global();
2779 }
2780
2781 native_store_gdt(this_cpu_ptr(&host_gdt));
2782
2783 return 0;
2784 }
2785
2786 static void vmclear_local_loaded_vmcss(void)
2787 {
2788 int cpu = raw_smp_processor_id();
2789 struct loaded_vmcs *v, *n;
2790
2791 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2792 loaded_vmcss_on_cpu_link)
2793 __loaded_vmcs_clear(v);
2794 }
2795
2796
2797 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2798 * tricks.
2799 */
2800 static void kvm_cpu_vmxoff(void)
2801 {
2802 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2803 }
2804
2805 static void hardware_disable(void)
2806 {
2807 if (vmm_exclusive) {
2808 vmclear_local_loaded_vmcss();
2809 kvm_cpu_vmxoff();
2810 }
2811 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2812 }
2813
2814 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2815 u32 msr, u32 *result)
2816 {
2817 u32 vmx_msr_low, vmx_msr_high;
2818 u32 ctl = ctl_min | ctl_opt;
2819
2820 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2821
2822 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2823 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2824
2825 /* Ensure minimum (required) set of control bits are supported. */
2826 if (ctl_min & ~ctl)
2827 return -EIO;
2828
2829 *result = ctl;
2830 return 0;
2831 }
2832
2833 static __init bool allow_1_setting(u32 msr, u32 ctl)
2834 {
2835 u32 vmx_msr_low, vmx_msr_high;
2836
2837 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2838 return vmx_msr_high & ctl;
2839 }
2840
2841 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2842 {
2843 u32 vmx_msr_low, vmx_msr_high;
2844 u32 min, opt, min2, opt2;
2845 u32 _pin_based_exec_control = 0;
2846 u32 _cpu_based_exec_control = 0;
2847 u32 _cpu_based_2nd_exec_control = 0;
2848 u32 _vmexit_control = 0;
2849 u32 _vmentry_control = 0;
2850
2851 min = CPU_BASED_HLT_EXITING |
2852 #ifdef CONFIG_X86_64
2853 CPU_BASED_CR8_LOAD_EXITING |
2854 CPU_BASED_CR8_STORE_EXITING |
2855 #endif
2856 CPU_BASED_CR3_LOAD_EXITING |
2857 CPU_BASED_CR3_STORE_EXITING |
2858 CPU_BASED_USE_IO_BITMAPS |
2859 CPU_BASED_MOV_DR_EXITING |
2860 CPU_BASED_USE_TSC_OFFSETING |
2861 CPU_BASED_MWAIT_EXITING |
2862 CPU_BASED_MONITOR_EXITING |
2863 CPU_BASED_INVLPG_EXITING |
2864 CPU_BASED_RDPMC_EXITING;
2865
2866 opt = CPU_BASED_TPR_SHADOW |
2867 CPU_BASED_USE_MSR_BITMAPS |
2868 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2869 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2870 &_cpu_based_exec_control) < 0)
2871 return -EIO;
2872 #ifdef CONFIG_X86_64
2873 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2874 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2875 ~CPU_BASED_CR8_STORE_EXITING;
2876 #endif
2877 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2878 min2 = 0;
2879 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2880 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2881 SECONDARY_EXEC_WBINVD_EXITING |
2882 SECONDARY_EXEC_ENABLE_VPID |
2883 SECONDARY_EXEC_ENABLE_EPT |
2884 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2885 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2886 SECONDARY_EXEC_RDTSCP |
2887 SECONDARY_EXEC_ENABLE_INVPCID |
2888 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2889 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2890 SECONDARY_EXEC_SHADOW_VMCS;
2891 if (adjust_vmx_controls(min2, opt2,
2892 MSR_IA32_VMX_PROCBASED_CTLS2,
2893 &_cpu_based_2nd_exec_control) < 0)
2894 return -EIO;
2895 }
2896 #ifndef CONFIG_X86_64
2897 if (!(_cpu_based_2nd_exec_control &
2898 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2899 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2900 #endif
2901
2902 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2903 _cpu_based_2nd_exec_control &= ~(
2904 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2905 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2906 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2907
2908 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2909 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2910 enabled */
2911 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2912 CPU_BASED_CR3_STORE_EXITING |
2913 CPU_BASED_INVLPG_EXITING);
2914 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2915 vmx_capability.ept, vmx_capability.vpid);
2916 }
2917
2918 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
2919 #ifdef CONFIG_X86_64
2920 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2921 #endif
2922 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2923 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
2924 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2925 &_vmexit_control) < 0)
2926 return -EIO;
2927
2928 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2929 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2930 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2931 &_pin_based_exec_control) < 0)
2932 return -EIO;
2933
2934 if (!(_cpu_based_2nd_exec_control &
2935 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2936 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2937 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2938
2939 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2940 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
2941 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2942 &_vmentry_control) < 0)
2943 return -EIO;
2944
2945 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2946
2947 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2948 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2949 return -EIO;
2950
2951 #ifdef CONFIG_X86_64
2952 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2953 if (vmx_msr_high & (1u<<16))
2954 return -EIO;
2955 #endif
2956
2957 /* Require Write-Back (WB) memory type for VMCS accesses. */
2958 if (((vmx_msr_high >> 18) & 15) != 6)
2959 return -EIO;
2960
2961 vmcs_conf->size = vmx_msr_high & 0x1fff;
2962 vmcs_conf->order = get_order(vmcs_config.size);
2963 vmcs_conf->revision_id = vmx_msr_low;
2964
2965 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2966 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2967 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2968 vmcs_conf->vmexit_ctrl = _vmexit_control;
2969 vmcs_conf->vmentry_ctrl = _vmentry_control;
2970
2971 cpu_has_load_ia32_efer =
2972 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2973 VM_ENTRY_LOAD_IA32_EFER)
2974 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2975 VM_EXIT_LOAD_IA32_EFER);
2976
2977 cpu_has_load_perf_global_ctrl =
2978 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2979 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2980 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2981 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2982
2983 /*
2984 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2985 * but due to arrata below it can't be used. Workaround is to use
2986 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2987 *
2988 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2989 *
2990 * AAK155 (model 26)
2991 * AAP115 (model 30)
2992 * AAT100 (model 37)
2993 * BC86,AAY89,BD102 (model 44)
2994 * BA97 (model 46)
2995 *
2996 */
2997 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2998 switch (boot_cpu_data.x86_model) {
2999 case 26:
3000 case 30:
3001 case 37:
3002 case 44:
3003 case 46:
3004 cpu_has_load_perf_global_ctrl = false;
3005 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3006 "does not work properly. Using workaround\n");
3007 break;
3008 default:
3009 break;
3010 }
3011 }
3012
3013 return 0;
3014 }
3015
3016 static struct vmcs *alloc_vmcs_cpu(int cpu)
3017 {
3018 int node = cpu_to_node(cpu);
3019 struct page *pages;
3020 struct vmcs *vmcs;
3021
3022 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
3023 if (!pages)
3024 return NULL;
3025 vmcs = page_address(pages);
3026 memset(vmcs, 0, vmcs_config.size);
3027 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3028 return vmcs;
3029 }
3030
3031 static struct vmcs *alloc_vmcs(void)
3032 {
3033 return alloc_vmcs_cpu(raw_smp_processor_id());
3034 }
3035
3036 static void free_vmcs(struct vmcs *vmcs)
3037 {
3038 free_pages((unsigned long)vmcs, vmcs_config.order);
3039 }
3040
3041 /*
3042 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3043 */
3044 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3045 {
3046 if (!loaded_vmcs->vmcs)
3047 return;
3048 loaded_vmcs_clear(loaded_vmcs);
3049 free_vmcs(loaded_vmcs->vmcs);
3050 loaded_vmcs->vmcs = NULL;
3051 }
3052
3053 static void free_kvm_area(void)
3054 {
3055 int cpu;
3056
3057 for_each_possible_cpu(cpu) {
3058 free_vmcs(per_cpu(vmxarea, cpu));
3059 per_cpu(vmxarea, cpu) = NULL;
3060 }
3061 }
3062
3063 static void init_vmcs_shadow_fields(void)
3064 {
3065 int i, j;
3066
3067 /* No checks for read only fields yet */
3068
3069 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3070 switch (shadow_read_write_fields[i]) {
3071 case GUEST_BNDCFGS:
3072 if (!vmx_mpx_supported())
3073 continue;
3074 break;
3075 default:
3076 break;
3077 }
3078
3079 if (j < i)
3080 shadow_read_write_fields[j] =
3081 shadow_read_write_fields[i];
3082 j++;
3083 }
3084 max_shadow_read_write_fields = j;
3085
3086 /* shadowed fields guest access without vmexit */
3087 for (i = 0; i < max_shadow_read_write_fields; i++) {
3088 clear_bit(shadow_read_write_fields[i],
3089 vmx_vmwrite_bitmap);
3090 clear_bit(shadow_read_write_fields[i],
3091 vmx_vmread_bitmap);
3092 }
3093 for (i = 0; i < max_shadow_read_only_fields; i++)
3094 clear_bit(shadow_read_only_fields[i],
3095 vmx_vmread_bitmap);
3096 }
3097
3098 static __init int alloc_kvm_area(void)
3099 {
3100 int cpu;
3101
3102 for_each_possible_cpu(cpu) {
3103 struct vmcs *vmcs;
3104
3105 vmcs = alloc_vmcs_cpu(cpu);
3106 if (!vmcs) {
3107 free_kvm_area();
3108 return -ENOMEM;
3109 }
3110
3111 per_cpu(vmxarea, cpu) = vmcs;
3112 }
3113 return 0;
3114 }
3115
3116 static bool emulation_required(struct kvm_vcpu *vcpu)
3117 {
3118 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3119 }
3120
3121 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3122 struct kvm_segment *save)
3123 {
3124 if (!emulate_invalid_guest_state) {
3125 /*
3126 * CS and SS RPL should be equal during guest entry according
3127 * to VMX spec, but in reality it is not always so. Since vcpu
3128 * is in the middle of the transition from real mode to
3129 * protected mode it is safe to assume that RPL 0 is a good
3130 * default value.
3131 */
3132 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3133 save->selector &= ~SELECTOR_RPL_MASK;
3134 save->dpl = save->selector & SELECTOR_RPL_MASK;
3135 save->s = 1;
3136 }
3137 vmx_set_segment(vcpu, save, seg);
3138 }
3139
3140 static void enter_pmode(struct kvm_vcpu *vcpu)
3141 {
3142 unsigned long flags;
3143 struct vcpu_vmx *vmx = to_vmx(vcpu);
3144
3145 /*
3146 * Update real mode segment cache. It may be not up-to-date if sement
3147 * register was written while vcpu was in a guest mode.
3148 */
3149 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3150 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3151 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3152 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3153 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3154 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3155
3156 vmx->rmode.vm86_active = 0;
3157
3158 vmx_segment_cache_clear(vmx);
3159
3160 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3161
3162 flags = vmcs_readl(GUEST_RFLAGS);
3163 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3164 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3165 vmcs_writel(GUEST_RFLAGS, flags);
3166
3167 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3168 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3169
3170 update_exception_bitmap(vcpu);
3171
3172 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3173 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3174 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3175 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3176 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3177 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3178 }
3179
3180 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3181 {
3182 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3183 struct kvm_segment var = *save;
3184
3185 var.dpl = 0x3;
3186 if (seg == VCPU_SREG_CS)
3187 var.type = 0x3;
3188
3189 if (!emulate_invalid_guest_state) {
3190 var.selector = var.base >> 4;
3191 var.base = var.base & 0xffff0;
3192 var.limit = 0xffff;
3193 var.g = 0;
3194 var.db = 0;
3195 var.present = 1;
3196 var.s = 1;
3197 var.l = 0;
3198 var.unusable = 0;
3199 var.type = 0x3;
3200 var.avl = 0;
3201 if (save->base & 0xf)
3202 printk_once(KERN_WARNING "kvm: segment base is not "
3203 "paragraph aligned when entering "
3204 "protected mode (seg=%d)", seg);
3205 }
3206
3207 vmcs_write16(sf->selector, var.selector);
3208 vmcs_write32(sf->base, var.base);
3209 vmcs_write32(sf->limit, var.limit);
3210 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3211 }
3212
3213 static void enter_rmode(struct kvm_vcpu *vcpu)
3214 {
3215 unsigned long flags;
3216 struct vcpu_vmx *vmx = to_vmx(vcpu);
3217
3218 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3219 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3220 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3221 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3222 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3223 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3224 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3225
3226 vmx->rmode.vm86_active = 1;
3227
3228 /*
3229 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3230 * vcpu. Warn the user that an update is overdue.
3231 */
3232 if (!vcpu->kvm->arch.tss_addr)
3233 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3234 "called before entering vcpu\n");
3235
3236 vmx_segment_cache_clear(vmx);
3237
3238 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3239 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3240 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3241
3242 flags = vmcs_readl(GUEST_RFLAGS);
3243 vmx->rmode.save_rflags = flags;
3244
3245 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3246
3247 vmcs_writel(GUEST_RFLAGS, flags);
3248 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3249 update_exception_bitmap(vcpu);
3250
3251 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3252 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3253 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3254 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3255 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3256 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3257
3258 kvm_mmu_reset_context(vcpu);
3259 }
3260
3261 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3262 {
3263 struct vcpu_vmx *vmx = to_vmx(vcpu);
3264 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3265
3266 if (!msr)
3267 return;
3268
3269 /*
3270 * Force kernel_gs_base reloading before EFER changes, as control
3271 * of this msr depends on is_long_mode().
3272 */
3273 vmx_load_host_state(to_vmx(vcpu));
3274 vcpu->arch.efer = efer;
3275 if (efer & EFER_LMA) {
3276 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3277 msr->data = efer;
3278 } else {
3279 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3280
3281 msr->data = efer & ~EFER_LME;
3282 }
3283 setup_msrs(vmx);
3284 }
3285
3286 #ifdef CONFIG_X86_64
3287
3288 static void enter_lmode(struct kvm_vcpu *vcpu)
3289 {
3290 u32 guest_tr_ar;
3291
3292 vmx_segment_cache_clear(to_vmx(vcpu));
3293
3294 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3295 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3296 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3297 __func__);
3298 vmcs_write32(GUEST_TR_AR_BYTES,
3299 (guest_tr_ar & ~AR_TYPE_MASK)
3300 | AR_TYPE_BUSY_64_TSS);
3301 }
3302 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3303 }
3304
3305 static void exit_lmode(struct kvm_vcpu *vcpu)
3306 {
3307 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3308 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3309 }
3310
3311 #endif
3312
3313 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3314 {
3315 vpid_sync_context(to_vmx(vcpu));
3316 if (enable_ept) {
3317 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3318 return;
3319 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3320 }
3321 }
3322
3323 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3324 {
3325 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3326
3327 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3328 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3329 }
3330
3331 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3332 {
3333 if (enable_ept && is_paging(vcpu))
3334 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3335 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3336 }
3337
3338 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3339 {
3340 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3341
3342 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3343 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3344 }
3345
3346 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3347 {
3348 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3349
3350 if (!test_bit(VCPU_EXREG_PDPTR,
3351 (unsigned long *)&vcpu->arch.regs_dirty))
3352 return;
3353
3354 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3355 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3356 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3357 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3358 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3359 }
3360 }
3361
3362 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3363 {
3364 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3365
3366 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3367 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3368 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3369 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3370 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3371 }
3372
3373 __set_bit(VCPU_EXREG_PDPTR,
3374 (unsigned long *)&vcpu->arch.regs_avail);
3375 __set_bit(VCPU_EXREG_PDPTR,
3376 (unsigned long *)&vcpu->arch.regs_dirty);
3377 }
3378
3379 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3380
3381 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3382 unsigned long cr0,
3383 struct kvm_vcpu *vcpu)
3384 {
3385 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3386 vmx_decache_cr3(vcpu);
3387 if (!(cr0 & X86_CR0_PG)) {
3388 /* From paging/starting to nonpaging */
3389 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3390 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3391 (CPU_BASED_CR3_LOAD_EXITING |
3392 CPU_BASED_CR3_STORE_EXITING));
3393 vcpu->arch.cr0 = cr0;
3394 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3395 } else if (!is_paging(vcpu)) {
3396 /* From nonpaging to paging */
3397 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3398 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3399 ~(CPU_BASED_CR3_LOAD_EXITING |
3400 CPU_BASED_CR3_STORE_EXITING));
3401 vcpu->arch.cr0 = cr0;
3402 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3403 }
3404
3405 if (!(cr0 & X86_CR0_WP))
3406 *hw_cr0 &= ~X86_CR0_WP;
3407 }
3408
3409 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3410 {
3411 struct vcpu_vmx *vmx = to_vmx(vcpu);
3412 unsigned long hw_cr0;
3413
3414 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3415 if (enable_unrestricted_guest)
3416 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3417 else {
3418 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3419
3420 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3421 enter_pmode(vcpu);
3422
3423 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3424 enter_rmode(vcpu);
3425 }
3426
3427 #ifdef CONFIG_X86_64
3428 if (vcpu->arch.efer & EFER_LME) {
3429 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3430 enter_lmode(vcpu);
3431 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3432 exit_lmode(vcpu);
3433 }
3434 #endif
3435
3436 if (enable_ept)
3437 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3438
3439 if (!vcpu->fpu_active)
3440 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3441
3442 vmcs_writel(CR0_READ_SHADOW, cr0);
3443 vmcs_writel(GUEST_CR0, hw_cr0);
3444 vcpu->arch.cr0 = cr0;
3445
3446 /* depends on vcpu->arch.cr0 to be set to a new value */
3447 vmx->emulation_required = emulation_required(vcpu);
3448 }
3449
3450 static u64 construct_eptp(unsigned long root_hpa)
3451 {
3452 u64 eptp;
3453
3454 /* TODO write the value reading from MSR */
3455 eptp = VMX_EPT_DEFAULT_MT |
3456 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3457 if (enable_ept_ad_bits)
3458 eptp |= VMX_EPT_AD_ENABLE_BIT;
3459 eptp |= (root_hpa & PAGE_MASK);
3460
3461 return eptp;
3462 }
3463
3464 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3465 {
3466 unsigned long guest_cr3;
3467 u64 eptp;
3468
3469 guest_cr3 = cr3;
3470 if (enable_ept) {
3471 eptp = construct_eptp(cr3);
3472 vmcs_write64(EPT_POINTER, eptp);
3473 if (is_paging(vcpu) || is_guest_mode(vcpu))
3474 guest_cr3 = kvm_read_cr3(vcpu);
3475 else
3476 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3477 ept_load_pdptrs(vcpu);
3478 }
3479
3480 vmx_flush_tlb(vcpu);
3481 vmcs_writel(GUEST_CR3, guest_cr3);
3482 }
3483
3484 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3485 {
3486 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3487 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3488
3489 if (cr4 & X86_CR4_VMXE) {
3490 /*
3491 * To use VMXON (and later other VMX instructions), a guest
3492 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3493 * So basically the check on whether to allow nested VMX
3494 * is here.
3495 */
3496 if (!nested_vmx_allowed(vcpu))
3497 return 1;
3498 }
3499 if (to_vmx(vcpu)->nested.vmxon &&
3500 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3501 return 1;
3502
3503 vcpu->arch.cr4 = cr4;
3504 if (enable_ept) {
3505 if (!is_paging(vcpu)) {
3506 hw_cr4 &= ~X86_CR4_PAE;
3507 hw_cr4 |= X86_CR4_PSE;
3508 /*
3509 * SMEP/SMAP is disabled if CPU is in non-paging mode
3510 * in hardware. However KVM always uses paging mode to
3511 * emulate guest non-paging mode with TDP.
3512 * To emulate this behavior, SMEP/SMAP needs to be
3513 * manually disabled when guest switches to non-paging
3514 * mode.
3515 */
3516 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3517 } else if (!(cr4 & X86_CR4_PAE)) {
3518 hw_cr4 &= ~X86_CR4_PAE;
3519 }
3520 }
3521
3522 vmcs_writel(CR4_READ_SHADOW, cr4);
3523 vmcs_writel(GUEST_CR4, hw_cr4);
3524 return 0;
3525 }
3526
3527 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3528 struct kvm_segment *var, int seg)
3529 {
3530 struct vcpu_vmx *vmx = to_vmx(vcpu);
3531 u32 ar;
3532
3533 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3534 *var = vmx->rmode.segs[seg];
3535 if (seg == VCPU_SREG_TR
3536 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3537 return;
3538 var->base = vmx_read_guest_seg_base(vmx, seg);
3539 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3540 return;
3541 }
3542 var->base = vmx_read_guest_seg_base(vmx, seg);
3543 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3544 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3545 ar = vmx_read_guest_seg_ar(vmx, seg);
3546 var->unusable = (ar >> 16) & 1;
3547 var->type = ar & 15;
3548 var->s = (ar >> 4) & 1;
3549 var->dpl = (ar >> 5) & 3;
3550 /*
3551 * Some userspaces do not preserve unusable property. Since usable
3552 * segment has to be present according to VMX spec we can use present
3553 * property to amend userspace bug by making unusable segment always
3554 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3555 * segment as unusable.
3556 */
3557 var->present = !var->unusable;
3558 var->avl = (ar >> 12) & 1;
3559 var->l = (ar >> 13) & 1;
3560 var->db = (ar >> 14) & 1;
3561 var->g = (ar >> 15) & 1;
3562 }
3563
3564 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3565 {
3566 struct kvm_segment s;
3567
3568 if (to_vmx(vcpu)->rmode.vm86_active) {
3569 vmx_get_segment(vcpu, &s, seg);
3570 return s.base;
3571 }
3572 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3573 }
3574
3575 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3576 {
3577 struct vcpu_vmx *vmx = to_vmx(vcpu);
3578
3579 if (unlikely(vmx->rmode.vm86_active))
3580 return 0;
3581 else {
3582 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3583 return AR_DPL(ar);
3584 }
3585 }
3586
3587 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3588 {
3589 u32 ar;
3590
3591 if (var->unusable || !var->present)
3592 ar = 1 << 16;
3593 else {
3594 ar = var->type & 15;
3595 ar |= (var->s & 1) << 4;
3596 ar |= (var->dpl & 3) << 5;
3597 ar |= (var->present & 1) << 7;
3598 ar |= (var->avl & 1) << 12;
3599 ar |= (var->l & 1) << 13;
3600 ar |= (var->db & 1) << 14;
3601 ar |= (var->g & 1) << 15;
3602 }
3603
3604 return ar;
3605 }
3606
3607 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3608 struct kvm_segment *var, int seg)
3609 {
3610 struct vcpu_vmx *vmx = to_vmx(vcpu);
3611 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3612
3613 vmx_segment_cache_clear(vmx);
3614
3615 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3616 vmx->rmode.segs[seg] = *var;
3617 if (seg == VCPU_SREG_TR)
3618 vmcs_write16(sf->selector, var->selector);
3619 else if (var->s)
3620 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3621 goto out;
3622 }
3623
3624 vmcs_writel(sf->base, var->base);
3625 vmcs_write32(sf->limit, var->limit);
3626 vmcs_write16(sf->selector, var->selector);
3627
3628 /*
3629 * Fix the "Accessed" bit in AR field of segment registers for older
3630 * qemu binaries.
3631 * IA32 arch specifies that at the time of processor reset the
3632 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3633 * is setting it to 0 in the userland code. This causes invalid guest
3634 * state vmexit when "unrestricted guest" mode is turned on.
3635 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3636 * tree. Newer qemu binaries with that qemu fix would not need this
3637 * kvm hack.
3638 */
3639 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3640 var->type |= 0x1; /* Accessed */
3641
3642 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3643
3644 out:
3645 vmx->emulation_required = emulation_required(vcpu);
3646 }
3647
3648 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3649 {
3650 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3651
3652 *db = (ar >> 14) & 1;
3653 *l = (ar >> 13) & 1;
3654 }
3655
3656 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3657 {
3658 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3659 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3660 }
3661
3662 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3663 {
3664 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3665 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3666 }
3667
3668 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3669 {
3670 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3671 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3672 }
3673
3674 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3675 {
3676 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3677 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3678 }
3679
3680 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3681 {
3682 struct kvm_segment var;
3683 u32 ar;
3684
3685 vmx_get_segment(vcpu, &var, seg);
3686 var.dpl = 0x3;
3687 if (seg == VCPU_SREG_CS)
3688 var.type = 0x3;
3689 ar = vmx_segment_access_rights(&var);
3690
3691 if (var.base != (var.selector << 4))
3692 return false;
3693 if (var.limit != 0xffff)
3694 return false;
3695 if (ar != 0xf3)
3696 return false;
3697
3698 return true;
3699 }
3700
3701 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3702 {
3703 struct kvm_segment cs;
3704 unsigned int cs_rpl;
3705
3706 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3707 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3708
3709 if (cs.unusable)
3710 return false;
3711 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3712 return false;
3713 if (!cs.s)
3714 return false;
3715 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3716 if (cs.dpl > cs_rpl)
3717 return false;
3718 } else {
3719 if (cs.dpl != cs_rpl)
3720 return false;
3721 }
3722 if (!cs.present)
3723 return false;
3724
3725 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3726 return true;
3727 }
3728
3729 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3730 {
3731 struct kvm_segment ss;
3732 unsigned int ss_rpl;
3733
3734 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3735 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3736
3737 if (ss.unusable)
3738 return true;
3739 if (ss.type != 3 && ss.type != 7)
3740 return false;
3741 if (!ss.s)
3742 return false;
3743 if (ss.dpl != ss_rpl) /* DPL != RPL */
3744 return false;
3745 if (!ss.present)
3746 return false;
3747
3748 return true;
3749 }
3750
3751 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3752 {
3753 struct kvm_segment var;
3754 unsigned int rpl;
3755
3756 vmx_get_segment(vcpu, &var, seg);
3757 rpl = var.selector & SELECTOR_RPL_MASK;
3758
3759 if (var.unusable)
3760 return true;
3761 if (!var.s)
3762 return false;
3763 if (!var.present)
3764 return false;
3765 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3766 if (var.dpl < rpl) /* DPL < RPL */
3767 return false;
3768 }
3769
3770 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3771 * rights flags
3772 */
3773 return true;
3774 }
3775
3776 static bool tr_valid(struct kvm_vcpu *vcpu)
3777 {
3778 struct kvm_segment tr;
3779
3780 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3781
3782 if (tr.unusable)
3783 return false;
3784 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3785 return false;
3786 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3787 return false;
3788 if (!tr.present)
3789 return false;
3790
3791 return true;
3792 }
3793
3794 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3795 {
3796 struct kvm_segment ldtr;
3797
3798 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3799
3800 if (ldtr.unusable)
3801 return true;
3802 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3803 return false;
3804 if (ldtr.type != 2)
3805 return false;
3806 if (!ldtr.present)
3807 return false;
3808
3809 return true;
3810 }
3811
3812 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3813 {
3814 struct kvm_segment cs, ss;
3815
3816 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3817 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3818
3819 return ((cs.selector & SELECTOR_RPL_MASK) ==
3820 (ss.selector & SELECTOR_RPL_MASK));
3821 }
3822
3823 /*
3824 * Check if guest state is valid. Returns true if valid, false if
3825 * not.
3826 * We assume that registers are always usable
3827 */
3828 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3829 {
3830 if (enable_unrestricted_guest)
3831 return true;
3832
3833 /* real mode guest state checks */
3834 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3835 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3836 return false;
3837 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3838 return false;
3839 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3840 return false;
3841 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3842 return false;
3843 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3844 return false;
3845 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3846 return false;
3847 } else {
3848 /* protected mode guest state checks */
3849 if (!cs_ss_rpl_check(vcpu))
3850 return false;
3851 if (!code_segment_valid(vcpu))
3852 return false;
3853 if (!stack_segment_valid(vcpu))
3854 return false;
3855 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3856 return false;
3857 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3858 return false;
3859 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3860 return false;
3861 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3862 return false;
3863 if (!tr_valid(vcpu))
3864 return false;
3865 if (!ldtr_valid(vcpu))
3866 return false;
3867 }
3868 /* TODO:
3869 * - Add checks on RIP
3870 * - Add checks on RFLAGS
3871 */
3872
3873 return true;
3874 }
3875
3876 static int init_rmode_tss(struct kvm *kvm)
3877 {
3878 gfn_t fn;
3879 u16 data = 0;
3880 int idx, r;
3881
3882 idx = srcu_read_lock(&kvm->srcu);
3883 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3884 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3885 if (r < 0)
3886 goto out;
3887 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3888 r = kvm_write_guest_page(kvm, fn++, &data,
3889 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3890 if (r < 0)
3891 goto out;
3892 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3893 if (r < 0)
3894 goto out;
3895 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3896 if (r < 0)
3897 goto out;
3898 data = ~0;
3899 r = kvm_write_guest_page(kvm, fn, &data,
3900 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3901 sizeof(u8));
3902 out:
3903 srcu_read_unlock(&kvm->srcu, idx);
3904 return r;
3905 }
3906
3907 static int init_rmode_identity_map(struct kvm *kvm)
3908 {
3909 int i, idx, r = 0;
3910 pfn_t identity_map_pfn;
3911 u32 tmp;
3912
3913 if (!enable_ept)
3914 return 0;
3915
3916 /* Protect kvm->arch.ept_identity_pagetable_done. */
3917 mutex_lock(&kvm->slots_lock);
3918
3919 if (likely(kvm->arch.ept_identity_pagetable_done))
3920 goto out2;
3921
3922 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3923
3924 r = alloc_identity_pagetable(kvm);
3925 if (r < 0)
3926 goto out2;
3927
3928 idx = srcu_read_lock(&kvm->srcu);
3929 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3930 if (r < 0)
3931 goto out;
3932 /* Set up identity-mapping pagetable for EPT in real mode */
3933 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3934 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3935 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3936 r = kvm_write_guest_page(kvm, identity_map_pfn,
3937 &tmp, i * sizeof(tmp), sizeof(tmp));
3938 if (r < 0)
3939 goto out;
3940 }
3941 kvm->arch.ept_identity_pagetable_done = true;
3942
3943 out:
3944 srcu_read_unlock(&kvm->srcu, idx);
3945
3946 out2:
3947 mutex_unlock(&kvm->slots_lock);
3948 return r;
3949 }
3950
3951 static void seg_setup(int seg)
3952 {
3953 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3954 unsigned int ar;
3955
3956 vmcs_write16(sf->selector, 0);
3957 vmcs_writel(sf->base, 0);
3958 vmcs_write32(sf->limit, 0xffff);
3959 ar = 0x93;
3960 if (seg == VCPU_SREG_CS)
3961 ar |= 0x08; /* code segment */
3962
3963 vmcs_write32(sf->ar_bytes, ar);
3964 }
3965
3966 static int alloc_apic_access_page(struct kvm *kvm)
3967 {
3968 struct page *page;
3969 struct kvm_userspace_memory_region kvm_userspace_mem;
3970 int r = 0;
3971
3972 mutex_lock(&kvm->slots_lock);
3973 if (kvm->arch.apic_access_page_done)
3974 goto out;
3975 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3976 kvm_userspace_mem.flags = 0;
3977 kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
3978 kvm_userspace_mem.memory_size = PAGE_SIZE;
3979 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3980 if (r)
3981 goto out;
3982
3983 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3984 if (is_error_page(page)) {
3985 r = -EFAULT;
3986 goto out;
3987 }
3988
3989 /*
3990 * Do not pin the page in memory, so that memory hot-unplug
3991 * is able to migrate it.
3992 */
3993 put_page(page);
3994 kvm->arch.apic_access_page_done = true;
3995 out:
3996 mutex_unlock(&kvm->slots_lock);
3997 return r;
3998 }
3999
4000 static int alloc_identity_pagetable(struct kvm *kvm)
4001 {
4002 /* Called with kvm->slots_lock held. */
4003
4004 struct kvm_userspace_memory_region kvm_userspace_mem;
4005 int r = 0;
4006
4007 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4008
4009 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4010 kvm_userspace_mem.flags = 0;
4011 kvm_userspace_mem.guest_phys_addr =
4012 kvm->arch.ept_identity_map_addr;
4013 kvm_userspace_mem.memory_size = PAGE_SIZE;
4014 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4015
4016 return r;
4017 }
4018
4019 static void allocate_vpid(struct vcpu_vmx *vmx)
4020 {
4021 int vpid;
4022
4023 vmx->vpid = 0;
4024 if (!enable_vpid)
4025 return;
4026 spin_lock(&vmx_vpid_lock);
4027 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4028 if (vpid < VMX_NR_VPIDS) {
4029 vmx->vpid = vpid;
4030 __set_bit(vpid, vmx_vpid_bitmap);
4031 }
4032 spin_unlock(&vmx_vpid_lock);
4033 }
4034
4035 static void free_vpid(struct vcpu_vmx *vmx)
4036 {
4037 if (!enable_vpid)
4038 return;
4039 spin_lock(&vmx_vpid_lock);
4040 if (vmx->vpid != 0)
4041 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4042 spin_unlock(&vmx_vpid_lock);
4043 }
4044
4045 #define MSR_TYPE_R 1
4046 #define MSR_TYPE_W 2
4047 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4048 u32 msr, int type)
4049 {
4050 int f = sizeof(unsigned long);
4051
4052 if (!cpu_has_vmx_msr_bitmap())
4053 return;
4054
4055 /*
4056 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4057 * have the write-low and read-high bitmap offsets the wrong way round.
4058 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4059 */
4060 if (msr <= 0x1fff) {
4061 if (type & MSR_TYPE_R)
4062 /* read-low */
4063 __clear_bit(msr, msr_bitmap + 0x000 / f);
4064
4065 if (type & MSR_TYPE_W)
4066 /* write-low */
4067 __clear_bit(msr, msr_bitmap + 0x800 / f);
4068
4069 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4070 msr &= 0x1fff;
4071 if (type & MSR_TYPE_R)
4072 /* read-high */
4073 __clear_bit(msr, msr_bitmap + 0x400 / f);
4074
4075 if (type & MSR_TYPE_W)
4076 /* write-high */
4077 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4078
4079 }
4080 }
4081
4082 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4083 u32 msr, int type)
4084 {
4085 int f = sizeof(unsigned long);
4086
4087 if (!cpu_has_vmx_msr_bitmap())
4088 return;
4089
4090 /*
4091 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4092 * have the write-low and read-high bitmap offsets the wrong way round.
4093 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4094 */
4095 if (msr <= 0x1fff) {
4096 if (type & MSR_TYPE_R)
4097 /* read-low */
4098 __set_bit(msr, msr_bitmap + 0x000 / f);
4099
4100 if (type & MSR_TYPE_W)
4101 /* write-low */
4102 __set_bit(msr, msr_bitmap + 0x800 / f);
4103
4104 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4105 msr &= 0x1fff;
4106 if (type & MSR_TYPE_R)
4107 /* read-high */
4108 __set_bit(msr, msr_bitmap + 0x400 / f);
4109
4110 if (type & MSR_TYPE_W)
4111 /* write-high */
4112 __set_bit(msr, msr_bitmap + 0xc00 / f);
4113
4114 }
4115 }
4116
4117 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4118 {
4119 if (!longmode_only)
4120 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4121 msr, MSR_TYPE_R | MSR_TYPE_W);
4122 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4123 msr, MSR_TYPE_R | MSR_TYPE_W);
4124 }
4125
4126 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4127 {
4128 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4129 msr, MSR_TYPE_R);
4130 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4131 msr, MSR_TYPE_R);
4132 }
4133
4134 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4135 {
4136 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4137 msr, MSR_TYPE_R);
4138 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4139 msr, MSR_TYPE_R);
4140 }
4141
4142 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4143 {
4144 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4145 msr, MSR_TYPE_W);
4146 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4147 msr, MSR_TYPE_W);
4148 }
4149
4150 static int vmx_vm_has_apicv(struct kvm *kvm)
4151 {
4152 return enable_apicv && irqchip_in_kernel(kvm);
4153 }
4154
4155 /*
4156 * Send interrupt to vcpu via posted interrupt way.
4157 * 1. If target vcpu is running(non-root mode), send posted interrupt
4158 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4159 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4160 * interrupt from PIR in next vmentry.
4161 */
4162 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4163 {
4164 struct vcpu_vmx *vmx = to_vmx(vcpu);
4165 int r;
4166
4167 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4168 return;
4169
4170 r = pi_test_and_set_on(&vmx->pi_desc);
4171 kvm_make_request(KVM_REQ_EVENT, vcpu);
4172 #ifdef CONFIG_SMP
4173 if (!r && (vcpu->mode == IN_GUEST_MODE))
4174 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4175 POSTED_INTR_VECTOR);
4176 else
4177 #endif
4178 kvm_vcpu_kick(vcpu);
4179 }
4180
4181 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4182 {
4183 struct vcpu_vmx *vmx = to_vmx(vcpu);
4184
4185 if (!pi_test_and_clear_on(&vmx->pi_desc))
4186 return;
4187
4188 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4189 }
4190
4191 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4192 {
4193 return;
4194 }
4195
4196 /*
4197 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4198 * will not change in the lifetime of the guest.
4199 * Note that host-state that does change is set elsewhere. E.g., host-state
4200 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4201 */
4202 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4203 {
4204 u32 low32, high32;
4205 unsigned long tmpl;
4206 struct desc_ptr dt;
4207 unsigned long cr4;
4208
4209 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4210 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4211
4212 /* Save the most likely value for this task's CR4 in the VMCS. */
4213 cr4 = read_cr4();
4214 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4215 vmx->host_state.vmcs_host_cr4 = cr4;
4216
4217 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4218 #ifdef CONFIG_X86_64
4219 /*
4220 * Load null selectors, so we can avoid reloading them in
4221 * __vmx_load_host_state(), in case userspace uses the null selectors
4222 * too (the expected case).
4223 */
4224 vmcs_write16(HOST_DS_SELECTOR, 0);
4225 vmcs_write16(HOST_ES_SELECTOR, 0);
4226 #else
4227 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4228 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4229 #endif
4230 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4231 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4232
4233 native_store_idt(&dt);
4234 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4235 vmx->host_idt_base = dt.address;
4236
4237 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4238
4239 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4240 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4241 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4242 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4243
4244 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4245 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4246 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4247 }
4248 }
4249
4250 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4251 {
4252 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4253 if (enable_ept)
4254 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4255 if (is_guest_mode(&vmx->vcpu))
4256 vmx->vcpu.arch.cr4_guest_owned_bits &=
4257 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4258 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4259 }
4260
4261 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4262 {
4263 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4264
4265 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4266 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4267 return pin_based_exec_ctrl;
4268 }
4269
4270 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4271 {
4272 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4273
4274 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4275 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4276
4277 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4278 exec_control &= ~CPU_BASED_TPR_SHADOW;
4279 #ifdef CONFIG_X86_64
4280 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4281 CPU_BASED_CR8_LOAD_EXITING;
4282 #endif
4283 }
4284 if (!enable_ept)
4285 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4286 CPU_BASED_CR3_LOAD_EXITING |
4287 CPU_BASED_INVLPG_EXITING;
4288 return exec_control;
4289 }
4290
4291 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4292 {
4293 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4294 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4295 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4296 if (vmx->vpid == 0)
4297 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4298 if (!enable_ept) {
4299 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4300 enable_unrestricted_guest = 0;
4301 /* Enable INVPCID for non-ept guests may cause performance regression. */
4302 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4303 }
4304 if (!enable_unrestricted_guest)
4305 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4306 if (!ple_gap)
4307 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4308 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4309 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4310 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4311 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4312 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4313 (handle_vmptrld).
4314 We can NOT enable shadow_vmcs here because we don't have yet
4315 a current VMCS12
4316 */
4317 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4318 return exec_control;
4319 }
4320
4321 static void ept_set_mmio_spte_mask(void)
4322 {
4323 /*
4324 * EPT Misconfigurations can be generated if the value of bits 2:0
4325 * of an EPT paging-structure entry is 110b (write/execute).
4326 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4327 * spte.
4328 */
4329 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4330 }
4331
4332 /*
4333 * Sets up the vmcs for emulated real mode.
4334 */
4335 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4336 {
4337 #ifdef CONFIG_X86_64
4338 unsigned long a;
4339 #endif
4340 int i;
4341
4342 /* I/O */
4343 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4344 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4345
4346 if (enable_shadow_vmcs) {
4347 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4348 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4349 }
4350 if (cpu_has_vmx_msr_bitmap())
4351 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4352
4353 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4354
4355 /* Control */
4356 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4357
4358 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4359
4360 if (cpu_has_secondary_exec_ctrls()) {
4361 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4362 vmx_secondary_exec_control(vmx));
4363 }
4364
4365 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4366 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4367 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4368 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4369 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4370
4371 vmcs_write16(GUEST_INTR_STATUS, 0);
4372
4373 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4374 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4375 }
4376
4377 if (ple_gap) {
4378 vmcs_write32(PLE_GAP, ple_gap);
4379 vmx->ple_window = ple_window;
4380 vmx->ple_window_dirty = true;
4381 }
4382
4383 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4384 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4385 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4386
4387 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4388 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4389 vmx_set_constant_host_state(vmx);
4390 #ifdef CONFIG_X86_64
4391 rdmsrl(MSR_FS_BASE, a);
4392 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4393 rdmsrl(MSR_GS_BASE, a);
4394 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4395 #else
4396 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4397 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4398 #endif
4399
4400 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4401 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4402 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4403 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4404 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4405
4406 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4407 u32 msr_low, msr_high;
4408 u64 host_pat;
4409 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4410 host_pat = msr_low | ((u64) msr_high << 32);
4411 /* Write the default value follow host pat */
4412 vmcs_write64(GUEST_IA32_PAT, host_pat);
4413 /* Keep arch.pat sync with GUEST_IA32_PAT */
4414 vmx->vcpu.arch.pat = host_pat;
4415 }
4416
4417 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4418 u32 index = vmx_msr_index[i];
4419 u32 data_low, data_high;
4420 int j = vmx->nmsrs;
4421
4422 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4423 continue;
4424 if (wrmsr_safe(index, data_low, data_high) < 0)
4425 continue;
4426 vmx->guest_msrs[j].index = i;
4427 vmx->guest_msrs[j].data = 0;
4428 vmx->guest_msrs[j].mask = -1ull;
4429 ++vmx->nmsrs;
4430 }
4431
4432
4433 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4434
4435 /* 22.2.1, 20.8.1 */
4436 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4437
4438 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4439 set_cr4_guest_host_mask(vmx);
4440
4441 return 0;
4442 }
4443
4444 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4445 {
4446 struct vcpu_vmx *vmx = to_vmx(vcpu);
4447 struct msr_data apic_base_msr;
4448
4449 vmx->rmode.vm86_active = 0;
4450
4451 vmx->soft_vnmi_blocked = 0;
4452
4453 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4454 kvm_set_cr8(&vmx->vcpu, 0);
4455 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
4456 if (kvm_vcpu_is_bsp(&vmx->vcpu))
4457 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4458 apic_base_msr.host_initiated = true;
4459 kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4460
4461 vmx_segment_cache_clear(vmx);
4462
4463 seg_setup(VCPU_SREG_CS);
4464 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4465 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4466
4467 seg_setup(VCPU_SREG_DS);
4468 seg_setup(VCPU_SREG_ES);
4469 seg_setup(VCPU_SREG_FS);
4470 seg_setup(VCPU_SREG_GS);
4471 seg_setup(VCPU_SREG_SS);
4472
4473 vmcs_write16(GUEST_TR_SELECTOR, 0);
4474 vmcs_writel(GUEST_TR_BASE, 0);
4475 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4476 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4477
4478 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4479 vmcs_writel(GUEST_LDTR_BASE, 0);
4480 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4481 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4482
4483 vmcs_write32(GUEST_SYSENTER_CS, 0);
4484 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4485 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4486
4487 vmcs_writel(GUEST_RFLAGS, 0x02);
4488 kvm_rip_write(vcpu, 0xfff0);
4489
4490 vmcs_writel(GUEST_GDTR_BASE, 0);
4491 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4492
4493 vmcs_writel(GUEST_IDTR_BASE, 0);
4494 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4495
4496 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4497 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4498 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4499
4500 /* Special registers */
4501 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4502
4503 setup_msrs(vmx);
4504
4505 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4506
4507 if (cpu_has_vmx_tpr_shadow()) {
4508 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4509 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4510 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4511 __pa(vmx->vcpu.arch.apic->regs));
4512 vmcs_write32(TPR_THRESHOLD, 0);
4513 }
4514
4515 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4516
4517 if (vmx_vm_has_apicv(vcpu->kvm))
4518 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4519
4520 if (vmx->vpid != 0)
4521 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4522
4523 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4524 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4525 vmx_set_cr4(&vmx->vcpu, 0);
4526 vmx_set_efer(&vmx->vcpu, 0);
4527 vmx_fpu_activate(&vmx->vcpu);
4528 update_exception_bitmap(&vmx->vcpu);
4529
4530 vpid_sync_context(vmx);
4531 }
4532
4533 /*
4534 * In nested virtualization, check if L1 asked to exit on external interrupts.
4535 * For most existing hypervisors, this will always return true.
4536 */
4537 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4538 {
4539 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4540 PIN_BASED_EXT_INTR_MASK;
4541 }
4542
4543 /*
4544 * In nested virtualization, check if L1 has set
4545 * VM_EXIT_ACK_INTR_ON_EXIT
4546 */
4547 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4548 {
4549 return get_vmcs12(vcpu)->vm_exit_controls &
4550 VM_EXIT_ACK_INTR_ON_EXIT;
4551 }
4552
4553 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4554 {
4555 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4556 PIN_BASED_NMI_EXITING;
4557 }
4558
4559 static void enable_irq_window(struct kvm_vcpu *vcpu)
4560 {
4561 u32 cpu_based_vm_exec_control;
4562
4563 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4564 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4565 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4566 }
4567
4568 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4569 {
4570 u32 cpu_based_vm_exec_control;
4571
4572 if (!cpu_has_virtual_nmis() ||
4573 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4574 enable_irq_window(vcpu);
4575 return;
4576 }
4577
4578 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4579 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4580 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4581 }
4582
4583 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4584 {
4585 struct vcpu_vmx *vmx = to_vmx(vcpu);
4586 uint32_t intr;
4587 int irq = vcpu->arch.interrupt.nr;
4588
4589 trace_kvm_inj_virq(irq);
4590
4591 ++vcpu->stat.irq_injections;
4592 if (vmx->rmode.vm86_active) {
4593 int inc_eip = 0;
4594 if (vcpu->arch.interrupt.soft)
4595 inc_eip = vcpu->arch.event_exit_inst_len;
4596 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4597 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4598 return;
4599 }
4600 intr = irq | INTR_INFO_VALID_MASK;
4601 if (vcpu->arch.interrupt.soft) {
4602 intr |= INTR_TYPE_SOFT_INTR;
4603 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4604 vmx->vcpu.arch.event_exit_inst_len);
4605 } else
4606 intr |= INTR_TYPE_EXT_INTR;
4607 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4608 }
4609
4610 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4611 {
4612 struct vcpu_vmx *vmx = to_vmx(vcpu);
4613
4614 if (is_guest_mode(vcpu))
4615 return;
4616
4617 if (!cpu_has_virtual_nmis()) {
4618 /*
4619 * Tracking the NMI-blocked state in software is built upon
4620 * finding the next open IRQ window. This, in turn, depends on
4621 * well-behaving guests: They have to keep IRQs disabled at
4622 * least as long as the NMI handler runs. Otherwise we may
4623 * cause NMI nesting, maybe breaking the guest. But as this is
4624 * highly unlikely, we can live with the residual risk.
4625 */
4626 vmx->soft_vnmi_blocked = 1;
4627 vmx->vnmi_blocked_time = 0;
4628 }
4629
4630 ++vcpu->stat.nmi_injections;
4631 vmx->nmi_known_unmasked = false;
4632 if (vmx->rmode.vm86_active) {
4633 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4634 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4635 return;
4636 }
4637 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4638 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4639 }
4640
4641 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4642 {
4643 if (!cpu_has_virtual_nmis())
4644 return to_vmx(vcpu)->soft_vnmi_blocked;
4645 if (to_vmx(vcpu)->nmi_known_unmasked)
4646 return false;
4647 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4648 }
4649
4650 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4651 {
4652 struct vcpu_vmx *vmx = to_vmx(vcpu);
4653
4654 if (!cpu_has_virtual_nmis()) {
4655 if (vmx->soft_vnmi_blocked != masked) {
4656 vmx->soft_vnmi_blocked = masked;
4657 vmx->vnmi_blocked_time = 0;
4658 }
4659 } else {
4660 vmx->nmi_known_unmasked = !masked;
4661 if (masked)
4662 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4663 GUEST_INTR_STATE_NMI);
4664 else
4665 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4666 GUEST_INTR_STATE_NMI);
4667 }
4668 }
4669
4670 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4671 {
4672 if (to_vmx(vcpu)->nested.nested_run_pending)
4673 return 0;
4674
4675 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4676 return 0;
4677
4678 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4679 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4680 | GUEST_INTR_STATE_NMI));
4681 }
4682
4683 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4684 {
4685 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4686 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4687 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4688 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4689 }
4690
4691 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4692 {
4693 int ret;
4694 struct kvm_userspace_memory_region tss_mem = {
4695 .slot = TSS_PRIVATE_MEMSLOT,
4696 .guest_phys_addr = addr,
4697 .memory_size = PAGE_SIZE * 3,
4698 .flags = 0,
4699 };
4700
4701 ret = kvm_set_memory_region(kvm, &tss_mem);
4702 if (ret)
4703 return ret;
4704 kvm->arch.tss_addr = addr;
4705 return init_rmode_tss(kvm);
4706 }
4707
4708 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4709 {
4710 switch (vec) {
4711 case BP_VECTOR:
4712 /*
4713 * Update instruction length as we may reinject the exception
4714 * from user space while in guest debugging mode.
4715 */
4716 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4717 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4718 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4719 return false;
4720 /* fall through */
4721 case DB_VECTOR:
4722 if (vcpu->guest_debug &
4723 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4724 return false;
4725 /* fall through */
4726 case DE_VECTOR:
4727 case OF_VECTOR:
4728 case BR_VECTOR:
4729 case UD_VECTOR:
4730 case DF_VECTOR:
4731 case SS_VECTOR:
4732 case GP_VECTOR:
4733 case MF_VECTOR:
4734 return true;
4735 break;
4736 }
4737 return false;
4738 }
4739
4740 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4741 int vec, u32 err_code)
4742 {
4743 /*
4744 * Instruction with address size override prefix opcode 0x67
4745 * Cause the #SS fault with 0 error code in VM86 mode.
4746 */
4747 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4748 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4749 if (vcpu->arch.halt_request) {
4750 vcpu->arch.halt_request = 0;
4751 return kvm_emulate_halt(vcpu);
4752 }
4753 return 1;
4754 }
4755 return 0;
4756 }
4757
4758 /*
4759 * Forward all other exceptions that are valid in real mode.
4760 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4761 * the required debugging infrastructure rework.
4762 */
4763 kvm_queue_exception(vcpu, vec);
4764 return 1;
4765 }
4766
4767 /*
4768 * Trigger machine check on the host. We assume all the MSRs are already set up
4769 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4770 * We pass a fake environment to the machine check handler because we want
4771 * the guest to be always treated like user space, no matter what context
4772 * it used internally.
4773 */
4774 static void kvm_machine_check(void)
4775 {
4776 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4777 struct pt_regs regs = {
4778 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4779 .flags = X86_EFLAGS_IF,
4780 };
4781
4782 do_machine_check(&regs, 0);
4783 #endif
4784 }
4785
4786 static int handle_machine_check(struct kvm_vcpu *vcpu)
4787 {
4788 /* already handled by vcpu_run */
4789 return 1;
4790 }
4791
4792 static int handle_exception(struct kvm_vcpu *vcpu)
4793 {
4794 struct vcpu_vmx *vmx = to_vmx(vcpu);
4795 struct kvm_run *kvm_run = vcpu->run;
4796 u32 intr_info, ex_no, error_code;
4797 unsigned long cr2, rip, dr6;
4798 u32 vect_info;
4799 enum emulation_result er;
4800
4801 vect_info = vmx->idt_vectoring_info;
4802 intr_info = vmx->exit_intr_info;
4803
4804 if (is_machine_check(intr_info))
4805 return handle_machine_check(vcpu);
4806
4807 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4808 return 1; /* already handled by vmx_vcpu_run() */
4809
4810 if (is_no_device(intr_info)) {
4811 vmx_fpu_activate(vcpu);
4812 return 1;
4813 }
4814
4815 if (is_invalid_opcode(intr_info)) {
4816 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4817 if (er != EMULATE_DONE)
4818 kvm_queue_exception(vcpu, UD_VECTOR);
4819 return 1;
4820 }
4821
4822 error_code = 0;
4823 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4824 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4825
4826 /*
4827 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4828 * MMIO, it is better to report an internal error.
4829 * See the comments in vmx_handle_exit.
4830 */
4831 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4832 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4833 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4834 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4835 vcpu->run->internal.ndata = 2;
4836 vcpu->run->internal.data[0] = vect_info;
4837 vcpu->run->internal.data[1] = intr_info;
4838 return 0;
4839 }
4840
4841 if (is_page_fault(intr_info)) {
4842 /* EPT won't cause page fault directly */
4843 BUG_ON(enable_ept);
4844 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4845 trace_kvm_page_fault(cr2, error_code);
4846
4847 if (kvm_event_needs_reinjection(vcpu))
4848 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4849 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4850 }
4851
4852 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4853
4854 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4855 return handle_rmode_exception(vcpu, ex_no, error_code);
4856
4857 switch (ex_no) {
4858 case DB_VECTOR:
4859 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4860 if (!(vcpu->guest_debug &
4861 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4862 vcpu->arch.dr6 &= ~15;
4863 vcpu->arch.dr6 |= dr6 | DR6_RTM;
4864 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
4865 skip_emulated_instruction(vcpu);
4866
4867 kvm_queue_exception(vcpu, DB_VECTOR);
4868 return 1;
4869 }
4870 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4871 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4872 /* fall through */
4873 case BP_VECTOR:
4874 /*
4875 * Update instruction length as we may reinject #BP from
4876 * user space while in guest debugging mode. Reading it for
4877 * #DB as well causes no harm, it is not used in that case.
4878 */
4879 vmx->vcpu.arch.event_exit_inst_len =
4880 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4881 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4882 rip = kvm_rip_read(vcpu);
4883 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4884 kvm_run->debug.arch.exception = ex_no;
4885 break;
4886 default:
4887 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4888 kvm_run->ex.exception = ex_no;
4889 kvm_run->ex.error_code = error_code;
4890 break;
4891 }
4892 return 0;
4893 }
4894
4895 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4896 {
4897 ++vcpu->stat.irq_exits;
4898 return 1;
4899 }
4900
4901 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4902 {
4903 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4904 return 0;
4905 }
4906
4907 static int handle_io(struct kvm_vcpu *vcpu)
4908 {
4909 unsigned long exit_qualification;
4910 int size, in, string;
4911 unsigned port;
4912
4913 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4914 string = (exit_qualification & 16) != 0;
4915 in = (exit_qualification & 8) != 0;
4916
4917 ++vcpu->stat.io_exits;
4918
4919 if (string || in)
4920 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4921
4922 port = exit_qualification >> 16;
4923 size = (exit_qualification & 7) + 1;
4924 skip_emulated_instruction(vcpu);
4925
4926 return kvm_fast_pio_out(vcpu, size, port);
4927 }
4928
4929 static void
4930 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4931 {
4932 /*
4933 * Patch in the VMCALL instruction:
4934 */
4935 hypercall[0] = 0x0f;
4936 hypercall[1] = 0x01;
4937 hypercall[2] = 0xc1;
4938 }
4939
4940 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4941 {
4942 unsigned long always_on = VMXON_CR0_ALWAYSON;
4943
4944 if (nested_vmx_secondary_ctls_high &
4945 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4946 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4947 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4948 return (val & always_on) == always_on;
4949 }
4950
4951 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4952 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4953 {
4954 if (is_guest_mode(vcpu)) {
4955 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4956 unsigned long orig_val = val;
4957
4958 /*
4959 * We get here when L2 changed cr0 in a way that did not change
4960 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4961 * but did change L0 shadowed bits. So we first calculate the
4962 * effective cr0 value that L1 would like to write into the
4963 * hardware. It consists of the L2-owned bits from the new
4964 * value combined with the L1-owned bits from L1's guest_cr0.
4965 */
4966 val = (val & ~vmcs12->cr0_guest_host_mask) |
4967 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4968
4969 if (!nested_cr0_valid(vmcs12, val))
4970 return 1;
4971
4972 if (kvm_set_cr0(vcpu, val))
4973 return 1;
4974 vmcs_writel(CR0_READ_SHADOW, orig_val);
4975 return 0;
4976 } else {
4977 if (to_vmx(vcpu)->nested.vmxon &&
4978 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4979 return 1;
4980 return kvm_set_cr0(vcpu, val);
4981 }
4982 }
4983
4984 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4985 {
4986 if (is_guest_mode(vcpu)) {
4987 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4988 unsigned long orig_val = val;
4989
4990 /* analogously to handle_set_cr0 */
4991 val = (val & ~vmcs12->cr4_guest_host_mask) |
4992 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4993 if (kvm_set_cr4(vcpu, val))
4994 return 1;
4995 vmcs_writel(CR4_READ_SHADOW, orig_val);
4996 return 0;
4997 } else
4998 return kvm_set_cr4(vcpu, val);
4999 }
5000
5001 /* called to set cr0 as approriate for clts instruction exit. */
5002 static void handle_clts(struct kvm_vcpu *vcpu)
5003 {
5004 if (is_guest_mode(vcpu)) {
5005 /*
5006 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5007 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5008 * just pretend it's off (also in arch.cr0 for fpu_activate).
5009 */
5010 vmcs_writel(CR0_READ_SHADOW,
5011 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5012 vcpu->arch.cr0 &= ~X86_CR0_TS;
5013 } else
5014 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5015 }
5016
5017 static int handle_cr(struct kvm_vcpu *vcpu)
5018 {
5019 unsigned long exit_qualification, val;
5020 int cr;
5021 int reg;
5022 int err;
5023
5024 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5025 cr = exit_qualification & 15;
5026 reg = (exit_qualification >> 8) & 15;
5027 switch ((exit_qualification >> 4) & 3) {
5028 case 0: /* mov to cr */
5029 val = kvm_register_readl(vcpu, reg);
5030 trace_kvm_cr_write(cr, val);
5031 switch (cr) {
5032 case 0:
5033 err = handle_set_cr0(vcpu, val);
5034 kvm_complete_insn_gp(vcpu, err);
5035 return 1;
5036 case 3:
5037 err = kvm_set_cr3(vcpu, val);
5038 kvm_complete_insn_gp(vcpu, err);
5039 return 1;
5040 case 4:
5041 err = handle_set_cr4(vcpu, val);
5042 kvm_complete_insn_gp(vcpu, err);
5043 return 1;
5044 case 8: {
5045 u8 cr8_prev = kvm_get_cr8(vcpu);
5046 u8 cr8 = (u8)val;
5047 err = kvm_set_cr8(vcpu, cr8);
5048 kvm_complete_insn_gp(vcpu, err);
5049 if (irqchip_in_kernel(vcpu->kvm))
5050 return 1;
5051 if (cr8_prev <= cr8)
5052 return 1;
5053 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5054 return 0;
5055 }
5056 }
5057 break;
5058 case 2: /* clts */
5059 handle_clts(vcpu);
5060 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5061 skip_emulated_instruction(vcpu);
5062 vmx_fpu_activate(vcpu);
5063 return 1;
5064 case 1: /*mov from cr*/
5065 switch (cr) {
5066 case 3:
5067 val = kvm_read_cr3(vcpu);
5068 kvm_register_write(vcpu, reg, val);
5069 trace_kvm_cr_read(cr, val);
5070 skip_emulated_instruction(vcpu);
5071 return 1;
5072 case 8:
5073 val = kvm_get_cr8(vcpu);
5074 kvm_register_write(vcpu, reg, val);
5075 trace_kvm_cr_read(cr, val);
5076 skip_emulated_instruction(vcpu);
5077 return 1;
5078 }
5079 break;
5080 case 3: /* lmsw */
5081 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5082 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5083 kvm_lmsw(vcpu, val);
5084
5085 skip_emulated_instruction(vcpu);
5086 return 1;
5087 default:
5088 break;
5089 }
5090 vcpu->run->exit_reason = 0;
5091 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5092 (int)(exit_qualification >> 4) & 3, cr);
5093 return 0;
5094 }
5095
5096 static int handle_dr(struct kvm_vcpu *vcpu)
5097 {
5098 unsigned long exit_qualification;
5099 int dr, dr7, reg;
5100
5101 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5102 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5103
5104 /* First, if DR does not exist, trigger UD */
5105 if (!kvm_require_dr(vcpu, dr))
5106 return 1;
5107
5108 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5109 if (!kvm_require_cpl(vcpu, 0))
5110 return 1;
5111 dr7 = vmcs_readl(GUEST_DR7);
5112 if (dr7 & DR7_GD) {
5113 /*
5114 * As the vm-exit takes precedence over the debug trap, we
5115 * need to emulate the latter, either for the host or the
5116 * guest debugging itself.
5117 */
5118 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5119 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5120 vcpu->run->debug.arch.dr7 = dr7;
5121 vcpu->run->debug.arch.pc =
5122 vmcs_readl(GUEST_CS_BASE) +
5123 vmcs_readl(GUEST_RIP);
5124 vcpu->run->debug.arch.exception = DB_VECTOR;
5125 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5126 return 0;
5127 } else {
5128 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5129 kvm_queue_exception(vcpu, DB_VECTOR);
5130 return 1;
5131 }
5132 }
5133
5134 if (vcpu->guest_debug == 0) {
5135 u32 cpu_based_vm_exec_control;
5136
5137 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5138 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5139 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5140
5141 /*
5142 * No more DR vmexits; force a reload of the debug registers
5143 * and reenter on this instruction. The next vmexit will
5144 * retrieve the full state of the debug registers.
5145 */
5146 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5147 return 1;
5148 }
5149
5150 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5151 if (exit_qualification & TYPE_MOV_FROM_DR) {
5152 unsigned long val;
5153
5154 if (kvm_get_dr(vcpu, dr, &val))
5155 return 1;
5156 kvm_register_write(vcpu, reg, val);
5157 } else
5158 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5159 return 1;
5160
5161 skip_emulated_instruction(vcpu);
5162 return 1;
5163 }
5164
5165 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5166 {
5167 return vcpu->arch.dr6;
5168 }
5169
5170 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5171 {
5172 }
5173
5174 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5175 {
5176 u32 cpu_based_vm_exec_control;
5177
5178 get_debugreg(vcpu->arch.db[0], 0);
5179 get_debugreg(vcpu->arch.db[1], 1);
5180 get_debugreg(vcpu->arch.db[2], 2);
5181 get_debugreg(vcpu->arch.db[3], 3);
5182 get_debugreg(vcpu->arch.dr6, 6);
5183 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5184
5185 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5186
5187 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5188 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5189 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5190 }
5191
5192 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5193 {
5194 vmcs_writel(GUEST_DR7, val);
5195 }
5196
5197 static int handle_cpuid(struct kvm_vcpu *vcpu)
5198 {
5199 kvm_emulate_cpuid(vcpu);
5200 return 1;
5201 }
5202
5203 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5204 {
5205 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5206 u64 data;
5207
5208 if (vmx_get_msr(vcpu, ecx, &data)) {
5209 trace_kvm_msr_read_ex(ecx);
5210 kvm_inject_gp(vcpu, 0);
5211 return 1;
5212 }
5213
5214 trace_kvm_msr_read(ecx, data);
5215
5216 /* FIXME: handling of bits 32:63 of rax, rdx */
5217 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5218 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5219 skip_emulated_instruction(vcpu);
5220 return 1;
5221 }
5222
5223 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5224 {
5225 struct msr_data msr;
5226 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5227 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5228 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5229
5230 msr.data = data;
5231 msr.index = ecx;
5232 msr.host_initiated = false;
5233 if (kvm_set_msr(vcpu, &msr) != 0) {
5234 trace_kvm_msr_write_ex(ecx, data);
5235 kvm_inject_gp(vcpu, 0);
5236 return 1;
5237 }
5238
5239 trace_kvm_msr_write(ecx, data);
5240 skip_emulated_instruction(vcpu);
5241 return 1;
5242 }
5243
5244 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5245 {
5246 kvm_make_request(KVM_REQ_EVENT, vcpu);
5247 return 1;
5248 }
5249
5250 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5251 {
5252 u32 cpu_based_vm_exec_control;
5253
5254 /* clear pending irq */
5255 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5256 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5257 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5258
5259 kvm_make_request(KVM_REQ_EVENT, vcpu);
5260
5261 ++vcpu->stat.irq_window_exits;
5262
5263 /*
5264 * If the user space waits to inject interrupts, exit as soon as
5265 * possible
5266 */
5267 if (!irqchip_in_kernel(vcpu->kvm) &&
5268 vcpu->run->request_interrupt_window &&
5269 !kvm_cpu_has_interrupt(vcpu)) {
5270 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5271 return 0;
5272 }
5273 return 1;
5274 }
5275
5276 static int handle_halt(struct kvm_vcpu *vcpu)
5277 {
5278 skip_emulated_instruction(vcpu);
5279 return kvm_emulate_halt(vcpu);
5280 }
5281
5282 static int handle_vmcall(struct kvm_vcpu *vcpu)
5283 {
5284 skip_emulated_instruction(vcpu);
5285 kvm_emulate_hypercall(vcpu);
5286 return 1;
5287 }
5288
5289 static int handle_invd(struct kvm_vcpu *vcpu)
5290 {
5291 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5292 }
5293
5294 static int handle_invlpg(struct kvm_vcpu *vcpu)
5295 {
5296 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5297
5298 kvm_mmu_invlpg(vcpu, exit_qualification);
5299 skip_emulated_instruction(vcpu);
5300 return 1;
5301 }
5302
5303 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5304 {
5305 int err;
5306
5307 err = kvm_rdpmc(vcpu);
5308 kvm_complete_insn_gp(vcpu, err);
5309
5310 return 1;
5311 }
5312
5313 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5314 {
5315 skip_emulated_instruction(vcpu);
5316 kvm_emulate_wbinvd(vcpu);
5317 return 1;
5318 }
5319
5320 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5321 {
5322 u64 new_bv = kvm_read_edx_eax(vcpu);
5323 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5324
5325 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5326 skip_emulated_instruction(vcpu);
5327 return 1;
5328 }
5329
5330 static int handle_apic_access(struct kvm_vcpu *vcpu)
5331 {
5332 if (likely(fasteoi)) {
5333 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5334 int access_type, offset;
5335
5336 access_type = exit_qualification & APIC_ACCESS_TYPE;
5337 offset = exit_qualification & APIC_ACCESS_OFFSET;
5338 /*
5339 * Sane guest uses MOV to write EOI, with written value
5340 * not cared. So make a short-circuit here by avoiding
5341 * heavy instruction emulation.
5342 */
5343 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5344 (offset == APIC_EOI)) {
5345 kvm_lapic_set_eoi(vcpu);
5346 skip_emulated_instruction(vcpu);
5347 return 1;
5348 }
5349 }
5350 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5351 }
5352
5353 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5354 {
5355 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5356 int vector = exit_qualification & 0xff;
5357
5358 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5359 kvm_apic_set_eoi_accelerated(vcpu, vector);
5360 return 1;
5361 }
5362
5363 static int handle_apic_write(struct kvm_vcpu *vcpu)
5364 {
5365 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5366 u32 offset = exit_qualification & 0xfff;
5367
5368 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5369 kvm_apic_write_nodecode(vcpu, offset);
5370 return 1;
5371 }
5372
5373 static int handle_task_switch(struct kvm_vcpu *vcpu)
5374 {
5375 struct vcpu_vmx *vmx = to_vmx(vcpu);
5376 unsigned long exit_qualification;
5377 bool has_error_code = false;
5378 u32 error_code = 0;
5379 u16 tss_selector;
5380 int reason, type, idt_v, idt_index;
5381
5382 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5383 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5384 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5385
5386 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5387
5388 reason = (u32)exit_qualification >> 30;
5389 if (reason == TASK_SWITCH_GATE && idt_v) {
5390 switch (type) {
5391 case INTR_TYPE_NMI_INTR:
5392 vcpu->arch.nmi_injected = false;
5393 vmx_set_nmi_mask(vcpu, true);
5394 break;
5395 case INTR_TYPE_EXT_INTR:
5396 case INTR_TYPE_SOFT_INTR:
5397 kvm_clear_interrupt_queue(vcpu);
5398 break;
5399 case INTR_TYPE_HARD_EXCEPTION:
5400 if (vmx->idt_vectoring_info &
5401 VECTORING_INFO_DELIVER_CODE_MASK) {
5402 has_error_code = true;
5403 error_code =
5404 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5405 }
5406 /* fall through */
5407 case INTR_TYPE_SOFT_EXCEPTION:
5408 kvm_clear_exception_queue(vcpu);
5409 break;
5410 default:
5411 break;
5412 }
5413 }
5414 tss_selector = exit_qualification;
5415
5416 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5417 type != INTR_TYPE_EXT_INTR &&
5418 type != INTR_TYPE_NMI_INTR))
5419 skip_emulated_instruction(vcpu);
5420
5421 if (kvm_task_switch(vcpu, tss_selector,
5422 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5423 has_error_code, error_code) == EMULATE_FAIL) {
5424 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5425 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5426 vcpu->run->internal.ndata = 0;
5427 return 0;
5428 }
5429
5430 /* clear all local breakpoint enable flags */
5431 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x155);
5432
5433 /*
5434 * TODO: What about debug traps on tss switch?
5435 * Are we supposed to inject them and update dr6?
5436 */
5437
5438 return 1;
5439 }
5440
5441 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5442 {
5443 unsigned long exit_qualification;
5444 gpa_t gpa;
5445 u32 error_code;
5446 int gla_validity;
5447
5448 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5449
5450 gla_validity = (exit_qualification >> 7) & 0x3;
5451 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5452 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5453 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5454 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5455 vmcs_readl(GUEST_LINEAR_ADDRESS));
5456 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5457 (long unsigned int)exit_qualification);
5458 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5459 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5460 return 0;
5461 }
5462
5463 /*
5464 * EPT violation happened while executing iret from NMI,
5465 * "blocked by NMI" bit has to be set before next VM entry.
5466 * There are errata that may cause this bit to not be set:
5467 * AAK134, BY25.
5468 */
5469 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5470 cpu_has_virtual_nmis() &&
5471 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5472 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5473
5474 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5475 trace_kvm_page_fault(gpa, exit_qualification);
5476
5477 /* It is a write fault? */
5478 error_code = exit_qualification & (1U << 1);
5479 /* It is a fetch fault? */
5480 error_code |= (exit_qualification & (1U << 2)) << 2;
5481 /* ept page table is present? */
5482 error_code |= (exit_qualification >> 3) & 0x1;
5483
5484 vcpu->arch.exit_qualification = exit_qualification;
5485
5486 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5487 }
5488
5489 static u64 ept_rsvd_mask(u64 spte, int level)
5490 {
5491 int i;
5492 u64 mask = 0;
5493
5494 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5495 mask |= (1ULL << i);
5496
5497 if (level == 4)
5498 /* bits 7:3 reserved */
5499 mask |= 0xf8;
5500 else if (spte & (1ULL << 7))
5501 /*
5502 * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5503 * level == 1 if the hypervisor is using the ignored bit 7.
5504 */
5505 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5506 else if (level > 1)
5507 /* bits 6:3 reserved */
5508 mask |= 0x78;
5509
5510 return mask;
5511 }
5512
5513 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5514 int level)
5515 {
5516 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5517
5518 /* 010b (write-only) */
5519 WARN_ON((spte & 0x7) == 0x2);
5520
5521 /* 110b (write/execute) */
5522 WARN_ON((spte & 0x7) == 0x6);
5523
5524 /* 100b (execute-only) and value not supported by logical processor */
5525 if (!cpu_has_vmx_ept_execute_only())
5526 WARN_ON((spte & 0x7) == 0x4);
5527
5528 /* not 000b */
5529 if ((spte & 0x7)) {
5530 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5531
5532 if (rsvd_bits != 0) {
5533 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5534 __func__, rsvd_bits);
5535 WARN_ON(1);
5536 }
5537
5538 /* bits 5:3 are _not_ reserved for large page or leaf page */
5539 if ((rsvd_bits & 0x38) == 0) {
5540 u64 ept_mem_type = (spte & 0x38) >> 3;
5541
5542 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5543 ept_mem_type == 7) {
5544 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5545 __func__, ept_mem_type);
5546 WARN_ON(1);
5547 }
5548 }
5549 }
5550 }
5551
5552 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5553 {
5554 u64 sptes[4];
5555 int nr_sptes, i, ret;
5556 gpa_t gpa;
5557
5558 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5559 if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5560 skip_emulated_instruction(vcpu);
5561 return 1;
5562 }
5563
5564 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5565 if (likely(ret == RET_MMIO_PF_EMULATE))
5566 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5567 EMULATE_DONE;
5568
5569 if (unlikely(ret == RET_MMIO_PF_INVALID))
5570 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5571
5572 if (unlikely(ret == RET_MMIO_PF_RETRY))
5573 return 1;
5574
5575 /* It is the real ept misconfig */
5576 printk(KERN_ERR "EPT: Misconfiguration.\n");
5577 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5578
5579 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5580
5581 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5582 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5583
5584 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5585 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5586
5587 return 0;
5588 }
5589
5590 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5591 {
5592 u32 cpu_based_vm_exec_control;
5593
5594 /* clear pending NMI */
5595 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5596 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5597 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5598 ++vcpu->stat.nmi_window_exits;
5599 kvm_make_request(KVM_REQ_EVENT, vcpu);
5600
5601 return 1;
5602 }
5603
5604 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5605 {
5606 struct vcpu_vmx *vmx = to_vmx(vcpu);
5607 enum emulation_result err = EMULATE_DONE;
5608 int ret = 1;
5609 u32 cpu_exec_ctrl;
5610 bool intr_window_requested;
5611 unsigned count = 130;
5612
5613 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5614 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5615
5616 while (vmx->emulation_required && count-- != 0) {
5617 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5618 return handle_interrupt_window(&vmx->vcpu);
5619
5620 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5621 return 1;
5622
5623 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5624
5625 if (err == EMULATE_USER_EXIT) {
5626 ++vcpu->stat.mmio_exits;
5627 ret = 0;
5628 goto out;
5629 }
5630
5631 if (err != EMULATE_DONE) {
5632 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5633 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5634 vcpu->run->internal.ndata = 0;
5635 return 0;
5636 }
5637
5638 if (vcpu->arch.halt_request) {
5639 vcpu->arch.halt_request = 0;
5640 ret = kvm_emulate_halt(vcpu);
5641 goto out;
5642 }
5643
5644 if (signal_pending(current))
5645 goto out;
5646 if (need_resched())
5647 schedule();
5648 }
5649
5650 out:
5651 return ret;
5652 }
5653
5654 static int __grow_ple_window(int val)
5655 {
5656 if (ple_window_grow < 1)
5657 return ple_window;
5658
5659 val = min(val, ple_window_actual_max);
5660
5661 if (ple_window_grow < ple_window)
5662 val *= ple_window_grow;
5663 else
5664 val += ple_window_grow;
5665
5666 return val;
5667 }
5668
5669 static int __shrink_ple_window(int val, int modifier, int minimum)
5670 {
5671 if (modifier < 1)
5672 return ple_window;
5673
5674 if (modifier < ple_window)
5675 val /= modifier;
5676 else
5677 val -= modifier;
5678
5679 return max(val, minimum);
5680 }
5681
5682 static void grow_ple_window(struct kvm_vcpu *vcpu)
5683 {
5684 struct vcpu_vmx *vmx = to_vmx(vcpu);
5685 int old = vmx->ple_window;
5686
5687 vmx->ple_window = __grow_ple_window(old);
5688
5689 if (vmx->ple_window != old)
5690 vmx->ple_window_dirty = true;
5691
5692 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5693 }
5694
5695 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5696 {
5697 struct vcpu_vmx *vmx = to_vmx(vcpu);
5698 int old = vmx->ple_window;
5699
5700 vmx->ple_window = __shrink_ple_window(old,
5701 ple_window_shrink, ple_window);
5702
5703 if (vmx->ple_window != old)
5704 vmx->ple_window_dirty = true;
5705
5706 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5707 }
5708
5709 /*
5710 * ple_window_actual_max is computed to be one grow_ple_window() below
5711 * ple_window_max. (See __grow_ple_window for the reason.)
5712 * This prevents overflows, because ple_window_max is int.
5713 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5714 * this process.
5715 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5716 */
5717 static void update_ple_window_actual_max(void)
5718 {
5719 ple_window_actual_max =
5720 __shrink_ple_window(max(ple_window_max, ple_window),
5721 ple_window_grow, INT_MIN);
5722 }
5723
5724 static __init int hardware_setup(void)
5725 {
5726 int r = -ENOMEM, i, msr;
5727
5728 rdmsrl_safe(MSR_EFER, &host_efer);
5729
5730 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
5731 kvm_define_shared_msr(i, vmx_msr_index[i]);
5732
5733 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
5734 if (!vmx_io_bitmap_a)
5735 return r;
5736
5737 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
5738 if (!vmx_io_bitmap_b)
5739 goto out;
5740
5741 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
5742 if (!vmx_msr_bitmap_legacy)
5743 goto out1;
5744
5745 vmx_msr_bitmap_legacy_x2apic =
5746 (unsigned long *)__get_free_page(GFP_KERNEL);
5747 if (!vmx_msr_bitmap_legacy_x2apic)
5748 goto out2;
5749
5750 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
5751 if (!vmx_msr_bitmap_longmode)
5752 goto out3;
5753
5754 vmx_msr_bitmap_longmode_x2apic =
5755 (unsigned long *)__get_free_page(GFP_KERNEL);
5756 if (!vmx_msr_bitmap_longmode_x2apic)
5757 goto out4;
5758 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5759 if (!vmx_vmread_bitmap)
5760 goto out5;
5761
5762 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5763 if (!vmx_vmwrite_bitmap)
5764 goto out6;
5765
5766 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
5767 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
5768
5769 /*
5770 * Allow direct access to the PC debug port (it is often used for I/O
5771 * delays, but the vmexits simply slow things down).
5772 */
5773 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
5774 clear_bit(0x80, vmx_io_bitmap_a);
5775
5776 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
5777
5778 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
5779 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
5780
5781 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
5782 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
5783 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
5784 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
5785 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
5786 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
5787 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
5788
5789 memcpy(vmx_msr_bitmap_legacy_x2apic,
5790 vmx_msr_bitmap_legacy, PAGE_SIZE);
5791 memcpy(vmx_msr_bitmap_longmode_x2apic,
5792 vmx_msr_bitmap_longmode, PAGE_SIZE);
5793
5794 if (enable_apicv) {
5795 for (msr = 0x800; msr <= 0x8ff; msr++)
5796 vmx_disable_intercept_msr_read_x2apic(msr);
5797
5798 /* According SDM, in x2apic mode, the whole id reg is used.
5799 * But in KVM, it only use the highest eight bits. Need to
5800 * intercept it */
5801 vmx_enable_intercept_msr_read_x2apic(0x802);
5802 /* TMCCT */
5803 vmx_enable_intercept_msr_read_x2apic(0x839);
5804 /* TPR */
5805 vmx_disable_intercept_msr_write_x2apic(0x808);
5806 /* EOI */
5807 vmx_disable_intercept_msr_write_x2apic(0x80b);
5808 /* SELF-IPI */
5809 vmx_disable_intercept_msr_write_x2apic(0x83f);
5810 }
5811
5812 if (enable_ept) {
5813 kvm_mmu_set_mask_ptes(0ull,
5814 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
5815 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
5816 0ull, VMX_EPT_EXECUTABLE_MASK);
5817 ept_set_mmio_spte_mask();
5818 kvm_enable_tdp();
5819 } else
5820 kvm_disable_tdp();
5821
5822 update_ple_window_actual_max();
5823
5824 if (setup_vmcs_config(&vmcs_config) < 0) {
5825 r = -EIO;
5826 goto out7;
5827 }
5828
5829 if (boot_cpu_has(X86_FEATURE_NX))
5830 kvm_enable_efer_bits(EFER_NX);
5831
5832 if (!cpu_has_vmx_vpid())
5833 enable_vpid = 0;
5834 if (!cpu_has_vmx_shadow_vmcs())
5835 enable_shadow_vmcs = 0;
5836 if (enable_shadow_vmcs)
5837 init_vmcs_shadow_fields();
5838
5839 if (!cpu_has_vmx_ept() ||
5840 !cpu_has_vmx_ept_4levels()) {
5841 enable_ept = 0;
5842 enable_unrestricted_guest = 0;
5843 enable_ept_ad_bits = 0;
5844 }
5845
5846 if (!cpu_has_vmx_ept_ad_bits())
5847 enable_ept_ad_bits = 0;
5848
5849 if (!cpu_has_vmx_unrestricted_guest())
5850 enable_unrestricted_guest = 0;
5851
5852 if (!cpu_has_vmx_flexpriority()) {
5853 flexpriority_enabled = 0;
5854
5855 /*
5856 * set_apic_access_page_addr() is used to reload apic access
5857 * page upon invalidation. No need to do anything if the
5858 * processor does not have the APIC_ACCESS_ADDR VMCS field.
5859 */
5860 kvm_x86_ops->set_apic_access_page_addr = NULL;
5861 }
5862
5863 if (!cpu_has_vmx_tpr_shadow())
5864 kvm_x86_ops->update_cr8_intercept = NULL;
5865
5866 if (enable_ept && !cpu_has_vmx_ept_2m_page())
5867 kvm_disable_largepages();
5868
5869 if (!cpu_has_vmx_ple())
5870 ple_gap = 0;
5871
5872 if (!cpu_has_vmx_apicv())
5873 enable_apicv = 0;
5874
5875 if (enable_apicv)
5876 kvm_x86_ops->update_cr8_intercept = NULL;
5877 else {
5878 kvm_x86_ops->hwapic_irr_update = NULL;
5879 kvm_x86_ops->deliver_posted_interrupt = NULL;
5880 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
5881 }
5882
5883 if (nested)
5884 nested_vmx_setup_ctls_msrs();
5885
5886 return alloc_kvm_area();
5887
5888 out7:
5889 free_page((unsigned long)vmx_vmwrite_bitmap);
5890 out6:
5891 free_page((unsigned long)vmx_vmread_bitmap);
5892 out5:
5893 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5894 out4:
5895 free_page((unsigned long)vmx_msr_bitmap_longmode);
5896 out3:
5897 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
5898 out2:
5899 free_page((unsigned long)vmx_msr_bitmap_legacy);
5900 out1:
5901 free_page((unsigned long)vmx_io_bitmap_b);
5902 out:
5903 free_page((unsigned long)vmx_io_bitmap_a);
5904
5905 return r;
5906 }
5907
5908 static __exit void hardware_unsetup(void)
5909 {
5910 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
5911 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5912 free_page((unsigned long)vmx_msr_bitmap_legacy);
5913 free_page((unsigned long)vmx_msr_bitmap_longmode);
5914 free_page((unsigned long)vmx_io_bitmap_b);
5915 free_page((unsigned long)vmx_io_bitmap_a);
5916 free_page((unsigned long)vmx_vmwrite_bitmap);
5917 free_page((unsigned long)vmx_vmread_bitmap);
5918
5919 free_kvm_area();
5920 }
5921
5922 /*
5923 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5924 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5925 */
5926 static int handle_pause(struct kvm_vcpu *vcpu)
5927 {
5928 if (ple_gap)
5929 grow_ple_window(vcpu);
5930
5931 skip_emulated_instruction(vcpu);
5932 kvm_vcpu_on_spin(vcpu);
5933
5934 return 1;
5935 }
5936
5937 static int handle_nop(struct kvm_vcpu *vcpu)
5938 {
5939 skip_emulated_instruction(vcpu);
5940 return 1;
5941 }
5942
5943 static int handle_mwait(struct kvm_vcpu *vcpu)
5944 {
5945 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5946 return handle_nop(vcpu);
5947 }
5948
5949 static int handle_monitor(struct kvm_vcpu *vcpu)
5950 {
5951 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5952 return handle_nop(vcpu);
5953 }
5954
5955 /*
5956 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5957 * We could reuse a single VMCS for all the L2 guests, but we also want the
5958 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5959 * allows keeping them loaded on the processor, and in the future will allow
5960 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5961 * every entry if they never change.
5962 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5963 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5964 *
5965 * The following functions allocate and free a vmcs02 in this pool.
5966 */
5967
5968 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5969 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5970 {
5971 struct vmcs02_list *item;
5972 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5973 if (item->vmptr == vmx->nested.current_vmptr) {
5974 list_move(&item->list, &vmx->nested.vmcs02_pool);
5975 return &item->vmcs02;
5976 }
5977
5978 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5979 /* Recycle the least recently used VMCS. */
5980 item = list_entry(vmx->nested.vmcs02_pool.prev,
5981 struct vmcs02_list, list);
5982 item->vmptr = vmx->nested.current_vmptr;
5983 list_move(&item->list, &vmx->nested.vmcs02_pool);
5984 return &item->vmcs02;
5985 }
5986
5987 /* Create a new VMCS */
5988 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5989 if (!item)
5990 return NULL;
5991 item->vmcs02.vmcs = alloc_vmcs();
5992 if (!item->vmcs02.vmcs) {
5993 kfree(item);
5994 return NULL;
5995 }
5996 loaded_vmcs_init(&item->vmcs02);
5997 item->vmptr = vmx->nested.current_vmptr;
5998 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5999 vmx->nested.vmcs02_num++;
6000 return &item->vmcs02;
6001 }
6002
6003 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6004 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6005 {
6006 struct vmcs02_list *item;
6007 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6008 if (item->vmptr == vmptr) {
6009 free_loaded_vmcs(&item->vmcs02);
6010 list_del(&item->list);
6011 kfree(item);
6012 vmx->nested.vmcs02_num--;
6013 return;
6014 }
6015 }
6016
6017 /*
6018 * Free all VMCSs saved for this vcpu, except the one pointed by
6019 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6020 * must be &vmx->vmcs01.
6021 */
6022 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6023 {
6024 struct vmcs02_list *item, *n;
6025
6026 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6027 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6028 /*
6029 * Something will leak if the above WARN triggers. Better than
6030 * a use-after-free.
6031 */
6032 if (vmx->loaded_vmcs == &item->vmcs02)
6033 continue;
6034
6035 free_loaded_vmcs(&item->vmcs02);
6036 list_del(&item->list);
6037 kfree(item);
6038 vmx->nested.vmcs02_num--;
6039 }
6040 }
6041
6042 /*
6043 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6044 * set the success or error code of an emulated VMX instruction, as specified
6045 * by Vol 2B, VMX Instruction Reference, "Conventions".
6046 */
6047 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6048 {
6049 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6050 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6051 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6052 }
6053
6054 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6055 {
6056 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6057 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6058 X86_EFLAGS_SF | X86_EFLAGS_OF))
6059 | X86_EFLAGS_CF);
6060 }
6061
6062 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6063 u32 vm_instruction_error)
6064 {
6065 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6066 /*
6067 * failValid writes the error number to the current VMCS, which
6068 * can't be done there isn't a current VMCS.
6069 */
6070 nested_vmx_failInvalid(vcpu);
6071 return;
6072 }
6073 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6074 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6075 X86_EFLAGS_SF | X86_EFLAGS_OF))
6076 | X86_EFLAGS_ZF);
6077 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6078 /*
6079 * We don't need to force a shadow sync because
6080 * VM_INSTRUCTION_ERROR is not shadowed
6081 */
6082 }
6083
6084 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6085 {
6086 struct vcpu_vmx *vmx =
6087 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6088
6089 vmx->nested.preemption_timer_expired = true;
6090 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6091 kvm_vcpu_kick(&vmx->vcpu);
6092
6093 return HRTIMER_NORESTART;
6094 }
6095
6096 /*
6097 * Decode the memory-address operand of a vmx instruction, as recorded on an
6098 * exit caused by such an instruction (run by a guest hypervisor).
6099 * On success, returns 0. When the operand is invalid, returns 1 and throws
6100 * #UD or #GP.
6101 */
6102 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6103 unsigned long exit_qualification,
6104 u32 vmx_instruction_info, gva_t *ret)
6105 {
6106 /*
6107 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6108 * Execution", on an exit, vmx_instruction_info holds most of the
6109 * addressing components of the operand. Only the displacement part
6110 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6111 * For how an actual address is calculated from all these components,
6112 * refer to Vol. 1, "Operand Addressing".
6113 */
6114 int scaling = vmx_instruction_info & 3;
6115 int addr_size = (vmx_instruction_info >> 7) & 7;
6116 bool is_reg = vmx_instruction_info & (1u << 10);
6117 int seg_reg = (vmx_instruction_info >> 15) & 7;
6118 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6119 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6120 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6121 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6122
6123 if (is_reg) {
6124 kvm_queue_exception(vcpu, UD_VECTOR);
6125 return 1;
6126 }
6127
6128 /* Addr = segment_base + offset */
6129 /* offset = base + [index * scale] + displacement */
6130 *ret = vmx_get_segment_base(vcpu, seg_reg);
6131 if (base_is_valid)
6132 *ret += kvm_register_read(vcpu, base_reg);
6133 if (index_is_valid)
6134 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
6135 *ret += exit_qualification; /* holds the displacement */
6136
6137 if (addr_size == 1) /* 32 bit */
6138 *ret &= 0xffffffff;
6139
6140 /*
6141 * TODO: throw #GP (and return 1) in various cases that the VM*
6142 * instructions require it - e.g., offset beyond segment limit,
6143 * unusable or unreadable/unwritable segment, non-canonical 64-bit
6144 * address, and so on. Currently these are not checked.
6145 */
6146 return 0;
6147 }
6148
6149 /*
6150 * This function performs the various checks including
6151 * - if it's 4KB aligned
6152 * - No bits beyond the physical address width are set
6153 * - Returns 0 on success or else 1
6154 * (Intel SDM Section 30.3)
6155 */
6156 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6157 gpa_t *vmpointer)
6158 {
6159 gva_t gva;
6160 gpa_t vmptr;
6161 struct x86_exception e;
6162 struct page *page;
6163 struct vcpu_vmx *vmx = to_vmx(vcpu);
6164 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6165
6166 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6167 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6168 return 1;
6169
6170 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6171 sizeof(vmptr), &e)) {
6172 kvm_inject_page_fault(vcpu, &e);
6173 return 1;
6174 }
6175
6176 switch (exit_reason) {
6177 case EXIT_REASON_VMON:
6178 /*
6179 * SDM 3: 24.11.5
6180 * The first 4 bytes of VMXON region contain the supported
6181 * VMCS revision identifier
6182 *
6183 * Note - IA32_VMX_BASIC[48] will never be 1
6184 * for the nested case;
6185 * which replaces physical address width with 32
6186 *
6187 */
6188 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6189 nested_vmx_failInvalid(vcpu);
6190 skip_emulated_instruction(vcpu);
6191 return 1;
6192 }
6193
6194 page = nested_get_page(vcpu, vmptr);
6195 if (page == NULL ||
6196 *(u32 *)kmap(page) != VMCS12_REVISION) {
6197 nested_vmx_failInvalid(vcpu);
6198 kunmap(page);
6199 skip_emulated_instruction(vcpu);
6200 return 1;
6201 }
6202 kunmap(page);
6203 vmx->nested.vmxon_ptr = vmptr;
6204 break;
6205 case EXIT_REASON_VMCLEAR:
6206 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6207 nested_vmx_failValid(vcpu,
6208 VMXERR_VMCLEAR_INVALID_ADDRESS);
6209 skip_emulated_instruction(vcpu);
6210 return 1;
6211 }
6212
6213 if (vmptr == vmx->nested.vmxon_ptr) {
6214 nested_vmx_failValid(vcpu,
6215 VMXERR_VMCLEAR_VMXON_POINTER);
6216 skip_emulated_instruction(vcpu);
6217 return 1;
6218 }
6219 break;
6220 case EXIT_REASON_VMPTRLD:
6221 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6222 nested_vmx_failValid(vcpu,
6223 VMXERR_VMPTRLD_INVALID_ADDRESS);
6224 skip_emulated_instruction(vcpu);
6225 return 1;
6226 }
6227
6228 if (vmptr == vmx->nested.vmxon_ptr) {
6229 nested_vmx_failValid(vcpu,
6230 VMXERR_VMCLEAR_VMXON_POINTER);
6231 skip_emulated_instruction(vcpu);
6232 return 1;
6233 }
6234 break;
6235 default:
6236 return 1; /* shouldn't happen */
6237 }
6238
6239 if (vmpointer)
6240 *vmpointer = vmptr;
6241 return 0;
6242 }
6243
6244 /*
6245 * Emulate the VMXON instruction.
6246 * Currently, we just remember that VMX is active, and do not save or even
6247 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6248 * do not currently need to store anything in that guest-allocated memory
6249 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6250 * argument is different from the VMXON pointer (which the spec says they do).
6251 */
6252 static int handle_vmon(struct kvm_vcpu *vcpu)
6253 {
6254 struct kvm_segment cs;
6255 struct vcpu_vmx *vmx = to_vmx(vcpu);
6256 struct vmcs *shadow_vmcs;
6257 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6258 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6259
6260 /* The Intel VMX Instruction Reference lists a bunch of bits that
6261 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6262 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6263 * Otherwise, we should fail with #UD. We test these now:
6264 */
6265 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6266 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6267 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6268 kvm_queue_exception(vcpu, UD_VECTOR);
6269 return 1;
6270 }
6271
6272 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6273 if (is_long_mode(vcpu) && !cs.l) {
6274 kvm_queue_exception(vcpu, UD_VECTOR);
6275 return 1;
6276 }
6277
6278 if (vmx_get_cpl(vcpu)) {
6279 kvm_inject_gp(vcpu, 0);
6280 return 1;
6281 }
6282
6283 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6284 return 1;
6285
6286 if (vmx->nested.vmxon) {
6287 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6288 skip_emulated_instruction(vcpu);
6289 return 1;
6290 }
6291
6292 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6293 != VMXON_NEEDED_FEATURES) {
6294 kvm_inject_gp(vcpu, 0);
6295 return 1;
6296 }
6297
6298 if (enable_shadow_vmcs) {
6299 shadow_vmcs = alloc_vmcs();
6300 if (!shadow_vmcs)
6301 return -ENOMEM;
6302 /* mark vmcs as shadow */
6303 shadow_vmcs->revision_id |= (1u << 31);
6304 /* init shadow vmcs */
6305 vmcs_clear(shadow_vmcs);
6306 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6307 }
6308
6309 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6310 vmx->nested.vmcs02_num = 0;
6311
6312 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6313 HRTIMER_MODE_REL);
6314 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6315
6316 vmx->nested.vmxon = true;
6317
6318 skip_emulated_instruction(vcpu);
6319 nested_vmx_succeed(vcpu);
6320 return 1;
6321 }
6322
6323 /*
6324 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6325 * for running VMX instructions (except VMXON, whose prerequisites are
6326 * slightly different). It also specifies what exception to inject otherwise.
6327 */
6328 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6329 {
6330 struct kvm_segment cs;
6331 struct vcpu_vmx *vmx = to_vmx(vcpu);
6332
6333 if (!vmx->nested.vmxon) {
6334 kvm_queue_exception(vcpu, UD_VECTOR);
6335 return 0;
6336 }
6337
6338 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6339 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6340 (is_long_mode(vcpu) && !cs.l)) {
6341 kvm_queue_exception(vcpu, UD_VECTOR);
6342 return 0;
6343 }
6344
6345 if (vmx_get_cpl(vcpu)) {
6346 kvm_inject_gp(vcpu, 0);
6347 return 0;
6348 }
6349
6350 return 1;
6351 }
6352
6353 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6354 {
6355 u32 exec_control;
6356 if (vmx->nested.current_vmptr == -1ull)
6357 return;
6358
6359 /* current_vmptr and current_vmcs12 are always set/reset together */
6360 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6361 return;
6362
6363 if (enable_shadow_vmcs) {
6364 /* copy to memory all shadowed fields in case
6365 they were modified */
6366 copy_shadow_to_vmcs12(vmx);
6367 vmx->nested.sync_shadow_vmcs = false;
6368 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6369 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6370 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6371 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6372 }
6373 kunmap(vmx->nested.current_vmcs12_page);
6374 nested_release_page(vmx->nested.current_vmcs12_page);
6375 vmx->nested.current_vmptr = -1ull;
6376 vmx->nested.current_vmcs12 = NULL;
6377 }
6378
6379 /*
6380 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6381 * just stops using VMX.
6382 */
6383 static void free_nested(struct vcpu_vmx *vmx)
6384 {
6385 if (!vmx->nested.vmxon)
6386 return;
6387
6388 vmx->nested.vmxon = false;
6389 nested_release_vmcs12(vmx);
6390 if (enable_shadow_vmcs)
6391 free_vmcs(vmx->nested.current_shadow_vmcs);
6392 /* Unpin physical memory we referred to in current vmcs02 */
6393 if (vmx->nested.apic_access_page) {
6394 nested_release_page(vmx->nested.apic_access_page);
6395 vmx->nested.apic_access_page = NULL;
6396 }
6397 if (vmx->nested.virtual_apic_page) {
6398 nested_release_page(vmx->nested.virtual_apic_page);
6399 vmx->nested.virtual_apic_page = NULL;
6400 }
6401
6402 nested_free_all_saved_vmcss(vmx);
6403 }
6404
6405 /* Emulate the VMXOFF instruction */
6406 static int handle_vmoff(struct kvm_vcpu *vcpu)
6407 {
6408 if (!nested_vmx_check_permission(vcpu))
6409 return 1;
6410 free_nested(to_vmx(vcpu));
6411 skip_emulated_instruction(vcpu);
6412 nested_vmx_succeed(vcpu);
6413 return 1;
6414 }
6415
6416 /* Emulate the VMCLEAR instruction */
6417 static int handle_vmclear(struct kvm_vcpu *vcpu)
6418 {
6419 struct vcpu_vmx *vmx = to_vmx(vcpu);
6420 gpa_t vmptr;
6421 struct vmcs12 *vmcs12;
6422 struct page *page;
6423
6424 if (!nested_vmx_check_permission(vcpu))
6425 return 1;
6426
6427 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6428 return 1;
6429
6430 if (vmptr == vmx->nested.current_vmptr)
6431 nested_release_vmcs12(vmx);
6432
6433 page = nested_get_page(vcpu, vmptr);
6434 if (page == NULL) {
6435 /*
6436 * For accurate processor emulation, VMCLEAR beyond available
6437 * physical memory should do nothing at all. However, it is
6438 * possible that a nested vmx bug, not a guest hypervisor bug,
6439 * resulted in this case, so let's shut down before doing any
6440 * more damage:
6441 */
6442 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6443 return 1;
6444 }
6445 vmcs12 = kmap(page);
6446 vmcs12->launch_state = 0;
6447 kunmap(page);
6448 nested_release_page(page);
6449
6450 nested_free_vmcs02(vmx, vmptr);
6451
6452 skip_emulated_instruction(vcpu);
6453 nested_vmx_succeed(vcpu);
6454 return 1;
6455 }
6456
6457 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6458
6459 /* Emulate the VMLAUNCH instruction */
6460 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6461 {
6462 return nested_vmx_run(vcpu, true);
6463 }
6464
6465 /* Emulate the VMRESUME instruction */
6466 static int handle_vmresume(struct kvm_vcpu *vcpu)
6467 {
6468
6469 return nested_vmx_run(vcpu, false);
6470 }
6471
6472 enum vmcs_field_type {
6473 VMCS_FIELD_TYPE_U16 = 0,
6474 VMCS_FIELD_TYPE_U64 = 1,
6475 VMCS_FIELD_TYPE_U32 = 2,
6476 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6477 };
6478
6479 static inline int vmcs_field_type(unsigned long field)
6480 {
6481 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6482 return VMCS_FIELD_TYPE_U32;
6483 return (field >> 13) & 0x3 ;
6484 }
6485
6486 static inline int vmcs_field_readonly(unsigned long field)
6487 {
6488 return (((field >> 10) & 0x3) == 1);
6489 }
6490
6491 /*
6492 * Read a vmcs12 field. Since these can have varying lengths and we return
6493 * one type, we chose the biggest type (u64) and zero-extend the return value
6494 * to that size. Note that the caller, handle_vmread, might need to use only
6495 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6496 * 64-bit fields are to be returned).
6497 */
6498 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6499 unsigned long field, u64 *ret)
6500 {
6501 short offset = vmcs_field_to_offset(field);
6502 char *p;
6503
6504 if (offset < 0)
6505 return offset;
6506
6507 p = ((char *)(get_vmcs12(vcpu))) + offset;
6508
6509 switch (vmcs_field_type(field)) {
6510 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6511 *ret = *((natural_width *)p);
6512 return 0;
6513 case VMCS_FIELD_TYPE_U16:
6514 *ret = *((u16 *)p);
6515 return 0;
6516 case VMCS_FIELD_TYPE_U32:
6517 *ret = *((u32 *)p);
6518 return 0;
6519 case VMCS_FIELD_TYPE_U64:
6520 *ret = *((u64 *)p);
6521 return 0;
6522 default:
6523 WARN_ON(1);
6524 return -ENOENT;
6525 }
6526 }
6527
6528
6529 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6530 unsigned long field, u64 field_value){
6531 short offset = vmcs_field_to_offset(field);
6532 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6533 if (offset < 0)
6534 return offset;
6535
6536 switch (vmcs_field_type(field)) {
6537 case VMCS_FIELD_TYPE_U16:
6538 *(u16 *)p = field_value;
6539 return 0;
6540 case VMCS_FIELD_TYPE_U32:
6541 *(u32 *)p = field_value;
6542 return 0;
6543 case VMCS_FIELD_TYPE_U64:
6544 *(u64 *)p = field_value;
6545 return 0;
6546 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6547 *(natural_width *)p = field_value;
6548 return 0;
6549 default:
6550 WARN_ON(1);
6551 return -ENOENT;
6552 }
6553
6554 }
6555
6556 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6557 {
6558 int i;
6559 unsigned long field;
6560 u64 field_value;
6561 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6562 const unsigned long *fields = shadow_read_write_fields;
6563 const int num_fields = max_shadow_read_write_fields;
6564
6565 preempt_disable();
6566
6567 vmcs_load(shadow_vmcs);
6568
6569 for (i = 0; i < num_fields; i++) {
6570 field = fields[i];
6571 switch (vmcs_field_type(field)) {
6572 case VMCS_FIELD_TYPE_U16:
6573 field_value = vmcs_read16(field);
6574 break;
6575 case VMCS_FIELD_TYPE_U32:
6576 field_value = vmcs_read32(field);
6577 break;
6578 case VMCS_FIELD_TYPE_U64:
6579 field_value = vmcs_read64(field);
6580 break;
6581 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6582 field_value = vmcs_readl(field);
6583 break;
6584 default:
6585 WARN_ON(1);
6586 continue;
6587 }
6588 vmcs12_write_any(&vmx->vcpu, field, field_value);
6589 }
6590
6591 vmcs_clear(shadow_vmcs);
6592 vmcs_load(vmx->loaded_vmcs->vmcs);
6593
6594 preempt_enable();
6595 }
6596
6597 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6598 {
6599 const unsigned long *fields[] = {
6600 shadow_read_write_fields,
6601 shadow_read_only_fields
6602 };
6603 const int max_fields[] = {
6604 max_shadow_read_write_fields,
6605 max_shadow_read_only_fields
6606 };
6607 int i, q;
6608 unsigned long field;
6609 u64 field_value = 0;
6610 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6611
6612 vmcs_load(shadow_vmcs);
6613
6614 for (q = 0; q < ARRAY_SIZE(fields); q++) {
6615 for (i = 0; i < max_fields[q]; i++) {
6616 field = fields[q][i];
6617 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6618
6619 switch (vmcs_field_type(field)) {
6620 case VMCS_FIELD_TYPE_U16:
6621 vmcs_write16(field, (u16)field_value);
6622 break;
6623 case VMCS_FIELD_TYPE_U32:
6624 vmcs_write32(field, (u32)field_value);
6625 break;
6626 case VMCS_FIELD_TYPE_U64:
6627 vmcs_write64(field, (u64)field_value);
6628 break;
6629 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6630 vmcs_writel(field, (long)field_value);
6631 break;
6632 default:
6633 WARN_ON(1);
6634 break;
6635 }
6636 }
6637 }
6638
6639 vmcs_clear(shadow_vmcs);
6640 vmcs_load(vmx->loaded_vmcs->vmcs);
6641 }
6642
6643 /*
6644 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6645 * used before) all generate the same failure when it is missing.
6646 */
6647 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6648 {
6649 struct vcpu_vmx *vmx = to_vmx(vcpu);
6650 if (vmx->nested.current_vmptr == -1ull) {
6651 nested_vmx_failInvalid(vcpu);
6652 skip_emulated_instruction(vcpu);
6653 return 0;
6654 }
6655 return 1;
6656 }
6657
6658 static int handle_vmread(struct kvm_vcpu *vcpu)
6659 {
6660 unsigned long field;
6661 u64 field_value;
6662 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6663 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6664 gva_t gva = 0;
6665
6666 if (!nested_vmx_check_permission(vcpu) ||
6667 !nested_vmx_check_vmcs12(vcpu))
6668 return 1;
6669
6670 /* Decode instruction info and find the field to read */
6671 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6672 /* Read the field, zero-extended to a u64 field_value */
6673 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
6674 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6675 skip_emulated_instruction(vcpu);
6676 return 1;
6677 }
6678 /*
6679 * Now copy part of this value to register or memory, as requested.
6680 * Note that the number of bits actually copied is 32 or 64 depending
6681 * on the guest's mode (32 or 64 bit), not on the given field's length.
6682 */
6683 if (vmx_instruction_info & (1u << 10)) {
6684 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6685 field_value);
6686 } else {
6687 if (get_vmx_mem_address(vcpu, exit_qualification,
6688 vmx_instruction_info, &gva))
6689 return 1;
6690 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6691 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6692 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6693 }
6694
6695 nested_vmx_succeed(vcpu);
6696 skip_emulated_instruction(vcpu);
6697 return 1;
6698 }
6699
6700
6701 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6702 {
6703 unsigned long field;
6704 gva_t gva;
6705 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6706 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6707 /* The value to write might be 32 or 64 bits, depending on L1's long
6708 * mode, and eventually we need to write that into a field of several
6709 * possible lengths. The code below first zero-extends the value to 64
6710 * bit (field_value), and then copies only the approriate number of
6711 * bits into the vmcs12 field.
6712 */
6713 u64 field_value = 0;
6714 struct x86_exception e;
6715
6716 if (!nested_vmx_check_permission(vcpu) ||
6717 !nested_vmx_check_vmcs12(vcpu))
6718 return 1;
6719
6720 if (vmx_instruction_info & (1u << 10))
6721 field_value = kvm_register_readl(vcpu,
6722 (((vmx_instruction_info) >> 3) & 0xf));
6723 else {
6724 if (get_vmx_mem_address(vcpu, exit_qualification,
6725 vmx_instruction_info, &gva))
6726 return 1;
6727 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6728 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
6729 kvm_inject_page_fault(vcpu, &e);
6730 return 1;
6731 }
6732 }
6733
6734
6735 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6736 if (vmcs_field_readonly(field)) {
6737 nested_vmx_failValid(vcpu,
6738 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6739 skip_emulated_instruction(vcpu);
6740 return 1;
6741 }
6742
6743 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
6744 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6745 skip_emulated_instruction(vcpu);
6746 return 1;
6747 }
6748
6749 nested_vmx_succeed(vcpu);
6750 skip_emulated_instruction(vcpu);
6751 return 1;
6752 }
6753
6754 /* Emulate the VMPTRLD instruction */
6755 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6756 {
6757 struct vcpu_vmx *vmx = to_vmx(vcpu);
6758 gpa_t vmptr;
6759 u32 exec_control;
6760
6761 if (!nested_vmx_check_permission(vcpu))
6762 return 1;
6763
6764 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
6765 return 1;
6766
6767 if (vmx->nested.current_vmptr != vmptr) {
6768 struct vmcs12 *new_vmcs12;
6769 struct page *page;
6770 page = nested_get_page(vcpu, vmptr);
6771 if (page == NULL) {
6772 nested_vmx_failInvalid(vcpu);
6773 skip_emulated_instruction(vcpu);
6774 return 1;
6775 }
6776 new_vmcs12 = kmap(page);
6777 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6778 kunmap(page);
6779 nested_release_page_clean(page);
6780 nested_vmx_failValid(vcpu,
6781 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6782 skip_emulated_instruction(vcpu);
6783 return 1;
6784 }
6785
6786 nested_release_vmcs12(vmx);
6787 vmx->nested.current_vmptr = vmptr;
6788 vmx->nested.current_vmcs12 = new_vmcs12;
6789 vmx->nested.current_vmcs12_page = page;
6790 if (enable_shadow_vmcs) {
6791 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6792 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6793 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6794 vmcs_write64(VMCS_LINK_POINTER,
6795 __pa(vmx->nested.current_shadow_vmcs));
6796 vmx->nested.sync_shadow_vmcs = true;
6797 }
6798 }
6799
6800 nested_vmx_succeed(vcpu);
6801 skip_emulated_instruction(vcpu);
6802 return 1;
6803 }
6804
6805 /* Emulate the VMPTRST instruction */
6806 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6807 {
6808 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6809 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6810 gva_t vmcs_gva;
6811 struct x86_exception e;
6812
6813 if (!nested_vmx_check_permission(vcpu))
6814 return 1;
6815
6816 if (get_vmx_mem_address(vcpu, exit_qualification,
6817 vmx_instruction_info, &vmcs_gva))
6818 return 1;
6819 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6820 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6821 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6822 sizeof(u64), &e)) {
6823 kvm_inject_page_fault(vcpu, &e);
6824 return 1;
6825 }
6826 nested_vmx_succeed(vcpu);
6827 skip_emulated_instruction(vcpu);
6828 return 1;
6829 }
6830
6831 /* Emulate the INVEPT instruction */
6832 static int handle_invept(struct kvm_vcpu *vcpu)
6833 {
6834 u32 vmx_instruction_info, types;
6835 unsigned long type;
6836 gva_t gva;
6837 struct x86_exception e;
6838 struct {
6839 u64 eptp, gpa;
6840 } operand;
6841
6842 if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6843 !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6844 kvm_queue_exception(vcpu, UD_VECTOR);
6845 return 1;
6846 }
6847
6848 if (!nested_vmx_check_permission(vcpu))
6849 return 1;
6850
6851 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6852 kvm_queue_exception(vcpu, UD_VECTOR);
6853 return 1;
6854 }
6855
6856 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6857 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
6858
6859 types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6860
6861 if (!(types & (1UL << type))) {
6862 nested_vmx_failValid(vcpu,
6863 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6864 return 1;
6865 }
6866
6867 /* According to the Intel VMX instruction reference, the memory
6868 * operand is read even if it isn't needed (e.g., for type==global)
6869 */
6870 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6871 vmx_instruction_info, &gva))
6872 return 1;
6873 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6874 sizeof(operand), &e)) {
6875 kvm_inject_page_fault(vcpu, &e);
6876 return 1;
6877 }
6878
6879 switch (type) {
6880 case VMX_EPT_EXTENT_GLOBAL:
6881 kvm_mmu_sync_roots(vcpu);
6882 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6883 nested_vmx_succeed(vcpu);
6884 break;
6885 default:
6886 /* Trap single context invalidation invept calls */
6887 BUG_ON(1);
6888 break;
6889 }
6890
6891 skip_emulated_instruction(vcpu);
6892 return 1;
6893 }
6894
6895 static int handle_invvpid(struct kvm_vcpu *vcpu)
6896 {
6897 kvm_queue_exception(vcpu, UD_VECTOR);
6898 return 1;
6899 }
6900
6901 /*
6902 * The exit handlers return 1 if the exit was handled fully and guest execution
6903 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6904 * to be done to userspace and return 0.
6905 */
6906 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6907 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6908 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6909 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6910 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6911 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6912 [EXIT_REASON_CR_ACCESS] = handle_cr,
6913 [EXIT_REASON_DR_ACCESS] = handle_dr,
6914 [EXIT_REASON_CPUID] = handle_cpuid,
6915 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6916 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6917 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6918 [EXIT_REASON_HLT] = handle_halt,
6919 [EXIT_REASON_INVD] = handle_invd,
6920 [EXIT_REASON_INVLPG] = handle_invlpg,
6921 [EXIT_REASON_RDPMC] = handle_rdpmc,
6922 [EXIT_REASON_VMCALL] = handle_vmcall,
6923 [EXIT_REASON_VMCLEAR] = handle_vmclear,
6924 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
6925 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6926 [EXIT_REASON_VMPTRST] = handle_vmptrst,
6927 [EXIT_REASON_VMREAD] = handle_vmread,
6928 [EXIT_REASON_VMRESUME] = handle_vmresume,
6929 [EXIT_REASON_VMWRITE] = handle_vmwrite,
6930 [EXIT_REASON_VMOFF] = handle_vmoff,
6931 [EXIT_REASON_VMON] = handle_vmon,
6932 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6933 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6934 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6935 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6936 [EXIT_REASON_WBINVD] = handle_wbinvd,
6937 [EXIT_REASON_XSETBV] = handle_xsetbv,
6938 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6939 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6940 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6941 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6942 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6943 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
6944 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
6945 [EXIT_REASON_INVEPT] = handle_invept,
6946 [EXIT_REASON_INVVPID] = handle_invvpid,
6947 };
6948
6949 static const int kvm_vmx_max_exit_handlers =
6950 ARRAY_SIZE(kvm_vmx_exit_handlers);
6951
6952 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6953 struct vmcs12 *vmcs12)
6954 {
6955 unsigned long exit_qualification;
6956 gpa_t bitmap, last_bitmap;
6957 unsigned int port;
6958 int size;
6959 u8 b;
6960
6961 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6962 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6963
6964 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6965
6966 port = exit_qualification >> 16;
6967 size = (exit_qualification & 7) + 1;
6968
6969 last_bitmap = (gpa_t)-1;
6970 b = -1;
6971
6972 while (size > 0) {
6973 if (port < 0x8000)
6974 bitmap = vmcs12->io_bitmap_a;
6975 else if (port < 0x10000)
6976 bitmap = vmcs12->io_bitmap_b;
6977 else
6978 return 1;
6979 bitmap += (port & 0x7fff) / 8;
6980
6981 if (last_bitmap != bitmap)
6982 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6983 return 1;
6984 if (b & (1 << (port & 7)))
6985 return 1;
6986
6987 port++;
6988 size--;
6989 last_bitmap = bitmap;
6990 }
6991
6992 return 0;
6993 }
6994
6995 /*
6996 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6997 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6998 * disinterest in the current event (read or write a specific MSR) by using an
6999 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7000 */
7001 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7002 struct vmcs12 *vmcs12, u32 exit_reason)
7003 {
7004 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7005 gpa_t bitmap;
7006
7007 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7008 return 1;
7009
7010 /*
7011 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7012 * for the four combinations of read/write and low/high MSR numbers.
7013 * First we need to figure out which of the four to use:
7014 */
7015 bitmap = vmcs12->msr_bitmap;
7016 if (exit_reason == EXIT_REASON_MSR_WRITE)
7017 bitmap += 2048;
7018 if (msr_index >= 0xc0000000) {
7019 msr_index -= 0xc0000000;
7020 bitmap += 1024;
7021 }
7022
7023 /* Then read the msr_index'th bit from this bitmap: */
7024 if (msr_index < 1024*8) {
7025 unsigned char b;
7026 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
7027 return 1;
7028 return 1 & (b >> (msr_index & 7));
7029 } else
7030 return 1; /* let L1 handle the wrong parameter */
7031 }
7032
7033 /*
7034 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7035 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7036 * intercept (via guest_host_mask etc.) the current event.
7037 */
7038 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7039 struct vmcs12 *vmcs12)
7040 {
7041 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7042 int cr = exit_qualification & 15;
7043 int reg = (exit_qualification >> 8) & 15;
7044 unsigned long val = kvm_register_readl(vcpu, reg);
7045
7046 switch ((exit_qualification >> 4) & 3) {
7047 case 0: /* mov to cr */
7048 switch (cr) {
7049 case 0:
7050 if (vmcs12->cr0_guest_host_mask &
7051 (val ^ vmcs12->cr0_read_shadow))
7052 return 1;
7053 break;
7054 case 3:
7055 if ((vmcs12->cr3_target_count >= 1 &&
7056 vmcs12->cr3_target_value0 == val) ||
7057 (vmcs12->cr3_target_count >= 2 &&
7058 vmcs12->cr3_target_value1 == val) ||
7059 (vmcs12->cr3_target_count >= 3 &&
7060 vmcs12->cr3_target_value2 == val) ||
7061 (vmcs12->cr3_target_count >= 4 &&
7062 vmcs12->cr3_target_value3 == val))
7063 return 0;
7064 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7065 return 1;
7066 break;
7067 case 4:
7068 if (vmcs12->cr4_guest_host_mask &
7069 (vmcs12->cr4_read_shadow ^ val))
7070 return 1;
7071 break;
7072 case 8:
7073 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7074 return 1;
7075 break;
7076 }
7077 break;
7078 case 2: /* clts */
7079 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7080 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7081 return 1;
7082 break;
7083 case 1: /* mov from cr */
7084 switch (cr) {
7085 case 3:
7086 if (vmcs12->cpu_based_vm_exec_control &
7087 CPU_BASED_CR3_STORE_EXITING)
7088 return 1;
7089 break;
7090 case 8:
7091 if (vmcs12->cpu_based_vm_exec_control &
7092 CPU_BASED_CR8_STORE_EXITING)
7093 return 1;
7094 break;
7095 }
7096 break;
7097 case 3: /* lmsw */
7098 /*
7099 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7100 * cr0. Other attempted changes are ignored, with no exit.
7101 */
7102 if (vmcs12->cr0_guest_host_mask & 0xe &
7103 (val ^ vmcs12->cr0_read_shadow))
7104 return 1;
7105 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7106 !(vmcs12->cr0_read_shadow & 0x1) &&
7107 (val & 0x1))
7108 return 1;
7109 break;
7110 }
7111 return 0;
7112 }
7113
7114 /*
7115 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7116 * should handle it ourselves in L0 (and then continue L2). Only call this
7117 * when in is_guest_mode (L2).
7118 */
7119 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7120 {
7121 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7122 struct vcpu_vmx *vmx = to_vmx(vcpu);
7123 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7124 u32 exit_reason = vmx->exit_reason;
7125
7126 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7127 vmcs_readl(EXIT_QUALIFICATION),
7128 vmx->idt_vectoring_info,
7129 intr_info,
7130 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7131 KVM_ISA_VMX);
7132
7133 if (vmx->nested.nested_run_pending)
7134 return 0;
7135
7136 if (unlikely(vmx->fail)) {
7137 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7138 vmcs_read32(VM_INSTRUCTION_ERROR));
7139 return 1;
7140 }
7141
7142 switch (exit_reason) {
7143 case EXIT_REASON_EXCEPTION_NMI:
7144 if (!is_exception(intr_info))
7145 return 0;
7146 else if (is_page_fault(intr_info))
7147 return enable_ept;
7148 else if (is_no_device(intr_info) &&
7149 !(vmcs12->guest_cr0 & X86_CR0_TS))
7150 return 0;
7151 return vmcs12->exception_bitmap &
7152 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7153 case EXIT_REASON_EXTERNAL_INTERRUPT:
7154 return 0;
7155 case EXIT_REASON_TRIPLE_FAULT:
7156 return 1;
7157 case EXIT_REASON_PENDING_INTERRUPT:
7158 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7159 case EXIT_REASON_NMI_WINDOW:
7160 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7161 case EXIT_REASON_TASK_SWITCH:
7162 return 1;
7163 case EXIT_REASON_CPUID:
7164 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7165 return 0;
7166 return 1;
7167 case EXIT_REASON_HLT:
7168 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7169 case EXIT_REASON_INVD:
7170 return 1;
7171 case EXIT_REASON_INVLPG:
7172 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7173 case EXIT_REASON_RDPMC:
7174 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7175 case EXIT_REASON_RDTSC:
7176 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7177 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7178 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7179 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7180 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7181 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7182 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7183 /*
7184 * VMX instructions trap unconditionally. This allows L1 to
7185 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7186 */
7187 return 1;
7188 case EXIT_REASON_CR_ACCESS:
7189 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7190 case EXIT_REASON_DR_ACCESS:
7191 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7192 case EXIT_REASON_IO_INSTRUCTION:
7193 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7194 case EXIT_REASON_MSR_READ:
7195 case EXIT_REASON_MSR_WRITE:
7196 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7197 case EXIT_REASON_INVALID_STATE:
7198 return 1;
7199 case EXIT_REASON_MWAIT_INSTRUCTION:
7200 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7201 case EXIT_REASON_MONITOR_INSTRUCTION:
7202 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7203 case EXIT_REASON_PAUSE_INSTRUCTION:
7204 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7205 nested_cpu_has2(vmcs12,
7206 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7207 case EXIT_REASON_MCE_DURING_VMENTRY:
7208 return 0;
7209 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7210 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7211 case EXIT_REASON_APIC_ACCESS:
7212 return nested_cpu_has2(vmcs12,
7213 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7214 case EXIT_REASON_EPT_VIOLATION:
7215 /*
7216 * L0 always deals with the EPT violation. If nested EPT is
7217 * used, and the nested mmu code discovers that the address is
7218 * missing in the guest EPT table (EPT12), the EPT violation
7219 * will be injected with nested_ept_inject_page_fault()
7220 */
7221 return 0;
7222 case EXIT_REASON_EPT_MISCONFIG:
7223 /*
7224 * L2 never uses directly L1's EPT, but rather L0's own EPT
7225 * table (shadow on EPT) or a merged EPT table that L0 built
7226 * (EPT on EPT). So any problems with the structure of the
7227 * table is L0's fault.
7228 */
7229 return 0;
7230 case EXIT_REASON_WBINVD:
7231 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7232 case EXIT_REASON_XSETBV:
7233 return 1;
7234 default:
7235 return 1;
7236 }
7237 }
7238
7239 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7240 {
7241 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7242 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7243 }
7244
7245 /*
7246 * The guest has exited. See if we can fix it or if we need userspace
7247 * assistance.
7248 */
7249 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7250 {
7251 struct vcpu_vmx *vmx = to_vmx(vcpu);
7252 u32 exit_reason = vmx->exit_reason;
7253 u32 vectoring_info = vmx->idt_vectoring_info;
7254
7255 /* If guest state is invalid, start emulating */
7256 if (vmx->emulation_required)
7257 return handle_invalid_guest_state(vcpu);
7258
7259 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7260 nested_vmx_vmexit(vcpu, exit_reason,
7261 vmcs_read32(VM_EXIT_INTR_INFO),
7262 vmcs_readl(EXIT_QUALIFICATION));
7263 return 1;
7264 }
7265
7266 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7267 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7268 vcpu->run->fail_entry.hardware_entry_failure_reason
7269 = exit_reason;
7270 return 0;
7271 }
7272
7273 if (unlikely(vmx->fail)) {
7274 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7275 vcpu->run->fail_entry.hardware_entry_failure_reason
7276 = vmcs_read32(VM_INSTRUCTION_ERROR);
7277 return 0;
7278 }
7279
7280 /*
7281 * Note:
7282 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7283 * delivery event since it indicates guest is accessing MMIO.
7284 * The vm-exit can be triggered again after return to guest that
7285 * will cause infinite loop.
7286 */
7287 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7288 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7289 exit_reason != EXIT_REASON_EPT_VIOLATION &&
7290 exit_reason != EXIT_REASON_TASK_SWITCH)) {
7291 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7292 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7293 vcpu->run->internal.ndata = 2;
7294 vcpu->run->internal.data[0] = vectoring_info;
7295 vcpu->run->internal.data[1] = exit_reason;
7296 return 0;
7297 }
7298
7299 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7300 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7301 get_vmcs12(vcpu))))) {
7302 if (vmx_interrupt_allowed(vcpu)) {
7303 vmx->soft_vnmi_blocked = 0;
7304 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7305 vcpu->arch.nmi_pending) {
7306 /*
7307 * This CPU don't support us in finding the end of an
7308 * NMI-blocked window if the guest runs with IRQs
7309 * disabled. So we pull the trigger after 1 s of
7310 * futile waiting, but inform the user about this.
7311 */
7312 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7313 "state on VCPU %d after 1 s timeout\n",
7314 __func__, vcpu->vcpu_id);
7315 vmx->soft_vnmi_blocked = 0;
7316 }
7317 }
7318
7319 if (exit_reason < kvm_vmx_max_exit_handlers
7320 && kvm_vmx_exit_handlers[exit_reason])
7321 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7322 else {
7323 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7324 kvm_queue_exception(vcpu, UD_VECTOR);
7325 return 1;
7326 }
7327 }
7328
7329 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7330 {
7331 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7332
7333 if (is_guest_mode(vcpu) &&
7334 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7335 return;
7336
7337 if (irr == -1 || tpr < irr) {
7338 vmcs_write32(TPR_THRESHOLD, 0);
7339 return;
7340 }
7341
7342 vmcs_write32(TPR_THRESHOLD, irr);
7343 }
7344
7345 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7346 {
7347 u32 sec_exec_control;
7348
7349 /*
7350 * There is not point to enable virtualize x2apic without enable
7351 * apicv
7352 */
7353 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7354 !vmx_vm_has_apicv(vcpu->kvm))
7355 return;
7356
7357 if (!vm_need_tpr_shadow(vcpu->kvm))
7358 return;
7359
7360 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7361
7362 if (set) {
7363 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7364 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7365 } else {
7366 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7367 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7368 }
7369 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7370
7371 vmx_set_msr_bitmap(vcpu);
7372 }
7373
7374 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7375 {
7376 struct vcpu_vmx *vmx = to_vmx(vcpu);
7377
7378 /*
7379 * Currently we do not handle the nested case where L2 has an
7380 * APIC access page of its own; that page is still pinned.
7381 * Hence, we skip the case where the VCPU is in guest mode _and_
7382 * L1 prepared an APIC access page for L2.
7383 *
7384 * For the case where L1 and L2 share the same APIC access page
7385 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7386 * in the vmcs12), this function will only update either the vmcs01
7387 * or the vmcs02. If the former, the vmcs02 will be updated by
7388 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
7389 * the next L2->L1 exit.
7390 */
7391 if (!is_guest_mode(vcpu) ||
7392 !nested_cpu_has2(vmx->nested.current_vmcs12,
7393 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7394 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7395 }
7396
7397 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7398 {
7399 u16 status;
7400 u8 old;
7401
7402 if (!vmx_vm_has_apicv(kvm))
7403 return;
7404
7405 if (isr == -1)
7406 isr = 0;
7407
7408 status = vmcs_read16(GUEST_INTR_STATUS);
7409 old = status >> 8;
7410 if (isr != old) {
7411 status &= 0xff;
7412 status |= isr << 8;
7413 vmcs_write16(GUEST_INTR_STATUS, status);
7414 }
7415 }
7416
7417 static void vmx_set_rvi(int vector)
7418 {
7419 u16 status;
7420 u8 old;
7421
7422 status = vmcs_read16(GUEST_INTR_STATUS);
7423 old = (u8)status & 0xff;
7424 if ((u8)vector != old) {
7425 status &= ~0xff;
7426 status |= (u8)vector;
7427 vmcs_write16(GUEST_INTR_STATUS, status);
7428 }
7429 }
7430
7431 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7432 {
7433 if (max_irr == -1)
7434 return;
7435
7436 /*
7437 * If a vmexit is needed, vmx_check_nested_events handles it.
7438 */
7439 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
7440 return;
7441
7442 if (!is_guest_mode(vcpu)) {
7443 vmx_set_rvi(max_irr);
7444 return;
7445 }
7446
7447 /*
7448 * Fall back to pre-APICv interrupt injection since L2
7449 * is run without virtual interrupt delivery.
7450 */
7451 if (!kvm_event_needs_reinjection(vcpu) &&
7452 vmx_interrupt_allowed(vcpu)) {
7453 kvm_queue_interrupt(vcpu, max_irr, false);
7454 vmx_inject_irq(vcpu);
7455 }
7456 }
7457
7458 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7459 {
7460 if (!vmx_vm_has_apicv(vcpu->kvm))
7461 return;
7462
7463 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7464 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7465 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7466 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7467 }
7468
7469 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7470 {
7471 u32 exit_intr_info;
7472
7473 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7474 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7475 return;
7476
7477 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7478 exit_intr_info = vmx->exit_intr_info;
7479
7480 /* Handle machine checks before interrupts are enabled */
7481 if (is_machine_check(exit_intr_info))
7482 kvm_machine_check();
7483
7484 /* We need to handle NMIs before interrupts are enabled */
7485 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7486 (exit_intr_info & INTR_INFO_VALID_MASK)) {
7487 kvm_before_handle_nmi(&vmx->vcpu);
7488 asm("int $2");
7489 kvm_after_handle_nmi(&vmx->vcpu);
7490 }
7491 }
7492
7493 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7494 {
7495 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7496
7497 /*
7498 * If external interrupt exists, IF bit is set in rflags/eflags on the
7499 * interrupt stack frame, and interrupt will be enabled on a return
7500 * from interrupt handler.
7501 */
7502 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7503 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7504 unsigned int vector;
7505 unsigned long entry;
7506 gate_desc *desc;
7507 struct vcpu_vmx *vmx = to_vmx(vcpu);
7508 #ifdef CONFIG_X86_64
7509 unsigned long tmp;
7510 #endif
7511
7512 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7513 desc = (gate_desc *)vmx->host_idt_base + vector;
7514 entry = gate_offset(*desc);
7515 asm volatile(
7516 #ifdef CONFIG_X86_64
7517 "mov %%" _ASM_SP ", %[sp]\n\t"
7518 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7519 "push $%c[ss]\n\t"
7520 "push %[sp]\n\t"
7521 #endif
7522 "pushf\n\t"
7523 "orl $0x200, (%%" _ASM_SP ")\n\t"
7524 __ASM_SIZE(push) " $%c[cs]\n\t"
7525 "call *%[entry]\n\t"
7526 :
7527 #ifdef CONFIG_X86_64
7528 [sp]"=&r"(tmp)
7529 #endif
7530 :
7531 [entry]"r"(entry),
7532 [ss]"i"(__KERNEL_DS),
7533 [cs]"i"(__KERNEL_CS)
7534 );
7535 } else
7536 local_irq_enable();
7537 }
7538
7539 static bool vmx_mpx_supported(void)
7540 {
7541 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7542 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7543 }
7544
7545 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7546 {
7547 u32 exit_intr_info;
7548 bool unblock_nmi;
7549 u8 vector;
7550 bool idtv_info_valid;
7551
7552 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7553
7554 if (cpu_has_virtual_nmis()) {
7555 if (vmx->nmi_known_unmasked)
7556 return;
7557 /*
7558 * Can't use vmx->exit_intr_info since we're not sure what
7559 * the exit reason is.
7560 */
7561 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7562 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7563 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7564 /*
7565 * SDM 3: 27.7.1.2 (September 2008)
7566 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7567 * a guest IRET fault.
7568 * SDM 3: 23.2.2 (September 2008)
7569 * Bit 12 is undefined in any of the following cases:
7570 * If the VM exit sets the valid bit in the IDT-vectoring
7571 * information field.
7572 * If the VM exit is due to a double fault.
7573 */
7574 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7575 vector != DF_VECTOR && !idtv_info_valid)
7576 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7577 GUEST_INTR_STATE_NMI);
7578 else
7579 vmx->nmi_known_unmasked =
7580 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7581 & GUEST_INTR_STATE_NMI);
7582 } else if (unlikely(vmx->soft_vnmi_blocked))
7583 vmx->vnmi_blocked_time +=
7584 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7585 }
7586
7587 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7588 u32 idt_vectoring_info,
7589 int instr_len_field,
7590 int error_code_field)
7591 {
7592 u8 vector;
7593 int type;
7594 bool idtv_info_valid;
7595
7596 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7597
7598 vcpu->arch.nmi_injected = false;
7599 kvm_clear_exception_queue(vcpu);
7600 kvm_clear_interrupt_queue(vcpu);
7601
7602 if (!idtv_info_valid)
7603 return;
7604
7605 kvm_make_request(KVM_REQ_EVENT, vcpu);
7606
7607 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7608 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7609
7610 switch (type) {
7611 case INTR_TYPE_NMI_INTR:
7612 vcpu->arch.nmi_injected = true;
7613 /*
7614 * SDM 3: 27.7.1.2 (September 2008)
7615 * Clear bit "block by NMI" before VM entry if a NMI
7616 * delivery faulted.
7617 */
7618 vmx_set_nmi_mask(vcpu, false);
7619 break;
7620 case INTR_TYPE_SOFT_EXCEPTION:
7621 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7622 /* fall through */
7623 case INTR_TYPE_HARD_EXCEPTION:
7624 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7625 u32 err = vmcs_read32(error_code_field);
7626 kvm_requeue_exception_e(vcpu, vector, err);
7627 } else
7628 kvm_requeue_exception(vcpu, vector);
7629 break;
7630 case INTR_TYPE_SOFT_INTR:
7631 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7632 /* fall through */
7633 case INTR_TYPE_EXT_INTR:
7634 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7635 break;
7636 default:
7637 break;
7638 }
7639 }
7640
7641 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7642 {
7643 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7644 VM_EXIT_INSTRUCTION_LEN,
7645 IDT_VECTORING_ERROR_CODE);
7646 }
7647
7648 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7649 {
7650 __vmx_complete_interrupts(vcpu,
7651 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7652 VM_ENTRY_INSTRUCTION_LEN,
7653 VM_ENTRY_EXCEPTION_ERROR_CODE);
7654
7655 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7656 }
7657
7658 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7659 {
7660 int i, nr_msrs;
7661 struct perf_guest_switch_msr *msrs;
7662
7663 msrs = perf_guest_get_msrs(&nr_msrs);
7664
7665 if (!msrs)
7666 return;
7667
7668 for (i = 0; i < nr_msrs; i++)
7669 if (msrs[i].host == msrs[i].guest)
7670 clear_atomic_switch_msr(vmx, msrs[i].msr);
7671 else
7672 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7673 msrs[i].host);
7674 }
7675
7676 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7677 {
7678 struct vcpu_vmx *vmx = to_vmx(vcpu);
7679 unsigned long debugctlmsr, cr4;
7680
7681 /* Record the guest's net vcpu time for enforced NMI injections. */
7682 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7683 vmx->entry_time = ktime_get();
7684
7685 /* Don't enter VMX if guest state is invalid, let the exit handler
7686 start emulation until we arrive back to a valid state */
7687 if (vmx->emulation_required)
7688 return;
7689
7690 if (vmx->ple_window_dirty) {
7691 vmx->ple_window_dirty = false;
7692 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7693 }
7694
7695 if (vmx->nested.sync_shadow_vmcs) {
7696 copy_vmcs12_to_shadow(vmx);
7697 vmx->nested.sync_shadow_vmcs = false;
7698 }
7699
7700 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7701 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7702 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7703 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7704
7705 cr4 = read_cr4();
7706 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
7707 vmcs_writel(HOST_CR4, cr4);
7708 vmx->host_state.vmcs_host_cr4 = cr4;
7709 }
7710
7711 /* When single-stepping over STI and MOV SS, we must clear the
7712 * corresponding interruptibility bits in the guest state. Otherwise
7713 * vmentry fails as it then expects bit 14 (BS) in pending debug
7714 * exceptions being set, but that's not correct for the guest debugging
7715 * case. */
7716 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7717 vmx_set_interrupt_shadow(vcpu, 0);
7718
7719 atomic_switch_perf_msrs(vmx);
7720 debugctlmsr = get_debugctlmsr();
7721
7722 vmx->__launched = vmx->loaded_vmcs->launched;
7723 asm(
7724 /* Store host registers */
7725 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7726 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7727 "push %%" _ASM_CX " \n\t"
7728 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7729 "je 1f \n\t"
7730 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7731 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7732 "1: \n\t"
7733 /* Reload cr2 if changed */
7734 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7735 "mov %%cr2, %%" _ASM_DX " \n\t"
7736 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7737 "je 2f \n\t"
7738 "mov %%" _ASM_AX", %%cr2 \n\t"
7739 "2: \n\t"
7740 /* Check if vmlaunch of vmresume is needed */
7741 "cmpl $0, %c[launched](%0) \n\t"
7742 /* Load guest registers. Don't clobber flags. */
7743 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7744 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7745 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7746 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7747 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7748 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7749 #ifdef CONFIG_X86_64
7750 "mov %c[r8](%0), %%r8 \n\t"
7751 "mov %c[r9](%0), %%r9 \n\t"
7752 "mov %c[r10](%0), %%r10 \n\t"
7753 "mov %c[r11](%0), %%r11 \n\t"
7754 "mov %c[r12](%0), %%r12 \n\t"
7755 "mov %c[r13](%0), %%r13 \n\t"
7756 "mov %c[r14](%0), %%r14 \n\t"
7757 "mov %c[r15](%0), %%r15 \n\t"
7758 #endif
7759 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7760
7761 /* Enter guest mode */
7762 "jne 1f \n\t"
7763 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7764 "jmp 2f \n\t"
7765 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7766 "2: "
7767 /* Save guest registers, load host registers, keep flags */
7768 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7769 "pop %0 \n\t"
7770 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7771 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7772 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7773 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7774 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7775 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7776 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7777 #ifdef CONFIG_X86_64
7778 "mov %%r8, %c[r8](%0) \n\t"
7779 "mov %%r9, %c[r9](%0) \n\t"
7780 "mov %%r10, %c[r10](%0) \n\t"
7781 "mov %%r11, %c[r11](%0) \n\t"
7782 "mov %%r12, %c[r12](%0) \n\t"
7783 "mov %%r13, %c[r13](%0) \n\t"
7784 "mov %%r14, %c[r14](%0) \n\t"
7785 "mov %%r15, %c[r15](%0) \n\t"
7786 #endif
7787 "mov %%cr2, %%" _ASM_AX " \n\t"
7788 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7789
7790 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
7791 "setbe %c[fail](%0) \n\t"
7792 ".pushsection .rodata \n\t"
7793 ".global vmx_return \n\t"
7794 "vmx_return: " _ASM_PTR " 2b \n\t"
7795 ".popsection"
7796 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7797 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7798 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7799 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7800 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7801 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7802 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7803 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7804 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7805 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7806 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7807 #ifdef CONFIG_X86_64
7808 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7809 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7810 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7811 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7812 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7813 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7814 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7815 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7816 #endif
7817 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7818 [wordsize]"i"(sizeof(ulong))
7819 : "cc", "memory"
7820 #ifdef CONFIG_X86_64
7821 , "rax", "rbx", "rdi", "rsi"
7822 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7823 #else
7824 , "eax", "ebx", "edi", "esi"
7825 #endif
7826 );
7827
7828 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7829 if (debugctlmsr)
7830 update_debugctlmsr(debugctlmsr);
7831
7832 #ifndef CONFIG_X86_64
7833 /*
7834 * The sysexit path does not restore ds/es, so we must set them to
7835 * a reasonable value ourselves.
7836 *
7837 * We can't defer this to vmx_load_host_state() since that function
7838 * may be executed in interrupt context, which saves and restore segments
7839 * around it, nullifying its effect.
7840 */
7841 loadsegment(ds, __USER_DS);
7842 loadsegment(es, __USER_DS);
7843 #endif
7844
7845 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7846 | (1 << VCPU_EXREG_RFLAGS)
7847 | (1 << VCPU_EXREG_PDPTR)
7848 | (1 << VCPU_EXREG_SEGMENTS)
7849 | (1 << VCPU_EXREG_CR3));
7850 vcpu->arch.regs_dirty = 0;
7851
7852 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7853
7854 vmx->loaded_vmcs->launched = 1;
7855
7856 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7857 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7858
7859 /*
7860 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7861 * we did not inject a still-pending event to L1 now because of
7862 * nested_run_pending, we need to re-enable this bit.
7863 */
7864 if (vmx->nested.nested_run_pending)
7865 kvm_make_request(KVM_REQ_EVENT, vcpu);
7866
7867 vmx->nested.nested_run_pending = 0;
7868
7869 vmx_complete_atomic_exit(vmx);
7870 vmx_recover_nmi_blocking(vmx);
7871 vmx_complete_interrupts(vmx);
7872 }
7873
7874 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
7875 {
7876 struct vcpu_vmx *vmx = to_vmx(vcpu);
7877 int cpu;
7878
7879 if (vmx->loaded_vmcs == &vmx->vmcs01)
7880 return;
7881
7882 cpu = get_cpu();
7883 vmx->loaded_vmcs = &vmx->vmcs01;
7884 vmx_vcpu_put(vcpu);
7885 vmx_vcpu_load(vcpu, cpu);
7886 vcpu->cpu = cpu;
7887 put_cpu();
7888 }
7889
7890 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7891 {
7892 struct vcpu_vmx *vmx = to_vmx(vcpu);
7893
7894 free_vpid(vmx);
7895 leave_guest_mode(vcpu);
7896 vmx_load_vmcs01(vcpu);
7897 free_nested(vmx);
7898 free_loaded_vmcs(vmx->loaded_vmcs);
7899 kfree(vmx->guest_msrs);
7900 kvm_vcpu_uninit(vcpu);
7901 kmem_cache_free(kvm_vcpu_cache, vmx);
7902 }
7903
7904 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7905 {
7906 int err;
7907 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7908 int cpu;
7909
7910 if (!vmx)
7911 return ERR_PTR(-ENOMEM);
7912
7913 allocate_vpid(vmx);
7914
7915 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7916 if (err)
7917 goto free_vcpu;
7918
7919 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7920 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
7921 > PAGE_SIZE);
7922
7923 err = -ENOMEM;
7924 if (!vmx->guest_msrs) {
7925 goto uninit_vcpu;
7926 }
7927
7928 vmx->loaded_vmcs = &vmx->vmcs01;
7929 vmx->loaded_vmcs->vmcs = alloc_vmcs();
7930 if (!vmx->loaded_vmcs->vmcs)
7931 goto free_msrs;
7932 if (!vmm_exclusive)
7933 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7934 loaded_vmcs_init(vmx->loaded_vmcs);
7935 if (!vmm_exclusive)
7936 kvm_cpu_vmxoff();
7937
7938 cpu = get_cpu();
7939 vmx_vcpu_load(&vmx->vcpu, cpu);
7940 vmx->vcpu.cpu = cpu;
7941 err = vmx_vcpu_setup(vmx);
7942 vmx_vcpu_put(&vmx->vcpu);
7943 put_cpu();
7944 if (err)
7945 goto free_vmcs;
7946 if (vm_need_virtualize_apic_accesses(kvm)) {
7947 err = alloc_apic_access_page(kvm);
7948 if (err)
7949 goto free_vmcs;
7950 }
7951
7952 if (enable_ept) {
7953 if (!kvm->arch.ept_identity_map_addr)
7954 kvm->arch.ept_identity_map_addr =
7955 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7956 err = init_rmode_identity_map(kvm);
7957 if (err)
7958 goto free_vmcs;
7959 }
7960
7961 vmx->nested.current_vmptr = -1ull;
7962 vmx->nested.current_vmcs12 = NULL;
7963
7964 return &vmx->vcpu;
7965
7966 free_vmcs:
7967 free_loaded_vmcs(vmx->loaded_vmcs);
7968 free_msrs:
7969 kfree(vmx->guest_msrs);
7970 uninit_vcpu:
7971 kvm_vcpu_uninit(&vmx->vcpu);
7972 free_vcpu:
7973 free_vpid(vmx);
7974 kmem_cache_free(kvm_vcpu_cache, vmx);
7975 return ERR_PTR(err);
7976 }
7977
7978 static void __init vmx_check_processor_compat(void *rtn)
7979 {
7980 struct vmcs_config vmcs_conf;
7981
7982 *(int *)rtn = 0;
7983 if (setup_vmcs_config(&vmcs_conf) < 0)
7984 *(int *)rtn = -EIO;
7985 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7986 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7987 smp_processor_id());
7988 *(int *)rtn = -EIO;
7989 }
7990 }
7991
7992 static int get_ept_level(void)
7993 {
7994 return VMX_EPT_DEFAULT_GAW + 1;
7995 }
7996
7997 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7998 {
7999 u64 ret;
8000
8001 /* For VT-d and EPT combination
8002 * 1. MMIO: always map as UC
8003 * 2. EPT with VT-d:
8004 * a. VT-d without snooping control feature: can't guarantee the
8005 * result, try to trust guest.
8006 * b. VT-d with snooping control feature: snooping control feature of
8007 * VT-d engine can guarantee the cache correctness. Just set it
8008 * to WB to keep consistent with host. So the same as item 3.
8009 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8010 * consistent with host MTRR
8011 */
8012 if (is_mmio)
8013 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
8014 else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
8015 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
8016 VMX_EPT_MT_EPTE_SHIFT;
8017 else
8018 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
8019 | VMX_EPT_IPAT_BIT;
8020
8021 return ret;
8022 }
8023
8024 static int vmx_get_lpage_level(void)
8025 {
8026 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8027 return PT_DIRECTORY_LEVEL;
8028 else
8029 /* For shadow and EPT supported 1GB page */
8030 return PT_PDPE_LEVEL;
8031 }
8032
8033 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8034 {
8035 struct kvm_cpuid_entry2 *best;
8036 struct vcpu_vmx *vmx = to_vmx(vcpu);
8037 u32 exec_control;
8038
8039 vmx->rdtscp_enabled = false;
8040 if (vmx_rdtscp_supported()) {
8041 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8042 if (exec_control & SECONDARY_EXEC_RDTSCP) {
8043 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8044 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8045 vmx->rdtscp_enabled = true;
8046 else {
8047 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8048 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8049 exec_control);
8050 }
8051 }
8052 }
8053
8054 /* Exposing INVPCID only when PCID is exposed */
8055 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8056 if (vmx_invpcid_supported() &&
8057 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
8058 guest_cpuid_has_pcid(vcpu)) {
8059 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8060 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8061 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8062 exec_control);
8063 } else {
8064 if (cpu_has_secondary_exec_ctrls()) {
8065 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8066 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8067 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8068 exec_control);
8069 }
8070 if (best)
8071 best->ebx &= ~bit(X86_FEATURE_INVPCID);
8072 }
8073 }
8074
8075 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8076 {
8077 if (func == 1 && nested)
8078 entry->ecx |= bit(X86_FEATURE_VMX);
8079 }
8080
8081 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8082 struct x86_exception *fault)
8083 {
8084 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8085 u32 exit_reason;
8086
8087 if (fault->error_code & PFERR_RSVD_MASK)
8088 exit_reason = EXIT_REASON_EPT_MISCONFIG;
8089 else
8090 exit_reason = EXIT_REASON_EPT_VIOLATION;
8091 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8092 vmcs12->guest_physical_address = fault->address;
8093 }
8094
8095 /* Callbacks for nested_ept_init_mmu_context: */
8096
8097 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8098 {
8099 /* return the page table to be shadowed - in our case, EPT12 */
8100 return get_vmcs12(vcpu)->ept_pointer;
8101 }
8102
8103 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8104 {
8105 kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
8106 nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
8107
8108 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
8109 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
8110 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8111
8112 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
8113 }
8114
8115 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8116 {
8117 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8118 }
8119
8120 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8121 struct x86_exception *fault)
8122 {
8123 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8124
8125 WARN_ON(!is_guest_mode(vcpu));
8126
8127 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
8128 if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
8129 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8130 vmcs_read32(VM_EXIT_INTR_INFO),
8131 vmcs_readl(EXIT_QUALIFICATION));
8132 else
8133 kvm_inject_page_fault(vcpu, fault);
8134 }
8135
8136 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8137 struct vmcs12 *vmcs12)
8138 {
8139 struct vcpu_vmx *vmx = to_vmx(vcpu);
8140
8141 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8142 /* TODO: Also verify bits beyond physical address width are 0 */
8143 if (!PAGE_ALIGNED(vmcs12->apic_access_addr))
8144 return false;
8145
8146 /*
8147 * Translate L1 physical address to host physical
8148 * address for vmcs02. Keep the page pinned, so this
8149 * physical address remains valid. We keep a reference
8150 * to it so we can release it later.
8151 */
8152 if (vmx->nested.apic_access_page) /* shouldn't happen */
8153 nested_release_page(vmx->nested.apic_access_page);
8154 vmx->nested.apic_access_page =
8155 nested_get_page(vcpu, vmcs12->apic_access_addr);
8156 }
8157
8158 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8159 /* TODO: Also verify bits beyond physical address width are 0 */
8160 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr))
8161 return false;
8162
8163 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8164 nested_release_page(vmx->nested.virtual_apic_page);
8165 vmx->nested.virtual_apic_page =
8166 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8167
8168 /*
8169 * Failing the vm entry is _not_ what the processor does
8170 * but it's basically the only possibility we have.
8171 * We could still enter the guest if CR8 load exits are
8172 * enabled, CR8 store exits are enabled, and virtualize APIC
8173 * access is disabled; in this case the processor would never
8174 * use the TPR shadow and we could simply clear the bit from
8175 * the execution control. But such a configuration is useless,
8176 * so let's keep the code simple.
8177 */
8178 if (!vmx->nested.virtual_apic_page)
8179 return false;
8180 }
8181
8182 return true;
8183 }
8184
8185 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8186 {
8187 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8188 struct vcpu_vmx *vmx = to_vmx(vcpu);
8189
8190 if (vcpu->arch.virtual_tsc_khz == 0)
8191 return;
8192
8193 /* Make sure short timeouts reliably trigger an immediate vmexit.
8194 * hrtimer_start does not guarantee this. */
8195 if (preemption_timeout <= 1) {
8196 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8197 return;
8198 }
8199
8200 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8201 preemption_timeout *= 1000000;
8202 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8203 hrtimer_start(&vmx->nested.preemption_timer,
8204 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8205 }
8206
8207 /*
8208 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
8209 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
8210 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
8211 * guest in a way that will both be appropriate to L1's requests, and our
8212 * needs. In addition to modifying the active vmcs (which is vmcs02), this
8213 * function also has additional necessary side-effects, like setting various
8214 * vcpu->arch fields.
8215 */
8216 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8217 {
8218 struct vcpu_vmx *vmx = to_vmx(vcpu);
8219 u32 exec_control;
8220
8221 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
8222 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
8223 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
8224 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
8225 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
8226 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
8227 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
8228 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
8229 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
8230 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
8231 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
8232 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
8233 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
8234 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
8235 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
8236 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
8237 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
8238 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
8239 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
8240 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
8241 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
8242 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
8243 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
8244 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
8245 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
8246 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
8247 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
8248 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
8249 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
8250 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
8251 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
8252 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
8253 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
8254 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
8255 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
8256 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
8257
8258 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
8259 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
8260 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
8261 } else {
8262 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
8263 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
8264 }
8265 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
8266 vmcs12->vm_entry_intr_info_field);
8267 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
8268 vmcs12->vm_entry_exception_error_code);
8269 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
8270 vmcs12->vm_entry_instruction_len);
8271 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
8272 vmcs12->guest_interruptibility_info);
8273 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
8274 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
8275 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
8276 vmcs12->guest_pending_dbg_exceptions);
8277 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
8278 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
8279
8280 vmcs_write64(VMCS_LINK_POINTER, -1ull);
8281
8282 exec_control = vmcs12->pin_based_vm_exec_control;
8283 exec_control |= vmcs_config.pin_based_exec_ctrl;
8284 exec_control &= ~(PIN_BASED_VMX_PREEMPTION_TIMER |
8285 PIN_BASED_POSTED_INTR);
8286 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
8287
8288 vmx->nested.preemption_timer_expired = false;
8289 if (nested_cpu_has_preemption_timer(vmcs12))
8290 vmx_start_preemption_timer(vcpu);
8291
8292 /*
8293 * Whether page-faults are trapped is determined by a combination of
8294 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
8295 * If enable_ept, L0 doesn't care about page faults and we should
8296 * set all of these to L1's desires. However, if !enable_ept, L0 does
8297 * care about (at least some) page faults, and because it is not easy
8298 * (if at all possible?) to merge L0 and L1's desires, we simply ask
8299 * to exit on each and every L2 page fault. This is done by setting
8300 * MASK=MATCH=0 and (see below) EB.PF=1.
8301 * Note that below we don't need special code to set EB.PF beyond the
8302 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
8303 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
8304 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
8305 *
8306 * A problem with this approach (when !enable_ept) is that L1 may be
8307 * injected with more page faults than it asked for. This could have
8308 * caused problems, but in practice existing hypervisors don't care.
8309 * To fix this, we will need to emulate the PFEC checking (on the L1
8310 * page tables), using walk_addr(), when injecting PFs to L1.
8311 */
8312 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
8313 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
8314 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
8315 enable_ept ? vmcs12->page_fault_error_code_match : 0);
8316
8317 if (cpu_has_secondary_exec_ctrls()) {
8318 exec_control = vmx_secondary_exec_control(vmx);
8319 if (!vmx->rdtscp_enabled)
8320 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8321 /* Take the following fields only from vmcs12 */
8322 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8323 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8324 SECONDARY_EXEC_APIC_REGISTER_VIRT);
8325 if (nested_cpu_has(vmcs12,
8326 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
8327 exec_control |= vmcs12->secondary_vm_exec_control;
8328
8329 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
8330 /*
8331 * If translation failed, no matter: This feature asks
8332 * to exit when accessing the given address, and if it
8333 * can never be accessed, this feature won't do
8334 * anything anyway.
8335 */
8336 if (!vmx->nested.apic_access_page)
8337 exec_control &=
8338 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8339 else
8340 vmcs_write64(APIC_ACCESS_ADDR,
8341 page_to_phys(vmx->nested.apic_access_page));
8342 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
8343 exec_control |=
8344 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8345 kvm_vcpu_reload_apic_access_page(vcpu);
8346 }
8347
8348 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
8349 }
8350
8351
8352 /*
8353 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
8354 * Some constant fields are set here by vmx_set_constant_host_state().
8355 * Other fields are different per CPU, and will be set later when
8356 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
8357 */
8358 vmx_set_constant_host_state(vmx);
8359
8360 /*
8361 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
8362 * entry, but only if the current (host) sp changed from the value
8363 * we wrote last (vmx->host_rsp). This cache is no longer relevant
8364 * if we switch vmcs, and rather than hold a separate cache per vmcs,
8365 * here we just force the write to happen on entry.
8366 */
8367 vmx->host_rsp = 0;
8368
8369 exec_control = vmx_exec_control(vmx); /* L0's desires */
8370 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
8371 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
8372 exec_control &= ~CPU_BASED_TPR_SHADOW;
8373 exec_control |= vmcs12->cpu_based_vm_exec_control;
8374
8375 if (exec_control & CPU_BASED_TPR_SHADOW) {
8376 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
8377 page_to_phys(vmx->nested.virtual_apic_page));
8378 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
8379 }
8380
8381 /*
8382 * Merging of IO and MSR bitmaps not currently supported.
8383 * Rather, exit every time.
8384 */
8385 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
8386 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
8387 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
8388
8389 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
8390
8391 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
8392 * bitwise-or of what L1 wants to trap for L2, and what we want to
8393 * trap. Note that CR0.TS also needs updating - we do this later.
8394 */
8395 update_exception_bitmap(vcpu);
8396 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
8397 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8398
8399 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
8400 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
8401 * bits are further modified by vmx_set_efer() below.
8402 */
8403 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8404
8405 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
8406 * emulated by vmx_set_efer(), below.
8407 */
8408 vm_entry_controls_init(vmx,
8409 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
8410 ~VM_ENTRY_IA32E_MODE) |
8411 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
8412
8413 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
8414 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
8415 vcpu->arch.pat = vmcs12->guest_ia32_pat;
8416 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
8417 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
8418
8419
8420 set_cr4_guest_host_mask(vmx);
8421
8422 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
8423 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
8424
8425 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
8426 vmcs_write64(TSC_OFFSET,
8427 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
8428 else
8429 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8430
8431 if (enable_vpid) {
8432 /*
8433 * Trivially support vpid by letting L2s share their parent
8434 * L1's vpid. TODO: move to a more elaborate solution, giving
8435 * each L2 its own vpid and exposing the vpid feature to L1.
8436 */
8437 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
8438 vmx_flush_tlb(vcpu);
8439 }
8440
8441 if (nested_cpu_has_ept(vmcs12)) {
8442 kvm_mmu_unload(vcpu);
8443 nested_ept_init_mmu_context(vcpu);
8444 }
8445
8446 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
8447 vcpu->arch.efer = vmcs12->guest_ia32_efer;
8448 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
8449 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8450 else
8451 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8452 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8453 vmx_set_efer(vcpu, vcpu->arch.efer);
8454
8455 /*
8456 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8457 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8458 * The CR0_READ_SHADOW is what L2 should have expected to read given
8459 * the specifications by L1; It's not enough to take
8460 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8461 * have more bits than L1 expected.
8462 */
8463 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
8464 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
8465
8466 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
8467 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
8468
8469 /* shadow page tables on either EPT or shadow page tables */
8470 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
8471 kvm_mmu_reset_context(vcpu);
8472
8473 if (!enable_ept)
8474 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
8475
8476 /*
8477 * L1 may access the L2's PDPTR, so save them to construct vmcs12
8478 */
8479 if (enable_ept) {
8480 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
8481 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
8482 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
8483 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
8484 }
8485
8486 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
8487 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
8488 }
8489
8490 /*
8491 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8492 * for running an L2 nested guest.
8493 */
8494 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
8495 {
8496 struct vmcs12 *vmcs12;
8497 struct vcpu_vmx *vmx = to_vmx(vcpu);
8498 int cpu;
8499 struct loaded_vmcs *vmcs02;
8500 bool ia32e;
8501
8502 if (!nested_vmx_check_permission(vcpu) ||
8503 !nested_vmx_check_vmcs12(vcpu))
8504 return 1;
8505
8506 skip_emulated_instruction(vcpu);
8507 vmcs12 = get_vmcs12(vcpu);
8508
8509 if (enable_shadow_vmcs)
8510 copy_shadow_to_vmcs12(vmx);
8511
8512 /*
8513 * The nested entry process starts with enforcing various prerequisites
8514 * on vmcs12 as required by the Intel SDM, and act appropriately when
8515 * they fail: As the SDM explains, some conditions should cause the
8516 * instruction to fail, while others will cause the instruction to seem
8517 * to succeed, but return an EXIT_REASON_INVALID_STATE.
8518 * To speed up the normal (success) code path, we should avoid checking
8519 * for misconfigurations which will anyway be caught by the processor
8520 * when using the merged vmcs02.
8521 */
8522 if (vmcs12->launch_state == launch) {
8523 nested_vmx_failValid(vcpu,
8524 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8525 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
8526 return 1;
8527 }
8528
8529 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
8530 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
8531 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8532 return 1;
8533 }
8534
8535 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
8536 !PAGE_ALIGNED(vmcs12->msr_bitmap)) {
8537 /*TODO: Also verify bits beyond physical address width are 0*/
8538 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8539 return 1;
8540 }
8541
8542 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
8543 /*TODO: Also verify bits beyond physical address width are 0*/
8544 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8545 return 1;
8546 }
8547
8548 if (vmcs12->vm_entry_msr_load_count > 0 ||
8549 vmcs12->vm_exit_msr_load_count > 0 ||
8550 vmcs12->vm_exit_msr_store_count > 0) {
8551 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8552 __func__);
8553 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8554 return 1;
8555 }
8556
8557 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
8558 nested_vmx_true_procbased_ctls_low,
8559 nested_vmx_procbased_ctls_high) ||
8560 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8561 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8562 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8563 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8564 !vmx_control_verify(vmcs12->vm_exit_controls,
8565 nested_vmx_true_exit_ctls_low,
8566 nested_vmx_exit_ctls_high) ||
8567 !vmx_control_verify(vmcs12->vm_entry_controls,
8568 nested_vmx_true_entry_ctls_low,
8569 nested_vmx_entry_ctls_high))
8570 {
8571 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8572 return 1;
8573 }
8574
8575 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8576 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8577 nested_vmx_failValid(vcpu,
8578 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8579 return 1;
8580 }
8581
8582 if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8583 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8584 nested_vmx_entry_failure(vcpu, vmcs12,
8585 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8586 return 1;
8587 }
8588 if (vmcs12->vmcs_link_pointer != -1ull) {
8589 nested_vmx_entry_failure(vcpu, vmcs12,
8590 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8591 return 1;
8592 }
8593
8594 /*
8595 * If the load IA32_EFER VM-entry control is 1, the following checks
8596 * are performed on the field for the IA32_EFER MSR:
8597 * - Bits reserved in the IA32_EFER MSR must be 0.
8598 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8599 * the IA-32e mode guest VM-exit control. It must also be identical
8600 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8601 * CR0.PG) is 1.
8602 */
8603 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8604 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8605 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8606 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8607 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8608 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8609 nested_vmx_entry_failure(vcpu, vmcs12,
8610 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8611 return 1;
8612 }
8613 }
8614
8615 /*
8616 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8617 * IA32_EFER MSR must be 0 in the field for that register. In addition,
8618 * the values of the LMA and LME bits in the field must each be that of
8619 * the host address-space size VM-exit control.
8620 */
8621 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8622 ia32e = (vmcs12->vm_exit_controls &
8623 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8624 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8625 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8626 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8627 nested_vmx_entry_failure(vcpu, vmcs12,
8628 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8629 return 1;
8630 }
8631 }
8632
8633 /*
8634 * We're finally done with prerequisite checking, and can start with
8635 * the nested entry.
8636 */
8637
8638 vmcs02 = nested_get_current_vmcs02(vmx);
8639 if (!vmcs02)
8640 return -ENOMEM;
8641
8642 enter_guest_mode(vcpu);
8643
8644 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8645
8646 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
8647 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8648
8649 cpu = get_cpu();
8650 vmx->loaded_vmcs = vmcs02;
8651 vmx_vcpu_put(vcpu);
8652 vmx_vcpu_load(vcpu, cpu);
8653 vcpu->cpu = cpu;
8654 put_cpu();
8655
8656 vmx_segment_cache_clear(vmx);
8657
8658 vmcs12->launch_state = 1;
8659
8660 prepare_vmcs02(vcpu, vmcs12);
8661
8662 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8663 return kvm_emulate_halt(vcpu);
8664
8665 vmx->nested.nested_run_pending = 1;
8666
8667 /*
8668 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8669 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8670 * returned as far as L1 is concerned. It will only return (and set
8671 * the success flag) when L2 exits (see nested_vmx_vmexit()).
8672 */
8673 return 1;
8674 }
8675
8676 /*
8677 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8678 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8679 * This function returns the new value we should put in vmcs12.guest_cr0.
8680 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8681 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8682 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8683 * didn't trap the bit, because if L1 did, so would L0).
8684 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8685 * been modified by L2, and L1 knows it. So just leave the old value of
8686 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8687 * isn't relevant, because if L0 traps this bit it can set it to anything.
8688 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8689 * changed these bits, and therefore they need to be updated, but L0
8690 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8691 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8692 */
8693 static inline unsigned long
8694 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8695 {
8696 return
8697 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8698 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8699 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8700 vcpu->arch.cr0_guest_owned_bits));
8701 }
8702
8703 static inline unsigned long
8704 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8705 {
8706 return
8707 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8708 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8709 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8710 vcpu->arch.cr4_guest_owned_bits));
8711 }
8712
8713 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8714 struct vmcs12 *vmcs12)
8715 {
8716 u32 idt_vectoring;
8717 unsigned int nr;
8718
8719 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8720 nr = vcpu->arch.exception.nr;
8721 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8722
8723 if (kvm_exception_is_soft(nr)) {
8724 vmcs12->vm_exit_instruction_len =
8725 vcpu->arch.event_exit_inst_len;
8726 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8727 } else
8728 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8729
8730 if (vcpu->arch.exception.has_error_code) {
8731 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8732 vmcs12->idt_vectoring_error_code =
8733 vcpu->arch.exception.error_code;
8734 }
8735
8736 vmcs12->idt_vectoring_info_field = idt_vectoring;
8737 } else if (vcpu->arch.nmi_injected) {
8738 vmcs12->idt_vectoring_info_field =
8739 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8740 } else if (vcpu->arch.interrupt.pending) {
8741 nr = vcpu->arch.interrupt.nr;
8742 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8743
8744 if (vcpu->arch.interrupt.soft) {
8745 idt_vectoring |= INTR_TYPE_SOFT_INTR;
8746 vmcs12->vm_entry_instruction_len =
8747 vcpu->arch.event_exit_inst_len;
8748 } else
8749 idt_vectoring |= INTR_TYPE_EXT_INTR;
8750
8751 vmcs12->idt_vectoring_info_field = idt_vectoring;
8752 }
8753 }
8754
8755 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8756 {
8757 struct vcpu_vmx *vmx = to_vmx(vcpu);
8758
8759 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8760 vmx->nested.preemption_timer_expired) {
8761 if (vmx->nested.nested_run_pending)
8762 return -EBUSY;
8763 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8764 return 0;
8765 }
8766
8767 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
8768 if (vmx->nested.nested_run_pending ||
8769 vcpu->arch.interrupt.pending)
8770 return -EBUSY;
8771 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8772 NMI_VECTOR | INTR_TYPE_NMI_INTR |
8773 INTR_INFO_VALID_MASK, 0);
8774 /*
8775 * The NMI-triggered VM exit counts as injection:
8776 * clear this one and block further NMIs.
8777 */
8778 vcpu->arch.nmi_pending = 0;
8779 vmx_set_nmi_mask(vcpu, true);
8780 return 0;
8781 }
8782
8783 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8784 nested_exit_on_intr(vcpu)) {
8785 if (vmx->nested.nested_run_pending)
8786 return -EBUSY;
8787 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8788 }
8789
8790 return 0;
8791 }
8792
8793 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8794 {
8795 ktime_t remaining =
8796 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8797 u64 value;
8798
8799 if (ktime_to_ns(remaining) <= 0)
8800 return 0;
8801
8802 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8803 do_div(value, 1000000);
8804 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8805 }
8806
8807 /*
8808 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8809 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8810 * and this function updates it to reflect the changes to the guest state while
8811 * L2 was running (and perhaps made some exits which were handled directly by L0
8812 * without going back to L1), and to reflect the exit reason.
8813 * Note that we do not have to copy here all VMCS fields, just those that
8814 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8815 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8816 * which already writes to vmcs12 directly.
8817 */
8818 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8819 u32 exit_reason, u32 exit_intr_info,
8820 unsigned long exit_qualification)
8821 {
8822 /* update guest state fields: */
8823 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8824 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8825
8826 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8827 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8828 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8829
8830 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8831 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8832 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8833 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8834 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8835 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8836 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8837 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8838 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8839 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8840 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8841 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8842 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8843 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8844 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8845 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8846 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8847 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8848 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8849 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8850 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8851 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8852 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8853 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8854 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8855 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8856 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8857 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8858 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8859 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8860 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8861 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8862 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8863 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8864 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8865 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8866
8867 vmcs12->guest_interruptibility_info =
8868 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8869 vmcs12->guest_pending_dbg_exceptions =
8870 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8871 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8872 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8873 else
8874 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8875
8876 if (nested_cpu_has_preemption_timer(vmcs12)) {
8877 if (vmcs12->vm_exit_controls &
8878 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
8879 vmcs12->vmx_preemption_timer_value =
8880 vmx_get_preemption_timer_value(vcpu);
8881 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
8882 }
8883
8884 /*
8885 * In some cases (usually, nested EPT), L2 is allowed to change its
8886 * own CR3 without exiting. If it has changed it, we must keep it.
8887 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8888 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8889 *
8890 * Additionally, restore L2's PDPTR to vmcs12.
8891 */
8892 if (enable_ept) {
8893 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8894 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8895 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8896 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8897 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8898 }
8899
8900 vmcs12->vm_entry_controls =
8901 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8902 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8903
8904 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
8905 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8906 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8907 }
8908
8909 /* TODO: These cannot have changed unless we have MSR bitmaps and
8910 * the relevant bit asks not to trap the change */
8911 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8912 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8913 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8914 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8915 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8916 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8917 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8918 if (vmx_mpx_supported())
8919 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
8920
8921 /* update exit information fields: */
8922
8923 vmcs12->vm_exit_reason = exit_reason;
8924 vmcs12->exit_qualification = exit_qualification;
8925
8926 vmcs12->vm_exit_intr_info = exit_intr_info;
8927 if ((vmcs12->vm_exit_intr_info &
8928 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8929 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8930 vmcs12->vm_exit_intr_error_code =
8931 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8932 vmcs12->idt_vectoring_info_field = 0;
8933 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8934 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8935
8936 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8937 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8938 * instead of reading the real value. */
8939 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8940
8941 /*
8942 * Transfer the event that L0 or L1 may wanted to inject into
8943 * L2 to IDT_VECTORING_INFO_FIELD.
8944 */
8945 vmcs12_save_pending_event(vcpu, vmcs12);
8946 }
8947
8948 /*
8949 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8950 * preserved above and would only end up incorrectly in L1.
8951 */
8952 vcpu->arch.nmi_injected = false;
8953 kvm_clear_exception_queue(vcpu);
8954 kvm_clear_interrupt_queue(vcpu);
8955 }
8956
8957 /*
8958 * A part of what we need to when the nested L2 guest exits and we want to
8959 * run its L1 parent, is to reset L1's guest state to the host state specified
8960 * in vmcs12.
8961 * This function is to be called not only on normal nested exit, but also on
8962 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8963 * Failures During or After Loading Guest State").
8964 * This function should be called when the active VMCS is L1's (vmcs01).
8965 */
8966 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8967 struct vmcs12 *vmcs12)
8968 {
8969 struct kvm_segment seg;
8970
8971 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8972 vcpu->arch.efer = vmcs12->host_ia32_efer;
8973 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8974 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8975 else
8976 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8977 vmx_set_efer(vcpu, vcpu->arch.efer);
8978
8979 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8980 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8981 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8982 /*
8983 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8984 * actually changed, because it depends on the current state of
8985 * fpu_active (which may have changed).
8986 * Note that vmx_set_cr0 refers to efer set above.
8987 */
8988 vmx_set_cr0(vcpu, vmcs12->host_cr0);
8989 /*
8990 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8991 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8992 * but we also need to update cr0_guest_host_mask and exception_bitmap.
8993 */
8994 update_exception_bitmap(vcpu);
8995 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8996 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8997
8998 /*
8999 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
9000 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
9001 */
9002 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
9003 kvm_set_cr4(vcpu, vmcs12->host_cr4);
9004
9005 nested_ept_uninit_mmu_context(vcpu);
9006
9007 kvm_set_cr3(vcpu, vmcs12->host_cr3);
9008 kvm_mmu_reset_context(vcpu);
9009
9010 if (!enable_ept)
9011 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
9012
9013 if (enable_vpid) {
9014 /*
9015 * Trivially support vpid by letting L2s share their parent
9016 * L1's vpid. TODO: move to a more elaborate solution, giving
9017 * each L2 its own vpid and exposing the vpid feature to L1.
9018 */
9019 vmx_flush_tlb(vcpu);
9020 }
9021
9022
9023 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
9024 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
9025 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
9026 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
9027 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
9028
9029 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
9030 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
9031 vmcs_write64(GUEST_BNDCFGS, 0);
9032
9033 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
9034 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
9035 vcpu->arch.pat = vmcs12->host_ia32_pat;
9036 }
9037 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
9038 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
9039 vmcs12->host_ia32_perf_global_ctrl);
9040
9041 /* Set L1 segment info according to Intel SDM
9042 27.5.2 Loading Host Segment and Descriptor-Table Registers */
9043 seg = (struct kvm_segment) {
9044 .base = 0,
9045 .limit = 0xFFFFFFFF,
9046 .selector = vmcs12->host_cs_selector,
9047 .type = 11,
9048 .present = 1,
9049 .s = 1,
9050 .g = 1
9051 };
9052 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9053 seg.l = 1;
9054 else
9055 seg.db = 1;
9056 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
9057 seg = (struct kvm_segment) {
9058 .base = 0,
9059 .limit = 0xFFFFFFFF,
9060 .type = 3,
9061 .present = 1,
9062 .s = 1,
9063 .db = 1,
9064 .g = 1
9065 };
9066 seg.selector = vmcs12->host_ds_selector;
9067 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
9068 seg.selector = vmcs12->host_es_selector;
9069 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
9070 seg.selector = vmcs12->host_ss_selector;
9071 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
9072 seg.selector = vmcs12->host_fs_selector;
9073 seg.base = vmcs12->host_fs_base;
9074 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
9075 seg.selector = vmcs12->host_gs_selector;
9076 seg.base = vmcs12->host_gs_base;
9077 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
9078 seg = (struct kvm_segment) {
9079 .base = vmcs12->host_tr_base,
9080 .limit = 0x67,
9081 .selector = vmcs12->host_tr_selector,
9082 .type = 11,
9083 .present = 1
9084 };
9085 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
9086
9087 kvm_set_dr(vcpu, 7, 0x400);
9088 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
9089 }
9090
9091 /*
9092 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
9093 * and modify vmcs12 to make it see what it would expect to see there if
9094 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
9095 */
9096 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
9097 u32 exit_intr_info,
9098 unsigned long exit_qualification)
9099 {
9100 struct vcpu_vmx *vmx = to_vmx(vcpu);
9101 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9102
9103 /* trying to cancel vmlaunch/vmresume is a bug */
9104 WARN_ON_ONCE(vmx->nested.nested_run_pending);
9105
9106 leave_guest_mode(vcpu);
9107 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
9108 exit_qualification);
9109
9110 vmx_load_vmcs01(vcpu);
9111
9112 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
9113 && nested_exit_intr_ack_set(vcpu)) {
9114 int irq = kvm_cpu_get_interrupt(vcpu);
9115 WARN_ON(irq < 0);
9116 vmcs12->vm_exit_intr_info = irq |
9117 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
9118 }
9119
9120 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
9121 vmcs12->exit_qualification,
9122 vmcs12->idt_vectoring_info_field,
9123 vmcs12->vm_exit_intr_info,
9124 vmcs12->vm_exit_intr_error_code,
9125 KVM_ISA_VMX);
9126
9127 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
9128 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
9129 vmx_segment_cache_clear(vmx);
9130
9131 /* if no vmcs02 cache requested, remove the one we used */
9132 if (VMCS02_POOL_SIZE == 0)
9133 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
9134
9135 load_vmcs12_host_state(vcpu, vmcs12);
9136
9137 /* Update TSC_OFFSET if TSC was changed while L2 ran */
9138 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9139
9140 /* This is needed for same reason as it was needed in prepare_vmcs02 */
9141 vmx->host_rsp = 0;
9142
9143 /* Unpin physical memory we referred to in vmcs02 */
9144 if (vmx->nested.apic_access_page) {
9145 nested_release_page(vmx->nested.apic_access_page);
9146 vmx->nested.apic_access_page = NULL;
9147 }
9148 if (vmx->nested.virtual_apic_page) {
9149 nested_release_page(vmx->nested.virtual_apic_page);
9150 vmx->nested.virtual_apic_page = NULL;
9151 }
9152
9153 /*
9154 * We are now running in L2, mmu_notifier will force to reload the
9155 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
9156 */
9157 kvm_vcpu_reload_apic_access_page(vcpu);
9158
9159 /*
9160 * Exiting from L2 to L1, we're now back to L1 which thinks it just
9161 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
9162 * success or failure flag accordingly.
9163 */
9164 if (unlikely(vmx->fail)) {
9165 vmx->fail = 0;
9166 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
9167 } else
9168 nested_vmx_succeed(vcpu);
9169 if (enable_shadow_vmcs)
9170 vmx->nested.sync_shadow_vmcs = true;
9171
9172 /* in case we halted in L2 */
9173 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9174 }
9175
9176 /*
9177 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
9178 */
9179 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
9180 {
9181 if (is_guest_mode(vcpu))
9182 nested_vmx_vmexit(vcpu, -1, 0, 0);
9183 free_nested(to_vmx(vcpu));
9184 }
9185
9186 /*
9187 * L1's failure to enter L2 is a subset of a normal exit, as explained in
9188 * 23.7 "VM-entry failures during or after loading guest state" (this also
9189 * lists the acceptable exit-reason and exit-qualification parameters).
9190 * It should only be called before L2 actually succeeded to run, and when
9191 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
9192 */
9193 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
9194 struct vmcs12 *vmcs12,
9195 u32 reason, unsigned long qualification)
9196 {
9197 load_vmcs12_host_state(vcpu, vmcs12);
9198 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
9199 vmcs12->exit_qualification = qualification;
9200 nested_vmx_succeed(vcpu);
9201 if (enable_shadow_vmcs)
9202 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
9203 }
9204
9205 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
9206 struct x86_instruction_info *info,
9207 enum x86_intercept_stage stage)
9208 {
9209 return X86EMUL_CONTINUE;
9210 }
9211
9212 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
9213 {
9214 if (ple_gap)
9215 shrink_ple_window(vcpu);
9216 }
9217
9218 static struct kvm_x86_ops vmx_x86_ops = {
9219 .cpu_has_kvm_support = cpu_has_kvm_support,
9220 .disabled_by_bios = vmx_disabled_by_bios,
9221 .hardware_setup = hardware_setup,
9222 .hardware_unsetup = hardware_unsetup,
9223 .check_processor_compatibility = vmx_check_processor_compat,
9224 .hardware_enable = hardware_enable,
9225 .hardware_disable = hardware_disable,
9226 .cpu_has_accelerated_tpr = report_flexpriority,
9227
9228 .vcpu_create = vmx_create_vcpu,
9229 .vcpu_free = vmx_free_vcpu,
9230 .vcpu_reset = vmx_vcpu_reset,
9231
9232 .prepare_guest_switch = vmx_save_host_state,
9233 .vcpu_load = vmx_vcpu_load,
9234 .vcpu_put = vmx_vcpu_put,
9235
9236 .update_db_bp_intercept = update_exception_bitmap,
9237 .get_msr = vmx_get_msr,
9238 .set_msr = vmx_set_msr,
9239 .get_segment_base = vmx_get_segment_base,
9240 .get_segment = vmx_get_segment,
9241 .set_segment = vmx_set_segment,
9242 .get_cpl = vmx_get_cpl,
9243 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
9244 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
9245 .decache_cr3 = vmx_decache_cr3,
9246 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
9247 .set_cr0 = vmx_set_cr0,
9248 .set_cr3 = vmx_set_cr3,
9249 .set_cr4 = vmx_set_cr4,
9250 .set_efer = vmx_set_efer,
9251 .get_idt = vmx_get_idt,
9252 .set_idt = vmx_set_idt,
9253 .get_gdt = vmx_get_gdt,
9254 .set_gdt = vmx_set_gdt,
9255 .get_dr6 = vmx_get_dr6,
9256 .set_dr6 = vmx_set_dr6,
9257 .set_dr7 = vmx_set_dr7,
9258 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
9259 .cache_reg = vmx_cache_reg,
9260 .get_rflags = vmx_get_rflags,
9261 .set_rflags = vmx_set_rflags,
9262 .fpu_deactivate = vmx_fpu_deactivate,
9263
9264 .tlb_flush = vmx_flush_tlb,
9265
9266 .run = vmx_vcpu_run,
9267 .handle_exit = vmx_handle_exit,
9268 .skip_emulated_instruction = skip_emulated_instruction,
9269 .set_interrupt_shadow = vmx_set_interrupt_shadow,
9270 .get_interrupt_shadow = vmx_get_interrupt_shadow,
9271 .patch_hypercall = vmx_patch_hypercall,
9272 .set_irq = vmx_inject_irq,
9273 .set_nmi = vmx_inject_nmi,
9274 .queue_exception = vmx_queue_exception,
9275 .cancel_injection = vmx_cancel_injection,
9276 .interrupt_allowed = vmx_interrupt_allowed,
9277 .nmi_allowed = vmx_nmi_allowed,
9278 .get_nmi_mask = vmx_get_nmi_mask,
9279 .set_nmi_mask = vmx_set_nmi_mask,
9280 .enable_nmi_window = enable_nmi_window,
9281 .enable_irq_window = enable_irq_window,
9282 .update_cr8_intercept = update_cr8_intercept,
9283 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
9284 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
9285 .vm_has_apicv = vmx_vm_has_apicv,
9286 .load_eoi_exitmap = vmx_load_eoi_exitmap,
9287 .hwapic_irr_update = vmx_hwapic_irr_update,
9288 .hwapic_isr_update = vmx_hwapic_isr_update,
9289 .sync_pir_to_irr = vmx_sync_pir_to_irr,
9290 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
9291
9292 .set_tss_addr = vmx_set_tss_addr,
9293 .get_tdp_level = get_ept_level,
9294 .get_mt_mask = vmx_get_mt_mask,
9295
9296 .get_exit_info = vmx_get_exit_info,
9297
9298 .get_lpage_level = vmx_get_lpage_level,
9299
9300 .cpuid_update = vmx_cpuid_update,
9301
9302 .rdtscp_supported = vmx_rdtscp_supported,
9303 .invpcid_supported = vmx_invpcid_supported,
9304
9305 .set_supported_cpuid = vmx_set_supported_cpuid,
9306
9307 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
9308
9309 .set_tsc_khz = vmx_set_tsc_khz,
9310 .read_tsc_offset = vmx_read_tsc_offset,
9311 .write_tsc_offset = vmx_write_tsc_offset,
9312 .adjust_tsc_offset = vmx_adjust_tsc_offset,
9313 .compute_tsc_offset = vmx_compute_tsc_offset,
9314 .read_l1_tsc = vmx_read_l1_tsc,
9315
9316 .set_tdp_cr3 = vmx_set_cr3,
9317
9318 .check_intercept = vmx_check_intercept,
9319 .handle_external_intr = vmx_handle_external_intr,
9320 .mpx_supported = vmx_mpx_supported,
9321
9322 .check_nested_events = vmx_check_nested_events,
9323
9324 .sched_in = vmx_sched_in,
9325 };
9326
9327 static int __init vmx_init(void)
9328 {
9329 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
9330 __alignof__(struct vcpu_vmx), THIS_MODULE);
9331 if (r)
9332 return r;
9333
9334 #ifdef CONFIG_KEXEC
9335 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
9336 crash_vmclear_local_loaded_vmcss);
9337 #endif
9338
9339 return 0;
9340 }
9341
9342 static void __exit vmx_exit(void)
9343 {
9344 #ifdef CONFIG_KEXEC
9345 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
9346 synchronize_rcu();
9347 #endif
9348
9349 kvm_exit();
9350 }
9351
9352 module_init(vmx_init)
9353 module_exit(vmx_exit)
This page took 0.266001 seconds and 6 git commands to generate.